WO2024070464A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2024070464A1
WO2024070464A1 PCT/JP2023/031704 JP2023031704W WO2024070464A1 WO 2024070464 A1 WO2024070464 A1 WO 2024070464A1 JP 2023031704 W JP2023031704 W JP 2023031704W WO 2024070464 A1 WO2024070464 A1 WO 2024070464A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
motor
energization
switching
time
Prior art date
Application number
PCT/JP2023/031704
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 山本
純 山田
健一 大石
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024070464A1 publication Critical patent/WO2024070464A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault

Definitions

  • This disclosure relates to a motor control device.
  • Patent Document 1 a disconnection detection circuit is provided in each current carrying line of the winding for each phase to detect disconnection.
  • the motor can continue to be driven.
  • the energized phase that is switched to next after the broken phase is set as the first energized phase, and the motor is driven using normal phases.
  • the stator salient poles of the energized phase and the rotor recesses may face each other, and the energized phase and the rotor teeth may not face each other.
  • the purpose of this disclosure is to provide a motor control device that can properly drive a motor when one phase is broken.
  • the motor control device disclosed herein controls the drive of a motor having three-phase motor windings, and includes a drive control unit and a control unit.
  • the drive circuit has switching elements that switch on and off the power supply to each phase of the motor windings.
  • the control unit has a drive control unit that controls the on/off operation of the switching elements by feedback control based on the detection value of a rotational position sensor that detects the rotational position of the motor, and an abnormality determination unit that determines whether the motor windings have an open circuit.
  • the drive control unit When a wire breakage fault occurs in one of the three phases and normal two-phase drive is performed to drive the motor using the two normal phases, the drive control unit performs pre-start preparation processing to energize the energized phase after energizing it in a pattern different from the energization pattern to the energized phase that is the energized phase when normal two-phase drive begins. This allows the motor to be driven appropriately when one phase is broken.
  • FIG. 1 is a perspective view showing a shift-by-wire system according to a first embodiment
  • FIG. 2 is a schematic configuration diagram showing a shift-by-wire system according to a first embodiment.
  • FIG. 3 is a circuit diagram illustrating an ECU according to a first embodiment;
  • FIG. 4 is a schematic diagram showing a motor according to a first embodiment;
  • FIG. 5 is a map in which energized phase numbers are associated with energized phases according to the first embodiment;
  • FIG. 6 is an explanatory diagram illustrating a disconnection phase and a facing position according to a switching direction according to the first embodiment;
  • FIG. 1 is a perspective view showing a shift-by-wire system according to a first embodiment
  • FIG. 2 is a schematic configuration diagram showing a shift-by-wire system according to a first embodiment.
  • FIG. 3 is a circuit diagram illustrating an ECU according to a first embodiment
  • FIG. 4 is a schematic diagram showing a motor according to a first embodiment
  • FIG. 7 is a schematic diagram showing an opposing state at the start of energization when driving in the forward direction in the event of a U-phase disconnection in the first embodiment;
  • FIG. 8 is an explanatory diagram for explaining motor drive in normal two-phase in the first embodiment;
  • FIG. 9 is an explanatory diagram illustrating switching of energized phases in a pre-switching preparation process according to the first embodiment;
  • FIG. 10 is an explanatory diagram illustrating a behavior of a rotor in a pre-switching preparation process according to the first embodiment;
  • FIG. 11 is a flowchart illustrating a range switching process according to the first embodiment.
  • FIG. 12 is a time chart illustrating the range switching process according to the first embodiment.
  • FIG. 13 is a flowchart illustrating a range switching process according to the second embodiment.
  • FIG. 14 is a flowchart illustrating a range switching process according to the third embodiment.
  • FIG. 15 is a time chart illustrating the range switching process according to the third embodiment.
  • FIG. 16 is a flowchart illustrating a range switching process according to the fourth embodiment.
  • FIG. 17 is a time chart illustrating the range switching process according to the fourth embodiment.
  • FIG. 18 is a time chart illustrating the range switching process according to the fourth embodiment.
  • FIG. 19 is a flowchart illustrating a range switching process according to the fifth embodiment.
  • FIG. 20 is a time chart illustrating the range switching process according to the fifth embodiment.
  • FIG. 21 is a time chart illustrating the range switching process according to the fifth embodiment.
  • FIG. 20 is a time chart illustrating the range switching process according to the fifth embodiment.
  • FIG. 22 is a time chart illustrating the range switching process according to the fifth embodiment.
  • FIG. 23 is a flowchart illustrating a startup process according to the sixth embodiment.
  • FIG. 24 is a flowchart illustrating a range switching process according to the sixth embodiment.
  • FIG. 25 is a time chart illustrating the range switching process according to the sixth embodiment.
  • FIG. 26 is a time chart illustrating the range switching process according to the sixth embodiment.
  • FIG. 27 is a time chart illustrating the range switching process according to the sixth embodiment.
  • the shift-by-wire system 1 includes a motor 10, a detent mechanism 20, a parking lock mechanism 30, and an ECU 40 as a motor control device.
  • the motor 10 rotates when power is supplied from a battery 90 mounted on the vehicle (not shown), and functions as a drive source for the detent mechanism 20.
  • the motor 10 is, for example, a switched reluctance motor.
  • the motor 10 has a stator 101, a rotor 103, and a motor winding 11.
  • the motor winding 11 has a U-phase coil 111, a V-phase coil 112, and a W-phase coil 113, and is wound around the salient pole 102 of the stator 101.
  • the coils 111 to 113 are connected at a connection part 115.
  • the connection part 115 is connected to the battery 90 via a motor relay 91 and a fuse 92.
  • the rotor 103 has salient poles and is rotatably mounted radially inside the stator 101.
  • the rotor 103 is rotationally driven by switching the current phase of the coils 111 to 113.
  • the stator 101 has 12 salient poles and the rotor 103 has 8 salient poles.
  • the salient poles of the rotor 103 will be referred to as convex portions 104, and the spaces between the convex portions will be referred to as concave portions 105.
  • Encoder 13 is a magnetic rotary encoder that detects the rotational position of rotor 103.
  • Encoder 13 is composed of Hall elements 131 and 132 for magnetic detection, and a magnet 135 that rotates integrally with rotor 103.
  • Hall elements 131 and 132 output pulse signals every predetermined angle in synchronization with the rotation of rotor 103.
  • Hall elements 131 and 132 output a Lo signal when facing the N pole, and a Hi signal when facing the S pole.
  • the magnet 135 is formed in an annular shape and is arranged coaxially with the rotor 103.
  • the magnet 135 is magnetized with alternating north and south poles at equal pitches in the circumferential direction.
  • the magnetization pitch is 7.5°. This magnetization pitch is the same as the rotation angle of the rotor 103 per excitation of the motor 10.
  • Hall elements 131 and 132 are arranged on the same circumference with a phase difference of 90° electrical angle.
  • an electrical angle of 90° corresponds to a mechanical angle of 3.75°
  • hall elements 131 and 132 are arranged with an interval of 48.75°.
  • the signal of hall element 131 is phase A
  • the signal of hall element 132 is phase B.
  • encoder 13 is a two-phase encoder, it may be a three-phase encoder, or may output a Z-phase signal as a reference signal in addition to the detection signal.
  • the reducer 14 is provided between the motor shaft of the motor 10 and the output shaft 15, and reduces the rotation of the motor 10 before outputting it to the output shaft 15. This transmits the rotation of the motor 10 to the detent mechanism 20.
  • the output shaft sensor 16 is, for example, a potentiometer, and detects the rotational position of the output shaft 15 (see FIG. 2).
  • the detent mechanism 20 has a detent plate 21, a detent spring 25, and a detent roller 26, and transmits the rotational driving force output from the reduction gear 14 to the parking lock mechanism 30.
  • the detent plate 21 is fixed to the output shaft 15 and driven by the motor 10. On the side of the detent spring 25 of the detent plate 21, two valleys 211, 212 and a peak 215 separating the valleys 211, 212 are provided.
  • the detent spring 25 is a plate-shaped member that can be elastically deformed, and has a detent roller 26 at its tip.
  • the detent spring 25 biases the detent roller 26 toward the center of rotation of the detent plate 21.
  • the detent spring 25 elastically deforms, and the detent roller 26 moves between the valleys 211, 212.
  • the detent roller 26 fits into either of the valleys 211, 212, the oscillation of the detent plate 21 is restricted, and the state of the parking lock mechanism 30 and the shift range of the automatic transmission 5 are determined.
  • the parking lock mechanism 30 has a parking rod 31, a cone 32, a parking lever 33, a shaft 34, and a parking gear 35.
  • the parking rod 31 is formed in a roughly L-shape, and one end 311 is fixed to the detent plate 21.
  • a cone 32 is provided on the other end 312 of the parking rod 31.
  • the cone 32 is formed so that its diameter decreases as it approaches the other end 312.
  • the parking lever 33 abuts against the conical surface of the cone 32 and is arranged to be able to swing around the shaft 34.
  • a protrusion 331 that can mesh with the parking gear 35 is provided on the parking lever 33's parking gear 35 side.
  • the parking gear 35 is connected to a drive shaft (not shown) and is arranged so that it can mesh with a protrusion 331 of the parking lever 33.
  • the rotation of the drive shaft is restricted.
  • the shift range is a not P range other than P
  • the parking gear 35 is not locked by the parking lever 33, and the rotation of the drive shaft is not hindered by the parking lock mechanism 30.
  • the shift range is P range
  • the parking gear 35 is locked by the parking lever 33, and the rotation of the drive shaft is restricted.
  • the rotation direction of the motor 10 when switching from the P range to the notP range is the forward direction
  • the rotation direction of the motor 10 when switching from the notP range to the P range is the reverse direction
  • the ECU 40 includes a drive circuit 41, a current detection unit 45, a voltage detection circuit 46, and a control unit 50.
  • the drive circuit 41 has three switching elements 411, 412, and 413.
  • the switching elements 411 to 413 are provided corresponding to the coils 111 to 113, respectively, and switch the current flow to the corresponding phase.
  • the switching elements 411 to 413 are provided between the coils 111 to 113 and ground.
  • the switching elements 411 to 413 in this embodiment are MOSFETs, but may also be IGBTs, etc.
  • Current detection unit 45 is provided on the collective wiring that connects the sources of switching elements 411-413 to ground, and detects the sum of the currents flowing through coils 111-113.
  • the current detected by current detection unit 45 is referred to as motor current Im.
  • Current detection unit 45 may be provided at any location where it is possible to detect the currents in coils 111-113, and may also be provided for each phase.
  • the voltage detection circuit 46 is connected between the coils 111-113 and the switching elements 411-413, and detects the terminal voltage of each phase.
  • the relay driver 48 controls the on/off operation of the motor relay 91.
  • the control unit 50 is mainly composed of a microcomputer and includes a CPU, ROM, RAM, I/O, and bus lines connecting these components (none of which are shown in the figure).
  • Each process in the control unit 50 may be software processing in which the CPU executes a program pre-stored in a physical memory device (i.e., a readable non-transitory tangible recording medium) such as a ROM, or it may be hardware processing using a dedicated electronic circuit.
  • the control unit 50 controls the switching of the shift range by controlling the drive of the motor 10 based on a shift signal corresponding to the driver's requested shift range, a signal from the brake switch, the accelerator opening, the vehicle speed, etc.
  • the control unit 50 has, as its functional blocks, a signal acquisition unit 51, an abnormality determination unit 52, and a drive control unit 55.
  • the signal acquisition unit 51 acquires detection signals from the encoder 13, the output shaft sensor 16, the current detection unit 45, the voltage detection circuit 46, and the like.
  • the abnormality determination unit 52 determines an abnormality in the shift-by-wire system 1, such as a disconnection abnormality.
  • the drive control unit 55 controls the driving of the motor 10 by controlling the on/off operation of the switching elements 411 to 413.
  • the motor 10 is driven by switching the current-carrying phase of the motor winding 11 through feedback control based on the encoder count value.
  • the control unit 50 stores a map in which the energized phase numbers correspond to energized phases, and rotates the motor 10 by shifting the energized phase number by 1 and switching the energized phase each time a pulse edge of the encoder signal is detected.
  • the energized phase number is increased by 1 each time a pulse edge of the encoder signal is detected, and when rotating the motor 10 in the reverse direction, the energized phase number is decreased by 1.
  • the energized phase number can also be regarded as the remainder when the encoder count value is divided by 12, for example.
  • the motor 10 is driven by energizing the two normal phases through feedback control, thereby switching the range. For example, when the U phase is broken, no torque is generated in energized phases 2 and 3, where only the U phase is energized under normal circumstances, but the motor 10 can continue to be driven by passing through this region due to inertia.
  • the opposing positional relationship between the salient poles 102 of the stator 101 and the convex portions 104 of the rotor 103 at the start of switching is set according to the broken phase and the rotational direction of the motor 10. If the U-phase is broken and the switching direction is forward, the range switching starts from the V-phase facing state, and if it is reverse, the range switching starts from the W-phase facing state. If the V-phase is broken and the switching direction is forward, the W-phase facing state, and if it is reverse, the range switching starts from the U-phase facing state. If the W-phase is broken and the switching direction is forward, the U-phase facing state, and if it is reverse, the range switching starts from the V-phase facing state. Below, an example in which the switching direction is forward when the U-phase is broken will be mainly explained.
  • range switching begins from a state in which the V-phase is energized and V-phase is facing.
  • the upper row shows the switching of energized phases
  • the lower row shows the motor torque corresponding to the energized phases in the upper row.
  • the W-phase is energized, followed by the WU-phase, U-phase, and UV-phase.
  • the W-phase when the U-phase is broken, current cannot be passed to the U-phase coil 111, so in the area where the WU-phase should be energized, the W-phase continues to be energized and the motor torque decreases, and in the area where the U-phase should be energized, the motor torque becomes zero. If this area is passed through by inertia, current is passed to the V-phase in the UV-phase energized area, increasing the motor torque, and the motor 10 continues to rotate.
  • the energized phase coils are shown with solid lines and the non-energized phase coils with dashed lines, and the broken state is shown by omitting the illustration of the U-phase coil 111.
  • the concave portion 105 of the rotor 103 and the V-phase salient pole 102 may face each other when the V-phase is applied, and in this state, driving cannot be started from the V-phase facing state.
  • the rotor 103 may rotate in the reverse direction, or the rotation speed may be insufficient in the area to be passed by inertia, making it impossible to pass through the open phase.
  • a pre-switching preparation process is performed to align the positions of the stator 101 and rotor 103 so that they are reliably in the opposing state shown in FIG. 6.
  • the pre-switching preparation process as shown in FIG. 9, one-phase current, two-phase current, and one-phase current are performed in sequence to ensure that the current-carrying phase at the start of switching is opposed in a one-phase, one-tooth state.
  • W-phase, VW-phase, and V-phase are energized as pre-switching preparations
  • V-phase, VW-phase, and W-phase are energized as pre-switching preparations
  • W-phase, WU-phase, and U-phase are energized as pre-switching preparations.
  • energization status ST1 the first 1-phase energization in the pre-switching preparations is referred to as energization status ST1
  • energization status ST2 the next 2-phase energization as energization status ST2
  • energization status ST3 the state in which 1-phase 1-tooth state is maintained with 1-phase energization to the energized phase at the start of switching as energization status ST3.
  • Figure 10 shows the pre-switching preparations for achieving the V-phase opposing state when the U-phase is broken.
  • W-phase current is applied so that the convex portion 104 faces the W-phase.
  • VW-phase current When current is switched from this state to VW-phase current, the rotor 103 rotates and the convex portion 104 faces the V-phase and W-phase, resulting in a so-called "two-phase, two-tooth" state.
  • the range switching process of this embodiment will be described with reference to the flowchart in FIG. 11. This process is executed by the control unit 50 at a predetermined cycle.
  • the control unit 50 determines whether or not a one-phase break has been detected. If it is determined that a one-phase break has not been detected (S101: NO), the process from S102 onwards is skipped. Note that the detection of a one-phase break is performed in a process separate from this embodiment, and is determined, for example, based on the detection value of the voltage detection circuit 46, but the details of the detection method are not important. Also, when all phases are normal, range switching is performed in a process separate from this process. If it is determined that a one-phase break has been detected (S101: YES), proceed to S102.
  • control unit 50 determines whether or not there is a request to switch the shift range. If it is determined that there is no request to switch (S102: NO), the process from S103 onwards is skipped and the standby mode continues. If it is determined that there is a request to switch (S102: YES), the process proceeds to S103.
  • the drive control unit 55 applies current in the current status ST1. For example, when the U phase is disconnected and the switching direction is forward, current is applied to the W phase.
  • the drive control unit 55 determines whether the current hold time Xh1 in the current status ST1 has elapsed. If it is determined that the current hold time Xh1 has not elapsed (S104: NO), the process returns to S103 and current is continued in the current status ST1. If it is determined that the current hold time Xh1 has elapsed (S104: YES), the process proceeds to S105.
  • the drive control unit 55 applies current in the current status ST2. For example, when the U phase is disconnected, two-phase current is applied to the VW phase, which is the normal phase, regardless of the switching direction.
  • the drive control unit 55 determines whether the current hold time Xh2 in the current status ST2 has elapsed. If it is determined that the current hold time Xh2 has not elapsed (S106: NO), the process returns to S105 and current is continued in the current status ST2. If it is determined that the current hold time Xh2 has elapsed (S106: YES), the process proceeds to S107.
  • the drive control unit 55 applies current in the current status ST3. For example, when the U-phase is disconnected and the switching direction is forward, current is applied to the V-phase.
  • the drive control unit 55 determines whether the current hold time Xh3 in the current status ST3 has elapsed. If it is determined that the current hold time Xh3 has not elapsed (S108: NO), the process returns to S107 and current is continued in the current status ST3. If it is determined that the current hold time Xh3 has elapsed (S108: YES), the process proceeds to S109 and the pre-switching preparation complete flag is turned on. The pre-switching preparation complete flag is turned off at any time after the start of range switching.
  • the drive control unit 55 drives the motor 10 from a one-phase, one-tooth opposing state at a predetermined position according to the broken phase and rotation direction, and performs range switching by feedback control in normal two phases.
  • the control unit 50 determines whether the range switching is complete. If it is determined that the range switching is not complete (S111: NO), the process returns to S109 and continues feedback control in normal two phases. If it is determined that the range switching is complete (S111: YES), the process transitions to standby mode and ends this process.
  • the horizontal axis represents a common time axis, and from the top, the motor control mode, one-phase breakage detection status, pre-switching preparation completion flag, motor rotation angle, and current phase are shown.
  • the motor rotation angle is a value that can be converted from the encoder count value, with the actual value shown as a solid line and the target value shown as a dashed line, with P representing when the detent roller 26 is at the bottom of the valley 211 and notP representing when it is at the bottom of the valley 212.
  • P representing when the detent roller 26 is at the bottom of the valley 211
  • notP representing when it is at the bottom of the valley 212.
  • pre-switching preparation processing is performed.
  • the energized phase is switched at predetermined time intervals in the order of energized status ST1, ST2, ST3.
  • the energized phases of energized status ST1, ST2, ST3 are set according to the broken phase and switching direction.
  • the energization status ST2 is two-phase energization
  • the rotor 103 is likely to stabilize, and the energization hold time Xh2 can be a relatively short time.
  • the pre-switch preparation completion flag is turned on, and range switching is performed with feedback control using the two normal phases.
  • stop control is performed.
  • the stop control in this embodiment is fixed phase current supply to the two normal phases.
  • the motor 10 when the motor 10 is driven by energizing the normal two phases when one phase is broken, the motor 10 is energized in the order of one phase, two phase, and one phase as pre-switching preparation processing before starting to drive. This allows the motor 10 to start driving from a one-phase, one-tooth state in which the convex portion 104 of the rotor 103 faces the energized phase at the start of switching.
  • the ECU 40 controls the driving of a motor having three-phase motor windings 11, and includes a drive circuit 41 and a control unit 50.
  • the drive circuit 41 has switching elements 411-413 that switch on and off the power supply to each phase of the motor windings 11.
  • the control unit 50 has a drive control unit 55 that controls the on/off operation of the switching elements 411-413 by feedback control based on the detection value of the encoder 13 that detects the rotational position of the motor 10, and an abnormality determination unit 52 that determines whether the motor windings 11 have an open circuit.
  • a wire breakage fault occurs in one of the three phases and normal two-phase drive is performed to drive the motor 10 using the two normal phases
  • the drive control unit 55 performs pre-switching preparation processing to energize the energized phase after energizing it in a pattern different from the energization pattern to the energized phase that is the energized phase at the start of normal two-phase drive.
  • a wire breakage fault is a fault that prevents current from flowing through the coil, and includes a wire breakage in the harness and a switching element stuck off.
  • the rotor 103 By performing pre-switching preparation processing, the rotor 103 can be rotated to a position where the stator 101 and rotor 103 face each other and torque can be generated in normal two-phase drive. This allows the motor 10 to be driven appropriately when one phase is broken.
  • the drive control unit 55 switches the energized phase as a pre-energization preparation process in the order of energization status ST1, which is a first energization process in which energization is performed to phase 1 of the normal phases, energization status ST2, which is a second energization process in which energization is performed to phase 2 of the normal phases, and energization status ST3, which is a third energization process in which energization is performed to the energized holding phase of phase 1.
  • This allows the opposing positions of the stator 101 and rotor 103 to be appropriately aligned to a predetermined position.
  • the energized phase in the pre-switching preparation process is set according to the disconnection phase and the rotation direction of the motor 10, and the energized phase of the energized status ST1 is the phase that is energized before the disconnection phase in terms of the switching order of the energized phases. This allows the opposing positions of the stator 101 and the rotor 103 to be properly aligned.
  • Fig. 13 differs from Fig. 11 in that S120 is added between S106 and S107.
  • the control unit 50 sets the energization hold time Xh3 of the energization status ST3 according to the ambient temperature H.
  • the ambient temperature H is less than the first judgment threshold Hth1
  • the energization hold time is Xp.
  • the energization hold time is Xq.
  • the energization hold time is Xr.
  • the magnitude relationship of each value is Hth1 ⁇ Hth2, Xp ⁇ Xq ⁇ Xr.
  • the ambient temperature H is the environmental temperature of the motor 10, and may be the temperature of the motor 10 itself, or may be the temperature of other parts arranged near the motor 10, such as the oil temperature of the transmission.
  • the energization status ST13 is maintained in a one-phase, one-tooth state with one-phase energization.
  • the rotor 103 is likely to vibrate.
  • the ambient temperature H is low, friction is large and the rotor 103 is less likely to vibrate. Therefore, in this embodiment, the lower the ambient temperature H, the shorter the energization hold time Xh3 in the energization status ST3 can be, thereby improving responsiveness.
  • the energization hold time Xh3 is set to three stages using two judgment thresholds Hth1 and Hth2, but the judgment threshold may be 1 or more, and the number of stages does not matter.
  • the energization hold time Xh3 may be set by calculation using a map or function according to the ambient temperature H. Furthermore, similar to the energization status ST3, the energization hold time Xh1 of the energization status ST1, which is one-phase energization, may also be variable according to the ambient temperature H.
  • the energization time in the pre-switching preparation process is variable depending on the motor temperature.
  • the lower the motor temperature the shorter the energization time of energization status ST3 is set. This allows the energization time to be set appropriately depending on the motor temperature, which contributes to improving responsiveness especially at low temperatures. It also provides the same effects as the above embodiment.
  • the control unit 50 determines whether the amplitude A1 is equal to or less than the amplitude determination threshold Ath1.
  • the amplitude A1 is, for example, the difference between the maximum and minimum values of the n encoder count values prior to the current holding time Xh1 having elapsed. The details of the calculation of the amplitude A1 are not important.
  • the amplitude determination threshold Ath1 is set to a value at which the rotor 103 can be considered to be held in a one-phase, one-tooth state. The same applies to the amplitude A3 and amplitude determination threshold Ath3 described below.
  • the amplitude determination thresholds Ath1 and Ath3 may be the same or different.
  • the process proceeds to S207, and energization begins in energization status ST2. If it is determined that the amplitude A1 is greater than the amplitude judgment threshold Ath1 (S205: NO), the process proceeds to S206, and energization in energization status ST1 is extended by a predetermined time Xa. Thereafter, the process proceeds to S207, and energization begins in energization status ST2.
  • the processes of S207 to S210 are the same as those of S105 to S108.
  • the control unit 50 determines whether the amplitude A3 is equal to or less than the amplitude determination threshold Ath3. If it is determined that the amplitude A3 is equal to or less than the amplitude determination threshold Ath3 (S211: YES), the control unit 50 proceeds to S213 and performs range switching in normal two phases. If it is determined that the amplitude A3 is greater than the amplitude determination threshold Ath3 (S211: NO), the control unit 50 proceeds to S211 and extends current flow in current status ST3 by a predetermined time Xc. The extension times for current status ST1 and ST3 may be the same or different.
  • the processes in S213 to S215 are similar to the processes in S109 to S111 in FIG. 11.
  • the range switching process of this embodiment will be explained based on the time chart in FIG. 15.
  • the amplitude determination thresholds Ath1 and Ath3 are explained as being equal.
  • the vibration component with one phase current is emphasized.
  • the process from time x10 to x12 is the same as the process from time x0 to x2 in FIG. 12.
  • the rotor 103 vibrates due to one-phase current flow in the current flow status ST1, but because the amplitude A1 at time x13 after the current flow holding time Xh1 has elapsed is equal to or less than the amplitude determination threshold Ath1, the current flow status ST1 is not extended and is switched to current flow status ST2. In current flow status ST2, two-phase current flow occurs, so the vibration of the rotor 103 is relatively small.
  • the energization time is extended. This makes it possible to improve the accuracy of holding the opposing positions in one-phase energization, where the opposing state between the stator 101 and rotor 103 is more likely to be unstable compared to two-phase energization. It also provides the same effects as the above embodiment.
  • FIG. 16 differs from Fig. 14 in that S231 and S232 are replaced with S206, and S233 and S234 are replaced with S212.
  • S205 which is performed after the energization hold time Xh1 has elapsed in the energization status ST1, if it is determined that the amplitude A1 is greater than the amplitude determination threshold Ath1 (S205: NO), the energization status ST1 is extended in S231.
  • the control unit 50 determines whether the timeout time Xout1 has elapsed since the start of the extension of the power-on status ST1. If it is determined that the timeout time has not elapsed (S232: NO), the extension of the power-on status ST1 continues and the process returns to S205. If it is determined that the timeout time Xout1 has elapsed (S232: YES), the process proceeds to S207 and the power-on state is switched to the power-on status ST2.
  • control unit 50 determines whether the timeout time Xout3 has elapsed since the start of the extension of the power-on status ST3. If it is determined that the timeout time Xout3 has not elapsed (S234: NO), the extension of the power-on status ST3 continues and the process returns to S205. If it is determined that the timeout time Xout3 has elapsed (S234: YES), the process proceeds to S213.
  • Figure 17 shows a case where the vibration subsides before the timeout period Xout3.
  • the process from time x20 to time x25 is the same as the process from time x10 to time x15 in Figure 15.
  • the amplitude A3 is greater than the amplitude determination threshold Ath3, so the current flow in the current flow status ST3 is extended.
  • the processing from time x26 onwards is the same as in the example above.
  • FIG. 18 shows a case where the vibration does not converge within the timeout period Xout3.
  • the processing from time x30 to time x35 is the same as the processing from time x10 to time x15 in FIG. 15.
  • the amplitude A3 is greater than the amplitude determination threshold Ath3, so the current flow in the current flow status ST3 is extended.
  • time x36 when the timeout time Xout3 has elapsed since time x35, which is the start time of the power-on status ST3, the amplitude A3 continues to be greater than the amplitude determination threshold Ath3, but the pre-switch preparation flag is turned on as a timeout, and range switching is performed in normal two phases.
  • the processing from time x36 onwards is the same as in the example above.
  • the current status ST3 just before the pre-switching preparation is complete is one-phase current, so the rotor 103 is prone to vibration and the opposing position is difficult to determine. Therefore, if the timeout period Xout3 has elapsed, even if the vibration has not subsided, it is assumed that the rotor 103 has completed moving to the specified opposing position, and pre-switching preparation is completed. This allows the range switching to begin appropriately.
  • the drive control unit 55 transitions to the next current flow process when the timeout times Xout1 and Xout3 have elapsed since the start of the extension of current flow.
  • the drive control unit 55 transitions to current flow status ST2
  • the timeout time Xout3 has elapsed in current flow status ST3
  • the drive control unit 55 initiates range switching in normal two-phase drive. This allows the drive control unit 55 to appropriately switch to the next current flow process even if vibrations do not subside with one-phase current flow. It also provides the same effects as the above embodiment.
  • FIG. 19 A fifth embodiment is shown in Fig. 19 to Fig. 22.
  • a retry is performed.
  • the range switching process of this embodiment will be described with reference to the flowchart of Fig. 19.
  • S301 and S302 are the same as those of S101 and S102 in FIG. 11. If it is determined that a switch request has been made (S302: YES), the process proceeds to S303, where a retry flag, which will be described later, is turned off.
  • S304 to S306 is the same as the processing of S203 to S205 in FIG. 14. If it is determined that the amplitude A1 is equal to or less than the amplitude judgment threshold Ath1 (S306: YES), the process proceeds to S308. If it is determined that the amplitude A1 is greater than the amplitude judgment threshold Ath1 (S306: NO), the process proceeds to S307, and the retry flag is turned on.
  • S308 to S312 is the same as the processing of S207 to S211 in FIG. 14. If it is determined that the amplitude A3 is greater than the amplitude judgment threshold Ath3 (S312: NO), the process proceeds to S314, where the retry flag is turned on. If it is already on, the state is maintained. If it is determined that the amplitude A3 is equal to or less than the amplitude judgment threshold Ath3 (S312: YES), the process proceeds to S313.
  • the control unit 50 determines whether or not a voltage drop has occurred between the start of current flow in the current flow status ST1 and the end of current flow in the current flow status ST3, causing the motor voltage Vm to fall below the voltage determination threshold Vth. Instead of a voltage drop, the control unit 50 may determine whether or not a current drop has occurred, causing the motor current Im to fall below the current determination threshold Ith. If it is determined that no voltage drop has occurred (S313: NO), the process proceeds to S315. If it is determined that a voltage drop has occurred (S313: YES), the process proceeds to S314, where the retry flag is turned on. Note that, for the sake of explanation, the control unit 50 determines whether or not a voltage drop has occurred after the end of current flow status ST3, but the control unit 50 may also perform voltage monitoring separately from this process and turn on the retry flag when a voltage drop occurs.
  • control unit 50 determines whether the retry flag is on. If it is determined that the retry flag is off (S315: NO), the control unit 50 proceeds to S319. If it is determined that the retry flag is on (S315: YES), the control unit 50 proceeds to S316 and increments the retry counter Cr.
  • the control unit 50 determines whether the retry counter Cr is smaller than the count determination threshold Cth. If it is determined that the retry counter Cr is smaller than the count determination threshold Cth (S317: YES), the process returns to S303, the retry flag is turned off, and pre-switch preparation is retried. If it is determined that the retry counter Cr is equal to or greater than the count determination threshold Cth (S317: NO), the process proceeds to S318.
  • control unit 50 determines whether the input switching request is to switch from P range to not P range. If it is determined that the request is to switch from P range to not P range (S303: YES), the processing from S319 onwards is skipped. If it is determined that the request is to switch from not P range to P range (S318: NO), the process proceeds to S319, where the retry flag is turned off and the pre-switch preparation completion flag is turned on.
  • the processing of S320 and S321 is the same as the processing of S110 and S111 in FIG. 11.
  • the state in which the retry flag is set can be considered as a state in which the retry condition is met.
  • S318 may be omitted, and normal two-phase drive may be performed after a predetermined number of retries regardless of the range switching direction.
  • Figure 20 shows an example of a case where a voltage drop occurs during pre-switching preparation processing, with a common time axis as the horizontal axis, and from the top, motor control, one-phase breakage detection status, pre-switching preparation completion flag, retry flag, retry counter, motor voltage, and current-carrying phase.
  • Figure 22 shows an example of a case where a voltage drop occurs during pre-switching preparation processing, with a common time axis as the horizontal axis, and from the top, motor control, one-phase breakage detection status, pre-switching preparation completion flag, retry flag, retry counter, motor voltage, and current-carrying phase.
  • Figure 22 shows an example of a case where a voltage drop occurs during pre-switching preparation processing, with a common time axis as the horizontal axis, and from the top, motor control, one-phase breakage detection status, pre-switching preparation completion flag, retry flag, retry counter, motor voltage, and current-
  • the processing from time x40 to time x42 is the same as the processing from time x0 to time x2 in FIG. 12.
  • the retry flag is turned on.
  • the retry flag is on, so the pre-switch preparation process is retried.
  • the retry flag is turned off and the retry counter is incremented. From time x44 to time x45, power is again applied with the power-on statuses ST1 to ST3.
  • the retry counter is reset at any timing after the start of range switching. In FIG. 20, the retry counter is reset when the pre-switching preparation complete flag is turned off, but it may be reset at a different timing.
  • FIG. 21 shows an example of a case where the vibration at the energization status ST3 has not converged, with a common time axis as the horizontal axis, and from the top, motor control, one-phase breakage detection state, pre-switching preparation completion flag, retry flag, retry counter, rotation angle sensor, and energized phase.
  • the processing from time x50 to time x52 is the same as the processing from time x0 to time x2 in FIG. 12.
  • the amplitude A3 is greater than the amplitude judgment threshold Ath3, so the retry flag is turned on and the pre-switching preparation process is retried at time x54.
  • the retry flag is turned off and the retry counter is incremented. Note that for the sake of explanation, time x53 is shifted to the left side of the page in FIG. 21.
  • the amplitude A1 after the energization status ST1 ends is less than or equal to the amplitude judgment threshold Ath1, but if the amplitude A1 is greater than the amplitude judgment threshold Ath1, the retry flag is set when the energization status ST1 ends.
  • FIG. 22 shows an example of a case where a voltage drop occurs even after a retry.
  • the range is switched from not P to P.
  • the processing from time x60 to time x64 is the same as the processing from time x40 to time x44 in FIG. 20.
  • the retry flag is turned on.
  • the retry flag is on, so the retry flag is turned off and the retry counter is incremented.
  • the count determination threshold Cth is 2, a second retry is not performed, the pre-switch preparation completion flag is turned on, and range switching is performed in normal two phases.
  • the processing after time x66 is substantially the same as the processing after time x3 in FIG. 12.
  • the pre-switching preparation process is retried. Furthermore, if the vibration does not converge in the energization status ST1, when the energization status is switched to ST2 or ST3, there is a risk that the opposing state will not change to two phases, two teeth, or one phase, one tooth, for example, because the recesses will be opposed, and so the pre-switching preparation is retried.
  • the pre-switching preparation process is retried. This makes it possible to start range switching in a normal two-phase opposing state.
  • the pre-switching preparation process is performed again.
  • the control unit 50 determines that the retry condition is met if the amplitudes A1, A3 of the motor rotation angle when the current hold times Xh1, Xh3 have elapsed are greater than the amplitude judgment thresholds Ath1, Ath3 in at least one of the current-on status ST1 and current-on status ST3.
  • the control unit 50 also determines that the retry condition is met if the motor voltage Vm or motor current Im becomes smaller than the judgment threshold during pre-start switching preparation. This can improve the accuracy of the pre-switching preparation process.
  • the drive control unit 55 starts normal two-phase drive. This makes it possible to start driving the motor 10 even when there is a large amount of vibration.
  • the ECU 40 is applied to a shift-by-wire system, and when the number of retries is equal to or greater than the number of judged retries and the retry condition is met, it allows switching from a range other than the P range to the P range by normal two-phase drive, and prohibits switching from the P range to a range other than the P range. This allows the shift range to be switched appropriately, and also provides the same effects as the above embodiment.
  • Sixth Embodiment 23 to 27 show the sixth embodiment.
  • a pre-switching preparation process is performed.
  • the pre-switching preparation process is performed in advance before a range switching request is made.
  • the startup process of this embodiment will be described with reference to the flowchart in FIG. 23.
  • This process is executed when a vehicle start switch, such as an ignition switch, is turned on.
  • the control unit 50 determines whether or not the initial drive has been completed.
  • the initial drive process is a current application process for matching the relative positions of the encoder 13 and the rotor 103. If it is determined that the initial drive has not been completed (S401: NO), this determination process is repeated. If it is determined that the initial drive has been completed (S401: YES), the process proceeds to S402.
  • S402 is the same as the process of S101 in FIG. 11. If it is determined that a single-phase break has not been detected (S402: NO), the subsequent processes are skipped. If it is determined that a single-phase break has been detected (S402: YES), the process proceeds to S403.
  • S403 to S408 are pre-switching preparation processes similar to S103 to S108 in FIG. 11.
  • the control unit 50 turns on the pre-switching preparation completion flag in S409, transitions to standby mode in S410, and ends this process.
  • the encoder count value when the pre-switching preparation process is completed is stored as an initial value ENi in a storage unit such as a RAM (not shown).
  • S501 and S502 are the same as the processes of S101 and S102 in FIG. 11. If it is determined that there is a switching request (S502: YES), the process proceeds to S505, and if it is determined that there is no switching request (S502: NO), the process proceeds to S503.
  • the control unit 50 determines whether the amount of rotation ⁇ EN, which is the difference between the current encoder count value EN and the initial value ENi, is 0. If it is determined that the amount of rotation ⁇ EN is 0 (S503: YES), that is, if the rotor 103 has not moved since the pre-switching preparation process was completed, the subsequent processes are skipped. If it is determined that the amount of rotation ⁇ EN is not 0 (S503: NO), that is, if the rotor 103 has moved since the pre-switching preparation was completed, the process proceeds to S504 and the pre-switching preparation completion flag is turned off.
  • control unit 50 proceeds to S505, where it determines whether the pre-switching preparation complete flag is on or not. If it is determined that the pre-switching preparation complete flag is on (S505: YES), it proceeds to S516. If it is determined that the pre-switching preparation complete flag is off (S505: NO), it proceeds to S506.
  • the control unit 50 determines whether the rotation amount ⁇ EN is smaller than the rotation amount determination threshold ENth.
  • the rotation amount determination threshold ENth is a value corresponding to the rotation amount when one current-carrying phase is switched, and is, for example, two counts of the encoder count value. If it is determined that the rotation amount ⁇ EN is smaller than the rotation amount determination threshold ENth (S507: YES), the process proceeds to S507. If it is determined that the rotation amount ⁇ EN is equal to or greater than the rotation amount determination threshold ENth (S507: NO), the process proceeds to S509.
  • S508 and S509 are the same as those of S107 and S108 in FIG. 11, and power is supplied in the power status ST3 for the power supply holding time Xh3. If it is determined in the power supply status ST3 that the power supply holding time Xh3 has elapsed (S508: YES), the process proceeds to S515.
  • the processing of S509 to S514 is the same as the processing of S103 to S108 in FIG. 11. If the rotation amount ⁇ EN is equal to or greater than the rotation amount determination threshold ENth, the pre-switch preparation processing is performed by switching the current status to ST1, ST2, and ST3. If it is determined in the current status ST3 that the current hold time Xh3 has elapsed (S514: YES), the process proceeds to S515.
  • S515 to S517 is the same as the processing of S109 to S111 in FIG. 11, and range switching is performed in normal two phases. If it is determined that range switching is complete (S517: YES), the process proceeds to S518 and pre-switch preparation processing is performed.
  • pre-switch preparation processing is performed by switching the current status between ST1, ST2, and ST3, as in S509 to S515. After the current hold time Xh3 has elapsed in current status ST3, the pre-switch preparation completion flag is turned on and the standby mode is entered in S519.
  • the encoder count value EN at the time pre-switch preparation completion is completed is retained as the initial value ENi.
  • the rotor 103 is not moving during standby, and the pre-switch preparation complete flag remains on.
  • the pre-switch preparation complete flag is on, so range switching is performed from this state using feedback control using normal two phases.
  • stop control is performed.
  • pre-switch preparation processing is performed in preparation for the next range switching. Since the rotation direction will be reversed in the next range switching, if there is a break in the U phase, current is applied in the order of V phase ⁇ VW phase ⁇ W phase.
  • the pre-switch preparation complete flag is turned on and the mode transitions to standby mode.
  • the processing from time x80 to time x83 is the same as the processing from time x70 to time x73 in FIG. 25.
  • the pre-switching preparation completion flag is turned off.
  • the pre-switch preparation completion flag is off, so pre-switch preparation processing is performed again.
  • the rotation amount ⁇ EN from pre-switch preparation completion is smaller than the rotation amount determination threshold ENth, so as pre-switch preparation processing, V-phase current is applied if only the current flow status ST3 is present, i.e., forward rotation with U-phase disconnection.
  • the pre-switch preparation completion flag is turned on and range switching is performed with feedback control using the two normal phases.
  • the process after time x86 is the same as the process after time x74 in FIG. 25.
  • the processing from time x90 to time x93 is the same as the processing from x70 to x73 in FIG. 25.
  • the pre-switching preparation completion flag is turned off.
  • the pre-switch preparation completion flag is off, so the pre-switch preparation process is performed again.
  • the rotation amount ⁇ EN from the pre-switch preparation completion is equal to or greater than the rotation amount determination threshold ENth, so the energized phases are switched in the order of energization status ST1, ST2, ST3, as in the pre-switch preparation process from time x92 to time x93, etc.
  • the pre-switch preparation completion flag is turned on and range switching is performed with feedback control using the two normal phases.
  • the process after time x96 is the same as the process after time x74 in FIG. 25.
  • the time required for range switching can be reduced compared to when pre-switch preparation processing is performed after a shift request.
  • pre-switch preparation processing is performed in advance, there is a risk that the rotor 103 may move due to vibration or the like before a shift range switching request is input, which may change the opposing state between the stator 101 and the rotor 103. Therefore, if the rotor 103 moves after the pre-switch preparation processing is completed, the pre-switch preparation processing is performed again before the range switching.
  • the time required for the pre-switching preparation process can be shortened by performing the pre-switching preparation process only with the energizing status ST3, compared to when energizing is performed from the energizing status ST1. Also, if the amount of rotation ⁇ EN of the rotor 103 is equal to or greater than the rotation amount determination threshold ENTh, it is possible to start range switching from a specified opposing state by energizing the energizing statuses ST1 to ST3.
  • the response time is the time from the input of the shift range switching request to the start of stop control, the response time when the rotor 103 does not move from the completion of pre-switching preparation to the input of the shift range switching request is Xr1, the response time when the rotation amount ⁇ EN until the input of the shift range switching request is smaller than the rotation amount determination threshold ENth is Xr2, and the response time when the rotation amount ⁇ EN until the input of the shift range switching request is equal to or greater than the rotation amount determination threshold ENth is Xr3, where Xr1 ⁇ Xr2 ⁇ Xr3.
  • the drive control unit 55 when a wire breakage fault occurs in one of the three phases and normal two-phase drive is performed to drive the motor using the two normal phases, the drive control unit 55 performs pre-switching preparation processing to energize the energized phase after energizing it in a different energization pattern from the energization to the energized phase at the start of normal two-phase drive at least one of the time of system startup and after control to stop the motor 10. This allows for improved responsiveness compared to when pre-switching preparation processing is performed at the start of starting the motor 10.
  • the pre-switching preparation process is performed again, and then normal two-phase drive is performed.
  • the rotor 103 moves due to vibration or the like between the completion of the pre-switching preparation process and the start of the motor's drive, the pre-switching preparation process is performed again, making it possible to start normal two-phase drive from the appropriate opposing state.
  • the amount of rotation ⁇ EN of the motor 10 from the completion of the pre-switching preparation process to the start of driving the motor 10 is smaller than the rotation amount judgment threshold ENth, energization to phases other than the energized phase is omitted in the pre-switching preparation process before the start of motor driving. This makes it possible to shorten the pre-switching preparation process time before the start of motor driving. Also, the same effects as the above embodiment are achieved.
  • the encoder 13 corresponds to the "rotational position sensor”
  • the encoder count value corresponds to the "detection value of the rotational position sensor”
  • the ECU 40 corresponds to the "motor control device”.
  • the pre-switching preparation process corresponds to the "pre-start preparation process”
  • the energization status ST1 corresponds to the "first energization process”
  • the energization status ST2 corresponds to the "second energization process”
  • the energization status ST3 corresponds to the "third energization process”
  • the energization phase in the energization status ST3 corresponds to the "energization retention phase”.
  • each embodiment can be implemented in an appropriate combination, for example, by varying the power retention time according to the ambient temperature regardless of the timing of the pre-switching preparation process, by extending the power status before performing a retry, and by allowing P-in and prohibiting P-out if a timeout occurs.
  • the pre-energization preparation process switches the energized phase in the order of energization status ST1, ST2, and ST3. In other embodiments, one of the energization statuses ST1 and ST2 may be omitted.
  • the rotation detection unit is an encoder. In other embodiments, a sensor capable of detecting the rotation position other than an encoder, such as a resolver, may be used.
  • the motor is a switched reluctance motor. In other embodiments, the motor may be other than a switched reluctance motor, such as a DC brushless motor. The number of phases of the motor windings may be four or more.
  • the detent plate has two valleys.
  • the number of valleys is not limited to two, and for example, four valleys corresponding to the P, R, N, and D ranges may be formed.
  • the detent mechanism and parking lock mechanism may be different from those in the above embodiment.
  • the motor control device is applied to a shift-by-wire system.
  • the motor control device may be applied to an in-vehicle system other than a shift-by-wire system, or a motor drive system other than an in-vehicle system.
  • the present disclosure may be, for example, "a motor control device according to any one of items 1 to 5, in which the power supply time in the pre-start preparation process is variable depending on the temperature of the motor.”
  • control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied in a computer program.
  • control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • control unit and the method described in the present disclosure may be realized by one or more dedicated computers configured by combining a processor and a memory programmed to execute one or more functions with a processor configured with one or more hardware logic circuits.
  • the computer program may be stored in a computer-readable non-transient tangible recording medium as instructions executed by a computer. As described above, the present disclosure is not limited to the above embodiments, and can be implemented in various forms within the scope of its purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

A motor control device (40) controls the driving of a motor (10) having 3-phase motor windings (11) and comprises a drive circuit (41) and a control unit (50). The drive circuit (41) has switching elements (411 to 413) that switch the on/off of energization to each phase of the motor windings (11). The control unit (50) has: a drive control unit (55) that controls the on/off operation of the switching elements (411 to 413) by a feedback control based on the detection value of a rotational position sensor (13); and an abnormality determination unit (52) that determines a disconnection failure of the motor windings (11). When performing a normal 2-phase drive for driving the motor (10) using normal 2 phases when the disconnection failure occurs in one phase of the 3 phases, the drive control unit (55) performs pre-start preparation processing for performing energization with a pattern different from an energization pattern to an energization holding phase that is an energization phase at the starting of the normal 2-phase drive and then energizing the energization holding phase.

Description

モータ制御装置Motor Control Device 関連出願の相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2022年9月28日に出願された特許出願番号2022-155058号に基づくものであり、ここにその記載内容を援用する。 This application is based on Patent Application No. 2022-155058, filed on September 28, 2022, the contents of which are incorporated herein by reference.
 本開示は、モータ制御装置に関する。 This disclosure relates to a motor control device.
 従来、モータの駆動を制御するモータ制御装置が知られている。例えば特許文献1では、各相の巻線の通電ラインにそれぞれ断線検出回路を設け、断線を検出している。  There are known motor control devices that control the drive of a motor. For example, in Patent Document 1, a disconnection detection circuit is provided in each current carrying line of the winding for each phase to detect disconnection.
特開2004-129450号公報JP 2004-129450 A
 1相に断線が生じていても、断線が生じている相である断線相をイナーシャで通過できれば、モータの駆動を継続することができる。特許文献1では、断線相の次に切り替えられる通電相を最初の通電相として設定することで、正常相を用いてモータを駆動している。しかしながら、正常な2相のうちの1相で通電を開始した場合、通電相のステータ突極とロータ凹部が対向し、通電相とロータの歯先が対向しない場合がある。本開示の目的は、1相断線時においてモータを適切に駆動可能なモータ制御装置を提供することにある。 Even if a break occurs in one phase, if the inertia can pass the broken phase where the break occurs, the motor can continue to be driven. In Patent Document 1, the energized phase that is switched to next after the broken phase is set as the first energized phase, and the motor is driven using normal phases. However, when energization begins in one of the two normal phases, the stator salient poles of the energized phase and the rotor recesses may face each other, and the energized phase and the rotor teeth may not face each other. The purpose of this disclosure is to provide a motor control device that can properly drive a motor when one phase is broken.
 本開示のモータ制御装置は、3相のモータ巻線を有するモータの駆動を制御するものであって、駆動制御部と、制御部と、を備える。駆動回路は、モータ巻線の各相への通電のオンオフを切り替えるスイッチング素子を有する。制御部は、モータの回転位置を検出する回転位置センサの検出値に基づくフィードバック制御によりスイッチング素子のオンオフ作動を制御する駆動制御部、および、モータ巻線の断線故障を判定する異常判定部を有する。 The motor control device disclosed herein controls the drive of a motor having three-phase motor windings, and includes a drive control unit and a control unit. The drive circuit has switching elements that switch on and off the power supply to each phase of the motor windings. The control unit has a drive control unit that controls the on/off operation of the switching elements by feedback control based on the detection value of a rotational position sensor that detects the rotational position of the motor, and an abnormality determination unit that determines whether the motor windings have an open circuit.
 駆動制御部は、3相のうちの1相に断線故障が生じており、正常な2相を用いてモータを駆動する正常2相駆動を行う場合、正常2相駆動開始時の通電相である通電保持相への通電パターンとは異なるパターンでの通電を行った後に通電保持相に通電する始動前準備処理を行う。これにより、1相断線時においてモータを適切に駆動することができる。 When a wire breakage fault occurs in one of the three phases and normal two-phase drive is performed to drive the motor using the two normal phases, the drive control unit performs pre-start preparation processing to energize the energized phase after energizing it in a pattern different from the energization pattern to the energized phase that is the energized phase when normal two-phase drive begins. This allows the motor to be driven appropriately when one phase is broken.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態によるシフトバイワイヤシステムを示す斜視図であり、 図2は、第1実施形態によるシフトバイワイヤシステムを示す概略構成図であり、 図3は、第1実施形態によるECUを説明する回路図であり、 図4は、第1実施形態によるモータを示す模式図であり、 図5は、第1実施形態による通電相番号を通電相とが関連づけられたマップであり、 図6は、第1実施形態による断線相と切替方向に応じた対向位置を説明する説明図であり、 図7は、第1実施形態において、U相断線時において正転方向に駆動する場合の通電開始時の対向状態を示す模式図であり、 図8は、第1実施形態において、正常2相でのモータ駆動を説明する説明図であり、 図9は、第1実施形態による切替前準備処理における通電相の切り替えを説明する説明図であり、 図10は、第1実施形態による切替前準備処理におけるロータの挙動を説明する説明図であり、 図11は、第1実施形態によるレンジ切替処理を説明するフローチャートであり、 図12は、第1実施形態によるレンジ切替処理を説明するタイムチャートであり、 図13は、第2実施形態によるレンジ切替処理を説明するフローチャートであり、 図14は、第3実施形態によるレンジ切替処理を説明するフローチャートであり、 図15は、第3実施形態によるレンジ切替処理を説明するタイムチャートであり、 図16は、第4実施形態によるレンジ切替処理を説明するフローチャートであり、 図17は、第4実施形態によるレンジ切替処理を説明するタイムチャートであり、 図18は、第4実施形態によるレンジ切替処理を説明するタイムチャートであり、 図19は、第5実施形態によるレンジ切替処理を説明するフローチャートであり、 図20は、第5実施形態によるレンジ切替処理を説明するタイムチャートであり、 図21は、第5実施形態によるレンジ切替処理を説明するタイムチャートであり、 図22は、第5実施形態によるレンジ切替処理を説明するタイムチャートであり、 図23は、第6実施形態による起動時処理を説明するフローチャートであり、 図24は、第6実施形態によるレンジ切替処理を説明するフローチャートであり、 図25は、第6実施形態によるレンジ切替処理を説明するタイムチャートであり、 図26は、第6実施形態によるレンジ切替処理を説明するタイムチャートであり、 図27は、第6実施形態によるレンジ切替処理を説明するタイムチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a perspective view showing a shift-by-wire system according to a first embodiment; FIG. 2 is a schematic configuration diagram showing a shift-by-wire system according to a first embodiment. FIG. 3 is a circuit diagram illustrating an ECU according to a first embodiment; FIG. 4 is a schematic diagram showing a motor according to a first embodiment; FIG. 5 is a map in which energized phase numbers are associated with energized phases according to the first embodiment; FIG. 6 is an explanatory diagram illustrating a disconnection phase and a facing position according to a switching direction according to the first embodiment; FIG. 7 is a schematic diagram showing an opposing state at the start of energization when driving in the forward direction in the event of a U-phase disconnection in the first embodiment; FIG. 8 is an explanatory diagram for explaining motor drive in normal two-phase in the first embodiment; FIG. 9 is an explanatory diagram illustrating switching of energized phases in a pre-switching preparation process according to the first embodiment; FIG. 10 is an explanatory diagram illustrating a behavior of a rotor in a pre-switching preparation process according to the first embodiment; FIG. 11 is a flowchart illustrating a range switching process according to the first embodiment. FIG. 12 is a time chart illustrating the range switching process according to the first embodiment. FIG. 13 is a flowchart illustrating a range switching process according to the second embodiment. FIG. 14 is a flowchart illustrating a range switching process according to the third embodiment. FIG. 15 is a time chart illustrating the range switching process according to the third embodiment. FIG. 16 is a flowchart illustrating a range switching process according to the fourth embodiment. FIG. 17 is a time chart illustrating the range switching process according to the fourth embodiment. FIG. 18 is a time chart illustrating the range switching process according to the fourth embodiment. FIG. 19 is a flowchart illustrating a range switching process according to the fifth embodiment. FIG. 20 is a time chart illustrating the range switching process according to the fifth embodiment. FIG. 21 is a time chart illustrating the range switching process according to the fifth embodiment. FIG. 22 is a time chart illustrating the range switching process according to the fifth embodiment. FIG. 23 is a flowchart illustrating a startup process according to the sixth embodiment. FIG. 24 is a flowchart illustrating a range switching process according to the sixth embodiment. FIG. 25 is a time chart illustrating the range switching process according to the sixth embodiment. FIG. 26 is a time chart illustrating the range switching process according to the sixth embodiment. FIG. 27 is a time chart illustrating the range switching process according to the sixth embodiment.
   (第1実施形態)
 以下、本開示によるモータ制御装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
First Embodiment
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A motor control device according to the present disclosure will now be described with reference to the drawings. In the following, in a number of embodiments, substantially the same configurations are designated by the same reference numerals, and descriptions thereof will be omitted.
 第1実施形態を図1~図12に示す。図1および図2に示すように、シフトバイワイヤシステム1は、モータ10、ディテント機構20、パーキングロック機構30、および、モータ制御装置としてのECU40等を備える。 The first embodiment is shown in Figs. 1 to 12. As shown in Figs. 1 and 2, the shift-by-wire system 1 includes a motor 10, a detent mechanism 20, a parking lock mechanism 30, and an ECU 40 as a motor control device.
 モータ10は、図示しない車両に搭載されるバッテリ90から電力が供給されることで回転し、ディテント機構20の駆動源として機能する。モータ10は、例えばスイッチトリラクタンスモータである。 The motor 10 rotates when power is supplied from a battery 90 mounted on the vehicle (not shown), and functions as a drive source for the detent mechanism 20. The motor 10 is, for example, a switched reluctance motor.
 図3および図4に示すように、モータ10は、ステータ101、ロータ103、および、モータ巻線11等を有する。モータ巻線11は、U相コイル111、V相コイル112およびW相コイル113を有し、ステータ101の突極102に巻回される。コイル111~113は、結線部115で結線される。結線部115は、モータリレー91およびヒューズ92を経由してバッテリ90と接続される。 As shown in Figures 3 and 4, the motor 10 has a stator 101, a rotor 103, and a motor winding 11. The motor winding 11 has a U-phase coil 111, a V-phase coil 112, and a W-phase coil 113, and is wound around the salient pole 102 of the stator 101. The coils 111 to 113 are connected at a connection part 115. The connection part 115 is connected to the battery 90 via a motor relay 91 and a fuse 92.
 ロータ103は、突極を有し、ステータ101の径方向内側に回転可能に設けられている。ロータ103は、コイル111~113の通電相を切り替えることで回転駆動される。本実施形態では、ステータ101の突極数が12、ロータ103の突極数が8である。以下適宜、ロータ103の突極を凸部104、凸部間を凹部105とする。 The rotor 103 has salient poles and is rotatably mounted radially inside the stator 101. The rotor 103 is rotationally driven by switching the current phase of the coils 111 to 113. In this embodiment, the stator 101 has 12 salient poles and the rotor 103 has 8 salient poles. Hereinafter, the salient poles of the rotor 103 will be referred to as convex portions 104, and the spaces between the convex portions will be referred to as concave portions 105.
 エンコーダ13は、磁気式のロータリーエンコーダであって、ロータ103の回転位置を検出する。エンコーダ13は、磁気検出用のホール素子131、132、および、ロータ103と一体に回転するマグネット135等から構成される。ホール素子131、132は、ロータ103の回転に同期して、所定角度ごとにパルス信号を出力する。本実施形態では、ホール素子131、132がN極に対向しているときLo、S極に対向しているときHiの信号を出力する。 Encoder 13 is a magnetic rotary encoder that detects the rotational position of rotor 103. Encoder 13 is composed of Hall elements 131 and 132 for magnetic detection, and a magnet 135 that rotates integrally with rotor 103. Hall elements 131 and 132 output pulse signals every predetermined angle in synchronization with the rotation of rotor 103. In this embodiment, Hall elements 131 and 132 output a Lo signal when facing the N pole, and a Hi signal when facing the S pole.
 マグネット135は、円環状に形成されており、ロータ103と同軸に配置されている。マグネット135は、N極とS極とが円周方向に交互に等ピッチで着磁されている。本実施形態の着磁ピッチは7.5°である。この着磁ピッチは、モータ10の励磁1回あたりのロータ103の回転角度と同じである。すなわち、U相→UV相→V相→VW相→W相→WU相と通電相を切り替えていく1-2相励磁方式で6回の通電相の切り替えを行って一巡すると、ロータ103が機械角で7.5×6=45°回転する。 The magnet 135 is formed in an annular shape and is arranged coaxially with the rotor 103. The magnet 135 is magnetized with alternating north and south poles at equal pitches in the circumferential direction. In this embodiment, the magnetization pitch is 7.5°. This magnetization pitch is the same as the rotation angle of the rotor 103 per excitation of the motor 10. In other words, when the 1-2 phase excitation method switches the energized phase from U phase → UV phase → V phase → VW phase → W phase → WU phase, and switches the energized phase six times to complete one cycle, the rotor 103 rotates 7.5 x 6 = 45° in mechanical angle.
 ホール素子131、132は、同一円周上であって、位相差が電気角90°となるように配置されている。本実施形態では、電気角90°は機械角の3.75°に対応しており、ホール素子131、132は48.75°の間隔を空けて配置されている。本実施形態では、ホール素子131の信号をA相、ホール素子132の信号をB相とする。なお、エンコーダ13は2相エンコーダであるが、3相エンコーダであってもよいし、検出信号に加え基準信号としてZ相信号を出力するものであってもよい。 Hall elements 131 and 132 are arranged on the same circumference with a phase difference of 90° electrical angle. In this embodiment, an electrical angle of 90° corresponds to a mechanical angle of 3.75°, and hall elements 131 and 132 are arranged with an interval of 48.75°. In this embodiment, the signal of hall element 131 is phase A, and the signal of hall element 132 is phase B. Although encoder 13 is a two-phase encoder, it may be a three-phase encoder, or may output a Z-phase signal as a reference signal in addition to the detection signal.
 図1に戻り、減速機14は、モータ10のモータ軸と出力軸15との間に設けられ、モータ10の回転を減速して出力軸15に出力する。これにより、モータ10の回転がディテント機構20に伝達される。出力軸センサ16は、例えばポテンショメータであって、出力軸15の回転位置を検出する(図2参照)。 Returning to FIG. 1, the reducer 14 is provided between the motor shaft of the motor 10 and the output shaft 15, and reduces the rotation of the motor 10 before outputting it to the output shaft 15. This transmits the rotation of the motor 10 to the detent mechanism 20. The output shaft sensor 16 is, for example, a potentiometer, and detects the rotational position of the output shaft 15 (see FIG. 2).
 ディテント機構20は、ディテントプレート21、ディテントスプリング25、および、ディテントローラ26を有し、減速機14から出力された回転駆動力をパーキングロック機構30へ伝達する。 The detent mechanism 20 has a detent plate 21, a detent spring 25, and a detent roller 26, and transmits the rotational driving force output from the reduction gear 14 to the parking lock mechanism 30.
 ディテントプレート21は、出力軸15に固定され、モータ10により駆動される。ディテントプレート21のディテントスプリング25側には、2つの谷部211、212、および、谷部211、212を隔てる山部215が設けられる。 The detent plate 21 is fixed to the output shaft 15 and driven by the motor 10. On the side of the detent spring 25 of the detent plate 21, two valleys 211, 212 and a peak 215 separating the valleys 211, 212 are provided.
 ディテントスプリング25は、弾性変形可能な板状部材であり、先端にディテントローラ26が設けられる。ディテントスプリング25は、ディテントローラ26をディテントプレート21の回動中心側に付勢する。 The detent spring 25 is a plate-shaped member that can be elastically deformed, and has a detent roller 26 at its tip. The detent spring 25 biases the detent roller 26 toward the center of rotation of the detent plate 21.
 ディテントプレート21に所定以上の回転力が加わると、ディテントスプリング25が弾性変形し、ディテントローラ26が谷部211、212間を移動する。ディテントローラ26が谷部211、212のいずれかに嵌まり込むことで、ディテントプレート21の揺動が規制され、パーキングロック機構30の状態、および、自動変速機5のシフトレンジが決定される。 When a rotational force of a predetermined magnitude or more is applied to the detent plate 21, the detent spring 25 elastically deforms, and the detent roller 26 moves between the valleys 211, 212. When the detent roller 26 fits into either of the valleys 211, 212, the oscillation of the detent plate 21 is restricted, and the state of the parking lock mechanism 30 and the shift range of the automatic transmission 5 are determined.
 パーキングロック機構30は、パーキングロッド31、円錐体32、パーキングレバー33、軸部34、および、パーキングギア35を有する。パーキングロッド31は、略L字形状に形成され、一端311側がディテントプレート21に固定される。パーキングロッド31の他端312側には、円錐体32が設けられる。円錐体32は、他端312側にいくほど縮径するように形成される。ディテントローラ26がPレンジに対応する谷部211に嵌まり込む方向にディテントプレート21が回転すると、円錐体32が矢印Pの方向に移動する。 The parking lock mechanism 30 has a parking rod 31, a cone 32, a parking lever 33, a shaft 34, and a parking gear 35. The parking rod 31 is formed in a roughly L-shape, and one end 311 is fixed to the detent plate 21. A cone 32 is provided on the other end 312 of the parking rod 31. The cone 32 is formed so that its diameter decreases as it approaches the other end 312. When the detent plate 21 rotates in a direction in which the detent roller 26 fits into the valley 211 corresponding to the P range, the cone 32 moves in the direction of arrow P.
 パーキングレバー33は、円錐体32の円錐面と当接し、軸部34を中心に揺動可能に設けられる。パーキングレバー33のパーキングギア35側には、パーキングギア35と噛み合い可能な凸部331が設けられる。ディテントプレート21の回転により、円錐体32が矢印P方向に移動すると、パーキングレバー33が押し上げられ、凸部331とパーキングギア35とが噛み合う。一方、円錐体32が矢印notP方向に移動すると、凸部331とパーキングギア35との噛み合いが解除される。 The parking lever 33 abuts against the conical surface of the cone 32 and is arranged to be able to swing around the shaft 34. A protrusion 331 that can mesh with the parking gear 35 is provided on the parking lever 33's parking gear 35 side. When the cone 32 moves in the direction of arrow P due to the rotation of the detent plate 21, the parking lever 33 is pushed up and the protrusion 331 meshes with the parking gear 35. On the other hand, when the cone 32 moves in the direction of arrow not P, the meshing between the protrusion 331 and the parking gear 35 is released.
 パーキングギア35は、図示しないドライブシャフトと接続しており、パーキングレバー33の凸部331と噛み合い可能に設けられる。パーキングギア35と凸部331とが噛み合うと、ドライブシャフトの回転が規制される。シフトレンジがP以外のレンジであるnotPレンジのとき、パーキングギア35はパーキングレバー33によりロックされず、ドライブシャフトの回転は、パーキングロック機構30により妨げられない。また、シフトレンジがPレンジのとき、パーキングギア35はパーキングレバー33によってロックされ、ドライブシャフトの回転が規制される。 The parking gear 35 is connected to a drive shaft (not shown) and is arranged so that it can mesh with a protrusion 331 of the parking lever 33. When the parking gear 35 meshes with the protrusion 331, the rotation of the drive shaft is restricted. When the shift range is a not P range other than P, the parking gear 35 is not locked by the parking lever 33, and the rotation of the drive shaft is not hindered by the parking lock mechanism 30. Also, when the shift range is P range, the parking gear 35 is locked by the parking lever 33, and the rotation of the drive shaft is restricted.
 本実施形態では、PレンジからnotPレンジへ切り替えるときのモータ10の回転方向を正転方向、notPレンジからPレンジへ切り替えるときのモータ10の回転方向を逆転方向とする。 In this embodiment, the rotation direction of the motor 10 when switching from the P range to the notP range is the forward direction, and the rotation direction of the motor 10 when switching from the notP range to the P range is the reverse direction.
 図2および図3に示すように、ECU40は、駆動回路41、電流検出部45、電圧検出回路46、および、制御部50等を備える。駆動回路41は、3つのスイッチング素子411、412、413を有する。スイッチング素子411~413は、それぞれコイル111~113と対応して設けられ、対応する相の通電を切り替える。本実施形態では、スイッチング素子411~413は、コイル111~113とグランドとの間に設けられている。本実施形態のスイッチング素子411~413は、MOSFETであるが、IGBT等であってもよい。 As shown in Figs. 2 and 3, the ECU 40 includes a drive circuit 41, a current detection unit 45, a voltage detection circuit 46, and a control unit 50. The drive circuit 41 has three switching elements 411, 412, and 413. The switching elements 411 to 413 are provided corresponding to the coils 111 to 113, respectively, and switch the current flow to the corresponding phase. In this embodiment, the switching elements 411 to 413 are provided between the coils 111 to 113 and ground. The switching elements 411 to 413 in this embodiment are MOSFETs, but may also be IGBTs, etc.
 電流検出部45は、スイッチング素子411~413のソースとグランドとを接続する集合配線に設けられ、コイル111~113に流れる電流の和を検出する。以下、電流検出部45にて検出される電流を、モータ電流Imとする。電流検出部45は、コイル111~113の電流を検出可能ないずれの箇所に設けてもよく、また相毎に設けるようにしてもよい。 Current detection unit 45 is provided on the collective wiring that connects the sources of switching elements 411-413 to ground, and detects the sum of the currents flowing through coils 111-113. Hereinafter, the current detected by current detection unit 45 is referred to as motor current Im. Current detection unit 45 may be provided at any location where it is possible to detect the currents in coils 111-113, and may also be provided for each phase.
 電圧検出回路46は、コイル111~113とスイッチング素子411~413との間に接続され、各相の端子電圧を検出する。リレードライバ48は、モータリレー91のオンオフ作動を制御する。 The voltage detection circuit 46 is connected between the coils 111-113 and the switching elements 411-413, and detects the terminal voltage of each phase. The relay driver 48 controls the on/off operation of the motor relay 91.
 制御部50は、マイコン等を主体として構成され、内部にはいずれも図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。制御部50における各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。 The control unit 50 is mainly composed of a microcomputer and includes a CPU, ROM, RAM, I/O, and bus lines connecting these components (none of which are shown in the figure). Each process in the control unit 50 may be software processing in which the CPU executes a program pre-stored in a physical memory device (i.e., a readable non-transitory tangible recording medium) such as a ROM, or it may be hardware processing using a dedicated electronic circuit.
 制御部50は、ドライバ要求シフトレンジに応じたシフト信号、ブレーキスイッチからの信号、アクセル開度および車速等に基づいてモータ10の駆動を制御することで、シフトレンジの切り替え等を制御する。 The control unit 50 controls the switching of the shift range by controlling the drive of the motor 10 based on a shift signal corresponding to the driver's requested shift range, a signal from the brake switch, the accelerator opening, the vehicle speed, etc.
 制御部50は、機能ブロックとして、信号取得部51、異常判定部52、および、駆動制御部55等を有する。信号取得部51は、エンコーダ13、出力軸センサ16、電流検出部45および電圧検出回路46等からの検出信号を取得する。異常判定部52は、断線異常等のシフトバイワイヤシステム1の異常を判定する。 The control unit 50 has, as its functional blocks, a signal acquisition unit 51, an abnormality determination unit 52, and a drive control unit 55. The signal acquisition unit 51 acquires detection signals from the encoder 13, the output shaft sensor 16, the current detection unit 45, the voltage detection circuit 46, and the like. The abnormality determination unit 52 determines an abnormality in the shift-by-wire system 1, such as a disconnection abnormality.
 駆動制御部55は、スイッチング素子411~413のオンオフ作動を制御することで、モータ10の駆動を制御する。本実施形態では、エンコーダカウント値に基づくフィードバック制御により、モータ巻線11の通電相を切り替えることでモータ10を駆動する。 The drive control unit 55 controls the driving of the motor 10 by controlling the on/off operation of the switching elements 411 to 413. In this embodiment, the motor 10 is driven by switching the current-carrying phase of the motor winding 11 through feedback control based on the encoder count value.
 図5に示すように、制御部50は、通電相番号と通電相とが対応づけられたマップが記憶されており、エンコーダ信号のパルスエッジが検出されるごとに通電相番号を1ずらし、通電相を切り替えることでモータ10を回転させる。モータ10を正方向に回転させる場合、通電相番号をエンコーダ信号のパルスエッジが検出されるごとに通電相番号を1増加させ、モータ10を逆方向に回転させる場合、通電相を1減少させる。通電相番号は、例えばエンコーダカウント値を12で除したときの余りと捉えることもできる。 As shown in FIG. 5, the control unit 50 stores a map in which the energized phase numbers correspond to energized phases, and rotates the motor 10 by shifting the energized phase number by 1 and switching the energized phase each time a pulse edge of the encoder signal is detected. When rotating the motor 10 in the forward direction, the energized phase number is increased by 1 each time a pulse edge of the encoder signal is detected, and when rotating the motor 10 in the reverse direction, the energized phase number is decreased by 1. The energized phase number can also be regarded as the remainder when the encoder count value is divided by 12, for example.
 本実施形態では、1相に断線異常が生じた場合、フィードバック制御による正常な2相への通電によりモータ10を駆動することで、レンジ切り替えを行う。例えばU相断線時、正常時にU相のみに通電される通電相番号2、3において、トルクが発生しないが、イナーシャでこの領域を通過させることでモータ10の駆動を継続可能である。 In this embodiment, if a break occurs in one phase, the motor 10 is driven by energizing the two normal phases through feedback control, thereby switching the range. For example, when the U phase is broken, no torque is generated in energized phases 2 and 3, where only the U phase is energized under normal circumstances, but the motor 10 can continue to be driven by passing through this region due to inertia.
 ここで、1相断線にてレンジ切り替えを行う場合、通電相とロータ103の凸部104とが対向する、所謂「1相1歯」の状態から切替駆動を開始することが望ましい。以下、U相の突極102とロータ103の凸部104とが1相1歯で対向している状態を「U相対向」、V相の突極102と凸部104とが1相1歯で対向している状態を「V相対向」、W相の突極102と凸部104とが1相1歯で対向している状態を「W相対向」とする。 When switching ranges due to a single-phase break, it is desirable to start the switching drive from a so-called "one-phase, one-tooth" state, where the energized phase faces the convex portion 104 of the rotor 103. Hereinafter, the state where the U-phase salient pole 102 and the convex portion 104 of the rotor 103 face each other with one tooth per phase will be referred to as "U-phase facing", the state where the V-phase salient pole 102 and the convex portion 104 face each other with one tooth per phase will be referred to as "V-phase facing", and the state where the W-phase salient pole 102 and the convex portion 104 face each other with one tooth per phase will be referred to as "W-phase facing".
 図6に示すように、断線相とモータ10の回転方向に応じ、切替開始時のステータ101の突極102とロータ103の凸部104との対向位置関係が設定されている。U相断線にて切替方向が正転方向の場合、V相対向、逆転方向の場合、W相対向の状態からレンジ切り替えを開始する。V相断線にて切替方向が正転方向の場合、W相対向、逆転方向の場合、U相対向の状態からレンジ切り替えを開始する。W相断線にて切替方向が正転方向の場合、U相対向、逆転方向の場合、V相対向の状態からレンジ切り替えを開始する。以下、U相断線にて、切替方向が正転方向の例を中心に説明する。 As shown in FIG. 6, the opposing positional relationship between the salient poles 102 of the stator 101 and the convex portions 104 of the rotor 103 at the start of switching is set according to the broken phase and the rotational direction of the motor 10. If the U-phase is broken and the switching direction is forward, the range switching starts from the V-phase facing state, and if it is reverse, the range switching starts from the W-phase facing state. If the V-phase is broken and the switching direction is forward, the W-phase facing state, and if it is reverse, the range switching starts from the U-phase facing state. If the W-phase is broken and the switching direction is forward, the U-phase facing state, and if it is reverse, the range switching starts from the V-phase facing state. Below, an example in which the switching direction is forward when the U-phase is broken will be mainly explained.
 図7に示すように、U相断線にて、正転方向に切り替える場合、V相通電にてV相対向の状態からレンジ切り替えを開始する。図8では、上段に通電相の切り替えを示し、下段には上段の通電相と対応するモータトルクを示した。図8に示すように、V相通電にてV相対向の状態から、VW相通電→W相通電と正常相への通電を切り替えることで、トルクを発生させてロータ103を回転させる。 As shown in Figure 7, when switching to the forward direction due to a U-phase break, range switching begins from a state in which the V-phase is energized and V-phase is facing. In Figure 8, the upper row shows the switching of energized phases, and the lower row shows the motor torque corresponding to the energized phases in the upper row. As shown in Figure 8, by switching from a state in which the V-phase is energized and V-phase is facing V, to a state in which the VW-phase is energized and W-phase is energized, a torque is generated to rotate the rotor 103.
 U相断線が生じていない場合、W相通電に続き、WU相通電、U相通電、UV相通電となる。一方、U相断線時にはU相コイル111への通電ができないため、本来WU相通電となる領域ではW相通電が継続されてモータトルクが減少し、本来U相通電となる領域はモータトルクが0となる。この領域をイナーシャで通過すれば、UV相通電領域にてV相に通電されてモータトルクが増加するので、モータ10の回転が継続される。図7および図8では、通電相のコイルを実線、無通電相のコイルを破線とし、U相コイル111の図示を省略することで断線状態を示している。 If no U-phase breakage occurs, the W-phase is energized, followed by the WU-phase, U-phase, and UV-phase. On the other hand, when the U-phase is broken, current cannot be passed to the U-phase coil 111, so in the area where the WU-phase should be energized, the W-phase continues to be energized and the motor torque decreases, and in the area where the U-phase should be energized, the motor torque becomes zero. If this area is passed through by inertia, current is passed to the V-phase in the UV-phase energized area, increasing the motor torque, and the motor 10 continues to rotate. In Figures 7 and 8, the energized phase coils are shown with solid lines and the non-energized phase coils with dashed lines, and the broken state is shown by omitting the illustration of the U-phase coil 111.
 ここで、レンジ切替前にV相通電のみを行う場合、V相通電時にロータ103の凹部105とV相の突極102とが対向する場合があり、この状態では、V相対向の状態からの駆動を開始することができない。V相の突極102とロータ103の凹部105とが対向している状態からV相通電→VW相通電、と通電相を切り替える場合、ロータ103が逆方向に回転する、または、イナーシャで通過させたい領域にて回転数が足りず、断線相を通過できない虞がある。 Here, if only V-phase current is applied before range switching, the concave portion 105 of the rotor 103 and the V-phase salient pole 102 may face each other when the V-phase is applied, and in this state, driving cannot be started from the V-phase facing state. When switching the current phase from V-phase current to VW-phase current from a state in which the V-phase salient pole 102 and the concave portion 105 of the rotor 103 face each other, the rotor 103 may rotate in the reverse direction, or the rotation speed may be insufficient in the area to be passed by inertia, making it impossible to pass through the open phase.
 そこで本実施形態では、確実に図6に示した対向状態となるように、ステータ101とロータ103の位置を合わせる切替前準備処理を行う。切替前準備処理では、図9に示すように、1相通電、2相通電、1相通電を順に行うことで、切替開始時の通電相に1相1歯の状態で対向させる。 In this embodiment, therefore, a pre-switching preparation process is performed to align the positions of the stator 101 and rotor 103 so that they are reliably in the opposing state shown in FIG. 6. In the pre-switching preparation process, as shown in FIG. 9, one-phase current, two-phase current, and one-phase current are performed in sequence to ensure that the current-carrying phase at the start of switching is opposed in a one-phase, one-tooth state.
 具体的には、U相断線にて切替方向が正転方向の場合、切替前準備としてW相通電、VW相通電、V相通電を行い、逆転方向の場合、切替前準備としてV相通電、VW相通電、W相通電を行う。V相断線にて切替方向が正転方向の場合、切替前準備としてU相通電、WU相通電、W相通電を行い、逆転方向の場合、切替前準備としてW相通電、WU相通電、U相通電を行う。W相断線にて切替方向が正転方向の場合、切替前準備としてV相通電、UV相通電、U相通電を行い、逆転方向の場合、切替前準備としてU相通電、UV相通電、V相通電を行う。以下、切替前準備における、最初の1相通電を通電ステータスST1、次の2相通電を通電ステータスST2、切替開始時の通電相への1相通電にて1相1歯状態の保持する状態を通電ステータスST3とする。 Specifically, if the switching direction is forward due to U-phase disconnection, W-phase, VW-phase, and V-phase are energized as pre-switching preparations, and if the switching direction is reverse, V-phase, VW-phase, and W-phase are energized as pre-switching preparations. If the switching direction is forward due to V-phase disconnection, U-phase, WU-phase, and W-phase are energized as pre-switching preparations, and if the switching direction is reverse, W-phase, WU-phase, and U-phase are energized as pre-switching preparations. If the switching direction is forward due to W-phase disconnection, V-phase, UV-phase, and U-phase are energized as pre-switching preparations, and if the switching direction is reverse, U-phase, UV-phase, and V-phase are energized as pre-switching preparations. Below, the first 1-phase energization in the pre-switching preparations is referred to as energization status ST1, the next 2-phase energization as energization status ST2, and the state in which 1-phase 1-tooth state is maintained with 1-phase energization to the energized phase at the start of switching as energization status ST3.
 U相断線時にV相対向状態とするための切替前準備を図10に示す。まず、W相通電を行うことで、W相に凸部104が対向する。この状態から、VW相通電に切り替えると、ロータ103が回転し、V相およびW相に凸部104が対向する、所謂「2相2歯」の状態となる。2相2歯の状態からV相通電に切り替えることで、確実にV相対向の1相1歯の状態とすることができる。なお、W相通電時に、W相に凹部105が対向する、所謂「1相2歯」の状態となったとしても、VW相通電の後にV相通電を行うことで、V相通電時には、V相対向の1相1歯の状態とすることができる。 Figure 10 shows the pre-switching preparations for achieving the V-phase opposing state when the U-phase is broken. First, W-phase current is applied so that the convex portion 104 faces the W-phase. When current is switched from this state to VW-phase current, the rotor 103 rotates and the convex portion 104 faces the V-phase and W-phase, resulting in a so-called "two-phase, two-tooth" state. By switching from the two-phase, two-tooth state to V-phase current, it is possible to reliably achieve a one-phase, one-tooth state with the V-phase opposing. Note that even if the so-called "one-phase, two-tooth" state occurs when W-phase current is applied, in which the concave portion 105 faces the W-phase, it is possible to achieve a one-phase, one-tooth state with the V-phase opposing when V-phase current is applied by applying V-phase current after VW-phase current.
 本実施形態のレンジ切替処理を図11のフローチャートに基づいて説明する。この処理は制御部50にて所定の周期で実行される。S101では、制御部50は、1相断線が検出されたか否か判断する。1相断線が検出されてないと判断された場合(S101:NO)、S102以降の処理をスキップする。なお、1相断線の検出は、本実施形態と別処理にて行われ、例えば電圧検出回路46の検出値等に基づいて判定されるが、検出方法の詳細は問わない。また、全相正常時は本処理とは別処理でレンジ切り替えが実施される。1相断線が検出されていると判断された場合(S101:YES)、S102へ移行する。 The range switching process of this embodiment will be described with reference to the flowchart in FIG. 11. This process is executed by the control unit 50 at a predetermined cycle. In S101, the control unit 50 determines whether or not a one-phase break has been detected. If it is determined that a one-phase break has not been detected (S101: NO), the process from S102 onwards is skipped. Note that the detection of a one-phase break is performed in a process separate from this embodiment, and is determined, for example, based on the detection value of the voltage detection circuit 46, but the details of the detection method are not important. Also, when all phases are normal, range switching is performed in a process separate from this process. If it is determined that a one-phase break has been detected (S101: YES), proceed to S102.
 S102では、制御部50は、シフトレンジの切替要求があるか否か判断する。切替要求がないと判断された場合(S102:NO)、S103以降の処理をスキップし、スタンバイモードを継続する。切替要求があると判断された場合(S102:YES)、S103へ移行する。 In S102, the control unit 50 determines whether or not there is a request to switch the shift range. If it is determined that there is no request to switch (S102: NO), the process from S103 onwards is skipped and the standby mode continues. If it is determined that there is a request to switch (S102: YES), the process proceeds to S103.
 S103では、駆動制御部55は、通電ステータスST1での通電を行う。例えばU相断線時であって、切替方向が正転方向の場合、W相に通電する。S104では、駆動制御部55は、通電ステータスST1での通電保持時間Xh1が経過したか否か判断する。通電保持時間Xh1が経過していないと判断された場合(S104:NO)、S103へ戻り、通電ステータスST1での通電を継続する。通電保持時間Xh1が経過したと判断された場合(S104:YES)、S105へ移行する。 In S103, the drive control unit 55 applies current in the current status ST1. For example, when the U phase is disconnected and the switching direction is forward, current is applied to the W phase. In S104, the drive control unit 55 determines whether the current hold time Xh1 in the current status ST1 has elapsed. If it is determined that the current hold time Xh1 has not elapsed (S104: NO), the process returns to S103 and current is continued in the current status ST1. If it is determined that the current hold time Xh1 has elapsed (S104: YES), the process proceeds to S105.
 S104では、駆動制御部55は、通電ステータスST2での通電を行う。例えばU相断線時は、切替方向によらず正常相のVW相への2相通電とする。S106では、駆動制御部55は、通電ステータスST2での通電保持時間Xh2が経過したか否か判断する。通電保持時間Xh2が経過していないと判断された場合(S106:NO)、S105へ戻り、通電ステータスST2での通電を継続する。通電保持時間Xh2が経過したと判断された場合(S106:YES)、S107へ移行する。 In S104, the drive control unit 55 applies current in the current status ST2. For example, when the U phase is disconnected, two-phase current is applied to the VW phase, which is the normal phase, regardless of the switching direction. In S106, the drive control unit 55 determines whether the current hold time Xh2 in the current status ST2 has elapsed. If it is determined that the current hold time Xh2 has not elapsed (S106: NO), the process returns to S105 and current is continued in the current status ST2. If it is determined that the current hold time Xh2 has elapsed (S106: YES), the process proceeds to S107.
 S107では、駆動制御部55は、通電ステータスST3での通電を行う。例えばU相断線時であって、切替方向が正転方向の場合、V相に通電する。S108では、駆動制御部55は、通電ステータスST3での通電保持時間Xh3が経過したか否か判断する。通電保持時間Xh3が経過していないと判断された場合(S108:NO)、S107へ戻り、通電ステータスST3での通電を継続する。通電保持時間Xh3が経過したと判断された場合(S108:YES)、S109へ移行し、切替前準備完了フラグをオンにする。なお、切替前準備完了フラグは、レンジ切替開始後の任意のタイミングでオフされる。 In S107, the drive control unit 55 applies current in the current status ST3. For example, when the U-phase is disconnected and the switching direction is forward, current is applied to the V-phase. In S108, the drive control unit 55 determines whether the current hold time Xh3 in the current status ST3 has elapsed. If it is determined that the current hold time Xh3 has not elapsed (S108: NO), the process returns to S107 and current is continued in the current status ST3. If it is determined that the current hold time Xh3 has elapsed (S108: YES), the process proceeds to S109 and the pre-switching preparation complete flag is turned on. The pre-switching preparation complete flag is turned off at any time after the start of range switching.
 S110では、駆動制御部55は、断線相と回転方向に応じた所定の位置にて1相1歯での対向状態から、モータ10を駆動し、正常2相でのフィードバック制御によりレンジ切り替えを実施する。S111では、制御部50は、レンジ切り替えが完了したか否か判断する。レンジ切り替えが完了してないと判断された場合(S111:NO)、S109へ戻り、正常2相でのフィードバック制御を継続する。レンジ切り替えが完了したと判断された場合(S111:YES)、スタンバイモードに移行し、本処理を終了する。 In S110, the drive control unit 55 drives the motor 10 from a one-phase, one-tooth opposing state at a predetermined position according to the broken phase and rotation direction, and performs range switching by feedback control in normal two phases. In S111, the control unit 50 determines whether the range switching is complete. If it is determined that the range switching is not complete (S111: NO), the process returns to S109 and continues feedback control in normal two phases. If it is determined that the range switching is complete (S111: YES), the process transitions to standby mode and ends this process.
 本実施形態のレンジ切替処理を図12のタイムチャートに基づいて説明する。図12では、共通時間軸を横軸とし、上段から、モータ制御モード、1相断線検出状態、切替前準備完了フラグ、モータ回転角、通電相を示している。モータ回転角は、エンコーダカウント値から換算可能な値であって、実際の値を実線、目標値を一点鎖線とし、ディテントローラ26が谷部211の最底部にあるときをP、谷部212の最底部にあるときをnotPとして示した。後述の図15等も同様である。 The range switching process of this embodiment will be explained based on the time chart in Figure 12. In Figure 12, the horizontal axis represents a common time axis, and from the top, the motor control mode, one-phase breakage detection status, pre-switching preparation completion flag, motor rotation angle, and current phase are shown. The motor rotation angle is a value that can be converted from the encoder count value, with the actual value shown as a solid line and the target value shown as a dashed line, with P representing when the detent roller 26 is at the bottom of the valley 211 and notP representing when it is at the bottom of the valley 212. The same applies to Figure 15 etc. described below.
 図12では、通電ステータス切替によるロータ103の振動成分については記載を省略した。シフト切り替え時の通電相について、通電相番号を括弧書きで記載した。なお、通電相番号は、簡略化のため、切り替え時の番号とした。また、説明のため、シフト切替中における通電相の切り替えは、タイムスケールを拡大しており、モータ回転角の推移とは対応しない。 In Figure 12, the vibration components of the rotor 103 due to switching of the current status are omitted. The current phase numbers for the current phases during shift switching are shown in parentheses. For simplicity, the current phase numbers are the numbers at the time of switching. Also, for the sake of explanation, the switching of current phases during shift switching is shown on an expanded time scale and does not correspond to the progression of the motor rotation angle.
 時刻x0にて1相断線が生じ、時刻x1にて異常が確定された後、時刻x2にてシフトレンジ切替要求が入力されると、切替前準備処理を行う。切替前準備処理では、通電ステータスST1、ST2、ST3の順で所定時間毎に通電相を切り替える。通電ステータスST1、ST2、ST3の通電相は、断線相および切替方向に応じて設定される。 If one phase break occurs at time x0, the abnormality is confirmed at time x1, and then a shift range switching request is input at time x2, pre-switching preparation processing is performed. In the pre-switching preparation processing, the energized phase is switched at predetermined time intervals in the order of energized status ST1, ST2, ST3. The energized phases of energized status ST1, ST2, ST3 are set according to the broken phase and switching direction.
 なお、通電ステータスST2は2相通電であるので、ロータ103が安定しやすく、通電保持時間Xh2は相対的に短い時間でよい。また、通電ステータスST3では、1相1歯の状態にて確実に保持されることが望ましいため、相対的に長い時間に設定される。したがって、本実施形態は、Xh2≦Xh1≦Xh3に設定される。 Note that since the energization status ST2 is two-phase energization, the rotor 103 is likely to stabilize, and the energization hold time Xh2 can be a relatively short time. Furthermore, since it is desirable for the energization status ST3 to be reliably held in a one-phase, one-tooth state, it is set to a relatively long time. Therefore, in this embodiment, Xh2≦Xh1≦Xh3 is set.
 時刻x3にて、切替前準備処理が完了すると、切替前準備完了フラグがオンされ、正常な2相を用いたフィードバック制御でのレンジ切り替えが実施される。時刻x4にて、目標到達判定範囲に到達すると、停止制御を行う。本実施形態の停止制御は、正常2相への固定相通電である。時刻x5にて、停止制御開始から所定時間が経過すると、全てのスイッチング素子をオフにし、スタンバイモードに移行する。 When the pre-switch preparation process is completed at time x3, the pre-switch preparation completion flag is turned on, and range switching is performed with feedback control using the two normal phases. When the target attainment determination range is reached at time x4, stop control is performed. The stop control in this embodiment is fixed phase current supply to the two normal phases. When a predetermined time has elapsed from the start of stop control at time x5, all switching elements are turned off, and the system transitions to standby mode.
 本実施形態では、1相断線時において、正常2相への通電によりモータ10を駆動する場合、駆動開始前の切替前準備処理として、1相通電、2相通電、1相通電を順に行う。これにより、切替開始時の通電相にロータ103の凸部104が対向した1相1歯の状態からモータ10の駆動を開始することができる。 In this embodiment, when the motor 10 is driven by energizing the normal two phases when one phase is broken, the motor 10 is energized in the order of one phase, two phase, and one phase as pre-switching preparation processing before starting to drive. This allows the motor 10 to start driving from a one-phase, one-tooth state in which the convex portion 104 of the rotor 103 faces the energized phase at the start of switching.
 以上説明したように、ECU40は、3相のモータ巻線11を有するモータの駆動を制御するものであって、駆動回路41と、制御部50と、を備える。駆動回路41は、モータ巻線11の各相への通電のオンオフを切り替えるスイッチング素子411~413を有する。制御部50は、モータ10の回転位置を検出するエンコーダ13の検出値に基づくフィードバック制御によりスイッチング素子411~413のオンオフ作動を制御する駆動制御部55、および、モータ巻線11の断線故障を判定する異常判定部52を有する。 As described above, the ECU 40 controls the driving of a motor having three-phase motor windings 11, and includes a drive circuit 41 and a control unit 50. The drive circuit 41 has switching elements 411-413 that switch on and off the power supply to each phase of the motor windings 11. The control unit 50 has a drive control unit 55 that controls the on/off operation of the switching elements 411-413 by feedback control based on the detection value of the encoder 13 that detects the rotational position of the motor 10, and an abnormality determination unit 52 that determines whether the motor windings 11 have an open circuit.
 駆動制御部55は、3相のうちの1相に断線故障が生じており、正常な2相を用いてモータ10を駆動する正常2相駆動を行う場合、正常2相駆動開始時の通電相である通電保持相への通電パターンとは異なるパターンでの通電を行った後に通電保持相に通電する切替前準備処理を行う。ここで、断線故障は、コイルに通電できない故障であって、ハーネスの断線や、スイッチング素子のオフ固着等が含まれる。 When a wire breakage fault occurs in one of the three phases and normal two-phase drive is performed to drive the motor 10 using the two normal phases, the drive control unit 55 performs pre-switching preparation processing to energize the energized phase after energizing it in a pattern different from the energization pattern to the energized phase that is the energized phase at the start of normal two-phase drive. Here, a wire breakage fault is a fault that prevents current from flowing through the coil, and includes a wire breakage in the harness and a switching element stuck off.
 切替前準備処理を行うことで、正常2相駆動にてトルクが発生できるステータ101とロータ103との対向位置までロータ103を回転させることができる。これにより、1相断線時において、モータ10を適切に駆動することができる。 By performing pre-switching preparation processing, the rotor 103 can be rotated to a position where the stator 101 and rotor 103 face each other and torque can be generated in normal two-phase drive. This allows the motor 10 to be driven appropriately when one phase is broken.
 駆動制御部55は、通電前準備処理として、正常相の1相に通電する第1通電処理である通電ステータスST1、正常相の2相に通電する第2通電処理である通電ステータスST2、1相の通電保持相に通電する第3通電処理である通電ステータスST3の順で通電相を切り替える。これにより、ステータ101とロータ103との対向位置を所定の位置に適切に合わせることができる。 The drive control unit 55 switches the energized phase as a pre-energization preparation process in the order of energization status ST1, which is a first energization process in which energization is performed to phase 1 of the normal phases, energization status ST2, which is a second energization process in which energization is performed to phase 2 of the normal phases, and energization status ST3, which is a third energization process in which energization is performed to the energized holding phase of phase 1. This allows the opposing positions of the stator 101 and rotor 103 to be appropriately aligned to a predetermined position.
 切替前準備処理における通電相は、断線相およびモータ10の回転方向に応じて設定され、通電ステータスST1の通電相は、通電相の切替順序からみて、断線相の前に通電される相である。これにより、ステータ101とロータ103との対向位置を適切に合わせることができる。 The energized phase in the pre-switching preparation process is set according to the disconnection phase and the rotation direction of the motor 10, and the energized phase of the energized status ST1 is the phase that is energized before the disconnection phase in terms of the switching order of the energized phases. This allows the opposing positions of the stator 101 and the rotor 103 to be properly aligned.
   (第2実施形態)
 第2実施形態を図13に示す。以下の実施形態では、主に切替前準備処理が上記実施形態と異なるため、この点を中心に説明する。本実施形態のレンジ切替処理を図13のフローチャートに基づいて説明する。図13は、S106とS107の間にS120が追加されている点が図11と異なる。
Second Embodiment
The second embodiment is shown in Fig. 13. In the following embodiment, the pre-switching preparation process is mainly different from the above embodiment, and this point will be mainly described. The range switching process of this embodiment will be described based on the flowchart of Fig. 13. Fig. 13 differs from Fig. 11 in that S120 is added between S106 and S107.
 通電ステータスST2の後に移行するS120では、制御部50は、雰囲気温度Hに応じて通電ステータスST3の通電保持時間Xh3を設定する。詳細には、雰囲気温度Hが第1判定閾値Hth1未満場合、通電保持時間Xp、雰囲気温度Hが第1判定閾値Hth1以上、第2判定閾値Hth2未満場合、通電保持時間Xq、雰囲気温度Hが第2判定閾値Hth2以上の場合、通電保持時間Xrとする。各値の大小関係は、Hth1<Hth2、Xp<Xq<Xrである。雰囲気温度Hは、モータ10の環境温度であって、モータ10そのものの温度であってもよいし、例えばトランスミッションの油温等、モータ10の近傍に配置される他の部品の温度としてもよい。 In S120, which is transitioned to after the energization status ST2, the control unit 50 sets the energization hold time Xh3 of the energization status ST3 according to the ambient temperature H. In detail, when the ambient temperature H is less than the first judgment threshold Hth1, the energization hold time is Xp. When the ambient temperature H is equal to or greater than the first judgment threshold Hth1 and less than the second judgment threshold Hth2, the energization hold time is Xq. When the ambient temperature H is equal to or greater than the second judgment threshold Hth2, the energization hold time is Xr. The magnitude relationship of each value is Hth1<Hth2, Xp<Xq<Xr. The ambient temperature H is the environmental temperature of the motor 10, and may be the temperature of the motor 10 itself, or may be the temperature of other parts arranged near the motor 10, such as the oil temperature of the transmission.
 通電ステータスST13は、1相通電にて1相1歯の状態にて保持する。ここで、1相通電の場合、ロータ103が振動しやすい。また、雰囲気温度Hが低い場合、フリクションが大きく、ロータ103が揺れにくい。そこで、本実施形態では、雰囲気温度Hが低いほど、通電ステータスST3での通電保持時間Xh3を短くすることで応答性を向上可能である。なお、この例では、2つの判定閾値Hth1、Hth2を用いて通電保持時間Xh3を3段階に設定しているが、判定閾値は1以上であればよく、段階数は問わない。また、閾値判定に替えて、雰囲気温度Hに応じたマップや関数での演算により通電保持時間Xh3を設定してもよい。さらにまた、通電ステータスST3と同様、1相通電である通電ステータスST1の通電保持時間Xh1についても雰囲気温度Hに応じて可変としてもよい。 The energization status ST13 is maintained in a one-phase, one-tooth state with one-phase energization. Here, in the case of one-phase energization, the rotor 103 is likely to vibrate. Also, when the ambient temperature H is low, friction is large and the rotor 103 is less likely to vibrate. Therefore, in this embodiment, the lower the ambient temperature H, the shorter the energization hold time Xh3 in the energization status ST3 can be, thereby improving responsiveness. In this example, the energization hold time Xh3 is set to three stages using two judgment thresholds Hth1 and Hth2, but the judgment threshold may be 1 or more, and the number of stages does not matter. Also, instead of threshold judgment, the energization hold time Xh3 may be set by calculation using a map or function according to the ambient temperature H. Furthermore, similar to the energization status ST3, the energization hold time Xh1 of the energization status ST1, which is one-phase energization, may also be variable according to the ambient temperature H.
 本実施形態では、切替前準備処理における通電時間は、モータ温度に応じて可変である。詳細には、モータ温度が低いほど、通電ステータスST3の通電時間が短くなるように設定される。これにより、モータ温度に応じて通電時間が適切に設定されるので、特に低温時の応答性向上に寄与する。また上記実施形態と同様の効果を奏する。 In this embodiment, the energization time in the pre-switching preparation process is variable depending on the motor temperature. In particular, the lower the motor temperature, the shorter the energization time of energization status ST3 is set. This allows the energization time to be set appropriately depending on the motor temperature, which contributes to improving responsiveness especially at low temperatures. It also provides the same effects as the above embodiment.
   (第3実施形態)
 第3実施形態を図14および図15に示す。本実施形態のレンジ切替処理を図14のフローチャートに基づいて説明する。S201~S204の処理は、図11中のS101~S104の処理と同様である。
Third Embodiment
The third embodiment is shown in Figures 14 and 15. The range switching process of this embodiment will be described with reference to the flowchart of Figure 14. The processes of S201 to S204 are similar to the processes of S101 to S104 in Figure 11.
 通電ステータスST1での通電保持時間Xh1経過後に移行するS205では、制御部50は、振幅A1が振幅判定閾値Ath1以下か否か判断する。振幅A1は、例えば通電保持時間Xh1経過後からn個前のエンコーダカウント値の最大値と最小値の差分である。振幅A1の演算詳細は問わない。振幅判定閾値Ath1は、ロータ103が1相1歯の状態で保持されているとみなせる程度の値に設定される。後述の振幅A3および振幅判定閾値Ath3も同様である。振幅判定閾値Ath1、Ath3は、同じであってもよいし、異なっていてもよい。 In S205, which is reached after the current holding time Xh1 in current status ST1 has elapsed, the control unit 50 determines whether the amplitude A1 is equal to or less than the amplitude determination threshold Ath1. The amplitude A1 is, for example, the difference between the maximum and minimum values of the n encoder count values prior to the current holding time Xh1 having elapsed. The details of the calculation of the amplitude A1 are not important. The amplitude determination threshold Ath1 is set to a value at which the rotor 103 can be considered to be held in a one-phase, one-tooth state. The same applies to the amplitude A3 and amplitude determination threshold Ath3 described below. The amplitude determination thresholds Ath1 and Ath3 may be the same or different.
 振幅A1が振幅判定閾値Ath1以下であると判断された場合(S205:YES)、S207へ移行し、通電ステータスST2での通電を開始する。振幅A1が振幅判定閾値Ath1より大きいと判断された場合(S205:NO)、S206へ移行し、通電ステータスST1での通電を所定時間Xa延長する。その後、S207へ移行し、通電ステータスST2での通電を開始する。S207~S210の処理は、S105~S108の処理と同様である。 If it is determined that the amplitude A1 is equal to or less than the amplitude judgment threshold Ath1 (S205: YES), the process proceeds to S207, and energization begins in energization status ST2. If it is determined that the amplitude A1 is greater than the amplitude judgment threshold Ath1 (S205: NO), the process proceeds to S206, and energization in energization status ST1 is extended by a predetermined time Xa. Thereafter, the process proceeds to S207, and energization begins in energization status ST2. The processes of S207 to S210 are the same as those of S105 to S108.
 通電ステータスST3での通電保持時間Xh3経過後に移行するS211では、制御部50は、振幅A3が振幅判定閾値Ath3以下か否か判断する。振幅A3が振幅判定閾値Ath3以下であると判断された場合(S211:YES)、S213へ移行し、正常2相でのレンジ切り替えを実施する。振幅A3が振幅判定閾値Ath3より大きいと判断された場合(S211:NO)、S211へ移行し、通電ステータスST3での通電を所定時間Xc延長する。通電ステータスST1、ST3の延長時間は、同じであってもよいし、異なっていてもよい。S213~S215の処理は、図11中のS109~S111の処理と同様である。 In S211, which is reached after the current holding time Xh3 in current status ST3 has elapsed, the control unit 50 determines whether the amplitude A3 is equal to or less than the amplitude determination threshold Ath3. If it is determined that the amplitude A3 is equal to or less than the amplitude determination threshold Ath3 (S211: YES), the control unit 50 proceeds to S213 and performs range switching in normal two phases. If it is determined that the amplitude A3 is greater than the amplitude determination threshold Ath3 (S211: NO), the control unit 50 proceeds to S211 and extends current flow in current status ST3 by a predetermined time Xc. The extension times for current status ST1 and ST3 may be the same or different. The processes in S213 to S215 are similar to the processes in S109 to S111 in FIG. 11.
 本実施形態のレンジ切替処理を図15のタイムチャートに基づいて説明する。ここでは、振幅判定閾値Ath1、Ath3が等しいものとして説明する。また、説明のため、1相通電での振動成分を強調して記載している。時刻x10~x12の処理は、図12の時刻x0~x2の処理と同様である。 The range switching process of this embodiment will be explained based on the time chart in FIG. 15. Here, the amplitude determination thresholds Ath1 and Ath3 are explained as being equal. For the sake of explanation, the vibration component with one phase current is emphasized. The process from time x10 to x12 is the same as the process from time x0 to x2 in FIG. 12.
 時刻x12にて、通電ステータスST1での1相通電によりロータ103が振動するが、通電保持時間Xh1が経過した時刻x13での振幅A1が振幅判定閾値Ath1以下であるので、通電ステータスST1を延長せず、通電ステータスST2へ切り替える。通電ステータスST2では、2相通電のため、ロータ103の振動は比較的小さい。 At time x12, the rotor 103 vibrates due to one-phase current flow in the current flow status ST1, but because the amplitude A1 at time x13 after the current flow holding time Xh1 has elapsed is equal to or less than the amplitude determination threshold Ath1, the current flow status ST1 is not extended and is switched to current flow status ST2. In current flow status ST2, two-phase current flow occurs, so the vibration of the rotor 103 is relatively small.
 通電ステータスST2の開始から通電保持時間Xh2が経過した時刻x14にて、通電ステータスST2から通電ステータスST3に切り替え、1相通電にすると、ロータ103が振動する。通電保持時間Xh3が経過した時刻x15での振幅A3が振幅判定閾値Ath3より大きいので、通電ステータスST3での通電を所定時間Xc延長する。この例では、通電ステータスST3を延長している間に振幅が振幅判定閾値Ath3以下に収束している。通電ステータスST3を所定時間Xc延長した後、正常2相でのレンジ切り替えを行う。時刻x16以降の処理は、図12中の時刻x3以降の処理と同様である。 At time x14, when the current holding time Xh2 has elapsed since the start of the current status ST2, the current status ST2 is switched to current status ST3, and one phase current is applied, causing the rotor 103 to vibrate. Because the amplitude A3 at time x15, when the current holding time Xh3 has elapsed, is greater than the amplitude determination threshold Ath3, current application in current status ST3 is extended for a predetermined time Xc. In this example, the amplitude converges to less than or equal to the amplitude determination threshold Ath3 while current status ST3 is being extended. After current status ST3 is extended for the predetermined time Xc, range switching is performed with normal two phases. The processing from time x16 onwards is the same as the processing from time x3 onwards in FIG. 12.
 本実施形態では、通電ステータスST1および通電ステータスST3の少なくとも一方において、通電保持時間が経過したときのモータ回転角の振幅A1、A3が振幅判定閾値Ath1、Ath3より大きい場合、通電時間を延長する。これにより2相通電と比較してステータ101とロータ103との対向状態が不安定になりやすい1相通電において、対向位置保持精度を高めることができる。また上記実施形態と同様の効果を奏する。 In this embodiment, if the amplitudes A1, A3 of the motor rotation angle when the energization holding time has elapsed are greater than the amplitude determination thresholds Ath1, Ath3 in at least one of the energization status ST1 and energization status ST3, the energization time is extended. This makes it possible to improve the accuracy of holding the opposing positions in one-phase energization, where the opposing state between the stator 101 and rotor 103 is more likely to be unstable compared to two-phase energization. It also provides the same effects as the above embodiment.
   (第4実施形態)
 第4実施形態を図16~図18に示す。図16は、S206に替えてS231、S232、S212に替えてS233、S234となっている点が図14と異なっている。通電ステータスST1にて、通電保持時間Xh1経過後に移行するS205において、振幅A1が振幅判定閾値Ath1より大きいと判断された場合(S205:NO)に移行するS231では、通電ステータスST1を延長する。
Fourth Embodiment
A fourth embodiment is shown in Fig. 16 to Fig. 18. Fig. 16 differs from Fig. 14 in that S231 and S232 are replaced with S206, and S233 and S234 are replaced with S212. In S205, which is performed after the energization hold time Xh1 has elapsed in the energization status ST1, if it is determined that the amplitude A1 is greater than the amplitude determination threshold Ath1 (S205: NO), the energization status ST1 is extended in S231.
 S232では、制御部50は、通電ステータスST1の延長開始からタイムアウト時間Xout1が経過したか否か判断する。タイムアウト時間が経過していないと判断された場合(S232:NO)、通電ステータスST1の延長を継続し、S205へ戻る。タイムアウト時間Xout1が経過したと判断された場合(S232:YES)、S207へ移行し、通電状態を通電ステータスST2に切り替える。 In S232, the control unit 50 determines whether the timeout time Xout1 has elapsed since the start of the extension of the power-on status ST1. If it is determined that the timeout time has not elapsed (S232: NO), the extension of the power-on status ST1 continues and the process returns to S205. If it is determined that the timeout time Xout1 has elapsed (S232: YES), the process proceeds to S207 and the power-on state is switched to the power-on status ST2.
 通電ステータスST3にて、通電保持時間Xh3経過後に移行するS211において、振幅A3が振幅判定閾値Ath3より大きいと判断された場合(S211:NO)に移行するS233では、通電ステータスST3を延長する。 In S211, which is reached after the elapse of the energization hold time Xh3 in the energization status ST3, if it is determined that the amplitude A3 is greater than the amplitude determination threshold Ath3 (S211: NO), the energization status ST3 is extended in S233.
 S234では、制御部50は、通電ステータスST3の延長開始からタイムアウト時間Xout3が経過したか否か判断する。タイムアウト時間Xout3が経過していないと判断された場合(S234:NO)、通電ステータスST3の延長を継続し、S205へ戻る。タイムアウト時間Xout3が経過したと判断された場合(S234:YES)、S213へ移行する。 In S234, the control unit 50 determines whether the timeout time Xout3 has elapsed since the start of the extension of the power-on status ST3. If it is determined that the timeout time Xout3 has not elapsed (S234: NO), the extension of the power-on status ST3 continues and the process returns to S205. If it is determined that the timeout time Xout3 has elapsed (S234: YES), the process proceeds to S213.
 本実施形態のレンジ切替処理を図17および図18のタイムチャートに基づいて説明する。図17は、タイムアウト時間Xout3の前に振動が収束した場合を示している。時刻x20~時刻x25の処理は、図15中の時刻x10~時刻x15の処理と同様である。時刻x25にて振幅A3が振幅判定閾値Ath3より大きいので、通電ステータスST3での通電を延長する。 The range switching process of this embodiment will be described based on the time charts of Figures 17 and 18. Figure 17 shows a case where the vibration subsides before the timeout period Xout3. The process from time x20 to time x25 is the same as the process from time x10 to time x15 in Figure 15. At time x25, the amplitude A3 is greater than the amplitude determination threshold Ath3, so the current flow in the current flow status ST3 is extended.
 通電ステータスST3の延長開始時刻である時刻x25からタイムアウト時間Xout3が経過する前の時刻x26にて、振幅A3が振幅判定閾値Ath3より小さくなっているので、切替前準備完了フラグをオンにし、正常2相でのレンジ切り替えを行う。時刻x26以降の処理は、上述の例と同様である。 At time x26 before the timeout period Xout3 has elapsed from time x25, which is the extension start time of the power supply status ST3, the amplitude A3 is smaller than the amplitude determination threshold Ath3, so the pre-switching preparation completion flag is turned on and range switching is performed in normal two phases. The processing from time x26 onwards is the same as in the example above.
 図18は、タイムアウト時間Xout3内に振動が収束しなかった場合を示している。時刻x30~時刻x35の処理は、図15中の時刻x10~時刻x15の処理と同様である。時刻x35にて振幅A3が振幅判定閾値Ath3より大きいので、通電ステータスST3での通電を延長する。 FIG. 18 shows a case where the vibration does not converge within the timeout period Xout3. The processing from time x30 to time x35 is the same as the processing from time x10 to time x15 in FIG. 15. At time x35, the amplitude A3 is greater than the amplitude determination threshold Ath3, so the current flow in the current flow status ST3 is extended.
 通電ステータスST3の開始時刻である時刻x35からタイムアウト時間Xout3が経過した時刻x36にて、振幅A3が振幅判定閾値Ath3より大きい状態が継続しているが、タイムアウトとして切替前準備フラグをオンにし、正常2相でのレンジ切り替えを行う。時刻x36以降の処理は上述の例と同様である。 At time x36, when the timeout time Xout3 has elapsed since time x35, which is the start time of the power-on status ST3, the amplitude A3 continues to be greater than the amplitude determination threshold Ath3, but the pre-switch preparation flag is turned on as a timeout, and range switching is performed in normal two phases. The processing from time x36 onwards is the same as in the example above.
 切替前準備完了直前の通電ステータスST3は1相通電であるので、ロータ103が振動しやすく、対向位置が定まりにくい。そこで、タイムアウト時間Xout3が経過した場合、振動が収束しなくとも、ロータ103が所定の対向位置への移動が完了しているとみなし、切替前準備完了とする。これにより、適切にレンジ切り替えを開始することができる。 The current status ST3 just before the pre-switching preparation is complete is one-phase current, so the rotor 103 is prone to vibration and the opposing position is difficult to determine. Therefore, if the timeout period Xout3 has elapsed, even if the vibration has not subsided, it is assumed that the rotor 103 has completed moving to the specified opposing position, and pre-switching preparation is completed. This allows the range switching to begin appropriately.
 本実施形態では、駆動制御部55は、通電の延長開始からタイムアウト時間Xout1、Xout3が経過した場合、次の通電処理に移行する。詳細には、通電ステータスST1にてタイムアウト時間Xout1が経過した場合、通電ステータスST2へ移行し、通電ステータスST3にてタイムアウト時間Xout3が経過した場合、正常2相駆動でのレンジ切り替えを開始する。これにより、1相通電での振動が収まらない場合でも、適切に次の通電処理に切り替えることができる。また上記実施形態と同様の効果を奏する。 In this embodiment, the drive control unit 55 transitions to the next current flow process when the timeout times Xout1 and Xout3 have elapsed since the start of the extension of current flow. In detail, when the timeout time Xout1 has elapsed in current flow status ST1, the drive control unit 55 transitions to current flow status ST2, and when the timeout time Xout3 has elapsed in current flow status ST3, the drive control unit 55 initiates range switching in normal two-phase drive. This allows the drive control unit 55 to appropriately switch to the next current flow process even if vibrations do not subside with one-phase current flow. It also provides the same effects as the above embodiment.
   (第5実施形態)
 第5実施形態を図19~図22に示す。本実施形態では、切替開始前準備中に、切替開始準備が適切になされなかった場合、リトライを行う。本実施形態のレンジ切替処理を図19のフローチャートに基づいて説明する。
Fifth Embodiment
A fifth embodiment is shown in Fig. 19 to Fig. 22. In this embodiment, if the preparation for starting switching is not properly performed during the preparation before starting switching, a retry is performed. The range switching process of this embodiment will be described with reference to the flowchart of Fig. 19.
 S301、S302の処理は、図11中のS101、S102の処理と同様である。切替要求があると判断された場合(S302:YES)、S303へ移行し、後述のリトライフラグをオフにする。 The processes of S301 and S302 are the same as those of S101 and S102 in FIG. 11. If it is determined that a switch request has been made (S302: YES), the process proceeds to S303, where a retry flag, which will be described later, is turned off.
 S304~S306の処理は、図14中のS203~S205の処理と同様である。振幅A1が振幅判定閾値Ath1以下であると判断された場合(S306:YES)、S308へ移行する。振幅A1が振幅判定閾値Ath1より大きいと判断された場合(S306:NO)、S307へ移行し、リトライフラグをオンにする。 The processing of S304 to S306 is the same as the processing of S203 to S205 in FIG. 14. If it is determined that the amplitude A1 is equal to or less than the amplitude judgment threshold Ath1 (S306: YES), the process proceeds to S308. If it is determined that the amplitude A1 is greater than the amplitude judgment threshold Ath1 (S306: NO), the process proceeds to S307, and the retry flag is turned on.
 S308~S312の処理は、図14中のS207~S211の処理と同様である。振幅A3が振幅判定閾値Ath3より大きいと判断された場合(S312:NO)、S314へ移行し、リトライフラグをオンにする。すでにオンである場合は、その状態を維持する。振幅A3が振幅判定閾値Ath3以下であると判断された場合(S312:YES)、S313へ移行する。 The processing of S308 to S312 is the same as the processing of S207 to S211 in FIG. 14. If it is determined that the amplitude A3 is greater than the amplitude judgment threshold Ath3 (S312: NO), the process proceeds to S314, where the retry flag is turned on. If it is already on, the state is maintained. If it is determined that the amplitude A3 is equal to or less than the amplitude judgment threshold Ath3 (S312: YES), the process proceeds to S313.
 S313では、制御部50は、今回の通電ステータスST1での通電開始から、通電ステータスST3での通電が終了するまでの間に、モータ電圧Vmが電圧判定閾値Vth未満となる電圧低下が生じたか否か判断する。電圧低下に替えて、モータ電流Imが電流判定閾値Ith未満となる電流低下の有無を判定してもよい。電圧低下が生じていないと判断された場合(S313:NO)、S315へ移行する。電圧低下が生じたと判断された場合(S313:YES)、S314へ移行し、リトライフラグをオンにする。なお、ここでは説明のため、通電ステータスST3終了後に電圧低下の有無を判定しているが、本処理とは別途に電圧監視を行い、電圧低下が生じたタイミングでリトライフラグをオンにするようにしてもよい。 In S313, the control unit 50 determines whether or not a voltage drop has occurred between the start of current flow in the current flow status ST1 and the end of current flow in the current flow status ST3, causing the motor voltage Vm to fall below the voltage determination threshold Vth. Instead of a voltage drop, the control unit 50 may determine whether or not a current drop has occurred, causing the motor current Im to fall below the current determination threshold Ith. If it is determined that no voltage drop has occurred (S313: NO), the process proceeds to S315. If it is determined that a voltage drop has occurred (S313: YES), the process proceeds to S314, where the retry flag is turned on. Note that, for the sake of explanation, the control unit 50 determines whether or not a voltage drop has occurred after the end of current flow status ST3, but the control unit 50 may also perform voltage monitoring separately from this process and turn on the retry flag when a voltage drop occurs.
 S315では、制御部50は、リトライフラグがオンか否か判断する。リトライフラグがオフであると判断された場合(S315:NO)、S319へ移行する。リトライフラグがオンであると判断された場合(S315:YES)、S316へ移行し、リトライカウンタCrをインクリメントする。 In S315, the control unit 50 determines whether the retry flag is on. If it is determined that the retry flag is off (S315: NO), the control unit 50 proceeds to S319. If it is determined that the retry flag is on (S315: YES), the control unit 50 proceeds to S316 and increments the retry counter Cr.
 S317では、制御部50は、リトライカウンタCrがカウント判定閾値Cthより小さいか否か判断する。リトライカウンタCrがカウント判定閾値Cthより小さいと判断された場合(S317:YES)、S303へ戻り、リトライフラグをオフし、切替前準備をリトライする。リトライカウンタCrがカウント判定閾値Cth以上であると判断された場合(S317:NO)、S318へ移行する。 In S317, the control unit 50 determines whether the retry counter Cr is smaller than the count determination threshold Cth. If it is determined that the retry counter Cr is smaller than the count determination threshold Cth (S317: YES), the process returns to S303, the retry flag is turned off, and pre-switch preparation is retried. If it is determined that the retry counter Cr is equal to or greater than the count determination threshold Cth (S317: NO), the process proceeds to S318.
 S318では、制御部50は、入力された切替要求が、PレンジからnotPレンジへの切り替えか否か判断する。PレンジからnotPレンジへの切り替えであると判断された場合(S303:YES)、S319以降の処理をスキップする。notPレンジからPレンジへの切り替えであると判断された場合(S318:NO)、S319へ移行し、リトライフラグをオフにし、切替前準備完了フラグをオンにする。S320、S321の処理は、図11中のS110、S111の処理と同様である。 In S318, the control unit 50 determines whether the input switching request is to switch from P range to not P range. If it is determined that the request is to switch from P range to not P range (S303: YES), the processing from S319 onwards is skipped. If it is determined that the request is to switch from not P range to P range (S318: NO), the process proceeds to S319, where the retry flag is turned off and the pre-switch preparation completion flag is turned on. The processing of S320 and S321 is the same as the processing of S110 and S111 in FIG. 11.
 すなわち本実施形態では、所定回数の切替前準備処理のリトライを行っても、リトライフラグがセットされている場合、P入れ側については正常2相駆動でのレンジ切り替えを行い、P抜き側はレンジ切り替えを行わない。ここで、リトライフラグがセットされている状態は、リトライ条件が成立している状態、と捉えることができる。なお、S318を省略し、レンジ切り替え方向によらず、所定のリトライ回数後に、正常2相駆動を行うようにしてもよい。 In other words, in this embodiment, if the retry flag is set even after a predetermined number of retries of the pre-switching preparation process, range switching is performed with normal two-phase drive on the P-in side, and range switching is not performed on the P-out side. Here, the state in which the retry flag is set can be considered as a state in which the retry condition is met. Note that S318 may be omitted, and normal two-phase drive may be performed after a predetermined number of retries regardless of the range switching direction.
 本実施形態のレンジ切替処理を図20~図22のタイムチャートに基づいて説明する。図20は、切替前準備処理中に電圧低下が生じた場合の例であって、共通時間軸を横軸とし、上段からモータ制御、1相断線検出状態、切替前準備完了フラグ、リトライフラグ、リトライカウンタ、モータ電圧、通電相を示している。図22も同様である。 The range switching process of this embodiment will be explained based on the time charts of Figures 20 to 22. Figure 20 shows an example of a case where a voltage drop occurs during pre-switching preparation processing, with a common time axis as the horizontal axis, and from the top, motor control, one-phase breakage detection status, pre-switching preparation completion flag, retry flag, retry counter, motor voltage, and current-carrying phase. The same is true for Figure 22.
 時刻x40~時刻x42の処理は、図12中の時刻x0~時刻x2の処理と同様である。時刻x43にて、モータ電圧Vmが電圧判定閾値Vthを下回ると、リトライフラグがオンされる。 The processing from time x40 to time x42 is the same as the processing from time x0 to time x2 in FIG. 12. When the motor voltage Vm falls below the voltage determination threshold Vth at time x43, the retry flag is turned on.
 通電ステータスST3が終了した時刻44にて、リトライフラグがオンであるので、切替前準備処理のリトライを行う。時刻x44では、リトライフラグをオフにし、リトライカウンタをインクリメントする。時刻x44から時刻x45にて、再度、通電ステータスST1~ST3での通電を行う。 At time 44 when the power-on status ST3 ends, the retry flag is on, so the pre-switch preparation process is retried. At time x44, the retry flag is turned off and the retry counter is incremented. From time x44 to time x45, power is again applied with the power-on statuses ST1 to ST3.
 時刻x45にて、リトライでの通電ステータスST3が終了したとき、今回のリトライ中の電圧低下が検出されず、リトライフラグがオフであるので、切替前準備完了フラグがオンされ、正常2相でのレンジ切り替えを行う。時刻x45以降の処理は、図12中の時刻x3以降の処理と略同様である。なお、リトライカウンタは、レンジ切替開始後の任意のタイミングでリセットされる。図20では、切替前準備完了フラグをオフするタイミングにてリトライカウンタをリセットしているが、異なるタイミングであってもよい。 When the current status ST3 in the retry ends at time x45, no voltage drop during this retry is detected and the retry flag is off, so the pre-switching preparation complete flag is turned on and normal two-phase range switching is performed. The processing after time x45 is substantially the same as the processing after time x3 in FIG. 12. The retry counter is reset at any timing after the start of range switching. In FIG. 20, the retry counter is reset when the pre-switching preparation complete flag is turned off, but it may be reset at a different timing.
 図21は、通電ステータスST3での振動が収束しなかった場合の例であって、共通時間軸を横軸とし、上段から、モータ制御、1相断線検出状態、切替前準備完了フラグ、リトライフラグ、リトライカウンタ、回転角度センサ、通電相を示している。時刻x50~時刻x52の処理は、図12中の時刻x0~時刻x2の処理と同様である。 FIG. 21 shows an example of a case where the vibration at the energization status ST3 has not converged, with a common time axis as the horizontal axis, and from the top, motor control, one-phase breakage detection state, pre-switching preparation completion flag, retry flag, retry counter, rotation angle sensor, and energized phase. The processing from time x50 to time x52 is the same as the processing from time x0 to time x2 in FIG. 12.
 時刻x53にて、通電ステータスST3が終了したとき、振幅A3が振幅判定閾値Ath3より大きいので、リトライフラグをオンにし、時刻x54にて、切替前準備処理のリトライを行う。時刻x54では、リトライフラグをオフにし、リトライカウンタをインクリメントする。なお、図21では、説明のため、時刻x53を紙面左側にずらして記載した。この例では、通電ステータスST1終了後の振幅A1が振幅判定閾値Ath1以下であるが、振幅A1が振幅判定閾値Ath1より大きい場合は、通電ステータスST1終了時にリトライフラグをセットする。 When the energization status ST3 ends at time x53, the amplitude A3 is greater than the amplitude judgment threshold Ath3, so the retry flag is turned on and the pre-switching preparation process is retried at time x54. At time x54, the retry flag is turned off and the retry counter is incremented. Note that for the sake of explanation, time x53 is shifted to the left side of the page in FIG. 21. In this example, the amplitude A1 after the energization status ST1 ends is less than or equal to the amplitude judgment threshold Ath1, but if the amplitude A1 is greater than the amplitude judgment threshold Ath1, the retry flag is set when the energization status ST1 ends.
 時刻x55では、リトライでの通電ステータスST3が終了したとき、振幅A1、A3が振幅判定閾値Ath1、Ath3以下であって、リトライフラグがオンされないので、正常2相でのレンジ切替を行う。時刻x55以降の処理は、図12中の時刻x3以降の処理と同様である。 At time x55, when the current-flow status ST3 in the retry ends, the amplitudes A1 and A3 are equal to or less than the amplitude judgment thresholds Ath1 and Ath3, and the retry flag is not turned on, so range switching is performed for normal two phases. The processing after time x55 is the same as the processing after time x3 in FIG. 12.
 図22は、リトライを行っても電圧低下が生じた場合の例である。図22では、notPレンジからPレンジへの切り替えであるものとする。時刻x60~時刻x64の処理は、図20中の時刻x40~時刻x44の処理と同様である。時刻x65にて、リトライ中にもモータ電圧Vmが電圧判定閾値Vthを下回ると、リトライフラグがオンされる。 FIG. 22 shows an example of a case where a voltage drop occurs even after a retry. In FIG. 22, it is assumed that the range is switched from not P to P. The processing from time x60 to time x64 is the same as the processing from time x40 to time x44 in FIG. 20. At time x65, if the motor voltage Vm falls below the voltage determination threshold Vth even during a retry, the retry flag is turned on.
 時刻x66にて、リトライでの通電ステータスST3が終了したとき、リトライフラグがオンであるので、リトライフラグをオフにし、リトライカウンタをインクリメントする。ここで、カウント判定閾値Cthが2である場合、2回目のリトライは行わず、切替前準備完了フラグをオンにし、正常2相でのレンジ切り替えを行う。時刻x66以降の処理は、図12中の時刻x3以降の処理と略同様である。 At time x66, when the current-flow status ST3 in the retry ends, the retry flag is on, so the retry flag is turned off and the retry counter is incremented. Here, if the count determination threshold Cth is 2, a second retry is not performed, the pre-switch preparation completion flag is turned on, and range switching is performed in normal two phases. The processing after time x66 is substantially the same as the processing after time x3 in FIG. 12.
 本実施形態では、切替前準備処理中の電圧低下により、切替前準備処理が失敗している虞がある場合、切替前準備処理のリトライを行う。また、通電ステータスST1にて、振動が収束しなかった場合、通電ステータスST2、ST3と切り替えたとき、例えば凹部対向になる等、2相2歯、1相1歯と対向状態が切り替わらない虞があるため、切替前準備のリトライを行う。さらにまた、切替前準備処理として通電ステータスST3の開始から通電保持時間Xh3が経過しても振幅A3が振幅判定閾値Ath3より大きく、ロータ103が所定の対向状態となっていない場合、切替前準備処理のリトライを行う。これにより、適切な対向状態から正常2相でのレンジ切り替えを開始することができる。 In this embodiment, if there is a risk that the pre-switching preparation process has failed due to a voltage drop during the pre-switching preparation process, the pre-switching preparation process is retried. Furthermore, if the vibration does not converge in the energization status ST1, when the energization status is switched to ST2 or ST3, there is a risk that the opposing state will not change to two phases, two teeth, or one phase, one tooth, for example, because the recesses will be opposed, and so the pre-switching preparation is retried. Furthermore, if the amplitude A3 is greater than the amplitude judgment threshold Ath3 even after the energization hold time Xh3 has elapsed since the start of the energization status ST3 as the pre-switching preparation process, and the rotor 103 is not in the specified opposing state, the pre-switching preparation process is retried. This makes it possible to start range switching in a normal two-phase opposing state.
 本実施形態では、切替前準備処理においてリトライ条件が成立した場合、切替前準備処理を再度行う。制御部50は、通電ステータスST1および通電ステータスST3の少なくとも一方において、通電保持時間Xh1、Xh3が経過したときのモータ回転角の振幅A1、A3が振幅判定閾値Ath1、Ath3より大きい場合、リトライ条件が成立したと判定する。また、制御部50は、始動前切替準備中にモータ電圧Vmまたはモータ電流Imが判定閾値より小さくなった場合、リトライ条件が成立したと判定する。これにより、切替前準備処理の精度を向上することができる。 In this embodiment, if the retry condition is met in the pre-switching preparation process, the pre-switching preparation process is performed again. The control unit 50 determines that the retry condition is met if the amplitudes A1, A3 of the motor rotation angle when the current hold times Xh1, Xh3 have elapsed are greater than the amplitude judgment thresholds Ath1, Ath3 in at least one of the current-on status ST1 and current-on status ST3. The control unit 50 also determines that the retry condition is met if the motor voltage Vm or motor current Im becomes smaller than the judgment threshold during pre-start switching preparation. This can improve the accuracy of the pre-switching preparation process.
 駆動制御部55は、リトライ回数が判定回数以上となった場合、正常2相駆動を開始する。これにより、振動が大きい場合等においても、モータ10の駆動を開始することができる。 When the number of retries is equal to or greater than the determined number, the drive control unit 55 starts normal two-phase drive. This makes it possible to start driving the motor 10 even when there is a large amount of vibration.
 ECU40は、シフトバイワイヤシステムに適用され、リトライ回数が判定回数以上、かつ、リトライ条件が成立している場合、正常2相駆動によるPレンジ以外のレンジからPレンジへの切り替えを許容し、PレンジからPレンジ以外のレンジへの切り替えを禁止する。これにより、シフトレンジを適切に切り替えることができる。また上記実施形態と同様の効果を奏する。 The ECU 40 is applied to a shift-by-wire system, and when the number of retries is equal to or greater than the number of judged retries and the retry condition is met, it allows switching from a range other than the P range to the P range by normal two-phase drive, and prohibits switching from the P range to a range other than the P range. This allows the shift range to be switched appropriately, and also provides the same effects as the above embodiment.
   (第6実施形態)
 第6実施形態を図23~図27に示す。上記実施形態では、シフトレンジの切替要求があったときに、切替前準備処理を行う。本実施形態では、レンジ切替要求の前に、予め切替前準備処理を行う。
Sixth Embodiment
23 to 27 show the sixth embodiment. In the above-described embodiments, when a request to switch the shift range is made, a pre-switching preparation process is performed. In this embodiment, however, the pre-switching preparation process is performed in advance before a range switching request is made.
 本実施形態の起動時処理を図23のフローチャートに基づいて説明する。この処理は、イグニッションスイッチ等の車両の始動スイッチがオンされたときに実行される。S401では、制御部50は、初期駆動が完了したか否か判断する。初期駆動処理は、エンコーダ13とロータ103との相対位置を対応させるための通電処理である。初期駆動が完了していないと判断された場合(S401:NO)、この判断処理を繰り返す。初期駆動が完了したと判断された場合(S401:YES)、S402へ移行する。 The startup process of this embodiment will be described with reference to the flowchart in FIG. 23. This process is executed when a vehicle start switch, such as an ignition switch, is turned on. In S401, the control unit 50 determines whether or not the initial drive has been completed. The initial drive process is a current application process for matching the relative positions of the encoder 13 and the rotor 103. If it is determined that the initial drive has not been completed (S401: NO), this determination process is repeated. If it is determined that the initial drive has been completed (S401: YES), the process proceeds to S402.
 S402の処理は、図11のS101の処理と同様であり、1相断線が検出されていないと判断された場合(S402:NO)、以降の処理をスキップし、1相断線が検出されていると判断された場合(S402:YES)、S403へ移行する。 The process of S402 is the same as the process of S101 in FIG. 11. If it is determined that a single-phase break has not been detected (S402: NO), the subsequent processes are skipped. If it is determined that a single-phase break has been detected (S402: YES), the process proceeds to S403.
 S403~S408は、図11中のS103~S108と同様の切替前準備処理である。切替前準備処理が完了すると、制御部50は、S409にて切替前準備完了フラグをオンにし、S410にてスタンバイモードに移行し、本処理を終了する。また、本実施形態では、切替前準備処理が完了したときのエンコーダカウント値を初期値ENiとして、図示しないRAM等の記憶部に保持しておく。 S403 to S408 are pre-switching preparation processes similar to S103 to S108 in FIG. 11. When the pre-switching preparation process is completed, the control unit 50 turns on the pre-switching preparation completion flag in S409, transitions to standby mode in S410, and ends this process. In this embodiment, the encoder count value when the pre-switching preparation process is completed is stored as an initial value ENi in a storage unit such as a RAM (not shown).
 本実施形態のレンジ切替処理を図24のフローチャートに基づいて説明する。S501、S502の処理は、図11中のS101、S102の処理と同様である。切替要求があると判断された場合(S502:YES)、S505へ移行し、切替要求がないと判断された場合(S502:NO)、S503へ移行する。 The range switching process of this embodiment will be described with reference to the flowchart in FIG. 24. The processes of S501 and S502 are the same as the processes of S101 and S102 in FIG. 11. If it is determined that there is a switching request (S502: YES), the process proceeds to S505, and if it is determined that there is no switching request (S502: NO), the process proceeds to S503.
 S503では、制御部50は、現在のエンコーダカウント値ENと初期値ENiの差である回転量ΔENが0か否か判断する。回転量ΔENが0であると判断された場合(S503:YES)、すなわち切替前準備処理が完了してからロータ103が動いていない場合、以降の処理をスキップする。回転量ΔENが0ではないと判断された場合(S503:NO)、すなわち切替準備完了からロータ103が動いている場合、S504へ移行し、切替前準備完了フラグをオフにする。 In S503, the control unit 50 determines whether the amount of rotation ΔEN, which is the difference between the current encoder count value EN and the initial value ENi, is 0. If it is determined that the amount of rotation ΔEN is 0 (S503: YES), that is, if the rotor 103 has not moved since the pre-switching preparation process was completed, the subsequent processes are skipped. If it is determined that the amount of rotation ΔEN is not 0 (S503: NO), that is, if the rotor 103 has moved since the pre-switching preparation was completed, the process proceeds to S504 and the pre-switching preparation completion flag is turned off.
 レンジ切替要求があると判断された場合(S502:YES)に移行するS505では、制御部50は、切替前準備完了フラグがオンか否か判断する。切替前準備完了フラグがオンであると判断された場合(S505:YES)、S516へ移行する。切替前準備完了フラグがオフであると判断された場合(S505:NO)、S506へ移行する。 If it is determined that there is a range switching request (S502: YES), the control unit 50 proceeds to S505, where it determines whether the pre-switching preparation complete flag is on or not. If it is determined that the pre-switching preparation complete flag is on (S505: YES), it proceeds to S516. If it is determined that the pre-switching preparation complete flag is off (S505: NO), it proceeds to S506.
 S506では、制御部50は、回転量ΔENが回転量判定閾値ENthより小さいか否か判断する。回転量判定閾値ENthは、通電相が1つ切り替わったときの回転量に対応する値であって、例えばエンコーダカウント値の2カウント分とする。回転量ΔENが回転量判定閾値ENthより小さいと判断された場合(S507:YES)、S507へ移行する。回転量ΔENが回転量判定閾値ENth以上であると判断された場合(S507:NO)、S509へ移行する。 In S506, the control unit 50 determines whether the rotation amount ΔEN is smaller than the rotation amount determination threshold ENth. The rotation amount determination threshold ENth is a value corresponding to the rotation amount when one current-carrying phase is switched, and is, for example, two counts of the encoder count value. If it is determined that the rotation amount ΔEN is smaller than the rotation amount determination threshold ENth (S507: YES), the process proceeds to S507. If it is determined that the rotation amount ΔEN is equal to or greater than the rotation amount determination threshold ENth (S507: NO), the process proceeds to S509.
 S508、S509の処理は、図11中のS107、S108の処理と同様であって、通電保持時間Xh3に亘り通電ステータスST3での通電を行う。通電ステータスST3にて、通電保持時間Xh3が経過したと判断された場合(S508:YES)、S515へ移行する。 The processes of S508 and S509 are the same as those of S107 and S108 in FIG. 11, and power is supplied in the power status ST3 for the power supply holding time Xh3. If it is determined in the power supply status ST3 that the power supply holding time Xh3 has elapsed (S508: YES), the process proceeds to S515.
 S509~S514の処理は、図11中のS103~S108の処理と同様であって、回転量ΔENが回転量判定閾値ENth以上の場合、通電ステータスST1、ST2、ST3と切り替えることで、切替前準備処理を行う。通電ステータスST3にて、通電保持時間Xh3が経過したと判断された場合(S514:YES)、S515へ移行する。 The processing of S509 to S514 is the same as the processing of S103 to S108 in FIG. 11. If the rotation amount ΔEN is equal to or greater than the rotation amount determination threshold ENth, the pre-switch preparation processing is performed by switching the current status to ST1, ST2, and ST3. If it is determined in the current status ST3 that the current hold time Xh3 has elapsed (S514: YES), the process proceeds to S515.
 S515~S517の処理は、図11中のS109~S111の処理と同様であって、正常2相でのレンジ切り替えを行う。レンジ切替が完了したと判断された場合(S517:YES)、S518へ移行し、切替前準備処理を行う。S518では、S509~S515と同様、通電ステータスST1、ST2、ST3と切り替えることで、切替前準備処理を行う。通電ステータスST3にて通電保持時間Xh3が経過した後、切替前準備完了フラグをオンにし、S519にてスタンバイモードとする。また、切替前準備完了時のエンコーダカウント値ENを初期値ENiとして保持する。 The processing of S515 to S517 is the same as the processing of S109 to S111 in FIG. 11, and range switching is performed in normal two phases. If it is determined that range switching is complete (S517: YES), the process proceeds to S518 and pre-switch preparation processing is performed. In S518, pre-switch preparation processing is performed by switching the current status between ST1, ST2, and ST3, as in S509 to S515. After the current hold time Xh3 has elapsed in current status ST3, the pre-switch preparation completion flag is turned on and the standby mode is entered in S519. In addition, the encoder count value EN at the time pre-switch preparation completion is completed is retained as the initial value ENi.
 本実施形態のレンジ切替処理を図25~図27のタイムチャートに基づいて説明する。図25に示すように、時刻x70にてIGオンされ、初期診断等により1相断線が検出されると、初期駆動が終了した時刻x72から切替前準備処理として、通電ステータスST1、ST2、ST3の順に通電相を切り替える。切替前準備処理が完了した時刻x73にて、切替前準備完了フラグをオンにし、スタンバイモードとする。 The range switching process of this embodiment will be described based on the time charts of Figures 25 to 27. As shown in Figure 25, when the IG is turned on at time x70 and one-phase disconnection is detected by an initial diagnosis or the like, the current-carrying phase is switched in the order of current-carrying status ST1, ST2, and ST3 as pre-switching preparation process from time x72 when the initial drive ends. At time x73 when the pre-switching preparation process is completed, the pre-switching preparation completion flag is turned on and the standby mode is entered.
 図25の例では、スタンバイ中にロータ103が動いておらず、切替前準備完了フラグがオンの状態が継続される。時刻x74にてシフトレンジ切替要求が入力されたとき、切替前準備完了フラグがオンされているので、この状態から正常2相を用いたフィードバック制御でのレンジ切り替えが実施される。 In the example of FIG. 25, the rotor 103 is not moving during standby, and the pre-switch preparation complete flag remains on. When a shift range switching request is input at time x74, the pre-switch preparation complete flag is on, so range switching is performed from this state using feedback control using normal two phases.
 時刻x75にて、目標到達判定範囲に到達すると、停止制御を行う。時刻x76にて停止制御が終了すると、次のレンジ切り替えに備えて切替前準備処理を行う。次回のレンジ切り替えは、回転方向が逆転方向となるので、U相断線の場合、V相→VW相→W相の順で通電する。切替前準備処理が終了した時刻x77にて、切替前準備完了フラグをオンに、スタンバイモードへ移行する。 At time x75, when the target attainment judgment range is reached, stop control is performed. When the stop control ends at time x76, pre-switch preparation processing is performed in preparation for the next range switching. Since the rotation direction will be reversed in the next range switching, if there is a break in the U phase, current is applied in the order of V phase → VW phase → W phase. At time x77 when the pre-switch preparation processing ends, the pre-switch preparation complete flag is turned on and the mode transitions to standby mode.
 図26では、時刻x80~時刻X83の処理は、図25中の時刻x70~時刻x73の処理と同様である。時刻x84にて、例えば振動等により、切替前準備完了時の停止位置からロータ103が動くと、切替前準備完了フラグがオフされる。 In FIG. 26, the processing from time x80 to time x83 is the same as the processing from time x70 to time x73 in FIG. 25. At time x84, when the rotor 103 moves from the stop position when pre-switching preparation is complete due to, for example, vibration, the pre-switching preparation completion flag is turned off.
 時刻x85にて、シフトレンジ切替要求が入力されたとき、切替前準備完了フラグがオフであるので、再度切替前準備処理を行う。図26の例では、切替前準備完了からの回転量ΔENが回転量判定閾値ENthより小さいので、切替前準備処理として、通電ステータスST3のみ、すなわちU相断線での正転であればV相通電を行う。 When a shift range switching request is input at time x85, the pre-switch preparation completion flag is off, so pre-switch preparation processing is performed again. In the example of FIG. 26, the rotation amount ΔEN from pre-switch preparation completion is smaller than the rotation amount determination threshold ENth, so as pre-switch preparation processing, V-phase current is applied if only the current flow status ST3 is present, i.e., forward rotation with U-phase disconnection.
 時刻x86にて、切替前準備処理が完了すると、切替前準備完了フラグがオンされ、正常2相を用いたフィードバック制御でのレンジ切り替えが実施される。時刻x86以降の処理は、図25中の時刻x74以降の処理と同様である。 When the pre-switch preparation process is completed at time x86, the pre-switch preparation completion flag is turned on and range switching is performed with feedback control using the two normal phases. The process after time x86 is the same as the process after time x74 in FIG. 25.
 図27では、時刻x90~時刻x93の処理は、図25中のx70~x73の処理と同様である。時刻x94にて、振動等により切替前準備完了時の停止位置からロータ103が動くと、切替前準備完了フラグがオフされる。 In FIG. 27, the processing from time x90 to time x93 is the same as the processing from x70 to x73 in FIG. 25. At time x94, when the rotor 103 moves from the stop position when pre-switching preparation is completed due to vibration or the like, the pre-switching preparation completion flag is turned off.
 時刻x95にて、シフトレンジ切替要求が入力されたとき、切替前準備完了フラグがオフであるので、再度切替前準備処理を行う。図27の例では、切替前準備完了からの回転量ΔENが回転量判定閾値ENth以上であるので、時刻x92~時刻x93等の切替前準備処理と同様、通電ステータスST1、ST2、ST3の順に通電相を切り替える。 When a shift range switching request is input at time x95, the pre-switch preparation completion flag is off, so the pre-switch preparation process is performed again. In the example of FIG. 27, the rotation amount ΔEN from the pre-switch preparation completion is equal to or greater than the rotation amount determination threshold ENth, so the energized phases are switched in the order of energization status ST1, ST2, ST3, as in the pre-switch preparation process from time x92 to time x93, etc.
 時刻x96にて、切替前準備処理が完了すると、切替前準備完了フラグがオンされ、正常2相を用いたフィードバック制御でのレンジ切り替えが実施される。時刻x96以降の処理は、図25中の時刻x74以降の処理と同様である。 When the pre-switch preparation process is completed at time x96, the pre-switch preparation completion flag is turned on and range switching is performed with feedback control using the two normal phases. The process after time x96 is the same as the process after time x74 in FIG. 25.
 本実施形態では、初期駆動完了後、および、レンジ切替完了時に切替前準備処理を行っておくことで、シフト要求後に切替前準備処理を行う場合と比較し、レンジ切り替えに要する時間を短縮することができる。 In this embodiment, by performing pre-switch preparation processing after the initial drive is complete and when the range switching is completed, the time required for range switching can be reduced compared to when pre-switch preparation processing is performed after a shift request.
 また、事前に切替前準備処理を行う場合、シフトレンジ切替要求が入力されるまでの間に、振動等によりロータ103が動き、ステータ101とロータ103との対向状態が変わってしまう虞がある。そのため、切替前準備処理完了後にロータ103が動いた場合には、レンジ切替前に、再度切替前準備処理を行う。 Also, if pre-switch preparation processing is performed in advance, there is a risk that the rotor 103 may move due to vibration or the like before a shift range switching request is input, which may change the opposing state between the stator 101 and the rotor 103. Therefore, if the rotor 103 moves after the pre-switch preparation processing is completed, the pre-switch preparation processing is performed again before the range switching.
 切替前準備完了後からのロータ103の回転量が小さく、通電ステータスST3で切替前準備完了時の対向状態に戻せる場合は、切替前準備処理を通電ステータスST3のみとすることで、通電ステータスST1からの通電を行う場合と比較し、切替前準備処理に要する時間を短縮することができる。また、ロータ103の回転量ΔENが回転量判定閾値ENth以上の場合は、通電ステータスST1~ST3の通電を行うことで、所定の対向状態からレンジ切り替えを開始することができる。 If the amount of rotation of the rotor 103 after completion of pre-switching preparation is small and the opposing state at the time of completion of pre-switching preparation can be returned to with the energizing status ST3, the time required for the pre-switching preparation process can be shortened by performing the pre-switching preparation process only with the energizing status ST3, compared to when energizing is performed from the energizing status ST1. Also, if the amount of rotation ΔEN of the rotor 103 is equal to or greater than the rotation amount determination threshold ENTh, it is possible to start range switching from a specified opposing state by energizing the energizing statuses ST1 to ST3.
 ここで、シフトレンジ切替要求入力から停止制御開始までの時間を応答時間とし、切替前準備完了からシフトレンジ切替要求の入力までにロータ103が動かなかった場合の応答時間をXr1、シフトレンジ切替要求入力までの回転量ΔENが回転量判定閾値ENthより小さい場合の応答時間をXr2、シフトレンジ切替要求入力までの回転量ΔENが回転量判定閾値ENth以上の場合の応答時間Xr3とすると、Xr1<Xr2<Xr3である。 Here, the response time is the time from the input of the shift range switching request to the start of stop control, the response time when the rotor 103 does not move from the completion of pre-switching preparation to the input of the shift range switching request is Xr1, the response time when the rotation amount ΔEN until the input of the shift range switching request is smaller than the rotation amount determination threshold ENth is Xr2, and the response time when the rotation amount ΔEN until the input of the shift range switching request is equal to or greater than the rotation amount determination threshold ENth is Xr3, where Xr1<Xr2<Xr3.
 本実施形態では、駆動制御部55は、3相のうちの1相に断線故障が生じており、正常な2相を用いてモータを駆動する正常2相駆動を行う場合、システム起動時、および、モータ10の停止制御後の少なくとも一方において、正常2相駆動開始時の通電保持相への通電とは異なる通電パターンでの通電を行った後に、通電保持相に通電する切替前準備処理を行う。これにより、モータ10の始動開始時に切替前準備処理を行う場合よりも、応答性を向上することができる。 In this embodiment, when a wire breakage fault occurs in one of the three phases and normal two-phase drive is performed to drive the motor using the two normal phases, the drive control unit 55 performs pre-switching preparation processing to energize the energized phase after energizing it in a different energization pattern from the energization to the energized phase at the start of normal two-phase drive at least one of the time of system startup and after control to stop the motor 10. This allows for improved responsiveness compared to when pre-switching preparation processing is performed at the start of starting the motor 10.
 切替前準備処理が完了した後、モータ10の駆動を開始するまでの間にモータ10が回転した場合、再度、切替前準備処理を行った後、正常2相駆動を行う。これにより、切替前準備処理完了からモータの駆動開始までに、振動等によりロータ103が動いた場合、再度切替前準備処理を行うことで、適切な対向状態から正常2相駆動を開始することができる。 If the motor 10 rotates after the pre-switching preparation process is completed and before the motor 10 starts to drive, the pre-switching preparation process is performed again, and then normal two-phase drive is performed. As a result, if the rotor 103 moves due to vibration or the like between the completion of the pre-switching preparation process and the start of the motor's drive, the pre-switching preparation process is performed again, making it possible to start normal two-phase drive from the appropriate opposing state.
 また、切替前準備処理が完了してからモータ10の駆動を開始するまでのモータ10の回転量ΔENが回転量判定閾値ENthより小さい場合、モータ駆動開始前の切替前準備処理において、通電保持相以外への通電を省略する。これにより、モータ駆動開始前の切替前準備処理時間を短縮することができる。また上記実施形態と同様の効果を奏する。 In addition, if the amount of rotation ΔEN of the motor 10 from the completion of the pre-switching preparation process to the start of driving the motor 10 is smaller than the rotation amount judgment threshold ENth, energization to phases other than the energized phase is omitted in the pre-switching preparation process before the start of motor driving. This makes it possible to shorten the pre-switching preparation process time before the start of motor driving. Also, the same effects as the above embodiment are achieved.
 実施形態では、エンコーダ13が「回転位置センサ」、エンコーダカウント値が「回転位置センサの検出値」、ECU40が「モータ制御装置」に対応する。また、切替前準備処理が「始動前準備処理」、通電ステータスST1が「第1通電処理」、通電ステータスST2が「第2通電処理」、通電ステータスST3が「第3通電処理」に対応し、通電ステータスST3での通電相が「通電保持相」に対応する。 In this embodiment, the encoder 13 corresponds to the "rotational position sensor", the encoder count value corresponds to the "detection value of the rotational position sensor", and the ECU 40 corresponds to the "motor control device". In addition, the pre-switching preparation process corresponds to the "pre-start preparation process", the energization status ST1 corresponds to the "first energization process", the energization status ST2 corresponds to the "second energization process", the energization status ST3 corresponds to the "third energization process", and the energization phase in the energization status ST3 corresponds to the "energization retention phase".
   (他の実施形態)
 第1実施形態~第6実施形態は、例えば、切替前準備処理の実施タイミングによらず、雰囲気温度に応じて通電保持時間を可変する、リトライを行う前に通電ステータスの延長を行う、タイムアウトした場合、P入れを許容し、P抜きを禁止する、といった具合に、各実施形態の処理は適宜組み合わせて実施可能である。
Other Embodiments
In the first to sixth embodiments, the processing of each embodiment can be implemented in an appropriate combination, for example, by varying the power retention time according to the ambient temperature regardless of the timing of the pre-switching preparation process, by extending the power status before performing a retry, and by allowing P-in and prohibiting P-out if a timeout occurs.
 上記実施形態では、通電前準備処理として、通電ステータスST1、ST2、ST3の順で通電相を切り替える。他の実施形態では、通電ステータスST1、ST2の一方を省略してもよい。 In the above embodiment, the pre-energization preparation process switches the energized phase in the order of energization status ST1, ST2, and ST3. In other embodiments, one of the energization statuses ST1 and ST2 may be omitted.
 上記実施形態では、回転検出部はエンコーダである。他の実施形態では、例えばレゾルバ等のエンコーダ以外の回転位置を検出可能なセンサ等を用いてもよい。上記実施形態では、モータは、スイッチトリラクタンスモータである。他の実施形態では、モータは、スイッチトリラクタンスモータ以外のもの、例えばDCブラシレスモータ等であってもよい。また、モータ巻線の相数は、4相以上であってもよい。 In the above embodiment, the rotation detection unit is an encoder. In other embodiments, a sensor capable of detecting the rotation position other than an encoder, such as a resolver, may be used. In the above embodiment, the motor is a switched reluctance motor. In other embodiments, the motor may be other than a switched reluctance motor, such as a DC brushless motor. The number of phases of the motor windings may be four or more.
 上記実施形態では、ディテントプレートには2つの谷部が設けられる。他の実施形態では、谷部の数は2つに限らず、例えば、P、R、N、Dの各レンジに対応する4つの谷部が形成されていてもよい。また、ディテント機構やパーキングロック機構等は、上記実施形態と異なっていてもよい。 In the above embodiment, the detent plate has two valleys. In other embodiments, the number of valleys is not limited to two, and for example, four valleys corresponding to the P, R, N, and D ranges may be formed. In addition, the detent mechanism and parking lock mechanism may be different from those in the above embodiment.
 上記実施形態では、モータ制御装置はシフトバイワイヤシステムに適用される。他の実施形態では、モータ制御装置をシフトバイワイヤシステム以外の車載システム、または、車載以外のモータ駆動システムに適用してもよい。 In the above embodiment, the motor control device is applied to a shift-by-wire system. In other embodiments, the motor control device may be applied to an in-vehicle system other than a shift-by-wire system, or a motor drive system other than an in-vehicle system.
 本開示は、例えば「前記始動前準備処理における通電時間は、前記モータの温度に応じて可変である項目1~5のいずれか一項に記載のモータ制御装置。」としてもよい。 The present disclosure may be, for example, "a motor control device according to any one of items 1 to 5, in which the power supply time in the pre-start preparation process is variable depending on the temperature of the motor."
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。 The control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied in a computer program. Alternatively, the control unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method described in the present disclosure may be realized by one or more dedicated computers configured by combining a processor and a memory programmed to execute one or more functions with a processor configured with one or more hardware logic circuits. In addition, the computer program may be stored in a computer-readable non-transient tangible recording medium as instructions executed by a computer. As described above, the present disclosure is not limited to the above embodiments, and can be implemented in various forms within the scope of its purpose.
 本開示は実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described with reference to an embodiment. However, this disclosure is not limited to the embodiment and structure. This disclosure also encompasses various modifications and modifications within the scope of equivalents. In addition, various combinations and forms, as well as other combinations and forms including only one element, more than one, or less than one, are within the scope and spirit of this disclosure.

Claims (6)

  1.  3相のモータ巻線(11)を有するモータ(10)の駆動を制御するモータ制御装置であって、
     前記モータ巻線の各相への通電のオンオフを切り替えるスイッチング素子(411~413)を有する駆動回路(41)と、
     前記モータの回転位置を検出する回転位置センサ(13)の検出値に基づくフィードバック制御により前記スイッチング素子のオンオフ作動を制御する駆動制御部(55)、および、前記モータ巻線の断線故障を判定する異常判定部(52)を有する制御部(50)と、
     を備え、
     前記駆動制御部は、3相のうちの1相に断線故障が生じており、正常な2相を用いて前記モータを駆動する正常2相駆動を行う場合、前記正常2相駆動開始時の通電相である通電保持相への通電パターンとは異なるパターンでの通電を行った後に前記通電保持相に通電する始動前準備処理を行うモータ制御装置。
    A motor control device for controlling the driving of a motor (10) having a three-phase motor winding (11), comprising:
    A drive circuit (41) having switching elements (411 to 413) for switching on and off the current supply to each phase of the motor winding;
    a control unit (50) having a drive control unit (55) that controls the on/off operation of the switching element by feedback control based on a detection value of a rotational position sensor (13) that detects the rotational position of the motor, and an abnormality determination unit (52) that determines a breakage fault in the motor winding;
    Equipped with
    The motor control device is a motor control device that, when a wire breakage fault occurs in one of three phases and normal two-phase drive is performed to drive the motor using the two normal phases, performs pre-start preparation processing in which current is supplied to the current-holding phase, which is the current-supply phase at the start of the normal two-phase drive, in a pattern different from the current supply pattern to the current-holding phase.
  2.  前記駆動制御部は、前記始動前準備処理として、正常相の1相に通電する第1通電処理、正常相の2相に通電する第2通電処理、1相の前記通電保持相に通電する第3通電処理の順で通電相を切り替える請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein the drive control unit switches the energization phase in the pre-start preparation process in the order of a first energization process for energizing phase 1 of the normal phases, a second energization process for energizing phase 2 of the normal phases, and a third energization process for energizing the energization-maintaining phase 1.
  3.  前記始動前準備処理における通電相は、断線相および前記モータの回転方向に応じて設定され、
     前記第1通電処理の通電相は、通電相の切替順序からみて、断線相の前に通電される相である請求項2に記載のモータ制御装置。
    The energizing phase in the pre-start preparation process is set according to the disconnection phase and the rotation direction of the motor,
    3. The motor control device according to claim 2, wherein the energized phase of the first energization process is a phase that is energized before the disconnection phase in terms of an energization phase switching sequence.
  4.  前記駆動制御部は、前記第1通電処理および前記第3通電処理の少なくとも一方において、通電保持時間が経過したときのモータ回転角の振幅が振幅判定閾値より大きい場合、通電時間を延長する請求項2または3に記載のモータ制御装置。 The motor control device according to claim 2 or 3, wherein the drive control unit extends the energization time in at least one of the first energization process and the third energization process if the amplitude of the motor rotation angle when the energization hold time has elapsed is greater than an amplitude determination threshold.
  5.  前記駆動制御部は、通電の延長開始からタイムアウト時間が経過した場合、次の通電処理に移行する請求項4に記載のモータ制御装置。 The motor control device according to claim 4, wherein the drive control unit transitions to the next current application process when a timeout time has elapsed since the start of the current application extension.
  6.  前記始動前準備処理における通電時間は、前記モータの温度に応じて可変である請求項1または2に記載のモータ制御装置。 The motor control device according to claim 1 or 2, wherein the power supply time during the pre-start preparation process is variable depending on the temperature of the motor.
PCT/JP2023/031704 2022-09-28 2023-08-31 Motor control device WO2024070464A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-155058 2022-09-28
JP2022155058A JP2024048903A (en) 2022-09-28 2022-09-28 Motor Control Device

Publications (1)

Publication Number Publication Date
WO2024070464A1 true WO2024070464A1 (en) 2024-04-04

Family

ID=90477224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031704 WO2024070464A1 (en) 2022-09-28 2023-08-31 Motor control device

Country Status (2)

Country Link
JP (1) JP2024048903A (en)
WO (1) WO2024070464A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016158413A (en) * 2015-02-25 2016-09-01 株式会社デンソー Motor control device
JP2022024256A (en) * 2020-07-13 2022-02-09 株式会社ジェイテクト Steering control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016158413A (en) * 2015-02-25 2016-09-01 株式会社デンソー Motor control device
JP2022024256A (en) * 2020-07-13 2022-02-09 株式会社ジェイテクト Steering control device

Also Published As

Publication number Publication date
JP2024048903A (en) 2024-04-09

Similar Documents

Publication Publication Date Title
JP4623150B2 (en) Motor control device
US10844952B2 (en) Shift range control apparatus
JP5831766B2 (en) Control device and shift-by-wire system using the same
JP6536465B2 (en) Shift range control device
JP2003509999A (en) Method and apparatus for reliably generating index pulses for an electric power steering system
US8421396B2 (en) Motor controlling device
JP2005020880A (en) Drive unit for stepper motor
WO2019088244A1 (en) Shift range control device
CN111512074B (en) Shift gear control device
WO2024070464A1 (en) Motor control device
JP6547663B2 (en) Control device
JP5605254B2 (en) Motor control device
JP2024048927A (en) Motor Control Device
JP2024048947A (en) Motor Control Device
US20220360207A1 (en) Motor control device
CN112823472B (en) Gear shifting control device
WO2020045146A1 (en) Shift range control device
JP2003158894A (en) Initialization driver
WO2024080244A1 (en) Motor control device
JP3803052B2 (en) Initialization drive
JP3849629B2 (en) Motor control device
JP7287330B2 (en) motor controller
JP2005241526A (en) Indicating instrument
JP2012249497A (en) Motor controller and motor controlling method
CN114365415A (en) Motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871704

Country of ref document: EP

Kind code of ref document: A1