WO2024070149A1 - Fluid pressure equipment and fluid pressure system - Google Patents

Fluid pressure equipment and fluid pressure system Download PDF

Info

Publication number
WO2024070149A1
WO2024070149A1 PCT/JP2023/026371 JP2023026371W WO2024070149A1 WO 2024070149 A1 WO2024070149 A1 WO 2024070149A1 JP 2023026371 W JP2023026371 W JP 2023026371W WO 2024070149 A1 WO2024070149 A1 WO 2024070149A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
pressure
pump
tank
housing
Prior art date
Application number
PCT/JP2023/026371
Other languages
French (fr)
Japanese (ja)
Inventor
堅亮 安達
Original Assignee
カヤバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ株式会社 filed Critical カヤバ株式会社
Publication of WO2024070149A1 publication Critical patent/WO2024070149A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • F15B21/0427Heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/045Compensating for variations in viscosity or temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves

Definitions

  • the present invention relates to fluid pressure equipment and fluid pressure systems.
  • JP1993-187411A discloses a hydraulic drive device for a hydraulic work machine that includes a flow control means for controlling the discharge flow rate of a variable displacement hydraulic pump, a differential pressure detection means for detecting the differential pressure between the discharge pressure of the variable displacement hydraulic pump and the load pressure of the actuator, a target differential pressure setting means for setting a target value of the differential pressure between the discharge pressure of the hydraulic pump and the load pressure of the actuator as a target differential pressure, and a control means for outputting a drive signal to the flow control means in response to a signal output from the differential pressure detection means so that the differential pressure between the discharge pressure of the variable displacement hydraulic pump and the load pressure of the actuator coincides with the target differential pressure.
  • the load pressure of the actuator is guided to a differential pressure detection means as a signal pressure, and the pump's discharge capacity is controlled based on the signal pressure and the pump's discharge pressure as its own pressure.
  • the signal pressure passage that guides the signal pressure only needs to transmit pressure as a signal, so the flow rate of the working fluid in the signal pressure passage is kept low compared to the pump passage that guides the own pressure.
  • the working fluid is sometimes warmed by warming up the pump to ensure operational responsiveness.
  • the signal pressure passage is not configured to actively generate a flow of working fluid, so it is difficult to sufficiently warm the working fluid in the signal pressure passage even when warming up the pump. This creates a difference in responsiveness between the self-pressure and the signal pressure, which may result in a decrease in the responsiveness of the pump's capacity control.
  • the present invention aims to provide a fluid pressure device that improves the responsiveness of pump capacity control.
  • a fluid pressure device has a housing in which a signal pressure passage is provided to guide a signal pressure to a variable displacement pump whose discharge volume is controlled according to the pump's own pressure and a signal pressure supplied to it, and the housing is further provided with a tank passage communicating with a tank that stores a working fluid, a pump passage that guides the working fluid sucked in by the pump from the tank and discharged, and a communication passage with both ends communicating with the tank, and at least a portion of the communication passage is adjacent to the signal pressure passage, separated only by the wall of the housing, without any other passage for guiding the working fluid therebetween.
  • FIG. 1 is a hydraulic circuit diagram of a fluid pressure system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a configuration of a valve device according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2, showing a mating surface of one valve block relative to another valve block.
  • the fluid pressure device according to an embodiment of the present invention will be described with reference to the drawings.
  • the fluid pressure device will be described as a valve device 100 that controls communication between a pump P and a tank T with a hydraulic cylinder 1 serving as a fluid pressure actuator.
  • the valve device 100 switches between supplying and discharging hydraulic oil (working fluid) to the hydraulic cylinder 1, and controls the operation of the hydraulic cylinder 1.
  • working fluid working fluid
  • an example is described in which hydraulic oil is used as the working fluid, but other fluids such as hydraulic water may also be used as the working fluid.
  • valve device 100 we will explain the valve device 100 and the fluid pressure system 1000 that includes the valve device 100.
  • the fluid pressure system 1000 includes a hydraulic cylinder 1 that operates by supplying and discharging hydraulic oil as a working fluid, a tank T that stores the hydraulic oil, a variable displacement pump P that draws hydraulic oil from the tank T, pressurizes it, and discharges it, a control mechanism 110 that controls the discharge capacity of the pump P, and a valve device 100 that controls the flow of hydraulic oil supplied to and discharged from the hydraulic cylinder 1.
  • the hydraulic cylinder 1 is a double-acting cylinder having a piston 4 that divides the inside of the cylinder tube 2 into a rod side chamber 5 as a first fluid pressure chamber and a bottom side chamber 6 as a second fluid pressure chamber.
  • a piston rod 3 is connected to the piston 4.
  • a load (not shown) to be driven is connected to the tip of the piston rod 3.
  • the hydraulic oil is supplied to and discharged from the rod side chamber 5 of the hydraulic cylinder 1 through the rod side passage 13.
  • the hydraulic oil is supplied to and discharged from the bottom side chamber 6 of the hydraulic cylinder 1 through the bottom side passage 14.
  • the hydraulic cylinder 1 extends when hydraulic oil is supplied to the bottom side chamber 6 and discharged from the rod side chamber 5. Conversely, the hydraulic cylinder 1 contracts when hydraulic oil is supplied to the rod side chamber 5 and discharged from the bottom side chamber 6.
  • Pump P is a variable displacement piston pump whose discharge capacity changes according to the tilt angle of the swash plate (not shown). Pump P may be of other types, such as a variable displacement vane pump.
  • the pump P has a discharge capacity controlled by a control mechanism 110 based on the differential pressure between the self-pressure Pps, which is the pressure of the hydraulic oil discharged by the pump itself, and the load pressure Pls of the hydraulic cylinder 1, which serves as a signal pressure.
  • the control mechanism 110 has a regulator 111 to which the self-pressure Pps and the load pressure Pls are respectively introduced and which generates a control pressure Pc according to the differential pressure between the self-pressure Pps and the load pressure Pls, and a control actuator 112 which drives the swash plate of the pump P according to the control pressure Pc introduced by the regulator 111 to control the discharge capacity.
  • the control actuator 112 is, for example, a single-acting hydraulic cylinder which expands and contracts according to the supplied control pressure Pc.
  • the control actuator 112 is driven by the control pressure Pc based on the differential pressure between the self-pressure Pps and the load pressure Pls, so that the discharge capacity of the pump P is controlled so that the differential pressure between the self-pressure Pps and the load pressure Pls is constant.
  • the valve device 100 includes a control valve 20 that controls the flow of hydraulic oil supplied to and discharged from the hydraulic cylinder 1, a pump passage 11 that guides the hydraulic oil discharged from the pump P, a tank passage 12 that guides the hydraulic oil discharged from the pump P and returned to the tank T, a rod side passage 13 that communicates with the rod side chamber 5, a bottom side passage 14 that communicates with the bottom side chamber 6, a load pressure passage 15 that serves as a signal pressure passage that guides the load pressure Pls as a signal pressure, a communication passage 17 that communicates with the tank passage 12 at both ends, a relief valve 30 that opens when the pump P's own pressure Pps (discharge pressure) reaches a predetermined relief pressure to return the hydraulic oil discharged from the pump P to the tank T, and an unloading valve 40 that releases the pump P's own pressure Pps (discharge pressure) to the tank T depending on the pressure difference between the pump P's own pressure Pps and the load pressure Pls.
  • a control valve 20 controls the flow of hydraulic
  • the control valve 20 is connected to the pump passage 11, the tank passage 12, the rod side passage 13, the bottom side passage 14, and the load pressure passage 15.
  • the control valve 20 is a spool valve whose position is changed by the movement of a spool (not shown) in response to the pilot pressure supplied to the pilot chambers 21a and 21b and the biasing force of springs 22a and 22b as biasing members.
  • the control valve 20 has a contraction position 20A in which the hydraulic cylinder 1 is contracted, an extension position 20B in which the hydraulic cylinder 1 is extended, and a neutral position 20C in which no hydraulic oil is supplied to or discharged from the hydraulic cylinder 1.
  • the control valve 20 When pilot pressure is supplied to one of the pilot chambers 21a, the control valve 20 is in the contracted position 20A (the state shown in FIG. 1). In the contracted position 20A, the pump passage 11 communicates with the rod side passage 13 and the load pressure passage 15 through the throttle 23, and the bottom side passage 14 communicates with the tank passage 12. As a result, the hydraulic cylinder 1 contracts as hydraulic oil is supplied to the rod side chamber 5 and discharged from the bottom side chamber 6.
  • the control valve 20 When pilot pressure is supplied to the other pilot chamber 21b, the control valve 20 is in the extension position 20B. In the extension position 20B, the pump passage 11 communicates with the bottom side passage 14 and the load pressure passage 15 through the throttle 23, and the rod side passage 13 communicates with the tank passage 12. As a result, the hydraulic cylinder 1 is extended by supplying hydraulic oil to the bottom side chamber 6 and discharging hydraulic oil from the rod side chamber 5.
  • control valve 20 When pilot pressure is not supplied to either pilot chamber 21a or 21b, the biasing force of springs 22a and 22b causes control valve 20 to be in neutral position 20C. In neutral position 20C, pump passage 11 and tank passage 12 are blocked from communication with rod side passage 13 and bottom side passage 14, respectively, and pump passage 11 and load pressure passage 15 are connected to tank passage 12.
  • the load pressure passage 15 is guided to a pressure equal to that of the hydraulic oil discharged from the pump P and supplied to the hydraulic cylinder 1 through a throttle 23 provided in the control valve 20.
  • the pressure of the hydraulic oil in the load pressure passage 15 is guided to the regulator 111 as a load pressure Pls.
  • the pressure of the pump passage 11 discharged from the pump P and guided to the control valve 20 is guided to the regulator 111 as a self pressure Pps.
  • the load pressure passage 15 is connected to the tank passage 12 through a throttle 50.
  • the communication passage 17 has both ends connected to the tank passage 12, and the hydraulic oil in the tank passage 12 is guided through it. No other passages are connected to the communication passage 17. Furthermore, no hydraulic equipment such as valves is provided in the communication passage 17. In other words, the communication passage 17 only guides the hydraulic oil in the tank passage 12, and does not affect the function of the valve device 100 to control the flow of hydraulic oil. It is simply a passage that branches off from the tank passage 12, merges with the tank passage 12, and bypasses the tank passage 12.
  • the relief valve 30 is provided in the relief passage 18 that connects the pump passage 11 and the tank passage 12.
  • the relief valve 30 opens when the pressure in the pump passage 11 reaches a predetermined relief pressure, allowing the hydraulic oil discharged from the pump P to escape to the tank T.
  • the unloading valve 40 is provided in the unloading passage 19 that communicates with the pump passage 11 and the tank passage 12.
  • the unloading valve 40 opens when the pressure difference between the pump P's own pressure Pps and the load pressure Pls reaches a predetermined valve opening pressure, and releases the hydraulic oil discharged from the pump P to the tank T.
  • valve device 100 the valve device 100 and the communication passage 17 will be described with reference to Figures 2 to 4.
  • the valve device 100 is made up of multiple valve blocks 101 (five valve blocks in this embodiment) that are connected in one predetermined direction (the up-down direction in FIG. 2).
  • Each valve block 101 has an independent housing 10, and the housings 10 are connected by means of bolts (not shown) or the like to form an integrated structure.
  • the communication passage 17 is provided in one of the valve blocks 101, the valve block 101a, which is sandwiched between a pair of valve blocks 101b, 101c.
  • the valve block 101a in which the communication passage 17 is provided is connected to the other valve blocks 101b, 101c on both sides in the connection direction of the valve block 101.
  • housing 10 refers to the housing 10 in the valve block 101a in which the communication passage 17 is provided.
  • the housing 10 accommodates a pair of unloading valves 40.
  • One of the pair of unloading valves 40 is an unloading valve 40 in a circuit system other than the circuit system shown in FIG. 1, which is provided in the fluid pressure system 1000. Since the pair of unloading valves 40 have the same configuration, the configuration of one of the unloading valves 40 will be described below as an example, and the description of the other unloading valve 40 will be omitted as appropriate.
  • the housing 10 is provided with a bottomed accommodation hole 40a that accommodates the spool 41 of the unloading valve 40, a pump passage 11 that opens into the accommodation hole 40a, a tank passage 12 that opens into the accommodation hole 40a, and a load pressure passage 15 that opens into the accommodation hole 40a.
  • the tank passage 12 has a first tank passage 12a that communicates with each of the accommodation holes 40a of the pair of unloading valves 40, a second tank passage 12b that communicates with the first tank passage 12a and extends in the connection direction of the valve block 101 (perpendicular to the paper surface in FIG. 3), and recesses 10a (see FIG. 4) provided in each of the two mating surfaces 10b, 10c of the two other adjacent valve blocks 101b, 101c.
  • the second tank passage 12b communicates with the recesses 10a of the two mating surfaces 10b, 10c.
  • the recesses 10a open to the mating surfaces 10b, 10c.
  • the tank passage 12 communicates with the tank passage 12 formed in the other valve block 101 through the recesses 10a of the mating surfaces 10b, 10c.
  • the mating surfaces 10b, 10c of the two adjacent valve blocks 101b, 101c have the same configuration, so the mating surface 10c and recess 10a for the valve block 101c are not shown.
  • the load pressure passage 15 has a first load pressure passage 15a that is arranged approximately perpendicular to the central axis of the accommodation hole 40a (spool 41) and opens into the accommodation hole 40a, and a second load pressure passage 15b that is arranged along the central axis of the accommodation hole 40a and communicates with the first load pressure passage 15a.
  • the first load pressure passage 15a and the second load pressure passage 15b are each a circular hole with a circular cross section.
  • the load pressure passage 15b that opens into the accommodation hole 40a of the other unloading valve 40 is arranged in a cross section different from the cross section shown in FIG. 3.
  • the other load pressure passage 15b extends perpendicular to the paper from a cross section different from FIG. 3 to the cross section shown in FIG. 3, and opens into the end face of the housing 10 in the same cross section as the one load pressure passage 15a (cross section shown in FIG. 3).
  • the parts arranged in different cross sections are shown by dashed lines.
  • the unloading valve 40 has a spool 41 that is movably inserted into the receiving hole 40a, an unloading spring 45 that acts as a biasing member that biases the spool 41 toward the bottom of the receiving hole 40a, and a cap 46 that closes the receiving hole 40a.
  • a self-pressure chamber 47 is formed to which the self-pressure Pps is introduced.
  • a load pressure chamber 48 is formed to which the load pressure Pls is introduced.
  • the unload spring 45 is provided so as to resist the biasing force due to the pressure of the self-pressure chamber 47.
  • the spool 41 moves within the accommodation hole 40a so that the thrust due to the pressure of the load pressure chamber 48, the thrust due to the pressure of the self-pressure chamber 47, and the biasing force of the unload spring 45 are balanced.
  • the spool 41 is formed with a first pressure introduction passage 42a that is formed along the axial direction of the spool 41 and is constantly in communication with the pressure chamber 47, and a second pressure introduction passage 42b that opens onto the outer peripheral surface of the spool 41 and is constantly in communication with the first pressure introduction passage 42a.
  • the second pressure introduction passage 42b is formed so as to be constantly in communication with the pump passage 11 that opens into the housing hole 40a, regardless of the position of the spool 41. Therefore, the pressure chamber 47 is constantly supplied with the pressure Pps from the pump passage 11.
  • the spool 41 is also formed with a first load pressure introduction passage 43a that is formed along the axial direction of the spool 41 and is constantly in communication with the load pressure chamber 48, and a second load pressure introduction passage 43b that opens onto the outer peripheral surface of the spool 41 and is in communication with the first load pressure introduction passage 43a.
  • the second load pressure introduction passage 43b is formed so as to be constantly in communication with the load pressure passage 15 that opens into the accommodation hole 40a, regardless of the position of the spool 41. Therefore, the load pressure Pls is constantly introduced from the load pressure passage 15 to the load pressure chamber 48.
  • a communication groove 44 is formed in an annular shape on the outer peripheral surface of the spool 41 to control the communication between the tank passage 12 and the pump passage 11 depending on the position of the spool 41.
  • the spool 41 abuts against the bottom of the accommodation hole 40a and the unloading valve 40 is in a closed state (the state shown in FIG. 3).
  • the unloading valve 40 is in a closed state, the communication between the pump passage 11 and the tank passage 12 through the accommodation hole 40a is blocked by the spool 41.
  • the housing 10 is also formed with a pair of communication passages 17a, 17b.
  • Each communication passage 17a, 17b is composed of only a single through hole that extends linearly along the connection direction of the valve block 101.
  • Each through hole is open to both mating surfaces 10b, 10c of the housing 10 with the other valve block 101 so as to communicate with the recess 10a. In this way, both ends of the communication passages 17a, 17b communicate with the tank passage 12 through the recess 10a.
  • One of the communication passages 17a is provided in the hydraulic circuit system shown in FIG. 1.
  • the other communication passage 17b is provided in another hydraulic circuit system in which the other unloading valve 40 is provided. Since the configurations of the pair of communication passages 17a, 17b are similar to each other, the following will provide a detailed explanation of the communication passage 17a in the hydraulic circuit system shown in FIG. 1, and will omit an explanation of the other communication passage 17b.
  • a part of the communication passage 17a is adjacent to the first load pressure passage 15a of the load pressure passage 15, separated only by the wall of the housing 10, without any other passages that guide the hydraulic oil.
  • the communication passage 17a when viewed in a plane parallel to the central axis of either the first load pressure passage 15a or the communication passage 17a (for example, as viewed in a plane parallel to the central axis of the first load pressure passage 15a, as viewed by arrow A in FIG. 3), in the portion where the first load pressure passage 15a and the communication passage 17a intersect (part B cross-hatched in FIG. 3), no passage or other hydraulic equipment is provided, and only the wall of the housing 10 is provided.
  • the imaginary line connecting the central axis of the first load pressure passage 15a and the central axis of the communication passage 17 at the shortest distance (in other words, the common perpendicular line between the central axes, line C in FIG. 3) does not intersect with other passages or hydraulic equipment, but only with the wall of the housing 10.
  • valve device 100 The effects of the valve device 100 are explained below.
  • the pump P can be warmed up by driving it with the control valve 20 in the neutral position 20C.
  • both ends of the communication passage 17a are connected to the tank passage 12, the temperature of the hydraulic oil in the communication passage 17a also increases.
  • the load pressure passage which guides the load pressure, which is a signal pressure, is configured to communicate with the tank passage through a throttle and is configured to relatively restrict the flow rate returned to the tank so that the pressure is less likely to drop.
  • the flow of hydraulic oil in the load pressure passage is relatively restricted compared to other passages such as the pump passage and tank passage. For this reason, hydraulic oil that has been warmed up during warm-up is less likely to be guided to the load pressure passage. If the temperature of the hydraulic oil in the load pressure passage is low and there is a temperature difference with the hydraulic oil in the pump passage (own pressure), the responsiveness of the pump capacity control may decrease and hunting may occur.
  • the communication passage 17a in which the hydraulic oil inside is warmed, is adjacent to the load pressure passage 15, separated only by the wall of the housing 10, with no other passages in between.
  • the temperature of the hydraulic oil inside the communication passage 17a is transmitted to the hydraulic oil in the load pressure passage 15 through the wall of the housing 10, and the hydraulic oil in the load pressure passage 15 is warmed. This suppresses the occurrence of a temperature difference between the hydraulic oil at the self-pressure Pps and the hydraulic oil at the load pressure Pls, improving the responsiveness of the capacity control of the pump P.
  • the portion of the communication passage 17a adjacent to the load pressure passage 15 may be formed within the range where durability can be ensured.
  • the portion of the communication passage 17a adjacent to the load pressure passage 15 may be separated from the load pressure passage 15 to an extent that the hydraulic oil in the load pressure passage 15 can be warmed.
  • the communication passage 17a simply bypasses the tank passage 12 and does not affect the function of the valve device 100.
  • the temperature of the hydraulic oil in the load pressure passage 15 can be increased without affecting the function of the valve device 100.
  • the communication passage 17a is composed of only a single linear through hole whose both ends open to the mating surfaces 10b and 10c of the valve block 101. This makes it easy to form the communication passage 17a.
  • the communication passage 17 is provided in the valve block 101a in which the unloading valve 40 is provided in the valve device 100 for controlling the communication of the hydraulic cylinder 1 to the pump P and the tank T.
  • the communication passage 17 may be provided in the control mechanism 110 that controls the discharge capacity of the pump P.
  • the communication passage 17 may be provided in the regulator 111 or the control actuator 112.
  • the housing of the control mechanism 110 (not shown) may be separate from the pump housing of the pump P or the housing 10 of the valve device 100, or may be integrated with it.
  • the fluid pressure device may be the control mechanism 110 (regulator 111 or control actuator 112) that controls the discharge capacity of the pump P.
  • control mechanism 110 may not include the regulator 111, and the pump P's own pressure Pps and the hydraulic cylinder 1's load pressure Pls may be directly introduced to the control actuator 112, with the control actuator 112 being directly driven by the differential pressure between the own pressure Pps and the load pressure Pls.
  • the communication passage 17 is a single through hole that opens into the mating surfaces 10b, 10c of the housing 10.
  • the communication passage 17 may be configured with multiple holes, or may be configured to communicate with the tank passage 12 at a point other than the recess 10a of the mating surfaces 10b, 10c, so long as it is configured to communicate with the tank passage 12.
  • the valve device 100 has the communication passage 17 provided in one valve block 101a with other valve blocks 101b and 101c on both sides in the connection direction.
  • the valve device 100 has three valve blocks 101: the valve block 101a in which the communication passage 17 is provided, and two valve blocks 101b and 101c adjacent to the valve block 101a on both sides in the connection direction.
  • these three valve blocks 101a, 101b, and 101c may be further connected to other valve blocks 101 (two in the above embodiment).
  • the communication passage 17 may be provided in the valve block 101 that is the end in the connection direction.
  • the communication passage 17 may be provided in a valve device 100 composed of two valve blocks 101 or a single valve block 101 (monoblock). In other words, the number of valve blocks 101 may be any number.
  • the fluid pressure system 1000 includes a variable displacement pump P and a valve device 100 as a fluid pressure device.
  • the valve device 100 includes a housing 10 in which a load pressure passage 15 is provided to guide the load pressure Pls to the variable displacement pump P, whose discharge capacity is controlled according to the self-pressure Pps discharged by the pump itself and the load pressure Pls supplied to it.
  • the housing 10 further includes a pump passage 11 that guides the hydraulic oil sucked and discharged by the pump P from the tank T, a tank passage 12 that returns the hydraulic oil discharged from the pump P to the tank T, and a communication passage 17 whose both ends communicate with the tank passage 12. At least a portion of the communication passage 17 is adjacent to the load pressure passage 15, separated only by the wall of the housing 10, without any other passage for guiding hydraulic oil therebetween.
  • the hydraulic oil that is sucked from the tank T, discharged from the pump P, and guided to the tank passage 12 is warmed by the warm-up operation.
  • the hydraulic fluid in the communication passage 17 that communicates with the tank passage 12 also becomes warmed hydraulic oil.
  • At least a portion of the communication passage 17 is adjacent to the load pressure passage 15 without any other passages in between, so that the heat of the hydraulic oil in the communication passage 17 is transferred to the load pressure passage 15 in the adjacent portion. This makes it possible to warm the hydraulic oil in the load pressure passage 15. Therefore, the responsiveness of the capacity control of the pump P can be improved.
  • the valve device 100 controls the communication between the pump P and the tank T and the hydraulic cylinder 1, and has three valve blocks 101 connected in a predetermined direction.
  • Each valve block 101 has an independent housing 10, and the communication passage 17 has through holes in one valve block 101a that open to the mating surfaces 10b and 10c of the housings 10 of the two adjacent valve blocks 101b and 101c.
  • the communication passage 17 can be easily formed by forming a through hole in the mating surfaces 10b, 10c of the adjacent valve blocks 101b, 101c.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Valve Housings (AREA)

Abstract

A valve device 100 comprises a housing 10 provided with a load pressure passage 15 for guiding a load pressure Pls to a variable displacement pump having a discharge capacity controlled in accordance with a self-pressure Pps that is discharged by itself and the supplied load pressure Pls. The housing 10 is further provided with a pump passage 11 for guiding a hydraulic oil that is sucked from a tank and discharged by the pump, a tank passage 12 for returning the hydraulic oil discharged from the pump to the tank, and a communication passage 17 with both ends communicating with the tank passage 12. At least a portion of the communication passage 17 is adjacent to the load pressure passage 15 while being spaced apart only by a wall of the housing 10, without another passage for guiding the hydraulic oil interposed therebetween.

Description

流体圧機器及び流体圧システムFluid pressure equipment and fluid pressure systems
 本発明は、流体圧機器及び流体圧システムに関するものである。 The present invention relates to fluid pressure equipment and fluid pressure systems.
 JP1993-187411Aには、可変容量油圧ポンプの吐出流量を制御する流量制御手段と、可変容量油圧ポンプの吐出圧力とアクチュエータの負荷圧力との差圧を検出する差圧検出手段と、油圧ポンプの吐出圧力とアクチュエータの負荷圧力との差圧の目標値を目標差圧として設定する目標差圧設定手段と、差圧検出手段から出力される信号に応じて可変容量油圧ポンプの吐出圧力とアクチュエータの負荷圧力との差圧が上記目標差圧に一致するように流量制御手段に駆動信号を出力する制御手段と、を備えた油圧作業機の油圧駆動装置が開示されている。 JP1993-187411A discloses a hydraulic drive device for a hydraulic work machine that includes a flow control means for controlling the discharge flow rate of a variable displacement hydraulic pump, a differential pressure detection means for detecting the differential pressure between the discharge pressure of the variable displacement hydraulic pump and the load pressure of the actuator, a target differential pressure setting means for setting a target value of the differential pressure between the discharge pressure of the hydraulic pump and the load pressure of the actuator as a target differential pressure, and a control means for outputting a drive signal to the flow control means in response to a signal output from the differential pressure detection means so that the differential pressure between the discharge pressure of the variable displacement hydraulic pump and the load pressure of the actuator coincides with the target differential pressure.
 JP1993-187411Aに記載される流体圧機器では、アクチュエータの負荷圧力が信号圧として差圧検出手段に導かれ、信号圧と自己圧としてのポンプの吐出圧力とに基づいてポンプの吐出容量が制御される。通常、信号圧を導く信号圧通路は、信号として圧力が伝達されればよいため、自己圧を導くポンプ通路と比較して信号圧通路における作動流体の流量は低く抑えられる。 In the fluid pressure device described in JP1993-187411A, the load pressure of the actuator is guided to a differential pressure detection means as a signal pressure, and the pump's discharge capacity is controlled based on the signal pressure and the pump's discharge pressure as its own pressure. Normally, the signal pressure passage that guides the signal pressure only needs to transmit pressure as a signal, so the flow rate of the working fluid in the signal pressure passage is kept low compared to the pump passage that guides the own pressure.
 一方、流体圧機器においては、動作の応答性を確保するために、ポンプを駆動した暖気運転によって作動流体を温めることがある。しかしながら、上述のように信号圧通路は積極的に作動流体の流れが生じるように構成されていないため、暖気運転を行っても信号圧通路の作動流体を充分に温めることは困難である。このため、自己圧と信号圧との応答性に差が生じ、その結果としてポンプの容量制御の応答性の低下をまねくおそれがある。 On the other hand, in fluid pressure equipment, the working fluid is sometimes warmed by warming up the pump to ensure operational responsiveness. However, as mentioned above, the signal pressure passage is not configured to actively generate a flow of working fluid, so it is difficult to sufficiently warm the working fluid in the signal pressure passage even when warming up the pump. This creates a difference in responsiveness between the self-pressure and the signal pressure, which may result in a decrease in the responsiveness of the pump's capacity control.
 本発明は、ポンプの容量制御の応答性を向上させる流体圧機器を提供することを目的とする。 The present invention aims to provide a fluid pressure device that improves the responsiveness of pump capacity control.
 本発明のある態様によれば、自らが吐出する自己圧と供給される信号圧とに応じて吐出容量が制御される可変容量型のポンプに対して信号圧を導く信号圧通路が設けられるハウジングを備えた流体圧機器であって、ハウジングには、作動流体を貯留するタンクに連通するタンク通路と、ポンプがタンクから吸い込んで吐出した作動流体を導くポンプ通路と、両端がタンクに連通する連通路と、がさらに設けられ、連通路の少なくとも一部は、信号圧通路に対して、作動流体を導く他の通路を間に挟まずにハウジングの壁部のみにより隔てられて隣接する。 According to one aspect of the present invention, a fluid pressure device has a housing in which a signal pressure passage is provided to guide a signal pressure to a variable displacement pump whose discharge volume is controlled according to the pump's own pressure and a signal pressure supplied to it, and the housing is further provided with a tank passage communicating with a tank that stores a working fluid, a pump passage that guides the working fluid sucked in by the pump from the tank and discharged, and a communication passage with both ends communicating with the tank, and at least a portion of the communication passage is adjacent to the signal pressure passage, separated only by the wall of the housing, without any other passage for guiding the working fluid therebetween.
図1は、本発明の実施形態に係る流体圧システムの油圧回路図である。FIG. 1 is a hydraulic circuit diagram of a fluid pressure system according to an embodiment of the present invention. 図2は、本発明の実施形態に係るバルブ装置の構成を示す概略図である。FIG. 2 is a schematic diagram showing a configuration of a valve device according to an embodiment of the present invention. 図3は、図2におけるIII-III線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 図4は、図2におけるIV-IV線に沿った断面図であり、他のバルブブロックに対する一つのバルブブロックの合わせ面を示す図である。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2, showing a mating surface of one valve block relative to another valve block.
 図面を参照して、本発明の実施形態に係る流体圧機器について説明する。以下では、流体圧機器が、流体圧アクチュエータとしての油圧シリンダ1に対するポンプP及びタンクTの連通を制御するバルブ装置100である場合を例に説明する。 The fluid pressure device according to an embodiment of the present invention will be described with reference to the drawings. In the following, the fluid pressure device will be described as a valve device 100 that controls communication between a pump P and a tank T with a hydraulic cylinder 1 serving as a fluid pressure actuator.
 バルブ装置100は、油圧シリンダ1に対する作動油(作動流体)の給排を切り換え、油圧シリンダ1の動作を制御するものである。本実施形態では、作動流体として作動油を用いる例について説明するが、作動水等の他の流体を作動流体として用いてもよい。 The valve device 100 switches between supplying and discharging hydraulic oil (working fluid) to the hydraulic cylinder 1, and controls the operation of the hydraulic cylinder 1. In this embodiment, an example is described in which hydraulic oil is used as the working fluid, but other fluids such as hydraulic water may also be used as the working fluid.
 まず、図1を参照して、バルブ装置100及びこれを備える流体圧システム1000について説明する。 First, referring to FIG. 1, we will explain the valve device 100 and the fluid pressure system 1000 that includes the valve device 100.
 流体圧システム1000は、作動流体としての作動油の給排によって作動する油圧シリンダ1と、作動油を貯留するタンクTと、タンクTから作動油を吸い込み加圧して吐出する可変容量型のポンプPと、ポンプPの吐出容量を制御する制御機構110と、油圧シリンダ1に給排される作動油の流れを制御するバルブ装置100と、を備える。 The fluid pressure system 1000 includes a hydraulic cylinder 1 that operates by supplying and discharging hydraulic oil as a working fluid, a tank T that stores the hydraulic oil, a variable displacement pump P that draws hydraulic oil from the tank T, pressurizes it, and discharges it, a control mechanism 110 that controls the discharge capacity of the pump P, and a valve device 100 that controls the flow of hydraulic oil supplied to and discharged from the hydraulic cylinder 1.
 油圧シリンダ1は、図1に示すように、シリンダチューブ2の内部を第一流体圧室としてのロッド側室5と第二流体圧室としてのボトム側室6とに区画するピストン4を有する複動形シリンダである。ピストン4にはピストンロッド3が連結される。ピストンロッド3の先端には、駆動対象である負荷(図示省略)が連結される。 As shown in FIG. 1, the hydraulic cylinder 1 is a double-acting cylinder having a piston 4 that divides the inside of the cylinder tube 2 into a rod side chamber 5 as a first fluid pressure chamber and a bottom side chamber 6 as a second fluid pressure chamber. A piston rod 3 is connected to the piston 4. A load (not shown) to be driven is connected to the tip of the piston rod 3.
 油圧シリンダ1のロッド側室5には、ロッド側通路13を通じて作動油が給排される。油圧シリンダ1のボトム側室6には、ボトム側通路14を通じて作動油が給排される。 The hydraulic oil is supplied to and discharged from the rod side chamber 5 of the hydraulic cylinder 1 through the rod side passage 13. The hydraulic oil is supplied to and discharged from the bottom side chamber 6 of the hydraulic cylinder 1 through the bottom side passage 14.
 ボトム側室6に作動油が供給されロッド側室5から作動油が排出されることにより、油圧シリンダ1は伸長作動する。反対に、ロッド側室5に作動油が供給されボトム側室6から作動油が排出されることにより、油圧シリンダ1は収縮作動する。 The hydraulic cylinder 1 extends when hydraulic oil is supplied to the bottom side chamber 6 and discharged from the rod side chamber 5. Conversely, the hydraulic cylinder 1 contracts when hydraulic oil is supplied to the rod side chamber 5 and discharged from the bottom side chamber 6.
 ポンプPは、斜板(図示省略)の傾転角に応じて吐出容量が変化する可変容量型のピストンポンプである。ポンプPは、例えば、可変容量型のベーンポンプなど、その他の形式であってもよい。 Pump P is a variable displacement piston pump whose discharge capacity changes according to the tilt angle of the swash plate (not shown). Pump P may be of other types, such as a variable displacement vane pump.
 ポンプPは、制御機構110により、自らが吐出する作動油の圧力である自己圧Ppsと信号圧としての油圧シリンダ1の負荷圧Plsとの差圧に基づいて吐出容量が制御される。具体的には、制御機構110は、自己圧Ppsと負荷圧Plsとがそれぞれ導かれ自己圧Ppsと負荷圧Plsとの差圧に応じて制御圧Pcを生成するレギュレータ111と、レギュレータ111から導かれる制御圧Pcに応じてポンプPの斜板を駆動して吐出容量を制御する制御アクチュエータ112と、を有する。制御アクチュエータ112は、例えば、供給される制御圧Pcに応じて伸縮作動する単動型の油圧シリンダである。自己圧Ppsと負荷圧Plsとの差圧に基づく制御圧Pcにより制御アクチュエータ112が駆動されることで、ポンプPは、自己圧Ppsと負荷圧Plsとの差圧が一定となるように吐出容量が制御される。 The pump P has a discharge capacity controlled by a control mechanism 110 based on the differential pressure between the self-pressure Pps, which is the pressure of the hydraulic oil discharged by the pump itself, and the load pressure Pls of the hydraulic cylinder 1, which serves as a signal pressure. Specifically, the control mechanism 110 has a regulator 111 to which the self-pressure Pps and the load pressure Pls are respectively introduced and which generates a control pressure Pc according to the differential pressure between the self-pressure Pps and the load pressure Pls, and a control actuator 112 which drives the swash plate of the pump P according to the control pressure Pc introduced by the regulator 111 to control the discharge capacity. The control actuator 112 is, for example, a single-acting hydraulic cylinder which expands and contracts according to the supplied control pressure Pc. The control actuator 112 is driven by the control pressure Pc based on the differential pressure between the self-pressure Pps and the load pressure Pls, so that the discharge capacity of the pump P is controlled so that the differential pressure between the self-pressure Pps and the load pressure Pls is constant.
 バルブ装置100は、油圧シリンダ1に給排される作動油の流れを制御する制御弁20と、ポンプPから吐出される作動油が導かれるポンプ通路11と、ポンプPから吐出されタンクTに還流される作動油を導くタンク通路12と、ロッド側室5に連通するロッド側通路13と、ボトム側室6に連通するボトム側通路14と、信号圧としての負荷圧Plsを導く信号圧通路としての負荷圧通路15と、両端がタンク通路12に連通する連通路17と、ポンプPの自己圧Pps(吐出圧)が所定のリリーフ圧に達すると開弁しポンプPから吐出される作動油をタンクTへ還流させるリリーフ弁30と、自己圧Ppsと負荷圧Plsとの差圧に応じてポンプPの自己圧Pps(吐出圧)をタンクTに逃がすアンロード弁40と、を備える。 The valve device 100 includes a control valve 20 that controls the flow of hydraulic oil supplied to and discharged from the hydraulic cylinder 1, a pump passage 11 that guides the hydraulic oil discharged from the pump P, a tank passage 12 that guides the hydraulic oil discharged from the pump P and returned to the tank T, a rod side passage 13 that communicates with the rod side chamber 5, a bottom side passage 14 that communicates with the bottom side chamber 6, a load pressure passage 15 that serves as a signal pressure passage that guides the load pressure Pls as a signal pressure, a communication passage 17 that communicates with the tank passage 12 at both ends, a relief valve 30 that opens when the pump P's own pressure Pps (discharge pressure) reaches a predetermined relief pressure to return the hydraulic oil discharged from the pump P to the tank T, and an unloading valve 40 that releases the pump P's own pressure Pps (discharge pressure) to the tank T depending on the pressure difference between the pump P's own pressure Pps and the load pressure Pls.
 制御弁20には、ポンプ通路11、タンク通路12、ロッド側通路13、ボトム側通路14、及び負荷圧通路15が接続される。 The control valve 20 is connected to the pump passage 11, the tank passage 12, the rod side passage 13, the bottom side passage 14, and the load pressure passage 15.
 制御弁20は、パイロット室21a,21bに供給されるパイロット圧と付勢部材としてのスプリング22a,22bの付勢力とに応じてスプール(図示省略)が移動することでポジションが切り換えられるスプール弁である。制御弁20は、油圧シリンダ1を収縮させる収縮ポジション20Aと、油圧シリンダ1を伸長させる伸長ポジション20Bと、油圧シリンダ1に対して作動油を給排しない中立ポジション20Cと、を有する。 The control valve 20 is a spool valve whose position is changed by the movement of a spool (not shown) in response to the pilot pressure supplied to the pilot chambers 21a and 21b and the biasing force of springs 22a and 22b as biasing members. The control valve 20 has a contraction position 20A in which the hydraulic cylinder 1 is contracted, an extension position 20B in which the hydraulic cylinder 1 is extended, and a neutral position 20C in which no hydraulic oil is supplied to or discharged from the hydraulic cylinder 1.
 一方のパイロット室21aにパイロット圧が供給されると、制御弁20は、収縮ポジション20Aとなる(図1に示す状態)。収縮ポジション20Aでは、ポンプ通路11が絞り23を通じてロッド側通路13及び負荷圧通路15に連通すると共に、ボトム側通路14がタンク通路12に連通する。これにより、油圧シリンダ1は、ロッド側室5に作動油が供給され、ボトム側室6から作動油が排出されて、収縮作動する。 When pilot pressure is supplied to one of the pilot chambers 21a, the control valve 20 is in the contracted position 20A (the state shown in FIG. 1). In the contracted position 20A, the pump passage 11 communicates with the rod side passage 13 and the load pressure passage 15 through the throttle 23, and the bottom side passage 14 communicates with the tank passage 12. As a result, the hydraulic cylinder 1 contracts as hydraulic oil is supplied to the rod side chamber 5 and discharged from the bottom side chamber 6.
 他方のパイロット室21bにパイロット圧が供給されると、制御弁20は、伸長ポジション20Bとなる。伸長ポジション20Bでは、ポンプ通路11が絞り23を通じてボトム側通路14及び負荷圧通路15に連通すると共に、ロッド側通路13がタンク通路12に連通する。これにより、油圧シリンダ1は、ボトム側室6に作動油が供給され、ロッド側室5から作動油が排出されて、伸長作動する。 When pilot pressure is supplied to the other pilot chamber 21b, the control valve 20 is in the extension position 20B. In the extension position 20B, the pump passage 11 communicates with the bottom side passage 14 and the load pressure passage 15 through the throttle 23, and the rod side passage 13 communicates with the tank passage 12. As a result, the hydraulic cylinder 1 is extended by supplying hydraulic oil to the bottom side chamber 6 and discharging hydraulic oil from the rod side chamber 5.
 パイロット室21a,21bのいずれにもパイロット圧が供給されない状態では、スプリング22a,22bの付勢力によって、制御弁20は、中立ポジション20Cとなる。中立ポジション20Cでは、ロッド側通路13及びボトム側通路14に対するポンプ通路11及びタンク通路12の連通がそれぞれ遮断され、ポンプ通路11及び負荷圧通路15がタンク通路12に連通される。 When pilot pressure is not supplied to either pilot chamber 21a or 21b, the biasing force of springs 22a and 22b causes control valve 20 to be in neutral position 20C. In neutral position 20C, pump passage 11 and tank passage 12 are blocked from communication with rod side passage 13 and bottom side passage 14, respectively, and pump passage 11 and load pressure passage 15 are connected to tank passage 12.
 負荷圧通路15には、ポンプPから吐出され制御弁20に設けられる絞り23を通過して油圧シリンダ1に供給される作動油と同圧が導かれる。負荷圧通路15内の作動油の圧力は、負荷圧Plsとしてレギュレータ111に導かれる。また、ポンプPから吐出され制御弁20に導かれるポンプ通路11の圧力は、自己圧Ppsとしてレギュレータ111に導かれる。また、負荷圧通路15は、絞り50を通じてタンク通路12に連通している。 The load pressure passage 15 is guided to a pressure equal to that of the hydraulic oil discharged from the pump P and supplied to the hydraulic cylinder 1 through a throttle 23 provided in the control valve 20. The pressure of the hydraulic oil in the load pressure passage 15 is guided to the regulator 111 as a load pressure Pls. In addition, the pressure of the pump passage 11 discharged from the pump P and guided to the control valve 20 is guided to the regulator 111 as a self pressure Pps. In addition, the load pressure passage 15 is connected to the tank passage 12 through a throttle 50.
 連通路17は、その両端がタンク通路12に連通するものであり、タンク通路12の作動油が導かれる。連通路17には、他の通路は接続されない。また、連通路17には、バルブ等の油圧機器も設けられない。つまり、連通路17は、タンク通路12の作動油が導かれるのみであって、作動油の流れを制御するというバルブ装置100の機能には影響せず、タンク通路12から分岐しタンク通路12に合流してタンク通路12をバイパスするだけの通路である。 The communication passage 17 has both ends connected to the tank passage 12, and the hydraulic oil in the tank passage 12 is guided through it. No other passages are connected to the communication passage 17. Furthermore, no hydraulic equipment such as valves is provided in the communication passage 17. In other words, the communication passage 17 only guides the hydraulic oil in the tank passage 12, and does not affect the function of the valve device 100 to control the flow of hydraulic oil. It is simply a passage that branches off from the tank passage 12, merges with the tank passage 12, and bypasses the tank passage 12.
 リリーフ弁30は、ポンプ通路11とタンク通路12とを連通するリリーフ通路18に設けられる。リリーフ弁30は、ポンプ通路11の圧力が所定のリリーフ圧に達すると開弁し、ポンプPから吐出された作動油をタンクTへと逃がす。 The relief valve 30 is provided in the relief passage 18 that connects the pump passage 11 and the tank passage 12. The relief valve 30 opens when the pressure in the pump passage 11 reaches a predetermined relief pressure, allowing the hydraulic oil discharged from the pump P to escape to the tank T.
 アンロード弁40は、ポンプ通路11とタンク通路12に連通するアンロード通路19に設けられる。アンロード弁40は、ポンプPの自己圧Ppsと負荷圧Plsとの差圧が所定の開弁圧に達すると開弁し、ポンプPから吐出された作動油をタンクTへと逃がす。 The unloading valve 40 is provided in the unloading passage 19 that communicates with the pump passage 11 and the tank passage 12. The unloading valve 40 opens when the pressure difference between the pump P's own pressure Pps and the load pressure Pls reaches a predetermined valve opening pressure, and releases the hydraulic oil discharged from the pump P to the tank T.
 次に、図2から図4を参照して、バルブ装置100及び連通路17の具体的構成について説明する。 Next, the specific configuration of the valve device 100 and the communication passage 17 will be described with reference to Figures 2 to 4.
 図2に示すように、バルブ装置100は、所定の一方向(図2中上下方向)に連結される複数のバルブブロック101(本実施形態では5つのバルブブロック)によって構成される。各バルブブロック101は、それぞれ独立したハウジング10を有し、ハウジング10がボルト(図示省略)等の手段によって連結されることで、一体的に構成される。 As shown in FIG. 2, the valve device 100 is made up of multiple valve blocks 101 (five valve blocks in this embodiment) that are connected in one predetermined direction (the up-down direction in FIG. 2). Each valve block 101 has an independent housing 10, and the housings 10 are connected by means of bolts (not shown) or the like to form an integrated structure.
 本実施形態では、連通路17は、バルブブロック101のうち、一対のバルブブロック101b,101cに挟まれた一つのバルブブロック101aに設けられる。言い換えると、連通路17が設けられるバルブブロック101aは、バルブブロック101の連結方向の両側において、他のバルブブロック101b,101cに連結される。以下では、特に断りがない場合には、「ハウジング10」とは、連通路17が設けられるバルブブロック101aにおけるハウジング10を指すものとする。 In this embodiment, the communication passage 17 is provided in one of the valve blocks 101, the valve block 101a, which is sandwiched between a pair of valve blocks 101b, 101c. In other words, the valve block 101a in which the communication passage 17 is provided is connected to the other valve blocks 101b, 101c on both sides in the connection direction of the valve block 101. In the following, unless otherwise specified, "housing 10" refers to the housing 10 in the valve block 101a in which the communication passage 17 is provided.
 図3に示すように、ハウジング10には、一対のアンロード弁40が収容される。一対のアンロード弁40のうちの一つは、流体圧システム1000が備える、図1に示す回路系統以外の他の回路系統におけるアンロード弁40である。一対のアンロード弁40は、互いに同様の構成を備えているため、以下では、一方のアンロード弁40の構成を例に説明し、他方のアンロード弁40については、説明を適宜省略する。 As shown in FIG. 3, the housing 10 accommodates a pair of unloading valves 40. One of the pair of unloading valves 40 is an unloading valve 40 in a circuit system other than the circuit system shown in FIG. 1, which is provided in the fluid pressure system 1000. Since the pair of unloading valves 40 have the same configuration, the configuration of one of the unloading valves 40 will be described below as an example, and the description of the other unloading valve 40 will be omitted as appropriate.
 ハウジング10には、アンロード弁40のスプール41を収容する有底の収容孔40aと、収容孔40aに開口するポンプ通路11と、収容孔40aに開口するタンク通路12と、収容孔40aに開口する負荷圧通路15と、が設けられる。 The housing 10 is provided with a bottomed accommodation hole 40a that accommodates the spool 41 of the unloading valve 40, a pump passage 11 that opens into the accommodation hole 40a, a tank passage 12 that opens into the accommodation hole 40a, and a load pressure passage 15 that opens into the accommodation hole 40a.
 タンク通路12は、一対のアンロード弁40のそれぞれの収容孔40aに連通する第一タンク通路12aと、第一タンク通路12aに連通しバルブブロック101の連結方向(図3における紙面垂直方向)に延びる第二タンク通路12bと、隣接する二つの他のバルブブロック101b,101cとの二つの合わせ面10b,10cのそれぞれに設けられる凹部10a(図4参照)と、を有する。第二タンク通路12bは、二つの合わせ面10b,10cのそれぞれの凹部10aに連通する。凹部10aは、合わせ面10b,10cに開口する。これにより、タンク通路12は、合わせ面10b,10cの凹部10aを通じて他のバルブブロック101に形成されるタンク通路12と連通する。なお、隣接する二つの他のバルブブロック101b,101cとの合わせ面10b,10cは、互いに同様の構成であるため、バルブブロック101cに対する合わせ面10c及び凹部10aの図示は省略する。 The tank passage 12 has a first tank passage 12a that communicates with each of the accommodation holes 40a of the pair of unloading valves 40, a second tank passage 12b that communicates with the first tank passage 12a and extends in the connection direction of the valve block 101 (perpendicular to the paper surface in FIG. 3), and recesses 10a (see FIG. 4) provided in each of the two mating surfaces 10b, 10c of the two other adjacent valve blocks 101b, 101c. The second tank passage 12b communicates with the recesses 10a of the two mating surfaces 10b, 10c. The recesses 10a open to the mating surfaces 10b, 10c. As a result, the tank passage 12 communicates with the tank passage 12 formed in the other valve block 101 through the recesses 10a of the mating surfaces 10b, 10c. In addition, the mating surfaces 10b, 10c of the two adjacent valve blocks 101b, 101c have the same configuration, so the mating surface 10c and recess 10a for the valve block 101c are not shown.
 負荷圧通路15は、収容孔40a(スプール41)の中心軸に対して略垂直に設けられ収容孔40aに開口する第一負荷圧通路15aと、収容孔40aの中心軸に沿って設けられ第一負荷圧通路15aに連通する第二負荷圧通路15bと、を有する。第一負荷圧通路15a及び第二負荷圧通路15bは、それぞれ断面が円形の円形穴である。なお、他方のアンロード弁40の収容孔40aに開口する負荷圧通路15bは、一部が図3で示す断面とは異なる断面上に設けられる。そして、他方の負荷圧通路15bは、図3とは異なる断面から図3で示す断面に向けて紙面垂直方向に延び、一方の負荷圧通路15aと同一断面(図3で示す断面)において、ハウジング10の端面に開口している。図3では、異なる断面上に設けられる部分を破線により図示している。 The load pressure passage 15 has a first load pressure passage 15a that is arranged approximately perpendicular to the central axis of the accommodation hole 40a (spool 41) and opens into the accommodation hole 40a, and a second load pressure passage 15b that is arranged along the central axis of the accommodation hole 40a and communicates with the first load pressure passage 15a. The first load pressure passage 15a and the second load pressure passage 15b are each a circular hole with a circular cross section. Note that the load pressure passage 15b that opens into the accommodation hole 40a of the other unloading valve 40 is arranged in a cross section different from the cross section shown in FIG. 3. The other load pressure passage 15b extends perpendicular to the paper from a cross section different from FIG. 3 to the cross section shown in FIG. 3, and opens into the end face of the housing 10 in the same cross section as the one load pressure passage 15a (cross section shown in FIG. 3). In FIG. 3, the parts arranged in different cross sections are shown by dashed lines.
 アンロード弁40は、収容孔40aに移動自在に挿入されるスプール41と、スプール41を収容孔40aの底部に向けて付勢する付勢部材としてのアンロードスプリング45と、収容孔40aを塞ぐキャップ46と、を有する。 The unloading valve 40 has a spool 41 that is movably inserted into the receiving hole 40a, an unloading spring 45 that acts as a biasing member that biases the spool 41 toward the bottom of the receiving hole 40a, and a cap 46 that closes the receiving hole 40a.
 スプール41の一端部と収容孔40aの底部との間には、自己圧Ppsが導かれる自己圧室47が形成される。スプール41の他端部とキャップ46との間には、負荷圧Plsが導かれる負荷圧室48が形成される。アンロードスプリング45は、自己圧室47の圧力による付勢力に抗するようにして設けられる。スプール41は、負荷圧室48の圧力による推力、自己圧室47の圧力による推力、及びアンロードスプリング45の付勢力が釣り合うようにして、収容孔40a内を移動する。 Between one end of the spool 41 and the bottom of the accommodation hole 40a, a self-pressure chamber 47 is formed to which the self-pressure Pps is introduced. Between the other end of the spool 41 and the cap 46, a load pressure chamber 48 is formed to which the load pressure Pls is introduced. The unload spring 45 is provided so as to resist the biasing force due to the pressure of the self-pressure chamber 47. The spool 41 moves within the accommodation hole 40a so that the thrust due to the pressure of the load pressure chamber 48, the thrust due to the pressure of the self-pressure chamber 47, and the biasing force of the unload spring 45 are balanced.
 スプール41には、スプール41の軸方向に沿って形成され自己圧室47に常時連通する第一自己圧導入通路42aと、スプール41の外周面に開口すると共に第一自己圧導入通路42aに連通する第二自己圧導入通路42bと、が形成される。第二自己圧導入通路42bは、収容孔40aに開口するポンプ通路11に対してスプール41の位置に関わらず常時連通するように形成される。よって、自己圧室47には、ポンプ通路11から常時自己圧Ppsが導かれる。 The spool 41 is formed with a first pressure introduction passage 42a that is formed along the axial direction of the spool 41 and is constantly in communication with the pressure chamber 47, and a second pressure introduction passage 42b that opens onto the outer peripheral surface of the spool 41 and is constantly in communication with the first pressure introduction passage 42a. The second pressure introduction passage 42b is formed so as to be constantly in communication with the pump passage 11 that opens into the housing hole 40a, regardless of the position of the spool 41. Therefore, the pressure chamber 47 is constantly supplied with the pressure Pps from the pump passage 11.
 また、スプール41には、スプール41の軸方向に沿って形成され負荷圧室48に常時連通する第一負荷圧導入通路43aと、スプール41の外周面に開口すると共に第一負荷圧導入通路43aに連通する第二負荷圧導入通路43bと、が形成される。第二負荷圧導入通路43bは、収容孔40aに開口する負荷圧通路15に対してスプール41の位置に関わらず常時連通するように形成される。よって、負荷圧室48には、負荷圧通路15から常時負荷圧Plsが導かれる。 The spool 41 is also formed with a first load pressure introduction passage 43a that is formed along the axial direction of the spool 41 and is constantly in communication with the load pressure chamber 48, and a second load pressure introduction passage 43b that opens onto the outer peripheral surface of the spool 41 and is in communication with the first load pressure introduction passage 43a. The second load pressure introduction passage 43b is formed so as to be constantly in communication with the load pressure passage 15 that opens into the accommodation hole 40a, regardless of the position of the spool 41. Therefore, the load pressure Pls is constantly introduced from the load pressure passage 15 to the load pressure chamber 48.
 また、スプール41の外周面には、スプール41の位置に応じてタンク通路12とポンプ通路11との連通を制御するために連通溝44が環状に形成される。 In addition, a communication groove 44 is formed in an annular shape on the outer peripheral surface of the spool 41 to control the communication between the tank passage 12 and the pump passage 11 depending on the position of the spool 41.
 自己圧室47に導かれる自己圧Ppsによる推力が、負荷圧室48に導かれる負荷圧Plsによる推力とアンロードスプリング45の付勢力との合力よりも小さい場合には、スプール41は、収容孔40aの底部に当接し、アンロード弁40は閉弁した状態となる(図3に示す状態)。アンロード弁40が閉弁した状態では、収容孔40aを通じたポンプ通路11とタンク通路12との連通は、スプール41によって遮断される。 When the thrust due to the self-pressure Pps introduced into the self-pressure chamber 47 is smaller than the resultant force of the thrust due to the load pressure Pls introduced into the load pressure chamber 48 and the biasing force of the unloading spring 45, the spool 41 abuts against the bottom of the accommodation hole 40a and the unloading valve 40 is in a closed state (the state shown in FIG. 3). When the unloading valve 40 is in a closed state, the communication between the pump passage 11 and the tank passage 12 through the accommodation hole 40a is blocked by the spool 41.
 自己圧Ppsが上昇し、自己圧Ppsによる推力が負荷圧Pls及びアンロードスプリング45による推力を上回ると、スプール41は、アンロードスプリング45の付勢力に抗して移動する。これにより、アンロード弁40が開弁して、ポンプ通路11とタンク通路12とがスプール41の連通溝44を通じて連通する。よって、ポンプ通路11の作動油がタンク通路12へと導かれ、これに伴い自己圧Ppsが低下する。自己圧Ppsの推力が負荷圧Pls及びアンロードスプリング45による推力を下回ると、アンロードスプリング45の付勢力によってアンロード弁40は閉弁する。 When the self-pressure Pps rises and the thrust due to the self-pressure Pps exceeds the thrust due to the load pressure Pls and the unloading spring 45, the spool 41 moves against the biasing force of the unloading spring 45. This opens the unloading valve 40, and the pump passage 11 and the tank passage 12 communicate through the communication groove 44 of the spool 41. As a result, the hydraulic oil in the pump passage 11 is directed to the tank passage 12, and the self-pressure Pps decreases. When the thrust of the self-pressure Pps falls below the thrust due to the load pressure Pls and the unloading spring 45, the biasing force of the unloading spring 45 closes the unloading valve 40.
 また、ハウジング10には、一対の連通路17a,17bが形成される。各連通路17a,17bは、バルブブロック101の連結方向に沿って直線状に延びる単一の貫通孔のみにより構成される。各貫通孔は、凹部10aに連通するようにして、ハウジング10における他のバルブブロック101との合わせ面10b,10cの両方に開口する。このようにして、連通路17a,17bは、両端が凹部10aを通じてタンク通路12に連通する。 The housing 10 is also formed with a pair of communication passages 17a, 17b. Each communication passage 17a, 17b is composed of only a single through hole that extends linearly along the connection direction of the valve block 101. Each through hole is open to both mating surfaces 10b, 10c of the housing 10 with the other valve block 101 so as to communicate with the recess 10a. In this way, both ends of the communication passages 17a, 17b communicate with the tank passage 12 through the recess 10a.
 一方の連通路17aは、図1に示す油圧回路系統に設けられるものである。他方の連通路17bは、他方のアンロード弁40が設けられる他の油圧回路系統に設けられるものである。一対の連通路17a,17bの構成は、互いに同様であるため、以下では、図1に示す油圧回路系統における連通路17aについて、詳細に説明し、他方の連通路17bについては説明を省略する。 One of the communication passages 17a is provided in the hydraulic circuit system shown in FIG. 1. The other communication passage 17b is provided in another hydraulic circuit system in which the other unloading valve 40 is provided. Since the configurations of the pair of communication passages 17a, 17b are similar to each other, the following will provide a detailed explanation of the communication passage 17a in the hydraulic circuit system shown in FIG. 1, and will omit an explanation of the other communication passage 17b.
 連通路17aの一部は、負荷圧通路15の第一負荷圧通路15aに対して、作動油を導く他の通路を挟まずにハウジング10の壁部のみにより隔てられて隣接する。具体的には、第一負荷圧通路15a及び連通路17aのいずれかの中心軸と平行なある平面で見たときに(例えば、第一負荷圧通路15aの中心軸に平行な平面視である図3中A矢視)、第一負荷圧通路15aと連通路17aとが交差する部分(図3中クロスハッチングが施されたB部)においては、通路や他の油圧機器が設けられず、ハウジング10の壁部だけが設けられる。さらに言えば、第一負荷圧通路15aの中心軸と連通路17の中心軸との最短距離を結ぶ仮想線(言い換えると、中心軸同士の共通垂線であり、図3中のC線)は、他の通路や油圧機器とは交差せず、ハウジング10の壁部だけと交差する。 A part of the communication passage 17a is adjacent to the first load pressure passage 15a of the load pressure passage 15, separated only by the wall of the housing 10, without any other passages that guide the hydraulic oil. Specifically, when viewed in a plane parallel to the central axis of either the first load pressure passage 15a or the communication passage 17a (for example, as viewed in a plane parallel to the central axis of the first load pressure passage 15a, as viewed by arrow A in FIG. 3), in the portion where the first load pressure passage 15a and the communication passage 17a intersect (part B cross-hatched in FIG. 3), no passage or other hydraulic equipment is provided, and only the wall of the housing 10 is provided. Furthermore, the imaginary line connecting the central axis of the first load pressure passage 15a and the central axis of the communication passage 17 at the shortest distance (in other words, the common perpendicular line between the central axes, line C in FIG. 3) does not intersect with other passages or hydraulic equipment, but only with the wall of the housing 10.
 以下、バルブ装置100の作用効果について説明する。 The effects of the valve device 100 are explained below.
 本実施形態では、制御弁20を中立ポジション20CとしてポンプPを駆動させることで、暖機運転を行うことができる。これにより、リリーフ弁30が開弁し、ポンプPから吐出される作動油は、ポンプ通路11、リリーフ弁30、タンク通路12を通じてタンクTに戻され、再びポンプPに吸い込まれるように循環し、その結果、循環する作動油(タンクT内の作動油)の温度が上昇する。また、連通路17aは、両端がタンク通路12に連通するため、連通路17a内の作動油の温度も上昇する。 In this embodiment, the pump P can be warmed up by driving it with the control valve 20 in the neutral position 20C. This opens the relief valve 30, and the hydraulic oil discharged from the pump P is returned to the tank T through the pump passage 11, the relief valve 30, and the tank passage 12, and circulates to be sucked back into the pump P, thereby increasing the temperature of the circulating hydraulic oil (hydraulic oil in the tank T). In addition, because both ends of the communication passage 17a are connected to the tank passage 12, the temperature of the hydraulic oil in the communication passage 17a also increases.
 ここで、負荷圧通路は、信号圧である負荷圧を導くものであるため、絞りを通じてタンク通路に連通するように構成され、タンクに戻される流量を比較的抑えて圧力が低下しにくいように構成される。つまり、負荷圧通路は、ポンプ通路やタンク通路といった他の通路と比較して、作動油の流れが比較的抑えられている。このため、暖機運転によって温められた作動油が負荷圧通路には導かれにくい。負荷圧通路内の作動油の温度が低くポンプ通路(自己圧)の作動油と温度差があると、ポンプの容量制御の応答性が低下しハンチングが生じるおそれがある。 Here, the load pressure passage, which guides the load pressure, which is a signal pressure, is configured to communicate with the tank passage through a throttle and is configured to relatively restrict the flow rate returned to the tank so that the pressure is less likely to drop. In other words, the flow of hydraulic oil in the load pressure passage is relatively restricted compared to other passages such as the pump passage and tank passage. For this reason, hydraulic oil that has been warmed up during warm-up is less likely to be guided to the load pressure passage. If the temperature of the hydraulic oil in the load pressure passage is low and there is a temperature difference with the hydraulic oil in the pump passage (own pressure), the responsiveness of the pump capacity control may decrease and hunting may occur.
 これに対し、本実施形態では、内部の作動油が暖められている連通路17aが、他の通路を挟まずハウジング10の壁部のみを隔てて負荷圧通路15に隣接する。連通路17aの内部の作動油の温度が、ハウジング10の壁部を通じて負荷圧通路15内の作動油に伝達され、負荷圧通路15内の作動油が暖められる。これにより、自己圧Ppsの作動油と負荷圧Plsの作動油との温度差の発生が抑制され、ポンプPの容量制御の応答性を向上させることができる。 In contrast, in this embodiment, the communication passage 17a, in which the hydraulic oil inside is warmed, is adjacent to the load pressure passage 15, separated only by the wall of the housing 10, with no other passages in between. The temperature of the hydraulic oil inside the communication passage 17a is transmitted to the hydraulic oil in the load pressure passage 15 through the wall of the housing 10, and the hydraulic oil in the load pressure passage 15 is warmed. This suppresses the occurrence of a temperature difference between the hydraulic oil at the self-pressure Pps and the hydraulic oil at the load pressure Pls, improving the responsiveness of the capacity control of the pump P.
 なお、連通路17aは、耐久性が確保できる範囲内において、負荷圧通路15に隣接する部分を負荷圧通路15に近づけて形成することが望ましい。しかしながら、連通路17aは、負荷圧通路15に隣接する部分が、負荷圧通路15の作動油を温めることができる程度に負荷圧通路15から離れるものでもよい。 It is desirable to form the portion of the communication passage 17a adjacent to the load pressure passage 15 close to the load pressure passage 15 within the range where durability can be ensured. However, the portion of the communication passage 17a adjacent to the load pressure passage 15 may be separated from the load pressure passage 15 to an extent that the hydraulic oil in the load pressure passage 15 can be warmed.
 また、本実施形態では、連通路17aは、単にタンク通路12をバイパスするものであり、バルブ装置100における機能に対して影響しない。つまり、本実施形態によれば、バルブ装置100の機能に影響を与えずに、負荷圧通路15の作動油の温度を上昇させることができる。 In addition, in this embodiment, the communication passage 17a simply bypasses the tank passage 12 and does not affect the function of the valve device 100. In other words, according to this embodiment, the temperature of the hydraulic oil in the load pressure passage 15 can be increased without affecting the function of the valve device 100.
 また、本実施形態では、連通路17aは、両端がバルブブロック101の合わせ面10b,10cにそれぞれ開口する直線状の、単一の貫通孔のみによって構成される。これにより、連通路17aを容易に形成することができる。 In addition, in this embodiment, the communication passage 17a is composed of only a single linear through hole whose both ends open to the mating surfaces 10b and 10c of the valve block 101. This makes it easy to form the communication passage 17a.
 次に、本実施形態の変形例について説明する。以下のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせたりすることも可能である。 Next, modified examples of this embodiment will be described. The following modified examples are also within the scope of the present invention, and it is possible to combine the configuration shown in the modified example with the configuration described in the above embodiment, or to combine the configurations described in the different modified examples below.
 上記実施形態では、連通路17は、ポンプP及びタンクTに対する油圧シリンダ1の連通を制御するためのバルブ装置100においてアンロード弁40が設けられるバルブブロック101aに設けられる。これに対し、連通路17は、ポンプPの吐出容量を制御する制御機構110に設けられてもよい。具体的には、連通路17は、レギュレータ111又は制御アクチュエータ112に設けられるものでもよい。この場合、制御機構110のハウジング(図示省略)は、ポンプPのポンプハウジング又はバルブ装置100のハウジング10と別体であってもよいし、一体であってもよい。つまり、流体圧機器は、ポンプPの吐出容量を制御する制御機構110(レギュレータ111又は制御アクチュエータ112)であってもよい。 In the above embodiment, the communication passage 17 is provided in the valve block 101a in which the unloading valve 40 is provided in the valve device 100 for controlling the communication of the hydraulic cylinder 1 to the pump P and the tank T. In contrast, the communication passage 17 may be provided in the control mechanism 110 that controls the discharge capacity of the pump P. Specifically, the communication passage 17 may be provided in the regulator 111 or the control actuator 112. In this case, the housing of the control mechanism 110 (not shown) may be separate from the pump housing of the pump P or the housing 10 of the valve device 100, or may be integrated with it. In other words, the fluid pressure device may be the control mechanism 110 (regulator 111 or control actuator 112) that controls the discharge capacity of the pump P.
 また、制御機構110は、レギュレータ111を含まず、制御アクチュエータ112にポンプPの自己圧Pps及び油圧シリンダ1の負荷圧Plsが直接導かれ、制御アクチュエータ112が自己圧Ppsと負荷圧Plsの差圧により直接駆動されるものでもよい。 In addition, the control mechanism 110 may not include the regulator 111, and the pump P's own pressure Pps and the hydraulic cylinder 1's load pressure Pls may be directly introduced to the control actuator 112, with the control actuator 112 being directly driven by the differential pressure between the own pressure Pps and the load pressure Pls.
 また、上記実施形態では、連通路17は、ハウジング10の合わせ面10b,10cに開口する単一の貫通孔である。これに対し、連通路17は、タンク通路12に連通するように構成される限り、複数の孔によって構成されてもよいし、合わせ面10b,10cの凹部10a以外においてタンク通路12に連通するように構成されてもよい。 In the above embodiment, the communication passage 17 is a single through hole that opens into the mating surfaces 10b, 10c of the housing 10. In contrast, the communication passage 17 may be configured with multiple holes, or may be configured to communicate with the tank passage 12 at a point other than the recess 10a of the mating surfaces 10b, 10c, so long as it is configured to communicate with the tank passage 12.
 また、上記実施形態では、バルブ装置100において、連通路17は、連結方向の両側に他のバルブブロック101b,101cが存在する一つのバルブブロック101aに設けられる。言い換えると、バルブ装置100は、連通路17が設けられるバルブブロック101aと、バルブブロック101aに対して連結方向の両側に隣接する二つのバルブブロック101b,101cと、の三つのバルブブロック101を有している。そして、これら三つのバルブブロック101a,101b,101cには、上記実施形態のように、さらに他のバルブブロック101(上記実施形態では二つ)が連結されていてもよい。これに対し、連通路17は、連結方向において端となるバルブブロック101に設けられてもよい。また、連通路17は、二つのバルブブロック101又は単一のバルブブロック101(モノブロック)によって構成されるバルブ装置100に設けられてもよい。つまり、バルブブロック101の数は、任意の数とすることができる。 In the above embodiment, the valve device 100 has the communication passage 17 provided in one valve block 101a with other valve blocks 101b and 101c on both sides in the connection direction. In other words, the valve device 100 has three valve blocks 101: the valve block 101a in which the communication passage 17 is provided, and two valve blocks 101b and 101c adjacent to the valve block 101a on both sides in the connection direction. And, as in the above embodiment, these three valve blocks 101a, 101b, and 101c may be further connected to other valve blocks 101 (two in the above embodiment). In contrast, the communication passage 17 may be provided in the valve block 101 that is the end in the connection direction. Also, the communication passage 17 may be provided in a valve device 100 composed of two valve blocks 101 or a single valve block 101 (monoblock). In other words, the number of valve blocks 101 may be any number.
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。 The configuration, operation, and effects of the embodiment of the present invention are summarized below.
 流体圧システム1000は、可変容量型のポンプPと、流体圧機器としてのバルブ装置100と、を備える。バルブ装置100は、自らが吐出する自己圧Ppsと供給される負荷圧Plsとに応じて吐出容量が制御される可変容量型のポンプPに対して負荷圧Plsを導く負荷圧通路15が設けられるハウジング10を備え、ハウジング10には、タンクTからポンプPが吸い込んで吐出した作動油を導くポンプ通路11と、ポンプPから吐出された作動油をタンクTに戻すタンク通路12と、両端がタンク通路12に連通する連通路17と、がさらに設けられ、連通路17の少なくとも一部は、負荷圧通路15に対して、作動油を導く他の通路を間に挟まずにハウジング10の壁部のみにより隔てられて隣接する。 The fluid pressure system 1000 includes a variable displacement pump P and a valve device 100 as a fluid pressure device. The valve device 100 includes a housing 10 in which a load pressure passage 15 is provided to guide the load pressure Pls to the variable displacement pump P, whose discharge capacity is controlled according to the self-pressure Pps discharged by the pump itself and the load pressure Pls supplied to it. The housing 10 further includes a pump passage 11 that guides the hydraulic oil sucked and discharged by the pump P from the tank T, a tank passage 12 that returns the hydraulic oil discharged from the pump P to the tank T, and a communication passage 17 whose both ends communicate with the tank passage 12. At least a portion of the communication passage 17 is adjacent to the load pressure passage 15, separated only by the wall of the housing 10, without any other passage for guiding hydraulic oil therebetween.
 この構成では、タンクTから吸い込まれポンプPから吐出されてタンク通路12に導かれる作動油が暖機運転によって温められる。このため、タンク通路12に連通する連通路17内の作動流体も温められた作動油となる。連通路17の少なくとも一部は、他の通路を間に介さずに負荷圧通路15と隣接するため、隣接する部分において連通路17内の作動油の熱が負荷圧通路15に伝達される。これにより、負荷圧通路15内の作動油を温めることができる。したがって、ポンプPの容量制御の応答性を向上させることができる。 In this configuration, the hydraulic oil that is sucked from the tank T, discharged from the pump P, and guided to the tank passage 12 is warmed by the warm-up operation. As a result, the hydraulic fluid in the communication passage 17 that communicates with the tank passage 12 also becomes warmed hydraulic oil. At least a portion of the communication passage 17 is adjacent to the load pressure passage 15 without any other passages in between, so that the heat of the hydraulic oil in the communication passage 17 is transferred to the load pressure passage 15 in the adjacent portion. This makes it possible to warm the hydraulic oil in the load pressure passage 15. Therefore, the responsiveness of the capacity control of the pump P can be improved.
 また、バルブ装置100は、油圧シリンダ1に対するポンプP及びタンクTの連通を制御するものであって、所定の一方向に連結される三つのバルブブロック101を有し、バルブブロック101は、それぞれ独立したハウジング10を有し、連通路17は、一つのバルブブロック101aにおいて、隣接する二つのバルブブロック101b,101cのハウジング10との合わせ面10b,10cのそれぞれに開口する貫通孔を有する。 The valve device 100 controls the communication between the pump P and the tank T and the hydraulic cylinder 1, and has three valve blocks 101 connected in a predetermined direction. Each valve block 101 has an independent housing 10, and the communication passage 17 has through holes in one valve block 101a that open to the mating surfaces 10b and 10c of the housings 10 of the two adjacent valve blocks 101b and 101c.
 この構成では、隣接するバルブブロック101b,101cとの合わせ面10b,10cに貫通孔を形成することで、連通路17を容易に形成することができる。 In this configuration, the communication passage 17 can be easily formed by forming a through hole in the mating surfaces 10b, 10c of the adjacent valve blocks 101b, 101c.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。  Although the embodiments of the present invention have been described above, the above embodiments merely show some of the application examples of the present invention, and are not intended to limit the technical scope of the present invention to the specific configurations of the above embodiments.
 本願は2022年9月30日に日本国特許庁に出願された特願2022-158429に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority to Patent Application No. 2022-158429, filed with the Japan Patent Office on September 30, 2022, the entire contents of which are incorporated herein by reference.

Claims (3)

  1.  自らが吐出する自己圧と供給される信号圧とに応じて吐出容量が制御される可変容量型のポンプに対して前記信号圧を導く信号圧通路が設けられるハウジングを備えた流体圧機器であって、
     前記ハウジングには、
     タンクから前記ポンプが吸い込んで吐出した作動流体を導くポンプ通路と、
     前記ポンプから吐出された作動流体を前記タンクに戻すタンク通路と、
     両端が前記タンク通路に連通する連通路と、がさらに設けられ、
     前記連通路の少なくとも一部は、前記信号圧通路に対して、作動流体を導く他の通路を間に挟まずに前記ハウジングの壁部のみにより隔てられて隣接する流体圧機器。
    A fluid pressure device including a housing in which a signal pressure passage is provided for introducing a signal pressure to a variable displacement pump whose discharge capacity is controlled in response to a self-pressure discharged by the pump itself and a signal pressure supplied thereto,
    The housing includes:
    a pump passage for guiding the working fluid sucked and discharged by the pump from a tank;
    a tank passage for returning the working fluid discharged from the pump to the tank;
    a communication passage, both ends of which communicate with the tank passage;
    At least a portion of the communication passage is adjacent to the signal pressure passage and separated only by a wall portion of the housing, with no other passage through which the working fluid is guided.
  2.  請求項1に記載の流体圧機器であって、
     前記流体圧機器は、流体圧アクチュエータに対する前記ポンプ及び前記タンクの連通を制御するバルブ装置であって、所定の一方向に連結される三つのバルブブロックを有し、
     前記バルブブロックは、それぞれ独立した前記ハウジングを有し、
     前記連通路は、一つの前記バルブブロックにおいて、隣接する二つの前記バルブブロックの前記ハウジングとの合わせ面のそれぞれに開口する貫通孔を有する流体圧機器。
    The fluid pressure device according to claim 1 ,
    the fluid pressure device is a valve device that controls communication between the pump and the tank and a fluid pressure actuator, and has three valve blocks that are connected in one predetermined direction;
    The valve blocks each have an independent housing,
    The communication passage has through holes in one of the valve blocks that open to mating surfaces of two adjacent valve blocks that are mated with the housing.
  3.  流体圧システムであって、
     自らが吐出する自己圧と供給される信号圧とに応じて吐出容量が制御される可変容量型のポンプと、
     前記ポンプに対して前記信号圧を導く信号圧通路が設けられるハウジングを備える流体圧機器と、を備え、
     前記流体圧機器の前記ハウジングには、
     タンクから前記ポンプが吸い込んで吐出した作動流体を導くポンプ通路と、
     前記ポンプから吐出された作動流体を前記タンクに戻すタンク通路と、
     両端が前記タンク通路に連通する連通路と、がさらに設けられ、
     前記連通路の少なくとも一部は、前記信号圧通路に対して、作動流体を導く他の通路を間に挟まずに前記ハウジングの壁部のみにより隔てられて隣接する流体圧システム。
    1. A fluid pressure system comprising:
    a variable displacement pump whose discharge volume is controlled in response to its own pressure and a signal pressure;
    a fluid pressure device including a housing provided with a signal pressure passage for directing the signal pressure to the pump;
    The housing of the fluid pressure device includes:
    a pump passage for guiding the working fluid sucked and discharged by the pump from a tank;
    a tank passage for returning the working fluid discharged from the pump to the tank;
    a communication passage, both ends of which communicate with the tank passage;
    A fluid pressure system in which at least a portion of the communication passage is adjacent to the signal pressure passage and separated only by a wall of the housing, with no other passage through which the working fluid is guided.
PCT/JP2023/026371 2022-09-30 2023-07-19 Fluid pressure equipment and fluid pressure system WO2024070149A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158429 2022-09-30
JP2022158429A JP2024052002A (en) 2022-09-30 2022-09-30 Fluid Pressure Equipment

Publications (1)

Publication Number Publication Date
WO2024070149A1 true WO2024070149A1 (en) 2024-04-04

Family

ID=90477100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026371 WO2024070149A1 (en) 2022-09-30 2023-07-19 Fluid pressure equipment and fluid pressure system

Country Status (2)

Country Link
JP (1) JP2024052002A (en)
WO (1) WO2024070149A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432247B2 (en) * 1986-09-08 1992-05-28
JPH05187411A (en) * 1992-01-16 1993-07-27 Hitachi Constr Mach Co Ltd Hydraulic transmission for hydraulic working machine
JPH075283Y2 (en) * 1987-11-26 1995-02-08 住友建機株式会社 Warm-up circuit of hydraulic working machine
US20190331144A1 (en) * 2016-12-21 2019-10-31 Doosan Infracore Co., Ltd. Construction machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432247B2 (en) * 1986-09-08 1992-05-28
JPH075283Y2 (en) * 1987-11-26 1995-02-08 住友建機株式会社 Warm-up circuit of hydraulic working machine
JPH05187411A (en) * 1992-01-16 1993-07-27 Hitachi Constr Mach Co Ltd Hydraulic transmission for hydraulic working machine
US20190331144A1 (en) * 2016-12-21 2019-10-31 Doosan Infracore Co., Ltd. Construction machine

Also Published As

Publication number Publication date
JP2024052002A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
KR100291438B1 (en) Hydrulic control system
JP4878922B2 (en) Mixer drum drive device
US3797245A (en) Dual range pressure dependent variable flow fluid delivery system
JP4847242B2 (en) Mixer drum drive device
KR101675659B1 (en) Pump control apparatus
JP4915161B2 (en) Multiple pump unit
JP4356941B2 (en) Hydraulic drive
US4611528A (en) Power transmission
US4248573A (en) Hydraulic control system for variable displacement pump
WO2024070149A1 (en) Fluid pressure equipment and fluid pressure system
US11879452B2 (en) Pump displacement control device having a feedback lever
JPH07101042B2 (en) Hydraulic control device
US11137081B2 (en) Control valve
CN109154290B (en) Pump device
EP3643931A1 (en) Displacement control device
CN108302222B (en) Valve assembly for dual circuit-summation (Summiruding)
JPS59115478A (en) Variable discharge quantity pump
US4942900A (en) Pressure control valve
US7121187B2 (en) Fluid powered control system with a load pressure feedback
US5265422A (en) Pilot-operated pressure override valve
EP0080135A1 (en) Hydraulic control system for a hydraulic actuator
JP4791823B2 (en) Hydraulic control valve used in load sensing type hydraulic control device
WO2018008209A1 (en) Swashplate type piston pump
JP4495973B2 (en) Valve assembly
JPH051702A (en) Pressure control valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871393

Country of ref document: EP

Kind code of ref document: A1