WO2024069801A1 - 制御装置、制御方法、水素製造システム及び電力・水素供給システム - Google Patents

制御装置、制御方法、水素製造システム及び電力・水素供給システム Download PDF

Info

Publication number
WO2024069801A1
WO2024069801A1 PCT/JP2022/036214 JP2022036214W WO2024069801A1 WO 2024069801 A1 WO2024069801 A1 WO 2024069801A1 JP 2022036214 W JP2022036214 W JP 2022036214W WO 2024069801 A1 WO2024069801 A1 WO 2024069801A1
Authority
WO
WIPO (PCT)
Prior art keywords
water electrolysis
electrolysis stack
stack
temperature
stacks
Prior art date
Application number
PCT/JP2022/036214
Other languages
English (en)
French (fr)
Inventor
敬司 渡邉
太 古田
正高 尾関
貴彰 水上
昌俊 杉政
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2022/036214 priority Critical patent/WO2024069801A1/ja
Publication of WO2024069801A1 publication Critical patent/WO2024069801A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • This disclosure relates to a control device, a control method, a hydrogen production system, and an electric power and hydrogen supply system.
  • Patent Document 1 discloses a water electrolysis device that includes a water electrolysis cell, a first storage tank for storing hydrogen generated in the water electrolysis cell, a second storage tank for storing hydrogen discharged from the first storage tank, and a flow rate adjustment unit that is disposed in a discharge flow path connecting the first storage tank and the second storage tank and adjusts the flow rate of hydrogen discharged from the first storage tank to the second storage tank, from the viewpoints that in a water electrolysis device that uses unstable renewable energy, the demand and supply of hydrogen do not necessarily match, when the storage tank for temporarily storing generated hydrogen becomes full, and the problem of reduced efficiency in the use of renewable energy.
  • Patent Document 1 also discloses predicting the amount of hydrogen generated in the water electrolysis cell, and predicting the amount of hydrogen generated in the water electrolysis cell by taking into account the operating state of the water electrolysis cell or the deterioration state of the water electrolysis cell.
  • the water electrolysis device described in Patent Document 1 predicts the amount of hydrogen generated in the water electrolysis cell, and controls the current taking into account the operating state of the water electrolysis cell or its deterioration state. However, this is done from the perspective of improving the efficiency of renewable energy usage, and does not reflect cases where the water electrolysis cell (water electrolysis stack) deteriorates and needs to be replaced, or the impact that the operating temperature of the water electrolysis stack, etc., has on performance.
  • the purpose of this disclosure is to prevent increases in life cycle costs in water electrolysis systems that contain a mixture of water electrolysis stacks with different performance.
  • the control device disclosed herein is a device that controls the operation of a water electrolysis stack, and includes a measurement unit that measures the performance of the water electrolysis stack, a prediction unit that predicts the amount of hydrogen produced by the water electrolysis stack and the degree of deterioration of the water electrolysis stack over a specified period of time using the performance measured by the measurement unit and the characteristics of the water electrolysis stack's susceptibility to deterioration, and an operating condition determination unit that determines the conditions for controlling the operation of the water electrolysis stack based on the prediction results of the prediction unit.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a multiple-parallel water electrolysis system.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a multiple serial water electrolysis system.
  • FIG. 1 is a partial configuration diagram showing a case where one of a plurality of water electrolysis stacks constituting a multi-serial water electrolysis system is a low-performance product. 1 is a graph showing current-voltage characteristics of a water electrolysis stack.
  • FIG. 1 is a schematic configuration diagram showing a multiple serial water electrolysis system according to a first embodiment.
  • FIG. 2 is a diagram showing processes and related items in a control unit of the multi-serial water electrolysis system of Example 1.
  • FIG. 1 is a diagram showing an outline of a simulation of a first embodiment.
  • FIG. 13 is a graph showing an example of output adjustment when a low-performance product is included in some of a plurality of water electrolysis stacks. 13 is a graph showing the results of a simulation in which all water electrolysis stacks are normal.
  • FIG. 2 is a schematic diagram showing collective temperature control of the multiple serial water electrolysis system according to the first embodiment. 1 is a graph showing an example of changes in stack voltage over time when the initially installed water electrolysis stack is a normal product and when the initially installed water electrolysis stack is a low-performance product.
  • FIG. 4 is a flowchart showing a control method for the water electrolysis system according to the first embodiment. 8 is a graph showing the results of a simulation under the conditions shown in FIG. 7 .
  • 8 is a graph showing the results of a simulation under the conditions shown in FIG. 7, in which the temperature coefficient related to deterioration is halved.
  • 8 is a graph showing the results of a simulation under the conditions shown in FIG. 7 , in which the number of water electrolysis stacks in series is tripled.
  • 8 is a graph showing the results of a simulation in which the performance degradation (voltage) of a low-performance product is doubled among the conditions shown in FIG. 7 .
  • 8 is a graph showing the results of a simulation under the conditions shown in FIG. 7 , in which the replacement cost of the water electrolysis stack is reduced to 1 ⁇ 5.
  • 8 is a graph showing the results of a simulation under the conditions shown in FIG. 7 in which ten water electrolysis stacks are connected in parallel.
  • 17 is a graph showing the results of a simulation in which the temperature coefficient of deterioration in the case of FIG. 16 is halved. 17 is a graph showing the results of a simulation in which the number of parallel water electrolysis stacks is tripled in the case of FIG. 16 . 17 is a graph showing the results of a simulation in which the performance degradation (voltage) of the low-performance product in the case of FIG. 16 is doubled. 17 is a graph showing the results of a simulation in which the replacement cost of the water electrolysis stack in the case of FIG. 16 is reduced to 1 ⁇ 5.
  • FIG. 13 is a diagram showing an example of performance measurement (internal resistance evaluation) of a water electrolysis stack. FIG.
  • FIG. 11 is a schematic configuration diagram showing a multi-serial water electrolysis system of Example 2.
  • FIG. 11 is a schematic diagram showing individual temperature control of a multiple serial water electrolysis system according to a second embodiment.
  • 24 is a graph showing the results of a simulation of a low-performance product when the temperature of a normal product is set to 50° C. in the individual temperature control of FIG. 23 .
  • 24 is a graph showing the results of a simulation of a low-performance product when the temperature of a normal product is set to 55° C. in the individual temperature control of FIG. 23 .
  • 24 is a graph showing the results of a simulation of a low-performance product when the temperature of a normal product is set to 57° C. in the individual temperature control of FIG. 23 .
  • 24 is a graph showing the results of a simulation of a low-performance product when the temperature of a normal product is set to 60° C. in the individual temperature control of FIG. 23 .
  • 24 is a graph showing the results of a simulation of a low-performance product when the temperature of a normal product is set to 65° C. in the individual temperature control of FIG. 23 .
  • 27 is a graph showing the results of a simulation in which the temperature coefficient relating to deterioration among the conditions shown in FIG. 7 is halved in the case of FIG. 26 (when the temperature of a normal product is 57° C.).
  • 27 is a graph showing the results of a simulation in which the number of water electrolysis stacks in series is tripled among the conditions shown in FIG. 7 in the case of FIG.
  • FIG. 11 is a schematic configuration diagram showing a multi-serial water electrolysis system of Example 3.
  • FIG. 11 is a schematic diagram showing a water electrolysis system according to a fourth embodiment.
  • FIG. 13 is a schematic configuration diagram showing a multi-serial water electrolysis system of Example 5.
  • Figure 1 is a schematic diagram showing an example of a multiple parallel water electrolysis system.
  • the multi-parallel water electrolysis system has a configuration in which multiple transformers 120a, 120b, 120c are connected to one transformer 110 that is connected to a high-voltage power system 100, and water electrolysis stacks 140a, 140b, 140c are connected to the transformers 120a, 120b, 120c via rectifiers 130a, 130b, 130c, respectively.
  • the equipment costs and large installation area of the numerous transformers and rectifiers become an issue.
  • Figure 2 is a schematic diagram showing an example of a multi-series water electrolysis system.
  • the multi-series water electrolysis system has a configuration in which multiple water electrolysis stacks 140a, 140b, 140c are connected in series to a single power converter 150 that is connected to the power grid 100. Therefore, the multi-series water electrolysis system can reduce the equipment costs and installation area compared to the multi-parallel water electrolysis system.
  • Figure 3 is a partial configuration diagram showing a case where one of the multiple water electrolysis stacks that make up a multi-series water electrolysis system is a low-performance product.
  • the water electrolysis stack 140b is a low-performance product.
  • the other water electrolysis stacks 140a, 140c, and 140d are normal products.
  • Figure 4 is a graph showing the current-voltage characteristics of a water electrolysis stack.
  • the horizontal axis represents current and the vertical axis represents voltage.
  • the solid curve represents a normal product, and the dashed curve represents a low-performance product.
  • the normal product has a lower voltage than the low-performance product when the current is the same value. This is because the low-performance product has a higher internal resistance than the normal product.
  • Parameters that can be controlled when operating a multi-serial water electrolysis system include temperature and pressure. For example, by increasing the temperature, it is possible to reduce the voltage, but operating the system under high temperature conditions can cause accelerated deterioration of the electrolyte membrane and electrode catalysts in the water electrolysis stack, which is a problem.
  • the water electrolysis system disclosed herein solves the above-mentioned problems.
  • the water electrolysis system is also referred to as a "hydrogen production system.”
  • FIG. 5 is a schematic diagram showing the multi-series water electrolysis system of Example 1.
  • the water electrolysis system 1000 (multiple series water electrolysis system) has a configuration in which multiple water electrolysis stacks 140a, 140b, 140c are connected in series to one power converter 150 connected to the power system 100. Water at a predetermined temperature is supplied to the water electrolysis stacks 140a, 140b, 140c from a temperature control unit 160. This water is used in the electrolysis reaction.
  • the water electrolysis system 1000 also includes a control unit 170 (control device).
  • the control unit 170 monitors and controls the water electrolysis stacks 140a, 140b, and 140c. Specifically, the control unit 170 measures the performance of the water electrolysis stacks 140a, 140b, and 140c, such as the temperature, current, and voltage. This is done by the measurement unit of the control unit 170. The control unit 170 then predicts the future hydrogen production volume and the progress of deterioration for each operating parameter (temperature, etc.) using the measurement data and the deterioration model of the water electrolysis stacks 140a, 140b, and 140c. This is done by the prediction unit of the control unit 170. Furthermore, the prediction unit estimates the future life cycle cost based on the obtained prediction data.
  • the control unit 170 selects the operating conditions (operation mode) that minimize the life cycle cost based on the estimated calculation results, and controls the operation of the water electrolysis stacks 140a, 140b, and 140c. This operation control is done by the operating condition determination unit of the control unit 170.
  • the operation control includes adjusting the operating current, operating temperature, etc. of the water electrolysis stacks 140a, 140b, and 140c. As a result of this adjustment, the output of the water electrolysis stacks 140a, 140b, and 140c can be controlled. Note that the deterioration model is a theoretical model.
  • control unit 170 It is desirable for the control unit 170 to have a database that accumulates measurement data, prediction data, deterioration models, etc. This database is also called the "model unit.”
  • the model unit may be installed on an external server or the like separate from the control unit 170, and may be in a state in which data can be sent and received from the control unit 170.
  • the above predictions and calculations may also be performed by a computing device (such as a server) provided outside the water electrolysis system 1000, and the results may be received by the control unit 170.
  • a computing device such as a server
  • a display unit in the power converter 150, the temperature control unit 160, the control unit 170, etc. so that the user, manager, worker, etc. of the water electrolysis system 1000 can check the status of the water electrolysis stacks 140a, 140b, 140c, etc., and operate them as necessary.
  • the status may also be displayed on a mobile device such as a smartphone or tablet of the user, manager, worker, etc., so that the user, manager, worker, etc. can operate them as necessary.
  • the life cycle cost includes revenue from hydrogen sales, stack replacement costs, etc.
  • FIG. 6 shows the processing in the control unit 170 and related items.
  • control unit 170 calculates the relationship between the operating mode and the increase in life cycle costs based on conditions such as technical specifications and economic efficiency items, and selects the optimal mode.
  • Figure 7 shows an overview of the simulation in this example.
  • the stack specifications are 10 water electrolysis stacks connected in series, with a current of 3 kA.
  • the voltage of a normal product is 220 V
  • the voltage of a low-performance product is 228 V.
  • the standard degradation rate of the water electrolysis stack is assumed to be 500 ⁇ V per hour, with a temperature coefficient of 10%/°C.
  • the replacement standard for the water electrolysis stack is set to 240 V, which is 20 V higher than the initial state for a normal product.
  • one of the ten water electrolysis stacks is a low-performance product.
  • the estimated costs are 100 million yen per stack replacement, the selling price of hydrogen is 30 yen per Nm3 , and the facility operating rate is 5,000 hours per year.
  • the plant was operated for 10 years with temperature as an operating parameter, and the loss due to the decrease in hydrogen production amount (L H ) and the loss due to replacement of the deteriorated stack (L R ) were estimated by simulation as evaluation indexes for the increase in life cycle cost.
  • Figure 8 is a graph showing an example of output adjustment for a group of water electrolysis stacks with 10 stacks connected in series under the above conditions.
  • the horizontal axis represents current and the vertical axis represents voltage.
  • the solid curve represents a normal product, the dashed curve represents an initial low-performance product, and the dashed curve represents a low-performance product after temperature adjustment.
  • the operating temperature of the low-performance product is increased to bring the voltage closer to that of the normal product
  • the output is adjusted by lowering the current of the series-connected water electrolysis stacks so that the voltage of the series-connected 10 water electrolysis stacks, including the low-performance product, becomes equal to the voltage of the series-connected 10 normal products (2200V).
  • Figure 9 is a graph showing the results of a simulation for this case.
  • the horizontal axis represents the operating temperature of the water electrolysis stack, and the vertical axis represents losses.
  • the circles represent (1) the 10-year cumulative hydrogen sales revenue, the squares represent (2) the water electrolysis stack replacement cost (stack replacement cost), and the circles represent the 10-year cumulative profit ((1) hydrogen sales revenue) - ((2) stack replacement cost)).
  • FIG. 10A is a schematic diagram showing the centralized temperature control of the multi-serial water electrolysis system of this embodiment.
  • This diagram shows a portion of a group of water electrolysis stacks connected in series.
  • the water electrolysis stack 140b is a low-performance product, and the water electrolysis stacks 140a, 140c, and 140d are normal products.
  • the water electrolysis stacks 140a, 140b, 140c, and 140d are subjected to centralized temperature control.
  • Figure 10B is a graph showing an example of the change in stack voltage over time when the water electrolysis stack initially installed is a normal product and when it is a low-performance product.
  • the horizontal axis represents years of use, and the vertical axis represents stack voltage.
  • the initial voltage values are as shown in Figure 7, with a normal product being 220V and a low-performance product being 228V.
  • the standard voltage for replacing the water electrolysis stack is 240V.
  • a circle indicates a normal product.
  • a ⁇ indicates a case where a low-performance product was initially used and then replaced with a normal product.
  • FIG. 10C is a flow diagram showing the control method for the water electrolysis system of this embodiment.
  • the measurement unit measures the performance of the water electrolysis stack (step S10).
  • the prediction unit predicts the hydrogen production volume of the water electrolysis stack and the degree of deterioration of the water electrolysis stack using the performance of the water electrolysis stack and the characteristics of the ease of deterioration of the water electrolysis stack (step S20).
  • the characteristics of the ease of deterioration include the standard deterioration rate, its temperature coefficient, etc.
  • the degree of deterioration is specifically the voltage of each water electrolysis stack, etc., as shown in FIG. 10B.
  • the operating condition determination unit controls the operation of the water electrolysis stack based on the prediction result of the prediction unit (step S30).
  • the operation of the water electrolysis stack is controlled by adjusting the temperature of the water supplied to the series-connected water electrolysis stacks and the current output by the power converter to the series-connected water electrolysis stacks.
  • the life cycle cost increase (L H +L R ) was calculated based on the optimal operation (57° C.) in the case where all the water electrolysis stacks are normal, as shown in FIG.
  • Fig. 11 is a graph showing the results of a simulation under the conditions shown in Fig. 7. That is, in a configuration in which 10 water electrolysis stacks are connected in series, one of the 10 stacks is a low-performance product.
  • the horizontal axis shows the operating temperature, and the vertical axis shows the loss.
  • the circle marks indicate LH
  • the square marks indicate LR
  • the black marks indicate LH + LR .
  • Figure 12 is a graph showing the results of a simulation in which the temperature coefficient for degradation (degradation temperature coefficient) is halved under the conditions shown in Figure 7.
  • the display format in the figure is the same as Figure 11, except for the scale of the vertical axis.
  • Figure 13 is a graph showing the results of a simulation in which the number of water electrolysis stacks in series is tripled among the conditions shown in Figure 7. In other words, one out of every 30 water electrolysis stacks is a low-performance product.
  • the display format in the figure is the same as that in Figure 11, except for the scale of the vertical axis.
  • Figure 14 is a graph showing the results of a simulation in which the performance degradation (voltage) of the low-performance product is doubled under the conditions shown in Figure 7.
  • the display format in the figure is the same as in Figure 11.
  • Figure 15 is a graph showing the results of a simulation under the conditions shown in Figure 7, where the cost of replacing the water electrolysis stack is reduced to 1/5.
  • the display format in the figure is the same as that in Figure 11, except for the scale of the vertical axis.
  • the margin (tolerance range) around the optimal point (optimum temperature) changes significantly when the prerequisites are changed.
  • Fig. 16 is a graph showing the results of a simulation under the conditions shown in Fig. 7. That is, in a configuration in which 10 water electrolysis stacks are connected in parallel, one of the 10 stacks is a low-performance stack.
  • the horizontal axis shows the operating temperature, and the vertical axis shows the loss.
  • the circle marks indicate LH
  • the square marks indicate LR
  • the black marks indicate LH + LR .
  • Figure 17 is a graph showing the results of a simulation in which the temperature coefficient for degradation (degradation temperature coefficient) in the case of Figure 16 is halved.
  • the display format in the figure is the same as Figure 16, except for the scale of the vertical axis.
  • Figure 18 is a graph showing the results of a simulation in which the number of parallel water electrolysis stacks in the case of Figure 16 is tripled. In other words, one out of every 30 water electrolysis stacks is a low-performance product.
  • the display format in the figure is the same as Figure 16, except for the scale of the vertical axis.
  • Figure 19 is a graph showing the results of a simulation in which the performance degradation (voltage) of the low-performance product in the case of Figure 16 is doubled.
  • the display format in the figure is the same as in Figure 16.
  • Figure 20 is a graph showing the results of a simulation in which the cost of replacing the water electrolysis stack in the case of Figure 16 is reduced to 1/5.
  • the display format in the figure is the same as Figure 16, except for the scale of the vertical axis.
  • the cost calculation results are the same for parallel connections as for series connections. Therefore, by using the operating conditions extracted in the same manner as in Example 1 for the parallel-connected water electrolysis stack group of this modified example, it is possible to suppress increases in the life cycle cost of the water electrolysis system.
  • control unit In a water electrolysis system, the control unit generally collects voltage and current data for each water electrolysis stack. Therefore, in a group of water electrolysis stacks connected in series, the current value flowing through each water electrolysis stack is the same. Then, by detecting the change in the voltage value in each water electrolysis stack relative to that current value, the performance of each water electrolysis stack can be measured.
  • evaluating the internal resistance of the stack would enable more accurate prediction of deterioration.
  • Figure 21 shows an example of performance measurement (internal resistance evaluation) of a water electrolysis stack.
  • the graph on the left side of this figure shows a method of setting aside (A) normal operation time in addition to (B) maintenance operation time.
  • the current-voltage characteristics obtained by performing a voltage sweep during maintenance operation are used to calculate the internal resistance of the water electrolysis stack from the slope of the curve in the region where the current and voltage have a linear relationship (ohmic region).
  • the AC impedance of the water electrolysis stack may be measured using a separately prepared electrochemical impedance evaluation device, and the internal resistance may be calculated.
  • Example 2 is a case where the temperature of the water electrolysis stack is individually controlled.
  • FIG. 22 is a schematic diagram showing the multi-series water electrolysis system of Example 2.
  • water at a predetermined temperature is supplied individually to each of the water electrolysis stacks 140a, 140b, and 140c from the temperature control unit 160, and the temperature of each is controlled.
  • the control unit 170 sets operating conditions, including appropriate operating temperatures, for each of the water electrolysis stacks 140a, 140b, and 140c in the operating condition determination unit, and issues commands to the temperature control unit 160.
  • the temperatures of the water electrolysis stacks 140a, 140b, and 140c are individually controlled.
  • FIG. 23 is a schematic diagram showing individual temperature control of the multi-serial water electrolysis system of Example 2.
  • This diagram shows a portion of a group of water electrolysis stacks connected in series.
  • the water electrolysis stack 140b is a low-performance product, and the water electrolysis stacks 140a, 140c, and 140d are normal products.
  • the water electrolysis stacks 140a, 140b, 140c, and 140d are individually temperature controlled. Specifically, the low-performance water electrolysis stack 140b is controlled to have a different temperature from the normal water electrolysis stacks 140a, 140c, and 140d.
  • Example 1 Compared to the collective control of Example 1, the individual control of this embodiment allows conditions for searching for the optimal operating mode to be selected from a wide range of parameters, and is therefore considered to have the effect of increasing the possibility of selecting desirable control conditions.
  • Figure 24 is a graph showing the results of a simulation of a low-performance product in the individual temperature control of Figure 23 when the temperature of the normal product is set to 50°C.
  • ten water electrolysis stacks are connected in series, and one of the ten stacks is a low-performance product.
  • the horizontal axis shows the operating temperature of the low-performance product, and the vertical axis shows the loss.
  • a circle indicates LH
  • a square indicates LR
  • a black circle indicates LH + LR .
  • L H + LR is small when the operating temperature of the low performance product is 56° C. or lower. It is also seen that L H + LR is smallest when the operating temperature of the low performance product is 53° C., and this temperature is the optimum temperature.
  • Figure 25 is a graph showing the results of a simulation of a low-performance product when the temperature of the normal product is set to 55°C in the individual temperature control of Figure 23.
  • the display format in the figure is the same as Figure 24, except for the scale of the vertical axis.
  • Figure 26 is a graph showing the results of a simulation of a low-performance product when the temperature of the normal product is set to 57°C in the individual temperature control of Figure 23.
  • the display format in the figure is the same as Figure 24, except for the scale of the vertical axis.
  • Figure 27 is a graph showing the results of a simulation of a low-performance product when the temperature of the normal product is set to 60°C in the individual temperature control of Figure 23.
  • the display format in the figure is the same as Figure 24, except for the scale of the vertical axis.
  • Figure 28 is a graph showing the results of a simulation of a low-performance product when the temperature of the normal product is set to 65°C in the individual temperature control of Figure 23.
  • the display format in the figure is the same as Figure 24, except for the scale of the vertical axis.
  • L H +L R can be minimized by operating the normal product at 57° C. and the low performance product at 53° C. Specifically, when the operating temperature of the normal product is 57° C. and the operating temperature of the low performance product is 53° C., the minimum value of L H +L R is 8.17 million yen (M ⁇ ). This is approximately 50% of the L H +L R of 16.2 million yen at an operating temperature of 54° C., which is the optimal condition of embodiment 1 (collectively controlled temperature). This shows that individual temperature control is more effective at suppressing the increase in life cycle costs (L H +L R ).
  • Figure 29 is a graph showing the results of a simulation in which the temperature coefficient for degradation, among the conditions shown in Figure 7, is halved in the case of Figure 26 (when the temperature of the normal product is 57°C).
  • the display format in the figure is the same as that of Figure 24, except for the scale of the vertical axis.
  • Figure 30 is a graph showing the results of a simulation in the case of Figure 26 (when the temperature of the normal product is 57°C) in which the number of water electrolysis stacks in series is tripled among the conditions shown in Figure 7. In other words, one out of every 30 water electrolysis stacks is a low-performance product.
  • the display format in the figure is the same as that of Figure 24, except for the scale of the vertical axis.
  • Figure 31 is a graph showing the results of a simulation in which the performance degradation (voltage) of the low-performance product is doubled under the conditions shown in Figure 7 in the case of Figure 26 (when the temperature of the normal product is 57°C).
  • the display format in the figure is the same as that of Figure 24, except for the scale of the vertical axis.
  • Figure 32 is a graph showing the results of a simulation in the case of Figure 26 (when the temperature of the normal product is 57°C) in which the cost of replacing the water electrolysis stack among the conditions shown in Figure 7 is set to 1/5.
  • the display format in the figure is the same as Figure 24, except for the scale of the vertical axis.
  • Example 3 is a case where the temperature distribution of the water electrolysis stack is reflected in future predictions.
  • temperature distribution occurs inside a water electrolysis stack during operation.
  • temperature distribution may occur between stacks due to the arrangement order of the water electrolysis stacks.
  • FIG. 33 is a schematic diagram showing the multi-series water electrolysis system of Example 3.
  • the water electrolysis system 1000 shown in this figure has a configuration for centralized temperature control, similar to that shown in FIG. 5 (Example 1).
  • the difference between FIG. 33 and FIG. 5 is that the temperature distribution is reflected in the deterioration prediction in the control unit 170.
  • the maximum temperature Tmax and the minimum temperature Tmin , or the average temperature Tave and the standard deviation ⁇ T are used as parameters related to deterioration prediction to optimize the operating conditions. This allows the existence of high-temperature parts where deterioration progresses particularly quickly to be reflected in the determination of the operating conditions, thereby improving the accuracy of future predictions.
  • Example 4 is a configuration in which multiple water electrolysis stack groups are connected in parallel.
  • FIG. 34 is a schematic diagram showing the water electrolysis system of Example 4.
  • water electrolysis stacks 140a, 140b, and 140c connected in series and a temperature control unit 160a connected to collectively control their temperatures
  • water electrolysis stacks 140d, 140e, and 140f connected in series and a temperature control unit 160b connected to collectively control their temperatures.
  • the water electrolysis stacks 140a, 140b, and 140c and the water electrolysis stacks 140d, 140e, and 140f are connected in parallel.
  • the control unit 170 is configured to issue temperature commands to each of the temperature control units 160a and 160b.
  • power in order to perform operation control that suppresses deterioration, power can be distributed unequally between the series section formed by the water electrolysis stacks 140a, 140b, and 140c and the series section formed by the water electrolysis stacks 140d, 140e, and 140f.
  • a specific method for distributing power unequally is, for example, to set the temperatures commanded by the temperature control unit 160a and the temperature control unit 160b to different values, thereby generating a difference between the current-voltage characteristics of the multiple series sections.
  • Example 5 is a case where operation control is performed based on power supply and demand management.
  • FIG. 35 is a schematic diagram showing the power and hydrogen supply system of Example 5.
  • the power and hydrogen supply system shown in this diagram includes the components of the water electrolysis system 1000 in FIG. 5, as well as a distributor 105, a hydrogen utilization section 210, and a management system 2000. These components make it possible to supply power, hydrogen, and heat to consumers 250.
  • the management system 2000 comprehensively adjusts the supply of power, hydrogen, and heat, performs supply and demand forecasts, and accumulates various data.
  • the power and hydrogen supply system is expected to be installed in a substation or the like, and it is necessary to adjust the proportion of the power supplied from the power grid 100 that is used for hydrogen production according to the power supply and demand situation, thereby stabilizing the power grid 100. For this reason, the management system 2000 monitors the power supply and demand and formulates a plan for the amount of hydrogen production. It is also desirable for the control unit 170 to determine the operating conditions according to changes in the input power to the water electrolysis system 1000.
  • the power and hydrogen supply system may also include multiple water electrolysis systems 1000.
  • this specification describes a control method for adjusting the voltage of the water electrolysis stack by adjusting the temperature of the water electrolysis stack
  • another method for controlling the voltage of the water electrolysis stack according to the present disclosure is to lower the voltage by decreasing the reaction resistance of the water electrolysis stack by lowering the pressure of the gas produced by the water electrolysis stack.
  • the method for controlling the pressure of the gas produced can be applied to both the collective control of Example 1 and the individual control of Example 2.
  • the operation control of the water electrolysis stack includes at least one of the operating current, operating temperature, and generated gas pressure of the water electrolysis stack.
  • the prediction unit calculates the hydrogen sales revenue from the predicted hydrogen production volume and calculates the water electrolysis stack replacement cost from the predicted degree of deterioration of the water electrolysis stack, and the operating condition determination unit determines the conditions for controlling the operation of the water electrolysis stack so as to maximize the profit calculated from the hydrogen sales revenue and the water electrolysis stack replacement cost.
  • the water electrolysis stacks are configured with multiple stacks connected in series or parallel, or a combination of both, and the prediction unit predicts the amount of hydrogen produced by each of the multiple water electrolysis stacks and the degree of deterioration of the water electrolysis stacks when each of the multiple water electrolysis stacks operates under different operation control conditions, and the operating condition determination unit determines the operation control conditions for each of the multiple water electrolysis stacks based on the prediction results of the prediction unit.
  • the operation control of the water electrolysis stack includes the operating temperature of the water electrolysis stack, and when at least one water electrolysis stack constituting the plurality of water electrolysis stacks has a different performance from the other water electrolysis stacks constituting the plurality of water electrolysis stacks, the operating condition determination unit sets the operating temperature of the at least one water electrolysis stack to a different temperature from that of the other water electrolysis stacks.
  • the operation control of the water electrolysis stack includes the operating temperature of the water electrolysis stack, and the prediction unit estimates the temperature distribution inside the water electrolysis stack and predicts the degree of deterioration of the water electrolysis stack based on the temperature distribution.
  • the operating condition determination unit determines the conditions for controlling the operation of the water electrolysis stack so that the maximum temperature in the temperature distribution is equal to or lower than a predetermined upper limit temperature.
  • the operation control of the water electrolysis stack includes the operating temperature of the water electrolysis stack, and the water electrolysis stack is configured with multiple water electrolysis stacks connected in series or parallel or a combination of these, and the prediction unit estimates the temperature distribution occurring in the multiple water electrolysis stacks and predicts the degree of deterioration of the water electrolysis stack based on the temperature distribution.
  • the operating condition determination unit determines the conditions for controlling the operation of the water electrolysis stack so that the maximum temperature in the temperature distribution is equal to or lower than a predetermined upper limit temperature.
  • the control method is a method for controlling the operation of a water electrolysis stack, and includes the steps of: a measurement unit measuring the performance of the water electrolysis stack; a prediction unit predicting the amount of hydrogen produced by the water electrolysis stack and the degree of deterioration of the water electrolysis stack during a specified period of time using the performance measured by the measurement unit and the characteristics of the water electrolysis stack's susceptibility to deterioration; and an operating condition determination unit determining conditions for controlling the operation of the water electrolysis stack based on the prediction results of the prediction unit.
  • the hydrogen production system comprises a water electrolysis stack and a control device that controls the operation of the water electrolysis stack.
  • the control device comprises a measurement unit that measures the performance of the water electrolysis stack, a prediction unit that predicts the amount of hydrogen produced by the water electrolysis stack and the degree of deterioration of the water electrolysis stack over a specified period of time using the performance measured by the measurement unit and the characteristics of the water electrolysis stack's susceptibility to deterioration, and an operating condition determination unit that determines the conditions for controlling the operation of the water electrolysis stack based on the prediction results of the prediction unit.
  • the power and hydrogen supply system comprises a hydrogen production system, a distributor connected to supply power to the hydrogen production system and consumers, and a management system connected to communicate with the hydrogen production system and the distributor.
  • the control device uses the data received from the management system.
  • the control device further includes a model section that stores the characteristics of how easily the water electrolysis stack deteriorates.
  • the control device assigns the water electrolysis stack to a plurality of series sections, each of which is made up of one or more water electrolysis stacks connected in series and one or more series sections connected in parallel, as the operating state of the series sections, either a high-allocation series section that receives a larger power allocation than the other series sections over a specified period of time, or a low-allocation series section that receives a smaller power allocation than the other series sections over a specified period of time.
  • the control device sequentially assigns the high-allocation series section and the low-allocation series section in a first order as the operating state of a first series section among the multiple series sections, and sequentially assigns the high-allocation series section and the low-allocation series section in a second order different from the first order as the operating state of a second series section different from the first series section among the multiple series sections.
  • 100 Power system
  • 105 Distributor
  • 110, 120a, 120b, 120c Transformers
  • 130a, 130b, 130c Rectifiers
  • 140a, 140b, 140c, 140d Water electrolysis stack
  • 150 Power converter
  • 160 Temperature control unit
  • 170 Control unit
  • 210 Hydrogen utilization unit
  • 250: Consumer 1000: Water electrolysis system
  • 2000 Management system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

水電解スタックの稼働を制御する装置であって、水電解スタックの性能を計測する計測部と、計測部にて計測した性能と水電解スタックの劣化のしやすさの特性とを用いて、所定の期間において、水電解スタックが生成する水素製造量と水電解スタックの劣化の程度とを予測する予測部と、予測部の予測結果に基づき、水電解スタックの稼働制御の条件を決定する運転条件決定部と、を備える制御装置を用いる。これにより、性能の異なる水電解スタックが混在する水電解システムにおいて、ライフサイクルコストの上昇を抑制することができる。

Description

制御装置、制御方法、水素製造システム及び電力・水素供給システム
 本開示は、制御装置、制御方法、水素製造システム及び電力・水素供給システムに関する。
 水素社会に向け、変電設備等の大電力を活用する大規模水素製造設備の技術開発が進められている。水素製造設備においては、複数の水電解スタックを並列接続する場合があるが、高電圧を利用する場合には、複数の水電解スタックを直列接続して電圧を分配することが有効である。
 特許文献1には、不安定な再生可能エネルギーを利用した水電解装置では、水素の需要と供給とが一致するとは限らないこと、発生した水素を一旦貯留する貯槽が満杯になった場合、貯槽に入りきらない水素が無駄になる問題、再生可能エネルギーの利用効率が低下する問題等の観点から、水電解槽と、水電解槽で発生した水素を貯留する第1貯槽と、第1貯槽から払い出された水素を貯留する第2貯槽と、第1貯槽と第2貯槽とを接続する払い出し流路に配置され、第1貯槽から第2貯槽へ払い出される水素の流量を調整する流量調整部と、を備えている水電解装置が開示されている。また、特許文献1には、水電解槽で発生する水素発生量を予測すること、水電解槽の運転状態または水電解槽の劣化状態を加味して、水電解槽で発生する水素発生量を予測することが開示されている。
特開2021-059748号公報
 特許文献1に記載の水電解装置は、水電解槽で発生する水素発生量の予測、水電解槽の運転状態または水電解槽の劣化状態を加味した電流の制御等を行う。しかしながら、再生可能エネルギーの利用効率の向上の観点からであり、水電解槽(水電解スタック)が劣化し、交換が必要となる場合や、水電解スタックの運転温度等が性能に与える影響等を反映するものではない。
 本開示の目的は、性能の異なる水電解スタックが混在する水電解システムにおいて、ライフサイクルコストの上昇を抑制することにある。
 本開示の制御装置は、水電解スタックの稼働を制御する装置であって、水電解スタックの性能を計測する計測部と、計測部にて計測した性能と水電解スタックの劣化のしやすさの特性とを用いて、所定の期間において、水電解スタックが生成する水素製造量と水電解スタックの劣化の程度とを予測する予測部と、予測部の予測結果に基づき、水電解スタックの稼働制御の条件を決定する運転条件決定部と、を備える。
 本開示によれば、性能の異なる水電解スタックが混在する水電解システムにおいて、ライフサイクルコストの上昇を抑制することができる。
多並列水電解システムの一例を示す概略構成図である。 多直列水電解システムの一例を示す概略構成図である。 多直列水電解システムを構成する複数の水電解スタックのうちの一つが低性能品である場合を示す部分構成図である。 水電解スタックの電流電圧特性を示すグラフである。 実施例1の多直列水電解システムを示す概略構成図である。 実施例1の多直列水電解システムの制御部における処理及びこれに関連する項目を示す図である。 実施例1のシミュレーションの概要を示す図である。 複数の水電解スタックの一部に低性能品を含む場合の出力調整の例を示すグラフである。 すべての水電解スタックが正常品である場合のシミュレーションの結果を示すグラフである。 実施例1の多直列水電解システムの温度一括制御を示す模式図である。 当初設置した水電解スタックが正常品である場合及び低性能品である場合のスタック電圧の経時変化の例を示すグラフである。 実施例1の水電解システムの制御方法を示すフロー図である。 図7に示す条件におけるシミュレーションの結果を示すグラフである。 図7に示す条件のうち劣化に関する温度係数を半減させた場合におけるシミュレーションの結果を示すグラフである。 図7に示す条件のうち直列の水電解スタックの数を3倍とした場合におけるシミュレーションの結果を示すグラフである。 図7に示す条件のうち低性能品の性能低下(電圧)を2倍とした場合におけるシミュレーションの結果を示すグラフである。 図7に示す条件のうち水電解スタックの交換費用を1/5とした場合におけるシミュレーションの結果を示すグラフである。 図7に示す条件のうち水電解スタック10個を並列接続とした場合におけるシミュレーションの結果を示すグラフである。 図16の場合において劣化に関する温度係数を半減させた場合におけるシミュレーションの結果を示すグラフである。 図16の場合において並列の水電解スタックの数を3倍とした場合におけるシミュレーションの結果を示すグラフである。 図16の場合において低性能品の性能低下(電圧)を2倍とした場合におけるシミュレーションの結果を示すグラフである。 図16の場合において水電解スタックの交換費用を1/5とした場合におけるシミュレーションの結果を示すグラフである。 水電解スタックの性能計測(内部抵抗評価)の例を示す図である。 実施例2の多直列水電解システムを示す概略構成図である。 実施例2の多直列水電解システムの温度個別制御を示す模式図である。 図23の温度個別制御において正常品の温度を50℃とした場合における低性能品のシミュレーションの結果を示すグラフである。 図23の温度個別制御において正常品の温度を55℃とした場合における低性能品のシミュレーションの結果を示すグラフである。 図23の温度個別制御において正常品の温度を57℃とした場合における低性能品のシミュレーションの結果を示すグラフである。 図23の温度個別制御において正常品の温度を60℃とした場合における低性能品のシミュレーションの結果を示すグラフである。 図23の温度個別制御において正常品の温度を65℃とした場合における低性能品のシミュレーションの結果を示すグラフである。 図26の場合(正常品の温度を57℃とした場合)において図7に示す条件のうち劣化に関する温度係数を半減させた場合におけるシミュレーションの結果を示すグラフである。 図26の場合(正常品の温度を57℃とした場合)において図7に示す条件のうち直列の水電解スタックの数を3倍とした場合におけるシミュレーションの結果を示すグラフである。 図26の場合(正常品の温度を57℃とした場合)において図7に示す条件のうち低性能品の性能低下(電圧)を2倍とした場合におけるシミュレーションの結果を示すグラフである。 図26の場合(正常品の温度を57℃とした場合)において図7に示す条件のうち水電解スタックの交換費用を1/5とした場合におけるシミュレーションの結果を示すグラフである。 実施例3の多直列水電解システムを示す概略構成図である。 実施例4の水電解システムを示す概略構成図である。 実施例5の多直列水電解システムを示す概略構成図である。
 図1は、多並列水電解システムの一例を示す概略構成図である。
 本図に示すように、多並列水電解システムは、高電圧の電力系統100に接続された一つの変圧器110に複数の変圧器120a、120b、120cが接続され、変圧器120a、120b、120cのそれぞれに整流器130a、130b、130cを介して水電解スタック140a、140b、140cが接続された構成を有している。このように、多並列水電解システムの場合、多数の変圧器及び整流器の設備コストや設置面積が大きいことが課題となる。
 図2は、多直列水電解システムの一例を示す概略構成図である。
 本図に示すように、多直列水電解システムは、電力系統100に接続された一つの電力変換器150に複数の水電解スタック140a、140b、140cが直列に接続された構成を有している。このため、多直列水電解システムは、多並列水電解システムに比べ、設備コストや設置面積を小さくすることができる。
 図3は、多直列水電解システムを構成する複数の水電解スタックのうちの一つが低性能品である場合を示す部分構成図である。
 本図においては、四つの水電解スタック140a、140b、140c、140dのうち、水電解スタック140bが低性能品となっている。他の水電解スタック140a、140c、140dは、正常品である。
 図4は、水電解スタックの電流電圧特性を示すグラフである。横軸に電流、縦軸に電圧をとっている。実線の曲線は正常品、破線の曲線は低性能品を示している。
 本図に示すように、正常品は、電流が同じ値のときには、低性能品に比べて電圧が低くなっている。これは、低性能品では、正常品に比べて内部抵抗が増加するためである。
 多直列水電解システムにおいて低性能品の存在により電圧が高くなったとしても、電力変換器の仕様範囲内であれば、出力電流を変更する必要はない。ただし、低性能品は、水素製造の電力効率が低い分、発熱量が大きいという問題がある。電圧が所定値より高くなり、電力変換器の仕様範囲を逸脱する場合には、動作電流を下げる必要があり、この場合、水素製造量が減少するため、正常品の性能を活かしきれない。
 多直列水電解システムの運転時に制御可能なパラメータとしては、温度や圧力がある。例えば、温度を高くすると、電圧を低くすることが可能であるが、高温度条件で運転すると、水電解スタックの電解質膜や電極触媒の劣化を加速することが問題となる。
 したがって、多直列水電解システムにおいては、性能の異なる水電解スタックが混在する場合に、動作電流を下げて運転を行うと、正常品の性能を活かしきれず、他方、動作温度(運転温度)を高くすると、水電解スタックの劣化が加速することが課題となる。これらはいずれも、水電解システムのライフサイクルコストを上昇させる。
 本開示に係る水電解システムは、上述の課題を解決するものである。なお、本明細書において、水電解システムは、「水素製造システム」とも呼ぶ。
 以下、図面を用いて実施例について説明する。
 図5は、実施例1の多直列水電解システムを示す概略構成図である。
 本図においては、水電解システム1000(多直列水電解システム)は、電力系統100に接続された一つの電力変換器150に複数の水電解スタック140a、140b、140cが直列に接続された構成を有している。水電解スタック140a、140b、140cには、温度制御部160から所定の温度の水が供給されるようになっている。この水は、電気分解反応に用いられる。
 また、水電解システム1000は、制御部170(制御装置)を備えている。
 制御部170は、水電解スタック140a、140b、140cの監視・制御をするものである。具体的には、制御部170は、水電解スタック140a、140b、140cの温度、電流、電圧等の性能を計測する。これは、制御部170の計測部で行う。そして、制御部170は、その計測データと、水電解スタック140a、140b、140cの劣化モデルと、を用いて、運転パラメータ(温度等)毎に、将来の水素製造量及び劣化の進行を予測する。これは、制御部170の予測部で行う。さらに、予測部は、得られた予測データに基づいて、将来のライフサイクルコストを試算する。そして、制御部170は、その試算結果に基づいて、ライフサイクルコストを最小化する運転条件(運転モード)を選択し、水電解スタック140a、140b、140cの稼働制御を行う。この稼働制御は、制御部170の運転条件決定部で行う。
 ここで、稼働制御は、水電解スタック140a、140b、140cの動作電流、動作温度等の調整を含む。この調整の結果として、水電解スタック140a、140b、140cの出力を制御することができる。なお、劣化モデルは、理論的なモデルである。
 制御部170は、計測データ、予測データ、劣化モデル等を蓄積するデータベースを有することが望ましい。このデータベースは、「モデル部」とも呼ぶ。なお、モデル部は、制御部170とは異なる外部のサーバ等に設置され、制御部170とのデータの送受信が可能な状態としたものであってもよい。
 また、上記の予測及び試算は、水電解システム1000の外部に設けられた計算装置(サーバ等)で計算し、その結果を制御部170が受信する構成としてもよい。
 また、電力変換器150、温度制御部160、制御部170等に表示部を設け、水電解システム1000のユーザ、管理者、作業者等が水電解スタック140a、140b、140c等の状態を確認し、必要に応じて操作することができるようにすることが望ましい。また、ユーザ、管理者、作業者等のスマートフォン、タブレット等の携帯端末に当該状態を表示し、必要に応じてユーザ、管理者、作業者等が操作するようにしてもよい。
 なお、ライフサイクルコストは、水素の販売収益、スタック交換費用などを含む。
 図6は、制御部170における処理及びこれに関連する項目を示す図である。
 本図に示すように、制御部170においては、技術仕様項目、経済性項目等の条件に基づいて、運転モードとライフサイクルコストの上昇との関係を計算し、最適モードを選択する。
 図7は、本実施例のシミュレーションの概要を示す図である。
 本図に示すように、スタック仕様として、10個の水電解スタックを直列に接続した構成とし、電流は3kAとしている。この場合に、初期状態では、正常品の電圧は220Vとなるが、低性能品の電圧は228Vになると仮定している。水電解スタックの標準劣化率は1時間当たり500μV、その温度係数は10%/℃と仮定している。水電解スタックの交換基準は、正常品の電圧が初期状態から20V高くなった状態である240Vとしている。ここでは、10個の水電解スタックのうち1個が低性能品であるとしている。
 また、コスト想定として、スタック交換費用を1個当たり1億円、水素売価を1Nm当たり30円、設備稼働率を年間5000時間としている。
 上記の条件において、温度を運転パラメータとして10年間運転し、水素製造量の減少による損失(L)及び劣化スタックの交換による損失(L)を、ライフサイクルコスト上昇の評価指標としてシミュレーションにより試算した。
 図8は、上記の条件において10個を直列に接続した水電解スタック群の出力調整の例を示すグラフである。横軸に電流、縦軸に電圧をとっている。実線の曲線は正常品、破線の曲線は初期の低性能品、一点鎖線の曲線は温度調整後の低性能品を示している。
 本図に示すように、この例では、(1)低性能品の動作温度を高くして、電圧を正常品に近づけた上で、(2)低性能品を含む10個の水電解スタックの直列接続の電圧が、10個の正常品の直列接続の電圧(2200V)と等しくなるように、直列の水電解スタック群の電流を低下する、という出力調整を行っている。
 なお、水電解スタックの劣化に基づく上記(1)及び(2)の出力調整は、1年間隔で更新するものとした。
 つぎに、シミュレーションの結果について説明する。
 まず、基準となるシミュレーションとして、10個の水電解スタックを直列に接続した構成において、すべての水電解スタックが正常品である場合について説明する。
 図9は、この場合についてのシミュレーションの結果を示すグラフである。横軸に水電解スタックの運転温度、縦軸に損失をとっている。○印は(1)10年間累計の水素販売収益、■印は(2)水電解スタックの交換コスト(スタック交換コスト)、●印は10年間累計の利益(((1)水素販売収益)-((2)スタック交換コスト))を示している。
 本図においては、10年間累計の水素販売収益は、運転温度によらず、ほぼ一定となっている。
 一方、スタック交換コストに関しては、運転温度が60℃以下の場合、10年目にスタックの交換が1回発生し、そのコストが表されている。これに対して、運転温度が61℃以上の場合、10年間で2回のスタック交換が発生し、2倍の交換コストがかかっているため、収益性が低下し、損失が生じている。
 本図から、このシミュレーションの結果としては、10年間累計の利益を最大化する運転温度は57℃であることがわかる。
 つぎに、10個の水電解スタックを直列に接続した構成において、10個のうち1個が低性能品である場合について説明する。本実施例において、低性能品を含む全ての水電解スタックが同じ温度となるように一括して制御する構成としている(温度一括制御)。
 図10Aは、本実施例の多直列水電解システムの温度一括制御を示す模式図である。
 本図においては、直列に接続された水電解スタック群の一部を示している。
 水電解スタック140a、140b、140c、140dのうち、水電解スタック140bが低性能品であり、水電解スタック140a、140c、140dが正常品である。水電解スタック140a、140b、140c、140dは、温度一括制御が施されている。
 図10Bは、当初設置した水電解スタックが正常品である場合及び低性能品である場合のスタック電圧の経時変化の例を示すグラフである。横軸に使用年数、縦軸にスタック電圧をとっている。電圧の初期値は、図7に示すとおりの値であり、正常品は220V、低性能品は228Vである。また、水電解スタックの交換基準の電圧は240Vである。○印は、正常品を示している。■印は、当初低性能品を使用し、交換時に正常品とする場合を示している。
 本図においては、正常品を使用した場合、5年で交換している。一方、当初低性能品を使用した場合、3年で1回目の交換をし、8年で2回目の交換をしている。すなわち、10年間運転した場合、正常品では交換が1回で済むところ、低性能品では2回の交換が必要となる。
 図10Cは、本実施例の水電解システムの制御方法を示すフロー図である。
 本図に示すように、計測部が、水電解スタックの性能を計測する(工程S10)。
 そして、予測部が、水電解スタックの性能と、水電解スタックの劣化のしやすさの特性を用いて、水電解スタックの水素製造量及び水電解スタックの劣化の程度を予測する(工程S20)。ここで、劣化のしやすさの特性は、標準劣化率、その温度係数等を含む。また、劣化の程度は、具体的には、図10Bに示すようなそれぞれの水電解スタックの電圧等である。
 つぎに、運転条件決定部が、予測部の予測結果に基づき、水電解スタックの稼働を制御する(工程S30)。本実施例においては、水電解スタックの稼働の制御は、直列の水電解スタックに供給する水の温度、及び電力変換器が直列の水電解スタックに出力する電流を調整することにより行う。
 以下、本実施例の温度一括制御の構成におけるシミュレーション結果について説明する。
 図9に示す、すべての水電解スタックが正常品である場合の最適運転(57℃)を基準としたライフサイクルコスト上昇(L+L)を計算した。
 図11は、図7に示す条件におけるシミュレーションの結果を示すグラフである。すなわち、10個の水電解スタックを直列に接続した構成において、10個のうち1個が低性能品である場合である。横軸に運転温度、縦軸に損失をとっている。○印はL、■印はL、●印はL+Lを示している。
 図11においては、運転温度が57~60℃の場合に、低性能品(1個)の交換が必要であり、L+Lが大きくなっている。また、運転温度が61℃以上の場合、正常品も劣化するため、L+Lが更に大きくなっている。そして、運転温度が54℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図12は、図7に示す条件のうち劣化に関する温度係数(劣化温度係数)を半減させた場合におけるシミュレーションの結果を示すグラフである。図中の表示様式は、縦軸のスケールが異なること以外は図11と同様である。
 図12においては、劣化温度係数が小さいため、運転温度が58~62℃の場合であっても、水電解スタックが劣化しにくく、運転温度が57℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図13は、図7に示す条件のうち直列の水電解スタックの数を3倍とした場合におけるシミュレーションの結果を示すグラフである。すなわち、水電解スタック30個のうち1個が低性能品である。図中の表示様式は、縦軸のスケールが異なること以外は図11と同様である。
 図13においては、低性能品の交換の影響が比較的小さく、運転温度が54℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図14は、図7に示す条件のうち低性能品の性能低下(電圧)を2倍とした場合におけるシミュレーションの結果を示すグラフである。図中の表示様式は、図11と同様である。
 図14においては、低性能品の残寿命が減少するため、運転温度が低い場合が有利であり、運転温度が52℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図15は、図7に示す条件のうち水電解スタックの交換費用を1/5とした場合におけるシミュレーションの結果を示すグラフである。図中の表示様式は、縦軸のスケールが異なること以外は図11と同様である。
 図15においては、水電解スタックの交換費用の影響が小さい。そして、運転温度が54℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 以上のとおり、多くのケースで、図9に示す正常品の最適条件(57℃)で運転するよりも(L+L)を抑制できる動作温度が存在することが明らかになった。なお、高温動作により低性能品の電圧値を正常品と同等にするという従来技術の場合、動作温度65℃超が必要であり、コスト最適点ではないことがわかる。
 また、図12~15に示すように、最適点(最適温度)付近のマージン(許容範囲)は、前提条件の変更で大きく変化する。
 以上のように、本実施例において抽出した運転条件を用いることで、水電解システムのライフサイクルコスト上昇を抑制することができる。
 また、水電解スタックの劣化予測も可能となるため、水電解スタックを効率的に稼働するとともに、水電解スタックの交換コストを含むコストを抑制することができる。
 (変形例)
 実施例1の変形例として、水電解スタックが並列接続された場合について説明する。
 図16は、図7に示す条件におけるシミュレーションの結果を示すグラフである。すなわち、10個の水電解スタックを並列に接続した構成において、10個のうち1個が低性能品である場合である。横軸に運転温度、縦軸に損失をとっている。○印はL、■印はL、●印はL+Lを示している。
 図16においては、運転温度が57~60℃の場合に、低性能品(1個)の交換が必要であり、L+Lが大きくなっている。また、運転温度が61℃以上の場合、正常品も劣化するため、L+Lが更に大きくなっている。そして、運転温度が54℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図17は、図16の場合において劣化に関する温度係数(劣化温度係数)を半減させた場合におけるシミュレーションの結果を示すグラフである。図中の表示様式は、縦軸のスケールが異なること以外は図16と同様である。
 図17においては、劣化温度係数が小さいため、運転温度が58~62℃の場合であっても、水電解スタックが劣化しにくく、運転温度が57℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図18は、図16の場合において並列の水電解スタックの数を3倍とした場合におけるシミュレーションの結果を示すグラフである。すなわち、水電解スタック30個のうち1個が低性能品である。図中の表示様式は、縦軸のスケールが異なること以外は図16と同様である。
 図18においては、低性能品の交換の影響が比較的小さく、運転温度が54℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図19は、図16の場合において低性能品の性能低下(電圧)を2倍とした場合におけるシミュレーションの結果を示すグラフである。図中の表示様式は、図16と同様である。
 図19においては、低性能品の残寿命が減少するため、運転温度が低い場合が有利であり、運転温度が52℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図20は、図16の場合において水電解スタックの交換費用を1/5とした場合におけるシミュレーションの結果を示すグラフである。図中の表示様式は、縦軸のスケールが異なること以外は図16と同様である。
 図20においては、水電解スタックの交換費用の影響が小さい。そして、運転温度が54℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図11~15の直列接続の場合、それぞれの水電解スタックの電流が等しくなるが、図16~20の並列接続の場合、低性能品も含め、それぞれの水電解スタックの動作電圧が一定となるように制御した。
 上述のとおり、コスト計算の結果は、並列接続の場合も、直列接続の場合と同様となる。よって、本変形例の並列接続の水電解スタック群に対しても、実施例1と同様の方法により抽出した運転条件を用いることで、水電解システムのライフサイクルコスト上昇を抑制することができる。
 ここで、水電解スタックの性能計測の方法について説明する。
 水電解システムにおいては、一般に、制御部がそれぞれの水電解スタックの電圧・電流データを収集する。したがって、直列接続の水電解スタック群においては、それぞれの水電解スタックに流れる電流値は同じになる。そして、その電流値に対するそれぞれの水電解スタックにおける電圧値の変化を検知することにより、それぞれの水電解スタックの性能を計測することができる。
 望ましくは、スタックの内部抵抗を評価することで、劣化予測をより正確に行えると期待できる。
 図21は、水電解スタックの性能計測(内部抵抗評価)の例を示す図である。
 本図の左側のグラフは、(A)通常運転とは別に、(B)メンテナンス運転の時間を設ける方法であることを示すものである。
 そして、本図の右側のグラフに示すように、メンテナンス運転の時間に電圧掃引を行うことにより取得した電流電圧特性を用いて、電流と電圧とが線形の関係にある領域(オーミック領域)における曲線の傾きから水電解スタックの内部抵抗を算出する。
 このほか、メンテナンス運転の時間に、別途準備される電気化学インピーダンス評価装置により、水電解スタックの交流インピーダンスを計測し、内部抵抗を算出してもよい。
 なお、水電解スタックの性能を示す電圧や内部抵抗などの値については、予め定められた仕様あるいは標準値といった絶対値を基準に、正常品と低性能品とを判別することが考えられるが、実際には、製品間の性能差が存在することから、水電解システムを構成する水電解スタックの間で相対比較をし、低性能品かどうか判別することも考えられる。
 実施例2は、水電解スタックの温度の個別制御を行う場合である。
 図22は、実施例2の多直列水電解システムを示す概略構成図である。
 ここでは、本図において実施例1の図5に示す構成と異なる点のみについて説明する。
 図22においては、水電解スタック140a、140b、140cのそれぞれに対して、温度制御部160から所定の温度の水が個別に供給され、それぞれが温度制御されるようになっている。制御部170は、運転条件決定部において水電解スタック140a、140b、140cのそれぞれに適切な運転温度を含む運転条件を設定し、温度制御部160に対して指令を発する。
 すなわち、本図の水電解システム1000においては、水電解スタック140a、140b、140cの温度の個別制御を行う。
 図23は、実施例2の多直列水電解システムの温度個別制御を示す模式図である。
 本図においては、直列に接続された水電解スタック群の一部を示している。
 水電解スタック140a、140b、140c、140dのうち、水電解スタック140bが低性能品であり、水電解スタック140a、140c、140dが正常品である。水電解スタック140a、140b、140c、140dは、温度個別制御が施されている。具体的には、低性能品の水電解スタック140bは、正常品の水電解スタック140a、140c、140dとは異なる温度となるように制御されている。
 本実施例の個別制御は、実施例1の一括制御に比べ、最適運転モードを探索する条件を広範囲のパラメータから選択できるため、望ましい制御条件を選択できる可能性が高くなるという効果が得られると考えられる。
 以下、本実施例の温度個別制御の構成におけるシミュレーション結果について説明する。ここで、シミュレーションは、正常品の温度をそれぞれ固定し、低性能品の温度を変化させた場合について行い、それらの結果をそれぞれのグラフとして示している。図9に示す、すべての水電解スタックが正常品である場合の最適運転(57℃)を基準としたライフサイクルコスト上昇(L+L)を計算した。
 図24は、図23の温度個別制御において正常品の温度を50℃とした場合における低性能品のシミュレーションの結果を示すグラフである。この場合、10個の水電解スタックを直列に接続した構成において、10個のうち1個が低性能品である場合である。横軸に低性能品の運転温度、縦軸に損失をとっている。○印はL、■印はL、●印はL+Lを示している。
 図24においては、低性能品の運転温度が56℃以下の場合、L+Lが小さくなっている。そして、低性能品の運転温度が53℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図25は、図23の温度個別制御において正常品の温度を55℃とした場合における低性能品のシミュレーションの結果を示すグラフである。図中の表示様式は、縦軸のスケールが異なること以外は図24と同様である。
 図25においても、低性能品の運転温度が53℃の場合に、L+Lが最小であり、この温度が最適温度である。
 図26は、図23の温度個別制御において正常品の温度を57℃とした場合における低性能品のシミュレーションの結果を示すグラフである。図中の表示様式は、縦軸のスケールが異なること以外は図24と同様である。
 図26においても、低性能品の運転温度が53℃の場合に、L+Lが最小であり、この温度が最適温度である。
 図27は、図23の温度個別制御において正常品の温度を60℃とした場合における低性能品のシミュレーションの結果を示すグラフである。図中の表示様式は、縦軸のスケールが異なること以外は図24と同様である。
 図27においても、低性能品の運転温度が53℃の場合に、L+Lが最小であり、この温度が最適温度である。
 図28は、図23の温度個別制御において正常品の温度を65℃とした場合における低性能品のシミュレーションの結果を示すグラフである。図中の表示様式は、縦軸のスケールが異なること以外は図24と同様である。
 図28においても、低性能品の運転温度が53℃の場合に、L+Lが最小であり、この温度が最適温度である。
 図24~28の結果をまとめると、本実施例の条件においては、正常品を57℃、低性能品を53℃で運転することで、L+Lを最小化できることがわかる。具体的には、正常品の運転温度を57℃、低性能品の運転温度を53℃とした場合においては、L+Lの最小値は8.17百万円(M¥)である。これは、実施例1(温度一括制御)の最適条件である運転温度54℃におけるL+Lが16.2百万円であるのに対し、約50%となっている。これにより、温度個別制御の方がライフサイクルコスト上昇(L+L)を抑制する効果が高いことがわかる。
 つぎに、図24~28の中で最適条件であることがわかった図26の場合(正常品の運転温度を57℃、低性能品の運転温度を53℃とした場合)を基準に、図12~15と同様に、計算の前提条件を変更したシミュレーションの結果について説明する。
 図29は、図26の場合(正常品の温度を57℃とした場合)において図7に示す条件のうち劣化に関する温度係数を半減させた場合におけるシミュレーションの結果を示すグラフである。図中の表示様式は、縦軸のスケールが異なること以外は図24と同様である。
 図29においては、劣化温度係数が小さいため、低性能品の運転温度が62℃以下の場合、水電解スタックが劣化しにくく、運転温度が62℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図30は、図26の場合(正常品の温度を57℃とした場合)において図7に示す条件のうち直列の水電解スタックの数を3倍とした場合におけるシミュレーションの結果を示すグラフである。すなわち、水電解スタック30個のうち1個が低性能品である。図中の表示様式は、縦軸のスケールが異なること以外は図24と同様である。
 図30においては、運転温度が53℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図31は、図26の場合(正常品の温度を57℃とした場合)において図7に示す条件のうち低性能品の性能低下(電圧)を2倍とした場合におけるシミュレーションの結果を示すグラフである。図中の表示様式は、縦軸のスケールが異なること以外は図24と同様である。
 図31においては、低性能品の残寿命が減少するため、運転温度が低い場合が有利であり、運転温度が50℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 図32は、図26の場合(正常品の温度を57℃とした場合)において図7に示す条件のうち水電解スタックの交換費用を1/5とした場合におけるシミュレーションの結果を示すグラフである。図中の表示様式は、縦軸のスケールが異なること以外は図24と同様である。
 図32においては、水電解スタックの交換費用の影響が小さい。そして、運転温度が53℃の場合に、L+Lが最小であり、この温度が最適温度であることがわかる。
 また、図29~32から、低性能品の最適温度及びマージンは、前提条件の変更で大きく変化することがわかる。
 このシミュレーションにおいては、9個の正常品温度を固定した上で、1個の低性能品温度を変化させているため、実施例1(一括制御)よりも、最適温度の変化幅が大きくなっている。最適温度の比較についての例としては、図12の57℃と図29の62℃との比較がある。
 実施例3は、水電解スタックの温度分布を将来予測に反映する場合である。
 一般に、水電解スタックの内部においては、運転中に温度分布が生じる。また、多直列水電解システムにおいて、水電解スタックの配置順序に起因してスタック間に温度分布が生じる可能性も考えられる。
 図33は、実施例3の多直列水電解システムを示す概略構成図である。
 本図に示す水電解システム1000は、図5(実施例1)と同様に、温度一括制御の構成を有する。図33において図5と異なる点は、制御部170における劣化予測において温度分布を反映する点である。
 本実施例においては、温度分布を反映した運転制御を行うために、劣化予測に関するパラメータとして、最高温度Tmax及び最低温度Tmin、又は平均温度Tave及び標準偏差ΔTを用い、運転条件の最適化を行う。これにより、劣化が特に速く進行する高温部位の存在を運転条件の決定に反映することができる。これにより、将来予測の精度を高めることができる。
 実施例4は、多直列の水電解スタック群を並列に接続した構成を有する場合である。
 図34は、実施例4の水電解システムを示す概略構成図である。
 本図においては、直列に接続された水電解スタック140a、140b、140c及びこれらの温度を一括制御するために接続された温度制御部160aに加え、直列に接続された水電解スタック140d、140e、140f及びこれらの温度を一括制御するために接続された温度制御部160bが設けられている。水電解スタック140a、140b、140cと水電解スタック140d、140e、140fとは、並列に接続されている。制御部170は、温度制御部160a及び温度制御部160bのそれぞれに対して温度指令を発するように構成されている。
 本実施例においては、劣化を抑制する運転制御を行うために、水電解スタック140a、140b、140cにより構成される直列部と、水電解スタック140d、140e、140fにより構成される直列部とに不均等に電力を配分することができる。電力を不均等に配分する具体的な方法としては、例えば、温度制御部160a及び温度制御部160bが指令する温度を互いに異なる値とすることで、複数の直列部の電流電圧特性の間に差を生じさせるという方法がある。
 実施例5は、電力需給マネジメントに基づく運転制御を行う場合である。
 図35は、実施例5の電力・水素供給システムを示す概略構成図である。
 本図に示す電力・水素供給システムは、図5の水電解システム1000の構成に加え、分配器105と、水素利用部210と、マネジメントシステム2000と、を備えている。これらの構成により、需要家250に対して電力、水素及び熱を供給することができるようになっている。マネジメントシステム2000は、電力、水素及び熱の供給を包括的に調整するものであり、需給予測等を行い、種々のデータを蓄積するものである。
 また、電力・水素供給システムは、変電設備等に設置されることを想定しているが、電力需給の状況に応じて、電力系統100から供給される電力のうち水素製造に用いる割合を調整し、電力系統100の安定化を行う必要がある。そのため、マネジメントシステム2000は、電力需給モニタリング、水素製造量の計画策定を行う。そして、水電解システム1000への入力電力の変化に応じて、制御部170が運転条件を決定することが望ましい。
 また、電力・水素供給システムは、複数の水電解システム1000を含むものであってもよい。
 なお、本明細書においては、水電解スタックの温度を調整することにより水電解スタックの電圧を調整する制御方法について説明しているが、本開示に係る水電解スタックの電圧の制御方法としては、水電解スタックの生成ガス圧力を低くすることにより水電解スタックの反応抵抗を減少させて電圧を低くする方法もある。生成ガス圧力を制御する方法は、実施例1の一括制御及び実施例2の個別制御のいずれにも適用できる。
 以下、本開示に係る望ましい実施形態についてまとめて説明する。
 制御装置においては、水電解スタックの稼働制御は、水電解スタックの動作電流、動作温度及び生成ガス圧力のうち少なくとも1つを対象として含む。
 予測部は、水素製造量の予測結果から水素販売収益を算出し、水電解スタックの劣化の程度の予測結果から、水電解スタックの交換費用を算出し、運転条件決定部は、水素販売収益と水電解スタックの交換費用とから算出される利益が大きくなるように水電解スタックの稼働制御の条件を決定する。
 水電解スタックは、複数を直列接続若しくは並列接続又はこれらの組み合わせとした構成を有し、予測部は、複数の水電解スタックのそれぞれが互いに異なる稼働制御の条件で動作する場合における複数の水電解スタックのそれぞれの水素製造量と水電解スタックの劣化の程度とを予測し、運転条件決定部は、予測部の予測結果に基づき、複数の水電解スタックのそれぞれの稼働制御の条件を決定する。
 水電解スタックの稼働制御は、水電解スタックの動作温度を対象として含み、複数の水電解スタックを構成する少なくとも一つの水電解スタックが、複数の水電解スタックを構成する他の水電解スタックと性能が異なる場合に、運転条件決定部は、少なくとも一つの水電解スタックと他の水電解スタックとで、動作温度を互いに異なる温度に設定する。
 水電解スタックの稼働制御は、水電解スタックの動作温度を対象として含み、予測部は、水電解スタックの内部における温度分布を推定し、温度分布に基づき、水電解スタックの劣化の程度を予測する。
 運転条件決定部は、温度分布における最高温度が、予め定められた上限温度以下となるように、水電解スタックの稼働制御の条件を決定する。
 水電解スタックの稼働制御は、水電解スタックの動作温度を対象として含み、水電解スタックは、複数を直列接続若しくは並列接続又はこれらの組み合わせとした構成を有し、予測部は、複数の水電解スタックに生じる温度分布を推定し、温度分布に基づき、水電解スタックの劣化の程度を予測する。
 運転条件決定部は、温度分布における最高温度が、予め定められた上限温度以下となるように、水電解スタックの稼働制御の条件を決定する。
 制御方法は、水電解スタックの稼働を制御する方法であって、計測部が、水電解スタックの性能を計測するステップと、予測部が、計測部にて計測した性能と水電解スタックの劣化のしやすさの特性とを用いて、所定の期間において、水電解スタックが生成する水素製造量と水電解スタックの劣化の程度とを予測するステップと、運転条件決定部が、予測部の予測結果に基づき、水電解スタックの稼働制御の条件を決定するステップと、を含む。
 水素製造システムは、水電解スタックと、水電解スタックの稼働を制御する制御装置と、を備え、制御装置は、水電解スタックの性能を計測する計測部と、計測部にて計測した性能と水電解スタックの劣化のしやすさの特性とを用いて、所定の期間において、水電解スタックが生成する水素製造量と水電解スタックの劣化の程度とを予測する予測部と、予測部の予測結果に基づき、水電解スタックの稼働制御の条件を決定する運転条件決定部と、を備える。
 電力・水素供給システムは、水素製造システムと、水素製造システム及び需要家に電力を供給することができるように接続された分配器と、水素製造システム及び分配器と通信することができるように接続されたマネジメントシステムと、を備える。
 制御装置は、マネジメントシステムから受信したデータを用いる。
 制御装置は、水電解スタックの劣化のしやすさの特性を保有するモデル部を更に備える。
 制御装置は、水電解スタックは、1つ以上の水電解スタックが直列接続された直列部がさらに1つ以上並列接続された複数の直列部であり、直列部の動作状態として、所定期間にわたって他の直列部よりも多くの電力分配を受ける多配分直列部、所定期間にわたって他の直列部よりも少ない電力分配を受ける少配分直列部、のうちいずれかを割り当てる。
 制御装置は、複数の直列部のうち第1直列部の動作状態として、多配分直列部、および少配分直列部を第1順序で順次割り当て、複数の直列部のうち第1直列部とは異なる第2直列部の動作状態として、多配分直列部、および少配分直列部を第1順序とは異なる第2順序で順次割り当てる。
 100:電力系統、105:分配器、110、120a、120b、120c:変圧器、130a、130b、130c:整流器、140a、140b、140c、140d:水電解スタック、150:電力変換器、160:温度制御部、170:制御部、210:水素利用部、250:需要家、1000:水電解システム、2000:マネジメントシステム。

Claims (13)

  1.  水電解スタックの稼働を制御する装置であって、
     前記水電解スタックの性能を計測する計測部と、
     前記計測部にて計測した前記性能と前記水電解スタックの劣化のしやすさの特性とを用いて、所定の期間において、前記水電解スタックが生成する水素製造量と前記水電解スタックの前記劣化の程度とを予測する予測部と、
     前記予測部の予測結果に基づき、前記水電解スタックの稼働制御の条件を決定する運転条件決定部と、を備える、制御装置。
  2.  請求項1記載の制御装置において、
     前記水電解スタックの前記稼働制御は、前記水電解スタックの動作電流、動作温度及び生成ガス圧力のうち少なくとも1つを対象として含む、制御装置。
  3.  請求項1記載の制御装置において、
     前記予測部は、前記水素製造量の予測結果から水素販売収益を算出し、前記水電解スタックの前記劣化の前記程度の予測結果から、前記水電解スタックの交換費用を算出し、
     前記運転条件決定部は、前記水素販売収益と前記水電解スタックの前記交換費用とから算出される利益が大きくなるように前記水電解スタックの前記稼働制御の前記条件を決定する、制御装置。
  4.  請求項1記載の制御装置において、
     前記水電解スタックは、複数を直列接続若しくは並列接続又はこれらの組み合わせとした構成を有し、
     前記予測部は、前記複数の前記水電解スタックのそれぞれが互いに異なる前記稼働制御の前記条件で動作する場合における前記複数の前記水電解スタックのそれぞれの前記水素製造量と前記水電解スタックの前記劣化の程度とを予測し、
     前記運転条件決定部は、前記予測部の予測結果に基づき、前記複数の前記水電解スタックのそれぞれの前記稼働制御の前記条件を決定する、制御装置。
  5.  請求項4記載の制御装置において、
     前記水電解スタックの前記稼働制御は、前記水電解スタックの動作温度を対象として含み、
     前記複数の前記水電解スタックを構成する少なくとも一つの前記水電解スタックが、前記複数の前記水電解スタックを構成する他の前記水電解スタックと前記性能が異なる場合に、前記運転条件決定部は、前記少なくとも一つの前記水電解スタックと前記他の前記水電解スタックとで、前記動作温度を互いに異なる温度に設定する、制御装置。
  6.  請求項1記載の制御装置において、
     前記水電解スタックの前記稼働制御は、前記水電解スタックの動作温度を対象として含み、
     前記予測部は、前記水電解スタックの内部における温度分布を推定し、前記温度分布に基づき、前記水電解スタックの前記劣化の前記程度を予測する、制御装置。
  7.  請求項6記載の制御装置において、
     前記運転条件決定部は、前記温度分布における最高温度が、予め定められた上限温度以下となるように、前記水電解スタックの前記稼働制御の前記条件を決定する、制御装置。
  8.  請求項1記載の制御装置において、
     前記水電解スタックの前記稼働制御は、前記水電解スタックの動作温度を対象として含み、
     前記水電解スタックは、複数を直列接続若しくは並列接続又はこれらの組み合わせとした構成を有し、
     前記予測部は、前記複数の前記水電解スタックに生じる温度分布を推定し、前記温度分布に基づき、前記水電解スタックの前記劣化の前記程度を予測する、制御装置。
  9.  請求項8記載の制御装置において、
     前記運転条件決定部は、前記温度分布における最高温度が、予め定められた上限温度以下となるように、前記水電解スタックの前記稼働制御の前記条件を決定する、制御装置。
  10.  水電解スタックの稼働を制御する方法であって、
     計測部が、前記水電解スタックの性能を計測するステップと、
     予測部が、前記計測部にて計測した前記性能と前記水電解スタックの劣化のしやすさの特性とを用いて、所定の期間において、前記水電解スタックが生成する水素製造量と前記水電解スタックの劣化の程度とを予測するステップと、
     運転条件決定部が、前記予測部の予測結果に基づき、前記水電解スタックの稼働制御の条件を決定するステップと、を含む、制御方法。
  11.  水電解スタックと、
     前記水電解スタックの稼働を制御する制御装置と、を備え、
     前記制御装置は、
     前記水電解スタックの性能を計測する計測部と、
     前記計測部にて計測した前記性能と前記水電解スタックの劣化のしやすさの特性とを用いて、所定の期間において、前記水電解スタックが生成する水素製造量と前記水電解スタックの前記劣化の程度とを予測する予測部と、
     前記予測部の予測結果に基づき、前記水電解スタックの稼働制御の条件を決定する運転条件決定部と、を備える、水素製造システム。
  12.  請求項11記載の水素製造システムと、
     前記水素製造システム及び需要家に電力を供給することができるように接続された分配器と、
     前記水素製造システム及び前記分配器と通信することができるように接続されたマネジメントシステムと、を備える、電力・水素供給システム。
  13.  請求項12記載の電力・水素供給システムにおいて、
     前記制御装置は、前記マネジメントシステムから受信したデータを用いる、電力・水素供給システム。
PCT/JP2022/036214 2022-09-28 2022-09-28 制御装置、制御方法、水素製造システム及び電力・水素供給システム WO2024069801A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036214 WO2024069801A1 (ja) 2022-09-28 2022-09-28 制御装置、制御方法、水素製造システム及び電力・水素供給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036214 WO2024069801A1 (ja) 2022-09-28 2022-09-28 制御装置、制御方法、水素製造システム及び電力・水素供給システム

Publications (1)

Publication Number Publication Date
WO2024069801A1 true WO2024069801A1 (ja) 2024-04-04

Family

ID=90476716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036214 WO2024069801A1 (ja) 2022-09-28 2022-09-28 制御装置、制御方法、水素製造システム及び電力・水素供給システム

Country Status (1)

Country Link
WO (1) WO2024069801A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059321A1 (ja) * 2017-09-25 2019-03-28 旭化成株式会社 計画装置、稼働計画の生成方法、水素製造方法、およびプログラム
WO2019189501A1 (ja) * 2018-03-27 2019-10-03 旭化成株式会社 設計装置、方法、プログラム、計画装置、制御装置、および水素製造システム
WO2020075767A1 (ja) * 2018-10-10 2020-04-16 旭化成株式会社 計画装置、計画方法、および計画プログラム
CN113403645A (zh) * 2021-06-23 2021-09-17 阳光电源股份有限公司 一种电解槽工作状态的确定方法、装置及控制器
CN114369849A (zh) * 2022-01-04 2022-04-19 阳光氢能科技有限公司 一种电解槽健康度的监控方法、装置及电解槽监控***
US20220186390A1 (en) * 2020-12-10 2022-06-16 Analog Devices, Inc. Electrolyzers with bypassable bipolar plates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059321A1 (ja) * 2017-09-25 2019-03-28 旭化成株式会社 計画装置、稼働計画の生成方法、水素製造方法、およびプログラム
WO2019189501A1 (ja) * 2018-03-27 2019-10-03 旭化成株式会社 設計装置、方法、プログラム、計画装置、制御装置、および水素製造システム
WO2020075767A1 (ja) * 2018-10-10 2020-04-16 旭化成株式会社 計画装置、計画方法、および計画プログラム
US20220186390A1 (en) * 2020-12-10 2022-06-16 Analog Devices, Inc. Electrolyzers with bypassable bipolar plates
CN113403645A (zh) * 2021-06-23 2021-09-17 阳光电源股份有限公司 一种电解槽工作状态的确定方法、装置及控制器
CN114369849A (zh) * 2022-01-04 2022-04-19 阳光氢能科技有限公司 一种电解槽健康度的监控方法、装置及电解槽监控***

Similar Documents

Publication Publication Date Title
KR102071377B1 (ko) 연료 전지 플릿 최적화
EP3517653B1 (en) Power dispatch system for electrolytic production of hydrogen from wind power
Wang et al. Coordination of multiple energy storage units in a low-voltage distribution network
EP2696463B1 (en) Wind power generation system, wind power generation control device and wind power generation control method
JP6059328B2 (ja) 需給制御装置、蓄電装置、充放電制御装置、需給制御システムおよび需給制御方法
JP5527325B2 (ja) 制御装置、エネルギーシステム及びその制御方法
CN102545210A (zh) 一种配电网供电可靠性指标优化调控方法及其***
US10855080B2 (en) Systems and methods for generating power generation suppression control information by a control device
CN109409658A (zh) 一种配电网运行风险感知方法和装置
KR102067831B1 (ko) 전력계통 신뢰도 지수를 토대로 한 변전소 자산 관리 방법 및 장치
WO2024069801A1 (ja) 制御装置、制御方法、水素製造システム及び電力・水素供給システム
Karafotis et al. Reliability-oriented reconfiguration of power distribution systems considering load and RES production scenarios
JP2020039222A (ja) 電力需給制御装置、電力需給制御システムおよび電力需給制御方法
CN117394366A (zh) 一种含多微网的主动配电网不确定性分层调度方法
JP2018078669A (ja) 管理装置、及び発電システム
WO2017146243A1 (ja) 電力管理サーバ、電力管理システム、及び電力管理方法
KR102136195B1 (ko) 복수의 수용가를 대상으로 전력을 효율적으로 공급하고 남는 전력을 매전할 수 있도록 하는 예측 시스템 및 방법
EP4137609B1 (en) Hydrogen producing system, hydrogen producing method
JPWO2020080006A1 (ja) エネルギーマネジメントシステム、独立システム、及び独立システムの運用方法
CN111949940B (zh) 基于回归模型的台区变压器过载预测方法、***及存储介质
Bracale et al. Probabilistic management of power delivery based on dynamic transformer rating
WO2024095609A1 (ja) 水電解システム及びその制御方法
WO2023042591A1 (ja) 情報処理装置、水素製造システム、電力供給システム、運転計画作成方法およびコンピュータプログラム
Mokred et al. Voltage Stability Assessment and Contingency Ranking in Power Systems Based on Modern Stability Assessment Index
Zhao et al. Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960864

Country of ref document: EP

Kind code of ref document: A1