WO2024069115A1 - Laser beam welding machine - Google Patents

Laser beam welding machine Download PDF

Info

Publication number
WO2024069115A1
WO2024069115A1 PCT/FR2023/051516 FR2023051516W WO2024069115A1 WO 2024069115 A1 WO2024069115 A1 WO 2024069115A1 FR 2023051516 W FR2023051516 W FR 2023051516W WO 2024069115 A1 WO2024069115 A1 WO 2024069115A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding machine
laser beam
welding
welded
parts
Prior art date
Application number
PCT/FR2023/051516
Other languages
French (fr)
Inventor
Michaël BIDENBACH
Maxime DEKERLE
Nicolas LAURAIN
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Publication of WO2024069115A1 publication Critical patent/WO2024069115A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/035Aligning the laser beam
    • B23K26/037Aligning the laser beam by pressing on the workpiece, e.g. pressing roller foot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • B23K26/128Laser beam path enclosures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/704Beam dispersers, e.g. beam wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0217Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member being fixed to the workpiece
    • B23K37/0223Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member being fixed to the workpiece the guide member being a part of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0282Carriages forming part of a welding unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/12Vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium

Definitions

  • the present invention relates to welding machines making it possible to weld together constituent parts of a transport tank, for example liquefied gas.
  • Current welding machines include drive wheels as well as a drive member capable of rotating at least the drive wheels along the parts to be welded.
  • welding machines include welding rolls in order to weld the parts to be welded.
  • the welding wheels are supplied with electric current when the welding machine moves by means of an electric current unit, ensuring the welding of the parts to be welded.
  • Roll welding is particularly effective for welding parts to be welded made of InvarTM.
  • InvarTM has interesting resistance properties, particularly for use in a transport tank, for example liquefied gas, and makes it possible, among other things, to guarantee optimal transport of said liquefied gas.
  • invarTM is expensive and its use therefore generates significant manufacturing costs for the manufacturer.
  • new alloys are trying to be used to replace invarTM.
  • an alloy with a high manganese content makes it possible to replace invarTM in tanks, and has an expansion coefficient between that of invarTM and that of stainless steel, but with a lower cost.
  • such an alloy with a high manganese content is complex to weld with current welding machines.
  • the aim of the present invention is therefore to provide a welding machine capable of welding alloys with a high manganese content while maintaining a compact welding machine.
  • the invention therefore relates to a laser beam welding machine for at least two parts to be welded, configured to be mobile along said parts to be welded, the welding machine extending in a direction of main longitudinal elongation and comprising at least one pair of drive wheels intended to set said machine in motion welding with respect to the parts to be welded, the welding machine comprising at least one device for welding by laser beam of the at least two parts to be welded, the welding device comprising at least one means intended to channel a laser beam capable of welding the parts to weld.
  • the welding machine according to the invention can be used for example to weld two raised edges together and/or with an anchoring wing of a waterproof membrane constituting a wall of a storage and/or transport tank.
  • cryogenic products such as liquefied natural gas.
  • the welding machine can weld raised edges of two adjacent parts named, first part to be welded and second part to be welded, in order to form the waterproof membrane of the wall of the cryogenic product storage and/or transport tank.
  • the welding machine can weld at least one of the raised edges with the anchoring wing, forming a third part to be welded, placed between the two raised edges of the two adjacent parts.
  • the part to be welded may be one of the raised edges or the anchoring wing.
  • the welding machine comprises at least the pair of drive wheels ensuring, by means of a drive member, the movement of the welding machine along the parts to be welded in a rectilinear welding direction, otherwise called the direction of advancement of the welding machine.
  • the drive member may for example be an electric, hydraulic, pneumatic or even mechanical drive member.
  • the drive member in the context of the invention is an electric motor.
  • the advantage of using a laser beam to weld the parts to be welded is that it allows alloys such as alloys with a high manganese content to be welded.
  • the invention proposes a compact welding machine capable of welding a greater diversity of alloys and also allowing alloys of different nature to be welded together.
  • the welding machine comprises at least one drive member capable of rotating at least one of the drive wheels.
  • the means intended to channel the laser beam comprises at least one focusing lens, a reflection member and at least one conduit of circulation surrounding the laser beam.
  • the focusing lens makes it possible to focus the laser beam conveyed, for example, by means of an optical fiber.
  • the circulation conduit also makes it possible to protect a circulation path of the laser beam so that the latter is not disturbed by the external environment.
  • the reflection member makes it possible, among other things, to reflect the laser beam without modifying its focal length.
  • Such an optical fiber can be a component of the welding machine in that it carries the laser beam to the focusing lens.
  • this optical fiber is a dual-core fiber.
  • Such an optical fiber has a fiber core, otherwise called an internal fiber, which channels the high-power laser beam, and a peripheral fiber at the fiber core, otherwise called an external fiber which surrounds the internal fiber. The laser beam is channeled into this external optical fiber and its power is lower than that carried by the internal optical fiber.
  • the laser beam according to the invention can be characterized in that it comprises a beam core and a ring surrounding the beam core.
  • the beam core channels a portion of the beam that is more powerful than another portion of the beam channeled by the ring.
  • the beam core channels a portion of the beam that is less powerful than another portion of the beam channeled by the ring.
  • Such a laser beam having a beam core and a ring makes it possible to limit projections near the weld bead.
  • Such a beam has a second advantage by making it possible to obtain a wider final weld bead, without having to oscillate the laser beam, such an option also tending to increase projections.
  • the reflection member(s) are for example a mirror.
  • the welding machine comprises means for adjusting the position of the reflection member, which makes it possible to adjust the positioning of the laser beam on the parts to be welded.
  • the reflection member comprises at least one material resistant to the heat of the laser beam, such material being in particular quartz.
  • the reflection member may comprise a cooling system configured to maintain the temperature of the reflection member below a temperature threshold.
  • the laser beam circulation conduit extends from the focusing lens to at least one welding zone of the parts to be welded.
  • the welding zone corresponds to the area of the parts to be welded intended to receive the laser beam. We also understand that the welding zone evolves as the welding machine advances along the parts to be welded.
  • the reflection member is arranged in the circulation conduit between the focusing lens and the welding zone.
  • the means intended to channel the laser beam comprises a plurality of reflection members, in particular three reflection members.
  • each of them is for example arranged so as to orient the laser beam in an output direction orthogonal, or generally orthogonal, to an input direction of the laser beam, the latter being the direction along which the laser beam extends before it hits the reflecting member.
  • the welding machine is configured so that the focusing lens is arranged vertically above a weld bead to be produced by the laser beam welding device.
  • the laser beam directly coming from the focusing member extends in a plane in which inscribes at least one of the raised edges.
  • the invention makes it possible to return such a laser beam so that it attacks the raised edge along a direction substantially perpendicular to a plane in which at least the raised edge fits.
  • Such an organization of the reflection members and/or the focusing lens makes it possible to provide a more compact welding machine, with improved ergonomics. This organization makes it possible to produce a welding machine that is lower and narrower than known machines.
  • the circulation conduit is bent in such a way as to form an angular portion of the circulation conduit, the reflection member being arranged in the angular portion of the circulation conduit.
  • the reflection member is configured in such a way as to modify the trajectory of the laser beam in the circulation conduit so that it corresponds to the shape of the circulation conduit.
  • the welding device comprises at least one housing forming a chamber around the welding zone, the housing being arranged at one end of the circulation conduit, opposite the focusing lens.
  • a neutral gas is distributed in the chamber formed by the housing, at least at the welding zone.
  • the welding device comprises at least one pair of pressure rollers intended to press the parts to be welded against each other at the welding zone.
  • the pressure rollers are intended to press the parts to be welded together with a maximum clearance between sheets of 0.2mm. Furthermore, the pressure rollers are arranged in the chamber delimited by the housing.
  • a pair of pressure rollers means two pressure rollers arranged on either side of the parts to be welded along a straight line perpendicular to a plane of the parts to be welded.
  • the pressure rollers can be cooled.
  • the laser beam falls into a plane in which an axis of rotation of the at least two pressure rollers passes.
  • the welding device comprises an element for receiving the laser beam arranged in the housing and configured to be cooled.
  • the laser beam receiving element makes it possible to absorb the residual optical energy of the laser beam and is connected to a cooling circuit in order to cool it.
  • the parts to be welded are arranged between the reflection member and the receiving element according to the trajectory of the laser beam. We then understand that the receiving element absorbs the residue of the laser beam once it has passed through the welding zone.
  • the receiving element is made of a metallic or ceramic material.
  • the laser beam receiving element is configured to absorb a residual part of the laser beam after its passage through the parts to be welded.
  • the welding device comprises another pair of pressure rollers on the other side of the welding zone, the laser beam falling in a plane in which the axis of rotation of the at least two pairs of pressure rollers.
  • the focusing lens of the welding device is connected to an optical energy source external to the welding machine, in particular by an optical fiber.
  • the laser beam has a power of between 1200W and 6000 W.
  • the power of the laser beam is between 1250W and 6000W.
  • the power of the laser beam is between 1250W and 2500W.
  • the drive wheels are configured to move the welding machine along the parts to be welded at a speed of between 2m/min and 8m/min.
  • the speed of advancement of the welding machine is between 2m/min and 5.5m/min.
  • the forward speed of the welding machine is between 2m/min and 4.8m/min.
  • the driving wheels each extend in a intersecting plane relative to a plane of the parts to be welded, the intersecting plane of at least one of the driving wheels being distinct from a plane perpendicular to the plane of the parts to be welded.
  • At least two pairs of drive wheels are arranged on either side of the housing of the welding device in a longitudinal direction of the welding machine.
  • the pairs of drive wheels are desynchronized in rotation relative to each other.
  • the two pairs of drive wheels are capable of being rotated by the drive member at different speeds from each other.
  • FIG 1 is a general perspective view of a welding machine according to the invention capable of welding parts to be welded;
  • FIG 2 is a close-up view of a welding device of the welding machine of Figure 1;
  • FIG 3 is a close-up view of another embodiment of the means intended to channel the laser beam
  • FIG 4 is a close-up view of a housing of the welding device in Figure 2.
  • Figure 1 illustrates a welding machine 1 configured to move along at least two parts to be welded 2. More precisely, the parts to be welded 2 are for example strips and constitute a waterproof membrane 6 of a wall 8 of a storage and/or transport tank for products maintained in the liquid state at a temperature below -100°C at atmospheric pressure, for example liquefied natural gas.
  • the welding machine 1 can for example make it possible to weld directly against each other a first raised edge 4 and a second raised edge 4 respectively of a first part to be welded 2a and a second adjacent part to be welded 2b.
  • the welding machine can weld at least one of the raised edges 4 of one of the first part to be welded 2a and/or the second part to be welded 2b, with an anchoring wing 12 forming a third part to be welded visible in Figures 2 and 4, said anchoring wing 12 being arranged between two adjacent raised edges.
  • the anchoring wing 12 is anchored to an insulator belonging to the tank wall and is arranged between two adjacent raised edges.
  • Such welding of at least two of the parts to be welded 2a, 2b forms a weld bead 14, visible in Figures 2 to 4, on at least one of the first raised edge 4 and/or the second raised edge, extending the along a welding axis S.
  • the weld bead 14 formed between the at least two parts to be welded 2 makes it possible, among other things, to ensure sealing between said parts to be welded 2, and thus contributes to the sealing of the membrane 6 constituting the wall 8 of the tank storage and/or transport of cryogenic products.
  • the welding machine 1 illustrated in Figure 1 comprises at least one body 16 which has a substantially parallelepiped shape and which extends in a direction of main elongation parallel to a longitudinal direction L of the welding machine 1.
  • the body 16 of the welding machine 1 comprises in particular a front end 18 and a rear end 20, opposite each other in the longitudinal direction L of the welding machine 1. It is also understood that the notion of front/rear of the welding machine 1 body 16 of the welding machine 1 refers to a direction of advancement A of the welding machine 1 along the parts to be welded 2, parallel to the welding axis S and to the longitudinal direction L of said welding machine 1.
  • the body 16 of the welding machine 1 comprises an upper face 22 and a lower face 24, opposite each other in a vertical direction V of the welding machine 1, perpendicular to its longitudinal direction L, the lower face 24 being the face of the body 16 of the welding machine 1 facing the parts to be welded 2.
  • the welding machine 1 according to the invention, visible in Figure 1, comprises at least one pair of drive wheels 26 intended to set the welding machine 1 in motion relative to the parts to be welded 2, and at least one member drive wheel, not visible, capable of rotating at least one pair of drive wheels 26.
  • the at least one pair of drive wheels 26 is arranged at the lower face 24 of the body 16 of the welding machine 1 such that it is in contact with at least one of the parts to be weld 2.
  • the rotation of the at least one pair of drive wheels 26 operated by the drive member allows said pair of drive wheels 26, arranged in contact with the parts to be welded 2, to generate the movement of the welding machine 1 along the parts to be welded 2 following a rectilinear translational movement parallel to the direction of advancement A of the welding machine 1.
  • each of the wheels of the pair of drive wheels 26 is in contact with one of the parts to be welded 2.
  • the welding machine 1 comprises a first pair of wheels drive wheels 26a and a second pair of drive wheels 26b arranged respectively at the front end 18 and at the rear end 20 of the body 16 of the welding machine 1. It is further understood that the drive wheels 26 of each pair of drive wheels 26a, 26b are opposed to each other in a transverse direction T of the welding machine 1, perpendicular to the longitudinal direction L and vertical V. Thus, the drive wheels 26 of the same pair of drive wheels extend on either side of the parts to be welded 2.
  • the drive wheels each extend in a plane intersecting with respect to a plane of the parts to be welded 2, and for at least one of the drive wheels the plane in which it is extends is perpendicular to the plane of one of the raised edges 4.
  • the welding machine 1 comprises at least one drive member ensuring the rotation of the drive wheels 26 and which can take the form of an electric, hydraulic, pneumatic or even mechanical drive member.
  • the drive member according to the invention is an electric motor.
  • the welding machine 1 comprises at least one device 30 for welding the at least two parts to be welded 2, visible in Figure 1.
  • the welding device 30 comprises in particular at least one means 32 intended to channel a laser beam 34 in such a way as to weld the parts to be welded 2.
  • the welding device 30 will now be described in more detail using Figures 2 to 4.
  • the welding device 30 comprises the means 32 intended to channel the laser beam 34 consisting of at least one focusing lens 36, a reflection member 38 and at least one circulation conduit 40 surrounding the laser beam 34
  • the focusing lens 36 makes it possible, among other things, to focus the laser beam 34 which is conveyed for example by optical fiber 51 from a laser source external to the welding machine 1 and here not visible, to the means intended to channel the laser beam 34.
  • the laser beam 34 coming from the focusing lens 36 is surrounded by the circulation conduit 40 such that the latter protects both a user of the welding machine 1 from the laser beam 34 and both the laser beam 34 itself and the external environment can disrupt its trajectory.
  • the circulation conduit 40 of the laser beam 34 extends from the focusing lens 36 to at least one welding zone 44 of the parts to be welded 2.
  • welding zone 44 is meant a portion on the parts to weld 2 on which the weld bead 14 mentioned above must form.
  • the circulation conduit 40 is bent so as to form an angular portion 46 of the circulation conduit 40.
  • Such a structure of the circulation conduit 40 makes it possible in particular to optimize the dimensions of the processing machine.
  • welding 1 by limiting the size of said circulation conduit 40 of the laser beam 34.
  • the reflection member 38 is then arranged in the angular portion 46 of the circulation conduit 40.
  • the reflection member 38 is arranged in the circulation conduit 40 between the focusing lens 36 and the welding zone 44.
  • the function of the reflection member 38 is to deflect the rectilinear trajectory of the laser beam 34 at the outlet of the focusing lens 36.
  • the angular portion 46 of the circulation conduit 40 forms an angle substantially right of the circulation conduit 40 and the reflection member 38 is arranged in the angular portion 46 of the circulation conduit 40 such that it deflects the laser beam 34 by 90° in order to follow the trajectory of the circulation conduit 40.
  • the reflection member 38 is a mirror.
  • the welding device 30 comprises at least one housing 48 delimiting a chamber 50 around the welding zone 44, the housing 48 being disposed at one end of the circulation conduit 40, opposite the focusing lens 36.
  • the housing 48 includes an opening 52 configured to allow the parts to be welded 2 to pass through the housing 48.
  • the housing can comprise a device for projecting a neutral gas towards the welding zone so as to avoid oxidation of the weld bead which results from welding by the laser beam.
  • the neutral gas projection device is then at least partly positioned in chamber 50.
  • FIG 3 illustrates an exemplary embodiment of the welding machine which comprises an optical fiber 51.
  • This optical fiber 51 extends mainly along a direction which lies in the plane of one of the raised edges 4. Said otherwise, the laser beam arrives from above the area to be welded.
  • the focusing lens 36 is thus vertically above the welding zone 44.
  • the means 32 which is intended to channel the laser beam 34 comprises means for channeling the laser beam so as to strike perpendicularly the surface of the raised edge 4.
  • the means 32 intended to channel the laser beam 34 comprises three reflection members 38a, 38b and 38c.
  • the first reflection member 38a is immediately downstream of the focusing lens and it returns the laser beam 34 in an exit direction perpendicular to the entry direction which strikes the first reflection member 38a.
  • the laser beam 34 then strikes a surface of a second reflection member 38b and the latter returns the laser beam 34 in an exit direction perpendicular to the entry direction which strikes the second reflection member 38b.
  • the direction of this intermediate portion of the beam is then parallel, or substantially parallel, to the plane in which the raised edge 4 is inscribed.
  • the third reflection member 38c brings back the laser beam 34 so that it strikes the raised edge 4. This third reflection member 38c returns the laser beam 34 in an exit direction perpendicular to the entry direction which strikes it in entrance.
  • the housing 48 of the welding device 30 is dimensioned such that it is capable of housing at least one pair of pressure rollers 54 intended to press the parts to be welded 2 against each other at the level of the welding zone 44.
  • the pressure rollers 54 of the at least one pair of pressure rollers 54 are arranged on either side of the welding zone 44 in such a way that they press the parts to be welded 2 against each other.
  • the parts to be welded 2 are pressed against each other such that the welding zone 44 has a maximum clearance between sheets of 0.2mm spacing between said parts to be welded 2
  • the pressure rollers 54 are connected to a system for pressurizing the pressure rollers 54 belonging to the welding machine, in order to press them against the parts to be welded 2 at the level of the welding zone 44.
  • the laser beam 34 is inscribed in a plane in which the axis of rotation R of the at least two pressure rollers 54 passes, visible in Figure 4. Advantage is taken of such a characteristic in this allows the laser beam 34 to pass through the welding zone 44 where the parts to be welded 2 are in most contact with each other.
  • the two pressure rollers 54 mentioned above are called first pair 54a of pressure rollers 54.
  • the welding machine 1 comprises a second pair 54b of pressure rollers 54.
  • the first pair 54a and the second pair 54b of pressure rollers 54 are on either side of the laser beam 34.
  • the pressure rollers 54 of the second pair of pressure rollers 54b each have an axis of rotation R which fits into the common plane with the axes of rotation R of the other pressure rollers 54 of the first pair of pressure rollers 54, and optionally with the beam laser 34.
  • the pressure rollers 54 of the second pair 54b of pressure rollers are arranged on the other side of the welding zone 44 relative to the first pair 54a of pressure rollers 54, in the vertical direction V of the welding machine 1. This makes it possible to optimize the plating of the parts to be welded 2 at the level of the welding zone 44.
  • the welding device 30 comprises a receiving element 56 of the laser beam 34 arranged in the housing 48 and configured to be cooled, for example by means of a cooling circuit, not visible.
  • the receiving element 56 is configured to absorb a residual part of the laser beam 34 following its passage through the parts to be welded 2.
  • the parts to be welded are arranged between the focusing lens 36 and the receiving element 56 along the trajectory of the laser beam 34.
  • the receiving element 56 is made of metallic material, for example copper, or of ceramic material. It is understood, however, that the receiving element 56 can be made of any material capable of being cooled.
  • the welding machine 1 according to the invention makes it possible to weld different metals with the same welding machine 1.
  • the welding machine 1 according to the invention makes it possible to weld parts to be welded 2 made of InvarTM or even of an alloy with a high manganese content.
  • high manganese content we mean a content of at least 25% in an alloy.
  • the power of the laser beam 34 is between 1250W and 6000W.
  • the power of the laser beam 34 is between 1250W and 25000W.
  • the drive wheels 26 will adapt their rotation speed in order to optimize the welding of the parts to be welded 2.
  • the speed of advancement of the welding machine 1 is between 2m/min and 8m/min, advantageously 5.5m/min.
  • the advancement speed of the welding machine 1 is between 2m/min and 4.8m/min.
  • the welding machine may include a so-called “double-core” optical fiber 51.
  • This optical fiber thus comprises an internal fiber which forms the core of the fiber and an external fiber which surrounds the core.
  • This organization makes it possible to focus the laser beam 34 which circulates in the heart by means of the focusing lens 36 so as to deliver a power of the beam close to 6000W, the distance of the focusing lens 36 relative to the peripheral zone of the optical fiber 51 making it possible to deliver a laser beam 34 with a power of less than 6000W, which significantly limits the projection of droplets on the sides of the weld bead 14.
  • This choice also makes it possible to do without any laser beam oscillation device because the width of the beam reaches specifications.
  • the welding machine 1 is thus simpler and more compact.
  • the welding machine may include a camera system such as a camera.
  • a camera system such as a camera.
  • This camera system can point directly at the welding zone 44, so as to observe the creation of the weld.
  • this camera system can point towards the rear of the welding machine so as to observe the weld after the welding machine has passed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

The invention relates to a welding machine (1) for welding at least two parts to be welded (2) which is configured to be movable along said parts to be welded (2), wherein the welding machine (1) extends in a longitudinal main direction of elongation (L) and comprises at least one pair of drive wheels (26) for moving said welding machine (1) relative to the parts to be welded (2), wherein the welding machine (1) comprises at least one welding device (30) for welding the at least two parts to be welded (2), and the welding device (30) comprises at least one means (32) for channeling a laser beam so as to weld the parts to be welded (2).

Description

Description Description
Titre : Machine de soudage à faisceau laser Title: Laser beam welding machine
La présente invention concerne des machines de soudage permettant de souder ensemble des pièces constitutives d’une cuve de transport, par exemple de gaz liquéfié. The present invention relates to welding machines making it possible to weld together constituent parts of a transport tank, for example liquefied gas.
Les machines de soudage actuelles comprennent des molettes d’entrainement ainsi qu’un organe d’entrainement apte à entrainer en rotation au moins les molettes d’entrainement le long des pièces à souder. Habituellement, les machines de soudage comprennent des molettes de soudage afin de souder les pièces à souder. Les molettes de soudage sont alimentées en courant électrique lors du déplacement de la machine de soudage au moyen d’une unité de courant électrique, assurant le soudage des pièces à souder. Le soudage par molettes de soudage est notamment efficace pour souder des pièces à souder faites en Invar™. Current welding machines include drive wheels as well as a drive member capable of rotating at least the drive wheels along the parts to be welded. Usually, welding machines include welding rolls in order to weld the parts to be welded. The welding wheels are supplied with electric current when the welding machine moves by means of an electric current unit, ensuring the welding of the parts to be welded. Roll welding is particularly effective for welding parts to be welded made of Invar™.
L’Invar™ présente des propriétés de résistance intéressantes, notamment pour une utilisation au sein d’une cuve de transport, par exemple de gaz liquéfié, et permet entre autres de garantir un transport optimal dudit gaz liquéfié. Cependant, bien qu’il soit performant, l’invar™ est coûteux et son utilisation génère donc des coûts de fabrication important pour le constructeur. Ainsi, de nouveaux alliages tentent d’être utilisés en remplacement de l’invar™. Par exemple, un alliage à forte teneur en manganèse permet de remplacer l’invar™ dans les cuves, et présente un coefficient de dilatation compris entre celui de l’invar™ et celui de l’acier inoxydable, mais avec un coût moins important. Cependant, un tel alliage à forte teneur en manganèse est complexe à souder avec les machines de soudage actuelles. Invar™ has interesting resistance properties, particularly for use in a transport tank, for example liquefied gas, and makes it possible, among other things, to guarantee optimal transport of said liquefied gas. However, although it is efficient, invar™ is expensive and its use therefore generates significant manufacturing costs for the manufacturer. Thus, new alloys are trying to be used to replace invar™. For example, an alloy with a high manganese content makes it possible to replace invar™ in tanks, and has an expansion coefficient between that of invar™ and that of stainless steel, but with a lower cost. However, such an alloy with a high manganese content is complex to weld with current welding machines.
Ainsi, l’utilisation d’alliage à forte teneur en manganèse à la place de l’invar™ nécessite le développement et l’utilisation de machines de soudage adaptées. Thus, the use of alloys with a high manganese content instead of invar™ requires the development and use of suitable welding machines.
Le but de la présente invention est donc de proposer une machine de soudage apte à souder des alliages à forte teneur en manganèse tout en conservant une machine de soudage compacte.The aim of the present invention is therefore to provide a welding machine capable of welding alloys with a high manganese content while maintaining a compact welding machine.
L’invention porte donc sur une machine de soudage à faisceau laser d’au moins deux pièces à souder, configurée pour être mobile le long desdites pièces à souder, la machine de soudage s’étendant suivant une direction d’allongement principal longitudinale et comprenant au moins une paire de molettes d’entrainement destinées à mettre en mouvement ladite machine de soudage par rapport aux pièces à souder, la machine de soudage comprenant au moins un dispositif de soudage par faisceau laser des au moins deux pièces à souder, le dispositif de soudage comprenant au moins un moyen destiné à canaliser un faisceau laser apte à souder les pièces à souder. The invention therefore relates to a laser beam welding machine for at least two parts to be welded, configured to be mobile along said parts to be welded, the welding machine extending in a direction of main longitudinal elongation and comprising at least one pair of drive wheels intended to set said machine in motion welding with respect to the parts to be welded, the welding machine comprising at least one device for welding by laser beam of the at least two parts to be welded, the welding device comprising at least one means intended to channel a laser beam capable of welding the parts to weld.
La machine de soudage selon l’invention peut être utilisée par exemple pour souder deux bords relevés ensemble et/ou avec une aile d’ancrage d’une membrane étanche constitutive d’une paroi d’une cuve de stockage et/ou de transport de produits cryogéniques tels que du gaz naturel liquéfié. Par exemple, la machine de soudage peut souder des bords relevés de deux pièces adjacentes nommées, première pièce à souder et deuxième pièce à souder, afin de former la membrane étanche de la paroi de cuve de stockage et/ou de transport de produit cryogénique. En variante, la machine de soudage peut souder au moins un des bords relevés avec l’aile d’ancrage, formant une troisième pièce à souder, disposée entre les deux bords relevés des deux pièces adjacentes. On comprend donc que la pièce à souder peut-être un des bords relevés ou l’aile d’ancrage. The welding machine according to the invention can be used for example to weld two raised edges together and/or with an anchoring wing of a waterproof membrane constituting a wall of a storage and/or transport tank. cryogenic products such as liquefied natural gas. For example, the welding machine can weld raised edges of two adjacent parts named, first part to be welded and second part to be welded, in order to form the waterproof membrane of the wall of the cryogenic product storage and/or transport tank. Alternatively, the welding machine can weld at least one of the raised edges with the anchoring wing, forming a third part to be welded, placed between the two raised edges of the two adjacent parts. We therefore understand that the part to be welded may be one of the raised edges or the anchoring wing.
A cette fin, la machine de soudage comprend au moins la paire de molettes d’entrainement assurant, au moyen d’un organe d’entrainement, le déplacement de la machine de soudage le long des pièces à souder suivant une direction de soudage rectiligne, autrement appelée direction d’avancement de la machine de soudage. L’organe d’entrainement peut être par exemple un organe d’entrainement électrique, hydraulique, pneumatique ou encore mécanique. De préférence, l’organe d’entrainement dans le cadre de l’invention est un moteur électrique. To this end, the welding machine comprises at least the pair of drive wheels ensuring, by means of a drive member, the movement of the welding machine along the parts to be welded in a rectilinear welding direction, otherwise called the direction of advancement of the welding machine. The drive member may for example be an electric, hydraulic, pneumatic or even mechanical drive member. Preferably, the drive member in the context of the invention is an electric motor.
On tire avantage de l’utilisation d’un faisceau laser pour souder les pièces à souder en ce qu’il permet de souder des alliages tel que des alliages à forte teneur en manganèse. Ainsi, l’invention propose une machine de soudage compacte apte à souder une plus grande diversité d’alliage et permettant également à souder entre eux des alliages de nature différente. The advantage of using a laser beam to weld the parts to be welded is that it allows alloys such as alloys with a high manganese content to be welded. Thus, the invention proposes a compact welding machine capable of welding a greater diversity of alloys and also allowing alloys of different nature to be welded together.
Selon une caractéristique de l’invention, la machine de soudage comprend au moins un organe d’entrainement apte à entrainer en rotation au moins une des molettes d’entrainement. According to one characteristic of the invention, the welding machine comprises at least one drive member capable of rotating at least one of the drive wheels.
Selon une caractéristique de l’invention, le moyen destiné à canaliser le faisceau laser comprend au moins une lentille de focalisation, un organe de réflexion et au moins un conduit de circulation entourant le faisceau laser. According to one characteristic of the invention, the means intended to channel the laser beam comprises at least one focusing lens, a reflection member and at least one conduit of circulation surrounding the laser beam.
On comprend que la lentille de focalisation permet de focaliser le faisceau laser acheminé, par exemple, au moyen d’une fibre optique. Le conduit de circulation permet par ailleurs de protéger un trajet de circulation du faisceau laser afin que ce dernier ne soit pas perturbé par l’environnement extérieur. L’organe de réflexion permet entre autres de réfléchir le faisceau laser sans modifier sa focale. Une telle fibre optique peut être un composant de la machine de soudage en ce qu’elle transporte le faisceau laser jusqu’à la lentille de focalisation. Selon un exemple de réalisation, cette fibre optique est une fibre à double coeur. Une telle fibre optique présente un coeur de fibre, autrement appelé fibre interne, qui canalise le faisceau laser de forte puissance, et une fibre périphérique au coeur de fibre, autrement appelé fibre externe qui entoure la fibre interne. Le faisceau laser est canalisé dans cette fibre optique externe et sa puissance est inférieure à celle transportée par la fibre optique interne. We understand that the focusing lens makes it possible to focus the laser beam conveyed, for example, by means of an optical fiber. The circulation conduit also makes it possible to protect a circulation path of the laser beam so that the latter is not disturbed by the external environment. The reflection member makes it possible, among other things, to reflect the laser beam without modifying its focal length. Such an optical fiber can be a component of the welding machine in that it carries the laser beam to the focusing lens. According to an exemplary embodiment, this optical fiber is a dual-core fiber. Such an optical fiber has a fiber core, otherwise called an internal fiber, which channels the high-power laser beam, and a peripheral fiber at the fiber core, otherwise called an external fiber which surrounds the internal fiber. The laser beam is channeled into this external optical fiber and its power is lower than that carried by the internal optical fiber.
On note l’inverse est également possible, c’est-à-dire une situation où la fibre externe canalise le faisceau laser de forte puissance, tandis que le coeur de fibre ou fibre interne canalise le faisceau laser de puissance inférieure à celle transportée par la fibre externe. Note the opposite is also possible, that is to say a situation where the external fiber channels the high power laser beam, while the fiber core or internal fiber channels the laser beam of lower power than that transported by the external fiber.
Le faisceau laser selon l’invention peut être caractérisé en ce qu’il comprend un coeur de faisceau et un anneau entourant le coeur de faisceau. Selon un premier exemple de réalisation, le coeur de faisceau canalise une portion de faisceau plus puissante qu’une autre portion de faisceau canalisée par l’anneau. Selon un second exemple de réalisation, le coeur de faisceau canalise une portion de faisceau moins puissante qu’une autre portion de faisceau canalisée par l’anneau. The laser beam according to the invention can be characterized in that it comprises a beam core and a ring surrounding the beam core. According to a first exemplary embodiment, the beam core channels a portion of the beam that is more powerful than another portion of the beam channeled by the ring. According to a second embodiment, the beam core channels a portion of the beam that is less powerful than another portion of the beam channeled by the ring.
Un tel faisceau laser possédant un coeur de faisceau et un anneau, permet de limiter les projections à proximité du cordon de soudure. Un tel faisceau présente un deuxième avantage en permettant d’obtenir un cordon de soudure final plus large, sans avoir à osciller le faisceau laser, une tel option ayant tendance là aussi à augmenter les projections. Such a laser beam having a beam core and a ring makes it possible to limit projections near the weld bead. Such a beam has a second advantage by making it possible to obtain a wider final weld bead, without having to oscillate the laser beam, such an option also tending to increase projections.
Selon un aspect optionnel de l’invention, le ou les organes de réflexion sont par exemple un miroir. De manière avantageuse, la machine de soudage comprend un moyen de réglage de la position de l’organe de réflexion, ce qui permet d’ajuster le positionnement du faisceau laser sur les pièces à souder. Selon un exemple, l’organe de réflexion comprend au moins un matériau résistant à la chaleur du faisceau laser, un tel matériau étant notamment du quartz. Alternativement ou de manière complémentaire, l’organe de réflexion peut comprendre un système de refroidissement configuré pour maintenir la température de l’organe de réflexion en-deçà d’un seuil de température. Ces dispositions permettent d’éviter toute déformation, ce qui détériorerait la qualité et/ ou la position du faisceau. According to an optional aspect of the invention, the reflection member(s) are for example a mirror. Advantageously, the welding machine comprises means for adjusting the position of the reflection member, which makes it possible to adjust the positioning of the laser beam on the parts to be welded. According to one example, the reflection member comprises at least one material resistant to the heat of the laser beam, such material being in particular quartz. Alternatively or in a complementary manner, the reflection member may comprise a cooling system configured to maintain the temperature of the reflection member below a temperature threshold. These arrangements make it possible to avoid any deformation, which would deteriorate the quality and/or position of the beam.
Selon une caractéristique de l’invention, le conduit de circulation du faisceau laser s’étend depuis la lentille de focalisation jusqu’à au moins une zone de soudage des pièces à souder.According to one characteristic of the invention, the laser beam circulation conduit extends from the focusing lens to at least one welding zone of the parts to be welded.
On comprend que la zone de soudage correspond à la zone des pièces à souder destinée à recevoir le faisceau laser. On comprend également que la zone de soudage évolue au fur et à mesure de l’avancement de la machine de soudage le long des pièces à souder. We understand that the welding zone corresponds to the area of the parts to be welded intended to receive the laser beam. We also understand that the welding zone evolves as the welding machine advances along the parts to be welded.
Selon une caractéristique de l’invention, l’organe de réflexion est disposé dans le conduit de circulation entre la lentille de focalisation et la zone de soudage. According to one characteristic of the invention, the reflection member is arranged in the circulation conduit between the focusing lens and the welding zone.
Selon une caractéristique optionnelle de l’invention, le moyen destiné à canaliser le faisceau laser comprend une pluralité d’organes de réflexion, notamment trois organes de réflexion.According to an optional characteristic of the invention, the means intended to channel the laser beam comprises a plurality of reflection members, in particular three reflection members.
Dans le cas de trois organes de réflexion, chacun d’entre eux est par exemple disposé de sorte à orienter le faisceau laser selon une direction de sortie orthogonale, ou globalement orthogonale, à une direction d’entrée du faisceau laser, cette dernière étant la direction le long de laquelle s’étend le faisceau laser avant que celui-ci ne frappe l’organe de réflexion. In the case of three reflection members, each of them is for example arranged so as to orient the laser beam in an output direction orthogonal, or generally orthogonal, to an input direction of the laser beam, the latter being the direction along which the laser beam extends before it hits the reflecting member.
Selon une caractéristique optionnelle de l’invention, la machine de soudage est configurée pour que la lentille de focalisation soit disposée verticalement au-dessus d’un cordon de soudure à réaliser par le dispositif de soudage par faisceau laser. According to an optional characteristic of the invention, the welding machine is configured so that the focusing lens is arranged vertically above a weld bead to be produced by the laser beam welding device.
Dans le cas d’une cuve qui comporte au moins les deux pièces à souder, ces deux pièces présentant chacune un bord relevé à 90°, le faisceau laser directement issu de l’organe de focalisation s’étend dans un plan dans lequel s’inscrit au moins un des bords relevés. Grâce à ces trois miroirs, l’invention permet de renvoyer un tel faisceau laser de sorte à ce que celui-ci attaque le bord relevé le long d’une direction sensiblement perpendiculaire un plan dans lequel s’inscrit au moins le bord relevé. Une telle organisation des organes de réflexion et/ou de la lentille de focalisation permet de mettre à disposition une machine de soudage plus compacte, et dont l’ergonomie est améliorée. Cette organisation permet de réaliser une machine de soudage moins haute et moins large que les machines connues. In the case of a tank which comprises at least the two parts to be welded, these two parts each having an edge raised at 90°, the laser beam directly coming from the focusing member extends in a plane in which inscribes at least one of the raised edges. Thanks to these three mirrors, the invention makes it possible to return such a laser beam so that it attacks the raised edge along a direction substantially perpendicular to a plane in which at least the raised edge fits. Such an organization of the reflection members and/or the focusing lens makes it possible to provide a more compact welding machine, with improved ergonomics. This organization makes it possible to produce a welding machine that is lower and narrower than known machines.
Selon une caractéristique de l’invention, le conduit de circulation est coudé de telle sorte à former une portion angulaire du conduit de circulation, l’organe de réflexion étant disposé dans la portion angulaire du conduit de circulation. Ainsi, on comprend que l’organe de réflexion est configuré de telle sorte à modifier la trajectoire du faisceau laser dans le conduit de circulation afin que celui-ci corresponde à la forme du conduit de circulation. According to one characteristic of the invention, the circulation conduit is bent in such a way as to form an angular portion of the circulation conduit, the reflection member being arranged in the angular portion of the circulation conduit. Thus, we understand that the reflection member is configured in such a way as to modify the trajectory of the laser beam in the circulation conduit so that it corresponds to the shape of the circulation conduit.
Selon une caractéristique de l’invention, le dispositif de soudage comprend au moins un boitier formant une chambre autour de la zone de soudage, le boitier étant disposé à une extrémité du conduit de circulation, opposée à la lentille de focalisation. According to one characteristic of the invention, the welding device comprises at least one housing forming a chamber around the welding zone, the housing being arranged at one end of the circulation conduit, opposite the focusing lens.
Selon une caractéristique de l’invention, un gaz neutre est distribué dans la chambre formée par le boitier, au moins au niveau de la zone de soudage. According to one characteristic of the invention, a neutral gas is distributed in the chamber formed by the housing, at least at the welding zone.
Selon une caractéristique de l’invention, le dispositif de soudage comprend au moins une paire de galets presseurs destinés à plaquer les pièces à souder l’une contre l’autre au niveau de la zone de soudage. According to one characteristic of the invention, the welding device comprises at least one pair of pressure rollers intended to press the parts to be welded against each other at the welding zone.
Les galets presseurs sont destinés à plaquer les pièces à souder l’une à l’autre avec un jeu maximum entre tôles de 0,2mm. Par ailleurs, les galets presseurs sont disposés dans la chambre délimitée par le boitier. The pressure rollers are intended to press the parts to be welded together with a maximum clearance between sheets of 0.2mm. Furthermore, the pressure rollers are arranged in the chamber delimited by the housing.
On entend par paire de galets presseurs, deux galets presseurs disposés de part et d’autre des pièces à souder selon une droite perpendiculaire à un plan des pièces à souder. De manière optionnelle, les galets presseurs peuvent être refroidis. A pair of pressure rollers means two pressure rollers arranged on either side of the parts to be welded along a straight line perpendicular to a plane of the parts to be welded. Optionally, the pressure rollers can be cooled.
Selon une caractéristique de l’invention, le faisceau laser s’inscrit dans un plan dans lequel passe un axe de rotation des au moins deux galets presseurs. According to one characteristic of the invention, the laser beam falls into a plane in which an axis of rotation of the at least two pressure rollers passes.
Selon une caractéristique de l’invention, le dispositif de soudage comprend un élément de réception du faisceau laser disposé dans le boitier et configuré pour être refroidit. L’élément de réception du faisceau laser permet d’absorber l’énergie optique résiduelle du faisceau laser et est relié à un circuit de refroidissement afin de le refroidir. According to one characteristic of the invention, the welding device comprises an element for receiving the laser beam arranged in the housing and configured to be cooled. The laser beam receiving element makes it possible to absorb the residual optical energy of the laser beam and is connected to a cooling circuit in order to cool it.
Par ailleurs, les pièces à souder sont disposées entre l’organe de réflexion et l’élément de réception selon la trajectoire du faisceau laser. On comprend alors que l’élément de réception absorbe les résidus du faisceau laser une fois que celui-ci a traversé la zone de soudage. Furthermore, the parts to be welded are arranged between the reflection member and the receiving element according to the trajectory of the laser beam. We then understand that the receiving element absorbs the residue of the laser beam once it has passed through the welding zone.
Selon un exemple de l’invention, l’élément de réception est en un matériau métallique ou en céramique. According to an example of the invention, the receiving element is made of a metallic or ceramic material.
Selon une caractéristique de l’invention, l’élément de réception du faisceau laser est configuré pour absorber une partie résiduelle du faisceau laser à l’issu de son passage au travers des pièces à souder. According to one characteristic of the invention, the laser beam receiving element is configured to absorb a residual part of the laser beam after its passage through the parts to be welded.
Selon un exemple de l’invention, le dispositif de soudage comprend une autre paire de galets presseurs de l’autre côté de la zone de soudage, le faisceau laser s’inscrivant dans un plan dans lequel passe l’axe de rotation des au moins deux paires de galets presseurs. According to an example of the invention, the welding device comprises another pair of pressure rollers on the other side of the welding zone, the laser beam falling in a plane in which the axis of rotation of the at least two pairs of pressure rollers.
Selon une caractéristique de l’invention, la lentille de focalisation du dispositif de soudage est reliée à une source d’énergie optique externe à la machine de soudage, notamment par une fibre optique. According to one characteristic of the invention, the focusing lens of the welding device is connected to an optical energy source external to the welding machine, in particular by an optical fiber.
Selon une caractéristique de l’invention, le faisceau laser présente une puissance comprise entre 1200W et 6000 W. According to one characteristic of the invention, the laser beam has a power of between 1200W and 6000 W.
Selon un exemple de l’invention, pour un alliage à teneur en manganèse d’au moins 25%, la puissance du faisceau laser est comprise entre 1250W et 6000W. Pour un alliage composé à au moins 36% de nickel, la puissance du faisceau laser est comprise entre 1250W et 2500W.According to an example of the invention, for an alloy with a manganese content of at least 25%, the power of the laser beam is between 1250W and 6000W. For an alloy composed of at least 36% nickel, the power of the laser beam is between 1250W and 2500W.
Selon une caractéristique de l’invention, les molettes d’entrainement sont configurées pour déplacer la machine de soudage le long des pièces à souder à une vitesse comprise entre 2m/min et 8m/min. According to one characteristic of the invention, the drive wheels are configured to move the welding machine along the parts to be welded at a speed of between 2m/min and 8m/min.
Selon un exemple de l’invention, pour un alliage à teneur en manganèse d’au moins 25%, la vitesse d’avancement de la machine de soudage est comprise entre 2m/min et 5,5m/min. Pour un alliage composé à au moins 36% de nickel, la vitesse d’avancement de la machine de soudage est comprise entre 2m/min et 4,8m/min. Selon une caractéristique de l’invention, les molettes d’entrainement s’étendent chacune dans un plan sécant par rapport à un plan des pièces à souder, le plan sécant d’au moins une des molettes d’entrainement étant distinct d’un plan perpendiculaire au plan des pièces à souder.According to an example of the invention, for an alloy with a manganese content of at least 25%, the speed of advancement of the welding machine is between 2m/min and 5.5m/min. For an alloy composed of at least 36% nickel, the forward speed of the welding machine is between 2m/min and 4.8m/min. According to one characteristic of the invention, the driving wheels each extend in a intersecting plane relative to a plane of the parts to be welded, the intersecting plane of at least one of the driving wheels being distinct from a plane perpendicular to the plane of the parts to be welded.
Selon une caractéristique de l’invention, au moins deux paires de molettes d’entrainement sont disposées de part et d’autre du boitier du dispositif de soudage suivant une direction longitudinale de la machine de soudage. According to one characteristic of the invention, at least two pairs of drive wheels are arranged on either side of the housing of the welding device in a longitudinal direction of the welding machine.
Selon un exemple de l’invention, les paires de molettes d’entrainement sont désynchronisées en rotation l’une par rapport à l’autre. Dit autrement les deux paires de molettes d’entrainement sont aptes à être entraînées en rotation par l’organe d’entrainement à des vitesses différentes l’une de l’autre. According to an example of the invention, the pairs of drive wheels are desynchronized in rotation relative to each other. In other words, the two pairs of drive wheels are capable of being rotated by the drive member at different speeds from each other.
D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci- après à titre indicatif en relation avec des dessins dans lesquels : Other characteristics, details and advantages of the invention will emerge more clearly on reading the description given below for information purposes in relation to the drawings in which:
[Fig 1] est une vue générale en perspective d’une machine de soudage selon l’invention apte à souder des pièces à souder ; [Fig 1] is a general perspective view of a welding machine according to the invention capable of welding parts to be welded;
[Fig 2] est une vue rapprochée d’un dispositif de soudage de la machine de soudage de la figure 1 ; [Fig 2] is a close-up view of a welding device of the welding machine of Figure 1;
[Fig 3] est une vue rapprochée d’un autre mode de réalisation du moyen destiné à canaliser le faisceau laser ; [Fig 3] is a close-up view of another embodiment of the means intended to channel the laser beam;
[Fig 4] est une vue rapprochée d’un boitier du dispositif de soudage de la figure 2. [Fig 4] is a close-up view of a housing of the welding device in Figure 2.
Il faut tout d’abord noter que si les figures exposent l’invention de manière détaillée pour sa mise en oeuvre, ces figures peuvent bien entendu servir à mieux définir l’invention, le cas échéant. Il est également à noter que ces figures n’exposent que des exemples de réalisation de l’invention. Enfin, les mêmes repères désignent les mêmes éléments dans l'ensemble des figures. It should first be noted that if the figures present the invention in detail for its implementation, these figures can of course be used to better define the invention, if necessary. It should also be noted that these figures only show examples of embodiments of the invention. Finally, the same references designate the same elements in all of the figures.
La figure 1 illustre une machine de soudage 1 configurée pour se déplacer le long d’au moins deux pièces à souder 2. De manière plus précise, les pièces à souder 2 sont par exemple des bandes et sont constitutives d’une membrane 6 étanche d’une paroi 8 d’une cuve de stockage et/ou de transport de produits maintenus à l’état liquide à une température inférieure à -100°C à pression atmosphérique, par exemple du gaz naturel liquéfié. Figure 1 illustrates a welding machine 1 configured to move along at least two parts to be welded 2. More precisely, the parts to be welded 2 are for example strips and constitute a waterproof membrane 6 of a wall 8 of a storage and/or transport tank for products maintained in the liquid state at a temperature below -100°C at atmospheric pressure, for example liquefied natural gas.
La machine de soudage 1 peut par exemple permettre de souder directement l’un contre l’autre un premier bord relevé 4 et un deuxième bord relevé 4 respectivement d’une première pièce à souder 2a et d’une deuxième pièce à souder 2b adjacentes. Selon un autre exemple de l’invention, la machine de soudage peut souder au moins un des bords relevés 4 d’une de la première pièce à souder 2a et/ou de la deuxième pièce à souder 2b, avec une aile d’ancrage 12 formant une troisième pièce à souder visible aux figures 2 et 4, ladite aile d’ancrage 12 étant disposée entre deux bords relevés adjacents. The welding machine 1 can for example make it possible to weld directly against each other a first raised edge 4 and a second raised edge 4 respectively of a first part to be welded 2a and a second adjacent part to be welded 2b. According to another example of the invention, the welding machine can weld at least one of the raised edges 4 of one of the first part to be welded 2a and/or the second part to be welded 2b, with an anchoring wing 12 forming a third part to be welded visible in Figures 2 and 4, said anchoring wing 12 being arranged between two adjacent raised edges.
Plus particulièrement, l’aile d’ancrage 12, visible aux figures 2 et 4, est ancrée à un isolant appartenant à la paroi de cuve et est agencée entre deux bords relevés adjacents. Un tel soudage d’au moins deux des pièces à souder 2a, 2b forme un cordon de soudure 14, visible aux figures 2 à 4, sur au moins un du premier bord relevé 4 et/ou du deuxième bord relevé, s’étendant le long d’un axe S de soudure. Le cordon de soudure 14 formé entre les au moins deux pièces à souder 2 permet entre autres d’assurer l’étanchéité entre lesdites pièces à souder 2, et participe ainsi à l’étanchéité de la membrane 6 constitutive de la paroi 8 de la cuve de stockage et/ou de transport de produits cryogéniques. More particularly, the anchoring wing 12, visible in Figures 2 and 4, is anchored to an insulator belonging to the tank wall and is arranged between two adjacent raised edges. Such welding of at least two of the parts to be welded 2a, 2b forms a weld bead 14, visible in Figures 2 to 4, on at least one of the first raised edge 4 and/or the second raised edge, extending the along a welding axis S. The weld bead 14 formed between the at least two parts to be welded 2 makes it possible, among other things, to ensure sealing between said parts to be welded 2, and thus contributes to the sealing of the membrane 6 constituting the wall 8 of the tank storage and/or transport of cryogenic products.
La machine de soudage 1 illustrée à la figure 1 comprend au moins un corps 16 qui présente une forme sensiblement parallélépipédique et qui s’étend suivant une direction d’allongement principal parallèle à une direction longitudinale L de la machine de soudage 1. Le corps 16 de la machine de soudage 1 comprend notamment une extrémité avant 18 et une extrémité arrière 20, opposées l’une à l’autre selon la direction longitudinale L de la machine de soudage 1. On comprend par ailleurs que la notion de avant/ arrière du corps 16 de la machine de soudage 1 fait référence à une direction d’avancement A de la machine de soudage 1 le long des pièces à souder 2, parallèle à l’axe S de soudure et à la direction longitudinale L de ladite machine de soudage 1. Par ailleurs, le corps 16 de la machine de soudage 1 comprend une face supérieure 22 et une face inférieure 24, opposées l’une à l’autre suivant une direction verticale V de la machine de soudage 1, perpendiculaire à sa direction longitudinale L, la face inférieure 24 étant la face du corps 16 de la machine de soudage 1 en regard des pièces à souder 2. The welding machine 1 illustrated in Figure 1 comprises at least one body 16 which has a substantially parallelepiped shape and which extends in a direction of main elongation parallel to a longitudinal direction L of the welding machine 1. The body 16 of the welding machine 1 comprises in particular a front end 18 and a rear end 20, opposite each other in the longitudinal direction L of the welding machine 1. It is also understood that the notion of front/rear of the welding machine 1 body 16 of the welding machine 1 refers to a direction of advancement A of the welding machine 1 along the parts to be welded 2, parallel to the welding axis S and to the longitudinal direction L of said welding machine 1. Furthermore, the body 16 of the welding machine 1 comprises an upper face 22 and a lower face 24, opposite each other in a vertical direction V of the welding machine 1, perpendicular to its longitudinal direction L, the lower face 24 being the face of the body 16 of the welding machine 1 facing the parts to be welded 2.
La machine de soudage 1 selon l’invention, visible à la figure 1, comprend au moins une paire de molettes d’entrainement 26 destinées à mettre en mouvement la machine de soudage 1 par rapport aux pièces à souder 2, et au moins un organe d’entrainement, non visible, apte à entrainer en rotation l’au moins une paire de molettes d’entrainement 26. The welding machine 1 according to the invention, visible in Figure 1, comprises at least one pair of drive wheels 26 intended to set the welding machine 1 in motion relative to the parts to be welded 2, and at least one member drive wheel, not visible, capable of rotating at least one pair of drive wheels 26.
Plus précisément, l’au moins une paire de molettes d’entrainement 26 est disposée au niveau de la face inférieure 24 du corps 16 de la machine de soudage 1 de telle sorte qu’elle soit au contact d’au moins une des pièces à souder 2. Ainsi, la mise en rotation de l’au moins une paire de molettes d’entrainement 26 opérée par l’organe d’entrainement permet à ladite paire de molettes d’entrainement 26, disposée au contact des pièces à souder 2, d’engendrer le mouvement de la machine de soudage 1 le long des pièces à souder 2 suivant un mouvement en translation rectiligne parallèle à la direction d’avancement A de la machine de soudage 1.More precisely, the at least one pair of drive wheels 26 is arranged at the lower face 24 of the body 16 of the welding machine 1 such that it is in contact with at least one of the parts to be weld 2. Thus, the rotation of the at least one pair of drive wheels 26 operated by the drive member allows said pair of drive wheels 26, arranged in contact with the parts to be welded 2, to generate the movement of the welding machine 1 along the parts to be welded 2 following a rectilinear translational movement parallel to the direction of advancement A of the welding machine 1.
De manière plus précise, chacune des molettes de la paire de molettes d’entrainement 26 est au contact d’une des pièces à souder 2. Selon l’exemple de l’invention illustré, la machine de soudage 1 comprend une première paire de molettes d’entrainement 26a et une deuxième paire de molettes d’entrainement 26b disposées respectivement à l’extrémité avant 18 et à l’extrémité arrière 20 du corps 16 de la machine de soudage 1. On comprend par ailleurs, que les molettes d’entrainement 26 de chaque paire de molettes d’entrainement 26a, 26b sont opposées l’une à l’autre suivant une direction transversale T de la machine de soudage 1, perpendiculaire à la direction longitudinale L et verticale V. Ainsi, les molettes d’entrainement 26 d’une même paire de molettes d’entrainement s’étendent de part et d’autre des pièces à souder 2. More precisely, each of the wheels of the pair of drive wheels 26 is in contact with one of the parts to be welded 2. According to the example of the invention illustrated, the welding machine 1 comprises a first pair of wheels drive wheels 26a and a second pair of drive wheels 26b arranged respectively at the front end 18 and at the rear end 20 of the body 16 of the welding machine 1. It is further understood that the drive wheels 26 of each pair of drive wheels 26a, 26b are opposed to each other in a transverse direction T of the welding machine 1, perpendicular to the longitudinal direction L and vertical V. Thus, the drive wheels 26 of the same pair of drive wheels extend on either side of the parts to be welded 2.
Selon un autre exemple de l’invention, les molettes d’entrainement s’étendent chacune dans un plan sécant par rapport à un plan des pièces à souder 2, et pour au moins une des molettes d’entrainement le plan dans lequel elle s’étend est perpendiculaire au plan d’un des bords relevés 4. Une telle caractéristique permet notamment à la machine de soudage d’être maintenue seule contre des parois latérales ou contre la paroi supérieure de la cuve pendant son déplacement. Tel qu’évoqué précédemment, la machine de soudage 1 comprend au moins un organe d’entrainement assurant la mise en rotation des molettes d’entrainement 26 et pouvant prendre la forme d’un organe d’entrainement électrique, hydraulique, pneumatique ou encore mécanique. De préférence, l’organe d’entrainement selon l’invention est un moteur électrique.According to another example of the invention, the drive wheels each extend in a plane intersecting with respect to a plane of the parts to be welded 2, and for at least one of the drive wheels the plane in which it is extends is perpendicular to the plane of one of the raised edges 4. Such a characteristic allows in particular the welding machine to be held alone against the side walls or against the upper wall of the tank during its movement. As mentioned previously, the welding machine 1 comprises at least one drive member ensuring the rotation of the drive wheels 26 and which can take the form of an electric, hydraulic, pneumatic or even mechanical drive member. . Preferably, the drive member according to the invention is an electric motor.
La machine de soudage 1 selon l’invention comprend au moins un dispositif de soudage 30 des au moins deux pièces à souder 2, visible à la figure 1. Le dispositif de soudage 30 comprend notamment au moins un moyen 32 destiné à canaliser un faisceau laser 34 de telle sorte à souder les pièces à souder 2. The welding machine 1 according to the invention comprises at least one device 30 for welding the at least two parts to be welded 2, visible in Figure 1. The welding device 30 comprises in particular at least one means 32 intended to channel a laser beam 34 in such a way as to weld the parts to be welded 2.
Le dispositif de soudage 30 va maintenant être décrit plus en détail au moyen des figures 2 à 4.The welding device 30 will now be described in more detail using Figures 2 to 4.
Tel qu’évoqué précédemment, le dispositif de soudage 30 comprend le moyen 32 destiné à canaliser le faisceau laser 34 consistant en au moins une lentille de focalisation 36, un organe de réflexion 38 et au moins un conduit de circulation 40 entourant le faisceau laser 34. La lentille de focalisation 36 permet entre autres de focaliser le faisceau laser 34 qui est acheminé par exemple par fibre optique 51 depuis une source laser externe à la machine de soudage 1 et ici non visible, jusqu’au moyen destiné à canaliser le faisceau laser 34. Ainsi, on comprend que le faisceau laser 34 issu de la lentille de focalisation 36 est entouré par le conduit de circulation 40 de telle sorte que ce dernier protège à la fois un utilisateur de la machine de soudage 1 du faisceau laser 34 et à la fois le faisceau laser 34 lui-même de l’environnement extérieur pouvant perturber sa trajectoire. A cette fin, le conduit de circulation 40 du faisceau laser 34 s’étend depuis la lentille de focalisation 36 jusqu’à au moins une zone de soudage 44 des pièces à souder 2. On entend par zone de soudage 44 une portion sur les pièces à souder 2 sur laquelle doit se former le cordon de soudure 14 évoqué précédemment. As mentioned above, the welding device 30 comprises the means 32 intended to channel the laser beam 34 consisting of at least one focusing lens 36, a reflection member 38 and at least one circulation conduit 40 surrounding the laser beam 34 The focusing lens 36 makes it possible, among other things, to focus the laser beam 34 which is conveyed for example by optical fiber 51 from a laser source external to the welding machine 1 and here not visible, to the means intended to channel the laser beam 34. Thus, we understand that the laser beam 34 coming from the focusing lens 36 is surrounded by the circulation conduit 40 such that the latter protects both a user of the welding machine 1 from the laser beam 34 and both the laser beam 34 itself and the external environment can disrupt its trajectory. To this end, the circulation conduit 40 of the laser beam 34 extends from the focusing lens 36 to at least one welding zone 44 of the parts to be welded 2. By welding zone 44 is meant a portion on the parts to weld 2 on which the weld bead 14 mentioned above must form.
Tel que particulièrement visible à la figure 2, le conduit de circulation 40 est coudé de telle sorte à former une portion angulaire 46 du conduit de circulation 40. Une telle structure du conduit de circulation 40 permet notamment d’optimiser les dimensions de la machine de soudage 1 en limitant l’encombrement dudit conduit de circulation 40 du faisceau laser 34. L’organe de réflexion 38 est alors disposé dans la portion angulaire 46 du conduit de circulation 40. En d’autres termes, l’organe de réflexion 38 est disposé dans le conduit de circulation 40 entre la lentille de focalisation 36 et la zone de soudage 44. On comprend alors que l’organe de réflexion 38 a pour fonction de dévier la trajectoire rectiligne du faisceau laser 34 en sortie de lentille de focalisation 36. Selon l’exemple de l’invention illustré, la portion angulaire 46 du conduit de circulation 40 forme un angle sensiblement droit du conduit de circulation 40 et l’organe de réflexion 38 est disposé dans la portion angulaire 46 du conduit de circulation 40 de telle sorte qu’il dévie le faisceau laser 34 de 90° afin de suivre la trajectoire du conduit de circulation 40. Selon un exemple de l’invention, l’organe de réflexion 38 est un miroir. As particularly visible in Figure 2, the circulation conduit 40 is bent so as to form an angular portion 46 of the circulation conduit 40. Such a structure of the circulation conduit 40 makes it possible in particular to optimize the dimensions of the processing machine. welding 1 by limiting the size of said circulation conduit 40 of the laser beam 34. The reflection member 38 is then arranged in the angular portion 46 of the circulation conduit 40. In other words, the reflection member 38 is arranged in the circulation conduit 40 between the focusing lens 36 and the welding zone 44. We then understand that the function of the reflection member 38 is to deflect the rectilinear trajectory of the laser beam 34 at the outlet of the focusing lens 36. According to the example of the invention illustrated, the angular portion 46 of the circulation conduit 40 forms an angle substantially right of the circulation conduit 40 and the reflection member 38 is arranged in the angular portion 46 of the circulation conduit 40 such that it deflects the laser beam 34 by 90° in order to follow the trajectory of the circulation conduit 40. According to an example of the invention, the reflection member 38 is a mirror.
Selon l’invention, le dispositif de soudage 30 comprend au moins un boitier 48 délimitant une chambre 50 autour de la zone de soudage 44, le boitier 48 étant disposé à une extrémité du conduit de circulation 40, opposée à la lentille de focalisation 36. Tel que visible sur les figures 2 et 4, le boitier 48 comprend une ouverture 52 configurée pour autoriser le passage des pièces à souder 2 au travers du boitier 48. According to the invention, the welding device 30 comprises at least one housing 48 delimiting a chamber 50 around the welding zone 44, the housing 48 being disposed at one end of the circulation conduit 40, opposite the focusing lens 36. As visible in Figures 2 and 4, the housing 48 includes an opening 52 configured to allow the parts to be welded 2 to pass through the housing 48.
Par ailleurs, selon un exemple de l’invention, le boitier peut comprendre un dispositif de projection d’un gaz neutre vers la zone de soudage de telle sorte à éviter l’oxydation du cordon de soudure qui résulte du soudage par le faisceau laser. Le dispositif de projection d’un gaz neutre est alors au moins en partie positionné dans la chambre 50. Furthermore, according to an example of the invention, the housing can comprise a device for projecting a neutral gas towards the welding zone so as to avoid oxidation of the weld bead which results from welding by the laser beam. The neutral gas projection device is then at least partly positioned in chamber 50.
La figure 3 illustre un exemple de réalisation de la machine de soudage qui comprend une fibre optique 51. Cette fibre optique 51 s’étend majoritairement le long d’une direction qui s’inscrit dans le plan d’un des bords relevés 4. Dit autrement, le faisceau laser arrive par le dessus de la zone à souder. La lentille de focalisation 36 est ainsi verticalement au-dessus de la zone de soudage 44. Figure 3 illustrates an exemplary embodiment of the welding machine which comprises an optical fiber 51. This optical fiber 51 extends mainly along a direction which lies in the plane of one of the raised edges 4. Said otherwise, the laser beam arrives from above the area to be welded. The focusing lens 36 is thus vertically above the welding zone 44.
Comme le cordon de soudure 14 est une soudure traversante des bords relevés 4, le moyen 32 qui est destiné à canaliser le faisceau laser 34 comprend des moyens pour canaliser le faisceau laser de sorte à venir frapper perpendiculairement la surface du bord relevé 4. As the weld bead 14 is a through weld of the raised edges 4, the means 32 which is intended to channel the laser beam 34 comprises means for channeling the laser beam so as to strike perpendicularly the surface of the raised edge 4.
C’est ainsi que le moyen 32 destiné à canaliser le faisceau laser 34 comprend trois organes de réflexion 38a, 38b et 38c. Le premier organe de réflexion 38a est immédiatement en aval de la lentille de focalisation et il renvoie le faisceau laser 34 selon une direction de sortie perpendiculaire à la direction d’entrée qui vient frapper le premier organe de réflexion 38a. Le faisceau laser 34 frappe ensuite une surface d’un deuxième organe de réflexion 38b et ce dernier renvoie le faisceau laser 34 selon une direction de sortie perpendiculaire à la direction d’entrée qui vient frapper le deuxième organe de réflexion 38b. La direction de cette portion intermédiaire du faisceau est alors parallèle, ou sensiblement parallèle, au plan dans lequel s’inscrit le bord relevé 4. This is how the means 32 intended to channel the laser beam 34 comprises three reflection members 38a, 38b and 38c. The first reflection member 38a is immediately downstream of the focusing lens and it returns the laser beam 34 in an exit direction perpendicular to the entry direction which strikes the first reflection member 38a. The laser beam 34 then strikes a surface of a second reflection member 38b and the latter returns the laser beam 34 in an exit direction perpendicular to the entry direction which strikes the second reflection member 38b. The direction of this intermediate portion of the beam is then parallel, or substantially parallel, to the plane in which the raised edge 4 is inscribed.
Le troisième organe de réflexion 38c ramène le faisceau laser 34 pour qu’il vienne frapper le bord relevé 4. Ce troisième organe de réflexion 38c renvoie le faisceau laser 34 selon une direction de sortie perpendiculaire à la direction d’entrée qui vient le frapper en entrée. The third reflection member 38c brings back the laser beam 34 so that it strikes the raised edge 4. This third reflection member 38c returns the laser beam 34 in an exit direction perpendicular to the entry direction which strikes it in entrance.
Selon l’invention, le boitier 48 du dispositif de soudage 30 est dimensionné de telle sorte qu’il soit apte à loger au moins une paire de galets presseurs 54 destinés à plaquer les pièces à souder 2 l’une contre l’autre au niveau de la zone de soudage 44. Dit autrement, les galets presseurs 54 de l’au moins une paire de galets presseurs 54 sont disposés de part et d’autre de la zone de soudage 44 de telle sorte qu’ils plaquent les pièces à souder 2 l’une contre l’autre. According to the invention, the housing 48 of the welding device 30 is dimensioned such that it is capable of housing at least one pair of pressure rollers 54 intended to press the parts to be welded 2 against each other at the level of the welding zone 44. In other words, the pressure rollers 54 of the at least one pair of pressure rollers 54 are arranged on either side of the welding zone 44 in such a way that they press the parts to be welded 2 against each other.
Selon un exemple de l’invention, les pièces à souder 2 sont plaquées l’une contre l’autre de telle sorte que la zone de soudage 44 présente un jeu maximum entre tôle de 0,2mm d’espacement entre lesdites pièces à souder 2. Par ailleurs, on comprend que les galets presseurs 54 sont reliés à un système de mise en pression des galets presseurs 54 appartenant à la machine de soudage, afin de les plaquer contre les pièces à souder 2 au niveau de la zone de soudage 44. According to an example of the invention, the parts to be welded 2 are pressed against each other such that the welding zone 44 has a maximum clearance between sheets of 0.2mm spacing between said parts to be welded 2 Furthermore, it is understood that the pressure rollers 54 are connected to a system for pressurizing the pressure rollers 54 belonging to the welding machine, in order to press them against the parts to be welded 2 at the level of the welding zone 44.
Par ailleurs, selon l’invention, le faisceau laser 34 s’inscrit dans un plan dans lequel passe l’axe de rotation R des au moins deux galets presseurs 54, visible à la figure 4. On tire avantage d’une telle caractéristique en ce qu’elle permet au faisceau laser 34 de traverser la zone de soudage 44 où les pièces à souder 2 sont le plus en contact les unes contre les autres. Furthermore, according to the invention, the laser beam 34 is inscribed in a plane in which the axis of rotation R of the at least two pressure rollers 54 passes, visible in Figure 4. Advantage is taken of such a characteristic in this allows the laser beam 34 to pass through the welding zone 44 where the parts to be welded 2 are in most contact with each other.
Selon l’exemple de l’invention illustré, les deux galets presseurs 54 évoqués ci-dessus sont appelés première paire 54a de galets presseurs 54. Selon cette exemple, la machine de soudage 1 comprend une deuxième paire 54b de galets presseurs 54. La première paire 54a et la deuxième paire 54b de galets presseurs 54 sont de part et d’autre du faisceau laser 34. Les galets presseurs 54 de la deuxième paire de galets presseurs 54b présentent chacun un axe de rotation R qui s’inscrit dans le plan commun avec les axes de rotation R des autres galets presseurs 54 de la première paire de galets presseurs 54, et optionnellement avec le faisceau laser 34. On comprend alors que les galets presseurs 54 de la deuxième paire 54b de galets presseurs sont disposés de l’autre côté de la zone de soudage 44 par rapport à la première paire 54a de galets presseurs 54, selon la direction verticale V de la machine de soudage 1. On permet ainsi d’optimiser le plaquage des pièces à souder 2 au niveau de la zone de soudage 44.According to the example of the invention illustrated, the two pressure rollers 54 mentioned above are called first pair 54a of pressure rollers 54. According to this example, the welding machine 1 comprises a second pair 54b of pressure rollers 54. The first pair 54a and the second pair 54b of pressure rollers 54 are on either side of the laser beam 34. The pressure rollers 54 of the second pair of pressure rollers 54b each have an axis of rotation R which fits into the common plane with the axes of rotation R of the other pressure rollers 54 of the first pair of pressure rollers 54, and optionally with the beam laser 34. It is then understood that the pressure rollers 54 of the second pair 54b of pressure rollers are arranged on the other side of the welding zone 44 relative to the first pair 54a of pressure rollers 54, in the vertical direction V of the welding machine 1. This makes it possible to optimize the plating of the parts to be welded 2 at the level of the welding zone 44.
Selon une caractéristique de l’invention, le dispositif de soudage 30 comprend un élément de réception 56 du faisceau laser 34 disposé dans le boitier 48 et configuré pour être refroidit, par exemple au moyen d’un circuit de refroidissement, non visible. En d’autres termes, l’élément de réception 56 est configuré pour absorber une partie résiduelle du faisceau laser 34 à l’issu de son passage au travers des pièces à souder 2. On comprend alors que les pièces à souder sont disposées entre la lentille de focalisation 36 et l’élément de réception 56 selon la trajectoire du faisceau laser 34. Selon un exemple de l’invention, l’élément de réception 56 est en matériau métallique, par exemple du cuivre, ou en matériau céramique. On comprend cependant que l’élément de réception 56 peut être en tout matériau apte à être refroidit. According to one characteristic of the invention, the welding device 30 comprises a receiving element 56 of the laser beam 34 arranged in the housing 48 and configured to be cooled, for example by means of a cooling circuit, not visible. In other words, the receiving element 56 is configured to absorb a residual part of the laser beam 34 following its passage through the parts to be welded 2. We then understand that the parts to be welded are arranged between the focusing lens 36 and the receiving element 56 along the trajectory of the laser beam 34. According to an example of the invention, the receiving element 56 is made of metallic material, for example copper, or of ceramic material. It is understood, however, that the receiving element 56 can be made of any material capable of being cooled.
On tire avantage de la machine de soudage 1 selon l’invention en ce que l’utilisation d’un faisceau laser 34 pour souder les pièces à souder 2 permet de souder des métaux différents avec une même machine de soudage 1. Par exemple, la machine de soudage 1 selon l’invention permet de souder des pièces à souder 2 réalisées en Invar™ ou encore en alliage à forte teneur en manganèse. On entend par forte teneur en manganèse une teneur d’au moins 25% dans un alliage. Advantage is taken of the welding machine 1 according to the invention in that the use of a laser beam 34 to weld the parts to be welded 2 makes it possible to weld different metals with the same welding machine 1. For example, the welding machine 1 according to the invention makes it possible to weld parts to be welded 2 made of Invar™ or even of an alloy with a high manganese content. By high manganese content we mean a content of at least 25% in an alloy.
Par exemple, pour un alliage à teneur en manganèse d’au moins 25%, la puissance du faisceau laser 34 est comprise entre 1250W et 6000W. Pour un alliage composé d’au moins 36% de nickel, la puissance du faisceau laser 34 est comprise entre 1250W et 25000W. For example, for an alloy with a manganese content of at least 25%, the power of the laser beam 34 is between 1250W and 6000W. For an alloy composed of at least 36% nickel, the power of the laser beam 34 is between 1250W and 25000W.
Également, en fonction du type de métaux à souder, les molettes d’entrainement 26 adapteront leur vitesse de rotation afin d’optimiser le soudage des pièces à souder 2. Par exemple, pour un alliage à teneur en manganèse d’au moins 25%, la vitesse d’avancement de la machine de soudage 1 est comprise entre 2m/min et 8m/min, avantageusement 5,5m/min. Pour un alliage composé d’au moins 36% de nickel, la vitesse d’avancement de la machine de soudage 1 est comprise entre 2m/min et 4,8m/min. Also, depending on the type of metals to be welded, the drive wheels 26 will adapt their rotation speed in order to optimize the welding of the parts to be welded 2. For example, for an alloy with a manganese content of at least 25% , the speed of advancement of the welding machine 1 is between 2m/min and 8m/min, advantageously 5.5m/min. For an alloy composed of at least 36% nickel, the advancement speed of the welding machine 1 is between 2m/min and 4.8m/min.
La machine de soudage, telle qu’elle vient d’être décrite dans chacun des modes de réalisation, peut comprendre une fibre optique 51 dite « double coeur ». Cette fibre optique comprend ainsi une fibre interne qui forme le coeur de la fibre et une fibre externe qui entoure le coeur. Cette organisation permet de focaliser le faisceau laser 34 qui circule dans le coeur au moyen de la lentille de focalisation 36 de manière à délivrer une puissance du faisceau proche de 6000W, la distance de la lentille de focalisation 36 par rapport à la zone périphérique de la fibre optique 51 permettant de délivrer un faisceau laser 34 de puissance inférieure à 6000W, ce qui limite significativement la projection gouttelettes sur les côtés du cordon de soudure 14. The welding machine, as it has just been described in each of the embodiments, may include a so-called “double-core” optical fiber 51. This optical fiber thus comprises an internal fiber which forms the core of the fiber and an external fiber which surrounds the core. This organization makes it possible to focus the laser beam 34 which circulates in the heart by means of the focusing lens 36 so as to deliver a power of the beam close to 6000W, the distance of the focusing lens 36 relative to the peripheral zone of the optical fiber 51 making it possible to deliver a laser beam 34 with a power of less than 6000W, which significantly limits the projection of droplets on the sides of the weld bead 14.
Ce choix permet aussi de se passer de tout dispositif d’oscillation du faisceau laser car la largeur de celui-ci atteint les spécifications. La machine de soudage 1 est ainsi plus simple et plus compacte. This choice also makes it possible to do without any laser beam oscillation device because the width of the beam reaches specifications. The welding machine 1 is thus simpler and more compact.
Selon une option, la machine de soudage peut comprendre un système de prise de vues tel qu’une caméra. Un tel système permet de contrôler la qualité de la soudure. Ce système de prise de vues peut pointer directement sur la zone de soudage 44, de manière à observer la création de la soudure. Alternativement, ce système de prise de vues peut pointer vers l’arrière de la machine de soudage de sorte à observer la soudure après le passage de la machine de soudage. According to one option, the welding machine may include a camera system such as a camera. Such a system makes it possible to control the quality of the weld. This camera system can point directly at the welding zone 44, so as to observe the creation of the weld. Alternatively, this camera system can point towards the rear of the welding machine so as to observe the weld after the welding machine has passed.
L’invention telle qu’elle vient d’être décrite ne saurait toutefois se limiter aux moyens et configurations exclusivement décrits et illustrés, et s’applique également à tous moyens ou configurations, équivalents et à toute combinaison de tels moyens ou configurations. The invention as it has just been described cannot, however, be limited to the means and configurations exclusively described and illustrated, and also applies to all equivalent means or configurations and to any combination of such means or configurations.

Claims

REVENDICATIONS
1. Machine de soudage (1) à faisceau laser d’au moins deux pièces à souder (2), configurée pour être mobile le long desdites pièces à souder (2), la machine de soudage (1) s’étendant suivant une direction d’allongement principal longitudinale (L) et comprenant au moins une paire de molettes d’entrainement (26) destinées à mettre en mouvement ladite machine de soudage (1) par rapport aux pièces à souder (2), la machine de soudage (1) comprenant au moins un dispositif de soudage (30) par faisceau laser des au moins deux pièces à souder (2), le dispositif de soudage (30) comprenant au moins un moyen (32) destiné à canaliser un faisceau laser (34) apte à souder les pièces à souder (2). 1. Laser beam welding machine (1) of at least two parts to be welded (2), configured to be movable along said parts to be welded (2), the welding machine (1) extending in one direction main longitudinal extension (L) and comprising at least one pair of drive wheels (26) intended to set in motion said welding machine (1) relative to the parts to be welded (2), the welding machine (1 ) comprising at least one laser beam welding device (30) of the at least two parts to be welded (2), the welding device (30) comprising at least one means (32) intended to channel a laser beam (34) capable to weld the parts to be welded (2).
2. Machine de soudage (1) selon la revendication 1, comprenant au moins un organe d’entrainement apte à entrainer en rotation au moins une des molettes d’entrainement (26). 2. Welding machine (1) according to claim 1, comprising at least one drive member capable of rotating at least one of the drive wheels (26).
3. Machine de soudage (1) selon l’une quelconque des revendications 1 ou 2, dans laquelle le moyen (32) destiné à canaliser le faisceau laser (34) comprend au moins une lentille de focalisation (36), un organe de réflexion (38) et au moins un conduit de circulation (40) entourant le faisceau laser (34). 3. Welding machine (1) according to any one of claims 1 or 2, in which the means (32) intended to channel the laser beam (34) comprises at least one focusing lens (36), a reflection member (38) and at least one circulation conduit (40) surrounding the laser beam (34).
4. Machine de soudage (1) selon la revendication 3, dans laquelle le conduit de circulation (40) du faisceau laser (34) s’étend depuis la lentille de focalisation (36) jusqu’à au moins une zone de soudage (44) des pièces à souder (2). 4. Welding machine (1) according to claim 3, in which the circulation conduit (40) of the laser beam (34) extends from the focusing lens (36) to at least one welding zone (44). ) parts to be welded (2).
5. Machine de soudage (1) selon la revendication 4, dans laquelle l’organe de réflexion (38) est disposé dans le conduit de circulation (40) entre la lentille de focalisation (36) et la zone de soudage (44). 5. Welding machine (1) according to claim 4, in which the reflection member (38) is arranged in the circulation conduit (40) between the focusing lens (36) and the welding zone (44).
6. Machine de soudage (1) selon l’une quelconque des revendications 3 à 5, dans laquelle le moyen (32) destiné à canaliser le faisceau laser (34) comprend une pluralité d’organes de réflexion (38), notamment trois organes de réflexion (38). 6. Welding machine (1) according to any one of claims 3 to 5, in which the means (32) intended to channel the laser beam (34) comprises a plurality of reflection members (38), in particular three members reflection (38).
7. Machine de soudage (1) selon l’une quelconque des revendications 3 à 6, configurée pour que la lentille de focalisation (36) soit disposée verticalement au-dessus d’un cordon de soudure (14) à réaliser par le dispositif de soudage (30) par faisceau laser. 7. Welding machine (1) according to any one of claims 3 to 6, configured so that the focusing lens (36) is arranged vertically above a weld bead (14) to be produced by the welding device. welding (30) by laser beam.
8. Machine de soudage (1) selon l’une quelconque des revendications 4 à 7, dans laquelle le dispositif de soudage (30) comprend au moins un boitier (48) formant une chambre (50) autour de la zone de soudage (44), le boitier (48) étant disposé à une extrémité du conduit de circulation (40), opposée à la lentille de focalisation (36). 8. Welding machine (1) according to any one of claims 4 to 7, in which the welding device (30) comprises at least one housing (48) forming a chamber (50) around the welding zone (44), the housing (48) being arranged at one end of the circulation conduit (40), opposite the focusing lens (36).
9. Machine de soudage (1) selon l’une quelconque des revendications 1 à 8 en combinaison avec la revendication 4, dans laquelle le dispositif de soudage (30) comprend au moins une paire de galets presseurs (54) destinés à plaquer les pièces à souder (2) l’une contre l’autre au niveau de la zone de soudage (44). 9. Welding machine (1) according to any one of claims 1 to 8 in combination with claim 4, in which the welding device (30) comprises at least one pair of pressure rollers (54) intended to plate the parts to weld (2) against each other at the welding zone (44).
10. Machine de soudage (1) selon la revendication 9, dans laquelle le faisceau laser (34) s’inscrit dans un plan dans lequel passe un axe de rotation (R) des au moins deux galets presseurs (54). 10. Welding machine (1) according to claim 9, in which the laser beam (34) lies in a plane in which an axis of rotation (R) of the at least two pressure rollers (54) passes.
11. Machine de soudage (1) selon la revendication 8, dans laquelle le dispositif de soudage (30) comprend un élément de réception (56) du faisceau laser (34) disposé dans le boitier (48) et configuré pour être refroidit, ledit élément de réception (56) du faisceau laser (34) étant configuré pour absorber une partie résiduelle du faisceau laser (34) à l’issu de son passage au travers des pièces à souder (2). 11. Welding machine (1) according to claim 8, in which the welding device (30) comprises a receiving element (56) of the laser beam (34) disposed in the housing (48) and configured to be cooled, said receiving element (56) of the laser beam (34) being configured to absorb a residual part of the laser beam (34) after its passage through the parts to be welded (2).
12. Machine de soudage (1) selon l’une quelconque des revendications 1 à 11, dans laquelle le faisceau laser (34) présente une puissance comprise entre 1200W et 6000W. 12. Welding machine (1) according to any one of claims 1 to 11, in which the laser beam (34) has a power of between 1200W and 6000W.
13. Machine de soudage (1) selon l’une quelconque des revendications 1 à 12, dans laquelle les molettes d’entrainement (26) sont configurées pour déplacer la machine de soudage (1) le long des pièces à souder à une vitesse comprise entre 2m/min et 8m/min.13. Welding machine (1) according to any one of claims 1 to 12, in which the drive wheels (26) are configured to move the welding machine (1) along the parts to be welded at a speed comprised between 2m/min and 8m/min.
14. Machine de soudage (1) selon l’une quelconque des revendications 1 à 13, dans laquelle les molettes d’entrainement (26) s’étendent chacune dans un plan sécant par rapport à un plan des pièces à souder (2), le plan sécant d’au moins une des molettes d’entrainement (26) étant distinct d’un plan perpendiculaire au plan des pièces à souder (2). 14. Welding machine (1) according to any one of claims 1 to 13, in which the drive wheels (26) each extend in a intersecting plane relative to a plane of the parts to be welded (2), the secant plane of at least one of the drive wheels (26) being distinct from a plane perpendicular to the plane of the parts to be welded (2).
15. Machine de soudage (1) selon l’une quelconque des revendications 1 à 14 en combinaison avec la revendication 8, comprenant au moins deux paires de molettes d’entrainement (26) qui sont disposées de part et d’autre du boitier (48) du dispositif de soudage (30) suivant une direction longitudinale (L) de la machine de soudage (1). 15. Welding machine (1) according to any one of claims 1 to 14 in combination with claim 8, comprising at least two pairs of drive wheels (26) which are arranged on either side of the housing ( 48) of the welding device (30) in a longitudinal direction (L) of the welding machine (1).
PCT/FR2023/051516 2022-09-30 2023-09-30 Laser beam welding machine WO2024069115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2209950A FR3140292A1 (en) 2022-09-30 2022-09-30 Laser beam welding machine
FRFR2209950 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024069115A1 true WO2024069115A1 (en) 2024-04-04

Family

ID=84569514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051516 WO2024069115A1 (en) 2022-09-30 2023-09-30 Laser beam welding machine

Country Status (2)

Country Link
FR (1) FR3140292A1 (en)
WO (1) WO2024069115A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777107A (en) * 1971-03-12 1973-12-04 Gaz Transport Electrical welding machine
US3818172A (en) * 1970-11-17 1974-06-18 Kockums Mekaniska Verkstads Ab Welding apparatus for interconnecting flanges
FR2402509A1 (en) * 1977-09-07 1979-04-06 Dunkerque Normandie Ste Metall Automatically arc welding the edges of flanged metal sheets - esp. in mfg. tanker ships for transporting natural gas
JPH05154677A (en) * 1991-12-04 1993-06-22 Kawasaki Heavy Ind Ltd Method and equipment for welding solid sheet metal structure
JP2004358529A (en) * 2003-06-05 2004-12-24 Keylex Corp Laser beam welding device
US7385157B2 (en) * 2001-04-27 2008-06-10 Honda Giken Kogyo Kabushiki Kaisha Laser beam welding method and apparatus
WO2008099992A1 (en) * 2007-02-14 2008-08-21 Stx Shipbuilding Co., Ltd. Automatic resistance seam welding machine by dc invert for invar steel welding at the lng carrier
US20080210516A1 (en) * 2005-09-06 2008-09-04 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Device for supporting plate-like materials for at least one separating process
US20110031741A1 (en) * 2009-08-07 2011-02-10 Gammino Salvatore Apparatus and method for sealing collars of double-wall bellows and double-wall bellows so obtained that can be fitted with crack monitoring
CH702374A2 (en) * 2009-12-09 2011-06-15 Sunlaser Consulting Gmbh Device for producing solar thermal fins, which has an absorber part and a tube, comprises a laser head, a pressure roller, a drive roller, and a table as bearing surface for absorber part, where the tube is disposed on the absorber part

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818172A (en) * 1970-11-17 1974-06-18 Kockums Mekaniska Verkstads Ab Welding apparatus for interconnecting flanges
US3777107A (en) * 1971-03-12 1973-12-04 Gaz Transport Electrical welding machine
FR2402509A1 (en) * 1977-09-07 1979-04-06 Dunkerque Normandie Ste Metall Automatically arc welding the edges of flanged metal sheets - esp. in mfg. tanker ships for transporting natural gas
JPH05154677A (en) * 1991-12-04 1993-06-22 Kawasaki Heavy Ind Ltd Method and equipment for welding solid sheet metal structure
US7385157B2 (en) * 2001-04-27 2008-06-10 Honda Giken Kogyo Kabushiki Kaisha Laser beam welding method and apparatus
JP2004358529A (en) * 2003-06-05 2004-12-24 Keylex Corp Laser beam welding device
US20080210516A1 (en) * 2005-09-06 2008-09-04 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Device for supporting plate-like materials for at least one separating process
WO2008099992A1 (en) * 2007-02-14 2008-08-21 Stx Shipbuilding Co., Ltd. Automatic resistance seam welding machine by dc invert for invar steel welding at the lng carrier
US20110031741A1 (en) * 2009-08-07 2011-02-10 Gammino Salvatore Apparatus and method for sealing collars of double-wall bellows and double-wall bellows so obtained that can be fitted with crack monitoring
CH702374A2 (en) * 2009-12-09 2011-06-15 Sunlaser Consulting Gmbh Device for producing solar thermal fins, which has an absorber part and a tube, comprises a laser head, a pressure roller, a drive roller, and a table as bearing surface for absorber part, where the tube is disposed on the absorber part

Also Published As

Publication number Publication date
FR3140292A1 (en) 2024-04-05

Similar Documents

Publication Publication Date Title
EP1273382B1 (en) Miniaturised laser beam welding apparatus
EP3529493B1 (en) Cryogenic pump
FR2709381A1 (en) Parametric optical oscillator with unstable resonant cavity.
US20030063638A1 (en) Cooling of high power laser systems
FR3079765A1 (en) METHOD AND APPARATUS FOR LASER WELDING A FIRST PART ON A SECOND PART
EP0197843B1 (en) Device to excite a plasma in a gas column using microwaves, especially for the production of an ion laser
EP0100089B1 (en) Laser oscillator with gas flow
WO2024069115A1 (en) Laser beam welding machine
WO2014067888A2 (en) Device for amplifying a laser pulse having improved temporal contrast
FR2594264A1 (en) OPTICALLY STABLE RESONATOR FOR THE PRODUCTION OF A LASER BEAM.
FR3056356A1 (en) SLEEVE AND SHAFT OF ELECTRIC MACHINE
FR2980214A1 (en) DEVICE AND METHOD FOR HEATING AN OBJECT UNDER AN INTENSE MAGNETIC FIELD
EP3379661B1 (en) Laser amplification device with active control of beam quality and end bars
EP3720626B1 (en) Methods for shaping/welding parts by means of magnetic pulse
EP3433910B1 (en) Laser-amplifying device with active control of beam quality
EP3217137A1 (en) Device for thermally cooling an object from a cold source such as a cryogenic fluid bath
EP1212814B1 (en) Pumped laser and optimised lasing medium
EP2596555B1 (en) Device for amplifying a laser beam with supression of transverse lasing
WO2020094416A1 (en) High-power laser amplifier head
EP3750216B1 (en) Optical system element for receiving a pressurised functional fluid
FR2971096A1 (en) ACCORDABLE BIFREQUENCE LASER CAVITY AND METHOD OF ADJUSTING FREQUENCY DIFFERENCE BETWEEN ORDINARY WAVE AND EXTRAORDINARY WAVE OF A BIFREQUENCE LASER
EP1564852B1 (en) Pumping unit for an optical laser-amplifier.
FR3104045A1 (en) Welding wheel.
EP3139015B1 (en) Water outlet housing
FR2857609A1 (en) Heat exchanger casing for automobile exhaust gas system comprises lateral wall comprising two junction edges and two connection orifices formed by cavities in junction edges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23798496

Country of ref document: EP

Kind code of ref document: A1