WO2024067822A1 - 传输方法、参数确定方法、装置和通信设备 - Google Patents

传输方法、参数确定方法、装置和通信设备 Download PDF

Info

Publication number
WO2024067822A1
WO2024067822A1 PCT/CN2023/122709 CN2023122709W WO2024067822A1 WO 2024067822 A1 WO2024067822 A1 WO 2024067822A1 CN 2023122709 W CN2023122709 W CN 2023122709W WO 2024067822 A1 WO2024067822 A1 WO 2024067822A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
signal
training
repeated
information
Prior art date
Application number
PCT/CN2023/122709
Other languages
English (en)
French (fr)
Inventor
彭淑燕
王欢
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024067822A1 publication Critical patent/WO2024067822A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/145Passive relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a transmission method, a parameter determination method, an apparatus and a communication device.
  • Reconfigurable Intelligent Surface(s) (RIS) devices can control the reflection/refraction direction to realize functions such as beam scanning/beam shaping.
  • RIS devices can be connected to base stations and user equipment (UE) respectively. User equipment is also called a terminal. RIS devices can forward base station signals to UE. In this process, the beam from the base station to the RIS device and the beam from the RIS device to the UE jointly determine the quality of the signal from the base station to the UE.
  • the RIS device can only forward beams, so that the beams from the base station to the RIS device and the beams from the RIS device to the UE may not be aligned with each other, or the beams of the device are not properly selected, thereby reducing the data transmission quality from the base station to the UE and even causing communication failure.
  • the embodiments of the present application provide a transmission method, a parameter determination method, an apparatus, and a communication device, which can train the transmission parameters from a base station to a RIS device, and/or train the transmission parameters from a RIS device to a UE, can align the beam from the base station to the RIS device, and/or align the beam from the RIS device to the UE, or select a suitable beam, so as to improve the data transmission quality from the base station to the UE.
  • a transmission method comprising:
  • the first device receives the first signal based on the first parameter, and/or sends the first signal based on the second parameter;
  • the first device sends and/or receives data information based on first information, wherein the first information includes a parameter determined based on a measurement result of the first signal.
  • a transmission device which is applied to a first device, and includes:
  • a first transmission module configured to receive a first signal based on a first parameter, and/or send the first signal based on a second parameter;
  • the second transmission module is used to send and/or receive data information based on first information, wherein the first information includes parameters determined based on the measurement result of the first signal.
  • a third aspect provides a transmission method, including:
  • the third device receives the first signal and obtains a measurement result of the first signal, wherein the first signal is a signal sent by the second device and forwarded by the first device;
  • the third device sends the measurement result.
  • a transmission device which is applied to a third device, and the device includes:
  • a measurement module configured to receive a first signal and obtain a measurement result of the first signal, wherein the first signal is a signal sent by the second device and forwarded by the first device;
  • the first sending module is used to send the measurement result.
  • a parameter determination method comprising:
  • the second device sends a first signal
  • the second device receives a measurement result, where the measurement result is a measurement result obtained by receiving and/or measuring the first signal forwarded by the first device;
  • the second device determines first information from first parameters and/or second parameters based on the measurement result, wherein the first parameters include receiving parameters of the first device and the second parameters include sending parameters of the first device.
  • a parameter determination device which is applied to a second device, and the device includes:
  • a second sending module used for sending a first signal
  • a first receiving module used to receive a measurement result, where the measurement result is a measurement result obtained by receiving and/or measuring the first signal forwarded by the first device;
  • the first determination module is used to determine first information from a first parameter and/or a second parameter based on the measurement result, wherein the first parameter includes a receiving parameter of the first device, and the second parameter includes a sending parameter of the first device.
  • a communication device which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect, the third aspect, or the fifth aspect are implemented.
  • a first device comprising a processor and a communication interface, wherein the communication interface is used to receive a first signal based on a first parameter, and/or send a first signal based on a second parameter; the communication interface is also used by the first device to send and/or receive data information based on first information, wherein the first information includes parameters determined based on a measurement result of the first signal.
  • a third device comprising a processor and a communication interface, wherein the communication interface is used to receive a first signal and obtain a measurement result of the first signal, wherein the first signal is a signal sent by the second device and forwarded by the first device; the communication interface is also used to send the measurement result.
  • a second device comprising a processor and a communication interface, wherein the communication interface is used to send a first signal and receive a measurement result, wherein the measurement result is a measurement result obtained by receiving and/or measuring the first signal forwarded by the first device; and the processor is used to determine first information from a first parameter and/or a second parameter based on the measurement result, wherein the first parameter includes a receiving parameter of the first device, and the second parameter includes a sending parameter of the first device.
  • a communication system comprising: a second device, a first device and a third device, wherein the first device can be used to execute the steps of the method described in the first aspect, the third device can be used to execute the steps of the method described in the third aspect, and the second device can be used to execute the steps of the method described in the fifth aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the third aspect are implemented, or the steps of the method described in the fifth aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instructions to implement the method as described in the first aspect, or the method as described in the third aspect, or the method as described in the fifth aspect.
  • a computer program product is provided, wherein the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the steps of the method as described in the first aspect, or the computer program product is executed by at least one processor to implement the steps of the method as described in the third aspect, or the computer program product is executed by at least one processor to implement the steps of the method as described in the fifth aspect.
  • the first device in a scenario where the first device acts as a relay device between the second device and the third device, the first device receives the first signal based on the first parameter, so that the receiving beam of the first device can be trained; and/or the first device sends the first signal based on the second parameter, so that the transmitting beam of the first device can be trained, and data information is sent and/or received based on the beam determined by the measurement result of the first signal during the training process, so that the beam from the second device to the first device and/or the beam from the first device to the third device can be aligned, or a suitable beam can be selected, thereby improving the data transmission quality from the second device to the third device.
  • FIG1 is a schematic diagram of the structure of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG2 is a schematic diagram of a network structure between a base station, a relay device and a terminal;
  • FIG3 is a schematic diagram of a process of beam training based on CSI-RS
  • FIG4 is a flow chart of a transmission method provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a beam between a relay device, a network side device and a terminal;
  • FIG6 is a second schematic diagram of beams between a relay device, a network side device and a terminal;
  • FIG7 is a third schematic diagram of beams between a relay device, a network side device and a terminal;
  • FIG8 is a flow chart of another transmission method provided in an embodiment of the present application.
  • FIG9 is a flow chart of a transmission method provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a transmission device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of another transmission device provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of a parameter determination device provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • the wireless communication system includes a terminal 11, a network side device 12 and a RIS device 13, or further includes a RIS controller 14.
  • the terminal 11 may be a mobile phone, a tablet computer, a laptop computer or a notebook computer, a personal digital assistant (PDA), a handheld computer, a netbook, an ultra-mobile personal computer (UMPC), a mobile Internet device (MID), an augmented reality (AR)/virtual reality (VR) device, a robot, a wearable device (Wearable Device), a vehicle user equipment (VUE), a pedestrian terminal (Pedestrian User Equipment, PUE), a smart home (a home appliance with wireless communication function, such as a refrigerator, a television, a washing machine or furniture, etc.), a game console, a personal computer (PC), a teller machine or a self-service machine and other terminal side devices, and the wearable device includes: a smart watch, a smart bracelet, a smart headset, and the wearable device includes: a smart watch, a smart bracelet, a
  • the network side device 12 may include an access network device or a core network device, wherein the access network device may also be referred to as a wireless access network device, a wireless access network (RAN), a wireless access network function or a wireless access network unit.
  • the access network device may include a base station, a wireless local area network (WLAN) access point or a WiFi node, etc.
  • WLAN wireless local area network
  • the base station may be referred to as a Node B, an evolved Node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home Node B, a home evolved Node B, a transmitting receiving point (TRP) or some other appropriate term in the field.
  • eNB evolved Node B
  • BTS basic service set
  • ESS extended service set
  • TRP transmitting receiving point
  • RIS Reconfigurable Intelligent Surface(s)
  • RIS device units can dynamically/semi-statically adjust their own electromagnetic properties to affect the reflection/refraction behavior of electromagnetic waves incident to the RIS device units, causing the electromagnetic parameters (phase or amplitude or polarization direction) of the forwarded signal (reflected signal or transmitted/refracted signal) to change.
  • RIS devices are composed of a large number of RIS device units. By controlling the electromagnetic characteristic state of each RIS device unit, the reflection/refraction behavior of each RIS device unit on the electromagnetic signal is superimposed on each other in space, realizing functions such as beam scanning/beamforming, etc.
  • the RIS device includes a control module and interacts with the base station through a wireless or wired interface.
  • the RIS can receive control from the upstream base station (including the donor gNB or the parent node), that is, the base station can control the transmission parameters of the RIS, such as the receive/transmit beam between the RIS and the base station or between the RIS and the UE, to improve the working efficiency of the RIS.
  • the network structure includes three network nodes.
  • the middle network node is a RIS device, which includes a terminal module (Mobile Termination, MT) and a RIS panel.
  • the MT can establish a connection with the upstream base station (through a control link).
  • the base station transmits control signaling to the RIS through the MT, which can control the sending/receiving related parameters of the link between the RIS device and the base station (such as the backhaul (Backhaul, BH) link) or the link between the RIS and the UE (such as the access (Access, AC) link).
  • beam alignment is roughly divided into two stages.
  • the first stage is to preliminarily train the initial transmission beam from the base station to the UE when the UE accesses the network.
  • the second stage is to train the fine transmit and receive beam pairs from the base station to the UE after the UE establishes a connection.
  • the beam training in the second stage is mainly completed through the measurement of the channel state information reference signal (CSI Reference Signal, CSI-RS) and the feedback of the channel state information (CSI).
  • CSI Reference Signal CSI Reference Signal
  • the base station periodically sends synchronization signals/physical broadcast channel signal blocks (or synchronization signal blocks) (Synchronization Signal and PBCH block, SSB), and sends a group of SSBs in a beam scanning manner in each SSB transmission period.
  • the UE measures the reference signal carried by the SSB and reports the SSB index with higher received energy so that the base station can determine its transmission beam.
  • the UE reports the SSB index according to the rules specified in the protocol.
  • Each SSB corresponds to a group of physical random access channel (Physical Random Access Channel, PRACH) resources.
  • PRACH Physical Random Access Channel
  • the Rel-15NR Uu CSI acquisition process is shown in Figure 3.
  • the base station configures the relevant parameters for CSI reporting and triggers CSI reporting (the "trigger" is only for semi-persistent or periodic (aperiodic) CSI reporting).
  • the UE performs CSI measurement and reporting according to the base station configuration information, and the base station adjusts the transmission parameters such as uplink and downlink beams according to the results on the UE.
  • each CSI reporting configuration indicates the type of CSI reporting (CSI quantity), including CSI reference signal resource index (CSI-RS Resource Index, CRI), SSB index and other parameters indicating beams, and also includes other parameter types Precoding matrix index (Precoding matrix index, PMI), rank index (rank index, RI), channel quality index (CQI), layer 1 reference signal received power (Layer 1 reference signal received power, L1-RSRP), signal to interference plus noise ratio (Signal to Interference plus Noise Ratio, SINR), etc.
  • CSI-RS Resource Index CRI
  • SSB index SSB index
  • Precoding matrix index Precoding matrix index
  • rank index rank index
  • CQI channel quality index
  • L1-RSRP layer 1 reference signal received power
  • SINR Signal to interference plus Noise Ratio
  • the base station/UE can autonomously select the training beam.
  • the RIS device in the scenario where information is forwarded between the base station and the terminal through a relay device such as RIS, the RIS device can be used to enhance the terminal signal.
  • the terminal in low-rate services, the terminal can communicate directly with the base station, and in high-rate services, the terminal can enhance the signal quality and provide communication rate with the assistance of the RIS device. Therefore, before scheduling the RIS device to serve the terminal, the network must train the receiving/forwarding beam of the RIS device to ensure the channel quality of the cascade channel of the base station-RIS-terminal.
  • the RIS device does not have baseband signal processing capabilities and can only forward analog beams, the beam training method in the related art is not applicable to scenarios where RIS devices exist.
  • a beam training method is defined in a scenario where a RIS device exists, so that a relay device (i.e., a first device in an embodiment of the present application) can participate in beam training between a network side device, a relay device, and a terminal based on a first parameter and/or a second parameter.
  • a relay device i.e., a first device in an embodiment of the present application
  • the beam training process at least one of an outgoing beam, an outgoing angle, an incident beam, and an incident angle of the relay device can be determined.
  • the outgoing beam in the embodiment of the present application is equivalent to the transmitting beam, the transmitting angle, and the outgoing angle;
  • the incident beam in the embodiment of the present application is equivalent to the receiving beam, the receiving angle, and the incident angle.
  • the training beam in the embodiment of the present application can also be referred to as "managing or scanning or traversing the beam".
  • the process of training the beam can be switching the beam or beam-related parameters to determine the final beam.
  • an embodiment of the present application provides a transmission method, the execution subject of which is a first device.
  • the transmission method executed by the first device may include the following steps:
  • Step 401 The first device receives a first signal based on a first parameter, and/or sends a first signal based on a second parameter.
  • the first device may be a relay device capable of receiving and forwarding signals, such as a RIS device, a network controlled repeater (NCR), etc.
  • the relay device is a RIS device as an example for illustration.
  • the RIS device may include an active RIS device, a passive RIS device, or a hybrid RIS device.
  • the device may include active RIS units and/or passive RIS units, which are not specifically limited here. If it is an active RIS device, the RIS device includes an active unit; if it is a passive RIS device, the RIS device includes a passive unit; if it is a hybrid RIS device, the RIS device includes an active unit and a passive unit.
  • the first device is connected to an upstream node second device (such as a network-side device such as a base station), and the second device A device is connected to a downstream node third device (such as a terminal).
  • the beam training process may be to adjust the transmission parameters (such as beam, receiving angle, transmitting angle, incident angle, exit angle, etc.) of at least one of the second device, the first device and the third device, and the third device may receive and/or measure the first signal sent by the second device and forwarded by the first device to obtain a measurement result, and at least one of the second device, the first device and the third device may determine a beam that can meet the communication quality requirements based on the measurement result.
  • the overall process of training the beam can be that the second device sends a group of first signals, the first device receives and forwards the group of first signals, the third device receives and/or measures the group of first signals sent by the second device and forwarded by the first device, and obtains the measurement results. Then, the second device, the first device, the third device, or even at least one of the core network devices can obtain the measurement results and determine the beam of at least one of the second device, the first device, and the third device based on this.
  • the first device sends the first signal based on the second parameter, which may be that the first device reflects or refracts the incident first signal based on the second parameter.
  • Step 402 The first device sends and/or receives data information based on first information, wherein the first information includes parameters determined based on a measurement result of the first signal.
  • the first information may include an outgoing beam or an outgoing angle, and an incident beam or an incident angle determined through beam training.
  • the first device sends and/or receives data information based on the first information.
  • the first device may send data information based on the determined outgoing beam or outgoing angle, and/or receive data information based on the determined incident beam or incident angle.
  • the above beam training may also be training a beam in a downlink (DL).
  • DL downlink
  • a first device receives a first signal from a second device based on a first parameter, and/or the first device refracts or reflects the first signal based on a second parameter to send the first signal to a third device.
  • At least one of the following beams may be trained:
  • a DL transmission beam or transmission angle of the second device for example, beam 1 as shown in FIG. 4 ;
  • a DL incident beam or incident angle of the first device for example, beam 2 as shown in FIG. 4 ;
  • a DL outgoing beam or outgoing angle of the first device for example, beam 3 as shown in FIG. 4 ;
  • the DL receive beam or transmit angle of the third device for example, beam 4 as shown in FIG. 4 .
  • the beam training may also be training a beam in an uplink (UL), for example, the first device receives a first signal from a third device based on a first parameter, and/or refracts or reflects the first signal based on a second parameter to send the first signal to the second device, and at least one of the following beams may be trained:
  • UL uplink
  • the beams in UL and the beams in DL may be trained separately.
  • the beams in UL or DL may be trained, and for beams that are not trained, Determined based on the reciprocity of UL and DL.
  • the incident angle or incident beam of the first device determined in DL is the exit angle or exit beam of the first device in UL
  • the exit angle or exit beam of the first device determined in DL is the incident angle or incident beam of the first device in UL
  • the transmission angle or transmission beam of the second device determined in DL is the receiving angle or receiving beam of the second device in UL
  • the receiving angle or receiving beam of the third device determined in DL is the transmitting angle or transmitting beam of the third device in UL.
  • beam training in DL is taken as an example for illustration, which does not constitute a specific limitation herein, and for beam training in UL, reference may be made to the description of beam training in DL.
  • the first parameter includes: at least one of an incident angle, an incident beam, and control information of the first device;
  • the second parameter includes: at least one of an exit angle, an exit beam, and control information of the first device.
  • the first parameter and/or the second parameter includes at least one of the following: a reference signal identification (ID) of the first signal, an incident beam ID, and a resource ID of the first signal.
  • ID reference signal identification
  • each incident beam or receiving beam can correspond to an incident angle or receiving angle
  • each outgoing beam or transmitting beam can correspond to an outgoing angle or transmitting angle. That is to say, the incident/receiving beam in the embodiment of the present application can be replaced by the incident/receiving angle, and the outgoing/transmitting beam can be replaced by the outgoing/transmitting angle.
  • the first device may be a RIS device
  • the control information of the first device may be at least one of the state control information of the RIS unit array, the phase matrix, and the codebook.
  • the phase matrix may be a predefined/preconfigured/configured parameter, indexed by index.
  • the control information in the first parameter may be an index of an incident angle, and if there are k1 incident angles, the index size may be k1 index values.
  • the control information in the second parameter may be an index of an exit angle, and if there are k2 incident angles, the index size may be k2 index values.
  • the RIS device can generate the state control information/codebook of the corresponding RIS unit array through the incident angle or the exit angle.
  • the horizontal incident angle is ⁇
  • the horizontal exit angle is ⁇
  • the RIS unit array is an M*N rectangular array
  • the interval between adjacent RIS units is ⁇ /2.
  • the phase difference between the forwarding signal of the RIS unit numbered (i,j) and the forwarding signal of the RIS unit numbered (0,0) is i ⁇ (sin ⁇ -sin ⁇ ).
  • the state of the RIS unit (i,j) is adjusted according to the above phase difference so that the phase of the forwarding signal of the RIS unit (i,j) and the RIS unit (0,0) is positively superimposed, thereby obtaining the expected codebook.
  • the first parameter represents the receiving or incident parameter of the first device
  • the second parameter represents the sending or reflection or refraction parameter of the first device.
  • the number of the first parameters may be K1
  • the number of the second parameters may be K2, and K1 satisfies at least one of the following:
  • K1 is a value that is predefined, preconfigured, configured, or indicated by the network side;
  • K1 is a value greater than or equal to 1
  • K1 is equal to 1;
  • K1 is greater than or equal to 1;
  • K2 satisfies at least one of the following:
  • K2 is a value that is predefined, preconfigured, configured, or indicated by the network side;
  • K2 is a value greater than or equal to 1
  • K2 is equal to 1;
  • K2 is greater than or equal to 1.
  • the beam of the first device remains unchanged, that is, the first parameter and the second parameter remain unchanged; during the process of training the incident beam of the first device, the second parameter remains unchanged, and the first device receives a group of first signals in a beam scanning or polling manner with at least two first parameters; during the process of training the outgoing beam of the first device, the first parameter remains unchanged, and the first device sends a group of first signals in a beam scanning or polling manner with at least two first parameters.
  • the first device receives a first signal based on a first parameter, and/or sends a first signal based on a second parameter.
  • the first device may receive the first signal with different first parameters or send the first signal with different second parameters, wherein the transmission performance of the first signal may be different under different first parameters or second parameters.
  • the first information is determined from the first parameter or the second parameter based on the measurement result of the first signal, for example: the first parameter and the second parameter used when the transmission performance of the first signal is optimal are selected as the first information, or the first parameter and the second parameter are selected as the first information when the transmission performance of the first signal meets the communication quality requirements.
  • the first device receives a first signal based on a first parameter
  • the first device may receive information with a first parameter that is predefined, preconfigured, configured, or indicated by a network side device, for example: receiving control information transmitted through a control link, or, in the process of training a beam of a second device or a third device, the first device receives a first signal with a first parameter that is predefined, preconfigured, configured, or indicated by a network side device.
  • the first device sends a first signal based on a second parameter, which may be that the first device sends information with a second parameter that is predefined, preconfigured, configured, or indicated by a network side device, for example: sending control information transmitted via a control link to the second device, or, in the process of training a beam of the second device or a third device, the first device sends a first signal with a second parameter that is predefined, preconfigured, configured, or indicated by a network side device.
  • a second parameter may be that the first device sends information with a second parameter that is predefined, preconfigured, configured, or indicated by a network side device, for example: sending control information transmitted via a control link to the second device, or, in the process of training a beam of the second device or a third device, the first device sends a first signal with a second parameter that is predefined, preconfigured, configured, or indicated by a network side device.
  • the parameter value of the first parameter and/or the second parameter includes at least one of the following:
  • the parameter value indicated by the identifier for example: the correspondence between the index/identifier and the parameter value is pre-stored, then when a certain identifier is indicated, the parameter value of the first parameter or the second parameter can be determined to be the parameter value corresponding to the identifier;
  • the first device determines a parameter value.
  • the first The device may send the parameter value of the first parameter and/or the second parameter to at least one of the second device and the third device, for example, the first device sends the parameter value of the first parameter and/or the second parameter to the second device and the third device to assist the third device in measuring the measurement result of the first signal and assist the second device and/or the third device in determining the first information.
  • the first device may report the first parameter and/or the second parameter in the form of sending the parameter number or control information number of the first parameter and/or the second parameter.
  • the first device may select one or more parameters from parameters indicated or predefined by the network side as the first parameter and/or the second parameter.
  • the measurement result includes at least one of the following:
  • Channel state information reference signal resource identifier (CSI-RS resource index, CRI);
  • Synchronous signal block resource identifier (SSB resource index, SSBRI);
  • L1-RSRP Layer 1 reference signal received power
  • the RSRP difference may be the difference between the RSRP of the measured signal and the strongest RSRP or the weakest RSRP or the preset RSRP;
  • L1-SINR Layer 1 signal to interference plus noise ratio
  • the parameter number or control information number corresponding to the first parameter and/or the second parameter of the first device is not limited to the first parameter and/or the second parameter of the first device.
  • the L1-RSRP when the measurement result includes L1-RSRP, the L1-RSRP may be the L1-RSRP of the strongest beam, or the difference from the L1-RSRP of the strongest beam, or if there are multiple ports, the linear average of the L1-RSRPs of multiple ports. Reporting the L1-RSRP difference may reduce reporting overhead.
  • the embodiments of the present application provide that the first parameter and the second parameter are trained separately.
  • the receiving beam of the first device is jointly trained with the transmitting beam of the second device, and the transmitting beam of the first device is jointly trained with the receiving beam of the third device.
  • the beam is trained in two steps;
  • Step 51 jointly train the transmission beam of the base station and the incident beam of the relay device
  • Step 52 jointly train the outgoing beam of the relay device and the receiving beam of the terminal.
  • the UE when performing joint training of the gNB transmit beam (gNB TX beam) and the RIS receive beam (RIS RX beam), the second parameter of the RIS (e.g., the emission angle/phase matrix) is predefined, the UE receives the reference signal with a fixed beam, and then determines the gNB TX beam and the RIS RX beam based on the measurement results reported by the UE;
  • the second parameter of the RIS e.g., the emission angle/phase matrix
  • UE receives reference signals using multiple beams and determines the RIS TX beam and UE RX beam based on the measurement results reported by the UE.
  • the receiving beam of the first device and the transmitting beam of the second device are jointly trained, and the transmitting beam of the first device and the receiving beam of the third device are independently trained.
  • the beam is trained in three steps;
  • Step 61 jointly train the transmission beam of the base station and the incident beam of the relay device
  • Step 62 independently train the outgoing beam of the relay device
  • Step 63 Independently train the receiving beam of the terminal.
  • the receiving beam of the first device, the transmitting beam of the second device, the transmitting beam of the first device, and the receiving beam of the third device are trained independently.
  • the beam is trained in four steps;
  • Step 71 independently training the receiving beam of the base station
  • Step 72 independently training the incident beam of the relay device
  • Step 73 independently train the outgoing beam of the relay device
  • Step 74 Independently train the receiving beam of the terminal.
  • the transmission method further includes:
  • the first device receives first indication information, where the first indication information is used to instruct or configure the first device to transmit the first parameter and/or the second parameter of a first signal.
  • the first device may receive first indication information from the second device.
  • the second device sends first indication information to the first device and sends second indication information to the third device, so that the first device and the third device transmit the first signal according to the indication of the second device.
  • the first indication information may be carried in at least one of the following signalings:
  • F1-AP F1 application protocol
  • RRC Radio Resource Control
  • MAC CE Medium Access Control Control Element
  • DCI Downlink Control Information
  • BAP PDU Backhaul Access Protocol Packet Data Unit
  • the first indication information is used to configure or indicate at least one of the following:
  • the repetition state of the first signal is on, or the repetition state of the first signal is off, for example: the repetition state of the first signal sent by the second device is configured to be on or off;
  • the first signal is repeatedly used to train the first parameter and a third parameter, the third parameter is a sending parameter of the first signal by the second device, and the second device is a sending end of the first signal received by the first device;
  • the first signal is repeatedly used to train the second parameter and a fourth parameter, the fourth parameter is a parameter for a third device to receive the first signal, and the third device is a receiving end of the first signal sent by the first device;
  • the first signal is repeatedly used to train the second parameter
  • the first signal is repeatedly used to train the fourth parameter
  • the first signal is repeatedly used to train the first parameter
  • the transmission beam of the second device is repeated or non-repeated
  • the receiving beam of the third device is repeated or not;
  • the transmission beam of the first device is repeated or non-repeated
  • the receiving beam of the first device is repeated or non-repeated
  • the first device receives a set of beams of a first signal.
  • the beam of the second device when the first indication information indicates that the repeated transmission state of the first signal is on, the beam of the second device can be trained, or the transmit beam of the second device and the receive beam of the first device can be jointly trained.
  • the receiving beam of the first device, the transmitting beam of the first device or the receiving beam of the third device can be trained independently, or the transmitting beam of the first device and the receiving beam of the third device can be jointly trained.
  • the first indication information can also clearly indicate which beam or beams the first signal is repeatedly used to train, for example: indicating that it is used to jointly train the first parameter and the third parameter, or to jointly train the second parameter and the fourth parameter, or to independently train the second parameter, or to independently train the fourth parameter, or to independently train the first parameter.
  • the first indication information may indicate whether the beam of the device is repeated, wherein if the beam of the device is not repeated, it indicates that the beam of the device is trained, for example: if it indicates that the transmitting beam of the second device is not repeated, it may be training the transmitting beam of the second device; if it indicates that the transmitting beam of the second device and the incident beam of the first device are not repeated, the transmitting beam of the second device and the incident beam of the first device may be jointly trained; if it indicates that the receiving beam of the third device is not repeated, it may be training the receiving beam of the third device; if it indicates that the receiving beam of the third device and the outgoing beam of the first device are not repeated, the outgoing beam of the first device and the receiving beam of the third device may be jointly trained; if it indicates that the incident beam of the first device is not repeated, the incident beam of the first device may be trained; if it indicates that the outgoing beam of the first device is not repeated, the outgoing beam of the first device may be trained.
  • the first indication information may directly indicate which incident beam or beams to use, and/or which outgoing beam or beams to use, to the first device.
  • the first indication information may instruct the first device to forward a group of first signals using a fixed first parameter (that is, the receiving beam of the first device is fixed), or to forward the group of first signals using multiple first parameters in a polling manner (training the receiving beam of the first device); or the second indication information indicates the first parameter number when the first device forwards a first signal, that is, indirectly instructing the first device to forward the first signal using a fixed or polled first parameter.
  • the first indication information may instruct the first device to forward a group of first signals using a fixed second parameter (that is, the transmit beam of the first device is fixed), or to forward the group of first signals using multiple second parameters in a polling manner (training the transmit beam of the first device); or, the second indication information may instruct the first device to forward a certain
  • the second parameter number of the first signal indirectly indicates that the first device adopts a fixed or polled second parameter to forward the first signal.
  • the first indication information satisfies at least one of the following:
  • the repetition transmission state and the training object of the first signal are jointly indicated, and the training object includes at least one of the first parameter, the second parameter and the fourth parameter;
  • the repetition transmission state and the training object of the first signal are independently indicated.
  • the first indication information includes an F bit, where the F bit indicates at least one of the following:
  • One code point indicates that the first signal is not repeated/repetition'off'
  • a code point indicates that the first signal repetition/repetition 'on' is used for BH link beam training; or indicates that the second device sends beam training and the first device receives beam training;
  • a code point indicates that the first signal repetition/repetition 'on' is used for AC link beam training; or indicates that the first device sends beam training and the third device receives beam training;
  • a code point indicates that the first signal repetition/repetition 'on' is used for the first device to send beam training
  • a code point indicates a first signal repetition/repetition 'on' for receiving beam training of the first device
  • a code point indicates that the first signal is repeated/repetition 'on' for third device beam training.
  • the first indication information includes three independent indication bits, indicating at least one of the following:
  • 1 bit indicates repetition is ‘on’ or ‘off’, 1 bit indicates it is used for BH link beam training, or for AC link beam training;
  • 1 bit indicates that repetition is ‘on’ or ‘off’
  • 2 bits indicate that the second device is used to send beam training and the first device is used to receive beam training, or that the first device is used to send beam training, or that the third device is used to receive beam training.
  • 1 bit indicates that repetition is ‘on’ or ‘off’
  • 2 bits indicate that it is used for the second device to send beam training, or for the first device to receive beam training, or for the first device to send beam training, or for the third device to receive beam training.
  • the receiving and/or transmitting beam of the first device and/or the receiving beam of the third device may be indicated by the second device.
  • the second device sends the first indication information to the first device, instructing the first device to transmit a group of first signals using fixed first parameters and second parameters, or to receive or forward a group of first signals in a polling manner using multiple first parameters or second parameters.
  • the first parameter and second parameter numbers when instructing the first device to forward a certain first signal indirectly instruct the first device to forward the first signal using fixed or polled target parameters.
  • the second device sends a second indication message to the third device, instructing the third device to use a fixed beam to receive the group of first signals (wherein, the receiving beam directions of a group of first signals are different), or to use beam scanning to receive the group of first signals (i.e., indicating that the receiving beam directions of a group of signals are the same).
  • the first device and the third device can perform beam training according to the instruction of the second device.
  • the number of the first parameters is K1
  • the number of the second parameters is K2
  • the first information includes one first parameter among the K1 first parameters
  • the first information includes one second parameter among the K2 second parameters
  • K1 and K2 are positive integers.
  • the K1 first parameters include an incident angle or an incident beam
  • the K2 second parameters include an exit angle or an exit beam
  • the first device receives a first signal based on the K1 first parameters, and sends the first signal based on a second parameter that is predefined, preconfigured, configured, or indicated by a network side, where K1 is an integer greater than or equal to 1;
  • the first device receives a first signal based on a first parameter that is predefined, preconfigured, configured or indicated by the network side, and sends the first signal based on the K2 second parameters, where K2 is an integer greater than or equal to 1.
  • the first device receives the first signal based on the K1 first parameters, and sends the first signal based on a second parameter that is predefined, preconfigured, configured or indicated by the network side, which may be a receiving beam for training the first device; the first device receives the first signal based on a first parameter that is predefined, preconfigured, configured or indicated by the network side, and sends the first signal based on the K2 second parameters, which may be a transmitting beam for training the first device.
  • the first device receiving the first signal based on the first parameter, and/or sending the first signal based on the second parameter includes:
  • the first device When a first preset condition is met, the first device receives a first signal with at least two first parameters, and sends the first signal with preset parameters.
  • the first preset condition includes at least one of the following:
  • the repetitive transmission state of the first signal is off
  • the first signal is repeatedly used for training the first parameter and/or a third parameter, the third parameter is a sending parameter of the first signal by the second device, and the second device is a sending end of the first signal received by the first device;
  • the repetitive transmission state of the first signal is on, and/or the first signal is repeatedly used for training the first parameter and/or the third parameter;
  • the first device is configured or instructed to perform beam training or receive a first signal using at least two first parameters
  • the transmit beam of the second device is repeated;
  • the receiving beam of the first device is non-repetitive
  • the transmit beam of the first device is repeated
  • the receiving beam of the third device is repeated, and the third device is a receiving end of the first signal sent by the first device.
  • satisfying the above-mentioned first preset condition can represent training the receiving beam of the first device, or jointly training the transmitting beam of the second device and the receiving beam of the first device.
  • the third device can receive a group of first signals with a fixed beam, or the third device assumes that the downlink spatial transmission filter is the same.
  • the first device receiving the first signal based on the first parameter, and/or sending the first signal based on the second parameter includes:
  • the first device When the second preset condition is met, the first device receives the first signal with preset parameters and sends the first signal with at least two second parameters.
  • the second preset condition includes at least one of the following:
  • the repetition state of the first signal is off, and/or the first signal is repeatedly used for the second parameter and training of a fourth parameter, wherein the fourth parameter is a parameter for the third device to receive the first signal;
  • the repetitive transmission state of the first signal is on, and/or the first signal is repeatedly used for training the second parameter and the fourth parameter or the first signal is repeatedly used for training the second parameter;
  • the first device is configured or instructed to perform beam training and/or send a first signal using at least two second parameters;
  • the transmit beam of the second device is repeated;
  • the transmission beam of the first device is non-repetitive
  • the receive beam of the third device is repeated.
  • satisfying the above-mentioned second preset condition may include: independently training the transmit beam of the first device, or jointly training the transmit beam of the first device and the receive beam of the third device. At this time, a group of first signals are received based on a fixed beam on the independent third device, or the third device assumes that the downlink spatial transmission filter is the same.
  • the first device receiving the first signal based on the first parameter, and/or sending the first signal based on the second parameter includes:
  • the first device receives and/or sends the first signal with preset parameters, or the first device assumes that the downlink spatial transmission filters are the same.
  • the third preset condition includes at least one of the following:
  • the repeated transmission state of the first signal is on
  • the first signal is repeatedly used for training the fourth parameter
  • the third device is configured or instructed to perform beam training and/or receive a set of first signals using at least two fourth parameters;
  • the transmit beam of the second device is repeated;
  • the receiving beam and/or transmitting beam of the first device is repeated;
  • the receiving beam of the third device is non-repetitive.
  • satisfying the above-mentioned second preset condition may mean training the beam of the third device or jointly training the transmitting beam of the first device and the receiving beam of the third device.
  • the third device can receive information with N beams, and N may be the number of beams that the third device needs to train.
  • the first control information set includes the K1 first parameters
  • the second control information set includes the K2 second parameters
  • the first device receives a first signal based on a first parameter, and/or sends a first signal based on a second parameter, including:
  • the first device receives a first signal based on the first control information set, and/or sends a first signal based on one control information, that is, uses K1 beams to receive the first signal and fixes the transmission beam;
  • the first device receives a first signal based on a control information, and/or sends a second signal based on the second control information set.
  • a signal is transmitted, that is, the beam receiving beam is fixed, and the first signal is transmitted using K2 transmitting beams.
  • the first device receiving the first signal based on the first parameter includes:
  • the first device receives a group of first signals based on a first parameter, where the group of first signals includes M first signals, where M is an integer greater than or equal to 1.
  • the second device may send a group of first signals, and the group of first signals may include M first signals.
  • the value of M may be predefined, preconfigured, configured, or indicated by the network side; or, the maximum value and/or minimum value of M may be predefined, preconfigured, configured, or indicated by the network side.
  • the size and/or position of the resources (time domain/frequency domain/spatial domain) of the M first signals are predefined, preconfigured, configured or indicated by the network side.
  • the first signal is periodic, semi-static, or non-periodic.
  • resource sizes of the M first signals are the same.
  • the group of first signals is a repeated signal
  • the group of first signals being a repeated signal means that the second device uses the same beam to send a group of first signals.
  • it can be used to independently train the receiving beam of the first device, the transmitting beam of the first device, and the receiving beam of the third device, or jointly train the transmitting beam of the second device and the receiving beam of the first device, or jointly train the transmitting beam of the first device and the receiving beam of the third device, and the number of repetitions M of the first signal satisfies one of the following:
  • the number of repetitions satisfies at least one of the following:
  • the value of the number of repetitions is a value predefined, preconfigured, configured or indicated by the network side;
  • the number of repetitions is configured or indicated as N;
  • the number of repetitions is configured or indicated as K1;
  • the number of repetitions is configured or indicated as K2*N;
  • the number of repetitions is configured or indicated as K1;
  • the number of repetitions is configured or indicated as K2;
  • K1 is related to the parameter configuration of the first device, for example: K1 is the number of incident beams/receiving beams of the first device, K2 is related to the parameter configuration of the first device, for example: K2 is the number of outgoing beams/transmitting beams of the first device, and N is related to the parameter configuration of the third device, and the third device is the receiving end of the first signal sent by the first device, for example: N is the number of receiving beams of the third device.
  • the M first signals are non-repetitive signals.
  • a group of first signals being non-repetitive signals means that the second device uses different beams to send a group of first signals.
  • the non-repetitive signals are used for gNB TX beam training.
  • the number of non-repetitive signals depends on (or is equal to) the number of gNB TX beams to be trained.
  • the M first signals include repeated signals and non-repetitive signals.
  • the signals in each subset are repeated signals, and the signals between different subsets are non-repeated signals; or,
  • the signals in each subset are non-repetitive signals, and the signals between different subsets are repetitive signals.
  • signal #1 in subset #1 and signal #1 in subset #2 use the same beam.
  • the number of repetitions of the second device beam required for the incoming beam training of the first device, the outgoing beam training of the first device, and the receiving beam training of the third device may be different;
  • the number of second device beam repetitions required for BH link and AC link may be different;
  • the BH link may have different numbers of beam repetitions required by the first device to send a beam and the third device to receive the beam.
  • the method further includes at least one of the following:
  • the first device sends first capability information, where the first capability information includes at least part of the first parameter and the second parameter;
  • the first device receives fourth information, where the fourth information is used to configure or indicate at least part of parameters of the first parameter and the second parameter.
  • the first capability information may be carried in at least one of the following: operation administration and maintenance (OAM) signaling, RRC signaling, MAC CE, uplink control information (UCI), physical uplink control channel (PUCCH), and physical uplink shared channel (PUSCH).
  • OAM operation administration and maintenance
  • RRC Radio Resource Control
  • MAC CE uplink control information
  • UCI uplink control information
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the second device and the first device can negotiate the first parameter and/or the second parameter.
  • the first device sends the transmission parameters supported by the first device to the second device through the first capability information, and the second device selects the first parameter and/or the second parameter from the transmission parameters supported by the first device as needed, and sends the selected first parameter and/or second parameter to the first device through the fourth information; or, the second device sends the candidate transmission parameters to the first device through the fourth information, and the first device selects part or all of them as the first parameter and/or the second parameter.
  • the first device may also send the selected first parameter and/or second parameter to the second device.
  • the first device in a scenario where the first device acts as a relay device between the second device and the third device, the first device receives the first signal based on the first parameter, so that the receiving beam of the first device can be trained; and/or the first device sends the first signal based on the second parameter, so that the transmitting beam of the first device can be trained, and data information is sent and/or received based on the beam determined by the measurement result of the first signal during the training process, so that the beam from the second device to the first device can be aligned, and/or the beam from the first device to the third device can be aligned, or a suitable beam can be selected, thereby improving the data transmission quality from the second device to the third device.
  • FIG8 a transmission method provided in an embodiment of the present application, wherein the execution subject is a third device, and the third device may be a downstream node of the first device, for example, a terminal.
  • the embodiment of the present application is similar to the method embodiment shown in FIG4 , and the differences include: the execution subject of the method embodiment shown in FIG8 is the third device, and the execution subject of the method embodiment shown in FIG4 is the first device.
  • the execution subject of the method embodiment shown in FIG4 is the first device.
  • the transmission method performed by the third device may include the following steps:
  • Step 801 The third device receives a first signal and obtains a measurement result of the first signal, wherein the first signal is a signal sent by the second device and forwarded by the first device.
  • Step 802 The third device sends the measurement result.
  • the third device can send the measurement result to at least one of the second device and the first device, so that at least one of the second device and the first device can determine the first information from the first parameter and/or the second parameter based on the measurement result, that is, select the receiving beam and/or transmitting beam of the first device.
  • the third device receives the first signal, including at least one of the following:
  • the third device receives the first signal based on the second target parameter
  • the third device receives data information based on second information, where the second information is determined from the second target parameter based on the measurement result;
  • the third device receives the first signal with a predefined, preconfigured or configured receive beam.
  • the second device may repeatedly send the first signal, and the first device may transmit the first signal with a predefined, preconfigured or configured beam to train the beam of the third device, or the second device may repeatedly send the first signal, and the first device may receive the first signal with a predefined, preconfigured or configured receiving beam, and send the first signal based on at least two second parameters to jointly train the transmitting beam of the first device and the receiving beam of the third device.
  • the receiving beam of the third device may be an omnidirectional beam, or the third device determines a receiving beam of the first signal based on implementation, the second device may send a non-repeating first signal, and/or the first device may transmit the first signal with different beams to train the beams of the second device and/or the first device.
  • the second target parameter includes: a receiving angle, a receiving beam, and at least one of control information of the third device.
  • the control information of the third device may be a phase matrix, a codebook, etc.
  • the second target parameter includes:
  • a fourth parameter where the fourth parameter is a parameter for the third device to receive the first signal.
  • the third device receives the first signal based on the second target parameter, including at least one of the following:
  • the third device receives the first information with a fourth parameter that is predefined, preconfigured, configured, or indicated by the network side;
  • the third device receives the first signal with N fourth parameters.
  • the third device may receive the first signal with N fourth parameters in a polling or beam scanning manner to train the beam of the third device, or jointly train the transmit beam of the first device and the receive beam of the third device.
  • the measurement result includes at least one of the following:
  • Synchronization signal block resource identifier SSBRI Synchronization signal block resource identifier
  • the parameter number or control information number corresponding to the target parameter of the first device is the parameter number or control information number corresponding to the target parameter of the first device.
  • the number of the measurement results is L, where L is an integer greater than or equal to 1;
  • the value of L is predefined, preconfigured, configured, indicated by the network side or determined by the third device.
  • the maximum value of L is predefined, preconfigured, configured, or indicated by the network side.
  • the first device may not report the measurement result, or the reported measurement result may be "none", in which case it may indicate that the first device has not received the first signal.
  • the third device sending the measurement result includes:
  • the third device sends the measurement result on preconfigured or configured resources (such as time domain resources and/or frequency domain resources and/or a beam indicated by a beam index).
  • preconfigured or configured resources such as time domain resources and/or frequency domain resources and/or a beam indicated by a beam index.
  • the transmission method further includes:
  • the third device receives second indication information, where the second indication information is used to indicate or configure the third device to receive a second target parameter of the first signal.
  • the second indication information is used to configure or indicate at least one of the following:
  • the repeated transmission state of the first signal is on, or the repeated transmission state of the first signal is off;
  • the first signal is repeatedly used to train a first parameter and a third parameter, the third parameter is a sending parameter of the first signal by the second device, the second device is a sending end of the first signal received by the first device, and the first parameter is a sending parameter of the first device;
  • the first signal is repeatedly used to train a second parameter and a fourth parameter, the fourth parameter is a parameter for the third device to receive the first signal, the third device is a receiving end of the first signal sent by the first device, and the second parameter is a receiving parameter of the first device;
  • the first signal is repeatedly used to train the second parameter
  • the first signal is repeatedly used to train the fourth parameter
  • the first signal is repeatedly used to train the first parameter
  • the transmission beam of the second device is repeated or non-repeated
  • the receiving beam of the third device is repeated or not;
  • the transmission beam of the first device is repeated or non-repeated
  • the receiving beam of the first device is repeated or non-repeated
  • the third device receives a set of beams of the first signal.
  • the second indication information may be the same indication information as the first indication information in the method embodiment shown in FIG. 4 , for example: the second device sends the same DCI to the first device and the third device, and the indication information carried in the DCI is the first indication information and the second indication information.
  • the second indication information is used to configure or indicate at least one of the following:
  • the repeated transmission state of the first signal is on, or the repeated transmission state of the first signal is off;
  • the first signal is repeatedly used to train a first parameter and a third parameter, the third parameter is a sending parameter of the first signal by the second device, the second device is a sending end of the first signal received by the first device, and the first parameter is a sending parameter of the first device;
  • the first signal is repeatedly used to train a second parameter and a fourth parameter, the fourth parameter is a parameter for the third device to receive the first signal, the third device is a receiving end of the first signal sent by the first device, and the second parameter is a receiving parameter of the first device;
  • the first signal is repeatedly used to train the second parameter
  • the first signal is repeatedly used to train the fourth parameter
  • the first signal is repeatedly used to train the first parameter
  • the transmission beam of the second device is repeated or non-repeated
  • the receiving beam of the third device is repeated or not;
  • the transmission beam of the first device is repeated or non-repeated
  • the receiving beam of the first device is repeated or non-repeated.
  • the second indication information may be different from the first indication information in the method embodiment shown in FIG. 4 , for example: the second device sends a DCI to the first device, the DCI carries the first indication information, and the second device sends another DCI to the third device, the DCI carries the second indication information.
  • the second device sends a first indication message to the first device, instructing the first device to forward a group of first signals using fixed target parameters, or to forward the group of first signals in a polling manner using multiple target parameters.
  • the first indication message may indicate the target parameter number when the first device forwards a certain first signal, that is, indirectly instructing the first device to forward the first signal using a fixed or polled target parameter.
  • the second device 2 sends a second indication message to the third device, instructing the third device to receive the group of first signals using a fixed beam, or to receive the group of first signals using a beam scanning method.
  • the third device may transmit the first signal and/or the measurement result based on the instruction of the second device.
  • the third device obtains a measurement result of the first signal, including:
  • the third device sends the measurement result of the first signal using a first configuration parameter, where the first configuration parameter is a parameter for training and reporting the second parameter and/or the fourth parameter.
  • the first condition includes at least one of the following:
  • the second indication information configures or indicates that the repeated transmission state of the first signal is turned on
  • the second indication information configures or indicates that the repeated transmission state of the first signal is turned on, and the first signal is repeatedly used for training the second parameter and/or the fourth parameter.
  • the AC link is trained for beamforming.
  • the third device obtains a measurement result of the first signal, including:
  • the third device When the second indication information satisfies the second condition, the third device sends the The measurement result of the first signal, the second configuration parameter is a parameter reported by training the first parameter and/or the third parameter.
  • the second condition includes at least one of the following:
  • the second indication information configures or indicates that the repetitive transmission state of the first signal is off, and the first signal is repeatedly used for wave training of the first parameter and/or the third parameter;
  • the second indication information configures or indicates that the repeated transmission state of the first signal is turned on, and the first signal is repeatedly used for wave training of the first parameter and/or the third parameter.
  • the third device obtains a measurement result of the first signal, including:
  • the third device When the second indication information satisfies a third condition, the third device sends a measurement result of the first signal using a third configuration parameter, where the third configuration parameter is a parameter for training and reporting the second parameter.
  • the third condition includes at least one of the following:
  • the second indication information configures or indicates that the repetitive transmission state of the first signal is off, and the first signal is repeatedly used for training the second parameter
  • the second indication information configures or indicates that the repeated transmission state of the first signal is turned on, and the first signal is repeatedly used for training the second parameter.
  • beam training is performed on the transmit beam of the first device.
  • the third device obtains a measurement result of the first signal, including:
  • the third device When the second indication information satisfies a fourth condition, the third device sends a measurement result of the first signal using a fourth configuration parameter, where the fourth configuration parameter is a parameter for training and reporting the fourth parameter.
  • the fourth condition includes at least one of the following:
  • the second indication information configures or indicates that the repeated transmission state of the first signal is turned on
  • the second indication information configures or indicates that the repetitive transmission state of the first signal is turned on, and the first signal is repeatedly used for training the fourth parameter
  • beam training is performed on the receiving beam of the third device.
  • the third device obtains a measurement result of the first signal, including:
  • the third device sends the measurement result of the first signal using a fifth configuration parameter, where the fifth configuration parameter is a parameter for training and reporting the first parameter.
  • the fifth condition includes at least one of the following:
  • the second indication information configures or indicates that the repetitive transmission state of the first signal is off, and the first signal is repeatedly used for training the first parameter
  • the second indication information configures or indicates that the repeated transmission state of the first signal is turned on, and the first signal is repeatedly used for training the first parameter.
  • beam training is performed on the receiving beam of the first device.
  • the first configuration parameter, the second configuration parameter, the third configuration parameter, the fourth configuration parameter The number L of reported measurement results included in the first configuration parameter, the second configuration parameter, the third configuration parameter, the fourth configuration parameter and the fifth configuration parameter may be the same or different, and the number L of reported measurement results in the first configuration parameter, the second configuration parameter, the third configuration parameter, the fourth configuration parameter and the fifth configuration parameter may be the same or different.
  • the third device obtains a measurement result of the first signal, including:
  • the third device receives the first signal with preset parameters, or the third device assumes that the downlink spatial domain transmission filters are the same;
  • the third device receives the first signal with at least two parameters.
  • the first preset condition includes at least one of the following:
  • the first signal is repeatedly used for training the first parameter and/or the third parameter
  • the repetitive transmission state of the first signal is on, and/or the first signal is repeatedly used for training the first parameter and/or the third parameter;
  • the first device is configured or instructed to perform beam training or receive a first signal using at least two first parameters
  • the transmit beam of the second device is repeated;
  • the receiving beam of the first device is non-repetitive
  • the transmit beam of the first device is repeated
  • the receiving beam of the third device is repeated;
  • the second preset condition includes at least one of the following:
  • the repetitive transmission state of the first signal is off, and/or the first signal is repeatedly used for training the second parameter and the fourth parameter;
  • the repetitive transmission state of the first signal is on, and/or the first signal is repeatedly used for training the second parameter and the fourth parameter or the first signal is repeatedly used for training the second parameter;
  • the first device is configured or instructed to perform beam training and/or send a first signal using at least two second parameters;
  • the transmit beam of the second device is repeated;
  • the transmission beam of the first device is non-repetitive
  • the receiving beam of the third device is repeated;
  • the third preset condition includes at least one of the following:
  • the repeated transmission state of the first signal is on
  • the first signal is repeatedly used for training the fourth parameter
  • the third device is configured or instructed to perform beam training and/or receive a set of first signals using at least two fourth parameters;
  • the transmit beam of the second device is repeated;
  • the receiving beam and/or transmitting beam of the first device is repeated;
  • the receiving beam of the third device is non-repetitive.
  • the transmission method further includes:
  • the third device determines first identification information of the first parameter and/or the second parameter or second identification information of the reference signal resource corresponding to the first parameter and/or the second parameter;
  • the third device sends the first identification information or the second identification information.
  • the third device can obtain the resource number of the received first signal, or determine the first parameter and/or second parameter of the first signal transmitted by the first device, and send the resource number, or the identifier of the first parameter and/or the second parameter, so that the second device or the first device can determine the measurement result as the measurement result of the first signal using which transmission parameter, and select the beam accordingly.
  • the transmission method further includes at least one of the following:
  • the third device sends second capability information, where the second capability information includes at least part of a second target parameter, where the second target parameter is a parameter for the third device to receive the first signal;
  • the first device receives fifth information, where the fifth information is used to configure or indicate at least part of parameters of the second target parameter.
  • the third device may send the second capability information to the second device, and/or the third device may receive the fifth information from the second device, so as to achieve negotiation of the second target parameter with the second device.
  • the specific process and principle thereof may refer to the related description of the first device sending the first capability information and/or receiving the fourth information in the method embodiment shown in FIG4 , and will not be repeated here.
  • the embodiment of the present application cooperates with the method embodiment shown in Figure 4 to implement beam training between the second device, the first device and the third device by adjusting the transmission parameters of the first device.
  • FIG9 a parameter determination method provided in an embodiment of the present application, wherein the execution subject is a second device.
  • the embodiment of the present application is similar to the method embodiment shown in FIG4 , except that the execution subject of the method embodiment shown in FIG9 is a second device, while the execution subject of the method embodiment shown in FIG4 is a first device, and the second device may be an upstream node of the first device, for example, a base station.
  • the execution subject of the method embodiment shown in FIG4 is a second device
  • the execution subject of the method embodiment shown in FIG4 is a first device
  • the second device may be an upstream node of the first device, for example, a base station.
  • the parameter determination method performed by the second device may include the following steps:
  • Step 901 The second device sends a first signal.
  • Step 902 The second device receives a measurement result, where the measurement result is a measurement result obtained by receiving and/or measuring the first signal forwarded by the first device.
  • Step 903 The second device determines first information from first parameters and/or second parameters based on the measurement result, wherein the first parameters include receiving parameters of the first device, and the second parameters include sending parameters of the first device.
  • the first parameter includes: at least one of an incident angle, an incident beam, and control information of the first device;
  • the second parameter includes: at least one of an exit angle, an exit beam, and control information of the first device.
  • the second device sends a first signal, including at least one of the following:
  • the second device sends a first signal based on a third target parameter
  • the second device sends data information based on third information, wherein the third information is based on the measurement result and is also used to determine from the third target parameter;
  • the second device transmits a first signal in a predefined, preconfigured or configured transmit beam.
  • the second device may send the first signal with a predefined, preconfigured or configured transmission beam, that is, send a repeated first signal.
  • the beams of the first device and/or the third device may be trained.
  • the second device may send the first signal with a different beam, that is, send a non-repeating first signal.
  • the beam of the second device may be trained, or the receiving beams of the second device and the first device may be jointly trained.
  • the second device can select a beam for sending data information from the trained beams based on the measurement results of the first signal by the third device, for example: selecting a transmitting beam that meets the communication quality requirements, or selecting a transmitting beam with the best communication quality.
  • the third target parameter includes: at least one of a transmission angle, a transmission beam, and control information of the second device.
  • the third target parameter includes:
  • a third parameter where the third parameter is a parameter for the second device to send the first signal.
  • the third parameter is jointly trained with the first parameter, and the second parameter is jointly trained with a fourth parameter, the fourth parameter is a parameter for a third device to receive a first signal, and the third device is a receiving end of the first signal sent by the first device, for example: the beam training process shown in FIG5;
  • the first parameter, the second parameter, the third parameter and the fourth parameter are trained independently, for example, the beam training process shown in FIG7 ;
  • the third parameter is jointly trained with the first parameter, the second parameter is independently trained, and the fourth parameter is independently trained, for example, the beam training process shown in FIG6 .
  • This implementation manner is to train the beam of the third device.
  • the second device selects a beam according to the training result and notifies the third device that the beam can be used to transmit data information.
  • the parameter determination method further includes:
  • the second device sends first indication information to the first device, where the first indication information is used to indicate the first parameter and/or the second parameter;
  • the second device sends second indication information to the third device, where the second indication information is used to instruct the third device to receive a second target parameter of the first signal.
  • the second target parameter includes N fourth parameters
  • the method further includes:
  • the second device determines a fourth parameter from the N fourth parameters according to the measurement result
  • the second device sends indication information of the fourth parameter to the third device.
  • the first indication information and/or the second indication information is used to configure or indicate at least one of the following:
  • the repeated transmission state of the first signal is on, or the repeated transmission state of the first signal is off;
  • the first signal is repeatedly used to train the first parameter and a third parameter, the third parameter is a sending parameter of the first signal by the second device, and the second device is a sending end of the first signal received by the first device;
  • the first signal is repeatedly used to train the second parameter and a fourth parameter, the fourth parameter is a parameter for the third device to receive the first signal, and the third device is a receiving end of the first signal sent by the first device;
  • the first signal is repeatedly used to train the second parameter
  • the first signal is repeatedly used to train the fourth parameter
  • the first signal is repeatedly used to train the first parameter
  • the transmission beam of the second device is repeated or non-repeated
  • the receiving beam of the third device is repeated or not;
  • the transmission beam of the first device is repeated or non-repeated
  • the receiving beam of the first device is repeated or non-repeated
  • the first device receives a set of beams of a first signal
  • the third device receives a set of beams of the first signal.
  • the number of the first parameters is K1, and/or the number of the second parameters is K2, the first information includes one first parameter among the K1 first parameters, and/or the first information includes one second parameter among the K2 second parameters, and K1 and K2 are positive integers.
  • the parameter determination method further includes at least one of the following:
  • the second device receives first capability information from the first device, where the first capability information includes at least part of the first parameter and the second parameter;
  • the second device sends fourth information to the first device, where the fourth information is used to configure or indicate at least part of parameters of the first parameter and the second parameter;
  • the second device receives second capability information from the third device, where the second capability information includes at least part of a second target parameter, where the second target parameter is a parameter for the third device to receive the first signal;
  • the second device sends fifth information to the third device, where the fifth information is used to configure or indicate at least part of parameters of the second target parameter.
  • the parameter determination method further includes at least one of the following:
  • the second device determines, according to a determined third parameter, a receiving parameter of the second device in an uplink transmission scenario
  • the second device determines, according to a determined first parameter, a sending parameter of the first device in an uplink transmission scenario
  • the second device determines, according to a determined second parameter, a reception signal of the first device in an uplink transmission scenario. parameter;
  • the second device determines a sending parameter of the third device in an uplink transmission scenario according to a determined fourth parameter.
  • the receiving parameters of the second device in the uplink transmission scenario can be determined by the second device; the receiving and/or sending parameters of the first device in the uplink transmission scenario can be determined by the first device; and the sending parameters of the third device in the uplink transmission scenario can be determined by the third device.
  • the reception and/or transmission parameters in the downlink transmission scenario can be indicated to the first device.
  • the first device can determine the reception and/or transmission parameters of the first device in the uplink scenario based on the reciprocity of the uplink beam and the downlink beam and the reception and/or transmission parameters in the downlink transmission scenario.
  • the gNB's receive beam is the same as the gNB's transmit beam during DL transmission.
  • the receive beam of the RIS is the same as the transmit beam of the RIS during DL transmission;
  • the transmit beam of the RIS is the same as the receive beam of the RIS during DL transmission;
  • the UE's transmit beam is the same as the RIS's transmit beam during DL transmission.
  • the embodiment of the present application cooperates with the method embodiment shown in FIG. 4 and/or FIG. 8 to implement beam training of a relay device.
  • the training process may include the following processes:
  • the UE receives the reference signal with a fixed beam, and determines the first parameter of the RIS (for example: RIS RX beam) based on the UE measurement report result.
  • K2>1 multiple RIS second parameters
  • the training process may include the following processes:
  • K2>1 multiple RIS second parameters
  • the transmission method provided in the embodiment of the present application can be executed by a transmission device.
  • the transmission device provided in the embodiment of the present application is described by taking the transmission method executed by the transmission device as an example.
  • a transmission device provided in an embodiment of the present application may be a device in a first device.
  • the transmission device 1100 may include the following modules:
  • a first transmission module 1001 configured to receive a first signal based on a first parameter, and/or send the first signal based on a second parameter;
  • the second transmission module 1002 is configured to send and/or receive data information based on first information, wherein the first information includes a parameter determined based on a measurement result of the first signal.
  • the first parameter includes: at least one of an incident angle, an incident beam, and control information of the first device;
  • the second parameter includes: at least one of an exit angle, an exit beam, and control information of the first device.
  • a third parameter is jointly trained with the first parameter, and the second parameter is jointly trained with a fourth parameter, the third parameter is a parameter for the second device to send a first signal, the fourth parameter is a parameter for the third device to receive the first signal, the second device is a sending end of the first signal received by the first device, and the third device is a receiving end of the first signal sent by the first device;
  • the first parameter, the second parameter, the third parameter and the fourth parameter are trained independently;
  • the third parameter is trained jointly with the first parameter, the second parameter is trained independently, and the fourth parameter is trained independently.
  • the parameter value of the first parameter and/or the second parameter includes at least one of the following:
  • the first device determines a parameter value.
  • the number of the first parameters is K1
  • the number of the second parameters is K2
  • K1 satisfies at least one of the following:
  • K1 is a value that is predefined, preconfigured, configured, or indicated by the network side;
  • K1 is a value greater than or equal to 1
  • K1 is equal to 1;
  • K1 is greater than or equal to 1;
  • K2 satisfies at least one of the following:
  • K2 is a value that is predefined, preconfigured, configured, or indicated by the network side;
  • K2 is a value greater than or equal to 1
  • K2 is equal to 1;
  • K2 is greater than or equal to 1.
  • the measurement result includes at least one of the following:
  • Synchronization signal block resource identifier SSBRI Synchronization signal block resource identifier
  • the parameter number or control information number corresponding to the first parameter and/or the second parameter of the first device is not limited to the first parameter and/or the second parameter of the first device.
  • the transmission device 1000 further includes:
  • the second receiving module is used to receive first indication information, where the first indication information is used to indicate or configure the first parameter and/or the second parameter.
  • the first indication information is information carried by a first signaling, and the first signaling includes at least one of the following:
  • F1 application protocol F1-AP signaling radio resource control RRC signaling, media access control layer control unit MAC CE Signaling, downlink control information DCI signaling, bandwidth allocation protocol data unit BAP PDU.
  • the first indication information is used to configure or indicate at least one of the following:
  • the repeated transmission state of the first signal is on, or the repeated transmission state of the first signal is off;
  • the first signal is repeatedly used to train the first parameter and a third parameter, the third parameter is a sending parameter of the first signal by the second device, and the second device is a sending end of the first signal received by the first device;
  • the first signal is repeatedly used to train the second parameter and a fourth parameter, the fourth parameter is a parameter for a third device to receive the first signal, and the third device is a receiving end of the first signal sent by the first device;
  • the first signal is repeatedly used to train the second parameter
  • the first signal is repeatedly used to train the fourth parameter
  • the first signal is repeatedly used to train the first parameter
  • the transmission beam of the second device is repeated or non-repeated
  • the receiving beam of the third device is repeated or not;
  • the transmission beam of the first device is repeated or non-repeated
  • the receiving beam of the first device is repeated or non-repeated
  • the first device receives a set of beams of a first signal.
  • the first indication information satisfies at least one of the following:
  • the repetition transmission state and the training object of the first signal are jointly indicated, and the training object includes at least one of the first parameter, the second parameter and the fourth parameter;
  • the repetition transmission state and the training object of the first signal are independently indicated.
  • the number of the first parameters is K1, and/or the number of the second parameters is K2, the first information includes one first parameter among the K1 first parameters, and/or the first information includes one second parameter among the K2 second parameters, and K1 and K2 are positive integers.
  • the K1 first parameters include an incident angle or an incident beam
  • the K2 second parameters include an exit angle or an exit beam
  • the first device receives a first signal based on the K1 first parameters, and sends the first signal based on a second parameter that is predefined, preconfigured, configured, or indicated by a network side, where K1 is an integer greater than or equal to 1;
  • the first device receives a first signal based on a first parameter that is predefined, preconfigured, configured or indicated by the network side, and sends the first signal based on the K2 second parameters, where K2 is an integer greater than or equal to 1.
  • the first transmission module 1001 is specifically configured to:
  • the first preset condition includes at least one of the following:
  • the repetitive transmission state of the first signal is off
  • the first signal is repeatedly used for training the first parameter and/or a third parameter, the third parameter is a sending parameter of the first signal by the second device, and the second device is a sending end of the first signal received by the first device;
  • the repetitive transmission state of the first signal is on, and/or the first signal is repeatedly used for training the first parameter and/or the third parameter;
  • the first device is configured or instructed to perform beam training or receive a first signal using at least two first parameters
  • the transmit beam of the second device is repeated;
  • the receiving beam of the first device is non-repetitive
  • the transmit beam of the first device is repeated
  • the receiving beam of the third device is repeated, and the third device is a receiving end of the first signal sent by the first device;
  • the second preset condition includes at least one of the following:
  • the repetitive transmission state of the first signal is off, and/or the first signal is repeatedly used for training the second parameter and a fourth parameter, and the fourth parameter is a parameter for the third device to receive the first signal;
  • the repetitive transmission state of the first signal is on, and/or the first signal is repeatedly used for training the second parameter and the fourth parameter or the first signal is repeatedly used for training the second parameter;
  • the first device is configured or instructed to perform beam training and/or send a first signal using at least two second parameters;
  • the transmit beam of the second device is repeated;
  • the transmission beam of the first device is non-repetitive
  • the receiving beam of the third device is repeated;
  • the third preset condition includes at least one of the following:
  • the repeated transmission state of the first signal is on
  • the first signal is repeatedly used for training the fourth parameter
  • the third device is configured or instructed to perform beam training and/or receive a set of first signals using at least two fourth parameters;
  • the transmit beam of the second device is repeated;
  • the receiving beam and/or transmitting beam of the first device is repeated;
  • the receiving beam of the third device is non-repetitive.
  • the first control information set includes the K1 first parameters
  • the second control information set includes the K2 second parameters
  • the first transmission module 1001 is specifically used for:
  • a first signal is received based on a control information set, and/or a first signal is sent based on the second control information set.
  • the first transmission module 1001 includes:
  • the first receiving unit is configured to receive a group of first signals based on a first parameter, where the group of first signals includes M first signals, where M is an integer greater than or equal to 1.
  • the M first signals satisfy at least one of the following:
  • the value of M is predefined, preconfigured, configured, or indicated by the network side;
  • the size and/or location of the resources of the M first signals are predefined, preconfigured, configured or indicated by the network side;
  • the M first signals are repeated signals
  • the M first signals are non-repetitive signals
  • the M first signals include repetitive signals and non-repetitive signals.
  • the number of repetitions satisfies at least one of the following:
  • the value of the number of repetitions is a value predefined, preconfigured, configured or indicated by the network side;
  • the number of repetitions is configured or indicated as N;
  • the number of repetitions is configured or indicated as K1;
  • the number of repetitions is configured or indicated as K2*N;
  • the number of repetitions is configured or indicated as K1;
  • the number of repetitions is configured or indicated as K2;
  • K1 is related to the parameter configuration of the first device
  • K2 is related to the parameter configuration of the first device
  • N is related to the parameter configuration of a third device.
  • the third device is a receiving end of the first signal sent by the first device.
  • the transmission device further includes at least one of the following:
  • a third sending module configured to send first capability information, where the first capability information includes at least part of the first parameter and the second parameter;
  • the third receiving module is used to receive fourth information, where the fourth information is used to configure or indicate at least part of the first parameter and the second parameter.
  • the transmission device 1000 provided in the embodiment of the present application can implement each process implemented by the first device in the method embodiment shown in Figure 4, and can achieve the same beneficial effects. To avoid repetition, it will not be described here.
  • Another transmission device provided in an embodiment of the present application may be a device in a third device.
  • the transmission device 1100 may include the following modules:
  • the measurement module 1101 is configured to receive a first signal and obtain a measurement result of the first signal, wherein the first signal is a signal sent by the second device and forwarded by the first device;
  • the first sending module 1102 is configured to send the measurement result.
  • the measurement module 1101 includes at least one of the following:
  • a second receiving unit configured to receive the first signal based on a second target parameter
  • a third receiving unit configured to receive data information based on second information, where the second information is determined from the second target parameter based on the measurement result;
  • the fourth receiving unit is configured to receive the first signal using a predefined, preconfigured or configured receiving beam.
  • the second target parameter includes: a receiving angle, a receiving beam, and at least one of control information of the third device.
  • the second target parameter includes:
  • a fourth parameter where the fourth parameter is a parameter for the third device to receive the first signal.
  • the second receiving unit is configured to perform at least one of the following:
  • the first signal is received with N fourth parameters.
  • the measurement result includes at least one of the following:
  • Synchronization signal block resource identifier SSBRI Synchronization signal block resource identifier
  • the parameter number or control information number corresponding to the target parameter of the first device is the parameter number or control information number corresponding to the target parameter of the first device.
  • the number of the measurement results is L, where L is an integer greater than or equal to 1;
  • the value of L is predefined, preconfigured, configured, indicated by the network side or determined by the third device.
  • the first sending module 1102 is specifically configured to:
  • the measurement results are sent on pre-configured or configured resources.
  • the transmission device 1100 further includes:
  • the fourth receiving module is used to receive second indication information, where the second indication information is used to instruct or configure the third device to receive a second target parameter of the first signal.
  • the second indication information is used to configure or indicate at least one of the following:
  • the repeated transmission state of the first signal is on, or the repeated transmission state of the first signal is off;
  • the first signal is repeatedly used to train a first parameter and a third parameter, the third parameter is a sending parameter of the first signal by the second device, the second device is a sending end of the first signal received by the first device, and the first parameter is a sending parameter of the first device;
  • the first signal is repeatedly used to train a second parameter and a fourth parameter, the fourth parameter is a parameter for the third device to receive the first signal, the third device is a receiving end of the first signal sent by the first device, and the second parameter is a receiving parameter of the first device;
  • the first signal is repeatedly used to train the second parameter
  • the first signal is repeatedly used to train the fourth parameter
  • the first signal is repeatedly used to train the first parameter
  • the transmission beam of the second device is repeated or non-repeated
  • the receiving beam of the third device is repeated or not;
  • the transmission beam of the first device is repeated or non-repeated
  • the receiving beam of the first device is repeated or non-repeated
  • the third device receives a set of beams of the first signal.
  • the first sending module 1102 is specifically configured to:
  • the measurement result of the first signal is sent with a fifth configuration parameter, where the fifth configuration parameter is a parameter for training and reporting the first parameter.
  • the first condition includes at least one of the following:
  • the second indication information configures or indicates that the repeated transmission state of the first signal is turned on
  • the second indication information configures or indicates that the repetitive transmission state of the first signal is turned on, and the first signal is repeatedly used for training the second parameter and/or the fourth parameter;
  • the second condition includes at least one of the following:
  • the second indication information configures or indicates that the repetitive transmission state of the first signal is off, and the first signal is repeatedly used for wave training of the first parameter and/or the third parameter;
  • the second indication information configures or indicates that the repetitive transmission state of the first signal is turned on, and the first signal is repeatedly used for wave training of the first parameter and/or the third parameter;
  • the third condition includes at least one of the following:
  • the second indication information configures or indicates that the repetitive transmission state of the first signal is off, and the first signal is repeatedly used for training the second parameter
  • the second indication information configures or indicates that the repetitive transmission state of the first signal is turned on, and the first signal is repeatedly used for training the second parameter
  • the fourth condition includes at least one of the following:
  • the second indication information configures or indicates that the repeated transmission state of the first signal is turned on
  • the second indication information configures or indicates that the repetitive transmission state of the first signal is turned on, and the first signal is repeatedly used for training the fourth parameter;
  • the fifth condition includes at least one of the following:
  • the second indication information configures or indicates that the repetitive transmission state of the first signal is off, and the first signal is repeatedly used for training the first parameter
  • the second indication information configures or indicates that the repeated transmission state of the first signal is turned on, and the first signal is repeatedly used for training the first parameter.
  • the measurement module 1101 includes:
  • a fifth receiving unit configured to, when the first preset condition and/or the second preset condition is met, cause the third device to receive the first signal with preset parameters, or for the third device to assume that the downlink spatial domain transmission filters are the same;
  • a sixth receiving unit is configured to, when a third preset condition is met, cause the third device to receive the first signal using at least two parameters.
  • the first preset condition includes at least one of the following:
  • the first signal is repeatedly used for training the first parameter and/or the third parameter
  • the repetitive transmission state of the first signal is on, and/or the first signal is repeatedly used for training the first parameter and/or the third parameter;
  • the first device is configured or instructed to perform beam training or receive a first signal using at least two first parameters
  • the transmit beam of the second device is repeated;
  • the receiving beam of the first device is non-repetitive
  • the transmit beam of the first device is repeated
  • the receiving beam of the third device is repeated;
  • the second preset condition includes at least one of the following:
  • the repetitive transmission state of the first signal is off, and/or the first signal is repeatedly used for training the second parameter and the fourth parameter;
  • the repetitive transmission state of the first signal is on, and/or the first signal is repeatedly used for training the second parameter and the fourth parameter or the first signal is repeatedly used for training the second parameter;
  • the first device is configured or instructed to perform beam training and/or send a first signal using at least two second parameters;
  • the transmit beam of the second device is repeated;
  • the transmission beam of the first device is non-repetitive
  • the receiving beam of the third device is repeated;
  • the third preset condition includes at least one of the following:
  • the repeated transmission state of the first signal is on
  • the first signal is repeatedly used for training the fourth parameter
  • the third device is configured or instructed to perform beam training and/or receive a set of first signals using at least two fourth parameters;
  • the transmit beam of the second device is repeated;
  • the receiving beam and/or transmitting beam of the first device is repeated;
  • the receiving beam of the third device is non-repetitive.
  • the transmission device 1100 further includes:
  • a second determination module used to determine first identification information of the first parameter and/or the second parameter or second identification information of the reference signal resource corresponding to the first parameter and/or the second parameter;
  • the fourth sending module is used to send the first identification information or the second identification information.
  • the transmission device 1100 further includes at least one of the following:
  • a fifth sending module configured to send second capability information, where the second capability information includes at least part of a second target parameter, where the second target parameter is a parameter for the third device to receive the first signal;
  • the fifth receiving module is used to receive fifth information, where the fifth information is used to configure or indicate at least part of the parameters of the second target parameter.
  • the transmission device 1100 provided in the embodiment of the present application can implement each process implemented by the third device in the method embodiment shown in Figure 8, and can achieve the same beneficial effects. To avoid repetition, it will not be described here.
  • the parameter determination method provided in the embodiment of the present application may be executed by a parameter determination device.
  • the parameter determination device provided in the embodiment of the present application is described by taking the parameter determination method executed by the parameter determination device as an example.
  • Another parameter determination device provided in an embodiment of the present application may be a device in a second device.
  • the parameter determination device 1200 may include the following modules:
  • the second sending module 1201 is used to send a first signal
  • a first receiving module 1202 is used to receive a measurement result, where the measurement result is a measurement result obtained by receiving and/or measuring the first signal forwarded by the first device;
  • the first determination module 1203 is configured to determine first information from a first parameter and/or a second parameter based on the measurement result, wherein the first parameter includes a receiving parameter of the first device, and the second parameter includes a sending parameter of the first device.
  • the first parameter includes: at least one of an incident angle, an incident beam, and control information of the first device;
  • the second parameter includes: at least one of an exit angle, an exit beam, and control information of the first device.
  • the second sending module 1201 is configured to perform at least one of the following:
  • a first signal is transmitted in a predefined, preconfigured or configured transmit beam.
  • the third target parameter includes: at least one of a transmission angle, a transmission beam, and control information of the second device.
  • the third target parameter includes:
  • a third parameter where the third parameter is a parameter for the second device to send the first signal.
  • the third parameter is jointly trained with the first parameter, and the second parameter is jointly trained with a fourth parameter, the fourth parameter is a parameter for a third device to receive a first signal, and the third device is a receiving end of the first signal sent by the first device;
  • the first parameter, the second parameter, the third parameter and the fourth parameter are trained independently;
  • the third parameter is trained jointly with the first parameter, the second parameter is trained independently, and the fourth parameter is trained independently.
  • the parameter determination device 1200 further includes:
  • a sixth sending module configured to send first indication information to the first device, where the first indication information is used to indicate the first parameter and/or the second parameter;
  • the seventh sending module is used to send second indication information to the third device, where the second indication information is used to instruct the third device to receive the second target parameter of the first signal.
  • the second target parameter includes N fourth parameters
  • the parameter determination device 1200 further includes:
  • a third determining module configured to determine a fourth parameter from the N fourth parameters according to the measurement result
  • An eighth sending module is used to send indication information of the fourth parameter to the third device.
  • the first indication information and/or the second indication information is used to configure or indicate at least one of the following:
  • the repeated transmission state of the first signal is on, or the repeated transmission state of the first signal is off;
  • the first signal is repeatedly used to train the first parameter and a third parameter, the third parameter is a sending parameter of the first signal by the second device, and the second device is a sending end of the first signal received by the first device;
  • the first signal is repeatedly used to train the second parameter and a fourth parameter, the fourth parameter is a parameter for the third device to receive the first signal, and the third device is a receiving end of the first signal sent by the first device;
  • the first signal is repeatedly used to train the second parameter
  • the first signal is repeatedly used to train the fourth parameter
  • the first signal is repeatedly used to train the first parameter
  • the transmission beam of the second device is repeated or non-repeated
  • the receiving beam of the third device is repeated or not;
  • the transmission beam of the first device is repeated or non-repeated
  • the receiving beam of the first device is repeated or non-repeated
  • the first device receives a set of beams of a first signal
  • the third device receives a set of beams of the first signal.
  • the number of the first parameters is K1, and/or the number of the second parameters is K2, the first information includes one first parameter among the K1 first parameters, and/or the first information includes one second parameter among the K2 second parameters, and K1 and K2 are positive integers.
  • the parameter determination device 1200 further includes at least one of the following:
  • a sixth receiving module configured to receive first capability information from the first device, where the first capability information includes at least part of the first parameter and the second parameter;
  • a ninth sending module configured to send fourth information to the first device, where the fourth information is used to configure or indicate at least part of parameters of the first parameter and the second parameter;
  • a seventh receiving module configured to receive second capability information from the third device, where the second capability information includes at least part of a second target parameter, where the second target parameter is a parameter for the third device to receive the first signal;
  • a tenth sending module is used to send fifth information to the third device, where the fifth information is used to configure or indicate at least part of the parameters of the second target parameters.
  • the parameter determination device 1200 further includes at least one of the following:
  • a fourth determination module configured to determine a receiving parameter of the second device in an uplink transmission scenario according to a determined third parameter
  • a fifth determining module configured to determine a sending parameter of the first device in an uplink transmission scenario according to a determined first parameter
  • a sixth determination module configured to determine a receiving parameter of the first device in an uplink transmission scenario according to a determined second parameter
  • the seventh determination module is used to determine the sending parameter of the third device in the uplink transmission scenario according to a determined fourth parameter.
  • the parameter determination device 1200 provided in the embodiment of the present application can implement each process implemented by the second device in the method embodiment shown in Figure 9, and can achieve the same beneficial effects. To avoid repetition, it will not be described here.
  • an embodiment of the present application further provides a communication device 1300, including a processor 1301 and a memory 1302, where the memory 1302 stores a program or instruction that can be run on the processor 1301, for example,
  • the communication device 1300 is a first device
  • the program or instruction is executed by the processor 1301 to implement the various steps of the method embodiment shown in Figure 4, and can achieve the same technical effect.
  • the communication device 1300 is a third device
  • the program or instruction is executed by the processor 1301 to implement the various steps of the method embodiment shown in Figure 8 and can achieve the same technical effect.
  • the communication device 1300 is a second device
  • the program or instruction is executed by the processor 1301 to implement the various steps of the method embodiment shown in Figure 9, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a first device, including a processor and a communication interface, wherein the communication interface is used to receive a first signal based on a first parameter, and/or send a first signal based on a second parameter; the communication interface is also used by the first device to send and/or receive data information based on first information, wherein the first information includes parameters determined based on measurement results of the first signal.
  • This relay device embodiment corresponds to the method embodiment shown in FIG. 4 .
  • Each implementation process and implementation method of the method embodiment shown in FIG. 4 can be applied to this relay device embodiment and can achieve the same technical effect.
  • An embodiment of the present application also provides a third device, including a processor and a communication interface, wherein the communication interface is used to receive a first signal and obtain a measurement result of the first signal, wherein the first signal is a signal sent by the second device and forwarded by the first device; the communication interface is also used to send the measurement result.
  • the third device embodiment corresponds to the method embodiment shown in FIG8 .
  • Each implementation process and implementation method of the method embodiment shown in FIG8 can be applied to the network side device embodiment and can achieve the same technical effect.
  • An embodiment of the present application also provides a second device, including a processor and a communication interface, wherein the communication interface is used to send a first signal and receive a measurement result, and the measurement result is a measurement result obtained by receiving and/or measuring the first signal forwarded by the first device; the processor is used to determine first information from a first parameter and/or a second parameter based on the measurement result, wherein the first parameter includes a receiving parameter of the first device, and the second parameter includes a sending parameter of the first device.
  • the second device embodiment corresponds to the method embodiment shown in FIG. 9 .
  • Each implementation process and implementation method of the method embodiment shown in FIG. 9 can be applied to the network side device embodiment and can achieve the same technical effect.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the method embodiment shown in Figure 4, Figure 8, or Figure 9 are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the method embodiments shown in Figures 4, 8, or 9, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the present application also provides a computer program product, wherein the computer program product is stored in a storage medium.
  • the computer program product is executed by at least one processor to implement the various processes of the method embodiment shown in Figure 4 or Figure 8 or Figure 9, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a communication system, including: a second device, a first device and a third device, wherein the first device can be used to execute the steps of the transmission method as described in Figure 4, the third device can be used to execute the steps of the transmission method as described in Figure 8, and the second device can be used to execute the steps of the parameter determination method as described in Figure 9.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输方法、参数确定方法、装置和通信设备,属于通信技术领域,本申请实施例的传输方法包括:所述第一设备基于第一参数接收第一信号,和/或,基于第二参数发送第一信号;所述第一设备基于第一信息发送和/或接收数据信息,其中,所述第一信息包括基于所述第一信号的测量结果确定的参数。

Description

传输方法、参数确定方法、装置和通信设备
相关申请的交叉引用
本申请主张在2022年09月30日在中国提交的中国专利申请No.202211216839.X的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种传输方法、参数确定方法、装置和通信设备。
背景技术
可重构智能表面(Reconfigurable Intelligent Surface(s),RIS)设备可以对反射/折射方向进行控制,实现波束扫描/波束赋形等功能。
RIS设备可以与基站和用户设备(User Equipment,UE)分别连接,用户设备也称终端,RIS设备可以转发基站的信号给UE。该过程中,基站到RIS设备的波束,以及RIS设备到UE的波束共同决定了基站到UE的信号的质量。
在相关技术中,RIS设备只能进行波束的转发,从而使得基站到RIS设备的波束,以及RIS设备到UE的波束可能没有相互对准,或者设备的波束选择不合适,从而降低了基站到UE的数据传输质量,甚至导致不能通信。
发明内容
本申请实施例提供一种传输方法、参数确定方法、装置和通信设备,能够训练基站到RIS设备的传输参数,和/或训练RIS设备到UE的传输参数,能够使基站到RIS设备的波束对准,和/或使RIS设备到UE的波束对准,或者选择合适的波束,提升基站到UE的数据传输质量。
第一方面,提供了一种传输方法,该方法包括:
第一设备基于第一参数接收第一信号,和/或,基于第二参数发送第一信号;
所述第一设备基于第一信息发送和/或接收数据信息,其中,所述第一信息包括基于所述第一信号的测量结果确定的参数。
第二方面,提供了一种传输装置,应用于第一设备,该装置包括:
第一传输模块,用于基于第一参数接收第一信号,和/或,基于第二参数发送第一信号;
第二传输模块,用于基于第一信息发送和/或接收数据信息,其中,所述第一信息包括基于所述第一信号的测量结果确定的参数。
第三方面,提供了一种传输方法,包括:
第三设备接收第一信号,并获取对所述第一信号的测量结果,其中,所述第一信号为第二设备发送的并经第一设备转发的信号;
所述第三设备发送所述测量结果。
第四方面,提供了一种传输装置,应用于第三设备,该装置包括:
测量模块,用于接收第一信号,并获取对所述第一信号的测量结果,其中,所述第一信号为第二设备发送的并经第一设备转发的信号;
第一发送模块,用于发送所述测量结果。
第五方面,提供了一种参数确定方法,包括:
第二设备发送第一信号;
所述第二设备接收测量结果,所述测量结果为对第一设备转发的所述第一信号进行接收和/或测量得到的测量结果;
所述第二设备基于所述测量结果从第一参数和/或第二参数中确定第一信息,其中,所述第一参数包括所述第一设备的接收参数,所述第二参数包括所述第一设备的发送参数。
第六方面,提供了一种参数确定装置,应用于第二设备,该装置包括:
第二发送模块,用于发送第一信号;
第一接收模块,用于接收测量结果,所述测量结果为对第一设备转发的所述第一信号进行接收和/或测量得到的测量结果;
第一确定模块,用于基于所述测量结果从第一参数和/或第二参数中确定第一信息,其中,所述第一参数包括所述第一设备的接收参数,所述第二参数包括所述第一设备的发送参数。
第七方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第三方面或第五方面所述的方法的步骤。
第八方面,提供了一种第一设备,包括处理器及通信接口,其中,所述通信接口用于基于第一参数接收第一信号,和/或,基于第二参数发送第一信号;所述通信接口还用于所述第一设备基于第一信息发送和/或接收数据信息,其中,所述第一信息包括基于所述第一信号的测量结果确定的参数。
第九方面,提供了一种第三设备,包括处理器及通信接口,其中,所述通信接口用于接收第一信号,并获取对所述第一信号的测量结果,其中,所述第一信号为第二设备发送的并经第一设备转发的信号;所述通信接口还用于发送所述测量结果。
第十方面,提供了一种第二设备,包括处理器及通信接口,其中,所述通信接口用于发送第一信号,接收测量结果,所述测量结果为对第一设备转发的所述第一信号进行接收和/或测量得到的测量结果;所述处理器用于基于所述测量结果从第一参数和/或第二参数中确定第一信息,其中,所述第一参数包括所述第一设备的接收参数,所述第二参数包括所述第一设备的发送参数。
第十一方面,提供了一种通信***,包括:第二设备、第一设备和第三设备,所述第一设备可用于执行如第一方面所述方法的步骤,所述第三设备可用于执行如第三方面所述方法的步骤,所述第二设备可用于执行如第五方面所述方法的步骤。
第十二方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤,或者实现如第五方面所述的方法的步骤。
第十三方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法,或实现如第五方面所述的方法。
第十四方面,提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述方法的步骤,或者所述计算机程序产品被至少一个处理器执行以实现如第三方面所述方法的步骤,或者所述计算机程序产品被至少一个处理器执行以实现如第五方面所述方法的步骤。
在本申请实施例中,在第一设备作为第二设备和第三设备之间的中继设备的场景下,第一设备基于第一参数接收第一信号,这样,可以训练第一设备的接收波束;和/或,第一设备基于第二参数发送第一信号,这样,可以训练第一设备的发送波束,基于该训练过程中对第一信号的测量结果所确定的波束来发送和/或接收数据信息,能够使第二设备到第一设备的波束,和/或,第一设备到第三设备的波束对准,或者选择合适的波束,提升了第二设备到第三设备的数据传输质量。
附图说明
图1是本申请实施例能够应用的一种无线通信***的结构示意图;
图2是基站、中继设备和终端之间的网络结构示意图;
图3基于CSI-RS的波束训练的流程示意图;
图4是本申请实施例提供的一种传输方法的流程图;
图5是中继设备、网络侧设备和终端之间的波束示意图之一;
图6是中继设备、网络侧设备和终端之间的波束示意图之二;
图7是中继设备、网络侧设备和终端之间的波束示意图之三;
图8是本申请实施例提供的另一种传输方法的流程图;
图9是本申请实施例提供的一种传输方法的流程图;
图10是本申请实施例提供的一种传输装置的结构示意图;
图11是本申请实施例提供的另一种传输装置的结构示意图;
图12是本申请实施例提供的一种参数确定装置的结构示意图;
图13是本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如可应用于第6代(6th Generation,6G)通信***。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11、网络侧设备12和RIS设备13,或者,还包括RIS控制器14。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等, 基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。
智能表面(Reconfigurable Intelligent Surface(s),RIS)是一种新兴的人造材料设备。RIS器件单元可以动态地/半静态地调整自身的电磁特性影响入射到RIS器件单元的电磁波的反射/折射行为,使得转发信号(反射信号或者透射/折射信号)的电磁参数(相位或者幅度或者极化方向)产生变化。RIS设备由大量RIS器件单元构成,通过控制各个RIS器件单元的电磁特性状态,各个RIS器件单元对电磁信号的反射/折射行为在空间上互相叠加,实现波束扫描/波束赋形等功能。
RIS设备包含控制模块,通过无线或者有线接口与基站进行交互。RIS可以接收来自上游基站(包括宿主基站(donor gNB),或者上一跳节点父节点(parent node))的控制,即基站可以控制RIS的传输参数,例如RIS和基站间或者RIS和UE间的接收/发送波束等,以提高RIS的工作效率。
如图2所示网络结构中,包含3个网络节点,中间网络节点是一种RIS设备,其包含一个终端模块(Mobile Termination,MT)和一个RIS面板。其中MT可以与上游基站建立连接(通过控制链路(control link)),基站通过MT向RIS传输控制信令,可以控制RIS设备和基站间链路(如:回传(Backhaul,BH)链路(Link))或者RIS和UE间链路(如:接入(Access,AC)链路(Link))的发送/接收相关参数。
NR Uu波束对准:
以下行波束对准为例,波束对准大致分为两个阶段。第一个阶段是在UE接入网络的时候,初步训练基站到UE的初始传输波束。第二阶段是在UE建立连接之后,训练基站到UE的精细收发波束对,第二阶段的波束训练主要通过信道状态信息参考信号(CSI Reference Signal,CSI-RS)的测量和信道状态信息(Channel State Information,CSI)反馈来完成。
对于第一阶段,基站周期性的发送同步信号/物理广播信道信号块(或同步信号块)(Synchronization Signal and PBCH block,SSB),并在每个SSB发送周期以波束扫描的方式发送一组SSB。UE测量SSB携带的参考信号,上报接收能量较高SSB索引(index),以便基站确定其发送波束。UE根据协议规定的规则上报SSB index,每个SSB对应一组物理随机接入信道(Physical Random Access Channel,PRACH)资源,UE在相应的PRACH资源上发送初始接入的序言(preamble),代表UE上报相应的SSB index。对于第二阶段,Rel-15NR Uu CSI获取流程如图3所示。基站进行CSI上报相关参数配置,触发CSI上报(所述‘触发’仅针对半持续性(semi-persistent)或周期性(aperiodic)的CSI上报), UE根据基站配置信息进行CSI测量和上报,基站根据UE上结果调整上下行波束等传输参数。其中,每个CSI上报配置指示了CSI上报的类型(CSI quantity),其中包括CSI参考信号资源标识(CSI-RS Resource Index,CRI)、SSB index等指示波束的参数,还包括其他参数类型预编码矩阵标识(Precoding matrix index,PMI)、秩标识(rank index,RI)、信道质量标识(Channel quality index,CQI)、层1参考信号接收功率(Layer 1 reference signal received power,L1-RSRP)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)等。
另外,对于基站/UE侧的波束训练,基站/UE可以自主地选择训练波束。
相关技术中,在通过RIS等中继设备连接在基站与终端之间,进行信息转发的场景下,RIS设备可以用于终端信号增强。例如:在低速率业务时,终端可以直接与基站进行通信,在高速率业务时,终端可以在RIS设备的辅助下增强信号质量,提供通信速率。因此,在调度RIS设备为终端服务之前,网络要对RIS设备的接收/转发波束进行训练,保证基站-RIS-终端的级联信道的信道质量。但是,由于RIS设备没有基带信号处理能力,只能进行模拟波束的转发,因此,相关技术中的波束训练方法并不适用于有RIS设备存在的场景。
本申请实施例中,定义了有RIS设备存在的场景下的波束训练方法,使得中继设备(即本申请实施例中的第一设备)能够基于第一参数和/或第二参数参与网络侧设备、中继设备和终端之间的波束训练,通过该波束训练过程,可以确定中继设备的出射波束、出射角、入射波束、入射角中的至少一项。
需要说明的是,本申请实施例中的出射波束等同于发送波束、发送角、出射角;本申请实施例中的入射波束等同于接收波束、接收角、入射角。
本申请实施例中的训练波束又可以称之为“管理(manage)或扫描或遍历波束”,训练波束的过程可以是波束或者波束相关的参数进行切换,以从中确定最终的波束。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的传输方法、参数确定方法、传输装置参数确定装置及通信设备等进行详细地说明。
请参阅图4,本申请实施例提供的一种传输方法,其执行主体是第一设备,如图4所示,该第一设备执行的传输方法可以包括以下步骤:
步骤401、所述第一设备基于第一参数接收第一信号,和/或,基于第二参数发送第一信号。
在一种实施方式中,上述第一设备可以是能够接收和转发信号的中继设备,例如:RIS设备、网络控制的中继器(Network controlled repeater,NCR)等。本申请实施例中以中继设备为RIS设备为例进行举例说明,可选地,该RIS设备可以包括有源RIS设备,无源RIS设备,混合RIS设备。设备上可以包括有源的RIS单元和/或无源的RIS单元,在此不作具体限定。若为有源RIS设备,RIS设备包括有源单元;如果为无源RIS设备,RIS设备包括无源单元;如果为混合RIS设备,RIS设备包括有源单元和无源单元。
在一种实施方式中,第一设备与上游节点第二设备(如基站等网络侧设备)连接,第 一设备与下游节点第三设备(如终端)连接。波束训练过程可以是调节第二设备、第一设备和第三中至少一个的传输参数(如:波束、接收角、发送角、入射角、出射角等),第三设备则可以对第二设备发送且经第一设备转发的第一信号进行接收和/或测量,得到测量结果,第二设备、第一设备和第三设备中的至少一项可以基于该测量结果确定出能够满足通信质量要求的波束。
值得说明的是,训练波束的整体过程可以是,第二设备发送一组第一信号,第一设备接收并转发该一组第一信号,第三设备对第二设备发送并经第一设备转发的一组第一信号进行接收和/或测量,得到测量结果,然后,第二设备、第一设备、第三设备甚至是核心网设备中的至少一项可以获取该测量结果,并据此确定第二设备、第一设备和第三设备中至少一项的波束。
其中,第一设备基于第二参数发送第一信号,可以是第一设备基于第二参数对入射的第一信号进行反射或折射。
步骤402、所述第一设备基于第一信息发送和/或接收数据信息,其中,所述第一信息包括基于所述第一信号的测量结果确定的参数。
一种实施方式中,第一信息可以包括经过波束训练所确定的出射波束或出射角,以及入射波束或入射角,此时,所述第一设备基于第一信息发送和/或接收数据信息,可以是第一设备基于确定的出射波束或出射角发送数据信息,和/或,基于确定的入射波束或入射角接收数据信息。
在一种实施方式中,上述波束训练也可以是训练下行链路(Down Link,DL)中的波束。例如:第一设备基于第一参数接收来自第二设备的第一信号,和/或,第一设备基于第二参数对该第一信号进行折射或反射,以向第三设备发送第一信号,可以训练一下波束中的至少一项:
第二设备的DL发送波束或发送角度,例如:如图4中所示波束1;
第一设备的DL入射波束或入射角度,例如:如图4中所示波束2;
第一设备的DL出射波束或出射角度,例如:如图4中所示波束3;
第三设备的DL接收波束或发送角度,例如:如图4中所示波束4。
在一种实施方式中,上述波束训练也可以是训练上行链路(Up Link,UL)中的波束,例如:第一设备基于第一参数接收来自第三设备的第一信号,和/或基于第二参数对该第一信号进行折射或反射,以向第二设备发送第一信号,可以训练一下波束中的至少一项:
第二设备的UL接收波束;
第一设备的UL接收波束;
第一设备的UL发送波束;
第三设备的UL发送波束。
在一种实施方式中,可以分别训练UL中的波束和DL中的波束。
在另一种实施方式中,可以训练UL或DL中的波束,对于未进行训练的波束,则可 以基于UL和DL的互异性来确定。例如:根据UL与DL的互易性,DL中确定的第一设备的入射角或入射波束为UL中第一设备的出射角或出射波束;DL中确定的第一设备的出射角或出射波束为UL中第一设备的入射角或入射波束;DL中确定的第二设备的发送角或发送波束为UL中第二设备的接收角或接收波束;DL中确定的第三设备的接收角或接收波束为UL中第三设备的发送角或发送波束。
本申请实施例中,以DL中的波束训练为例进行举例说明,在此不构成具体限定,且对于UL中的波束训练,可以参考DL中的波束训练的说明。
作为一种可选的实施方式,所述第一参数包括:入射角、入射波束、所述第一设备的控制信息中的至少一项;
和/或,
所述第二参数包括:出射角、出射波束、所述第一设备的控制信息中的至少一项。
例如:第一参数和/或第二参数包括以下至少之一:第一信号的参考信号标识(Identification,ID)、入射波束(beam)ID、第一信号的资源(resource)ID)。
其中,每一个入射波束或接收波束可以对应一个入射角或接收角,每一个出射波束或发送波束可以对应一个出射角或发送角,也就是说,本申请实施例中的入射/接收波束可以替换为入射/接收角,出射/发送波束可以替换为出射/发送角。
一种实施方式中,第一设备可以是RIS设备,所述第一设备的控制信息可以是RIS单元阵列的状态控制信息、相位矩阵、码本中的至少一项。其中,相位矩阵可以是预定义/预配置/配置的参数,用index进行索引。例如:第一参数中的控制信息可以是入射角度的索引,有k1个入射角度,则索引大小可以是k1个索引值。第二参数中的控制信息可以是出射角度的索引,有k2个入射角度,则索引大小可以是k2个索引值。
可以理解的,RIS设备可以通过入射角度或出射角度生成对应的RIS单元阵列的状态控制信息/码本。例如,假设水平入射角为α,水平出射角为β,RIS单元阵列为M*N的矩形阵列,相邻RIS单元间隔为λ/2。假设RIS单元阵列左下角RIS单元编号为(0,0)并作为生成码本的参考点,那么编号(i,j)的RIS单元的转发信号相对于编号(0,0)的转发信号的相位差为iπ(sinα-sinβ)。根据上述相位差调整RIS单元(i,j)的状态,使得RIS单元(i,j)与RIS单元(0,0)的转发信号相位正向叠加,从而获得预期的码本。
上述第一参数表示第一设备的接收或入射参数,第二参数表示第一设备的发送或反射或折射参数。其中,第一参数的数量可以是K1个,第二参数的数量可以是K2个,则K1满足以下至少一项:
K1为预定义、预配置、配置或网络侧指示的值;
K1为大于等于1的值;
在训练所述第二参数、第三参数和第四参数中的至少一项的情况下,K1等于1;
在训练所述第一参数的情况下,K1大于或等于1;
或者,
K2满足以下至少一项:
K2为预定义、预配置、配置或网络侧指示的值;
K2为大于等于1的值;
在训练所述第一参数、第三参数和第四参数中的至少一项的情况下,K2等于1;
在训练所述第二参数的情况下,K2大于或等于1。
本实施方式中,在训练第二设备或第三设备的波束的过程中,第一设备的波束不变,即第一参数和第二参数不变,在训练第一设备的入射波束的过程中,第二参数不变,且第一设备以至少两个第一参数以波束扫描或轮询的方式接收一组第一信号;在训练第一设备的出射波束的过程中,第一参数不变,且第一设备以至少两个第一参数以波束扫描或轮询的方式发送一组第一信号。
一种实施方式中,所述第一设备基于第一参数接收第一信号,和/或,基于第二参数发送第一信号,可以是第一设备以不同的第一参数接收第一信号或者以不同的第二参数发送第一信号,其中,不同第一参数或第二参数下,第一信号的传输性能可能不同,这样,所述第一信息是基于所述第一信号的测量结果从所述第一参数或第二参数中确定的,例如:选择第一信号的传输性能最优时使用的第一参数和第二参数作为第一信息,或者选择第一信号的传输性能满足通信质量要求时的第一参数和第二参数作为第一信息。
一种实施方式中,所述第一设备基于第一参数接收第一信号,可以是第一设备以预定义的、预配置的、配置的或网络侧设备指示的一个第一参数来接收信息,例如:接收通过控制链路传输的控制信息,或者,在训练第二设备或第三设备的波束的过程中,第一设备以预定义的、预配置的、配置的或网络侧设备指示的一个第一参数来接收第一信号。
一种实施方式中,所述第一设备基于第二参数发送第一信号,可以是第一设备以预定义的、预配置的、配置的或网络侧设备指示的一个第二参数来发送信息,例如:向第二设备发送通过控制链路传输的控制信息,或者,在训练第二设备或第三设备的波束的过程中,第一设备以预定义的、预配置的、配置的或网络侧设备指示的一个第二参数来发送第一信号。
作为一种可选的实施方式,所述第一参数和/或所述第二参数的参数值包括如下至少一项:
预定义的参数值;
预配置的参数值;
配置的参数值;
网络侧指示的参数值;
标识指示的参数值,例如:预先存储索引/标识与参数值之间的对应关系,则指示某一标识时,可以确定第一参数或第二参数的参数值为该标识对应的参数值;
所述第一设备确定的参数值。
一种实施方式中,在第一设备确定第一参数和/或第二参数的参数值的情况下,第一 设备可以向第二设备和第三设备中的至少一项发送该第一参数和/或第二参数的参数值,例如:第一设备向第二设备和第三设备发送第一参数和/或第二参数的参数值,以辅助第三设备测量第一信号的测量结果,并辅助第二设备和/或第三设备确定第一信息。其中,第一设备可以通过发送第一参数和/或第二参数的参数编号或控制信息编号的形式上报第一参数和/或第二参数。
一种实施方式中,第一设备可以从网络侧指示或预定义的参数中选择一个或多个作为第一参数和/或第二参数。
作为一种可选的实施方式,所述测量结果包括以下至少一项:
信道状态信息参考信号资源标识(CSI-RS resource index,CRI);
同步信号块资源标识(SSB resource index,SSBRI);
层1参考信号接收功率(L1-RSRP);
L1-RSRP差值;该RSRP差值可以是测量信号的RSRP与最强的RSRP或最弱的RSRP或预设的RSRP之间的差值;
多端口的线性平均值;
层1信号与干扰加噪声比(L1-SINR);
参考信号资源编号;
所述第一设备的第一参数和/或第二参数对应的参数编号或控制信息编号。
在一种实施方式,在测量结果包括L1-RSRP的情况下,该L1-RSRP可以是最强波束的L1-RSRP,或者是与最强波束的L1-RSRP的差值,或者如果为多端口,则为多个端口L1-RSRP的线性平均值。其中,上报L1-RSRP差值,可以减少上报开销。
本申请实施例汇总,所述第一参数与所述第二参数分开训练。
在一种可选的实施方式中,第一设备的接收波束与第二设备的发送波束联合训练,第一设备的发送波束与第三设备的接收波束联合训练。
例如:如图5所示,假设第二设备为基站,第一设备为中继设备,第三设备为终端,则分两个步骤训练波束;
步骤51、联合训练基站的发送波束和中继设备的入射波束;
步骤52、联合训练中继设备的出射波束和终端的接收波束。
可选地,在进行基站发射波束(gNB TX beam)和RIS接收波束(RIS RX beam)联合训练时,预定义RIS的第二参数(例如:出射角/相位矩阵),UE以固定波束进行参考信号接收,然后根据UE上报的测量结果,确定gNB TX beam和RIS RX beam;
可选地,在进行gNB TX beam训练时,gNB以多种不同的波束发送参考信号;此时RIS采用自主确定的一个RIS的目标参数(K=1)对参考信号进行转发;UE以固定波束进行参考信号接收,根据UE上报的测量结果,确定gNB TX beam。
一种实施方式中,在进行RIS TX beam和UE RX beam联合训练时,gNB以相同的波束发送参考信号;此时RIS采用自主确定的一个RIS的第一参数(K1=1)对参考信号进 行接收;UE以多种不同的波束进行参考信号接收,根据UE上报的测量结果,确定RIS TX beam和UE RX beam。
在另一种可选的实施方式中,第一设备的接收波束与第二设备的发送波束联合训练,第一设备的发送波束和第三设备的接收波束分别独立训练。
例如:如图6所示,假设第二设备为基站,第一设备为中继设备,第三设备为终端,则分三个步骤训练波束;
步骤61、联合训练基站的发送波束和中继设备的入射波束;
步骤62、独立训练中继设备的出射波束;
步骤63、独立训练终端的接收波束。
在另一种可选的实施方式中,第一设备的接收波束、第二设备的发送波束、第一设备的发送波束以及第三设备的接收波束分别独立训练。
例如:如图7所示,假设第二设备为基站,第一设备为中继设备,第三设备为终端,则分四个步骤训练波束;
步骤71、独立训练基站的接收波束;
步骤72、独立训练中继设备的入射波束;
步骤73、独立训练中继设备的出射波束;
步骤74、独立训练终端的接收波束。
作为一种可选的实施方式,所述传输方法还包括:
所述第一设备接收第一指示信息,所述第一指示信息用于指示或配置所述第一设备传输第一信号的所述第一参数和/或所述第二参数。
其中,第一设备可以接收来自第二设备的第一指示信息,例如:第二设备向第一设备发送第一指示信息,并向第三设备发送第二指示信息,以使第一设备和第三设备按照第二设备的指示对第一信号进行传输。
其中,第一指示信息可以携带于以下信令中的至少一项:
F1应用协议(F1 Application Protocol,F1-AP)信令、无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制层控制单元(Medium Access Control Control Element,MAC CE)、下行控制信息(Downlink Control Information,DCI)信令、回传接入协议分组数据单元(Backhaul Access Protocal Packet Data Unit,BAP PDU)。
可选地,所述第一指示信息用于配置或指示以下至少一项:
所述第一信号的重复传输状态为开启,或所述第一信号的重复传输状态为关闭,例如:将第二设备发送的第一信号的重复传输(Repetition)配置为开启(ON)或关闭(OFF);
所述第一信号重复用于训练所述第一参数和第三参数,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端;
所述第一信号重复用于训练所述第二参数和第四参数,所述第四参数为第三设备接收所述第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端;
所述第一信号重复用于训练所述第二参数;
所述第一信号重复用于训练所述第四参数;
所述第一信号重复用于训练所述第一参数;
所述第二设备的发送波束重复或不重复;
所述第三设备的接收波束重复或不重复;
所述第一设备的发送波束重复或不重复;
所述第一设备的接收波束重复或不重复;
所述第一设备接收一组第一信号的波束。
一种实施方式中,所述第一指示信息指示所述第一信号的重复传输状态为开启时,可以训练第二设备的波束,或者联合训练第二设备的发送波束和第一设备的接收波束。
一种实施方式中,所述第一指示信息指示所述第一信号的重复传输状态为关闭时,可以独立训练第一设备的接收波束、第一设备的发送波束或第三设备的接收波束,或者联合训练第一设备的发送波束和第三设备的接收波束。
一种实施方式中,在第一信号的重复传输状态为开启时,还通过第一指示信息可以明确的指示第一信号重复用于训练哪一个或哪一些波束,例如:指示用于联合训练第一参数和第三参数,或联合训练第二参数和第四参数,或独立训练第二参数,或独立训练第四参数,或独立训练第一参数。
一种实施方式中,第一指示信息可以指示设备的波束是否重复,其中,若设备的波束不重复,则表示训练该设备的波束,例如:若指示第二设备的发送波束不重复,则可以是训练第二设备的发送波束;若指示第二设备的发送波束以及第一设备的入射波束不重复,则可以联合训练第二设备的发送波束和第一设备的入射波束;若指示第三设备的接收波束不重复,则可以是训练第三设备的接收波束;若指示第三设备的接收波束和第一设备的出射波束不重复,则可以联合训练第一设备的出射波束和第三设备的接收波束;若指示第一设备的入射波束不重复,则可以训练第一设备的入射波束;若指示第一设备的出射波束不重复,则可以训练第一设备的出射波束。
一种实施方式中,第一指示信息可以直接指示第一设备采用哪个或哪些入射波束,和/或采用哪个或哪些出射波束。
一种实施方式中,第一指示信息可以指示第一设备采用固定的第一参数(也就是第一设备的接收波束固定)转发一组第一信号,或者采用多种第一参数以轮询的方式(对第一设备的接收波束训练)转发所述一组第一信号;或者第二指示信息指示第一设备转发某第一信号时的第一参数编号,即间接地指示第一设备采用固定或者轮询的第一参数转发第一信号。
一种实施方式中,第一指示信息可以指示第一设备采用固定的第二参数(也就是第一设备的发送波束固定)转发一组第一信号,或者采用多种第二参数以轮询的方式(对第一设备的发送波束训练)转发所述一组第一信号;或者,第二指示信息指示第一设备转发某 第一信号时的第二参数编号,即间接地指示第一设备采用固定或者轮询的第二参数转发第一信号。
作为一种可选的实施方式,所述第一指示信息满足以下至少之一:
所述第一信号的重复传输状态和训练对象为联合指示的,所述训练对象包括所述第一参数、所述第二参数和第四参数中的至少一项;
所述第一信号的重复传输状态和训练对象为独立指示的。
一种实施方式中,第一指示信息包括F bit,该F bit指示以下至少一项:
一个码点指示第一信号不重复/repetition’off’;
一个码点指示第一信号重复/repetition’on’用于BH link波束训练;或者指示用于第二设备发送波束训练和第一设备接收波束训练;
一个码点指示第一信号重复/repetition’on’用于AC link波束训练;或者指示用于第一设备发送波束训练和第三设备接收波束训练;
一个码点指示第一信号重复/repetition’on’用于第一设备发送波束训练;
一个码点指示第一信号重复/repetition’on’用于第一设备接收波束训练;
一个码点指示第一信号重复/repetition’on’用于第三设备波束训练。
一种实施方式中,第一指示信息包括3个独立的指示位,指示以下至少一项:
1bit指示repetition为‘on’或者‘off’,1bit指示用于BH link波束训练,或用于AC link波束训练;
1bit指示repetition为‘on’或者‘off’,2bits指示用于第二设备发送波束训练和第一设备接收波束训练,或用于第一设备发送波束训练,或用于第三设备接收波束训练。
1bit指示repetition为‘on’或者‘off’,2bits指示用于第二设备发送波束训练,或用于第一设备接收波束训练,或用于第一设备发送波束训练,或用于第三设备接收波束训练。
其中,上述第一设备的接收和/或发送波束,和/或,第三设备的接收波束,可以是第二设备指示的。
例如:第二设备向第一设备发送第一指示信息,指示第一设备采用固定的第一参数和第二参数传输一组第一信号,或者采用多种第一参数或第二参数以轮询的方式接收或转发一组第一信号。或者,指示第一设备转发某第一信号时的第一参数和第二参数编号,即间接地指示第一设备采用固定或者轮询的目标参数转发第一信号。
再例如:第二设备向第三设备发送第二指示信息,指示第三设备第三设备采用固定的波束接收所述一组第一信号(其中,一组第一信号的接收波束方向不同),或者采用波束扫描的方式接收所述一组第一信号(即指示一组信号的接收波束方向相同)。
这样,第一设备和第三设备可以根据第二设备的指示进行波束训练。
在一种实施方式中,所述第一参数的数量为K1个,和/或所述第二参数的数量为K2个,所述第一信息包括所述K1个第一参数中的一个第一参数,和/或,所述第一信息包括所述K2个第二参数中的一个第二参数,K1和K2为正整数。
可选地,在所述K1个第一参数包括入射角或入射波束,且所述K2个第二参数包括出射角或出射波束的情况下:
所述第一设备基于所述K1个第一参数接收第一信号,并基于预定义、预配置、配置或网络侧指示的一个第二参数发送所述第一信号,K1为大于或等于1的整数;
或者,
所述第一设备基于预定义、预配置、配置或网络侧指示的一个第一参数接收第一信号,并基于所述K2个第二参数发送所述第一信号,K2为大于或等于1的整数。
其中,所述第一设备基于所述K1个第一参数接收第一信号,并基于预定义、预配置、配置或网络侧指示的一个第二参数发送所述第一信号,可以是训练第一设备的接收波束;所述第一设备基于预定义、预配置、配置或网络侧指示的一个第一参数接收第一信号,并基于所述K2个第二参数发送所述第一信号,可以是训练第一设备的发送波束。
在一种可选的实施方式中,所述第一设备基于第一参数接收第一信号,和/或基于第二参数发送第一信号包括:
在满足第一预设条件的情况下,所述第一设备以至少两个第一参数接收第一信号,并以预设的参数发送第一信号。
可选地,所述第一预设条件包括以下至少一项:
所述第一信号的重复传输状态为关闭;
所述第一信号重复用于所述第一参数和/或第三参数的训练,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端;
所述第一信号的重复传输状态为开启,和/或,所述第一信号重复用于所述第一参数和/或所述第三参数的训练;
所述第一设备被配置或指示进行波束训练或采用至少两个第一参数接收第一信号;
所述第二设备的发送波束重复;
所述第一设备的接收波束不重复;
所述第一设备的发送波束重复;
第三设备的接收波束重复,所述第三设备为所述第一设备发送的第一信号的接收端。
其中,满足上述第一预设条件可以表示对第一设备的接收波束进行训练,或者,对第二设备的发送波束和第一设备的接收波束进行联合训练。此时,第三设备可以一固定不变的波束接收一组第一信号,或者第三设备假设下行空域传输滤波器相同。
在另一种可选的实施方式,所述第一设备基于第一参数接收第一信号,和/或基于第二参数发送第一信号包括:
在满足第二预设条件的情况下,所述第一设备以预设的参数接收第一信号,并以至少两个第二参数发送第一信号。
可选地,所述第二预设条件包括以下至少一项:
所述第一信号的重复传输状态为关闭,和/或,所述第一信号重复用于所述第二参数 和第四参数的训练,所述第四参数为所述第三设备接收所述第一信号的参数;
所述第一信号的重复传输状态为开启,和/或,所述第一信号重复用于所述第二参数和所述第四参数的训练或者所述第一信号重复用于所述第二参数的训练;
所述第一设备被配置或指示进行波束训练和/或采用至少两个第二参数发送第一信号;
所述第二设备的发送波束重复;
所述第一设备的接收波束重复;
所述第一设备的发送波束不重复;
所述第三设备的接收波束重复。
其中,满足上述第二预设条件可以包括:对第一设备的发送波束进行独立训练,或者,对第一设备的发送波束和第三设备的接收波束进行联合训练。此时,在独立第三设备基于一固定不变的波束接收一组第一信号,或者第三设备假设下行空域传输滤波器相同。
在另一种可选的实施方式,所述第一设备基于第一参数接收第一信号,和/或基于第二参数发送第一信号包括:
在满足第三预设条件的情况下,所述第一设备以预设的参数接收和/或发送第一信号,或者所述第一设备假设下行空域传输滤波器相同。
可选地,所述第三预设条件包括以下至少一项:
所述第一信号的重复传输状态为开启;
所述第一信号重复用于所述第四参数的训练;
所述第三设备被配置或指示进行波束训练和/或采用至少两个第四参数接收一组第一信号;
所述第二设备的发送波束重复;
所述第一设备的接收波束和/或发送波束重复;
所述第三设备的接收波束不重复。
其中,满足上述第二预设条件可以表示对第三设备的波束进行训练或者对第一设备的发送波束和第三设备的接收波束进行联合训练,此时,第三设备可以以N个波束接收信息,N可以是第三设备需要训练的波束数目。
作为一种可选的实施方式,在所述第一参数和所述第二参数为所述第一设备的控制信息的情况下,第一控制信息集合包括所述K1个第一参数,第二控制信息集合包括所述K2个第二参数;
所述第一设备基于第一参数接收第一信号,和/或,基于第二参数发送第一信号,包括:
第一设备基于所述第一控制信息集合接收第一信号,和/或基于一个控制信息发送第一信号,即使用K1个波束接收第一信号,并使发送波束固定;
或者,
第一设备基于一个控制信息接收第一信号,和/或基于所述第二控制信息集合发送第 一信号,即使波束接收波束固定,并使用K2个发送波束发送第一信号。
作为一种可选的实施方式,所述第一设备基于第一参数接收第一信号,包括:
第一设备基于第一参数接收一组第一信号,所述一组第一信号包括M个第一信号,M为大于或等于1的整数。
其中,在波束训练过程中,第二设备可以发送一组第一信号,该一组第一信号可以包括M个第一信号。
可选地,M的值可以是预定义、预配置、配置的或网络侧指示的;或者,M的最大值和/或最小值可以是预定义、预配置、配置的或网络侧指示的。
可选地,M个第一信号的资源(时域/频域/空域)的大小和/或位置为预定义、预配置、配置或网络侧指示的。
可选地,第一信号为周期的,或半静态的,或非周期的。
可选地,M个第一信号的资源大小相同。
一种实施方式中,所述一组第一信号为重复信号,一组第一信号为重复信号是指第二设备采用相同的波束发送一组第一信号。此时,可以用于独立训练第一设备的接收波束、第一设备的发送波束、第三设备的接收波束,或者联合训练第二设备的发送波束和第一设备的接收波束,或者联合训练第一设备的发送波束和第三设备的接收波束,第一信号的重复次数M满足以下之一:
在所述M个第一信号为重复信号的情况下,重复次数满足以下至少一项:
所述重复次数的值为预定义、预配置、配置或网络侧指示的值;
在训练第四参数的情况下,所述重复次数被配置或指示为N;
在联合训练第三参数和所述第一参数的情况下,所述重复次数被配置或指示为K1;
在联合训练所述第二参数和所述第四参数的情况下,所述重复次数被配置或指示为K2*N;
在独立训练所述第一参数的情况下,所述重复次数被配置或指示为K1;
在独立训练所述第二参数的情况下,所述重复次数被配置或指示为K2;
其中,K1与所述第一设备的参数配置相关,例如:K1为第一设备的入射波束/接收波束数目,K2与所述第一设备的参数配置相关,例如:K2为第一设备的出射波束/发送波束数目,N与第三设备的参数配置相关,所述第三设备为所述第一设备发送的第一信号的接收端,例如:N为第三设备的接收波束数目。
可选地,所述M个第一信号为非重复信号。一组第一信号为非重复信号是指第二设备采用不同的波束发送一组第一信号。此时,非重复信号用于gNB TX beam训练。其中,非重复信号的数量取决于(或等于)待训练的gNB TX beam的个数。
可选地,所述M个第一信号包括重复信号和非重复信号。
例如:所述一组信号中存在多个子集合,每个子集合中的信号为重复信号,不同子集合之间的信号为非重复信号;或者,
所述一组信号中存在多个子集合,每个子集合中的信号为非重复信号,不同子集合之间的信号为重复信号,例如,子集合#1中的信号#1与子集合#2中的信号#1使用相同的波束。
一种实施方式中,第一设备的入射波束训练、第一设备的出射波束训练和第三设备的接收波束训练所需的第二设备波束重复次数可能不同;
BH link与AC link所需的第二设备波束重复次数可能不同;
BH link与第一设备发送beam,第三设备接收beam所需的第二设备波束重复次数可能不同。
作为一种可选的实施方式,所述方法还包括以下至少一项:
所述第一设备发送第一能力信息,所述第一能力信息包括所述第一参数和所述第二参数的至少部分参数;
所述第一设备接收第四信息,所述第四信息用于配置或指示所述第一参数和所述第二参数的至少部分参数。
一种实施方式中,上述第一能力信息可以携带于以下至少一项:操作管理和维护(Operation Administration and Maintenance,OAM)信令、RRC信令、MAC CE、上行链路控制信息(Uplink Control Information,UCI)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
本实施方式中,第二设备和第一设备可以协商第一参数和/或第二参数,例如:第一设备通过第一能力信息向第二设备发送第一设备支持的传输参数,第二设备根据需要从第一设备支持的传输参数中选择第一参数和/或第二参数,并通过第四信息向第一设备发送选择的第一参数和/或第二参数;或者,第二设备通过第四信息向第一设备下发候选的传输参数,第一设备从中选择部分或全部作为第一参数和/或第二参数,此外,第一设备还可以向第二设备发送选择的第一参数和/或第二参数。
在本申请实施例中,在第一设备作为第二设备和第三设备之间的中继设备的场景下,第一设备基于第一参数接收第一信号,这样,可以训练第一设备的接收波束;和/或,第一设备基于第二参数发送第一信号,这样,可以训练第一设备的发送波束,基于该训练过程中对第一信号的测量结果所确定的波束来发送和/或接收数据信息,能够使第二设备到第一设备的波束对准,和/或,时第一设备到第三设备的波束对准,或者选择合适的波束,提升了第二设备到第三设备的数据传输质量。
请参阅图8,本申请实施例提供的一种传输方法,其执行主体是第三设备,该第三设备可以是第一设备的下游节点,例如,终端。本申请实施例与如图4所示方法实施例相似,不同之处包括:如图8所示方法实施例的执行主体是第三设备,如图4所示方法实施例的执行主体是第一设备,对于本申请实施例的解释说明可以参考如图4所示方法实施例中的解释说明,在此不再赘述。
如图8所示,该第三设备执行的传输方法可以包括以下步骤:
步骤801、所述第三设备接收第一信号,并获取对所述第一信号的测量结果,其中,所述第一信号为第二设备发送的并经第一设备转发的信号。
步骤802、所述第三设备发送所述测量结果。
一种实施方式中,第三设备可以向第二设备和第一设备中的至少一项发送所述测量结果,这样,第二设备和第一设备中的至少一项可以基于该测量结果从第一参数和/或第二参数中确定第一信息,即选择第一设备的接收波束和/或发送波束。
一种实施方式中,所述第三设备接收第一信号,包括以下至少之一:
所述第三设备基于第二目标参数接收第一信号;
所述第三设备基于第二信息接收数据信息,所述第二信息是基于所述测量结果从所述第二目标参数中确定的;
所述第三设备以预定义的、预配置的或配置的接收波束接收第一信号。
其中,第三设备基于第二目标参数接收第一信号的情况下,第二设备可以重复发送第一信号,且第一设备可以以预定义的、预配置的或配置的波束传输第一信号,以训练第三设备的波束,或者,第二设备可以重复发送第一信号,且第一设备可以以预定义的、预配置的或配置的接收波束接收第一信号,并基于至少两个第二参数发送第一信号,以联合训练第一设备的发送波束和第三设备的接收波束。
所述第三设备以预定义的、预配置的或配置的接收波束接收第一信号的情况下,第三设备的接收波束可以是全向波束,或者,第三设备基于实现确定第一信号的一个接收波束,第二设备可以发送不重复的第一信号,和/或第一设备可以以不同的波束传输第一信号,以训练第二设备和/或第一设备的波束。
可选地,第二目标参数包括:接收角、接收波束、所述第三设备的控制信息中的至少一项。
其中,第三设备的控制信息可以是相位矩阵、码本等。
可选地,所述第二目标参数包括:
第四参数,所述第四参数为所述第三设备接收第一信号的参数。
可选地,所述第三设备基于第二目标参数接收第一信号,包括以下至少一项:
所述第三设备以预定义的、预配置的、配置的或网络侧指示的第四参数接收第一信息;
所述第三设备以N个第四参数接收第一信号。
一种实施方式中,第三设备可以以N个第四参数,以轮询或波束扫描的方式接收第一信号,以训练第三设备的波束,或,联合训练第一设备的发送波束和第三设备的接收波束。
可选地,所述测量结果包括以下至少一项:
信道状态信息参考信号资源标识CRI;
同步信号块资源标识SSBRI;
层1参考信号接收功率L1-RSRP;
L1-RSRP差值;
多端口的线性平均值;
层1信号与干扰加噪声比L1-SINR;
参考信号资源编号;
所述第一设备的目标参数对应的参数编号或控制信息编号。
一种实施方式中,所述测量结果的数量为L,L为大于或等于1的整数;
其中,L的值为预定义、预配置、配置、网络侧指示或者所述第三设备确定的。
一种实施方式中,L的最大值为预定义、预配置、配置、网络侧指示的。
一种实施方式中,第一设备可以不上报的测量结果,或上报的测量结果为“none”,此时,可以表示第一设备未接收到第一信号。
作为一种可选的实施方式,所述第三设备发送所述测量结果,包括:
所述第三设备在预配置或配置的资源(如:时域资源和/或频域资源和/或波束索引(beam index)指示的波束)上发送所述测量结果。
作为一种可选的实施方式,所述传输方法还包括:
所述第三设备接收第二指示信息,所述第二指示信息用于指示或配置所述第三设备接收第一信号的第二目标参数。
可选地,所述第二指示信息用于配置或指示以下至少一项:
所述第一信号的重复传输状态为开启,或所述第一信号的重复传输状态为关闭;
所述第一信号重复用于训练第一参数和第三参数,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端,所述第一参数为所述第一设备的发送参数;
所述第一信号重复用于训练第二参数和第四参数,所述第四参数为所述第三设备接收所述第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端,所述第二参数为所述第一设备的接收参数;
所述第一信号重复用于训练所述第二参数;
所述第一信号重复用于训练所述第四参数;
所述第一信号重复用于训练所述第一参数;
所述第二设备的发送波束重复或不重复;
所述第三设备的接收波束重复或不重复;
所述第一设备的发送波束重复或不重复;
所述第一设备的接收波束重复或不重复;
所述第三设备的接收一组第一信号的波束。
一种实施方式中,上述第二指示信息可以与如图4所示方法实施例中的第一指示信息为相同的指示信息,例如:第二设备发送同一个DCI给第一设备和第三设备,该DCI中携带的指示信息为第一指示信息和第二指示信息。
例如:所述第二指示信息用于配置或指示以下至少一项:
所述第一信号的重复传输状态为开启,或所述第一信号的重复传输状态为关闭;
所述第一信号重复用于训练第一参数和第三参数,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端,所述第一参数为所述第一设备的发送参数;
所述第一信号重复用于训练第二参数和第四参数,所述第四参数为所述第三设备接收所述第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端,所述第二参数为所述第一设备的接收参数;
所述第一信号重复用于训练所述第二参数;
所述第一信号重复用于训练所述第四参数;
所述第一信号重复用于训练所述第一参数;
所述第二设备的发送波束重复或不重复;
所述第三设备的接收波束重复或不重复;
所述第一设备的发送波束重复或不重复;
所述第一设备的接收波束重复或不重复。
一种实施方式中,上述第二指示信息可以与如图4所示方法实施例中的第一指示信息为不同的指示信息,例如:第二设备发送一个DCI给第一设备,该DCI中携带第一指示信息,第二设备发送另一个DCI给第三设备,该DCI中携带第二指示信息。
例如:第二设备向第一设备发送第一指示信息,指示第一设备采用固定的目标参数转发一组第一信号,或者采用多种目标参数以轮询的方式转发所述一组第一信号。或者,该第一指示信息可以指示第一设备转发某第一信号时的目标参数编号,即间接地指示第一设备采用固定或者轮询的目标参数转发第一信号。此外,第二设备2向第三设备发送第二指示信息,指示第三设备采用固定的波束接收所述一组第一信号,或者采用波束扫描的方式接收所述一组第一信号。
这样,第三设备可以基于第二设备的指示来传输第一信号和/或测量结果。
一种可选的实施方式中,所述第三设备获取对第一信号的测量结果,包括:
在所述第二指示信息满足第一条件的情况下,所述第三设备以第一配置参数发送所述第一信号的测量结果,所述第一配置参数为对第二参数和/或第四参数进行训练上报的参数。
可选地,所述第一条件包括以下至少一项:
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启;
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第二参数和/或所述第四参数的训练。
此时,为对AC link进行波束训练。
一种可选的实施方式中,所述第三设备获取对第一信号的测量结果,包括:
在所述第二指示信息满足第二条件的情况下,所述第三设备以第二配置参数发送所述 第一信号的测量结果,所述第二配置参数为对第一参数和/或第三参数进行训练上报的参数。
可选地,所述第二条件包括以下至少一项:
所述第二指示信息配置或指示所述第一信号的重复传输状态为关闭,且所述第一信号重复用于所述第一参数和/或所述第三参数的波训练;
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第一参数和/或所述第三参数的波训练。
此时,为BH link进行波束训练。
一种可选的实施方式中,所述第三设备获取对第一信号的测量结果,包括:
在所述第二指示信息满足第三条件的情况下,所述第三设备以第三配置参数发送所述第一信号的测量结果,所述第三配置参数为对所述第二参数进行训练上报的参数。
可选地,所述第三条件包括以下至少一项:
所述第二指示信息配置或指示所述第一信号的重复传输状态为关闭,且所述第一信号重复用于所述第二参数的训练;
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第二参数的训练。
此时,为对第一设备的发送波束进行波束训练。
一种可选的实施方式中,所述第三设备获取对第一信号的测量结果,包括:
在所述第二指示信息满足第四条件的情况下,所述第三设备以第四配置参数发送所述第一信号的测量结果,所述第四配置参数为对所述第四参数进行训练上报的参数。
可选地,所述第四条件包括以下至少一项:
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启;
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第四参数的训练
此时,为对第三设备的接收波束进行波束训练。
一种可选的实施方式中,所述第三设备获取对第一信号的测量结果,包括:
在所述第二指示信息满足第五条件的情况下,所述第三设备以第五配置参数发送所述第一信号的测量结果,所述第五配置参数为对所述第一参数进行训练上报的参数。
可选地,所述第五条件包括以下至少一项:
所述第二指示信息配置或指示所述第一信号的重复传输状态为关闭,且所述第一信号重复用于所述第一参数的训练;
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第一参数的训练。
此时,为对第一设备的接收波束进行波束训练。
其中,所述第一配置参数、所述第二配置参数、所述第三配置参数、所述第四配置参 数和所述第五配置参数中包含的测量结果可以相同或者不同,所述第一配置参数、所述第二配置参数、所述第三配置参数、所述第四配置参数和所述第五配置参数中的测量结果的上报数目L可以相同或者不同。
一种可选的实施方式中,所述第三设备获取对第一信号的测量结果,包括:
在满足第一预设条件和/或第二预设条件的情况下,所述第三设备以预设的参数接收所述第一信号,或者第三设备假设下行空域传输滤波器相同;
在满足第三预设条件的情况下,所述第三设备以至少两个参数接收所述第一信号。
可选地,所述第一预设条件包括以下至少一项:
所述第一信号重复用于第一参数和/或第三参数的训练;
所述第一信号的重复传输状态为开启,和/或,所述第一信号重复用于所述第一参数和/或所述第三参数的训练;
所述第一设备被配置或指示进行波束训练或采用至少两个第一参数接收第一信号;
所述第二设备的发送波束重复;
所述第一设备的接收波束不重复;
所述第一设备的发送波束重复;
所述第三设备的接收波束重复;
和/或,
所述第二预设条件包括以下至少一项:
所述第一信号的重复传输状态为关闭,和/或,所述第一信号重复用于第二参数和第四参数的训练;
所述第一信号的重复传输状态为开启,和/或,所述第一信号重复用于所述第二参数和所述第四参数的训练或者所述第一信号重复用于所述第二参数的训练;
所述第一设备被配置或指示进行波束训练和/或采用至少两个第二参数发送第一信号;
所述第二设备的发送波束重复;
所述第一设备的接收波束重复;
所述第一设备的发送波束不重复;
所述第三设备的接收波束重复;
和/或,
所述第三预设条件包括以下至少一项:
所述第一信号的重复传输状态为开启;
所述第一信号重复用于所述第四参数的训练;
所述第三设备被配置或指示进行波束训练和/或采用至少两个第四参数接收一组第一信号;
所述第二设备的发送波束重复;
所述第一设备的接收波束和/或发送波束重复;
所述第三设备的接收波束不重复。
作为一种可选的实施方式,所述传输方法还包括:
所述第三设备确定第一参数和/或第二参数的第一标识信息或所述第一参数和/或第二参数对应的参考信号资源的第二标识信息;
所述第三设备发送所述第一标识信息或所述第二标识信息。
本实施方式下,第三设备可以获取接收到的第一信号的资源编号,或者是确定第一设备传输该第一信号的第一参数和/或第二参数,并发送该资源编号,或,第一参数和/或第二参数的标识,以使第二设备或第一设备能够据此确定测量结果为对使用哪一个传输参数的第一信号进行测量得到的测量结果,并据此选择波束。
作为一种可选的实施方式,所述传输方法还包括以下至少一项:
所述第三设备发送第二能力信息,所述第二能力信息包括第二目标参数的至少部分参数,所述第二目标参数为所述第三设备接收所述第一信号的参数;
所述第一设备接收第五信息,所述第五信息用于配置或指示所述第二目标参数的至少部分参数。
本实施方式下,第三设备可以向第二设备发送第二能力信息,和/或第三设备可以从第二设备接收第五信息,以实现与第二设备协商第二目标参数。其具体过程和原理可以参考如图4所示方法实施例中,第一设备发送第一能力信息,和/或接收第四信息的相关说明,在此不再赘述。
本申请实施例与如图4所示方法实施例相配合,通过调节第一设备的传输参数,实现第二设备、第一设备和第三设备之间的波束训练。
请参阅图9,本申请实施例提供的一种参数确定方法,其执行主体是第二设备。本申请实施例与如图4所示方法实施例相似,不同之处在于,如图9所示方法实施例的执行主体是第二设备,如图4所示方法实施例的执行主体是第一设备,该第二设备可以是第一设备的上游节点,例如,基站。对于本申请实施例的解释说明可以参考如图4所示方法实施例中的解释说明,在此不再赘述。
如图9所示,该第二设备执行的参数确定方法可以包括以下步骤:
步骤901、所述第二设备发送第一信号。
步骤902、所述第二设备接收测量结果,所述测量结果为对第一设备转发的所述第一信号进行接收和/或测量得到的测量结果。
步骤903、所述第二设备基于所述测量结果从第一参数和/或第二参数中确定第一信息,其中,所述第一参数包括所述第一设备的接收参数,所述第二参数包括所述第一设备的发送参数。
可选地,所述第一参数包括:入射角、入射波束、所述第一设备的控制信息中的至少一项;
和/或,
所述第二参数包括:出射角、出射波束、所述第一设备的控制信息中的至少一项。
可选地,所述第二设备发送第一信号,包括以下至少之一:
所述第二设备基于第三目标参数发送第一信号;
所述第二设备基于第三信息发送数据信息,其中,所述第三信息是基于所述测量结果还用于从所述第三目标参数中确定的;
所述第二设备以预定义的、预配置的或配置的发送波束发送第一信号。
一种实施方式中,第二设备可以以预定义的、预配置的或配置的发送波束发送第一信号,即发送重复的第一信号,此时,可以训练第一设备和/或第三设备的波束。
一种实施方式中,第二设备可以以不同的波束发送第一信号,即发送不重复的第一信号,此时,可以训练第二设备的波束,或者联合训练第二设备和第一设备的接收波束。
在训练第二设备的波束的情况下,所述第二设备可以基于第三设备对第一信号的测量结果从训练的波束中选择用于发送数据信息的波束,例如:选择满足通信质量要求的发送波束,或者选择通信质量最好的发送波束。
可选地,所述第三目标参数包括:发送角、发送波束、所述第二设备的控制信息中的至少一项。
可选地,所述第三目标参数包括:
第三参数,所述第三参数为所述第二设备发送第一信号的参数。
可选地,第三参数与所述第一参数联合训练,且所述第二参数与第四参数联合训练,所述第四参数为第三设备接收第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端,例如:如图5所示波束训练过程;
或者,
所述第一参数、所述第二参数、所述第三参数和所述第四参数独立训练,例如:如图7所示波束训练过程;
或者,
所述第三参数与第一参数联合训练,所述第二参数独立训练,所述第四参数独立训练,例如:如图6所示波束训练过程。
本实施方式为对第三设备的波束进行训练,第二设备根据训练结果选择一个波束,并通知第三设备可以使用该波束传输数据信息。
可选地,所述参数确定方法还包括:
所述第二设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示所述第一参数和/或所述第二参数;
和/或,
所述第二设备向第三设备发送第二指示信息,所述第二指示信息用于指示所述第三设备接收第一信号的第二目标参数。
可选地,所述第二目标参数包括N个第四参数,所述方法还包括:
所述第二设备根据所述测量结果从所述N个第四参数中确定一个第四参数;
所述第二设备向所述第三设备发送所述一个第四参数的指示信息。
可选地,所述第一指示信息和/或所述第二指示信息用于配置或指示以下至少一项:
所述第一信号的重复传输状态为开启,或所述第一信号的重复传输状态为关闭;
所述第一信号重复用于训练所述第一参数和第三参数,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端;
所述第一信号重复用于训练所述第二参数和第四参数,所述第四参数为所述第三设备接收所述第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端;
所述第一信号重复用于训练所述第二参数;
所述第一信号重复用于训练所述第四参数;
所述第一信号重复用于训练所述第一参数;
所述第二设备的发送波束重复或不重复;
所述第三设备的接收波束重复或不重复;
所述第一设备的发送波束重复或不重复;
所述第一设备的接收波束重复或不重复;
所述第一设备接收一组第一信号的波束;
所述第三设备的接收一组第一信号的波束。
可选地,所述第一参数的数量为K1个,和/或所述第二参数的数量为K2个,所述第一信息包括所述K1个第一参数中的一个第一参数,和/或,所述第一信息包括所述K2个第二参数中的一个第二参数,K1和K2为正整数。
可选地,所述参数确定方法还包括以下至少一项:
所述第二设备接收来自所述第一设备的第一能力信息,所述第一能力信息包括所述第一参数和所述第二参数的至少部分参数;
所述第二设备向所述第一设备发送第四信息,所述第四信息用于配置或指示所述第一参数和所述第二参数的至少部分参数;
所述第二设备接收来自所述第三设备的第二能力信息,所述第二能力信息包括第二目标参数的至少部分参数,所述第二目标参数为所述第三设备接收所述第一信号的参数;
所述第二设备向所述第三设备发送第五信息,所述第五信息用于配置或指示所述第二目标参数的至少部分参数。
可选地,所述参数确定方法还包括以下至少一项:
所述第二设备根据确定的一个第三参数,确定在上行传输场景下所述第二设备的接收参数;
所述第二设备根据确定的一个第一参数,确定在上行传输场景下所述第一设备的发送参数;
所述第二设备根据确定的一个第二参数,确定在上行传输场景下所述第一设备的接收 参数;
所述第二设备根据确定的一个第四参数,确定在上行传输场景下所述第三设备的发送参数。
需要说明的是,在实施中,上行传输场景下所述第二设备的接收参数可以由第二设备确定;上行传输场景下所述第一设备的接收和/或发送参数可以由第一设备确定;上行传输场景下第三设备的发送参数可以由第三设备确定。
例如:第二设备根据对第一信号的测量结果确定在下行传输场景下,第一设备的接收和/或发送参数的情况下,可以向第一设备指示该下行传输场景下的接收和/或发送参数。第一设备可以基于上行波束和下行波束的互异性,根据下行传输场景下的接收和/或发送参数确定上行场景下第一设备的接收和/或发送参数。
如:UL传输时,gNB的接收波束与DL传输时,gNB的发送波束相同;
UL传输时,RIS的接收波束与DL传输时,RIS的发送波束相同;
UL传输时,RIS的发送波束与DL传输时,RIS的接收波束相同;
UL传输时,UE的发送波束与DL传输时,RIS的发送波束相同。
本申请实施例与如图4和/或图8所示方法实施例相配合,以实现对中继设备的波束进行训练。
为了便于说明本申请实施例提供的传输方法和参数确定方法,以如下实施例为例对本申请实施例提供的传输方法和参数确定方法进行举例说明:
实施例一
如图7所示,假设第二设备为gNB,第一设备为RIS,第三设备为UE,且gNB的发送波束、RIS的接收波束、RIS的发送波束、UE的接收波束分别独立训练,则训练过程可以包括以下过程:
步骤71:gNB TX beam训练,gNB以多种不同的波束发送参考信号;此时RIS采用自主确定的一个RIS的第一参数(K1=1),和一个第二参数(K2=1)对参考信号进行转发;UE以固定波束进行参考信号接收,根据UE测量上报结果,确定gNB TX beam。
步骤72:在进行RIS第一参数训练时,gNB以相同的波束发送参考信号;此时RIS采用自主确定的多个RIS的第一参数(K1>1),和一个第二参数(K2=1)对参考信号进行转发;UE以固定波束进行参考信号接收,根据UE测量上报结果,确定RIS的第一参数(例如:RIS RX beam)。
步骤73:在进行RIS第二参数训练时,gNB以相同的波束发送参考信号;此时RIS采用RIS的一个第一参数(K1=1),和自主确定的多个RIS第二参数(K2>1)对参考信号进行转发;UE以固定波束进行参考信号接收,根据UE测量上报结果,确定RIS的第二参数(例如:RIS TX beam)。
步骤74:在进行UE beam训练时,gNB以相同的波束发送参考信号;此时RIS采用自主确定的一个RIS的第一参数(K1=1)和一个第二参数(K2=1)对参考信号进行转发; UE以多种不同的波束进行参考信号接收,根据UE测量上报结果,确定UE RX beam。
实施例二
如图6所示,假设第二设备为gNB,第一设备为RIS,第三设备为UE,且gNB的发送波束与RIS的接收波束联合训练,RIS的发送波束、UE的接收波束分别独立训练,则训练过程可以包括以下过程:
步骤61:gNB TX beam与RIS第一参数训练,gNB以多种不同的波束发送参考信号;此时RIS采用多个RIS的第一参数(K1>1),和一个第二参数(K2=1)对参考信号进行转发;UE以固定波束进行参考信号接收,根据UE测量上报结果,确定gNB TX beam和RIS的第一参数(例如:RIS RX beam)。
步骤62:在进行RIS第二参数训练时,gNB以相同的波束发送参考信号;此时RIS采用RIS的一个第一参数(K1=1),和自主确定的多个RIS第二参数(K2>1)对参考信号进行转发;UE以固定波束进行参考信号接收,根据UE测量上报结果,确定RIS的第二参数(例如:RIS TX beam)。
步骤63:在进行UE beam训练时,gNB以相同的波束发送参考信号;此时RIS采用自主确定的一个RIS的第一参数(K1=1)和一个第二参数(K2=1)对参考信号进行转发;UE以多种不同的波束进行参考信号接收,根据UE测量上报结果,确定UE RX beam。
本申请实施例提供的传输方法,执行主体可以为传输装置。本申请实施例中以传输装置执行传输方法为例,说明本申请实施例提供的传输装置。
请参阅图10,本申请实施例提供的一种传输装置,可以是第一设备内的装置,如图10所示,该传输装置1100可以包括以下模块:
第一传输模块1001,用于基于第一参数接收第一信号,和/或,基于第二参数发送第一信号;
第二传输模块1002,用于基于第一信息发送和/或接收数据信息,其中,所述第一信息包括基于所述第一信号的测量结果确定的参数。
可选地,所述第一参数包括:入射角、入射波束、所述第一设备的控制信息中的至少一项;
和/或,
所述第二参数包括:出射角、出射波束、所述第一设备的控制信息中的至少一项。
可选地,第三参数与所述第一参数联合训练,且所述第二参数与第四参数联合训练,所述第三参数为第二设备发送第一信号的参数,所述第四参数为第三设备接收第一信号的参数,所述第二设备为所述第一设备接收的第一信号的发送端,所第三设备为所述第一设备发送的第一信号的接收端;
或者,
所述第一参数、所述第二参数、所述第三参数和所述第四参数独立训练;
或者,
所述第三参数与所述第一参数联合训练,所述第二参数独立训练,所述第四参数独立训练。
可选地,所述第一参数和/或所述第二参数的参数值包括如下至少一项:
预定义的参数值;
预配置的参数值;
配置的参数值;
网络侧指示的参数值;
标识指示的参数值;
所述第一设备确定的参数值。
可选地,所述第一参数的数量为K1,所述第二参数的数量为K2,K1满足以下至少一项:
K1为预定义、预配置、配置或网络侧指示的值;
K1为大于等于1的值;
在训练所述第二参数、第三参数和第四参数中的至少一项的情况下,K1等于1;
在训练所述第一参数的情况下,K1大于或等于1;
或者,
K2满足以下至少一项:
K2为预定义、预配置、配置或网络侧指示的值;
K2为大于等于1的值;
在训练所述第一参数、第三参数和第四参数中的至少一项的情况下,K2等于1;
在训练所述第二参数的情况下,K2大于或等于1。
可选地,所述测量结果包括以下至少一项:
信道状态信息参考信号资源标识CRI;
同步信号块资源标识SSBRI;
层1参考信号接收功率L1-RSRP;
L1-RSRP差值;
多端口的线性平均值;
层1信号与干扰加噪声比L1-SINR;
参考信号资源编号;
所述第一设备的第一参数和/或第二参数对应的参数编号或控制信息编号。
可选地,传输装置1000还包括:
第二接收模块,用于接收第一指示信息,所述第一指示信息用于指示或配置所述第一参数和/或所述第二参数。
可选地,所述第一指示信息为第一信令携带的信息,所述第一信令包括以下至少一项:
F1应用协议F1-AP信令、无线资源控制RRC信令、媒体接入控制层控制单元MAC CE 信令、下行控制信息DCI信令、带宽分配协议数据单元BAP PDU。
可选地,所述第一指示信息用于配置或指示以下至少一项:
所述第一信号的重复传输状态为开启,或所述第一信号的重复传输状态为关闭;
所述第一信号重复用于训练所述第一参数和第三参数,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端;
所述第一信号重复用于训练所述第二参数和第四参数,所述第四参数为第三设备接收所述第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端;
所述第一信号重复用于训练所述第二参数;
所述第一信号重复用于训练所述第四参数;
所述第一信号重复用于训练所述第一参数;
所述第二设备的发送波束重复或不重复;
所述第三设备的接收波束重复或不重复;
所述第一设备的发送波束重复或不重复;
所述第一设备的接收波束重复或不重复;
所述第一设备接收一组第一信号的波束。
可选地,所述第一指示信息满足以下至少之一:
所述第一信号的重复传输状态和训练对象为联合指示的,所述训练对象包括所述第一参数、所述第二参数和第四参数中的至少一项;
所述第一信号的重复传输状态和训练对象为独立指示的。
可选地,所述第一参数的数量为K1个,和/或所述第二参数的数量为K2个,所述第一信息包括所述K1个第一参数中的一个第一参数,和/或,所述第一信息包括所述K2个第二参数中的一个第二参数,K1和K2为正整数。
可选地,在所述K1个第一参数包括入射角或入射波束,且所述K2个第二参数包括出射角或出射波束的情况下:
所述第一设备基于所述K1个第一参数接收第一信号,并基于预定义、预配置、配置或网络侧指示的一个第二参数发送所述第一信号,K1为大于或等于1的整数;
或者,
所述第一设备基于预定义、预配置、配置或网络侧指示的一个第一参数接收第一信号,并基于所述K2个第二参数发送所述第一信号,K2为大于或等于1的整数。
可选地,第一传输模块1001具体用于:
在满足第一预设条件的情况下,以至少两个第一参数接收第一信号,并以预设的参数发送第一信号;
在满足第二预设条件的情况下,以预设的参数接收第一信号,并以至少两个第二参数发送第一信号;
在满足第三预设条件的情况下,以预设的参数接收和/或发送第一信号,或者所述第 一设备假设下行空域传输滤波器相同。
可选地,所述第一预设条件包括以下至少一项:
所述第一信号的重复传输状态为关闭;
所述第一信号重复用于所述第一参数和/或第三参数的训练,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端;
所述第一信号的重复传输状态为开启,和/或,所述第一信号重复用于所述第一参数和/或所述第三参数的训练;
所述第一设备被配置或指示进行波束训练或采用至少两个第一参数接收第一信号;
所述第二设备的发送波束重复;
所述第一设备的接收波束不重复;
所述第一设备的发送波束重复;
第三设备的接收波束重复,所述第三设备为所述第一设备发送的第一信号的接收端;
和/或,
所述第二预设条件包括以下至少一项:
所述第一信号的重复传输状态为关闭,和/或,所述第一信号重复用于所述第二参数和第四参数的训练,所述第四参数为所述第三设备接收所述第一信号的参数;
所述第一信号的重复传输状态为开启,和/或,所述第一信号重复用于所述第二参数和所述第四参数的训练或者所述第一信号重复用于所述第二参数的训练;
所述第一设备被配置或指示进行波束训练和/或采用至少两个第二参数发送第一信号;
所述第二设备的发送波束重复;
所述第一设备的接收波束重复;
所述第一设备的发送波束不重复;
所述第三设备的接收波束重复;
和/或,
所述第三预设条件包括以下至少一项:
所述第一信号的重复传输状态为开启;
所述第一信号重复用于所述第四参数的训练;
所述第三设备被配置或指示进行波束训练和/或采用至少两个第四参数接收一组第一信号;
所述第二设备的发送波束重复;
所述第一设备的接收波束和/或发送波束重复;
所述第三设备的接收波束不重复。
可选地,在所述第一参数和所述第二参数为所述第一设备的控制信息的情况下,第一控制信息集合包括所述K1个第一参数,第二控制信息集合包括所述K2个第二参数;
第一传输模块1001,具体用于:
基于所述第一控制信息集合接收第一信号,和/或基于一个控制信息发送第一信号;
或者,
基于一个控制信息接收第一信号,和/或基于所述第二控制信息集合发送第一信号。
可选地,第一传输模块1001,包括:
第一接收单元,用于基于第一参数接收一组第一信号,所述一组第一信号包括M个第一信号,M为大于或等于1的整数。
可选地,所述M个第一信号满足以下至少一项:
M的值为预定义、预配置、配置或网络侧指示的;
所述M个第一信号的资源的大小和/或位置为预定义、预配置、配置或网络侧指示的;
所述M个第一信号为重复信号;
所述M个第一信号为非重复信号;
所述M个第一信号包括重复信号和非重复信号。
可选地,在所述M个第一信号为重复信号的情况下,重复次数满足以下至少一项:
所述重复次数的值为预定义、预配置、配置或网络侧指示的值;
在训练第四参数的情况下,所述重复次数被配置或指示为N;
在联合训练第三参数和所述第一参数的情况下,所述重复次数被配置或指示为K1;
在联合训练所述第二参数和所述第四参数的情况下,所述重复次数被配置或指示为K2*N;
在独立训练所述第一参数的情况下,所述重复次数被配置或指示为K1;
在独立训练所述第二参数的情况下,所述重复次数被配置或指示为K2;
其中,K1与所述第一设备的参数配置相关,K2与所述第一设备的参数配置相关,N与第三设备的参数配置相关,所述第三设备为所述第一设备发送的第一信号的接收端。
可选地,传输装置还包括以下至少一项:
第三发送模块,用于发送第一能力信息,所述第一能力信息包括所述第一参数和所述第二参数的至少部分参数;
第三接收模块,用于接收第四信息,所述第四信息用于配置或指示所述第一参数和所述第二参数的至少部分参数。
本申请实施例提供的传输装置1000,能够实现如图4所示方法实施例中第一设备实现的各个过程,且能够取得相同的有益效果,为避免重复,在此不再赘述。
请参阅图11,本申请实施例提供的另一种传输装置,可以是第三设备内的装置,如图11所示,该传输装置1100可以包括以下模块:
测量模块1101,用于接收第一信号,并获取对所述第一信号的测量结果,其中,所述第一信号为第二设备发送的并经第一设备转发的信号;
第一发送模块1102,用于发送所述测量结果。
可选地,测量模块1101,包括以下至少之一:
第二接收单元,用于基于第二目标参数接收第一信号;
第三接收单元,用于基于第二信息接收数据信息,所述第二信息是基于所述测量结果从所述第二目标参数中确定的;
第四接收单元,用于以预定义的、预配置的或配置的接收波束接收第一信号。
可选地,所述第二目标参数包括:接收角、接收波束、所述第三设备的控制信息中的至少一项。
可选地,所述第二目标参数包括:
第四参数,所述第四参数为所述第三设备接收第一信号的参数。
可选地,所述第二接收单元,用于执行以下至少一项:
以预定义的、预配置的、配置的或网络侧指示的第四参数接收第一信息;
以N个第四参数接收第一信号。
可选地,所述测量结果包括以下至少一项:
信道状态信息参考信号资源标识CRI;
同步信号块资源标识SSBRI;
层1参考信号接收功率L1-RSRP;
L1-RSRP差值;
多端口的线性平均值;
层1信号与干扰加噪声比L1-SINR;
参考信号资源编号;
所述第一设备的目标参数对应的参数编号或控制信息编号。
可选地,所述测量结果的数量为L,L为大于或等于1的整数;
其中,L的值为预定义、预配置、配置、网络侧指示或者所述第三设备确定的。
可选地,第一发送模块1102,具体用于:
在预配置或配置的资源上发送所述测量结果。
可选地,传输装置1100还包括:
第四接收模块,用于接收第二指示信息,所述第二指示信息用于指示或配置所述第三设备接收第一信号的第二目标参数。
可选地,所述第二指示信息用于配置或指示以下至少一项:
所述第一信号的重复传输状态为开启,或所述第一信号的重复传输状态为关闭;
所述第一信号重复用于训练第一参数和第三参数,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端,所述第一参数为所述第一设备的发送参数;
所述第一信号重复用于训练第二参数和第四参数,所述第四参数为所述第三设备接收所述第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端,所述第二参数为所述第一设备的接收参数;
所述第一信号重复用于训练所述第二参数;
所述第一信号重复用于训练所述第四参数;
所述第一信号重复用于训练所述第一参数;
所述第二设备的发送波束重复或不重复;
所述第三设备的接收波束重复或不重复;
所述第一设备的发送波束重复或不重复;
所述第一设备的接收波束重复或不重复;
所述第三设备的接收一组第一信号的波束。
可选地,第一发送模块1102,具体用于:
在所述第二指示信息满足第一条件的情况下,以第一配置参数发送所述第一信号的测量结果,所述第一配置参数为对第二参数和/或第四参数进行训练上报的参数;
和/或,
在所述第二指示信息满足第二条件的情况下,以第二配置参数发送所述第一信号的测量结果,所述第二配置参数为对第一参数和/或第三参数进行训练上报的参数;
和/或,
在所述第二指示信息满足第三条件的情况下,以第三配置参数发送所述第一信号的测量结果,所述第三配置参数为对所述第二参数进行训练上报的参数;
和/或,
在所述第二指示信息满足第四条件的情况下,以第四配置参数发送所述第一信号的测量结果,所述第四配置参数为对所述第四参数进行训练上报的参数;
和/或,
在所述第二指示信息满足第五条件的情况下,以第五配置参数发送所述第一信号的测量结果,所述第五配置参数为对所述第一参数进行训练上报的参数。
可选地,所述第一条件包括以下至少一项:
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启;
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第二参数和/或所述第四参数的训练;
和/或,
所述第二条件包括以下至少一项:
所述第二指示信息配置或指示所述第一信号的重复传输状态为关闭,且所述第一信号重复用于所述第一参数和/或所述第三参数的波训练;
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第一参数和/或所述第三参数的波训练;
和/或,
所述第三条件包括以下至少一项:
所述第二指示信息配置或指示所述第一信号的重复传输状态为关闭,且所述第一信号重复用于所述第二参数的训练;
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第二参数的训练;
和/或,
所述第四条件包括以下至少一项:
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启;
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第四参数的训练;
和/或,
所述第五条件包括以下至少一项:
所述第二指示信息配置或指示所述第一信号的重复传输状态为关闭,且所述第一信号重复用于所述第一参数的训练;
所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第一参数的训练。
可选地,测量模块1101,包括:
第五接收单元,用于在满足第一预设条件和/或第二预设条件的情况下,所述第三设备以预设的参数接收所述第一信号,或者第三设备假设下行空域传输滤波器相同;
第六接收单元,用于在满足第三预设条件的情况下,所述第三设备以至少两个参数接收所述第一信号。
可选地,所述第一预设条件包括以下至少一项:
所述第一信号重复用于第一参数和/或第三参数的训练;
所述第一信号的重复传输状态为开启,和/或,所述第一信号重复用于所述第一参数和/或所述第三参数的训练;
所述第一设备被配置或指示进行波束训练或采用至少两个第一参数接收第一信号;
所述第二设备的发送波束重复;
所述第一设备的接收波束不重复;
所述第一设备的发送波束重复;
所述第三设备的接收波束重复;
和/或,
所述第二预设条件包括以下至少一项:
所述第一信号的重复传输状态为关闭,和/或,所述第一信号重复用于第二参数和第四参数的训练;
所述第一信号的重复传输状态为开启,和/或,所述第一信号重复用于所述第二参数和所述第四参数的训练或者所述第一信号重复用于所述第二参数的训练;
所述第一设备被配置或指示进行波束训练和/或采用至少两个第二参数发送第一信号;
所述第二设备的发送波束重复;
所述第一设备的接收波束重复;
所述第一设备的发送波束不重复;
所述第三设备的接收波束重复;
和/或,
所述第三预设条件包括以下至少一项:
所述第一信号的重复传输状态为开启;
所述第一信号重复用于所述第四参数的训练;
所述第三设备被配置或指示进行波束训练和/或采用至少两个第四参数接收一组第一信号;
所述第二设备的发送波束重复;
所述第一设备的接收波束和/或发送波束重复;
所述第三设备的接收波束不重复。
可选地,传输装置1100还包括:
第二确定模块,用于确定第一参数和/或第二参数的第一标识信息或所述第一参数和/或第二参数对应的参考信号资源的第二标识信息;
第四发送模块,用于发送所述第一标识信息或所述第二标识信息。
可选地,传输装置1100还包括以下至少一项:
第五发送模块,用于发送第二能力信息,所述第二能力信息包括第二目标参数的至少部分参数,所述第二目标参数为所述第三设备接收所述第一信号的参数;
第五接收模块,用于接收第五信息,所述第五信息用于配置或指示所述第二目标参数的至少部分参数。
本申请实施例提供的传输装置1100,能够实现如图8所示方法实施例中第三设备实现的各个过程,且能够取得相同的有益效果,为避免重复,在此不再赘述。
本申请实施例提供的参数确定方法,执行主体可以为参数确定装置。本申请实施例中以参数确定装置执行参数确定方法为例,说明本申请实施例提供的参数确定装置。
请参阅图12,本申请实施例提供的另一种参数确定装置,可以是第二设备内的装置,如图12所示,该参数确定装置1200可以包括以下模块:
第二发送模块1201,用于发送第一信号;
第一接收模块1202,用于接收测量结果,所述测量结果为对第一设备转发的所述第一信号进行接收和/或测量得到的测量结果;
第一确定模块1203,用于基于所述测量结果从第一参数和/或第二参数中确定第一信息,其中,所述第一参数包括所述第一设备的接收参数,所述第二参数包括所述第一设备的发送参数。
可选地,所述第一参数包括:入射角、入射波束、所述第一设备的控制信息中的至少一项;
和/或,
所述第二参数包括:出射角、出射波束、所述第一设备的控制信息中的至少一项。
可选地,第二发送模块1201,用于执行以下至少之一:
基于第三目标参数发送第一信号;
基于第三信息发送数据信息,其中,所述第三信息是基于所述测量结果还用于从所述第三目标参数中确定的;
以预定义的、预配置的或配置的发送波束发送第一信号。
可选地,所述第三目标参数包括:发送角、发送波束、所述第二设备的控制信息中的至少一项。
可选地,所述第三目标参数包括:
第三参数,所述第三参数为所述第二设备发送第一信号的参数。
可选地,第三参数与所述第一参数联合训练,且所述第二参数与第四参数联合训练,所述第四参数为第三设备接收第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端;
或者,
所述第一参数、所述第二参数、所述第三参数和所述第四参数独立训练;
或者,
所述第三参数与第一参数联合训练,所述第二参数独立训练,所述第四参数独立训练。
可选地,参数确定装置1200还包括:
第六发送模块,用于向所述第一设备发送第一指示信息,所述第一指示信息用于指示所述第一参数和/或所述第二参数;
和/或,
第七发送模块,用于向第三设备发送第二指示信息,所述第二指示信息用于指示所述第三设备接收第一信号的第二目标参数。
可选地,所述第二目标参数包括N个第四参数,参数确定装置1200还包括:
第三确定模块,用于根据所述测量结果从所述N个第四参数中确定一个第四参数;
第八发送模块,用于向所述第三设备发送所述一个第四参数的指示信息。
可选地,所述第一指示信息和/或所述第二指示信息用于配置或指示以下至少一项:
所述第一信号的重复传输状态为开启,或所述第一信号的重复传输状态为关闭;
所述第一信号重复用于训练所述第一参数和第三参数,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端;
所述第一信号重复用于训练所述第二参数和第四参数,所述第四参数为所述第三设备接收所述第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端;
所述第一信号重复用于训练所述第二参数;
所述第一信号重复用于训练所述第四参数;
所述第一信号重复用于训练所述第一参数;
所述第二设备的发送波束重复或不重复;
所述第三设备的接收波束重复或不重复;
所述第一设备的发送波束重复或不重复;
所述第一设备的接收波束重复或不重复;
所述第一设备接收一组第一信号的波束;
所述第三设备的接收一组第一信号的波束。
可选地,所述第一参数的数量为K1个,和/或所述第二参数的数量为K2个,所述第一信息包括所述K1个第一参数中的一个第一参数,和/或,所述第一信息包括所述K2个第二参数中的一个第二参数,K1和K2为正整数。
可选地,参数确定装置1200还包括以下至少一项:
第六接收模块,用于接收来自所述第一设备的第一能力信息,所述第一能力信息包括所述第一参数和所述第二参数的至少部分参数;
第九发送模块,用于向所述第一设备发送第四信息,所述第四信息用于配置或指示所述第一参数和所述第二参数的至少部分参数;
第七接收模块,用于接收来自所述第三设备的第二能力信息,所述第二能力信息包括第二目标参数的至少部分参数,所述第二目标参数为所述第三设备接收所述第一信号的参数;
第十发送模块,用于向所述第三设备发送第五信息,所述第五信息用于配置或指示所述第二目标参数的至少部分参数。
可选地,参数确定装置1200还包括以下至少一项:
第四确定模块,用于根据确定的一个第三参数,确定在上行传输场景下所述第二设备的接收参数;
第五确定模块,用于根据确定的一个第一参数,确定在上行传输场景下所述第一设备的发送参数;
第六确定模块,用于根据确定的一个第二参数,确定在上行传输场景下所述第一设备的接收参数;
第七确定模块,用于根据确定的一个第四参数,确定在上行传输场景下所述第三设备的发送参数。
本申请实施例提供的参数确定装置1200,能够实现如图9所示方法实施例中第二设备实现的各个过程,且能够取得相同的有益效果,为避免重复,在此不再赘述。
可选地,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,例如, 该通信设备1300为第一设备时,该程序或指令被处理器1301执行时实现如图4所示方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1300为第三设备时,该程序或指令被处理器1301执行时实现如图8所示方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1300为第二设备时,该程序或指令被处理器1301执行时实现如图9所示方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种第一设备,包括处理器及通信接口,其中,所述通信接口用于基于第一参数接收第一信号,和/或,基于第二参数发送第一信号;所述通信接口还用于所述第一设备基于第一信息发送和/或接收数据信息,其中,所述第一信息包括基于所述第一信号的测量结果确定的参数。
该中继设备实施例与如图4所示方法实施例对应,图4所示方法实施例的各个实施过程和实现方式均可适用于该中继设备实施例中,且能达到相同的技术效果。
本申请实施例还提供一种第三设备,包括处理器及通信接口,其中,所述通信接口用于接收第一信号,并获取对所述第一信号的测量结果,其中,所述第一信号为第二设备发送的并经第一设备转发的信号;所述通信接口还用于发送所述测量结果。
该第三设备实施例与如图8所示方法实施例对应,图8所示方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
本申请实施例还提供一种第二设备,包括处理器及通信接口,其中,所述通信接口用于发送第一信号,接收测量结果,所述测量结果为对第一设备转发的所述第一信号进行接收和/或测量得到的测量结果;所述处理器用于基于所述测量结果从第一参数和/或第二参数中确定第一信息,其中,所述第一参数包括所述第一设备的接收参数,所述第二参数包括所述第一设备的发送参数。
该第二设备实施例与如图9所示方法实施例对应,图9所示方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现如图4或图8或图9所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如图4或图8或图9所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质 中,所述计算机程序产品被至少一个处理器执行以实现如图4或图8或图9所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信***,包括:第二设备、第一设备和第三设备,所述第一设备可用于执行如图4所述的传输方法的步骤,所述第三设备可用于执行如图8所述的传输方法的步骤,所述第二设备可用于执行如图9所述的参数确定方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (52)

  1. 一种传输方法,包括:
    第一设备基于第一参数接收第一信号,和/或,基于第二参数发送第一信号;
    所述第一设备基于第一信息发送和/或接收数据信息,其中,所述第一信息包括基于所述第一信号的测量结果确定的参数。
  2. 根据权利要求1所述的方法,其中,所述第一参数包括:入射角、入射波束、所述第一设备的控制信息中的至少一项;
    和/或,
    所述第二参数包括:出射角、出射波束、所述第一设备的控制信息中的至少一项。
  3. 根据权利要求2所述的方法,其中,
    第三参数与所述第一参数联合训练,且所述第二参数与第四参数联合训练,所述第三参数为第二设备发送第一信号的参数,所述第四参数为第三设备接收第一信号的参数,所述第二设备为所述第一设备接收的第一信号的发送端,所第三设备为所述第一设备发送的第一信号的接收端;
    或者,
    所述第一参数、所述第二参数、所述第三参数和所述第四参数独立训练;
    或者,
    所述第三参数与所述第一参数联合训练,所述第二参数独立训练,所述第四参数独立训练。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述第一参数和/或所述第二参数的参数值包括如下至少一项:
    预定义的参数值;
    预配置的参数值;
    配置的参数值;
    网络侧指示的参数值;
    标识指示的参数值;
    所述第一设备确定的参数值。
  5. 根据权利要求1或3所述的方法,其中,所述第一参数的数量为K1,所述第二参数的数量为K2,K1满足以下至少一项:
    K1为预定义、预配置、配置或网络侧指示的值;
    K1为大于等于1的值;
    在训练所述第二参数、第三参数和第四参数中的至少一项的情况下,K1等于1;
    或者,
    在训练所述第一参数的情况下,K1大于或等于1;
    K2满足以下至少一项:
    K2为预定义、预配置、配置或网络侧指示的值;
    K2为大于等于1的值;
    在训练所述第一参数、第三参数和第四参数中的至少一项的情况下,K2等于1;
    在训练所述第二参数的情况下,K2大于或等于1。
  6. 根据权利要求1所述的方法,其中,所述测量结果包括以下至少一项:
    信道状态信息参考信号资源标识CRI;
    同步信号块资源标识SSBRI;
    层1参考信号接收功率L1-RSRP;
    L1-RSRP差值;
    多端口的线性平均值;
    层1信号与干扰加噪声比L1-SINR;
    参考信号资源编号;
    所述第一设备的第一参数和/或第二参数对应的参数编号或控制信息编号。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第一设备接收第一指示信息,所述第一指示信息用于指示或配置所述第一参数和/或所述第二参数。
  8. 根据权利要求7所述的方法,其中,所述第一指示信息为第一信令携带的信息,所述第一信令包括以下至少一项:
    F1应用协议F1-AP信令、无线资源控制RRC信令、媒体接入控制层控制单元MAC CE信令、下行控制信息DCI信令、带宽分配协议数据单元BAP PDU。
  9. 根据权利要求7所述的方法,其中,所述第一指示信息用于配置或指示以下至少一项:
    所述第一信号的重复传输状态为开启,或所述第一信号的重复传输状态为关闭;
    所述第一信号重复用于训练所述第一参数和第三参数,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端;
    所述第一信号重复用于训练所述第二参数和第四参数,所述第四参数为第三设备接收所述第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端;
    所述第一信号重复用于训练所述第二参数;
    所述第一信号重复用于训练所述第四参数;
    所述第一信号重复用于训练所述第一参数;
    所述第二设备的发送波束重复或不重复;
    所述第三设备的接收波束重复或不重复;
    所述第一设备的发送波束重复或不重复;
    所述第一设备的接收波束重复或不重复;
    所述第一设备接收一组第一信号的波束。
  10. 根据权利要求8所述的方法,其中,所述第一指示信息满足以下至少之一:
    所述第一信号的重复传输状态和训练对象为联合指示的,所述训练对象包括所述第一参数、所述第二参数和第四参数中的至少一项;
    所述第一信号的重复传输状态和训练对象为独立指示的。
  11. 根据权利要求1所述的方法,其中,所述第一参数的数量为K1个,和/或所述第二参数的数量为K2个,所述第一信息包括所述K1个第一参数中的一个第一参数,和/或,所述第一信息包括所述K2个第二参数中的一个第二参数,K1和K2为正整数。
  12. 根据权利要求11所述的方法,其中,
    在所述K1个第一参数包括入射角或入射波束,且所述K2个第二参数包括出射角或出射波束的情况下:
    所述第一设备基于所述K1个第一参数接收第一信号,并基于预定义、预配置、配置或网络侧指示的一个第二参数发送所述第一信号,K1为大于或等于1的整数;
    或者,
    所述第一设备基于预定义、预配置、配置或网络侧指示的一个第一参数接收第一信号,并基于所述K2个第二参数发送所述第一信号,K2为大于或等于1的整数。
  13. 根据权利要求1所述的方法,其中,所述第一设备基于第一参数接收第一信号,和/或基于第二参数发送第一信号包括:
    在满足第一预设条件的情况下,所述第一设备以至少两个第一参数接收第一信号,并以预设的参数发送第一信号;
    在满足第二预设条件的情况下,所述第一设备以预设的参数接收第一信号,并以至少两个第二参数发送第一信号;
    在满足第三预设条件的情况下,所述第一设备以预设的参数接收和/或发送第一信号,或者所述第一设备假设下行空域传输滤波器相同。
  14. 根据权利要求13所述的方法,其中,所述第一预设条件包括以下至少一项:
    所述第一信号的重复传输状态为关闭;
    所述第一信号重复用于所述第一参数和/或第三参数的训练,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端;
    所述第一信号的重复传输状态为开启,和/或,所述第一信号重复用于所述第一参数和/或所述第三参数的训练;
    所述第一设备被配置或指示进行波束训练或采用至少两个第一参数接收第一信号;
    所述第二设备的发送波束重复;
    所述第一设备的接收波束不重复;
    所述第一设备的发送波束重复;
    第三设备的接收波束重复,所述第三设备为所述第一设备发送的第一信号的接收端;
    和/或,
    所述第二预设条件包括以下至少一项:
    所述第一信号的重复传输状态为关闭,和/或,所述第一信号重复用于所述第二参数和第四参数的训练,所述第四参数为所述第三设备接收所述第一信号的参数;
    所述第一信号的重复传输状态为开启,和/或,所述第一信号重复用于所述第二参数和所述第四参数的训练或者所述第一信号重复用于所述第二参数的训练;
    所述第一设备被配置或指示进行波束训练和/或采用至少两个第二参数发送第一信号;
    所述第二设备的发送波束重复;
    所述第一设备的接收波束重复;
    所述第一设备的发送波束不重复;
    所述第三设备的接收波束重复;
    和/或,
    所述第三预设条件包括以下至少一项:
    所述第一信号的重复传输状态为开启;
    所述第一信号重复用于所述第四参数的训练;
    所述第三设备被配置或指示进行波束训练和/或采用至少两个第四参数接收一组第一信号;
    所述第二设备的发送波束重复;
    所述第一设备的接收波束和/或发送波束重复;
    所述第三设备的接收波束不重复。
  15. 根据权利要求11所述的方法,其中,在所述第一参数和所述第二参数为所述第一设备的控制信息的情况下,第一控制信息集合包括所述K1个第一参数,第二控制信息集合包括所述K2个第二参数;
    所述第一设备基于第一参数接收第一信号,和/或,基于第二参数发送第一信号,包括:
    第一设备基于所述第一控制信息集合接收第一信号,和/或基于一个控制信息发送第一信号;
    或者,
    第一设备基于一个控制信息接收第一信号,和/或基于所述第二控制信息集合发送第一信号。
  16. 根据权利要求1至3中任一项所述的方法,其中,所述第一设备基于第一参数接收第一信号,包括:
    第一设备基于第一参数接收一组第一信号,所述一组第一信号包括M个第一信号,M为大于或等于1的整数。
  17. 根据权利要求16所述的方法,其中,所述M个第一信号满足以下至少一项:
    M的值为预定义、预配置、配置或网络侧指示的;
    所述M个第一信号的资源的大小和/或位置为预定义、预配置、配置或网络侧指示的;
    所述M个第一信号为重复信号;
    所述M个第一信号为非重复信号;
    所述M个第一信号包括重复信号和非重复信号。
  18. 根据权利要求17所述的方法,其中,在所述M个第一信号为重复信号的情况下,重复次数满足以下至少一项:
    所述重复次数的值为预定义、预配置、配置或网络侧指示的值;
    在训练第四参数的情况下,所述重复次数被配置或指示为N;
    在联合训练第三参数和所述第一参数的情况下,所述重复次数被配置或指示为K1;
    在联合训练所述第二参数和所述第四参数的情况下,所述重复次数被配置或指示为K2*N;
    在独立训练所述第一参数的情况下,所述重复次数被配置或指示为K1;
    在独立训练所述第二参数的情况下,所述重复次数被配置或指示为K2;
    其中,K1与所述第一设备的参数配置相关,K2与所述第一设备的参数配置相关,N与第三设备的参数配置相关,所述第三设备为所述第一设备发送的第一信号的接收端。
  19. 根据权利要求1至3中任一项所述的方法,其中,所述方法还包括以下至少一项:
    所述第一设备发送第一能力信息,所述第一能力信息包括所述第一参数和所述第二参数的至少部分参数;
    所述第一设备接收第四信息,所述第四信息用于配置或指示所述第一参数和所述第二参数的至少部分参数。
  20. 一种传输方法,所述方法包括:
    第三设备接收第一信号,并获取对所述第一信号的测量结果,其中,所述第一信号为第二设备发送的并经第一设备转发的信号;
    所述第三设备发送所述测量结果。
  21. 根据权利要求20所述的方法,其中,所述第三设备接收第一信号,包括以下至少之一:
    所述第三设备基于第二目标参数接收第一信号;
    所述第三设备基于第二信息接收数据信息,所述第二信息是基于所述测量结果从所述第二目标参数中确定的;
    所述第三设备以预定义的、预配置的或配置的接收波束接收第一信号。
  22. 根据权利要求21所述的方法,其中,所述第二目标参数包括:接收角、接收波束、所述第三设备的控制信息中的至少一项。
  23. 根据权利要求21所述的方法,其中,所述第二目标参数包括:
    第四参数,所述第四参数为所述第三设备接收第一信号的参数。
  24. 根据权利要求23所述的方法,其中,所述第三设备基于第二目标参数接收第一信号,包括以下至少一项:
    所述第三设备以预定义的、预配置的、配置的或网络侧指示的第四参数接收第一信息;
    所述第三设备以N个第四参数接收第一信号。
  25. 根据权利要求20至24中任一项所述的方法,其中,所述测量结果包括以下至少一项:
    信道状态信息参考信号资源标识CRI;
    同步信号块资源标识SSBRI;
    层1参考信号接收功率L1-RSRP;
    L1-RSRP差值;
    多端口的线性平均值;
    层1信号与干扰加噪声比L1-SINR;
    参考信号资源编号;
    所述第一设备的目标参数对应的参数编号或控制信息编号。
  26. 根据权利要求25所述的方法,其中,所述测量结果的数量为L,L为大于或等于1的整数;
    其中,L的值为预定义、预配置、配置、网络侧指示或者所述第三设备确定的。
  27. 根据权利要求20至24中任一项所述的方法,其中,所述第三设备发送所述测量结果,包括:
    所述第三设备在预配置或配置的资源上发送所述测量结果。
  28. 根据权利要求20至24中任一项所述的方法,其中,所述方法还包括:
    所述第三设备接收第二指示信息,所述第二指示信息用于指示或配置所述第三设备接收第一信号的第二目标参数。
  29. 根据权利要求28所述的方法,其中,所述第二指示信息用于配置或指示以下至少一项:
    所述第一信号的重复传输状态为开启,或所述第一信号的重复传输状态为关闭;
    所述第一信号重复用于训练第一参数和第三参数,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端,所述第一参数为所述第一设备的发送参数;
    所述第一信号重复用于训练第二参数和第四参数,所述第四参数为所述第三设备接收所述第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端,所述第二参数为所述第一设备的接收参数;
    所述第一信号重复用于训练所述第二参数;
    所述第一信号重复用于训练所述第四参数;
    所述第一信号重复用于训练所述第一参数;
    所述第二设备的发送波束重复或不重复;
    所述第三设备的接收波束重复或不重复;
    所述第一设备的发送波束重复或不重复;
    所述第一设备的接收波束重复或不重复;
    所述第三设备的接收一组第一信号的波束。
  30. 根据权利要求29所述的方法,其中,所述第三设备发送所述测量结果,包括:
    在所述第二指示信息满足第一条件的情况下,所述第三设备以第一配置参数发送所述第一信号的测量结果,所述第一配置参数为对第二参数和/或第四参数进行训练上报的参数;
    和/或,
    在所述第二指示信息满足第二条件的情况下,所述第三设备以第二配置参数发送所述第一信号的测量结果,所述第二配置参数为对第一参数和/或第三参数进行训练上报的参数;
    和/或,
    在所述第二指示信息满足第三条件的情况下,所述第三设备以第三配置参数发送所述第一信号的测量结果,所述第三配置参数为对所述第二参数进行训练上报的参数;
    和/或,
    在所述第二指示信息满足第四条件的情况下,所述第三设备以第四配置参数发送所述第一信号的测量结果,所述第四配置参数为对所述第四参数进行训练上报的参数;
    和/或,
    在所述第二指示信息满足第五条件的情况下,所述第三设备以第五配置参数发送所述第一信号的测量结果,所述第五配置参数为对所述第一参数进行训练上报的参数。
  31. 根据权利要求30所述的方法,其中,所述第一条件包括以下至少一项:
    所述第二指示信息配置或指示所述第一信号的重复传输状态为开启;
    所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第二参数和/或所述第四参数的训练;
    和/或,
    所述第二条件包括以下至少一项:
    所述第二指示信息配置或指示所述第一信号的重复传输状态为关闭,且所述第一信号重复用于所述第一参数和/或所述第三参数的波训练;
    所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第一参数和/或所述第三参数的波训练;
    和/或,
    所述第三条件包括以下至少一项:
    所述第二指示信息配置或指示所述第一信号的重复传输状态为关闭,且所述第一信号重复用于所述第二参数的训练;
    所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第二参数的训练;
    和/或,
    所述第四条件包括以下至少一项:
    所述第二指示信息配置或指示所述第一信号的重复传输状态为开启;
    所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第四参数的训练;
    和/或,
    所述第五条件包括以下至少一项:
    所述第二指示信息配置或指示所述第一信号的重复传输状态为关闭,且所述第一信号重复用于所述第一参数的训练;
    所述第二指示信息配置或指示所述第一信号的重复传输状态为开启,且所述第一信号重复用于所述第一参数的训练。
  32. 根据权利要求20所述的方法,其中,所述第三设备获取对第一信号的测量结果,包括:
    在满足第一预设条件和/或第二预设条件的情况下,所述第三设备以预设的参数接收所述第一信号,或者第三设备假设下行空域传输滤波器相同;
    在满足第三预设条件的情况下,所述第三设备以至少两个参数接收所述第一信号。
  33. 根据权利要求32所述的方法,其中,所述第一预设条件包括以下至少一项:
    所述第一信号重复用于第一参数和/或第三参数的训练;
    所述第一信号的重复传输状态为开启,和/或,所述第一信号重复用于所述第一参数和/或所述第三参数的训练;
    所述第一设备被配置或指示进行波束训练或采用至少两个第一参数接收第一信号;
    所述第二设备的发送波束重复;
    所述第一设备的接收波束不重复;
    所述第一设备的发送波束重复;
    所述第三设备的接收波束重复;
    和/或,
    所述第二预设条件包括以下至少一项:
    所述第一信号的重复传输状态为关闭,和/或,所述第一信号重复用于第二参数和第四参数的训练;
    所述第一信号的重复传输状态为开启,和/或,所述第一信号重复用于所述第二参数和所述第四参数的训练或者所述第一信号重复用于所述第二参数的训练;
    所述第一设备被配置或指示进行波束训练和/或采用至少两个第二参数发送第一信号;
    所述第二设备的发送波束重复;
    所述第一设备的接收波束重复;
    所述第一设备的发送波束不重复;
    所述第三设备的接收波束重复;
    和/或,
    所述第三预设条件包括以下至少一项:
    所述第一信号的重复传输状态为开启;
    所述第一信号重复用于所述第四参数的训练;
    所述第三设备被配置或指示进行波束训练和/或采用至少两个第四参数接收一组第一信号;
    所述第二设备的发送波束重复;
    所述第一设备的接收波束和/或发送波束重复;
    所述第三设备的接收波束不重复。
  34. 根据权利要求20所述的方法,其中,所述方法还包括:
    所述第三设备确定第一参数和/或第二参数的第一标识信息或所述第一参数和/或第二参数对应的参考信号资源的第二标识信息;
    所述第三设备发送所述第一标识信息或所述第二标识信息。
  35. 根据权利要求20至24中任一项所述的方法,其中,所述方法还包括以下至少一项:
    所述第三设备发送第二能力信息,所述第二能力信息包括第二目标参数的至少部分参数,所述第二目标参数为所述第三设备接收所述第一信号的参数;
    所述第一设备接收第五信息,所述第五信息用于配置或指示所述第二目标参数的至少部分参数。
  36. 一种参数确定方法,所述方法包括:
    第二设备发送第一信号;
    所述第二设备接收测量结果,所述测量结果为对第一设备转发的所述第一信号进行接收和/或测量得到的测量结果;
    所述第二设备基于所述测量结果从第一参数和/或第二参数中确定第一信息,其中,所述第一参数包括所述第一设备的接收参数,所述第二参数包括所述第一设备的发送参数。
  37. 根据权利要求36所述的方法,其中,所述第一参数包括:入射角、入射波束、所述第一设备的控制信息中的至少一项;
    和/或,
    所述第二参数包括:出射角、出射波束、所述第一设备的控制信息中的至少一项。
  38. 根据权利要求36所述的方法,其中,所述第二设备发送第一信号,包括以下至少 之一:
    所述第二设备基于第三目标参数发送第一信号;
    所述第二设备基于第三信息发送数据信息,其中,所述第三信息是基于所述测量结果还用于从所述第三目标参数中确定的;
    所述第二设备以预定义的、预配置的或配置的发送波束发送第一信号。
  39. 根据权利要求38所述的方法,其中,所述第三目标参数包括:发送角、发送波束、所述第二设备的控制信息中的至少一项。
  40. 根据权利要求38所述的方法,其中,所述第三目标参数包括:
    第三参数,所述第三参数为所述第二设备发送第一信号的参数。
  41. 根据权利要求36或40所述的方法,其中,
    第三参数与所述第一参数联合训练,且所述第二参数与第四参数联合训练,所述第四参数为第三设备接收第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端;
    或者,
    所述第一参数、所述第二参数、所述第三参数和所述第四参数独立训练;
    或者,
    所述第三参数与第一参数联合训练,所述第二参数独立训练,所述第四参数独立训练。
  42. 根据权利要求36至40中任一项所述的方法,其中,所述方法还包括:
    所述第二设备向所述第一设备发送第一指示信息,所述第一指示信息用于指示所述第一参数和/或所述第二参数;
    和/或,
    所述第二设备向第三设备发送第二指示信息,所述第二指示信息用于指示所述第三设备接收第一信号的第二目标参数。
  43. 根据权利要求42所述的方法,其中,所述第二目标参数包括N个第四参数,所述方法还包括:
    所述第二设备根据所述测量结果从所述N个第四参数中确定一个第四参数;
    所述第二设备向所述第三设备发送所述一个第四参数的指示信息。
  44. 根据权利要求42所述的方法,其中,所述第一指示信息和/或所述第二指示信息用于配置或指示以下至少一项:
    所述第一信号的重复传输状态为开启,或所述第一信号的重复传输状态为关闭;
    所述第一信号重复用于训练所述第一参数和第三参数,所述第三参数为第二设备对所述第一信号的发送参数,所述第二设备为所述第一设备接收的第一信号的发送端;
    所述第一信号重复用于训练所述第二参数和第四参数,所述第四参数为所述第三设备接收所述第一信号的参数,所述第三设备为所述第一设备发送的第一信号的接收端;
    所述第一信号重复用于训练所述第二参数;
    所述第一信号重复用于训练所述第四参数;
    所述第一信号重复用于训练所述第一参数;
    所述第二设备的发送波束重复或不重复;
    所述第三设备的接收波束重复或不重复;
    所述第一设备的发送波束重复或不重复;
    所述第一设备的接收波束重复或不重复;
    所述第一设备接收一组第一信号的波束;
    所述第三设备的接收一组第一信号的波束。
  45. 根据权利要求36所述的方法,其中,所述第一参数的数量为K1个,和/或所述第二参数的数量为K2个,所述第一信息包括所述K1个第一参数中的一个第一参数,和/或,所述第一信息包括所述K2个第二参数中的一个第二参数,K1和K2为正整数。
  46. 根据权利要求36至40中任一项所述的方法,其中,所述方法还包括以下至少一项:
    所述第二设备接收来自所述第一设备的第一能力信息,所述第一能力信息包括所述第一参数和所述第二参数的至少部分参数;
    所述第二设备向所述第一设备发送第四信息,所述第四信息用于配置或指示所述第一参数和所述第二参数的至少部分参数;
    所述第二设备接收来自第三设备的第二能力信息,所述第二能力信息包括第二目标参数的至少部分参数,所述第二目标参数为所述第三设备接收所述第一信号的参数;
    所述第二设备向所述第三设备发送第五信息,所述第五信息用于配置或指示所述第二目标参数的至少部分参数。
  47. 根据权利要求43所述的方法,其中,所述方法还包括以下至少一项:
    所述第二设备根据确定的一个第三参数,确定在上行传输场景下所述第二设备的接收参数;
    所述第二设备根据确定的一个第一参数,确定在上行传输场景下所述第一设备的发送参数;
    所述第二设备根据确定的一个第二参数,确定在上行传输场景下所述第一设备的接收参数;
    所述第二设备根据确定的一个第四参数,确定在上行传输场景下所述第三设备的发送参数。
  48. 一种传输装置,应用于第一设备,所述装置包括:
    第一传输模块,用于基于第一参数接收第一信号,和/或,基于第二参数发送第一信号;
    第二传输模块,用于基于第一信息发送和/或接收数据信息,其中,所述第一信息包括基于所述第一信号的测量结果确定的参数。
  49. 一种传输装置,应用于第三设备,所述装置包括:
    测量模块,用于接收第一信号,并获取对所述第一信号的测量结果,其中,所述第一信号为第二设备发送的并经第一设备转发的信号;
    第一发送模块,用于发送所述测量结果。
  50. 一种参数确定装置,应用于第二设备,所述装置包括:
    第二发送模块,用于发送第一信号;
    第一接收模块,用于接收测量结果,所述测量结果为对第一设备转发的所述第一信号进行接收和/或测量得到的测量结果;
    第一确定模块,用于基于所述测量结果从第一参数和/或第二参数中确定第一信息,其中,所述第一参数包括所述第一设备的接收参数,所述第二参数包括所述第一设备的发送参数。
  51. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至35中任一项所述的传输方法的步骤,或者实现如权利要求36至47中任一项所述的参数确定方法的步骤。
  52. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至35中任一项所述的传输方法的步骤,或者实现如权利要求36至47中任一项所述的参数确定方法的步骤。
PCT/CN2023/122709 2022-09-30 2023-09-28 传输方法、参数确定方法、装置和通信设备 WO2024067822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211216839.XA CN117858111A (zh) 2022-09-30 2022-09-30 传输方法、参数确定方法、装置和通信设备
CN202211216839.X 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067822A1 true WO2024067822A1 (zh) 2024-04-04

Family

ID=90476365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122709 WO2024067822A1 (zh) 2022-09-30 2023-09-28 传输方法、参数确定方法、装置和通信设备

Country Status (2)

Country Link
CN (1) CN117858111A (zh)
WO (1) WO2024067822A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300747A (zh) * 2021-05-28 2021-08-24 东南大学 一种智能反射表面辅助的毫米波***中的波束训练方法
WO2021236510A1 (en) * 2020-05-18 2021-11-25 Google Llc Position control of adaptive phase-changing devices
CN113810083A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 信息传输方法、装置与终端设备
CN114070370A (zh) * 2020-08-03 2022-02-18 维沃移动通信有限公司 波束训练方法、装置、终端设备及网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021236510A1 (en) * 2020-05-18 2021-11-25 Google Llc Position control of adaptive phase-changing devices
CN113810083A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 信息传输方法、装置与终端设备
CN114070370A (zh) * 2020-08-03 2022-02-18 维沃移动通信有限公司 波束训练方法、装置、终端设备及网络设备
CN113300747A (zh) * 2021-05-28 2021-08-24 东南大学 一种智能反射表面辅助的毫米波***中的波束训练方法

Also Published As

Publication number Publication date
CN117858111A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
JP7359808B2 (ja) セルラ時分割複信(tdd)ミリ波システムのためのサウンディング参照信号(srs)設計
CN112640543B (zh) 新无线电中的定时提前
WO2020156174A1 (zh) 波束指示的方法和通信装置
AU2017246414B2 (en) System and method for millimeter wave communications
WO2020103793A1 (zh) 波束上报的方法和通信装置
US20220053546A1 (en) Data receiving method and apparatus and data sending method and apparatus
EP4009725A1 (en) Method for updating beam information and communication apparatus
EP3416432B1 (en) System and method for configuring channel state information in a communications system
JP2021532628A (ja) 信号送受信方法および通信機器
WO2019214725A1 (zh) 一种波束训练的方法、装置及***
CN111586858B (zh) 信号传输方法和通信装置
TW201922019A (zh) 上行鏈路波束訓練之方法及使用者設備
EP3482505B1 (en) Systems and methods for ue-specific beam management for high frequency wireless communication
CN114071690B (zh) 信息上报方法、信息接收方法及相关设备
EP2947939B1 (en) Method and device for scheduling resource in coordinated multi-point transmission
WO2023051188A1 (zh) 分组管理方法和通信装置
US20220167339A1 (en) Beam failure recovery method and apparatus
WO2024067822A1 (zh) 传输方法、参数确定方法、装置和通信设备
WO2024067827A1 (zh) 传输方法、参数确定方法、装置和通信设备
WO2021013138A1 (zh) 无线网络通信方法和通信装置
WO2024067679A1 (zh) 信息传输方法、装置和通信设备
WO2024067140A1 (zh) 一种测量资源指示方法及装置
WO2023273969A1 (zh) 资源测量方法和通信装置
WO2024152939A1 (zh) 一种调度信息的确定方法及装置
WO2024032767A1 (zh) 上行传输方法以及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871047

Country of ref document: EP

Kind code of ref document: A1