WO2024067741A1 - 充电桩的智能充电方法、***、电子设备及存储介质 - Google Patents

充电桩的智能充电方法、***、电子设备及存储介质 Download PDF

Info

Publication number
WO2024067741A1
WO2024067741A1 PCT/CN2023/122208 CN2023122208W WO2024067741A1 WO 2024067741 A1 WO2024067741 A1 WO 2024067741A1 CN 2023122208 W CN2023122208 W CN 2023122208W WO 2024067741 A1 WO2024067741 A1 WO 2024067741A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc value
energy replenishment
charging
current
charging pile
Prior art date
Application number
PCT/CN2023/122208
Other languages
English (en)
French (fr)
Inventor
李帅
Original Assignee
度普(苏州)新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 度普(苏州)新能源科技有限公司 filed Critical 度普(苏州)新能源科技有限公司
Publication of WO2024067741A1 publication Critical patent/WO2024067741A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present disclosure relates to the technical field of energy storage charging piles, and more specifically, to an intelligent charging method, system, electronic device and storage medium for a charging pile.
  • charging piles are mainly installed in residential areas and shopping malls.
  • the charging piles are charged by the power grid. Specifically, the SOC value of the battery pack in the charging pile is detected to be less than a certain value. When the SOC value of the battery pack is detected to be less than a certain value, the charging piles are charged by the power grid. However, when the power grid is at its peak, charging the charging piles by the power grid will not only increase the burden on the power grid, but also increase the operating costs of the charging piles.
  • the charging pile can be charged according to the peak and trough periods of the power grid. That is, the peak power consumption period can be staggered to charge the charging pile.
  • this method reduces the load on the power grid to a certain extent, when the power in the charging pile is lower than the normal operating power, it is easy to cause the charging pile to malfunction.
  • the present disclosure provides an intelligent charging method, system, electronic device and storage medium for a charging pile, so as to reduce the burden on the power grid, reduce the operating cost of the charging pile, and ensure that the charging pile has enough power to maintain normal operation, thereby avoiding failure of the charging pile.
  • the first aspect of the present disclosure discloses an intelligent charging method for a charging pile, which is applied to an intelligent charging system for a charging pile.
  • the intelligent charging system includes an EMS, a TBox, and a cloud platform.
  • the method includes:
  • the cloud platform obtains the charging pile information of the charging piles under the coverage of the power grid; the charging pile information of the charging piles includes the current discharge period, the current charging pack SOC value and the power grid load;
  • the cloud platform determines whether the current grid load period is a grid load peak period according to the grid load;
  • the cloud platform If the current grid load period is the grid load peak period, the cloud platform generates first energy replenishment configuration information according to the current charging pack SOC value and the preset first target energy replenishment stop SOC value, and sends the first energy replenishment configuration information to the EMS through the TBOX;
  • the power grid controls the charging pile to start charging from the current charging pack SOC value based on the first energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the first target energy replenishment stop SOC value; wherein the first target energy replenishment stop SOC value is the charging pack SOC value for the charging pile to maintain normal operation;
  • the EMS controls the grid to charge the charging pile until the charging pack SOC value of the charging pile reaches a second target energy replenishment stop SOC value; wherein the second target energy replenishment stop SOC value is greater than the first target energy replenishment stop SOC value, and the second target energy replenishment stop SOC value is set according to the grid load.
  • the method further includes:
  • the cloud platform determines whether the current discharge period is a non-discharge peak period
  • the cloud platform determines whether the current charging pack SOC value is less than a second energy replenishment start SOC value; wherein the second energy replenishment start SOC value is determined based on the discharge peak period of the charging;
  • the cloud platform If the current charging pack SOC value is less than the second energy replenishment start SOC value, and the current grid load period is the grid load peak period, the cloud platform generates third energy replenishment configuration information according to the current charging pack SOC value and the third target energy replenishment stop SOC value, and sends the third energy replenishment configuration information to the EMS through the TBOX; wherein the third target energy replenishment stop SOC value is determined based on the discharge data of the historical discharge peak period and the grid load segment;
  • the EMS When the EMS receives the third energy replenishment configuration information, it controls the power grid to charge the charging pile starting from the current charging pack SOC value based on the third energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the third target energy replenishment stop SOC value.
  • the method further includes:
  • the cloud platform If the current charging pack SOC value is less than the second energy replenishment start SOC value, and the current power grid load period is not the power grid load peak period, the cloud platform generates fourth energy replenishment configuration information according to the current charging pack SOC value and the preset fourth target energy replenishment stop SOC value, and sends the fourth energy replenishment configuration information to the EMS through the TBOX; wherein the fourth target energy replenishment stop SOC value is determined based on the discharge data of the historical discharge peak period;
  • the EMS When the EMS receives the fourth energy replenishment configuration information, it controls the power grid to charge the charging pile until the charging pack SOC value of the charging pile reaches a fourth target energy replenishment stop SOC value; wherein the fourth target energy replenishment stop SOC value is greater than the third target energy replenishment stop SOC value.
  • the method further includes:
  • the cloud platform determines whether the current charging pack SOC value is less than a third energy replenishment starting SOC value; wherein the third energy replenishment starting SOC value is determined based on the non-discharge peak period of the charging; the third energy replenishment starting SOC value is greater than the second energy replenishment starting SOC value;
  • the cloud platform If the current charging pack SOC value is less than the third energy replenishment start SOC value, and the current grid load period is the grid load peak period, the cloud platform generates the fifth energy replenishment configuration information according to the current charging pack SOC value and the preset fifth target energy replenishment stop SOC value, and sends the fifth energy replenishment configuration information to the EMS through the TBOX; wherein the fifth target energy replenishment stop SOC value is determined based on the discharge data of the non-discharge peak period and the grid load;
  • the EMS When the EMS receives the fifth energy replenishment configuration information, it controls the power grid to charge the charging pile starting from the current charging pack SOC value based on the fifth energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the fifth target energy replenishment stop SOC value.
  • the method further includes:
  • the cloud platform If the current charging pack SOC value is less than the third energy replenishment start SOC value, and the current power grid load period is not the power grid load peak period, the cloud platform generates the sixth energy replenishment configuration information according to the current charging pack SOC value and the preset sixth target energy replenishment stop SOC value, and sends the sixth energy replenishment configuration information to the EMS through the TBOX; wherein the sixth target energy replenishment stop SOC value is determined based on the discharge data of the non-discharge peak period;
  • the EMS When the EMS receives the sixth energy replenishment configuration information, it controls the power grid to charge the charging pile until the charging pack SOC value of the charging pile reaches the sixth target energy replenishment stop SOC value; wherein the fourth target energy replenishment stop SOC value is greater than the sixth target energy replenishment stop SOC value.
  • a second aspect of the present disclosure discloses an intelligent charging system for a charging pile, the intelligent charging system comprising an EMS, a TBOX and a cloud platform;
  • the cloud platform is used to obtain the charging pile information of the charging piles under the coverage of the power grid;
  • the charging pile information of the charging pile includes the current discharge period, the current charging pack SOC value and the power grid load; if the current charging pack SOC value is less than the first energy replenishment start SOC value, it is judged whether the current power grid load period is the power grid load peak period according to the power grid load; if the current power grid load period is the power grid load peak period, the first energy replenishment configuration information is generated according to the current charging pack SOC value and the preset first target energy replenishment stop SOC value, and the first energy replenishment configuration information is sent to the EMS through the TBOX; wherein, the first target energy replenishment stop SOC value is the charging pack SOC value of the charging pile to maintain normal operation;
  • the EMS is used to control the power grid when receiving the first energy replenishment configuration information, and charge the charging pile starting from the current charging pack SOC value based on the first energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the first target energy replenishment stop SOC value; if the current power grid load period is not the power grid load peak period, control the power grid to charge the charging pile until the charging pack SOC value of the charging pile reaches a second target energy replenishment stop SOC value; wherein, the second target energy replenishment stop SOC value is greater than the first target energy replenishment stop SOC value, and the second target energy replenishment stop SOC value is set according to the power grid load.
  • the cloud platform is also used to determine whether the current discharge period is a non-discharge peak period if the current discharge power is not less than the first energy replenishment start SOC value; if the current discharge period is not a non-discharge peak period, determine whether the current charging pack SOC value is less than the second energy replenishment start SOC value; wherein the second energy replenishment start SOC value is determined based on the discharge peak period of the charging; if the current charging pack SOC value is less than the second energy replenishment start SOC value, and the current grid load period is the grid load peak period, generate the third energy replenishment configuration information according to the current charging pack SOC value and the preset third target energy replenishment stop SOC value, and send the third energy replenishment configuration information to the EMS through the TBOX; wherein the third target energy replenishment stop SOC value is determined based on the discharge data of the historical discharge peak period and the grid load segment;
  • the EMS is further used to control the power grid when receiving the third energy replenishment configuration information, and to charge the charging pile starting from the current charging pack SOC value based on the third energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the third target energy replenishment stop SOC value.
  • the cloud platform is further configured to generate fourth energy replenishment configuration information according to the current charging pack SOC value and a preset fourth target energy replenishment stop SOC value if the current charging pack SOC value is less than the second energy replenishment start SOC value, and the current power grid load period is not the power grid load peak period, and send the fourth energy replenishment configuration information to the EMS through the TBOX; wherein the fourth target energy replenishment stop SOC value is determined based on the discharge data of the historical discharge peak period;
  • the EMS is also used to control the power grid to charge the charging pile when receiving the fourth energy replenishment configuration information until the charging pack SOC value of the charging pile reaches a fourth target energy replenishment stop SOC value; wherein the fourth target energy replenishment stop SOC value is greater than the third target energy replenishment stop SOC value.
  • the fourth aspect of the present disclosure discloses an electronic device, comprising: a processor and a memory, wherein the processor and the memory are connected via a communication bus; wherein the processor is used to call and execute a program stored in the memory; and the memory is used to store a program, wherein the program is used to implement the intelligent charging method for a charging pile as disclosed in the first aspect of the present disclosure.
  • the fourth aspect of the present disclosure discloses a computer-readable storage medium, in which computer-executable instructions are stored.
  • the computer-executable instructions are used to execute the intelligent charging method for the charging pile disclosed in the first aspect of the present disclosure.
  • the present disclosure provides a smart charging method, system, electronic device and storage medium for a charging pile, which is applied to a smart charging system for a charging pile.
  • the power grid is controlled to charge the charging pile until the charging pack SOC value of the charging pile reaches the second target energy replenishment stop SOC value, so that the battery pack of the charging pile has enough power to meet the charging needs of the vehicle.
  • FIG1 is a schematic diagram of the structure of an intelligent charging system for a charging pile provided by an embodiment of the present disclosure
  • FIG2 is a schematic diagram of a flow chart of a smart charging method for a charging pile provided in an embodiment of the present disclosure
  • FIG3 is a schematic diagram of a flow chart of another intelligent charging method for a charging pile provided in an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present disclosure.
  • relational terms such as first and second, etc. are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such actual relationship or order between these entities or operations.
  • the terms “comprise”, “include” or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, article or device.
  • the elements defined by the statement “comprise a " do not exclude the presence of other identical elements in the process, method, article or device including the elements.
  • Telecommunications system TBox.
  • Energy Management System Energy Management System, EMS.
  • the intelligent charging system for the charging pile includes an EMS, a TBOX and a cloud platform.
  • the cloud platform is used to obtain the charging pile information of the charging piles under the coverage of the power grid;
  • the charging pile information of the charging pile includes the current discharge period, the current charging pack SOC value and the power grid load; if the current charging pack SOC value is less than the first energy replenishment start SOC value, it is determined whether the current power grid load period is the power grid load peak period according to the power grid load; if the current power grid load period is the power grid load peak period, the first energy replenishment configuration information is generated according to the current charging pack SOC value and the preset first target energy replenishment stop SOC value, and the first energy replenishment configuration information is sent to the EMS through the TBOX; wherein the first target energy replenishment stop SOC value is the charging pack SOC value for the charging pile to maintain normal operation;
  • the EMS is used to control the power grid when receiving the first energy replenishment configuration information, and start charging the charging pile from the current charging pack SOC value based on the first energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the first target energy replenishment stop SOC value; if the current power grid load period is not the power grid load peak period, control the power grid to charge the charging pile until the charging pack SOC value of the charging pile reaches the second target energy replenishment stop SOC value; wherein the second target energy replenishment stop SOC value is greater than the first target energy replenishment stop SOC value, and the second target energy replenishment stop SOC value is set according to the power grid load.
  • the intelligent charging system of the charging pile provided in the embodiment of the present disclosure also includes:
  • the cloud platform is used to determine whether the current discharge period is a non-discharge peak period if the current discharge power is not less than the first energy replenishment start SOC value; if the current discharge period is not a non-discharge peak period, determine whether the current charging pack SOC value is less than the second energy replenishment start SOC value; wherein the second energy replenishment start SOC value is determined based on the peak discharge period of charging; if the current charging pack SOC value is less than the second energy replenishment start SOC value, and the current grid load period is a grid load peak period, generate the third energy replenishment configuration information according to the current charging pack SOC value and the preset third target energy replenishment stop SOC value, and send the third energy replenishment configuration information to the EMS through TBOX; wherein the third target energy replenishment stop SOC value is determined based on the discharge data of the historical discharge peak period and the grid load segment;
  • the EMS is used to control the power grid when receiving the third energy replenishment configuration information, and start charging the charging pile from the current charging pack SOC value based on the third energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the third target energy replenishment stop SOC value.
  • the intelligent charging system of the charging pile provided in the embodiment of the present disclosure further includes:
  • the cloud platform is used for generating fourth energy replenishment configuration information according to the current charging pack SOC value and the preset fourth target energy replenishment stop SOC value if the current charging pack SOC value is less than the second energy replenishment start SOC value and the current power grid load period is not the power grid load peak period, and sending the fourth energy replenishment configuration information to the EMS through the TBOX; wherein the fourth target energy replenishment stop SOC value is determined based on the discharge data of the historical discharge peak period;
  • the EMS is used to control the power grid to charge the charging pile when receiving the fourth energy replenishment configuration information until the charging pack SOC value of the charging pile reaches a fourth target energy replenishment stop SOC value; wherein the fourth target energy replenishment stop SOC value is greater than the third target energy replenishment stop SOC value.
  • the intelligent charging system of the charging pile provided in the embodiment of the present disclosure further includes:
  • the cloud platform is used to determine whether the current charging pack SOC value is less than the third target energy replenishment starting SOC value if the discharge period is a non-discharge peak period; if the current charging pack SOC value is less than the third energy replenishment starting SOC value, and the current power grid load period is a power grid load peak period, generate the fifth energy replenishment configuration information according to the current charging pack SOC value and the preset fifth target energy replenishment stop SOC value, and send the fifth energy replenishment configuration information to the EMS through the TBOX; wherein, the third energy replenishment starting SOC value is determined based on the non-discharge peak period of charging; the third energy replenishment starting SOC value is greater than the second energy replenishment starting SOC value; wherein, the fifth target energy replenishment stop SOC value is determined based on the discharge data and power grid load during the non-discharge peak period;
  • the EMS is used to control the power grid when receiving the fifth energy replenishment configuration information, and start charging the charging pile from the current charging pack SOC value based on the fifth energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the fifth target energy replenishment stop SOC value.
  • the intelligent charging system of the charging pile provided in the embodiment of the present disclosure further includes:
  • the cloud platform is used for generating sixth energy replenishment configuration information according to the current charging pack SOC value and the preset sixth target energy replenishment stop SOC value if the current charging pack SOC value is less than the third energy replenishment start SOC value and the current power grid load period is not the power grid load peak period, and sending the sixth energy replenishment configuration information to the EMS through the TBOX; wherein the sixth target energy replenishment stop SOC value is determined based on the discharge data during the non-discharge peak period;
  • the EMS is used to control the power grid to charge the charging pile when receiving the sixth energy replenishment configuration information until the charging pack SOC value of the charging pile reaches the sixth target energy replenishment stop SOC value; wherein the fourth target energy replenishment stop SOC value is greater than the sixth target energy replenishment stop SOC value.
  • the present disclosure provides an intelligent charging system for a charging pile, which obtains the charging pile information of the charging pile under the coverage of the power grid through a cloud platform, and judges whether the current power grid load period corresponding to the power grid load in the charging pile information is a power grid load peak period when the current charging pack SOC value in the charging pile information is less than the first energy replenishment start SOC value; if the current power grid load period is a power grid load peak period, the first energy replenishment configuration information can be generated according to the current charging pack SOC value and the preset first target energy replenishment stop SOC value, and the power grid is controlled by EMS, and the charging pile is charged from the current charging pack SOC value based on the first energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the first target energy replenishment stop SOC value, so that the charging pile can maintain normal operation and avoid failure of the charging pile.
  • the power grid is controlled by EMS to charge the charging pile until the charging pack SOC value of the charging pile reaches the second target energy replenishment stop SOC value, so that the battery pack of the charging pile has enough power to meet the charging needs of the vehicle.
  • the embodiment of the present disclosure provides an intelligent charging method of the charging pile, as shown in FIG2 , the intelligent charging method of the charging pile specifically includes the following steps:
  • S201 The cloud platform obtains the charging pile information of the charging piles under the coverage of the power grid.
  • the charging pile information of each charging pile under the coverage of the power grid can be obtained through the cloud platform in the intelligent charging system of the charging device.
  • the charging pile information of each charging pile at least includes the current discharge period, the current charging pack SOC value of the charging pile and the power grid load.
  • the corresponding first energy replenishment start SOC value and the first target energy replenishment stop SOC value can be set according to the charging pack SOC value for the charging pile to maintain normal operation.
  • the first target energy replenishment stop SOC value is the charging pack SOC value for the charging pile to maintain normal operation.
  • the charging pack SOC value of the charging pile is less than the first energy replenishment starting SOC value, it means that the current charging pack SOC value of the charging pile is very low and can no longer maintain normal operation.
  • step S202 after the cloud platform obtains the charging pile information of each charging pile covered by the power grid, it can determine for each charging pile whether the current charging pack SOC value in the charging pile information of the charging pile is less than the first energy replenishment starting SOC; if it is determined that the current charging pack SOC value of the charging pile is less than the first energy replenishment starting SOC value, it means that the current charging pack of the charging pile is unable to maintain the normal operation of the charging pile. In order to prevent the charging pile from malfunctioning, the charging pile needs to be charged immediately.
  • the specific amount of electricity charged by the charging pile can be determined by first determining whether the power grid is currently in the peak load period of the power grid, that is, executing step S203.
  • the cloud platform determines whether the current grid load period is a grid load peak period based on the grid load; if the current grid load period is a grid load peak period, execute step S204; if the current grid load period is not a grid load peak period, execute step S206.
  • At least one peak period of the power grid may be determined based on analysis of historical power grid load data of the power grid.
  • the current power grid load period of the charging pile can be determined according to the power grid load in the charging pile information of the charging pile, and whether the current power grid load period belongs to the power grid load peak period. If the current power grid load period belongs to the power grid load peak period, it means that the current load of the power grid is high, and then step S204 can be executed. If the current power grid load period does not belong to the power grid load peak period, it means that the current load of the power grid is not high, and then step S206 can be executed.
  • the cloud platform generates first energy replenishment configuration information according to the current charging pack SOC value and a preset first target energy replenishment stop SOC value, and sends the first energy replenishment configuration information to the EMS through the TBOX.
  • the cloud platform determines that the current grid load period belongs to the peak grid load period, it means that the current load of the grid is high and cannot provide sufficient power for the charging pile. Then, the cloud platform can generate first energy replenishment configuration information according to the current charging pack SOC value of the charging pile and the pre-set first target energy replenishment stop SOC value, and send the first energy replenishment configuration information to the EMS through TBOX, so that the EMS can control the grid to charge the charging pile according to the received first energy replenishment configuration information.
  • the power grid controls the charging pile to start charging from the current charging pack SOC value based on the first energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the first target energy replenishment stop SOC value.
  • the first target energy replenishment stop SOC value is the charging pack SOC value that the charging pile needs to maintain normal operation.
  • the EMS can control the power grid to charge the corresponding charging pile based on the first energy replenishment configuration information, starting from the current charging pack SOC value, until the SOC value in the charging pack of the charging pile is equal to the first target energy replenishment stop SOC value, so that the charging pile has sufficient power to maintain normal operation.
  • the power grid load of the power grid can be further detected in real time through the cloud platform.
  • the power grid can be controlled by the EMS to charge the charging pile so that the charging pile has sufficient power grid to meet the charging needs of the vehicle.
  • S206 The EMS controls the power grid to charge the charging pile until the charging pack SOC value of the charging pile reaches the second target energy replenishment stop SOC value.
  • the second target energy replenishment stop SOC value is greater than the first target energy replenishment stop SOC value, and the second target energy replenishment stop SOC value is set according to the grid load.
  • the cloud platform determines that the current grid load period belongs to the peak grid load period, it means that the current load of the grid will be stable, and then the grid can be controlled through EMS to charge the charging pile until the charging pack SOC value of the charging pile reaches the second target energy replenishment stop SOC value, so that the charging pile has enough power to meet the charging needs of the vehicle.
  • the present disclosure provides an intelligent charging method for a charging pile, which is applied to an intelligent charging system of a charging pile, and obtains the charging pile information of the charging pile under the coverage of the power grid through a cloud platform, and when the current charging pack SOC value in the charging pile information is less than the first energy replenishment start SOC value, it is determined whether the current power grid load period corresponding to the power grid load in the charging pile information is the power grid load peak period; if the current power grid load period is the power grid load peak period, the first energy replenishment configuration information can be generated according to the current charging pack SOC value and the preset first target energy replenishment stop SOC value, and the power grid is controlled by EMS, and the charging pile is charged from the current charging pack SOC value based on the first energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the first target energy replenishment stop SOC value, so that the charging pile can maintain normal operation and avoid failure of the charging pile.
  • the power grid is controlled by EMS to charge the charging pile until the charging pack SOC value of the charging pile reaches the second target energy replenishment stop SOC value, so that the battery pack of the charging pile has enough power to meet the charging needs of the vehicle.
  • the embodiment of the present disclosure also provides another intelligent charging method of the charging pile, as shown in FIG3, which is applied to the intelligent charging system of the charging pile.
  • the intelligent charging method of the charging pile specifically includes the following steps:
  • S301 The cloud platform obtains the charging pile information of the charging piles under the coverage of the power grid.
  • the charging pile information of the charging pile includes the current discharge period, the current charging pack SOC value and the grid load.
  • the first energy replenishment start SOC value and the first target energy replenishment stop SOC value can be set according to the charging pack SOC value for the charging pile to maintain normal operation.
  • the first target energy replenishment stop SOC value is the charging pack SOC value for the charging pile to maintain normal operation.
  • the charging pack SOC value of the charging pile is less than the first energy replenishment starting SOC value, it means that the current charging pack SOC value of the charging pile is very low and can no longer maintain normal operation.
  • step S302 after the cloud platform obtains the charging pile information of each charging pile covered by the power grid, for each charging pile, it can determine whether the current charging package SOC value in the charging pile information of the charging pile is less than the first energy replenishment starting SOC; if it is determined that the current charging package SOC value of the charging pile is less than the first energy replenishment starting SOC value, it means that the current charging package of the charging pile is no longer enough to maintain the normal operation of the charging pile. In order to prevent the charging pile from malfunctioning, the charging pile needs to be charged immediately. However, due to the limited load of the power grid, the specific number of points for charging the charging pile can first determine whether the power grid is currently at the peak load period of the power grid, that is, execute step S303.
  • the current charging pack SOC value of the charging pile is not less than the first energy replenishment starting SOC value, it means that the power in the current charging pack of the charging pile can maintain normal operation, but it is impossible to determine whether the power in the charging pack meets the charging needs of the vehicle. Therefore, it can be further determined whether the current power bank SOC value of the charging pile meets the charging needs of the vehicle. Due to different discharge time periods, the charging pile can provide different amounts of power to the vehicle. According to different discharge time periods, the corresponding starting energy replenishment SOC value can be set, and then it can be determined to which discharge time period the current discharge time period of the charging pile belongs, that is, execute step S307.
  • the discharge time period can be divided into a non-discharge peak time period and a discharge peak time period.
  • the energy replenishment starting SOC value corresponding to the discharge peak time period can be the second non-starting SOC value; the energy replenishment starting SOC value corresponding to the non-discharge peak time period can be the third energy replenishment starting SOC value.
  • the second energy replenishment starting SOC value is set based on the discharge data of each discharge peak period and the charging demand of the vehicle.
  • the third energy replenishment starting SOC value is set based on the discharge data of each non-discharge peak period and the charging demand of the vehicle; it can be set according to actual application and is not limited in the embodiment of the present disclosure.
  • the electricity price during the non-discharge peak period is lower than that during the discharge peak period, so the energy replenishment starting SOC value set during the non-discharge peak period can be larger, so that the charging pile can be charged more in advance during the non-discharge peak period.
  • the third energy replenishment starting SOC value is greater than the second energy replenishment starting SOC value.
  • the cloud platform determines whether the current grid load period is a grid load peak period based on the grid load; if the current grid load period is a grid load peak period, execute step S304; if the current grid load period is not a grid load peak period, execute step S306.
  • the cloud platform generates first energy replenishment configuration information according to the current charging pack SOC value and the preset first target energy replenishment stop SOC value, and sends the first energy replenishment configuration information to the EMS through the TBOX.
  • the power grid controls the charging pile to start charging from the current charging pack SOC value based on the first energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the first target energy replenishment stop SOC value.
  • S306 The EMS controls the power grid to charge the charging pile until the charging pack SOC value of the charging pile reaches the second target energy replenishment stop SOC value.
  • steps S303 to S306 In the process of specifically executing steps S303 to S306, the execution process of steps S303 to S306 is the same as the specific execution process and implementation principle of steps S203 to S206 disclosed in FIG. 2 of the above-mentioned embodiment of the present disclosure. Please refer to the corresponding content in FIG. 2 disclosed in the above-mentioned embodiment of the present disclosure, and no further details will be given here.
  • the cloud platform determines whether the current discharge period is a non-discharge peak period; if the current discharge period is not a non-discharge peak period, execute step S308; if the discharge period is a non-discharge peak period, execute step S314.
  • each discharge period can be divided into a non-discharge peak period and a discharge peak period.
  • the cloud platform determines whether the current discharge period is a non-discharge peak period after determining that the current charging pack SOC value of the charging pile is not less than the first energy replenishment starting SOC value.
  • the current discharge period is not a non-discharge peak period, that is, the current discharge period is a discharge peak period, it can be further determined whether the SOC value of the current charging pack is less than the second energy replenishment SOC value, that is, step S308 is executed; if the current discharge period is a non-discharge peak period, it can be further determined whether the SOC value of the current charging pack is less than the third energy replenishment SOC value, that is, step S314 is executed.
  • the cloud platform determines whether the current charging pack SOC value is less than the second energy replenishment starting SOC value; if the current charging pack SOC value is less than the second energy replenishment starting SOC value, execute step S309.
  • the cloud platform can further determine whether the current charging pack SOC value of the charging pile is less than the second energy replenishment starting SOC value when it determines that the current charging pack SOC value of the charging pile is not less than the first energy replenishment starting SOC value and the current discharge period is not a non-discharge peak period. If the current charging pack SOC value of the charging pile is not less than the second energy replenishment starting SOC value, it means that the current power of the charging pile meets the charging needs of the vehicle, and the charging pile will not be charged.
  • the specific amount of power to be charged for the charging pile can be determined by first judging whether the current power grid load period belongs to the power grid load peak period; if the current power grid load period is the power grid load peak period, execute step S310; if the current power grid load period is not the power grid load peak period, execute step S312.
  • the cloud platform determines whether the current grid load period is a grid load peak period; if the current grid load period is a grid load peak period, execute step S310; if the current grid load period is not a grid load peak period, execute step S312.
  • the cloud platform generates third energy replenishment configuration information according to the current charging pack SOC value and the third target energy replenishment stop SOC value, and sends the third energy replenishment configuration information to the EMS through the TBOX.
  • the third target energy replenishment stop SOC value is determined based on the discharge data during the historical discharge peak period and the grid load segment.
  • step S310 when the cloud platform determines that the current grid load period belongs to the grid load peak period, it can determine the third target energy replenishment stop SOC value according to the current grid load of the grid and the discharge data of the historical discharge peak period, and then generate the third energy replenishment configuration information according to the current charging pack SOC value of the corresponding charging pile and the third target energy replenishment stop SOC value, and finally send the generated third energy replenishment configuration information to the EMS through TBOX, so that after receiving the third energy replenishment configuration information, the EMS controls the grid, and starts charging the charging pile from the current charging pack SOC value based on the third energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the third target energy replenishment stop SOC value, so that the charging pile has enough power to meet the charging needs of the vehicle.
  • S311 When the EMS receives the third energy replenishment configuration information, it controls the power grid to charge the charging pile starting from the current charging pack SOC value based on the third energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the third target energy replenishment stop SOC value.
  • the cloud platform generates fourth energy replenishment configuration information according to the current charging pack SOC value and a preset fourth target energy replenishment stop SOC value, and sends the fourth energy replenishment configuration information to the EMS through the TBOX.
  • the cloud platform determines that the current grid load period is not the grid load peak period, it indicates that the current load of the grid will be stable, and then the corresponding fourth target energy replenishment stop SOC value can be generated according to the discharge data of the historical discharge peak period, and the fourth energy replenishment configuration information can be sent to the EMS through the TBOX, so that when the EMS receives the fourth energy replenishment configuration information, it controls the power grid to charge the charging pile until the charging pack SOC value of the charging pile reaches the fourth target energy replenishment stop SOC value, so that the charging pile has sufficient power to meet the charging needs of the vehicle.
  • the fourth target energy replenishment stop SOC value may be greater than the third target energy replenishment stop SOC value. This may be set according to actual application, and the embodiment of the present disclosure is not limited thereto.
  • S314 The cloud platform determines whether the current charging pack SOC value is less than the third target energy replenishment starting SOC value; if the current charging pack SOC value is less than the third energy replenishment starting SOC value, execute step S315.
  • the cloud platform determines that the current charging pack SOC value of the charging pile is not less than the first energy replenishment starting SOC value and the current discharge period is a non-discharge peak period, it can further determine whether the current charging pack SOC value of the charging pile is less than the third energy replenishment starting SOC value. If the current charging pack SOC value of the charging pile is not less than the third energy replenishment starting SOC value, it means that the current power of the charging pile meets the charging needs of the vehicle, and the charging pile will not be charged.
  • the specific amount of power to charge the charging pile can be determined by first judging whether the current power grid load period belongs to the power grid load peak period; if the current power grid load period is the power grid load peak period, execute step S316; if the current power grid load period is not the power grid load peak period, execute step S318.
  • the cloud platform determines whether the current grid load period is a grid load peak period; if the current grid load period is a grid load peak period, execute step S316; if the current grid load period is not a grid load peak period, execute step S318.
  • the cloud platform generates fifth energy replenishment configuration information according to the current charging pack SOC value and the preset fifth target energy replenishment stop SOC value, and sends the fifth energy replenishment configuration information to the EMS through the TBOX.
  • the fifth target energy replenishment stop SOC value is determined based on the discharge data during the non-discharge peak period and the grid load.
  • the fifth target energy replenishment stop SOC value can be determined according to the current grid load of the power grid and the discharge data of the historical non-discharge peak period, and then the fifth energy replenishment configuration information can be generated according to the current charging pack SOC value of the corresponding charging pile and the fifth target energy replenishment stop SOC value, and finally the generated fifth energy replenishment configuration information is sent to the EMS through the TBOX, so that after receiving the fifth energy replenishment configuration information, the EMS controls the power grid and starts charging the charging pile from the current charging pack SOC value based on the fifth energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the fifth target energy replenishment stop SOC value, so that the charging pile has enough power to meet the charging needs of the vehicle.
  • the EMS When the EMS receives the fifth energy replenishment configuration information, it controls the power grid to charge the charging pile starting from the current charging pack SOC value based on the fifth energy replenishment configuration information until the SOC value in the charging pack of the charging pile is equal to the fifth target energy replenishment stop SOC value.
  • the cloud platform generates sixth energy replenishment configuration information according to the current charging pack SOC value and the preset sixth target energy replenishment stop SOC value, and sends the sixth energy replenishment configuration information to the EMS through the TBOX.
  • the sixth target energy replenishment stop SOC value is determined based on a non-discharging peak period.
  • the cloud platform determines that the current grid load period is not the grid load peak period, it indicates that the current load of the grid will be stable, and then the corresponding sixth target energy replenishment stop SOC value can be generated according to the discharge data of the historical non-discharge peak period, and the sixth energy replenishment configuration information can be sent to the EMS through the TBOX, so that when the EMS receives the sixth energy replenishment configuration information, it controls the power grid to charge the charging pile until the charging pack SOC value of the charging pile reaches the sixth target energy replenishment stop SOC value, so that the charging pile has enough power to meet the charging needs of the vehicle.
  • the fourth target energy replenishment stop SOC value is greater than the sixth target energy replenishment stop SOC value.
  • the sixth target energy replenishment stop SOC value may be greater than the fifth target energy replenishment stop SOC value. It may be set according to actual application, and the embodiment of the present disclosure is not limited thereto.
  • An embodiment of the present disclosure provides an electronic device, as shown in FIG4 , the electronic device includes a processor 401 and a memory 402, the memory 402 is used to store program codes and data for intelligent charging of a charging pile, and the processor 401 is used to call program instructions in the memory to execute the steps shown in the intelligent charging method for a charging pile in the above embodiment.
  • An embodiment of the present disclosure provides a storage medium, which includes a storage program, wherein when the program is running, a device where the storage medium is located is controlled to execute the intelligent charging method for the charging pile shown in the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开提供一种充电桩的智能充电方法、***、电子设备及存储介质,应用于充电桩的智能充电***,***包括EMS、TBox和云平台。云平台若确定充电桩的充电桩信息中的当前充电包SOC值小于第一补能起始SOC值,根据电网负荷判断当前电网负荷时段是否为电网负荷高峰时段;若是,云平台通过TBOX将根据当前充电包SOC值和预先设置的第一目标补能停止SOC值生成的第一补能配置信息发送给EMS;EMS控制电网基于第一补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第一目标补能停止SOC值为止;若当前电网负荷时段不为电网负荷高峰时段,EMS控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第二目标补能停止SOC值为止。

Description

充电桩的智能充电方法、***、电子设备及存储介质
相关申请的交叉引用
本公开要求于2022年09月30日提交中国专利局,申请号为202211213333.3,申请名称为“充电桩的智能充电方法、***、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及储能式充电桩技术领域,更具体地说,涉及一种充电桩的智能充电方法、***、电子设备及存储介质。
背景技术
随着新能源汽车的广泛应用,充电桩的使用也越来越广泛,目前的充电桩主要铺设在小区和商场。
目前都是利用电网对充电桩进行充电,具体的,通过检测充电桩内电池包的SOC值是否小于一定值,在检测到电池包你的额SOC值小于一定值时,利用电网对充电桩进行充电。但是,当电网处于用电高峰期时,利用电网对充电桩进行充电不仅会增加电网的负担,还会增加充电桩的运营成本。
为了解决上述问题,在现有技术中,可以根据电网的波峰波谷时段。即错开用电高峰来为充电桩充电,这种方式虽然在一定程度上降低了对电网的负荷,但是当充电桩中的电量低于正常运行的电量时,容易导致充电桩发生故障。
发明内容
本公开提供一种充电桩的智能充电方法、***、电子设备及存储介质,以实现降低电网负担、降低充电桩的运营成本,以及保证充电桩拥有维持正常运行的电量,避免充电桩发生故障。
本公开第一方面公开一种充电桩的智能充电方法,应用于充电桩的智能充电***,所述智能充电***包括EMS、TBox和云平台,所述方法包括:
所述云平台获取电网覆盖下的充电桩的充电桩信息;所述充电桩的充电桩信息包括当前放电时段、当前充电包SOC值和电网负荷;
若所述当前充电包SOC值小于第一补能起始SOC值,所述云平台根据所述电网负荷判断当前电网负荷时段是否为电网负荷高峰时段;
若所述当前电网负荷时段为所述电网负荷高峰时段,所述云平台根据所述当前充电包SOC值和预先设置的第一目标补能停止SOC值生成第一补能配置信息,并通过所述TBOX将所述第一补能配置信息发送给所述EMS;
所述EMS接收到所述第一补能配置信息时,控制所述电网基于所述第一补能配置信息从所述当前充电包SOC值开始所述充电桩进行充电,直至所述充电桩的充电包中的SOC值等于所述第一目标补能停止SOC值为止;其中,所述第一目标补能停止SOC值为所述充电桩维持正常运行的充电包SOC值;
若所述当前电网负荷时段不为所述电网负荷高峰时段,所述EMS控制所述电网,对所述充电桩进行充电,直至所述充电桩的充电包SOC值达到第二目标补能停止SOC值为止;其中,所述第二目标补能停止SOC值大于所述第一目标补能停止SOC值,所述第二目标补能停止SOC值是根据所述电网负荷进行设置的。
可选的,所述方法还包括:
若所述当前充电包SOC值不小于所述第一补能起始SOC值,所述云平台判断所述当前放电时段是否为非放电高峰时段;
若所述当前放电时段不为非放电高峰时段,所述云平台判断所述当前充电包SOC值是否小于第二补能起始SOC值;其中,所述第二补能起始SOC值是基于所述充电的放电高峰时段确定的;
若所述当前充电包SOC值小于所述第二补能起始SOC值,且所述当前电网负荷时段为所述电网负荷高峰时段,所述云平台根据所述当前充电包SOC值和第三目标补能停止SOC值生成第三补能配置信息,并通过所述TBOX将所述第三补能配置信息发送给所述EMS;其中,所述第三目标补能停止SOC值是基于历史放电高峰时段的放电数据和所述电网负荷段确定的;
所述EMS接收到所述第三补能配置信息时,控制所述电网,基于所述第三补能配置信息从所述当前充电包SOC值开始所述充电桩进行充电,直至所述充电桩的充电包中的SOC值等于所述第三目标补能停止SOC值为止。
可选的,所述方法还包括:
若所述当前充电包SOC值小于所述第二补能起始SOC值,且所述当前电网负荷时段不为所述电网负荷高峰时段,所述云平台根据所述当前充电包SOC值和预先设置的第四目标补能停止SOC值生成第四补能配置信息,并通过所述TBOX将所述第四补能配置信息发送给所述EMS;其中,所述第四目标补能停止SOC值是基于所述历史放电高峰时段的放电数据确定的;
所述EMS接收到所述第四补能配置信息时,控制所述电网,对所述充电桩进行充电,直至所述充电桩的充电包SOC值达到第四目标补能停止SOC值为止;其中,所述第四目标补能停止SOC值大于所述第三目标补能停止SOC值。
可选的,所述方法还包括:
若所述放电时段为非放电高峰时段,所述云平台判断所述当前充电包SOC值是否小于第三补能起始SOC值;其中,所述第三补能起始SOC值是基于所述充电的非放电高峰时段确定的;所述第三补能起始SOC值大于所述第二补能起始SOC值;
若所述当前充电包SOC值小于所述第三补能起始SOC值,且所述当前电网负荷时段为所述电网负荷高峰时段,所述云平台根据所述当前充电包SOC值和预先设置的第五目标补能停止SOC值生成第五补能配置信息,并通过所述TBOX将所述第五补能配置信息发送给所述EMS;其中,所述第五目标补能停止SOC值是基于所述非放电高峰时段的放电数据和所述电网负荷确定的;
所述EMS接收到所述第五补能配置信息时,控制所述电网,基于所述第五补能配置信息从所述当前充电包SOC值开始所述充电桩进行充电,直至所述充电桩的充电包中的SOC值等于所述第五目标补能停止SOC值为止。
可选的,所述方法还包括:
若所述当前充电包SOC值小于所述第三补能起始SOC值,且所述当前电网负荷时段不为所述电网负荷高峰时段,所述云平台根据所述当前充电包SOC值和预先设置的第六目标补能停止SOC值生成第六补能配置信息,并通过所述TBOX将所述第六补能配置信息发送给所述EMS;其中,所述第六目标补能停止SOC值是基于所述非放电高峰时段的放电数据确定的;
所述EMS接收到所述第六补能配置信息时,控制所述电网,对所述充电桩进行充电,直至所述充电桩的充电包SOC值达到第六目标补能停止SOC值为止;其中,所述第四目标补能停止SOC值大于所述第六目标补能停止SOC值。
本公开第二方面公开一种充电桩的智能充电***,所述智能充电***包括EMS、TBOX和云平台;
所述云平台,用于获取电网覆盖下的充电桩的充电桩信息;所述充电桩的充电桩信息包括当前放电时段、当前充电包SOC值和电网负荷;若所述当前充电包SOC值小于第一补能起始SOC值,根据所述电网负荷判断当前电网负荷时段是否为电网负荷高峰时段;若所述当前电网负荷时段为所述电网负荷高峰时段,根据所述当前充电包SOC值和预先设置的第一目标补能停止SOC值生成第一补能配置信息,并通过所述TBOX将所述第一补能配置信息发送给所述EMS;其中,所述第一目标补能停止SOC值为所述充电桩维持正常运行的充电包SOC值;
所述EMS,用于接收到所述第一补能配置信息时控制所述电网,基于所述第一补能配置信息从所述当前充电包SOC值开始所述充电桩进行充电,直至所述充电桩的充电包中的SOC值等于所述第一目标补能停止SOC值为止;若所述当前电网负荷时段不为所述电网负荷高峰时段时,控制所述电网,对所述充电桩进行充电,直至所述充电桩的充电包SOC值达到第二目标补能停止SOC值为止;其中,所述第二目标补能停止SOC值大于所述第一目标补能停止SOC值,所述第二目标补能停止SOC值是根据所述电网负荷进行设置的。
可选的,
所述云平台,还用于若所述当前放电电量不小于所述第一补能起始SOC值,判断所述当前放电时段是否为非放电高峰时段;若所述当前放电时段不为非放电高峰时段,判断所述当前充电包SOC值是否小于第二补能起始SOC值;其中,所述第二补能起始SOC值是基于所述充电的放电高峰时段确定的;若所述当前充电包SOC值小于所述第二补能起始SOC值,且所述当前电网负荷时段为所述电网负荷高峰时段,根据所述当前充电包SOC值和预先设置的第三目标补能停止SOC值生成第三补能配置信息,并通过所述TBOX将所述第三补能配置信息发送给所述EMS;其中,所述第三目标补能停止SOC值是基于历史放电高峰时段的放电数据和所述电网负荷段确定的;
所述EMS,还用于接收到所述第三补能配置信息时,控制所述电网,基于所述第三补能配置信息从所述当前充电包SOC值开始所述充电桩进行充电,直至所述充电桩的充电包中的SOC值等于所述第三目标补能停止SOC值为止。
可选的,
所述云平台,还用于若所述当前充电包SOC值小于所述第二补能起始SOC值,且所述当前电网负荷时段不为所述电网负荷高峰时段,根据所述当前充电包SOC值和预先设置的第四目标补能停止SOC值生成第四补能配置信息,并通过所述TBOX将所述第四补能配置信息发送给所述EMS;其中,所述第四目标补能停止SOC值是基于所述历史放电高峰时段的放电数据确定的;
所述EMS,还用于接收到所述第四补能配置信息时,控制所述电网,对所述充电桩进行充电,直至所述充电桩的充电包SOC值达到第四目标补能停止SOC值为止;其中,所述第四目标补能停止SOC值大于所述第三目标补能停止SOC值。
本公开第四方面公开一种电子设备,包括:处理器以及存储器,所述处理器以及存储器通过通信总线相连;其中,所述处理器,用于调用并执行所述存储器中存储的程序;所述存储器,用于存储程序,所述程序用于实现如上述本公开第一方面公开的充电桩的智能充电方法。
本公开第四方面公开一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行如上述本公开第一方面公开的充电桩的智能充电方法。
本公开提供一种充电桩的智能充电方法、***、电子设备及存储介质,应用于充电桩的智能充电***,通过获取电网覆盖下的充电桩的充电桩信息,并在充电桩信息中的当前充电包SOC值小于第一补能起始SOC值的情况下,判断充电桩信息中的电网负荷对应的当前电网负荷时段是否为电网负荷高峰时段;若当前电网负荷时段为电网负荷高峰时段,可以根据当前充电包SOC值和预先设置的第一目标补能停止SOC值生成第一补能配置信息,并控制电网,基于第一补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第一目标补能停止SOC值为止,以使充电桩能够维持正常运行,避免充电桩发生故障。若当前电网负荷时段不为电网负荷高峰时段时,控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第二目标补能停止SOC值为止,以使充电桩的电池包存在足够的电量满足车辆的充电需求。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本公开实施例提供的一种充电桩的智能充电***的结构示意图;
图2为本公开实施例提供的一种充电桩的智能充电方法的流程示意图;
图3为本公开实施例提供的另一种充电桩的智能充电方法的流程示意图;
图4为本公开实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
远程通讯***:TBox。
能量管理***:Energy Management System,EMS。
参见图1,示出了本公开实施例提供的一种充电桩的智能充电***,该充电桩的智能充电***包括EMS、TBOX和云平台。
云平台,用于获取电网覆盖下的充电桩的充电桩信息;充电桩的充电桩信息包括当前放电时段、当前充电包SOC值和电网负荷;若当前充电包SOC值小于第一补能起始SOC值,根据电网负荷判断当前电网负荷时段是否为电网负荷高峰时段;若当前电网负荷时段为电网负荷高峰时段,根据当前充电包SOC值和预先设置的第一目标补能停止SOC值生成第一补能配置信息,并通过TBOX将第一补能配置信息发送给EMS;其中,第一目标补能停止SOC值为充电桩维持正常运行的充电包SOC值;
EMS,用于接收到第一补能配置信息时控制电网,基于第一补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第一目标补能停止SOC值为止;若当前电网负荷时段不为电网负荷高峰时段时,控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第二目标补能停止SOC值为止;其中,第二目标补能停止SOC值大于第一目标补能停止SOC值,第二目标补能停止SOC值是根据电网负荷进行设置的。
进一步的,本公开实施例提供的充电桩的智能充电***还包括:
云平台用于若当前放电电量不小于第一补能起始SOC值,判断当前放电时段是否为非放电高峰时段;若当前放电时段不为非放电高峰时段,判断当前充电包SOC值是否小于第二补能起始SOC值;其中,第二补能起始SOC值是基于充电的放电高峰时段确定的;若当前充电包SOC值小于第二补能起始SOC值,且当前电网负荷时段为电网负荷高峰时段,根据当前充电包SOC值和预先设置的第三目标补能停止SOC值生成第三补能配置信息,并通过TBOX将第三补能配置信息发送给EMS;其中,第三目标补能停止SOC值是基于历史放电高峰时段的放电数据和电网负荷段确定的;
EMS,用于接收到第三补能配置信息时,控制电网,基于第三补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第三目标补能停止SOC值为止。
进一步的,本公开实施例提供的充电桩的智能充电***,还包括:
云平台,用于若当前充电包SOC值小于第二补能起始SOC值,且当前电网负荷时段不为电网负荷高峰时段,根据当前充电包SOC值和预先设置的第四目标补能停止SOC值生成第四补能配置信息,并通过TBOX将第四补能配置信息发送给EMS;其中,第四目标补能停止SOC值是基于历史放电高峰时段的放电数据确定的;
EMS,用于接收到第四补能配置信息时,控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第四目标补能停止SOC值为止;其中,第四目标补能停止SOC值大于第三目标补能停止SOC值。
进一步的,本公开实施例提供的充电桩的智能充电***,还包括:
云平台,用于若放电时段为非放电高峰时段,判断当前充电包SOC值是否小于第三目标补能起始SOC值;若当前充电包SOC值小于第三补能起始SOC值,且当前电网负荷时段为电网负荷高峰时段,根据当前充电包SOC值和预先设置的第五目标补能停止SOC值生成第五补能配置信息,并通过TBOX将第五补能配置信息发送给EMS;其中,第三补能起始SOC值是基于充电的非放电高峰时段确定的;第三补能起始SOC值大于第二补能起始SOC值;其中,第五目标补能停止SOC值是基于非放电高峰时段的放电数据和电网负荷确定的;
EMS,用于接收到第五补能配置信息时,控制电网,基于第五补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第五目标补能停止SOC值为止。
进一步的,本公开实施例提供的充电桩的智能充电***,还包括:
云平台,用于若当前充电包SOC值小于第三补能起始SOC值,且当前电网负荷时段不为电网负荷高峰时段,根据当前充电包SOC值和预先设置的第六目标补能停止SOC值生成第六补能配置信息,并通过TBOX将第六补能配置信息发送给EMS;其中,第六目标补能停止SOC值是基于非放电高峰时段的放电数据确定的;
EMS,用于接收到第六补能配置信息时,控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第六目标补能停止SOC值为止;其中,第四目标补能停止SOC值大于第六目标补能停止SOC值。
本公开提供一种充电桩的智能充电***,通过云平台获取电网覆盖下的充电桩的充电桩信息,并在充电桩信息中的当前充电包SOC值小于第一补能起始SOC值的情况下,判断充电桩信息中的电网负荷对应的当前电网负荷时段是否为电网负荷高峰时段;若当前电网负荷时段为电网负荷高峰时段,可以根据当前充电包SOC值和预先设置的第一目标补能停止SOC值生成第一补能配置信息,并通过EMS控制电网,基于第一补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第一目标补能停止SOC值为止,以使充电桩能够维持正常运行,避免充电桩发生故障。若当前电网负荷时段不为电网负荷高峰时段时,通过EMS控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第二目标补能停止SOC值为止,以使充电桩的电池包存在足够的电量满足车辆的充电需求。
基于上述本公开实施例提供的充电桩的智能充电***,相应的,本公开实施例提供一种充电桩的智能充电方法,如图2所示,该充电桩的智能充电方法具体包括以下步骤:
S201:云平台获取电网覆盖下的充电桩的充电桩信息。
在本公开实施例中,可以通过充电装置的智能充电***中的云平台获取电网覆盖下的每个充电桩的充电桩信息。其中;每个充电桩的充电桩信息至少包括当前放电时段、充电桩的当前充电包SOC值和电网负荷。
S202:判断当前充电包SOC值是否小于第一补能起始SOC值;若当前充电包SOC值小于第一补能起始SOC值,执行步骤S203。
在本公开实施例中,可以根据充电桩维持正常运行的充电包SOC值设置相应的第一补能起始SOC值和第一目标补能停止SOC值。其中,第一目标补能停止SOC值为充电桩维持正常运行的充电包SOC值。有关于第一补能起始SOC值和第一目标补能停止SOC值的具体数据值,可以根据实际应用进行设置,本公开实施例不加以限定。
需要说明的是,如果充电桩的充电包SOC值小于第一补能起始SOC值,说明充电桩当前的充电包SOC值很低,已经无法维持正常运行了。
在具体执行步骤S202的过程中,云平台在获取到电网覆盖下的每个充电桩的充电桩信息后,针对每个充电桩而言,可以判断该充电桩的充电桩信息中的当前充电包SOC值是否小于第一补能起始SOC;如果确定该充电桩的当前充电包SOC值小于第一补能起始SOC值,说明该充电桩当前的充电包中的电量已经无法维持该充电桩正常运行了,为了防止充电桩发生故障,需要立刻为该充电桩充电。
但是,由于电网的负荷有限,因此,具体为充电桩充多少电,可以先判断电网当前是否处于电网负荷高峰时段,即执行步骤S203。
S203:云平台根据电网负荷判断当前电网负荷时段是否为电网负荷高峰时段;若当前电网负荷时段为电网负荷高峰时段,执行步骤S204;若当前电网负荷时段不为电网负荷高峰时段,执行步骤S206。
在本公开实施例中,可以根据电网的历史电网负荷数据进行分析,确定出至少一个电网高峰时段。
在本公开实施例中,云平台在获取到电网覆盖下的每个充电桩的充电桩信息后,针对每个充电桩而言,可以根据该充电桩的充电桩信息中电网负荷,确定该充电桩当前所处的当前电网负荷时段,并判断该当前电网负荷时段是否属于电网负荷高峰时段,如果当前电网负荷时段属于电网负荷高峰时段,说明电网当前的负荷较高,进而可以执行步骤S204。如果当前电网负荷时段不属于电网负荷高峰时段,说明电网当前的负荷不高,进而可以执行步骤S206。
S204:云平台根据当前充电包SOC值和预先设置的第一目标补能停止SOC值生成第一补能配置信息,并通过TBOX将第一补能配置信息发送给EMS。
在本公开实施例中,针对每个充电桩而言,云平台在确定当前电网负荷时段属于电网负荷高峰时段的情况下,说明电网当前的负荷较高,无法为该充电桩提供充足的电量,进而可以根据该充电桩的当前充电包SOC值和预先设置的第一目标补能停止SOC值,生成第一补能配置信息,并通过TBOX将第一补能配置信息发送给EMS,以便EMS根据接收到的第一补能配置信息控制电网为充电桩进行充电。
S205:EMS接收到第一补能配置信息时,控制电网基于第一补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第一目标补能停止SOC值为止。
其中,第一目标补能停止SOC值为充电桩维持正常运行的充电包SOC值。
在具体执行步骤S205的过程中,EMS在接收到TBOX发送的第一补能配置信息后,可以控制电网基于第一补能配置信息,从当前充电包SOC值开始为相应的充电桩进行充电,直至充电桩的充电包中的SOC值等于第一目标补能停止SOC值为止,以使该充电桩有足够的电量维持正常运行。
进一步的,在本公开实施例中,在EMS控制电网为充电桩进行充电,使该充电桩有足够的电量维持正常运行后,还可以进一步通过云平台实时检测电网的电网负荷,当检测到电网的电网负荷指示该电网的电网负荷时段不属于电网负荷高峰时段时,可以通过EMS控制电网为充电桩进行充电,以使充电桩有足够的电网满足车辆的充电需求。
S206:EMS控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第二目标补能停止SOC值为止。
其中,第二目标补能停止SOC值大于第一目标补能停止SOC值,第二目标补能停止SOC值是根据电网负荷进行设置的。
在本公开实施例中,云平台在确定当前电网负荷时段属于电网负荷高峰时段的情况下,说明电网当前的负荷将平稳,进而可以通过EMS控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第二目标补能停止SOC值为止,以使充电桩有足够的电量满足车辆的充电需求。
本公开提供一种充电桩的智能充电方法,应用于充电桩的智能充电***,通过云平台获取电网覆盖下的充电桩的充电桩信息,并在充电桩信息中的当前充电包SOC值小于第一补能起始SOC值的情况下,判断充电桩信息中的电网负荷对应的当前电网负荷时段是否为电网负荷高峰时段;若当前电网负荷时段为电网负荷高峰时段,可以根据当前充电包SOC值和预先设置的第一目标补能停止SOC值生成第一补能配置信息,并通过EMS控制电网,基于第一补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第一目标补能停止SOC值为止,以使充电桩能够维持正常运行,避免充电桩发生故障。若当前电网负荷时段不为电网负荷高峰时段时,通过EMS控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第二目标补能停止SOC值为止,以使充电桩的电池包存在足够的电量满足车辆的充电需求。
在上述本公开实施例提供的充电桩的智能充电方法的基础上,本公开实施例还提供另一种充电桩的智能充电方法,如图3所示,应用于充电桩的智能充电***,该充电桩的智能充电方法具体包括以下步骤:
S301:云平台获取电网覆盖下的充电桩的充电桩信息。
其中,充电桩的充电桩信息包括当前放电时段、当前充电包SOC值和电网负荷。
S302:判断当前充电包SOC值是否小于第一补能起始SOC值;若当前充电包SOC值小于第一补能起始SOC值,执行步骤S303;若当前充电包SOC值不小于第一补能起始SOC值,执行步骤S307。
在本公开实施例中,可以根据充电桩维持正常运行的充电包SOC值设置相应的第一补能起始SOC值和第一目标补能停止SOC值。其中,第一目标补能停止SOC值为充电桩维持正常运行的充电包SOC值。
需要说明的是,如果充电桩的充电包SOC值小于第一补能起始SOC值,说明充电桩当前的充电包SOC值很低,已经无法维持正常运行了。
在具体执行步骤S302的过程中,云平台在获取到电网覆盖下的每个充电桩的充电桩信息后,针对每个充电桩而言,可以判断该充电桩的充电桩信息中的当前充电包SOC值是否小于第一补能起始SOC;如果确定该充电桩的当前充电包SOC值小于第一补能起始SOC值,说明该充电桩当前的充电包中的电量已经无法维持该充电桩正常运行了,为了防止充电桩发生故障,需要立刻为该充电桩充电。但是,由于电网的负荷有限,因此,具体为充电桩充多少点,可以先判断电网当前是否处于电网负荷高峰期,即执行步骤S303。
如果确定该充电桩的当前充电包SOC值不小于第一补能起始SOC值,说明该充电桩当前的充电包中的电量可以维持正常运行,但是无法确定该充电包中的电量是否满足车辆的充电需求,因此可以进一步判断充电桩的当前充电宝SOC值是否满足车辆的充电需求。由于不同的放电时段,充电桩可以为车辆提供的电量不同,可以根据不同的放电时段,设置相应的起始补能SOC值,进而可以判断该充电桩当前的放电时段时段属于什么放电时段,即执行步骤S307。其中,放电时段可以分为非放电高峰时段和放电高峰时段。放电高峰时段对应的补能起始SOC值可以为第二不能起始SOC值;非放电高峰时段对应的补能起始SOC值可以为第三补能起始SOC值。
需要说明的是,第二补能起始SOC值是基于各个放电高峰时段的放电数据和车辆的充电需求进行设置的。第三补能起始SOC值是基于各个非放电高峰时段的放电数据和车辆的充电需求进行设置的;可以根据实际应用进行设置,本公开实施例不加以限定。
需要说明的是,非放电高峰时段是用电价格小于放电高峰时段的用电价格,进而非放电高峰时段设置的补能起始SOC值可以大一点,这样在非放电高峰时段可以预先为充电桩多充点电。也就是说,第三补能起始SOC值大于第二补能起始SOC值。
S303:云平台根据电网负荷判断当前电网负荷时段是否为电网负荷高峰时段;若当前电网负荷时段为电网负荷高峰时段,执行步骤S304;若当前电网负荷时段不为电网负荷高峰时段,执行步骤S306。
S304:云平台根据当前充电包SOC值和预先设置的第一目标补能停止SOC值生成第一补能配置信息,并通过TBOX将第一补能配置信息发送给EMS。
S305:EMS接收到第一补能配置信息时,控制电网基于第一补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第一目标补能停止SOC值为止。
S306:EMS控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第二目标补能停止SOC值为止。
在具体执行步骤S303至步骤S306的过程中,步骤S303至步骤S306的执行过程与上述本公开实施例图2公开的步骤S203至步骤S206的具体执行过程和实现原理相同,可以参见上述本公开实施例公开的图2中相应的内容,这里不再进行赘述。
S307:云平台判断当前放电时段是否为非放电高峰时段;若当前放电时段不为非放电高峰时段,执行步骤S308;若放电时段为非放电高峰时段,执行步骤S314。
在本公开实施例中,通过对各个放电时段的放电数据和用电价格进行分析,可以将各个放电时段分为非放电高峰时段和放电高峰时段。
在具体执行步骤S307的过程中,针对电网覆盖下的每个充电桩而言,云平台在确定该充电桩的当前充电包SOC值不小于第一补能起始SOC值的情况下,判断当前放电时段是否为非放电高峰时段,如果当前放电时段不是非放电高峰时段,也就是说当前放电时段为放电高峰时段,则可以进一步判断当前充电包的SOC值是否小于第二补能SOC值,即执行步骤S308;如果当前放电时段是非放电高峰时段,则可以进一步判断当前充电包的SOC值是否小于第三补能SOC值,即执行步骤S314。
S308:云平台判断当前充电包SOC值是否小于第二补能起始SOC值;若当前充电包SOC值小于第二补能起始SOC值,执行步骤S309。
在本公开实施例中,针对每个充电桩而言,云平台在确定该充电桩的当前充电包SOC值不小于第一补能起始SOC值,且当前放电时段不为非放电高峰时段的情况下,可以进一步判断该充电桩的当前充电包SOC值是否小于第二补能起始SOC值,如果该充电桩的当前充电包SOC值不小于第二补能起始SOC值,说明该充电桩当前的电量满足车辆的充电需求,则不对该充电桩进行充电。
如果该充电桩的当前充电包SOC值小于第二补能起始SOC值,说明该充电桩当前的电量不满足车辆的充电的充电需求,需要为该充电桩充电,但是,由于电网的负荷有限,因此,具体为充电桩充多少电可以先判断当前电网负荷时段是否属于电网负荷高峰时段;若当前电网负荷时段为电网负荷高峰时段,若当前电网负荷时段为电网负荷高峰时段,执行步骤S310;当前电网负荷时段不为电网负荷高峰时段,执行步骤S312。
S309:云平台判断当前电网负荷时段是否属于电网负荷高峰时段;若当前电网负荷时段为电网负荷高峰时段,执行步骤S310;当前电网负荷时段不为电网负荷高峰时段,执行步骤S312。
S310:云平台根据当前充电包SOC值和第三目标补能停止SOC值生成第三补能配置信息,并通过TBOX将第三补能配置信息发送给EMS。
其中,第三目标补能停止SOC值是基于历史放电高峰时段的放电数据和电网负荷段确定的。
在具体执行步骤S310的过程中,云平台在确定当前电网负荷时段属于电网负荷高峰时段的情况下,可以根据电网当前的电网负荷和历史放电高峰时段的放电数据确定第三目标补能停止SOC值,进而可以根据相应的充电桩的当前充电包SOC值和第三目标补能停止SOC值生成第三补能配置信息,最后通过TBOX将生成的第三补能配置信息发送EMS,以便EMS在接收到第三补能配置信息后,控制电网,基于第三补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第三目标补能停止SOC值为止,以使该充电桩有足够的电量满足车辆的充电需求。
S311:EMS接收到第三补能配置信息时,控制电网,基于第三补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第三目标补能停止SOC值为止。
S312:云平台根据当前充电包SOC值和预先设置的第四目标补能停止SOC值生成第四补能配置信息,并通过TBOX将第四补能配置信息发送给EMS。
在本公开实施例中,云平台在确定当前电网负荷时段不为电网负荷高峰时段的情况下,说明电网当前的负荷将平稳,进而可以根据历史放电高峰时段的放电数据生成相应的第四目标补能停止SOC值,并通过TBOX将第四补能配置信息发送给EMS,以便EMS在接收到第四补能配置信息时,控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第四目标补能停止SOC值为止,以使该充电桩有足够的电量满足车辆的充电需求。
S313:EMS接收到第四补能配置信息时,控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第四目标补能停止SOC值为止。
需要说明的是,由于非电网高峰时段的电网负荷小于电网高峰时段的电网负荷,因此第四目标补能停止SOC值可以大于第三目标补能停止SOC值。可以根据实际应用进行设置,本公开实施例不加以限定。
S314:云平台判断当前充电包SOC值是否小于第三目标补能起始SOC值;若当前充电包SOC值小于第三补能起始SOC值,执行步骤S315。
在本公开实施例中,针对每个充电桩而言,云平台在确定该充电桩的当前充电包SOC值不小于第一补能起始SOC值,且当前放电时段为非放电高峰时段的情况下,可以进一步判断该充电桩的当前充电包SOC值是否小于第三补能起始SOC值,如果该充电桩的当前充电包SOC值不小于第三补能起始SOC值,说明该充电桩当前的电量满足车辆的充电需求,则不对该充电桩进行充电。
如果该充电桩的当前充电包SOC值小于第三补能起始SOC值,说明该充电桩当前的电量不满足车辆的充电的充电需求,需要为该充电桩充电,但是,由于电网的负荷有限,因此,具体为充电桩充多少电可以先判断当前电网负荷时段是否属于电网负荷高峰时段;若当前电网负荷时段为电网负荷高峰时段,执行步骤S316;当前电网负荷时段不为电网负荷高峰时段,执行步骤S318。
S315:云平台判断当前电网负荷时段是否属于电网负荷高峰时段;若当前电网负荷时段为电网负荷高峰时段,执行步骤S316;当前电网负荷时段不为电网负荷高峰时段,执行步骤S318。
S316:云平台根据当前充电包SOC值和预先设置的第五目标补能停止SOC值生成第五补能配置信息,并通过TBOX将第五补能配置信息发送给EMS。
其中,第五目标补能停止SOC值是基于非放电高峰时段的放电数据和电网负荷确定的。
在本公开实施例中,可以根据电网当前的电网负荷和历史非放电高峰时段的放电数据确定第五目标补能停止SOC值,进而可以根据相应的充电桩的当前充电包SOC值和第五目标补能停止SOC值生成第五补能配置信息,最后通过TBOX将生成的第五补能配置信息发送EMS,以便EMS在接收到第五补能配置信息后,控制电网,基于第五补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第五目标补能停止SOC值为止,以使该充电桩有足够的电量满足车辆的充电需求。
S317:EMS接收到第五补能配置信息时,控制电网,基于第五补能配置信息从当前充电包SOC值开始充电桩进行充电,直至充电桩的充电包中的SOC值等于第五目标补能停止SOC值为止。
S318:云平台根据当前充电包SOC值和预先设置的第六目标补能停止SOC值生成第六补能配置信息,并通过TBOX将第六补能配置信息发送给EMS。
其中,第六目标补能停止SOC值是基于非放电高峰时段确定的。
在本公开实施例中,云平台在确定当前电网负荷时段不为电网负荷高峰时段的情况下,说明电网当前的负荷将平稳,进而可以根据历史非放电高峰时段的放电数据生成相应的第六目标补能停止SOC值,并通过TBOX将第六补能配置信息发送给EMS,以便EMS在接收到第六补能配置信息时,控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第六目标补能停止SOC值为止,以使该充电桩有足够的电量满足车辆的充电需求。
S319:EMS接收到第六补能配置信息时,控制电网,对充电桩进行充电,直至充电桩的充电包SOC值达到第六目标补能停止SOC值为止。
其中,第四目标补能停止SOC值大于第六目标补能停止SOC值。
需要说明的是,由于非电网高峰时段的电网负荷小于电网高峰时段的电网负荷,因此,第六目标补能停止SOC值可以大于第五目标补能停止SOC值。可以根据实际应用进行设置,本公开实施例不加以限定。
[根据细则91更正 04.12.2023]
本公开实施例提供了一种电子设备,如图4所示,电子设备包括处理器401和存储器402,存储器402用于存储充电桩的智能充电的程序代码和数据,处理器401用于调用存储器中的程序指令执行实现如上述实施例中充电桩的智能充电方法所示的步骤。
本公开实施例提供了一种存储介质,存储介质包括存储程序,其中,在程序运行时控制存储介质所在设备执行上述实施例示出的充电桩的智能充电方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***或***实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的***及***实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本公开。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
以上仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (10)

  1. 一种充电桩的智能充电方法,其中,应用于充电桩的智能充电***,所述智能充电***包括EMS、TBOX和云平台,所述方法包括:
    所述云平台获取电网覆盖下的充电桩的充电桩信息;所述充电桩的充电桩信息包括当前放电时段、当前充电包SOC值和电网负荷;
    若所述当前充电包SOC值小于第一补能起始SOC值,所述云平台根据所述电网负荷判断当前电网负荷时段是否为电网负荷高峰时段;
    若所述当前电网负荷时段为所述电网负荷高峰时段,所述云平台根据所述当前充电包SOC值和预先设置的第一目标补能停止SOC值生成第一补能配置信息,并通过所述TBOX将所述第一补能配置信息发送给所述EMS;
    所述EMS接收到所述第一补能配置信息时,控制所述电网基于所述第一补能配置信息从所述当前充电包SOC值开始所述充电桩进行充电,直至所述充电桩的充电包中的SOC值等于所述第一目标补能停止SOC值为止;其中,所述第一目标补能停止SOC值为所述充电桩维持正常运行的充电包SOC值;
    若所述当前电网负荷时段不为所述电网负荷高峰时段,所述EMS控制所述电网,对所述充电桩进行充电,直至所述充电桩的充电包SOC值达到第二目标补能停止SOC值为止;其中,所述第二目标补能停止SOC值大于所述第一目标补能停止SOC值,所述第二目标补能停止SOC值是根据所述电网负荷进行设置的。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    若所述当前充电包SOC值不小于所述第一补能起始SOC值,所述云平台判断所述当前放电时段是否为非放电高峰时段;
    若所述当前放电时段不为非放电高峰时段,所述云平台判断所述当前充电包SOC值是否小于第二补能起始SOC值;其中,所述第二补能起始SOC值是基于所述充电的放电高峰时段确定的;
    若所述当前充电包SOC值小于所述第二补能起始SOC值,且所述当前电网负荷时段为所述电网负荷高峰时段,所述云平台根据所述当前充电包SOC值和第三目标补能停止SOC值生成第三补能配置信息,并通过所述TBOX将所述第三补能配置信息发送给所述EMS;其中,所述第三目标补能停止SOC值是基于历史放电高峰时段的放电数据和所述电网负荷段确定的;
    所述EMS接收到所述第三补能配置信息时,控制所述电网,基于所述第三补能配置信息从所述当前充电包SOC值开始所述充电桩进行充电,直至所述充电桩的充电包中的SOC值等于所述第三目标补能停止SOC值为止。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    若所述当前充电包SOC值小于所述第二补能起始SOC值,且所述当前电网负荷时段不为所述电网负荷高峰时段,所述云平台根据所述当前充电包SOC值和预先设置的第四目标补能停止SOC值生成第四补能配置信息,并通过所述TBOX将所述第四补能配置信息发送给所述EMS;其中,所述第四目标补能停止SOC值是基于所述历史放电高峰时段的放电数据确定的;
    所述EMS接收到所述第四补能配置信息时,控制所述电网,对所述充电桩进行充电,直至所述充电桩的充电包SOC值达到第四目标补能停止SOC值为止;其中,所述第四目标补能停止SOC值大于所述第三目标补能停止SOC值。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    若所述放电时段为非放电高峰时段,所述云平台判断所述当前充电包SOC值是否小于第三补能起始SOC值;其中,所述第三补能起始SOC值是基于所述充电的非放电高峰时段确定的;所述第三补能起始SOC值大于所述第二补能起始SOC值;
    若所述当前充电包SOC值小于所述第三补能起始SOC值,且所述当前电网负荷时段为所述电网负荷高峰时段,所述云平台根据所述当前充电包SOC值和预先设置的第五目标补能停止SOC值生成第五补能配置信息,并通过所述TBOX将所述第五补能配置信息发送给所述EMS;其中,所述第五目标补能停止SOC值是基于所述非放电高峰时段的放电数据和所述电网负荷确定的;
    所述EMS接收到所述第五补能配置信息时,控制所述电网,基于所述第五补能配置信息从所述当前充电包SOC值开始所述充电桩进行充电,直至所述充电桩的充电包中的SOC值等于所述第五目标补能停止SOC值为止。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    若所述当前充电包SOC值小于所述第三补能起始SOC值,且所述当前电网负荷时段不为所述电网负荷高峰时段,所述云平台根据所述当前充电包SOC值和预先设置的第六目标补能停止SOC值生成第六补能配置信息,并通过所述TBOX将所述第六补能配置信息发送给所述EMS;其中,所述第六目标补能停止SOC值是基于所述非放电高峰时段的放电数据确定的;
    所述EMS接收到所述第六补能配置信息时,控制所述电网,对所述充电桩进行充电,直至所述充电桩的充电包SOC值达到第六目标补能停止SOC值为止;其中,所述第四目标补能停止SOC值大于所述第六目标补能停止SOC值。
  6. 一种充电桩的智能充电***,其中,所述智能充电******包括EMS、TBOX和云平台;
    所述云平台,用于获取电网覆盖下的充电桩的充电桩信息;所述充电桩的充电桩信息包括当前放电时段、当前充电包SOC值和电网负荷;若所述当前充电包SOC值小于第一补能起始SOC值,根据所述电网负荷判断当前电网负荷时段是否为电网负荷高峰时段;若所述当前电网负荷时段为所述电网负荷高峰时段,根据所述当前充电包SOC值和预先设置的第一目标补能停止SOC值生成第一补能配置信息,并通过所述TBOX将所述第一补能配置信息发送给所述EMS;其中,所述第一目标补能停止SOC值为所述充电桩维持正常运行的充电包SOC值;
    所述EMS,用于接收到所述第一补能配置信息时控制所述电网,基于所述第一补能配置信息从所述当前充电包SOC值开始所述充电桩进行充电,直至所述充电桩的充电包中的SOC值等于所述第一目标补能停止SOC值为止;若所述当前电网负荷时段不为所述电网负荷高峰时段时,控制所述电网,对所述充电桩进行充电,直至所述充电桩的充电包SOC值达到第二目标补能停止SOC值为止;其中,所述第二目标补能停止SOC值大于所述第一目标补能停止SOC值,所述第二目标补能停止SOC值是根据所述电网负荷进行设置的。
  7. 根据权利要求6所述的***,其中,
    所述云平台,还用于若所述当前放电电量不小于所述第一补能起始SOC值,判断所述当前放电时段是否为非放电高峰时段;若所述当前放电时段不为非放电高峰时段,判断所述当前充电包SOC值是否小于第二补能起始SOC值;其中,所述第二补能起始SOC值是基于所述充电的放电高峰时段确定的;若所述当前充电包SOC值小于所述第二补能起始SOC值,且所述当前电网负荷时段为所述电网负荷高峰时段,根据所述当前充电包SOC值和预先设置的第三目标补能停止SOC值生成第三补能配置信息,并通过所述TBOX将所述第三补能配置信息发送给所述EMS;其中,所述第三目标补能停止SOC值是基于历史放电高峰时段的放电数据和所述电网负荷段确定的;
    所述EMS,还用于接收到所述第三补能配置信息时,控制所述电网,基于所述第三补能配置信息从所述当前充电包SOC值开始所述充电桩进行充电,直至所述充电桩的充电包中的SOC值等于所述第三目标补能停止SOC值为止。
  8. 根据权利要求7所述的***,其中,
    所述云平台,还用于若所述当前充电包SOC值小于所述第二补能起始SOC值,且所述当前电网负荷时段不为所述电网负荷高峰时段,根据所述当前充电包SOC值和预先设置的第四目标补能停止SOC值生成第四补能配置信息,并通过所述TBOX将所述第四补能配置信息发送给所述EMS;其中,所述第四目标补能停止SOC值是基于所述历史放电高峰时段的放电数据确定的;
    所述EMS,还用于接收到所述第四补能配置信息时,控制所述电网,对所述充电桩进行充电,直至所述充电桩的充电包SOC值达到第四目标补能停止SOC值为止;其中,所述第四目标补能停止SOC值大于所述第三目标补能停止SOC值。
  9. 一种电子设备,其中,包括:处理器以及存储器,所述处理器以及存储器通过通信总线相连;其中,所述处理器,用于调用并执行所述存储器中存储的程序;所述存储器,用于存储程序,所述程序用于实现如权利要求1-5任一项所述的充电桩的智能充电方法。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行如权利要求1-5任一项所述的充电桩的智能充电方法。
PCT/CN2023/122208 2022-09-30 2023-09-27 充电桩的智能充电方法、***、电子设备及存储介质 WO2024067741A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211213333.3 2022-09-30
CN202211213333.3A CN116455010A (zh) 2022-09-30 2022-09-30 充电桩的智能充电方法、***、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024067741A1 true WO2024067741A1 (zh) 2024-04-04

Family

ID=87130836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122208 WO2024067741A1 (zh) 2022-09-30 2023-09-27 充电桩的智能充电方法、***、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN116455010A (zh)
WO (1) WO2024067741A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116455010A (zh) * 2022-09-30 2023-07-18 度普(苏州)新能源科技有限公司 充电桩的智能充电方法、***、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150137752A1 (en) * 2013-11-15 2015-05-21 Honda Motor Co., Ltd. Vehicle-to-Grid Control
CN109130940A (zh) * 2018-09-25 2019-01-04 迟同胜 充电方法及装置
CN109823223A (zh) * 2019-01-23 2019-05-31 国家电网有限公司 一种电动汽车充电站的储能容量配置方法及***
CN110783938A (zh) * 2019-11-29 2020-02-11 深圳供电局有限公司 一种带储能的电动汽车充电***及方法
CN111016725A (zh) * 2019-12-31 2020-04-17 西安交通大学 一种储能式充电桩的模式选择控制方法
CN113541241A (zh) * 2021-06-23 2021-10-22 度普(苏州)新能源科技有限公司 储能充电桩的补能方法及装置、计算机可读存储介质
CN116455010A (zh) * 2022-09-30 2023-07-18 度普(苏州)新能源科技有限公司 充电桩的智能充电方法、***、电子设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150137752A1 (en) * 2013-11-15 2015-05-21 Honda Motor Co., Ltd. Vehicle-to-Grid Control
CN109130940A (zh) * 2018-09-25 2019-01-04 迟同胜 充电方法及装置
CN109823223A (zh) * 2019-01-23 2019-05-31 国家电网有限公司 一种电动汽车充电站的储能容量配置方法及***
CN110783938A (zh) * 2019-11-29 2020-02-11 深圳供电局有限公司 一种带储能的电动汽车充电***及方法
CN111016725A (zh) * 2019-12-31 2020-04-17 西安交通大学 一种储能式充电桩的模式选择控制方法
CN113541241A (zh) * 2021-06-23 2021-10-22 度普(苏州)新能源科技有限公司 储能充电桩的补能方法及装置、计算机可读存储介质
CN116455010A (zh) * 2022-09-30 2023-07-18 度普(苏州)新能源科技有限公司 充电桩的智能充电方法、***、电子设备及存储介质

Also Published As

Publication number Publication date
CN116455010A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
WO2024067741A1 (zh) 充电桩的智能充电方法、***、电子设备及存储介质
CN108422887B (zh) 车载交流充放电机充放电接口、方法、充电桩、及电子设备
KR102433167B1 (ko) 건물 및 계통의 충방전 우선순위를 고려하는 v2x­ess 연계 시스템 및 방법
CN111293712B (zh) 网荷储需求响应控制***及控制方法
CN108879884A (zh) 一种充电站的充电管理方法及装置
US20170060162A1 (en) Control systems and methods for utility grid frequency regulation programs
CN113060036A (zh) 光储充电站的充电控制方法、装置、服务器及存储介质
CN111376778B (zh) 充电桩控制方法、装置、计算机设备和存储介质
CN113067370B (zh) V2g充电站的充电控制方法、装置、服务器及存储介质
CN111422095A (zh) 充电桩的功率分配方法、装置、充电桩和存储介质
CN113725864A (zh) 一种台区智能融合终端管控充电桩有序充电的方法及***
CN112959915B (zh) 充电功率调整方法、装置、存储介质及充电桩
CN109606191A (zh) 供电控制方法、装置、计算机设备和存储介质
CN110854916A (zh) 一种基于用户储能的能量平衡控制方法及装置
CN110175728A (zh) 基于梯度投影退化型内点法的电动汽车充电站调度装置
CN116245304A (zh) 一种光储充功率调度方法、装置、电子设备及存储介质
CN113602127B (zh) 充电桩能源管理方法及装置
CN114421555B (zh) 充电控制方法及***、电子设备及存储介质
CN214822697U (zh) 电动车辆充电设备及***
EP4102670A1 (en) Power management system, server, and method of adjusting power demand and supply
CN208544159U (zh) 车载交流充放电机的充放电接口、以及充电桩充放电接口
CN109038624B (zh) 基于双蓄电池容量动态分配的家庭能源调度方法
CN116442838A (zh) 一种智能汽车充电桩功率智能分配方法
CN116863596A (zh) 充电计费方法、装置、设备、***及存储介质
CN116131370A (zh) 储能电池的充放电方法、装置、设备以及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870967

Country of ref document: EP

Kind code of ref document: A1