WO2024067237A1 - 供电控制电路以及设备 - Google Patents

供电控制电路以及设备 Download PDF

Info

Publication number
WO2024067237A1
WO2024067237A1 PCT/CN2023/119628 CN2023119628W WO2024067237A1 WO 2024067237 A1 WO2024067237 A1 WO 2024067237A1 CN 2023119628 W CN2023119628 W CN 2023119628W WO 2024067237 A1 WO2024067237 A1 WO 2024067237A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
power supply
load
control
controller
Prior art date
Application number
PCT/CN2023/119628
Other languages
English (en)
French (fr)
Inventor
王热
Original Assignee
深圳海翼智新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳海翼智新科技有限公司 filed Critical 深圳海翼智新科技有限公司
Publication of WO2024067237A1 publication Critical patent/WO2024067237A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present invention relates to the technical field of power supply control of equipment, and in particular to a power supply control circuit and equipment.
  • the heat dissipation function of the equipment is one of the core design points in the equipment design process.
  • heat dissipation is a systematic problem involving multiple engineering disciplines such as software, hardware, and structure.
  • active or passive heat dissipation measures such as setting fans, radiators, heat pipes, liquid cooling, thermal conductive adhesives, etc.
  • the purpose of this specification is to provide a power supply control circuit and device, which at least improves the heat dissipation function of the device to a certain extent.
  • a power supply control circuit comprising: a controller, a conversion circuit module, a first type of load module, and a second load;
  • the above-mentioned first type load module includes: a first load, a first switch and a second switch; the first end of the conversion circuit module is connected to the power access port, the second end of the conversion circuit module is connected to the first end of the second load, and the second end of the second load is grounded; the first end of the above-mentioned first switch is connected to the above-mentioned power access port, the second end of the above-mentioned first switch is connected to the first end of the first load, and the second end of the above-mentioned first load is grounded; the first end of the above-mentioned second switch is connected to the first end of the above-mentioned first load, and the second end of the above-mentioned second switch is connected to the first end of the second load; and the above-mentioned controller is electrically connected to the above-mentioned first switch, electrically connected to the above-mentioned second switch, and electrically connected to the above-mentioned power supply.
  • a device comprising the power supply control circuit as described in the above embodiment.
  • the power supply control circuit includes: a controller, a conversion circuit module, a first type of load module, and a second load; wherein the connection relationship of the power supply control circuit is as follows: the first type of load module includes: a first load, a first switch and a second switch; the first end of the conversion circuit module is connected to the power access port, the second end of the conversion circuit module is connected to the first end of the second load, and the second end of the second load is grounded; the first end of the first switch is connected to the power access port, the second end of the first switch is connected to the first end of the first load, and the second end of the first load is grounded; the first end of the second switch is connected to the first end of the first load, and the second end of the second switch is connected to the first end of the second load; the controller is electrically connected to the first switch, electrically connected to the second switch, and electrically connected to the power supply.
  • the controller controls the first part of the current from the above power supply to power the first load of the device, and controls the second part of the current from the above power supply to power the second load of the device after passing through the conversion circuit module.
  • the loads of the device are divided into two categories, and the power supply current is shunted: one part is used to power the first load and the other part is used for the second load function, so that part of the current of the power supply flows through the conversion circuit module with large heat generation in the device instead of all the current of the power supply flowing through the above conversion circuit module.
  • this technical solution designs the power supply circuit based on the source of the heat dissipation problem of the device (that is, how much heat the device generates), which has the technical effect of improving the power supply efficiency. At the same time, due to the reduction of conversion heat, it avoids abnormalities of the device due to excessive heat generation.
  • FIG. 1 is a schematic diagram of the structure of a power supply control circuit provided in an embodiment of this specification.
  • FIG. 2 is a schematic diagram of the structure of a power supply control circuit provided in another embodiment of the present specification.
  • FIG. 3 is a schematic diagram of the structure of a conversion circuit module provided in an embodiment of this specification.
  • FIG. 4 is a flow chart of a method for controlling power-on of a device provided in an embodiment of this specification.
  • FIG. 5 is a flow chart of a method for controlling power-on of a device provided in another embodiment of the present specification.
  • FIG. 6 is a schematic diagram of the structure of the device provided in the embodiment of this specification.
  • FIG. 1 is a schematic diagram of the structure of a power supply control circuit provided in an embodiment of this specification.
  • the power supply control circuit 100 includes: a controller (not shown in the figure), a conversion circuit module 110 , a first type load module, and a second load 130 .
  • the first type of load module includes: a first load 120, a first switch 140 and a second switch 150.
  • the first switch 140 and the second switch 150 can be: an integrated switch circuit or a controllable switch circuit constructed by a discrete metal-oxide-semiconductor field-effect transistor (MOSFET, referred to as MOS);
  • MOSFET discrete metal-oxide-semiconductor field-effect transistor
  • the second load 130 is a system load related to digital light processing (DLP)
  • the first load 120 is a load other than the system load related to DLP.
  • the power supply current is shunted, thereby reducing the heat generation.
  • connection relationship between the components in the power supply control circuit 100 is as follows:
  • the controller is electrically connected to the first switch 140, the second switch 150, and the power supply 170, so as to realize the first The switch 140 and the second switch 150 are controlled to be on and off, and the power supply voltage provided by the power supply 170 is obtained.
  • the first end of the conversion circuit module 110 is connected to the power supply 170 access port, the second end of the conversion circuit module 110 is connected to the first end of the second load 130, and the second end of the second load 130 is grounded.
  • the first end of the first switch 140 is connected to the power supply 170 access port, the second end of the first switch 140 is connected to the first end of the first load 120, and the second end of the first load 120 is grounded; and the first end of the second switch 150 is connected to the first end of the first load 120, and the second end of the second switch 150 is connected to the first end of the second load 130.
  • the power supply 170 is a Universal Serial Bus (USB) input source or an adapter input source.
  • USB Universal Serial Bus
  • the second load may be set to be multiple (e.g., M, where M is a positive integer greater than 1), and the first load, the first switch, and the second switch in the first type of load module may be set to be N (N is a positive integer greater than 1).
  • M multiple
  • N N is a positive integer greater than 1
  • the first end of the i-th first switch 140 is connected to the access port of the power supply 170, the second end of the i-th first switch 130 is connected to the first end of the i-th first load 120, and the second end of the i-th first load 120 is grounded; the first end of the i-th second switch 150 is connected to the first end of the i-th first load 120, and the second end of the i-th second switch 150 is connected to the first end of the j-th second load 130; the first end of the j-th second load 130 is connected to the second end of the conversion circuit module 110, and the second end of the j-th second load 130 is grounded.
  • i takes a value that is any integer between 1 and N (including 1 and N)
  • j takes a value that is any integer between 1 and M (including 1 and M).
  • the power supply control circuit 100 further includes: a third switch 180 and a battery 160 .
  • the first end of the third switch 180 is connected to the second end of the conversion circuit module 100, and the second end of the third switch 180 is connected to the battery 160.
  • the controller is also electrically connected to the third switch 180 to control the opening and closing of the third switch 180.
  • the first switch 140 when the first switch 140 is closed, the second switch 150 is open, and the third switch 180 is closed, a portion of the current of the power supply 170 can power the first load 120 of the device, and another portion of the current of the power supply 170 can power all the second loads 130 of the device and charge the battery 160 after passing through the conversion circuit module 110.
  • the third switch 180 When the first switch 140 is closed, the second switch 150 is open, and the third switch 180 is open, a portion of the current of the power supply 170 can supply power to the first load 120 of the device, and another portion of the current of the power supply 170 can supply power to all the second loads 130 of the device after passing through the conversion circuit module 110, and stop charging the battery 160. It can be seen that when the power supply voltage meets different conditions, on the basis of the first switch 140 being closed and the second switch 150 being open, whether the current flowing through the above-mentioned conversion circuit module 110 is used to charge the battery can be controlled by controlling the opening and closing of the third switch 180.
  • the battery 160 when the battery 160 has power, the first switch 140 is open, the second switch 150 is closed, and the third switch 180 is closed, the battery 160 supplies power to the first load 120 and all the second loads 130 .
  • the conversion circuit module 110 is the module that generates the most heat during the operation of the device, and can specifically be a charging circuit module or a current converter.
  • the conversion circuit module is illustrated by taking the step-down DC-DC conversion circuit (Direct Current-Direct Current Converter) shown in FIG3 as an example:
  • the input source Vin is converted by the step-down circuit composed of the switch tube SW1 (such as MOS tube), the power inductor PL1, the capacitor C1, and the freewheeling diode D1, and the output voltage Vout is used to supply power to the load RL.
  • IOUT is the current consumed by the load RL
  • IL is the current flowing through the power inductor PL1
  • IIN is the current consumed by the input source Vin
  • RS1 is the parasitic equivalent series resistance of the switch tube SW1
  • RS2 is the equivalent DC resistance of the winding coil of the power inductor PL1
  • VD is the conduction voltage drop of the freewheeling diode D1.
  • the load is divided into a first load and a second load, and the current from the power supply is shunted based on the power supply control circuit, so that a part of the current flows through the load of the conversion circuit module 110 (i.e., the second load 130), and the other part of the power supply current after shunting is used to supply power to the first load, and the first load 120 is not the load of the conversion circuit module 110.
  • the power supply current is not shunted, and the loads are not classified, but all loads are loads of the conversion circuit module 110.
  • the power supply control scheme provided in the embodiment of this specification designs the power supply circuit from the source of the heat dissipation problem of the equipment (i.e., the amount of heat generated by the equipment), which has the technical effect of improving the power supply efficiency.
  • the thermal problem of the equipment is optimized to avoid abnormalities of the equipment due to excessive heat generation.
  • a control scheme embodiment for powering on a device is introduced based on the above power supply control circuit. Specifically, when it is determined that the power supply meets a preset condition, a first portion of the current from the power supply is controlled to power a first load of the device, and a second portion of the current from the power supply is controlled to power a second load of the device after passing through a conversion circuit module.
  • FIG4 is a flow chart of a method for controlling the power supply of a device provided in an embodiment of the present specification.
  • the execution subject of the embodiment shown in the figure is the controller in the above-mentioned power supply control circuit.
  • the execution subject is a central processing unit (CPU) or a microcontroller (MCU) of the projection device.
  • the embodiment shown in the figure includes: S410-S450.
  • the device is in the power-on state, and the CPU or MCU therein obtains the connection of the power inlet of the device with a power source and whether the power voltage is large enough through the detection method of the analog to digital converter (ADC) or the comparator logic level.
  • ADC analog to digital converter
  • the total power of the device is 45W, specifically 15V@3A or [email protected], etc., then the above-mentioned first preset voltage value can be determined as 14.5V, and when it is determined that the power voltage is greater than 14.5V, it is considered that the current power voltage is large enough.
  • S420 when it is determined that the power supply voltage is higher than the first preset voltage value, S420 is performed: the controller controls the first switch to be closed, controls the second switch to be opened, and controls the third switch to be closed.
  • the controller controls the first switch 140 to close, the second switch 150 to open, and the third switch 180 to close through S420, thereby realizing state A: the first part of the current from the power supply 170 supplies power to the first load 120 of the device, and the second part of the current from the power supply 170 supplies power to the second load 130 of the device after passing through the conversion circuit module 110, and at the same time, the second part of the current from the power supply can also charge the battery 160 after passing through the conversion circuit module 110.
  • the switch can be opened/closed by active control of the CPU or MCU software, or the switch circuit itself can be automatically opened/closed by pure hardware triggering.
  • the battery charging current can be set to 1A.
  • This embodiment is applied to a projection device: when it is determined that the power supply voltage is large enough, one or more first switches 140 are controlled to be closed (specifically determined according to the first load that needs to be powered, such as controlling the second first switch to be closed if the second first load needs to be powered), the second switch 150 is controlled to be disconnected, and the third switch 180 is controlled to be closed, so that a part of the current of the power supply passes through the conversion circuit module 110 to power the load 130 related to the DLP in the device, and at the same time, this part of the current can also charge the battery 160 after passing through the conversion circuit module 110, while another part of the current of the power supply is used to power the load 120 in the device except the load related to the DLP.
  • S430 is performed to determine whether the power supply voltage is higher than a second preset voltage value. It is understandable that the second preset voltage value is smaller than the first preset voltage value.
  • the power supply voltage is lower than the first preset voltage value, it is determined that the power supply voltage is not large enough, and then it is further determined that the power supply is valid (which is different from the situation where no power supply is plugged in). For example, if the whole power of the device is 45W, specifically 15V@3A or [email protected], etc., then the first preset voltage value can be determined as 14.5V, and the second preset voltage value can be set to 5V. If it is determined that the power supply voltage is less than 14.5V, it is also determined whether the power supply voltage is greater than 5V, and it is considered that although the current power supply voltage is not large enough, there is power connected.
  • S440 when it is determined in S430 that the power supply voltage is not higher than the first preset voltage value and higher than the second preset voltage value, S440 is executed: controlling the first switch to close, controlling the second switch to open, and controlling the third switch to open.
  • the controller controls the first switch 140 to close, the second switch 150 to open, and the third switch 180 to open through S440, thereby realizing state B: the first part of the current from the power supply 170 supplies power to the first load 120 of the device, and the second part of the current from the power supply 170 supplies power to the second load 130 of the device after passing through the conversion circuit module 110, and at the same time, because the power supply voltage is not high enough, the second part of the current from the power supply no longer charges the battery 160 after passing through the conversion circuit module 110.
  • the on-off control mode of the switch can be that the CPU or MCU software actively controls the opening/closing, or the switch circuit itself automatically opens/closes through pure hardware triggering.
  • the battery charging current is set to zero through the CPU or MCU software, or the battery charging current is set to zero through the conversion circuit module itself pure hardware triggering, thereby stopping the charging of the battery 160.
  • This embodiment is applied to a projection device: when it is determined that there is an effective power supply and the power supply voltage is not large enough, one or more first switches 140 are controlled to be closed (specifically determined according to the first load that needs to be powered, such as controlling the second first switch to be closed if the second first load needs to be powered), the second switch 150 is controlled to be opened, and the third switch 180 is controlled to be opened, so that a part of the current of the power supply passes through the conversion circuit module 110 to power the load 130 related to the DLP in the device, and another part of the current of the power supply is used to power the load 120 other than the load related to the DLP in the device.
  • the power supply mode of other load modules remains unchanged, so the total power consumed by the whole machine will be less than 45W, and the current actually flowing through the above-mentioned conversion circuit module will be further reduced, thereby further reducing the loss of the above-mentioned conversion circuit module, further reducing the heat generated by the loss, and reducing the temperature rise of the device (the device includes but is not limited to the device in the conversion circuit module, and also includes the device in other modules in the system).
  • the controller controls the first switch 140 to be disconnected, the second switch 150 to be closed, and the third switch 180 to be closed through S450, thereby achieving state C: the battery supplies power to the first type of load and the second load. That is, the battery discharge is controlled.
  • the on/off control mode of the switch can be that the CPU or MCU software actively controls the disconnection/closing, or the switch circuit itself automatically disconnects/closes through pure hardware triggering.
  • This embodiment is applied to a projection device: when it is determined that there is no effective power supply or there is no power supply and the power supply voltage is not large enough, one or more second switches 150 are controlled to be closed (determined specifically according to the first load that needs to be powered, such as controlling the second first switch to be closed if the second first load needs to be powered), the first switch 140 is controlled to be disconnected, and the third switch 180 is controlled to be closed, so that the battery supplies power to the first type of load and the second load. In this case, the conversion circuit module 110 stops working. At this time, in the entire device, except for the battery 160, all other loads (for example: DLP-related loads, DLP-irrelevant loads) are powered by the battery.
  • all other loads for example: DLP-related loads, DLP-irrelevant loads
  • the conversion circuit module 110 Since the above-mentioned conversion circuit module 110 is not in a working state, it can be considered that the current consumed is zero, so there is no loss, that is, the conversion circuit module 110 does not generate heat. In this case, the heat generated by the entire system is the lowest, and thus the heat dissipation performance is optimal.
  • the heat of the portable projector is reduced by shunting technology to solve or optimize the heat dissipation.
  • this technical solution designs the power supply circuit based on the source of the device heat dissipation problem (i.e., the amount of heat generated by the device), which has the technical effect of improving the power supply efficiency.
  • the thermal problem of the device is optimized to avoid abnormalities of the device due to excessive heat generation.
  • the controller in the power supply control circuit determines that the power supply voltage is greater than the second preset value (i.e., there is an effective power supply, such as the power supply voltage reaches the above 5V)
  • the power supply voltage provided by the power supply is shunted and the shunted voltage is provided to the first load and the second load respectively. That is, the heat dissipation of the device is reduced by shunting.
  • the power supply voltage is greater than the second preset value (such as 5V mentioned above)
  • the first preset value such as 14.5V mentioned above
  • the load can be powered while the power supply can be charged (i.e., state A); the battery is charged for emergency use.
  • the power supply voltage is between the first preset value and the second preset value, only the load can be powered but the power supply cannot be charged (i.e., state B).
  • the controller in the power supply control circuit determines that the power supply voltage is less than the second preset value (such as 5V mentioned above), it means that the load cannot be driven by the power supply voltage, so the battery is enabled to power the load (ie, state C) to maintain normal operation of the device.
  • the second preset value such as 5V mentioned above
  • the use of the device needs to meet safety regulations, such as safety regulations that require the temperature of the device (for example, the temperature during battery charging is 45°C, and charging is prohibited if it is ⁇ 45°C). Therefore, in order to keep the device temperature rise of the entire system within a controllable temperature range and further improve the heat dissipation performance, this specification also provides the following embodiments:
  • the above-mentioned power supply control circuit is also provided with a temperature sensor, which is configured to collect the device temperature of each load in real time, and further send the collected device temperature to a controller, such as a CPU or MCU, so that the controller can dynamically adjust the shunt time according to the real-time acquired device temperature to dynamically adjust the temperature rise of the entire device.
  • FIG5 is a flow chart of a method for controlling power-on of a device provided in another embodiment of this specification, and the embodiment shown in the figure is implemented on the basis of the embodiment shown in FIG4.
  • the embodiment shown in the figure includes:
  • S510 is executed: determining whether the device temperatures of the first load and the second load are both lower than the high temperature threshold.
  • the temperature of each device in the device is the highest, and the CPU or MCU software sets a suitable maximum reference temperature point (that is, a high temperature threshold, for example, 70°C).
  • a suitable maximum reference temperature point that is, a high temperature threshold, for example, 70°C.
  • a thermistor can be added to each device of the device in advance, so that the CPU or MCU collects the device temperature of each device in real time through the ADC, so as to determine whether each device exceeds the corresponding highest reference temperature point (i.e., high temperature threshold).
  • S520 when it is determined that the device temperatures of the first load and the second load are both lower than the high temperature threshold, that is, when the device temperatures of the various devices in the device have not reached the maximum temperature required by the corresponding safety regulations, S520 is executed: the first switch is controlled to be closed, the second switch is controlled to be opened, and the third switch is controlled to be closed, so that the second part of the current from the power supply charges the battery after passing through the conversion circuit module.
  • state A in Figure 4 the first part of the current from the power supply supplies power to the first load of the device, and the second part of the current from the power supply is controlled to supply power to the second load of the device and charge the battery after passing through the conversion circuit module.
  • S530 when it is determined that the power supply voltage is higher than the first preset voltage value, and it is determined that the device temperature of the first load and/or the second load is higher than the high temperature threshold, and/or the device temperature of the battery is higher than the first preset temperature, that is, when the device temperature of one or more devices in the device reaches the maximum temperature required by the corresponding safety regulations, S530 is executed: the first switch is controlled to be closed, the second switch is controlled to be opened, and the third switch is controlled to be opened to stop charging the battery. As shown in state B in Figure 4: the first part of the current from the power supply is controlled to supply power to the first load of the device, and the second part of the current from the power supply is controlled to supply power to the second load of the device and stop charging the battery.
  • the battery charging current becomes zero after the battery changes from the charging state to the charging stop state, and the power supply mode of other load modules remains unchanged, the total power consumed by the whole machine will be reduced, and the current actually flowing through the above-mentioned conversion circuit module will also be further reduced, thereby further reducing the loss of the above-mentioned conversion circuit module, further reducing the heat generated by the loss, and then reducing the temperature rise of each component in the equipment to ensure that the device temperature of each component meets the requirements of safety regulations, etc.
  • the technical solution further includes: S540: determining the first load and whether the device temperatures of the second load are both lower than the low temperature threshold (as mentioned above, at this time the power supply voltage is still higher than the first preset voltage).
  • the low temperature threshold is less than the high temperature threshold.
  • the second preset temperature is also set in this embodiment. For example, in this embodiment, when it is determined that the power supply voltage is higher than the first preset voltage value, that is, when the whole system is running at full power (for example: 45W), not only the highest reference temperature point (that is, the high temperature threshold, for example: 70°C) is set, but also the lowest reference temperature point (that is, the low temperature threshold, for example: 60°C) is set.
  • S550 When it is determined that the device temperatures of the first load and the second load are both lower than the low temperature threshold, S550 is executed: the third switch is controlled to be closed on the basis of closing the first switch and controlling the second switch to be opened, so that the second part of the current from the power source is restored to charge the battery after passing through the conversion circuit module. After the battery is restored to charge, S510 is executed again to avoid the situation where the device temperature is too high in the device.
  • the CPU or MCU when applied to projection, when the device temperature of the first type of load or the DLP-related load reaches the highest reference temperature point (ie: 70°C), the CPU or MCU immediately controls the conversion circuit module to stop charging the battery. As a result, the power consumption of the entire system is reduced, the heat generated by the entire system is reduced, and the device temperature must be gradually reduced. Further, when the device temperature drops to the lowest reference temperature point (ie: 60°C), the CPU or MCU immediately controls the conversion circuit module to resume charging the battery. At this time, the power consumption of the entire system increases, the heat generated by the entire system increases, and the device temperature must be gradually increased.
  • the CPU or MCU controls the charging circuit module to stop charging again, and so on.
  • the temperature rise of the entire device reaches a balanced state, so that the device temperature is at a lower temperature point (for example: 65°C).
  • step S560 it is determined that the power supply voltage is lower than the first preset voltage value and higher than the second preset voltage value; in S570, the first switch is controlled to be closed, the second switch is controlled to be opened, and the third switch is controlled to be opened to stop charging the battery; and in S580, the battery is controlled to supply power to the first type of load and the second type of load of the device.
  • the specific implementation of each step S560-S580 in FIG5 is also described in detail in the embodiment corresponding to S430-S450 in FIG4 and will not be repeated here.
  • the technical solution of dynamically adjusting the temperature rise of the entire device by dynamically adjusting the shunt time can effectively ensure that each device in the device is within the temperature range required by the safety regulations, thereby effectively ensuring the normal operation of the device and not causing the device to malfunction due to the temperature exceeding the specification range.
  • Fig. 6 is a schematic diagram of the structure of a device provided in an embodiment of this specification.
  • the device 600 includes: a power supply control circuit 100 and a memory 602.
  • the power supply control circuit includes a controller 601.
  • the controller 601 is the control center of the computer system, which can be a processor of a physical machine or a processor of a virtual machine.
  • the controller 601 may include one or more processing cores, such as a 4-core processor, a 10-core processor, etc.
  • the controller 601 can be implemented in at least one hardware form of digital signal processing (DSP), field-programmable gate array (FPGA), and programmable logic array (PLA).
  • DSP digital signal processing
  • FPGA field-programmable gate array
  • PDA programmable logic array
  • the controller 601 may also include a main processor and a coprocessor, the main processor is a processor configured to process data in the wake-up state; the coprocessor is a low-power processor configured to process data in the standby state.
  • controller 601 is configured as follows:
  • the controller 601 is further configured to: control the first switch to close and the second switch to open, so that a first portion of the current from the power supply supplies power to a first load of the device, and a second portion of the current from the power supply supplies power to a second load of the device after passing through a conversion circuit module.
  • the controller 601 is configured to: determine whether the power supply voltage is higher than a second preset voltage value; when it is determined that the power supply voltage is higher than the second preset voltage value, the controller 601 is also configured to: control the first switch to close and control the second switch to open, so that the first part of the current from the power supply powers the first load of the device, and the second part of the current from the power supply powers the second load of the device after passing through the conversion circuit module.
  • the power supply control circuit further includes a third switch and a battery, and the controller 601 is electrically connected to the third switch;
  • the controller 601 is configured to: determine whether the power supply voltage is higher than a first preset voltage value; when it is determined that the power supply voltage is higher than the first preset voltage value, the controller 601 is further configured to: control the first switch to be closed, control the second switch to be opened, and control the third switch to be closed, so that the second part of the current from the power supply passes through the conversion circuit module to charge the battery.
  • controller 601 is specifically configured to: when it is determined that the power supply voltage is lower than the first preset voltage value, control the first switch to close, control the second switch to open, and control the third switch to open to stop charging the battery.
  • controller 601 is specifically configured to: when it is determined that the power supply voltage is lower than the first preset voltage value and higher than the second preset voltage value, control the first switch to close, control the second switch to open, and control the third switch to open to stop charging the battery.
  • controller 601 is specifically configured to: determine whether the power supply voltage is lower than a second preset voltage value, wherein the first preset voltage value is greater than the second preset voltage value; when it is determined that the power supply voltage is lower than the second preset voltage value, the controller 601 is further configured to: control the first switch to be disconnected, control the second switch to be closed, and control the third switch to be closed, so as to control the battery to supply power to the first load and the second load.
  • the controller 601 is configured to: when it is determined that the power supply voltage is higher than a first preset voltage value, further determine whether the device temperatures of the first load and the second load are both lower than a high temperature threshold; when it is determined that the device temperatures of the first load and the second load are both lower than the high temperature threshold, the controller 601 is further configured to: control the first switch to close, control the second switch to open, and control the third switch to close, so that the second part of the current from the power supply charges the battery after passing through the conversion circuit module.
  • controller 601 is also configured to: when it is determined that the power supply voltage is higher than the first preset voltage value, and when it is determined that the device temperature of the first load and/or the second load is higher than the high temperature threshold, control the first switch to close, control the second switch to open, and control the third switch to open, so as to stop charging the battery.
  • controller 601 is further configured to: when it is determined that the power supply voltage is higher than the first preset voltage, further determine whether the device temperatures of the first load and the second load are both lower than the low temperature threshold, and the high temperature threshold is greater than the low temperature threshold; the controller 601 is further configured to: when it is determined that the device temperatures of the first load and the second load are both lower than the low temperature threshold, control the third switch to be closed on the basis of closing the first switch and controlling the second switch to be opened, so that the second part of the current from the power supply is restored to charge the battery after passing through the conversion circuit module.
  • controller 601 is also configured to: when it is determined that the power supply does not meet the preset condition or there is no power supply, control the first switch to open, control the second switch to close, and control the third switch to close, so that the battery can supply power to the first load and the second load.
  • the memory 602 may include one or more computer-readable storage media, which may be non-transitory.
  • the memory 602 may also include a high-speed random access memory, and a non-volatile memory, such as one or more disk storage devices, flash memory storage devices.
  • the non-transitory computer-readable storage medium in the memory 602 is configured to store at least one instruction, and the at least one instruction is configured to be executed by the controller 601 to implement the method in the embodiment of the present specification.
  • the device 500 further includes: a peripheral device interface 603 and at least one peripheral device.
  • the controller 601, the memory 602 and the peripheral device interface 603 may be connected via a bus or a signal line.
  • Each peripheral device may be connected to the peripheral device interface 603 via a bus, a signal line or a circuit board.
  • the peripheral device includes: at least one of a display screen 604, a camera 605 and an audio processing unit 606.
  • the peripheral device interface 603 may be configured to connect at least one peripheral device related to input/output (I/O) to the controller 601 and the memory 602.
  • the controller 601, the memory 602, and the peripheral device interface 603 are integrated on the same chip or circuit board; in some other embodiments of the present specification, any one or two of the controller 601, the memory 602, and the peripheral device interface 603 may be implemented on a separate chip or circuit board. This embodiment of the present specification does not specifically limit this.
  • the display screen 604 is configured to display a user interface (UI).
  • the UI may include graphics, text, icons, videos, and any combination thereof.
  • the display screen 604 also has the ability to collect touch signals on the surface or above the surface of the display screen 604.
  • the touch signals can be input as control signals to the controller 601 for processing.
  • the display screen 604 can also be configured to provide virtual buttons and/or virtual keyboards, also known as soft buttons and/or soft keyboards.
  • the display screen 604 may be configured to display a user interface (UI).
  • the display screen 604 may be one, set on the front panel of the device 500; in some other embodiments of the present specification, the display screen 604 may be at least two, respectively set on different surfaces of the device 500 or in a folding design; in some other embodiments of the present specification, the display screen 604 may be a flexible display screen, set on the curved surface or folding surface of the device 500. Even more, the display screen 604 may be set in a non-rectangular irregular shape, that is, a special-shaped screen.
  • the display screen 604 may be made of materials such as a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • the camera 605 is configured to capture images or videos.
  • the camera 605 includes a front camera and a rear camera.
  • the front camera is disposed on the front panel of the electronic device, and the rear camera is disposed on the back of the electronic device.
  • there are at least two rear cameras which are any one of a main camera, a depth of field camera, a wide-angle camera, and a telephoto camera, so as to realize the fusion of the main camera and the depth of field camera to realize the background blur function, the fusion of the main camera and the wide-angle camera to realize the panoramic shooting and the virtual reality (VR) shooting function or other fusion shooting functions.
  • the camera 605 may also include a flash.
  • the flash may be a single-color temperature flash or a dual-color temperature flash.
  • a dual-color temperature flash refers to a combination of a warm light flash and a cold light flash, which can be set to light compensation at different color temperatures.
  • the audio processing unit 606 may include a microphone and a speaker.
  • the microphone is configured to collect sound waves from the user and the environment, and convert the sound waves into electrical signals and input them into the controller 601 for processing.
  • the microphone may also be an array microphone or an omnidirectional collection microphone.
  • the power supply 607 is configured to power various components in the device 500.
  • the power supply 607 can be an alternating current, a direct current, a disposable battery, or a rechargeable battery.
  • the rechargeable battery can be a wired rechargeable battery or a wireless rechargeable battery.
  • a wired rechargeable battery is a battery that is charged through a wired line
  • a wireless rechargeable battery is a battery that is charged through a wireless coil.
  • the rechargeable battery can also be configured to support fast charging technology.
  • the electronic device structure block diagram shown in the embodiment of this specification does not constitute a limitation on the device 500.
  • the device 500 may include more or fewer components than shown in the figure, or combine certain components, or adopt a different component arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种供电控制电路(100)以及设备(600),供电控制电路(100)包括:控制器(601)、转换电路模块(110)、第一类负载模块,以及第二负载(130);第一类负载模块包括:第一负载(120)、第一开关(140)以及第二开关(150);转换电路模块(110)的第一端连接电源(170)接入口,转换电路模块(110)的第二端连接第二负载(130)的第一端,且第二负载(130)的第二端接地;第一开关(140)的第一端连接电源(170)接入口,第一开关(140)的第二端连接第一负载(120)的第一端,且第一负载(120)的第二端接地;第二开关(150)的第一端连接第一负载(120)的第一端,第二开关(150)的第二端连接第二负载(130)的第一端;控制器(601),与第一开关(140)电连接,与第二开关(150)电连接,与电源(170)电连接。

Description

供电控制电路以及设备
本申请要求于2022年09月30日提交中国专利局,申请号为202211224343.7,发明名称为“供电控制电路以及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本说明书涉及设备的供电控制技术领域,尤其涉及一种供电控制电路以及设备。
背景技术
设备的散热功能是设备设计过程中核心设计要点之一。同时,散热是一个***性问题,涉及到软件、硬件、结构等多个工程专业。尤其是小体积电子产品,由于体积尺寸限制,在不改变产品体积的情况下,增加主动散热措施或被动散热措施(如,设置风扇、散热器、热管、液冷、导热胶等)的难度比较大。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本说明书的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本说明书的目的在于提供一种供电控制电路以及设备,至少在一定程度上提升了设备的散热功能。
本说明书的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本说明书的实践而习得。
根据本说明书的一个方面,提供一种供电控制电路,该供电控制电路包括:控制器、转换电路模块、第一类负载模块,以及第二负载;
其中,上述第一类负载模块包括:第一负载、第一开关以及第二开关;述转换电路模块的第一端连接电源接入口,上述转换电路模块的第二端连接上述第二负载的第一端,且上述第二负载的第二端接地;上述第一开关的第一端连接上述电源接入口,上述第一开关的第二端连接第一负载的第一端,且上述第一负载的第二端接地;上述第二开关的第一端连接上述第一负载的第一端,上述第二开关的第二端连接第二负载的第一端;以及,上述控制器,与上述第一开关电连接,与上述第二开关电连接,与上述电源电连接。
根据本说明书的再一个方面,提供一种设备,该设备包括如上述实施例中的供电控制电路。
本说明书的实施例所提供的供电控制电路以及设备,具备以下技术效果:
本说明书示例性的实施例提供的方案中,供电控制电路包括:控制器、转换电路模块、第一类负载模块,以及第二负载;其中供电控制电路连接关系如下:第一类负载模块包括:第一负载、第一开关以及第二开关;转换电路模块的第一端连接电源接入口,转换电路模块的第二端连接第二负载的第一端,且第二负载的第二端接地;第一开关的第一端连接电源接入口,第一开关的第二端连接第一负载的第一端,且第一负载的第二端接地;第二开关的第一端连接第一负载的第一端,第二开关的第二端连接第二负载的第一端;控制器,与第一开关电连接,与第二开关电连接,与电源电连接。
在确定设备的电源满足预设条件的情况下,控制器控制来自上述电源的第一部分电流为该设备的第一负载供电,以及控制来自上述电源的第二部分电流经过转换电路模块后为设备的第二负载供电。本技术方案中,将设备的负载分为两类,并实现将电源电流进行分流:一部分为第一负载供电另一部分为第二负载功能,从而电源的部分电流流经设备中产热量大的转换电路模块而非电源全部电流均需要流经上述转换电路模块。可见,本技术方案从设备散热问题的源头(即,设备发热量的多少)出发设计供电电路,起到提升供电效率的技术效果,同时由于降低了转换热量,避免设备由于产热多而发生异常。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本说明书。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本说明书的实施例,并与说明书一起用于解释本说明书的原理。显而易见地,下面描述中的附图仅仅是本说明书的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本说明书一实施例提供的供电控制电路的结构示意图。
图2为本说明书另一实施例提供的供电控制电路的结构示意图。
图3为本说明书实施例提供的转换电路模块的结构示意图。
图4为本说明书一实施例提供的设备通电的控制方法的流程示意图。
图5为本说明书另一实施例提供的设备通电的控制方法的流程示意图。
图6为本说明书实施例提供的设备的结构示意图。
具体实施方式
为使本说明书的目的、技术方案和优点更加清楚,下面将结合附图对本说明书实施例方式作进一步地详细描述。
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本说明书相一致的所有实施方式。相反,它们仅是如所附权利要求书中所详述的、本说明书的一些方面相一致的装置和方法的例子。
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本说明书将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本说明书的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本说明书的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知技术方案以避免喧宾夺主而使得本说明书的各方面变得模糊。
此外,附图仅为本说明书的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
由于体积尺寸限制,在不改变产品体积的情况下,增加主动散热措施或被动散热措施(如,设置风扇、散热器、热管、液冷、导热胶等)的难度比较大。以投影设备(尤其为小体积高亮度便携式投影仪)为例,相关技术中,整机***的所有负载电流均流经转换电路模块(如,直流转换器,Direct Current Converter,DC Converter),当整机负载电流增加时,即整机负载功率增加,将导致转换电路模块产生的热量大幅增加,从而给整机带来了散热问题。
本说明书实施例能够解决相关技术中存在的技术问题,具体的,本说明书实施例提供以下内容:
其中,图1为本说明书实施例提供的供电控制电路的结构示意图。
如图1所示,供电控制电路100包括:控制器(未在图中示出)、转换电路模块110、第一类负载模块,以及第二负载130。
其中,上述第一类负载模块包括:第一负载120、第一开关140以及第二开关150。在上述设备可以是投影设备的情况下,上述第一开关140和第二开关150均可以为:集成开关电路或者分立金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET,简称:MOS)搭建的可控开关电路等;上述第二负载130为数字光处理(Digital Light Processing,DLP)相关的***负载,上述第一负载120为除了上述DLP相关的***负载之外的其他负载。在投影仪的通电控制方案中,通过将负载分类以如图1示出的控制供电电路结构,实现对电源电流的分流,进而实现产热量的减少。
示例性的,上述供电控制电路100中各器件之间的连接关系如下:
上述控制器与第一开关140电连接,与第二开关150电连接,与电源170电连接,从而实现对第一 开关140、第二开关150的启闭控制,以及获取电源170的所提供的电源电压。
上述转换电路模块110的第一端连接电源170接入口,上述转换电路模块110的第二端连接第二负载130的第一端,且上述第二负载130的第二端接地。同时,第一开关140的第一端连接上述电源170接入口,上述第一开关140的第二端连接第一负载120的第一端,且上述第一负载120的第二端接地;以及,第二开关150的第一端连接上述第一负载120的第一端,上述第二开关150的第二端连接第二负载130的第一端。其中,上述电源170为通用串行总线(Universal Serial Bus,USB)输入源或适配器输入源。
基于上述电路连接关系,在第一开关140闭合且第二开关150断开的情况下,电源170的一部分电流可以为设备的第一负载120供电,以及电源170的另一部分电流经过转换电路模块110后可以为设备的所有第二负载供电。
在示例性的实施例中,上述第二负载可以设置为多个(如M个,M取值大于1的正整数),上述第一类负载模块中的第一负载、第一开关和第二开关均可以设置为N个(N取值大于1的正整数),该情况下,供电控制电路100的电路结构如图2所示:
参考图2,第i个第一开关140的第一端连接电源170接入口,第i个第一开关130的第二端连接第i个第一负载120的第一端,且第i个第一负载120的第二端接地;第i个第二开关150的第一端连接第i个第一负载120的第一端,第i个第二开关150的第二端连接第j第二负载130的第一端;第j个第二负载130的第一端连接至转换电路模块110的第二端,且第j个第二负载130的第二端接地。
其中,i取值为1至N之间任意一个且包括1和N的整数,j取值为1至M之间任意一个且包括1和M的整数。
同理,基于如图2所示的电路连接关系,在N个第一开关140闭合且N个第二开关150断开的情况下,电源170的一部分电流可以为设备的N个第一负载120供电,以及电源170的另一部分电流经过转换电路模块110后可以为设备的M个第二负载供电。
在示例性的实施例中,参考图1和图2,上述供电控制电路100还包括:第三开关180和电池160。
其中,上述第三开关180的第一端连接至转换电路模块100的第二端,上述第三开关180的第二端连接至电池160。上述控制器还与第三开关180电连接,以控制第三开关180的启闭。
具体地,在第一开关140闭合、第二开关150断开,且第三开关180闭合的情况下,电源170的一部分电流可以为设备的第一负载120供电,以及电源170的另一部分电流经过转换电路模块110后可以为设备的所有第二负载130供电以及为电池160充电。
在第一开关140闭合、第二开关150断开,且第三开关180断开的情况下,电源170的一部分电流可以为设备的第一负载120供电,以及电源170的另一部分电流经过转换电路模块110后可以为设备的所有第二负载130供电,且停止为电池160充电。可见,在电源电压满足不同条件的情况下,在第一开关140闭合且第二开关150断开的基础上,可以通过控制第三开关180的启闭来控制流经上述转换电路模块110的电流是否为电池充电。
在示例性的实施例中,在上述电池160具有电量的情况下,第一开关140断开、第二开关150闭合,且第三开关180闭合的情况下,电池160为第一负载120以及所有第二负载130供电。
其中,需要注意的是,上述转换电路模块110为设备工作过程中产热量最大的模块,其具体可以是充电电路模块或电流转换器。本实施例中上述转换电路模块以如图3所示的降压型DC-DC转换电路(Direct Current-Direct Current Converter)为例说明:
参考图3,输入源Vin经过开关管SW1(如:MOS管)、功率电感PL1、电容C1、续流二极管D1组成的降压电路转换后输出电压Vout给负载RL供电。其中,IOUT是负载RL消耗的电流,IL是功率电感PL1中流过的电流,IIN为输入源Vin消耗的电流,RS1为开关管SW1的寄生等效串联电阻,RS2为功率电感PL1绕线线圈的等效直流电阻,VD为续流二极管D1的导通压降。为简便分析,忽略此降压转换电路正常工作时的其它损耗(例如:开关管SW1的开关动态损耗、功率电感PL1的磁损耗,电容C1等效串联电阻导致的损耗等)且设定此降压转换电路正常工作时输入电压Vin和输出电压Vout保持不变, 仅分析负载电流IOUT变化时,由于RS1、RS2及D1导致的静态损耗的变化,从而简要说明此降压DC-DC转换电路热源产生原因。
当IOUT增加时,由于Vout保持不变,故负载RL消耗的电功率必然增加(即:消耗的能量增加),根据能量守恒定理,输入源Vin提供的功率(即:提供的能量)必然增加,由于Vin保持不变,故IIN及IL必然增加。对于等效串联电阻RS1和RS2而言,流过的电流增加,必然导致消耗的功率(P=I*I*R)增加。而由于纯电阻元件属于耗能元件,则消耗的能量将全部转换为热量。对于续流二极管D1,导通时的正向压降VD基本保持不变,IL即为二极管D1的导通电流,故二极管D1消耗的功率(P=VD*IL)也必然增加,而二极管D1消耗的功率(P=VD*IL)也全部转换为热量。故当负载RL消耗的电流IOUT增加时,此降压型DC-DC转换电路产生的热量增加;反之,当负载RL消耗的电流IOUT降低时,此降压型DC-DC转换电路产生的热量随之减少。当IOUT为零时,此降压型DC-DC转换电路产生的热量几乎为零。而当设备工作所产生的热量减少时,则能优化或解决设备的散热问题。
而本实施例提供的供电控制电路中,将负载区分为第一负载和第二负载,并基于供电控制电路将来自电源的电流进行分流,从而一部分电流流经转换电路模块110的负载(即第二负载130),而被分流后的另一部分电源电流为第一负载供电,而上述第一负载120并非转换电路模块110的负载。相关技术中并不对电源电流进行分流,也未对负载进行分类,而是所有负载均为转换电路模块110的负载。相较于相关技术,本说明书实施例所提供的供电控制方案从设备散热问题的源头(即,设备发热量的多少)出发设计供电电路,起到提升供电效率的技术效果,同时由于降低了转换热量,因此优化了设备的热问题,避免设备由于产热多而发生异常。
在示例性的实施例中,基于上述供电控制电路介绍设备通电的控制方案实施例。具体地,在确定电源满足预设条件的情况下,控制来自电源的第一部分电流为设备的第一负载供电,以及控制来自电源的第二部分电流经过转换电路模块后为设备的第二负载供电。
其中,图4为本说明书一实施例提供的设备通电的控制方法的流程示意图,该图所示实施例的执行主体为上述供电控制电路中的控制器。示例性的,执行主体为投影设备的中央处理器(Central Processing Unit,CPU)或微控制器(Microprogrammed Control Unit,MCU)。参考图4,该图所示实施例包括:S410-S450。
在S410中,确定电源电压高于第一预设电压值。
本实施例中,设备处于开机状态下,其中的CPU或者MCU通过模数转换器(Analog to Digital Converter,ADC)或比较器逻辑电平的检测方式来获知设备的电源接入口处连接有电源,且电源电压是否足够大。本实施例中认为电源电压高于第一预设电压值则确定电源电压足够大。例如,设备的整机功率为45W,具体的15V@3A或者[email protected]等,则可以将上述第一预设电压值确定为14.5V,则在确定电源电压大于14.5V的情况下,认为当前的电源电压足够大。
示例性的,在确定电源电压高于第一预设电压值的情况下,执行S420:控制器控制第一开关闭合、控制第二开关断开,以及控制第三开关闭合。
本实施例中,参考图4,在确定电源电压足够大的情况下,控制器通过S420控制第一开关140闭合、控制第二开关150断开,以及控制第三开关180闭合的方式,从而实现状态A:来自电源170的第一部分电流为设备的第一负载120供电,以及来自电源170的第二部分电流经过转换电路模块110后为设备的第二负载130供电,同时来自电源的第二部分电流经过转换电路模块110后还可以为电池160充电。
示例性的,对开关的启闭控制方式可以是CPU或MCU软件主动控制断开/闭合,或开关电路自身通过纯硬件触发自动断开/闭合。示例性的,对电池160进行充电时可以设置电池充电电流为1A。
本实施例应用至投影设备:在确定电源电压足够大的情况下,控制一个或多个第一开关140闭合(具体根据需要供电的第一负载确定,如第2个第一负载需要供电则控制第2个第一开关闭合)、控制第二开关150断开,以及控制第三开关180闭合,从而电源的一部分电流经过转换电路模块110后为设备中与DLP相关的负载130供电,同时该部分电流经过转换电路模块110后还可以为电池160充电,而电源的另一部分电流为设备中除了DLP相关的负载之外的负载120供电。从而避免设备所有负载的电流(例 如:15V时输入的3A或者20V输入时的2.25A)都需要经过上述转换电路模块(此时转换电路模块流过的电流<3A或者2.25A)而导致上述转换电路模块等器件由于损耗大而产生大量热量,器件温升过高。
在确定电源电压不高于第一预设电压值的情况下,通过执行S430来确定电源电压是否高于第二预设电压值。可以理解的是,第二预设电压值小于第一预设电压值。
本实施例中认为电源电压低于第一预设电压值则确定电源电压不足够大,则进一步确定电源有效(与没有电源***属于不同的情况)。例如,设备的整机功率为45W,具体的15V@3A或者[email protected]等,则可以将上述第一预设电压值确定为14.5V,上述第二预设电压值设置为5V,则在确定电源电压小于14.5V的情况下,还确定电源电压是否大于5V,则认为当前的电源电压虽然不足够大但是有电源接入。
在示例性的实施例中,在S430中确定电源电压不高于第一预设电压值且高于第二预设电压值的情况下,则执行S440:控制第一开关闭合、控制第二开关断开,以及控制第三开关断开。
本实施例中,参考图4,在确定存在有效电源(即大于第二预设电压值,如5V)但是电源电压不足够大(即不大于第一预设电压值,如14.5V)的情况下,控制器通过S440控制第一开关140闭合、控制第二开关150断开,以及控制第三开关180断开,从而实现状态B:来自电源170的第一部分电流为设备的第一负载120供电,以及来自电源170的第二部分电流经过转换电路模块110后为设备的第二负载130供电,同时由于电源电压不足够高,则来自电源的第二部分电流经过转换电路模块110后不再为电池160充电。示例性的,对开关的启闭控制方式可以是CPU或MCU软件主动控制断开/闭合,或开关电路自身通过纯硬件触发自动断开/闭合。示例性的,通过CPU或者MCU软件将电池充电电流设置为零,或者通过转换电路模块自身纯硬件触发将电池充电电流设置为零的方式,从而停止对电池160的充电。
本实施例应用至投影设备:在确定存在有效电源且电源电压不足够大的情况下,控制一个或多个第一开关140闭合(具体根据需要供电的第一负载确定,如第2个第一负载需要供电则控制第2个第一开关闭合)、控制第二开关150断开,以及控制第三开关180断开,从而电源的一部分电流经过转换电路模块110后为设备中与DLP相关的负载130供电,而电源的另一部分电流为设备中除了DLP相关的负载之外的负载120供电。由于此时电池充电电流为零,其它各负载模块供电方式不变,所以整机消耗的总功率将小于45W,实际流过上述转换电路模块的电流将进一步降低,从而进一步降低上述转换电路模块的损耗,进一步降低由于损耗产生的热量,减小器件(器件包含但不限于转换电路模块内的器件,也包括***内其它模块内的器件)温升。
继续参考图4,在S430中确定电源电压小于第二预设电压值的情况下,说明当前所接入的电源由于电源电压过小相当于没有接入电源(即不存在有效电源),则执行S450:控制第一开关断开、控制第二开关闭合,以及控制第三开关闭合。
本实施例中,参考图4,在确定不存在有效电源(如,小于5V)的情况下,控制器通过S450控制第一开关140断开、控制第二开关150闭合,以及控制第三开关180闭合,从而实现状态C:使得电池为第一类负载和第二负载供电。即,控制电池放电。示例性的,对开关的启闭控制方式可以是CPU或MCU软件主动控制断开/闭合,或开关电路自身通过纯硬件触发自动断开/闭合。
本实施例应用至投影设备:在确定不存在有效电源或不存在电源电源电压不足够大的情况下,控制一个或多个第二开关150闭合(具体根据需要供电的第一负载确定,如第2个第一负载需要供电则控制第2个第一开关闭合)、控制第一开关140断开,以及控制第三开关180闭合,从而电池为第一类负载和第二负载供电。该情况下转换电路模块110停止工作此时整个设备中,除了电池160外,其它所有负载(例如:DLP相关的负载、DLP无关的负载)都由电池供电,由于上述转换电路模块110未处于工作状态,可以认为消耗的电流为零,故不存在损耗,即转换电路模块110不会产生热量。此情情况下,整机***产生的热量最低,进而散热性能最优。
在图4示出的设备通电控制方案中,通过分流技术降低便携式投影整机的热量来解决或优化散热的技术方案。可见,本技术方案从设备散热问题的源头(即,设备发热量的多少)出发设计供电电路,起到提升供电效率的技术效果,同时由于降低了转换热量,因此优化了设备的热问题,避免设备由于产热多而发生异常。
通过图4所示实施例可见,供电控制电路中控制器只要确定电源电压大于第二预设值(即,存在有效电源,如电源电压达到上述5V),则将电源提供的电源电压进行分流,并将分流后的电压分别提供至第一负载和第二负载。即通过分流的方式减少设备散热。
具体地,在电源电压大于第二预设值(如上述5V)的情况下,还确定电源电压是否大于第一预设值(如上述14.5V)。在大于第一预设值的情况下,则可以确定为负载供电的同时还可以为电源充电(即,状态A);通过为电池充电以备不时之需。在电源电压处于第一预设值与第二预设值之间的情况下,则只能为负载供电不能为电源充电(即,状态B)。
若供电控制电路中控制器确定电源电压小于第二预设值(如上述5V),则说明依靠电源电压无法带动负载,则启用电池为负载供电(即,状态C),以维持设备正常运行。
在示例性的实施例中,设备的使用过程中需要满足安全规定要求,例如安全规定要求中对器件的温度作出要求(如,电池充电期间的温度为45℃,若≥45℃则需要禁止充电),因此,为了使整个***的器件温升保持在可控温度区间,并进一步提升散热性能,本说明书还提供以下实施例:上述供电控制电路还设置有温度传感器,设置为实时采集各个负载的器件温度,并进一步的将所采集的器件温度发送至控制器,如CPU或者MCU,则控制器可以根据实时获取到的器件温度动态调整分流时间来动态调整整机器件温升。
具体地,图5为本说明书另一实施例提供的设备通电的控制方法的流程示意图,该图所示实施例是在图4所示实施例的基础上实现的。参考图5,该图所示实施例包括:
在S500中确定电源电压高于第一预设电压值的情况下,执行S510:确定第一负载和第二负载的器件温度是否均低于高温门限。
本实施例中,确定电源电压高于第一预设电压值的情况下,即当整机***满功率(例如:45W)运行时,设备中各个器件温度最高,CPU或者MCU软件设置一个合适的最高参考温度点(即,高温门限,例如:70℃)。当然还可以根据器件在安全规定中所要求的不同,可以为每个器件设置各自对应的第一预设温度。
在示例性的实施例中,若电池当前处于充电过程中,还可以确定电池的器件温度是否超过第一预设值。示例性的,可以提前在设备的各个器件上增加热敏电阻,从而CPU或者MCU通过ADC实时采集各个器件的器件温度,从而可以确定各个器件是否超过分别对应的最高参考温度点(即,高温门限)。
在示例性的实施例中,在确定第一负载和第二负载的器件温度均低于高温门限的情况下,也就是说,设备中各个器件的器件温度均没有达到对应的安全规定要求的最高温度的情况下,则执行S520:控制第一开关闭合、控制第二开关断开以及控制第三开关闭合,以使得来自电源的第二部分电流经过转换电路模块后为电池充电。如图4中状态A:来自电源的第一部分电流为设备的第一负载供电,以及控制来自电源的第二部分电流经过转换电路模块后为设备的第二负载供电且为电池充电。
其中,上述S520的具体实施方式在图4中S420所对应的实施例中进行了详细介绍,在此不再赘述。
在示例性的实施例中,在确定电源电压高于第一预设电压值,且确定第一负载和/或第二负载的器件温度高于高温门限,和/或电池的器件温度高于第一预设温度的情况下,也就是说,设备中存在某一个或几个器件的器件温度达到对应的安全规定要求的最高温度的情况下,则执行S530:控制第一开关闭合、控制第二开关断开以及控制第三开关断开,以停止为电池充电。如图4中状态B:控制来自电源的第一部分电流为设备的第一负载供电,以及控制来自电源的第二部分电流为设备的第二负载供电且停止为电池充电。
由于电池由充电状态转为停止充电状态后,电池充电电流变为零,而其它各负载模块供电方式不变,所以整机消耗的总功率将降低,实际流过上述转换电路模块的电流也将进一步降低,从而进一步降低上述转换电路模块的损耗,进一步降低由于损耗产生的热量,进而减小设备中各个器件温升,以保证各个器件的器件温度满足安全规定等的要求。
其中,S530的具体实施方式在图4中S440所对应的实施例中进行了详细介绍,在此不再赘述。
在示例性的实施例中,经过S530停止为电池充电之后,该技术方案还包括:S540:确定第一负载 和第二负载的器件温度是否均低于低温门限(同前所述,此时电源电压仍处于高于第一预设电压的情况下)。
其中,上述低温门限小于上述高温门限。为了在条件允许的情况下为电池充更多的电量,本实施例中还设置上述第二预设温度。例如,本实施例中,确定电源电压高于第一预设电压值的情况下,即当整机***满功率(例如:45W)运行时,不仅设置上述最高参考温度点(即,高温门限,例如:70℃),还设置了最低参考温度点(即,低温门限,例如:60℃)。
在确定第一负载和第二负载的器件温度均低于低温门限的情况下,则执行S550:在第一开关闭合、控制第二开关断开的基础上控制第三开关闭合,以使得来自电源的第二部分电流经过转换电路模块后恢复为电池充电。并且在恢复为电池充电之后,再次执行S510,以避免设备中出现器件温度过高的情况。
示例性的,应用至投影射中,当第一类负载或者与DLP相关负载的器件温度达到最高参考温度点(即:70℃)时,CPU或者MCU立刻控制转换电路模块停止为电池充电。从而***整机功耗的降低,整机***产生的热量降低,器件温度必然逐步降低。进一步地,当器件温度降低到最低参考温度点(即:60℃)时,CPU或者MCU立刻控制转换电路模块恢复为电池充电。此时,***整机功耗随之增加,整机***产生的热量增加,器件温度必然逐步增加,当温度再次达到最高参考温度点(即:70℃)时,CPU或者MCU再次控制充电电路模块停止充电,如此循环往复。整机***运行一段时间之后,整机器件温升达到平衡状态,使器件温度处于一个较低的温度点(例如:65℃)。
再次参考图5,在S550中确定电源电压不高于第一预设电压值的情况下,即设备并非满功率工作的情况下,则执行如图5中的S560-S580。
在S560中,确定电源电压低于第一预设电压值且高于第二预设电压值;在S570中,控制第一开关闭合、控制第二开关断开以及控制第三开关断开,以停止为电池充电;以及,在S580中,控制电池为设备的第一类负载供电和第二类负载供电。其中,图5中的S560-S580各个步骤的具体实现方式也在图4中S430-S450对应的实施例中进行了详细介绍在此不再赘述。
在图5示出的设备通电控制方案中,通过动态调整分流时间来动态调整整机器件温升的技术方案,可以有效地保障设备中各个器件处于安全规定所要求的温度区间内,进而能够有效保证设备正常工作而不会由于温度超过规格范围而致使设备不能正常工作。
图6为本说明书实施例提供的设备的结构示意图。请参见图6所示,设备600包括有:供电控制电路100和存储器602。同前所述,供电控制电路中包含控制器601。
本说明书实施例中,供电控制电路100如图1及其对应的实施例所介绍。控制器601为计算机***的控制中心,可以是实体机的处理器,也可以是虚拟机的处理器。控制器601可以包括一个或多个处理核心,比如4核心处理器、10核心处理器等。控制器601可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。控制器601也可以包括主处理器和协处理器,主处理器是设置为对在唤醒状态下的数据进行处理的处理器;协处理器是设置为对在待机状态下的数据进行处理的低功耗处理器。
在本说明书实施例中,上述控制器601设置为:
确定上述电源接入口是否接入电源,在接入电源的情况下确定上述电源是否满足预设条件;在确定上述电源满足上述预设条件的情况下,上述控制器601还设置为:控制上述第一开关闭合且控制上述第二开关断开,以使得来自上述电源的第一部分电流为上述设备的第一负载供电,以及使得来自上述电源的第二部分电流经过转换电路模块后为上述设备的第二负载供电。
进一步地,上述控制器601设置为:确定电源电压是否高于第二预设电压值;在确定上述电源电压高于上述第二预设电压值的情况下,上述控制器601还设置为:控制上述第一开关闭合、控制上述第二开关断开,以使得来自上述电源的第一部分电流为上述设备的第一负载供电,以及使得来自上述电源的第二部分电流经过转换电路模块后为上述设备的第二负载供电。
进一步地,上述供电控制电路还包括第三开关和电池,上述控制器601与上述第三开关电连接;上 述控制器601设置为:确定电源电压是否高于第一预设电压值;在确定上述电源电压高于上述第一预设电压值的情况下,上述控制器601还设置为:控制上述第一开关闭合、控制上述第二开关断开以及控制上述第三开关闭合,以使得来自上述电源的第二部分电流经过转换电路模块后为上述电池充电。
进一步地,上述控制器601具体设置为:在确定上述电源电压低于上述第一预设电压值的情况下,控制上述第一开关闭合、控制上述第二开关断开以及控制上述第三开关断开,以停止为上述电池充电。
进一步地,上述控制器601具体设置为:在确定上述电源电压低于上述第一预设电压值且高于第二预设电压值的情况下,控制上述第一开关闭合、控制上述第二开关断开以及控制上述第三开关断开,以停止为上述电池充电。
进一步地,上述控制器601具体设置为:确定电源电压是否低于第二预设电压值,其中,上述第一预设电压值大于上述第二预设电压值;在确定上述电源电压低于上述第二预设电压值的情况下,上述控制器601还设置为:控制上述第一开关断开、控制上述第二开关闭合以及控制上述第三开关闭合,以控制上述电池为上述第一负载和上述第二负载供电。
进一步地,上述控制器601设置为:在确定电源电压高于第一预设电压值的情况下,还确定上述第一负载和上述第二负载的器件温度是否均低于高温门限;在确定上述第一负载和上述第二负载的器件温度均低于上述高温门限的情况下,上述控制器601还设置为:控制上述第一开关闭合、控制上述第二开关断开以及控制上述第三开关闭合,以使得来自上述电源的第二部分电流经过上述转换电路模块后为上述电池充电。
进一步地,上述控制器601还设置为:在确定上述电源电压高于上述第一预设电压值,且确定上述第一负载和/或上述第二负载的器件温度高于上述高温门限的情况下,控制上述第一开关闭合、控制上述第二开关断开以及控制上述第三开关断开,以停止为上述电池充电。
进一步地,上述控制器601还设置为:在确定上述电源电压高于上述第一预设电压的情况下,还确定上述第一负载和上述第二负载的器件温度是否均低于低温门限,上述高温门限大于上述低温门限;上述控制器601还设置为:在确定上述第一负载和上述第二负载的器件温度均低于上述低温门限的情况下,在上述第一开关闭合、控制上述第二开关断开的基础上控制上述第三开关闭合,以使得来自上述电源的第二部分电流经过上述转换电路模块后恢复为上述电池充电.
进一步地,上述控制器601还设置为:在确定上述电源未满足上述预设条件或不存在电源的情况下,控制上述第一开关断开、控制上述第二开关闭合,以及控制上述第三开关闭合,以使得上述电池为上述第一负载和上述第二负载供电。
存储器602可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器602还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在本说明书的一些实施例中,存储器602中的非暂态的计算机可读存储介质设置为存储至少一个指令,该至少一个指令设置为被控制器601所执行以实现本说明书实施例中的方法。
一些实施例中,设备500还包括有:***设备接口603和至少一个***设备。控制器601、存储器602和***设备接口603之间可以通过总线或信号线相连。各个***设备可以通过总线、信号线或电路板与***设备接口603相连。具体地,***设备包括:显示屏604、摄像头605以及音频处理单元606的至少一种。
***设备接口603可被设置为将输入/输出(Input/Output,I/O)相关的至少一个***设备连接到控制器601和存储器602。在本说明书的一些实施例中,控制器601、存储器602和***设备接口603被集成在同一芯片或电路板上;在本说明书的一些其他实施例中,控制器601、存储器602和***设备接口603中的任意一个或两个可以在单独的芯片或电路板上实现。本说明书实施例对此不作具体限定。
显示屏604设置为显示用户界面(User Interface,UI)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。当显示屏604是触摸显示屏时,显示屏604还具有采集在显示屏604的表面或表面上方的触摸信号的能力。该触摸信号可以作为控制信号输入至控制器601进行处理。此时,显示屏604还可以设置为提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。在本说明书的一些实施例中,显 示屏604可以为一个,设置设备500的前面板;在本说明书的另一些实施例中,显示屏604可以为至少两个,分别设置在设备500的不同表面或呈折叠设计;在本说明书的再一些实施例中,显示屏604可以是柔性显示屏,设置在设备500的弯曲表面上或折叠面上。甚至,显示屏604还可以设置成非矩形的不规则图形,也即异形屏。显示屏604可以采用液晶显示屏(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等材质制备。
摄像头605设置为采集图像或视频。可选地,摄像头605包括前置摄像头和后置摄像头。通常,前置摄像头设置在电子设备的前面板,后置摄像头设置在电子设备的背面。在一些实施例中,后置摄像头为至少两个,分别为主摄像头、景深摄像头、广角摄像头、长焦摄像头中的任意一种,以实现主摄像头和景深摄像头融合实现背景虚化功能、主摄像头和广角摄像头融合实现全景拍摄以及虚拟现实(Virtual Reality,VR)拍摄功能或者其它融合拍摄功能。在本说明书的一些实施例中,摄像头605还可以包括闪光灯。闪光灯可以是单色温闪光灯,也可以是双色温闪光灯。双色温闪光灯是指暖光闪光灯和冷光闪光灯的组合,可以设置为不同色温下的光线补偿。
音频处理单元606可以包括麦克风和扬声器。麦克风设置为采集用户及环境的声波,并将声波转换为电信号输入至控制器601进行处理。出于立体声采集或降噪的目的,麦克风可以为多个,分别设置在设备500的不同部位。麦克风还可以是阵列麦克风或全向采集型麦克风。
电源607设置为为设备500中的各个组件进行供电。电源607可以是交流电、直流电、一次性电池或可充电电池。当电源607包括可充电电池时,该可充电电池可以是有线充电电池或无线充电电池。有线充电电池是通过有线线路充电的电池,无线充电电池是通过无线线圈充电的电池。该可充电电池还可以设置为支持快充技术。
本说明书实施例中示出的电子设备结构框图并不构成对设备500的限定,设备500可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
在本说明书的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本说明书中的具体含义。此外,在本说明书的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
需要注意的是,上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
以上所述,仅为本说明书的具体实施方式,但本说明书的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本说明书揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本说明书的保护范围之内。因此,依本说明书权利要求所作的等同变化,仍属本说明书所涵盖的范围。

Claims (13)

  1. 一种供电控制电路,其中,所述供电控制电路包括:
    控制器、转换电路模块、第一类负载模块,以及第二负载;
    其中,所述第一类负载模块包括:第一负载、第一开关以及第二开关;
    所述转换电路模块的第一端连接电源接入口,所述转换电路模块的第二端连接所述第二负载的第一端,且所述第二负载的第二端接地;
    所述第一开关的第一端连接所述电源接入口,所述第一开关的第二端连接第一负载的第一端,且所述第一负载的第二端接地;
    所述第二开关的第一端连接所述第一负载的第一端,所述第二开关的第二端连接第二负载的第一端;
    所述控制器,与所述第一开关电连接,与所述第二开关电连接,与所述电源电连接。
  2. 根据权利要求1所述的供电控制电路,其中,
    所述控制器设置为:确定所述电源接入口是否接入电源,在接入电源的情况下确定所述电源是否满足预设条件;
    所述控制器还设置为:在确定所述电源满足所述预设条件的情况下,控制所述第一开关闭合且控制所述第二开关断开,以使得来自所述电源的第一部分电流为所述设备的第一负载供电,以及使得来自所述电源的第二部分电流经过转换电路模块后为所述设备的第二负载供电。
  3. 根据权利要求1所述的供电控制电路,其中,所述控制器设置为:确定电源电压是否高于第二预设电压值;
    所述控制器还设置为:在确定所述电源电压高于所述第二预设电压值的情况下,控制所述第一开关闭合、控制所述第二开关断开,以使得来自所述电源的第一部分电流为所述设备的第一负载供电,以及使得来自所述电源的第二部分电流经过转换电路模块后为所述设备的第二负载供电。
  4. 根据权利要求1所述的供电控制电路,其中,所述供电控制电路还包括第三开关和电池,所述控制器与所述第三开关电连接;
    所述第三开关的第一端连接至所述转换电路模块的第二端,所述第三开关的第二端连接至电池;
    所述控制器设置为:确定电源电压是否高于第一预设电压值;
    所述控制器还设置为:在确定所述电源电压高于所述第一预设电压值的情况下,控制所述第一开关闭合、控制所述第二开关断开以及控制所述第三开关闭合,以使得来自所述电源的第二部分电流经过转换电路模块后为所述电池充电。
  5. 根据权利要求4所述的供电控制电路,其中,
    所述控制器还设置为:在确定所述电源电压低于所述第一预设电压值的情况下,控制所述第一开关闭合、控制所述第二开关断开以及控制所述第三开关断开,以停止为所述电池充电。
  6. 根据权利要求4所述的供电控制电路,其中,
    所述控制器还设置为:在确定所述电源电压低于所述第一预设电压值且高于第二预设电压值的情况下,控制所述第一开关闭合、控制所述第二开关断开以及控制所述第三开关断开,以停止为所述电池充电。
  7. 根据权利要求4所述的供电控制电路,其中,
    所述控制器还设置为:确定电源电压是否低于第二预设电压值,其中,所述第一预设电压值大于所述第二预设电压值;
    所述控制器还设置为:在确定所述电源电压低于所述第二预设电压值的情况下,控制所述第一开关断开、控制所述第二开关闭合以及控制所述第三开关闭合,以控制所述电池为所述第一负载和所述第二负载供电。
  8. 根据权利要求1所述的供电控制电路,其中,所述供电控制电路还包括第三开关和电池,所述控制器与所述第三开关电连接;
    所述控制器设置为:在确定电源电压高于第一预设电压值的情况下,还确定所述第一负载和所述第二负载的器件温度是否均低于高温门限;
    所述控制器还设置为:在确定所述第一负载和所述第二负载的器件温度均低于所述高温门限的情况下,控制所述第一开关闭合、控制所述第二开关断开以及控制所述第三开关闭合,以使得来自所述电源的第二部分电流经过所述转换电路模块后为所述电池充电。
  9. 根据权利要求8所述的供电控制电路,其中,
    所述控制器还设置为:在确定所述电源电压高于所述第一预设电压值,且确定所述第一负载和/或所述第二负载的器件温度高于所述高温门限的情况下,控制所述第一开关闭合、控制所述第二开关断开以及控制所述第三开关断开,以停止为所述电池充电。
  10. 根据权利要求9所述的供电控制电路,其中,
    所述控制器还设置为:在确定所述电源电压高于所述第一预设电压的情况下,还确定所述第一负载和所述第二负载的器件温度是否均低于低温门限,所述高温门限大于所述低温门限;
    所述控制器还设置为:在确定所述第一负载和所述第二负载的器件温度均低于所述低温门限的情况下,在所述第一开关闭合、控制所述第二开关断开的基础上控制所述第三开关闭合,以使得来自所述电源的第二部分电流经过所述转换电路模块后恢复为所述电池充电。
  11. 根据权利要求4至10中任意一项所述的供电控制电路,其中,
    所述控制器还设置为:在确定所述电源未满足所述预设条件或不存在电源的情况下,控制所述第一开关断开、控制所述第二开关闭合,以及控制所述第三开关闭合,以使得所述电池为所述第一负载和所述第二负载供电。
  12. 根据权利要求1至10中任意一项所述的供电控制电路,其中,
    所述第一负载、所述第一开关以及所述第二开关的数量均为N个;所述第二负载的数量为M个;M和N取值为正整数;
    第i个第一开关的第一端连接所述电源接入口,所述第i个第一开关的第二端连接第i个第一负载的第一端,且所述第i个第一负载的第二端接地;
    第i个第二开关的第一端连接所述第i个第一负载的第一端,所述第i个第二开关的第二端连接第j第二负载的第一端,i取值为1至N之间任意一个且包括1和N的整数;
    所述第j个第二负载的第一端连接至所述转换电路模块的第二端,且所述第j个第二负载的第二端接地,j取值为1至M之间任意一个且包括1和M的整数。
  13. 一种设备,其中,所述设备包含如权利要求1至12中任意一项所述的供电控制电路。
PCT/CN2023/119628 2022-09-30 2023-09-19 供电控制电路以及设备 WO2024067237A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211224343.7A CN117810949A (zh) 2022-09-30 2022-09-30 供电控制电路以及设备
CN202211224343.7 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067237A1 true WO2024067237A1 (zh) 2024-04-04

Family

ID=90418619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119628 WO2024067237A1 (zh) 2022-09-30 2023-09-19 供电控制电路以及设备

Country Status (2)

Country Link
CN (1) CN117810949A (zh)
WO (1) WO2024067237A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124740A (ja) * 2005-10-25 2007-05-17 Nec Corp 充電回路、電子装置、及び充電回路の電流制御方法
CN103190200A (zh) * 2010-11-03 2013-07-03 皇家飞利浦电子股份有限公司 用于驱动负载尤其是led单元的驱动器设备和驱动方法
CN110165761A (zh) * 2018-02-16 2019-08-23 丰田自动车株式会社 电源***
CN111857318A (zh) * 2020-06-18 2020-10-30 苏州浪潮智能科技有限公司 一种自适应负载板卡节能供电电路、方法、装置和服务器
CN112039313A (zh) * 2020-07-28 2020-12-04 漳州科华技术有限责任公司 辅助电源装置、辅助电源装置控制方法及变换器
CN112448462A (zh) * 2020-11-19 2021-03-05 深圳奥尼电子股份有限公司 电源管理电路、电源管理方法及电子设备
CN112636933A (zh) * 2020-11-30 2021-04-09 国网山东省电力公司惠民县供电公司 一种电力直流供电控制***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124740A (ja) * 2005-10-25 2007-05-17 Nec Corp 充電回路、電子装置、及び充電回路の電流制御方法
CN103190200A (zh) * 2010-11-03 2013-07-03 皇家飞利浦电子股份有限公司 用于驱动负载尤其是led单元的驱动器设备和驱动方法
CN110165761A (zh) * 2018-02-16 2019-08-23 丰田自动车株式会社 电源***
CN111857318A (zh) * 2020-06-18 2020-10-30 苏州浪潮智能科技有限公司 一种自适应负载板卡节能供电电路、方法、装置和服务器
CN112039313A (zh) * 2020-07-28 2020-12-04 漳州科华技术有限责任公司 辅助电源装置、辅助电源装置控制方法及变换器
CN112448462A (zh) * 2020-11-19 2021-03-05 深圳奥尼电子股份有限公司 电源管理电路、电源管理方法及电子设备
CN112636933A (zh) * 2020-11-30 2021-04-09 国网山东省电力公司惠民县供电公司 一种电力直流供电控制***

Also Published As

Publication number Publication date
CN117810949A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
TWI461891B (zh) 電源管理電路及其方法
WO2020020124A1 (zh) 多电池充放电装置及移动终端
US8022571B2 (en) Power management circuitry and solar cells
CN101128791A (zh) 改变电源适配器输出
CN104062914B (zh) 电子装置
CN103890681B (zh) 电压调节器、电子设备及为电子设备供电的方法
JP2003029885A (ja) 電源供給システム及び電子機器
US20180076647A1 (en) Hybrid power buck-boost charger
CN103887993B (zh) 电子装置
CN106356925A (zh) 移动终端及其充电控制装置、充电控制方法
WO2024016616A1 (zh) 折叠电子设备
WO2013000367A1 (zh) 电子设备和单个电源向至少两个不同负载供电的方法
CN109742839A (zh) 一种自举电容的充电控制电路及***
JP5912514B2 (ja) 電子機器
WO2018224010A9 (zh) 电源转换电路、充电装置及***
CN113009995B (zh) 一种供电装置及供电方法
WO2018233578A1 (zh) 电源转换电路、充电装置及***
CN105932733A (zh) Otg电源及其供电方法、otg设备和移动通讯设备
CN109639146A (zh) 功率电源及功率供应方法
US8253384B2 (en) Electronic device having power management assembly
TW201741812A (zh) 電子裝置
WO2024067237A1 (zh) 供电控制电路以及设备
TW201239602A (en) Electronic device
US20040085045A1 (en) Electronic device
CN116526626B (zh) 一种支持可编程充电的充电电路及充电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870469

Country of ref document: EP

Kind code of ref document: A1