WO2024065543A1 - 失败检测及恢复方法和装置 - Google Patents

失败检测及恢复方法和装置 Download PDF

Info

Publication number
WO2024065543A1
WO2024065543A1 PCT/CN2022/122936 CN2022122936W WO2024065543A1 WO 2024065543 A1 WO2024065543 A1 WO 2024065543A1 CN 2022122936 W CN2022122936 W CN 2022122936W WO 2024065543 A1 WO2024065543 A1 WO 2024065543A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure
cell
terminal device
detection unit
detected
Prior art date
Application number
PCT/CN2022/122936
Other languages
English (en)
French (fr)
Inventor
贾美艺
路杨
张磊
Original Assignee
富士通株式会社
贾美艺
路杨
张磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 贾美艺, 路杨, 张磊 filed Critical 富士通株式会社
Priority to PCT/CN2022/122936 priority Critical patent/WO2024065543A1/zh
Publication of WO2024065543A1 publication Critical patent/WO2024065543A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • the embodiments of the present application relate to the field of communication technologies.
  • Network-controlled mobility is applicable to connected terminals and can be divided into two types of mobility: cell-level mobility and beam-level mobility.
  • Radio Resource Control Radio Resource Control
  • the RRC-triggered handover mechanism requires the UE (User Equipment) to at least reset the MAC (Media Access Control) entity and re-establish the RLC (Radio Link Control), and supports RRC-managed handover with and without PDCP (Packet Data Convergence Protocol) entity reconstruction.
  • UE User Equipment
  • MAC Media Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • DRBs Data Radio Bearer
  • RLC AM Achnowledged Mode
  • PDCP can re-establish with security key update or initiate data recovery process "without key update”.
  • RLC UM Unachnowledged Mode
  • PDCP can re-establish with security key update or remain unchanged "without key update”.
  • SRBs Synignalling radio bearer
  • PDCP can remain unchanged "without key update”
  • L3 Layer 3
  • RRC Radio Resource Control
  • the L1/L2-based inter-cell mobility mechanism and process include the following:
  • a dynamic switching mechanism between candidate serving cells including special cells and secondary cells based on L1/L2 signaling
  • L1 enhancements for inter-cell beam management including L1 measurement and reporting, and beam indication;
  • CU-DU Centralized Unit-Distributed Unit
  • the embodiments of the present application provide a method and device for failure detection and recovery, which can detect possible failures more quickly and recover from failures more quickly, thereby reducing business interruption time and improving user experience.
  • a failure detection and recovery device comprising:
  • a detection unit which performs failure detection
  • a processing unit which applies the stored configuration to recover and/or reports the failure to the network device via the secondary cell and/or non-service cell when the detection unit detects one of a link failure, a measurement reporting failure, a cell switching command reception failure, a terminal processing failure and a switching failure.
  • One of the beneficial effects of the embodiments of the present application is that: according to the embodiments of the present application, when one of link failure, measurement reporting failure, failure to receive a cell switching command, terminal processing failure and switching failure is detected, the terminal applies the stored configuration and/or reports the failure via the secondary cell/non-service cell, thereby enabling faster failure detection and recovery, thereby reducing service interruption time and improving user experience.
  • FIG1 is a schematic diagram of mobility delay based on L1/L2 inter-cell mobility
  • FIG2 is a schematic diagram of a deployment scenario of an NG-RAN according to an embodiment of the present application.
  • FIG3 is a schematic diagram of a deployment scenario of an IAB according to an embodiment of the present application.
  • FIG4 is a schematic diagram of a failure detection and recovery method according to an embodiment of the present application.
  • FIG5 is another schematic diagram of the failure detection and recovery method according to an embodiment of the present application.
  • FIG6 is another schematic diagram of the failure detection and recovery method according to an embodiment of the present application.
  • FIG7 is another schematic diagram of the failure detection and recovery method according to an embodiment of the present application.
  • FIG8 is another schematic diagram of the failure detection and recovery method according to an embodiment of the present application.
  • FIG9 is another schematic diagram of the failure detection and recovery method according to an embodiment of the present application.
  • FIG10 is a schematic diagram of a failure detection and recovery device according to an embodiment of the present application.
  • FIG11 is another schematic diagram of the failure detection and recovery device according to an embodiment of the present application.
  • FIG12 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a network device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of title, but do not indicate the spatial arrangement or temporal order of these elements, etc., and these elements should not be limited by these terms.
  • the term “and/or” includes any one and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having”, etc. refer to the presence of the stated features, elements, components or components, but do not exclude the presence or addition of one or more other features, elements, components or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE), enhanced Long Term Evolution (LTE-A), Wideband Code Division Multiple Access (WCDMA), High-Speed Packet Access (HSPA), and the like.
  • LTE Long Term Evolution
  • LTE-A enhanced Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • communication between devices in the communication system may be carried out according to communication protocols of any stage, such as but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G, New Radio (NR), etc., and/or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • 4.5G and 5G
  • NR New Radio
  • the term "network device” refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • the network device may include, but is not limited to, the following devices: base station (BS), access point (AP), transmission reception point (TRP), broadcast transmitter, mobile management entity (MME), gateway, server, radio network controller (RNC), base station controller (BSC), etc.
  • Base stations may include, but are not limited to, Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base stations (gNB), etc., and may also include remote radio heads (RRH, Remote Radio Head), remote radio units (RRU, Remote Radio Unit), relays or low-power nodes (such as femeto, pico, etc.), IAB (Integrated Access and Backhaul, integrated access and backhaul) nodes or IAB-DU or IAB-donor.
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relays or low-power nodes such as femeto, pico, etc.
  • IAB Integrated Access and Backhaul, integrated access and backhaul
  • IAB-DU IAB-donor
  • base station may include some or all of their functions, and each base station may provide communication coverage for a specific geographical area.
  • the term “cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used
  • the term "user equipment” (UE) or “terminal equipment” (TE) refers to, for example, a device that accesses a communication network through a network device and receives network services.
  • the terminal device may be fixed or mobile, and may also be referred to as a mobile station (MS), a terminal, a subscriber station (SS), an access terminal (AT), an IAB-MT (Mobile Terminal), a station, and the like.
  • Terminal devices may include but are not limited to the following devices: cellular phones, personal digital assistants (PDA, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, cordless phones, smart phones, smart watches, digital cameras, etc.
  • PDA personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers cordless phones
  • smart phones smart watches, digital cameras, etc.
  • the terminal device can also be a machine or device for monitoring or measuring, such as but not limited to: machine type communication (MTC) terminal, vehicle-mounted communication terminal, device to device (D2D) terminal, machine to machine (M2M) terminal, and so on.
  • MTC machine type communication
  • D2D device to device
  • M2M machine to machine
  • network side refers to one side of the network, which may be a base station, or may include one or more network devices as above.
  • user side or “terminal side” or “terminal device side” refers to one side of the user or terminal, which may be a UE, or may include one or more terminal devices as above.
  • device may refer to either a network device or a terminal device.
  • NR New Radio
  • HAF timer-based handover failure
  • the RRC connection reestablishment process is used for handover failure recovery, except in some CHO (Conditional Handover) or DAPS (Dual Active Protocol Stack) handover scenarios:
  • DAPS handover fails, if the source link has not been released, the UE falls back to the source cell configuration, restores the connection with the source cell, and reports the DAPS handover failure through the source, without triggering RRC connection reestablishment;
  • the UE When the initial CHO execution attempt fails or the HO handover fails, the UE performs cell selection, and if the selected cell is a CHO candidate and if the network has configured the UE to attempt CHO after handover/CHO failure, the UE attempts a CHO execution once, otherwise performs re-establishment.
  • the UE declares a Radio Link Failure (RLF) when one of the following conditions is met:
  • the random access procedure fails; or
  • a failure of a continuous uplink LBT (listen before talk) operation using a shared spectrum channel access operation is detected;
  • BH RLF Backhaul Radio Link Failure
  • the UE continues to detect radio link failure in the source cell until the random access procedure to the target cell is successfully completed.
  • the UE If a handover failure is subsequently detected in the target cell, the UE:
  • RRC_IDLE is entered; in the case of CHO, for RLF in the source cell:
  • RRC_IDLE is entered
  • the mobility delay of inter-cell mobility based on L1/L2 includes the components shown in FIG1 , and the meaning of each component is shown in Table 1.
  • the scenarios of failure detection and recovery include but are not limited to switching scenarios, CA (carrier aggregation) scenarios, and DC (Dual Connectivity) scenarios.
  • the switching scenario is the mobility of PCell only.
  • CA scenarios include, for example: the scenario where the target PCell/target SCell(s) is not the current serving cell, that is, the CA ⁇ CA scenario with PCell change; the scenario where the target PCell is a current SCell; the scenario where the target SCell is the current PCell.
  • DC scenarios include scenarios where PSCell changes (including non-CA scenarios and CA scenarios).
  • the source cell and the target cell may be synchronous or asynchronous, may be co-frequency or different-frequency, and may operate in FR1 (frequency range 1) and FR2 (frequency range 2).
  • FIG2 is a schematic diagram of a NG-RAN deployment scenario of an embodiment of the present application.
  • NG-RAN includes a group of gNBs connected to 5GC via an NG interface.
  • gNBs can be interconnected via an Xn interface.
  • a gNB may include a gNB-CU and one or more gNB-DU(s).
  • a gNB-CU and a gNB-DU are connected via an F1 interface, and a gNB-DU can only be connected to one gNB-CU.
  • FIG3 is a schematic diagram of an IAB deployment scenario of an embodiment of the present application.
  • NG-RAN is wirelessly connected to a gNB capable of serving IAB-nodes, referred to as an IAB-donor, to support IAB through an IAB-node.
  • An IAB-donor includes an IAB-donor-CU and one or more IAB-donor-DU(s).
  • all functions defined for gNB-DU are also applicable to IAB-DU and IAB-donor-DU
  • all functions defined for gNB-CU are also applicable to IAB-donor-CU
  • all functions defined for UE are also applicable to IAB-MT.
  • An embodiment of the present application provides a failure detection and recovery method, which is described from the side of a terminal device.
  • FIG. 4 is a schematic diagram of a failure detection and recovery method according to an embodiment of the present application. As shown in FIG. 4 , the method includes:
  • the terminal device performs a failure detection
  • the terminal device detects one of link failure, measurement reporting failure, cell switching command reception failure, terminal processing failure and switching failure, the stored configuration is applied for recovery and/or the failure is reported to the network device via the secondary cell and/or non-service cell.
  • FIG. 4 is only schematically illustrated for the embodiment of the present application, but the present application is not limited thereto. For example, other operations may be added or some operations may be reduced. Those skilled in the art may make appropriate modifications based on the above content, and are not limited to the description of the above FIG. 4.
  • the terminal when one of link failure, measurement reporting failure, failure to receive cell switching command, terminal processing failure and switching failure is detected, the terminal applies the stored configuration and/or reports the failure via the auxiliary cell/non-service cell, thereby enabling faster failure detection and recovery, thereby reducing service interruption time and improving user experience.
  • the stored configuration when the terminal device detects one of link failure, measurement report failure, cell switching command reception failure, terminal processing failure, and switching failure, the stored configuration is applied for recovery; if the stored configuration cannot be applied for recovery, the failure is reported to the network device via the secondary cell and/or the non-serving cell. That is, when a failure is detected, the stored configuration is first applied for recovery. If the stored configuration cannot be applied for recovery, for example, there is no stored configuration, or the stored configuration cannot be successfully recovered, the failure is then reported to the network device via the secondary cell and/or the non-serving cell. As a result, the recovery delay is reduced and the signaling overhead of the recovery is saved.
  • the stored configuration refers to the configuration of the cell or cell group in the RRC reconfiguration message received and stored by the terminal device.
  • the terminal device can store the configuration locally, and when the above failure is detected, try to apply the configuration for recovery.
  • the configuration of a cell or a cell group includes the configuration of a primary cell and/or the configuration of a secondary cell.
  • the terminal finds a suitable cell, which is a primary cell included in the previously received RRC reconfiguration message, and the terminal applies the stored configuration of the cell.
  • the terminal may also apply the configuration of the corresponding secondary cell (if any).
  • the terminal when the above failure is detected or triggered, if the conditions of a cell or cell group of the previously received RRC reconfiguration message are met, the terminal applies the stored configuration of a cell that meets the conditions; if the cell that meets the conditions is the primary cell, the terminal can optionally also apply the configuration of the corresponding secondary cell.
  • the configuration of the cell or cell group also includes beam information, which is, for example, TCI (Transmission Configuration Indication) status information of the downlink channel or uplink channel or reference signal.
  • TCI Transmission Configuration Indication
  • the terminal device can apply M TCI status information indicated in the more than N TCI status information or by default or determined by evaluation, where M ⁇ N and N is 1 or 2, depending on the capabilities of the terminal device.
  • M TCI status information is indicative or default
  • M ⁇ N that is, the terminal device determines through evaluation to apply the M TCI status information that meets the conditions.
  • terminal device 1 may apply at most the first two TCI status information that appear, or apply at most two TCI status information corresponding to the beam that meets the candidate beam condition.
  • terminal device 2 may apply the first TCI status information that appears, or apply one TCI status information corresponding to the beam that meets the candidate beam condition.
  • reporting the failure to the network device via the secondary cell and/or the non-serving cell includes: reporting the failure to the network device via the secondary cell; if the secondary cell is not available, reporting the failure to the network device via the non-serving cell.
  • reporting the failure to the network device via the secondary cell and/or the non-serving cell includes: reporting the failure to the network device via the non-serving cell; if the non-serving cell is not available, reporting the failure to the network device via the secondary cell, for example, the non-serving cell is associated with a special cell.
  • the stored configuration is first applied for recovery. If the stored configuration cannot be applied for recovery, for example, there is no stored configuration, or the stored configuration cannot be successfully recovered, the failure is reported to the network device via the secondary cell. If the secondary cell is unavailable, the failure is reported to the network device via the non-service cell.
  • the secondary cell when a failure is detected, the secondary cell first reports the failure to the network device; if the secondary cell is unavailable, the failure is reported to the network device via the non-service cell; if there is no non-service cell or the non-service cell is unavailable, the stored configuration is applied for recovery.
  • the non-serving cell is a candidate cell for switching, such as a candidate primary cell or a candidate secondary cell; or a cell associated with the current serving cell, such as a cell whose dedicated channel the terminal device is using, and so on.
  • the terminal device may report the following contents to the network device via the secondary cell and/or the non-serving cell:
  • the terminal device reports the failure by reporting at least one of the above contents.
  • the cell information of the failed cell may include a cell index and/or a cell ID, such as PCI (Physical Cell Identifier), NCGI (NR Cell Global Identifier), etc.
  • the cell index may be a serving cell index; or, it may be the order in which the cell or cell group to which the cell belongs appears in the configuration of the cell or cell group in the RRC reconfiguration message, for example, the configuration of the first cell or cell group appears, and the corresponding index is 0 (or 1), the configuration of the second cell or cell group appears, and the corresponding index is 1 (or 2), and so on.
  • the reasons for failure may be: corresponding timer timeout, the number of NACK (Negative Acknowledgement) received reaches the maximum value, the number of RAP (Random Access Premble) transmissions reaches the maximum number, etc.; the types of failure may be: link failure, measurement reporting failure, failure to receive cell switching command, terminal processing failure, switching failure, etc.
  • the measurement results may include the measurement results of the beams and/or cells of the failed cell and/or the candidate cells that meet the conditions based on L1 measurement or L3 measurement.
  • the terminal device reports the measurement results of the beams of the failed cell based on L1 measurement; for another example, the terminal device reports the measurement results of the beams of the candidate cells that meet the conditions based on L1 measurement, and so on.
  • the desired processing may be a beam change or a cell change, but the present application is not limited thereto.
  • the terminal device may indicate the beam desired to be used or the available beam, such as the identification of the reference signal, such as SSB index, CSI-RS ID or SRS ID, etc.
  • the terminal device also indicates the measurement result of the beam, such as L1 SS-RSRP, L1 SS-SINR, L1 CSI-RSRP, L1 CSI-SINR, etc.
  • the terminal device may indicate the desired cell or available cell, such as the cell identifier or index; the cell identifier may be a PCI or NCGI.
  • the terminal device also indicates the measurement result of the cell or the measurement result of the cell reference signal, such as RSRP, RSRQ, SINR, or SS-RSRP, SS-SINR, CSI-RSRP, CSI-SINR, etc.
  • the terminal device may report the above failure through an RRC message, and may also report the above failure through a MAC CE (MAC Control Element).
  • MAC CE MAC Control Element
  • the present application is not limited to this.
  • the terminal device may report the above failure through both the RRC message and the MAC CE.
  • the terminal device reports the above failure through an RRC message.
  • the terminal device is configured with dual connectivity (e.g., NR-DC), and if SRB1 is configured as a split SRB and pdcp-Duplication is not configured, the terminal device sets the primaryPath reference SCG (Secondary Cell Group) of the PDCP entity of the SRB1, and the RRC message is transmitted through the SRB1; otherwise, if SRB3 is configured and if SCG transmission is not suspended or allowed, the RRC message (embedded in another RRC message, such as a ULInformationTransferMRDC message) is transmitted through SRB3.
  • the RRC message can be a FailureInformation message or a MCGFailureInformation message, or a new RRC message.
  • the terminal device reports the above failure through MAC CE.
  • the secondary cell or non-serving cell has available UL-SCH (Uplink Shared Channel) resources, and as a result of LCP (Logical Channel Prioritization), the resources are sufficient to accommodate the MAC CE for carrying the above information, the terminal device generates the MAC CE, otherwise it triggers SR (Scheduling Request).
  • the network can configure a dedicated PUCCH (Physical Uplink Control Channel) resource or SR ID for this SR or make this SR use the PUCCH resource or SR ID of other SRs (such as SR corresponding to LCH (Logical Channel), SR corresponding to persistent LBT failure MAC CE, or SR corresponding to BFR (Beam Failure Recovery) MAC CE).
  • This MAC CE is identified by a MAC subheader containing an LCID (Logical Channel Identification) or eLCID (enhanced LCID).
  • the above embodiments only provide an exemplary description of the terminal device reporting the above failure to the network device via the secondary cell and/or the non-serving cell, but the present application is not limited thereto, and appropriate modifications can be made on the basis of the above embodiments.
  • the above embodiments can be used alone, or one or more of the above embodiments can be combined.
  • the terminal device when the quality of the wireless link or the quality of the control channel is not good or poor, the terminal device considers that a link failure has occurred.
  • the quality of the radio link or the quality of the control channel is characterized by an L1 measurement result or a filtered L1 measurement result.
  • the L1 measurement result or the filtered L1 measurement result is worse than the configured threshold, it is considered "bad quality or poor quality”.
  • the L1 measurement result or the filtered L1 measurement result is better than the configured threshold, it is considered "good quality”.
  • there is no restriction on the value of the threshold for example, it can be set according to the network deployment situation.
  • the terminal device performs failure detection, including: the physical layer of the terminal device measures the configured reference signal and provides poor and/or good quality indications to the upper layer, and the upper layer determines whether a link failure has occurred based on the received indications and/or timers.
  • the reference signal may be a reference signal (BFD-RS) for beam failure detection configuration, or a reference signal (RLM-RS) for radio link monitoring configuration, or a reference signal for fast or low-layer radio link failure detection configuration, but the present application is not limited thereto.
  • BFD-RS reference signal
  • RLM-RS reference signal
  • the reference signal may be configured per serving cell, that is, each serving cell is configured with one or a group of reference signals.
  • the poor and/or good quality may be: the L1 measurement result is worse and/or better than the configured threshold (or its equivalent value, referred to as the first threshold) by an offset or a period of time, or refers to that the filtered L1 measurement result is worse and/or better than the configured threshold (or its equivalent value, referred to as the second threshold) by an offset or a period of time.
  • the L1 measurement result may be the RSRP of L1, including SS-RSRP or CSI-RSRP; it may also be the RSRQ of L1, including SS-RSRQ or CSI-RSRQ; it may also be the SINR of L1, including SS-SINR or CSI-SINR.
  • the filtered L1 measurement result refers to the measurement result obtained after processing (eg, calculating) the L1 measurement result, for example, it may be the average value of multiple L1 measurement results within a period of time, or the average value of multiple highest L1 measurement results.
  • the upper layer of the terminal device determines whether a link failure has occurred based on the received indication (indication of poor quality and/or good quality) and/or the timer.
  • the upper layer may be the MAC layer and/or the RRC layer.
  • the first timer is started or restarted; when the first timer times out, the number of indications of poor quality is recalculated; when M consecutive indications of poor quality are received, it is considered that a link failure has occurred. That is, whether a link failure has occurred is determined based on the number of indications of poor quality.
  • the second timer when the upper layer of the terminal device receives M consecutive indications of poor quality, the second timer is started; when the upper layer of the terminal device receives T indications of good quality, the second timer is stopped; when the second timer times out, it is considered that a link failure has occurred. That is, whether a link failure has occurred is determined based on whether the timer times out.
  • the upper layer of the terminal device receives M consecutive poor quality indications during the operation of the third timer, it is considered that a link failure has occurred. In other words, it is determined whether a link failure has occurred based on the poor quality indication and the timer.
  • the upper layer of the terminal device receives M consecutive poor quality indications, it is considered that a link failure has occurred; when the upper layer of the terminal device receives T good quality indications, the number of poor quality indications is recalculated. In other words, whether a link failure has occurred is determined based on the poor quality indications and the good quality indications.
  • the upper layer of the terminal device receives M consecutive indications of poor quality, it is considered that a link failure has occurred. That is, it is determined whether a link failure has occurred only based on the indication of poor quality.
  • each timer there is no restriction on the value of each timer, and it can be set as needed.
  • the terminal device performs failure detection, including: the terminal device monitors NACK and/or ACK (Acknowledgement, positive feedback) of the HARQ process, and determines whether a link failure occurs according to the monitoring result.
  • NACK and/or ACK Acknowledgement, positive feedback
  • S consecutive NACK indications are received within a period of time, it is considered that a link failure has occurred, and/or if no ACK indication is received within a period of time (eg, S consecutive ACK indications are not received), it is considered that a link failure has occurred.
  • the HARQ process may be a designated HARQ process, or one HARQ process, or all HARQ processes.
  • the physical layer of the terminal device may monitor the NACK and/or ACK of the HARQ process, or the MAC layer of the terminal device may monitor the NACK and/or ACK of the HARQ process.
  • the above embodiments are merely exemplary of how the terminal device determines that a link failure has occurred, but the present application is not limited thereto, and appropriate modifications may be made based on the above embodiments.
  • the above embodiments may be used alone, or one or more of the above embodiments may be combined.
  • the terminal device when the L1 or L2 signaling carrying the measurement result fails to be successfully sent to the network device, the terminal device considers that a measurement reporting failure has occurred.
  • the terminal device performs failure detection, including: when the terminal device generates or submits to the lower layer or sends L1 or L2 signaling carrying measurement results, the terminal device starts a fourth timer; when the fourth timer times out, it is considered that a measurement reporting failure has occurred.
  • the terminal device when generating or sending L1 signaling carrying measurement results, or when generating L2 signaling carrying measurement results and submitting it to the lower layer, the terminal device starts the fourth timer, and when the fourth timer times out, it is considered that a measurement reporting failure has occurred.
  • an ACK is received from the above HARQ process (i.e., the HARQ process carrying the L1 or L2 signaling of the measurement result), or an UL authorization for scheduling a new transmission of the HARQ process is received, or a cell switching command is received, it means that the measurement report has been successful, and the above fourth timer can be stopped at this time.
  • the cell switching command can be carried through DCI (Downlink Control Information), MAC CE, RRC message, etc., but the present application is not limited to this.
  • the terminal device performs failure detection, including: the terminal device monitors the NACK and/or ACK of the HARQ process of the L1 or L2 signaling carrying the measurement result, and determines whether a measurement reporting failure occurs according to the monitoring result.
  • a measurement reporting failure For example, if X consecutive NACK indications are received within a period of time, it is considered that a measurement reporting failure has occurred, and/or if no ACK indication is received within a period of time (eg, no consecutive X ACK indications are received), it is considered that a measurement reporting failure has occurred.
  • the physical layer of the terminal device may monitor the NACK and/or ACK of the HARQ process of the L1 or L2 signaling carrying the measurement results, or the MAC layer of the terminal device may monitor the NACK and/or ACK of the HARQ process of the L1 or L2 signaling carrying the measurement results.
  • the above embodiments only provide an exemplary description of how the terminal device determines that a measurement report failure has occurred, but the present application is not limited thereto, and appropriate modifications may be made based on the above embodiments.
  • the above embodiments may be used alone, or one or more of the above embodiments may be combined.
  • the terminal device after the L1 or L2 signaling carrying the measurement result is successfully sent, if the cell switching command is not received within a certain period of time, the terminal device considers that a failure to receive the cell switching command has occurred.
  • the terminal device performs failure detection, including: the terminal device monitors the ACK indication of the HARQ process of the L1 or L2 signaling carrying the measurement result, and when the ACK indication is received, starts the fifth timer, and when the fifth timer times out, it is considered that a failure to receive the cell switching command has occurred.
  • the terminal device starts the fifth timer when receiving the ACK indication, and when the fifth timer times out, it is considered that a failure to receive the cell switching command has occurred.
  • the terminal device when the terminal device receives a cell switching command, it stops the fifth timer.
  • the cell switching command can be carried through DCI or MAC CE or RRC message, but the present application is not limited thereto.
  • the above embodiments only provide an exemplary description of how the terminal device determines that a failure to receive a cell switching command has occurred, but the present application is not limited thereto, and appropriate modifications may be made based on the above embodiments.
  • the above embodiments may be used alone, or one or more of the above embodiments may be combined.
  • the terminal device fails to comply with (comply with) the RRC reconfiguration message carrying the candidate cell information, or fails to comply with (comply with) the configuration of the PCell in the RRC reconfiguration message carrying the candidate cell information, or fails to comply with (comply with) the PCell indicated by the L1 or L2 cell switching command in the RRC reconfiguration message carrying the candidate cell information, it is considered that a terminal processing failure has occurred.
  • the terminal processing includes processing the RRC reconfiguration message carrying the candidate cell information and/or the L1 or L2 cell switching command.
  • the terminal capability problem it may not be able to comply with the RRC reconfiguration message carrying the candidate cell information and/or the L1 or L2 cell switching command.
  • the PCell may be the configuration of any PCell in the above RRC reconfiguration message carrying the candidate cell information, or may be the configuration of a PCell in the above RRC reconfiguration message carrying the candidate cell information, but the present application is not limited thereto.
  • the configuration package of PCell refers to the configuration of L1, L2 or L3, such as MAC configuration, radio bearer configuration, RF configuration and the like.
  • the above embodiments are merely exemplary of how the terminal device determines that a terminal processing failure has occurred, but the present application is not limited thereto, and appropriate modifications may be made based on the above embodiments.
  • the above embodiments may be used alone, or one or more of the above embodiments may be combined.
  • the terminal device when the cell change based on L1 or L2 signaling fails, the terminal device considers that a handover failure has occurred.
  • the terminal device determines whether a handover failure occurs based on whether the cell change of L1 or L2 signaling succeeds or fails.
  • the terminal device determines whether a handover failure has occurred based on a timer (referred to as a sixth timer) for controlling a cell change based on L1 or L2 signaling.
  • a timer referred to as a sixth timer
  • the terminal device performs failure detection, including: when the terminal device receives L1 or L2 signaling for triggering a cell change, the terminal device starts a sixth timer, and when the sixth timer times out, it is considered that a handover failure has occurred.
  • the terminal device when the terminal device completes the random access process, or the terminal device starts to communicate with the indicated cell, or the terminal device sends information to the target cell to indicate that the switching is completed or successfully switched to the target cell, it means that the switching has been completed. At this time, the terminal device stops the above-mentioned sixth timer.
  • the terminal device determines whether a handover failure occurs based on the number of RA preamble transmissions.
  • the terminal device performs failure detection, including: the terminal device counts the number of RA preamble codes sent, and determines whether a handover failure occurs according to the statistical result.
  • a threshold referred to as a third threshold
  • the terminal device determines whether a handover failure has occurred based on the number of received ACK/NACKs.
  • the terminal device performs failure detection, including: the terminal device monitors the NACK and/or ACK of the HARQ process carrying the first UL data, and determines whether a switching failure occurs according to the monitoring result.
  • Y consecutive NACK indications are received within a period of time, it is considered that a handover failure has occurred; and/or if no ACK indication is received within a period of time (eg, Y consecutive ACK indications are not received), it is considered that a handover failure has occurred.
  • the above embodiments are merely exemplary of how the terminal device determines whether a handover failure has occurred, but the present application is not limited thereto, and appropriate modifications may be made based on the above embodiments.
  • the above embodiments may be used alone, or one or more of the above embodiments may be combined.
  • the terminal device may also apply the configuration used before receiving the RRC reconfiguration message and/or the cell switching command including the configuration of the candidate cell.
  • the terminal device may apply the configuration used before receiving the RRC reconfiguration message and/or the cell handover command including the configuration of the candidate cell.
  • FIG. 5 is another schematic diagram of the failure detection and recovery method according to an embodiment of the present application. As shown in FIG. 5 , the method includes:
  • the terminal device performs failure detection after receiving the candidate configuration
  • the terminal device When the terminal device detects a terminal processing failure, it applies a stored configuration and/or reports the failure to a network device via a secondary cell and/or a non-serving cell.
  • the candidate configuration is, for example, an RRC reconfiguration message carrying candidate cell information.
  • FIG6 is another schematic diagram of a failure detection and recovery method according to an embodiment of the present application. As shown in FIG6 , the method includes:
  • the terminal device performs failure detection after sending the measurement report
  • the terminal device When the terminal device detects a measurement reporting failure, it applies a stored configuration and/or reports the failure to a network device via a secondary cell and/or a non-serving cell.
  • FIG. 7 is another schematic diagram of the failure detection and recovery method of the embodiment of the present application. As shown in FIG. 7 , the method includes:
  • the terminal device performs failure detection after sending the measurement report
  • the terminal device When the terminal device detects that receiving a cell switching command fails, the terminal device applies a stored configuration and/or reports the failure to a network device via a secondary cell and/or a non-serving cell.
  • FIG8 is another schematic diagram of a failure detection and recovery method according to an embodiment of the present application. As shown in FIG8 , the method includes:
  • the terminal device performs failure detection after receiving the cell switching command
  • the terminal device When the terminal device detects a handover failure, it applies a stored configuration and/or reports the failure to a network device via a secondary cell and/or a non-serving cell.
  • the embodiment of the present application also provides a method for failure detection and recovery, which is explained from the network side, and the same content as the previous text is not repeated.
  • FIG. 9 is a schematic diagram of a method for failure detection and recovery according to an embodiment of the present application. As shown in FIG. 9 , the method includes:
  • a network device receives a failure report from a terminal device, where the failure report is one of a link failure detected by the terminal device, a measurement report failure, a failure to receive a cell switching command, a terminal processing failure, and a switching failure.
  • the above failure reporting can be reported by the terminal device via the secondary cell, or the terminal device can report via the non-serving cell.
  • the content of failure detection and non-serving cell has been described in detail above and will not be repeated here.
  • the network device may also configure thresholds for the terminal device, such as the first threshold to the third threshold, etc.
  • the present application does not limit the specific configuration method.
  • the network device may also configure a timer for the terminal device, such as the first timer to the sixth timer, etc.
  • a timer for the terminal device such as the first timer to the sixth timer, etc.
  • the terminal when one of link failure, measurement reporting failure, failure to receive cell switching command, terminal processing failure and switching failure is detected, the terminal applies the stored configuration and/or reports the failure via the secondary cell/non-service cell, thereby enabling faster failure detection and recovery, thereby reducing service interruption time and improving user experience.
  • the embodiment of the present application provides a failure detection and recovery device.
  • the device may be, for example, a terminal device, or may be one or more components or assemblies configured on the terminal device.
  • the device of the embodiment of the present application corresponds to the method of FIG. 4 of the embodiment of the first aspect, wherein the same contents as those of the embodiment of the first aspect are not repeated.
  • FIG10 is a schematic diagram of an example of a failure detection and recovery device according to an embodiment of the present application.
  • a failure detection and recovery device 1000 according to an embodiment of the present application includes:
  • the processing unit 1002 applies the stored configuration to recover and/or reports the failure to the network device via the secondary cell and/or non-serving cell when detecting one of link failure, measurement reporting failure, cell switching command reception failure, terminal processing failure and switching failure.
  • the processing unit 1002 when the detection unit 1001 detects one of link failure, measurement reporting failure, failure to receive a cell switching command, terminal processing failure and switching failure, the processing unit 1002 applies the stored configuration for recovery; if the processing unit 1002 cannot apply the stored configuration for recovery, the processing unit 1002 reports the above failure to the network device via the secondary cell and/or non-service cell.
  • the processing unit 1002 reports the failure to the network device via the secondary cell and/or the non-serving cell, including: reporting the failure to the network device via the secondary cell; if the secondary cell is unavailable, reporting the failure to the network device via the non-serving cell.
  • the stored configuration is the configuration of the cell or cell group in the RRC reconfiguration message received and stored by the terminal device.
  • the configuration of the cell or cell group may include the configuration of the primary cell and/or the configuration of the secondary cell and beam information; the beam information is the TCI status information of the downlink channel or uplink channel or reference signal.
  • the processing unit 1002 applies M TCI status information indicated in the N or more TCI status information or by default or determined by evaluation, where M ⁇ N, N is 1 or 2, depending on the capabilities of the terminal device.
  • the non-serving cell is a candidate cell for handover or a cell associated with the serving cell.
  • the processing unit 1002 reports the above failure to the network device via the secondary cell and/or the non-serving cell, including reporting at least one of the following: cell information of the failed cell; failure cause and/or failure type; measurement results; and expected processing.
  • the cell information of the failed cell may include at least one of the following: a cell index and a cell ID.
  • the failure cause may include at least one of the following: corresponding timer timeout, the number of NACKs received reaches the maximum value, and the RAP transmission reaches the maximum number;
  • the failure type includes at least one of the following: link failure, measurement reporting failure, failure to receive cell switching command, terminal processing failure, and switching failure.
  • the measurement result may include measurement results of beams and/or cells of failed cells and/or candidate cells that meet the conditions based on L1 measurement or based on L3 measurement.
  • the desired processing may include at least one of the following: beam change, cell change.
  • processing unit 1002 reports the above failure via RRC message or MAC CE.
  • detection unit 1001 (physical layer of the terminal device) measures the configured reference signal and provides poor and/or good quality indications to the upper layer; detection unit 1001 (upper layer of the terminal device) determines whether a link failure has occurred based on the received indications and/or timers.
  • the high layer may be a MAC layer and/or an RRC layer.
  • the reference signal can be one of the following: a reference signal for beam failure detection configuration (BFD-RS); a reference signal for radio link monitoring configuration (RLM-RS); a reference signal for fast or low-layer radio link failure detection configuration.
  • BFD-RS beam failure detection configuration
  • RLM-RS radio link monitoring configuration
  • fast or low-layer radio link failure detection configuration a reference signal for fast or low-layer radio link failure detection configuration.
  • the reference signal may be configured per serving cell.
  • poor and/or good quality may mean that the L1 measurement result is worse and/or better than a configured first threshold; or that the filtered L1 measurement result is worse and/or better than a configured second threshold.
  • the L1 measurement result may include at least one of the following: RSRP of L1, including SS-RSRP or CSI-RSRP; RSRQ of L1, including SS-RSRQ or CSI-RSRQ; SINR of L1, including SS-SINR or CSI-SINR.
  • the filtered L1 measurement result refers to a measurement result obtained after processing the L1 measurement result, and may include, for example, an average value of the L1 measurement results within a period of time, or an average value of multiple highest L1 measurement results.
  • the first timer is started or restarted; when the first timer times out, the number of indications of poor quality is recalculated; when M consecutive indications of poor quality are received, it is considered that a link failure has occurred.
  • the second timer when the detection unit 1001 (the upper layer of the terminal device) receives M consecutive indications of poor quality, the second timer is started; when the detection unit 1001 (the upper layer of the terminal device) receives T indications of good quality, the second timer is stopped; when the second timer times out, it is considered that a link failure has occurred.
  • the detection unit 1001 (a higher layer of the terminal device) receives M consecutive indications of poor quality during the operation of the third timer, it is considered that a link failure has occurred.
  • the detection unit 1001 when the detection unit 1001 (the upper layer of the terminal device) receives M consecutive indications of poor quality, it is considered that a link failure has occurred; when the detection unit 1001 (the upper layer of the terminal device) receives T indications of good quality, the number of indications of poor quality is recalculated.
  • the detection unit 1001 (a higher layer of the terminal device) receives M consecutive indications of poor quality, it is considered that a link failure has occurred.
  • the detection unit 1001 monitors the NACK and/or ACK of the HARQ process; and determines whether a link failure occurs according to the monitoring result.
  • the HARQ process may be a designated HARQ process, or one HARQ process, or all HARQ processes.
  • the detection unit 1001 when the L1 or L2 signaling carrying the measurement result fails to be successfully sent to the network, the detection unit 1001 considers that a measurement reporting failure occurs.
  • the detection unit 1001 starts the fourth timer; when the fourth timer times out, it is considered that a measurement reporting failure has occurred.
  • the detection unit 1001 stops the fourth timer.
  • the detection unit 1001 monitors the NACK and/or ACK of the HARQ process of the L1 or L2 signaling carrying the measurement result; and determines whether the measurement reporting failure occurs according to the monitoring result.
  • the detection unit 1001 after the L1 or L2 signaling carrying the measurement result is successfully sent, if no cell switching command is received within a certain period of time, the detection unit 1001 considers that a failure to receive the cell switching command occurs.
  • the detection unit 1001 starts the fifth timer; when the fifth timer times out, it is considered that a failure to receive the cell switching command has occurred.
  • the detection unit 1001 may stop the fifth timer.
  • the cell switching command can be carried via DCI or MAC CE or RRC message.
  • the detection unit 1001 when the terminal device cannot comply with the RRC reconfiguration message carrying candidate cell information, or cannot comply with the configuration of the PCell in the RRC reconfiguration message carrying candidate cell information, or cannot comply with the PCell indicated by the L1 or L2 cell switching command in the RRC reconfiguration message carrying candidate cell information, the detection unit 1001 considers that a terminal processing failure has occurred.
  • the configuration of PCell includes the configuration of L1 or L2 or L3; the configuration of L1 or L2 or L3 includes at least one of MAC configuration, radio bearer configuration, and RF configuration.
  • the detection unit 1001 when the cell change based on L1 or L2 signaling fails, the detection unit 1001 considers that a handover failure occurs.
  • the detection unit 1001 starts the sixth timer; when the sixth timer times out, it is considered that a handover failure has occurred.
  • the detection unit 1001 stops the sixth timer.
  • the detection unit 1001 counts the number of RA preamble codes sent by the terminal device; and determines whether a handover failure occurs based on the statistical result.
  • the detection unit 1001 if the number of RA preamble codes sent by the terminal device exceeds a third threshold, the detection unit 1001 considers that a handover failure has occurred.
  • the detection unit 1001 monitors the NACK and/or ACK of the HARQ process carrying the first UL data; and determines whether a handover failure occurs according to the monitoring result.
  • the detection unit 1001 if the terminal device receives Y consecutive NACK indications within a period of time, the detection unit 1001 considers that a switching failure has occurred; and/or, if the terminal device does not receive an ACK indication within a period of time, the detection unit 1001 considers that a switching failure has occurred.
  • the processing unit 1002 may also apply the configuration used by the terminal device before receiving an RRC reconfiguration message and/or a cell switching command including the configuration of the candidate cell.
  • the embodiment of the present application provides a failure detection and recovery device.
  • the device may be, for example, a network device, or may be one or more components or assemblies configured on the network device.
  • the device of the embodiment of the present application corresponds to the method of FIG. 9 of the embodiment of the first aspect, wherein the same contents as those of the embodiment of the first aspect are not repeated.
  • FIG11 is a schematic diagram of an example of a failure detection and recovery device according to an embodiment of the present application.
  • a failure detection and recovery device 1100 according to an embodiment of the present application includes:
  • the receiving unit 1101 receives a failure report from a terminal device, where the failure report is one of a link failure detected by the terminal device, a measurement report failure, a failure to receive a cell switching command, a terminal processing failure, and a switching failure.
  • the above failure reporting can be reported by the terminal device via the secondary cell, or the terminal device can report via the non-serving cell.
  • the content of failure detection and non-serving cell has been described in detail in the embodiment of the first aspect, and will not be repeated here.
  • the apparatus 1100 further includes:
  • the first configuration unit 1102 is used to configure a threshold for the terminal device, such as the first threshold to the third threshold described in the embodiment of the first aspect.
  • a threshold for the terminal device such as the first threshold to the third threshold described in the embodiment of the first aspect.
  • the present application does not limit the specific configuration method.
  • the apparatus 1100 further includes:
  • the second configuration unit 1103 is used to configure a timer for the terminal device, such as the first timer to the sixth timer described in the embodiment of the first aspect.
  • the present application does not limit the specific configuration method.
  • the failure detection and recovery devices 1000 and 1100 of the embodiments of the present application may also include other components or modules.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, and receivers; the implementation of the present application is not limited thereto.
  • the service interruption time is reduced and the user experience is improved.
  • An embodiment of the present application also provides a communication system, including a network device and a terminal device.
  • the terminal device includes the apparatus shown in FIG10 of the embodiment of the second aspect, and is configured to execute the method shown in FIG4 of the embodiment of the first aspect. Since the method has been described in detail in the embodiment of the first aspect, its content is incorporated herein and will not be repeated.
  • the terminal device includes the apparatus shown in FIG. 11 of the embodiment of the second aspect, and is configured to execute the method shown in FIG. 9 of the embodiment of the first aspect. Since the method has been described in detail in the embodiment of the first aspect, its content is incorporated herein and will not be repeated.
  • the network device performs conventional operations of the network device, and the network device may also perform operations corresponding to the operations of the terminal device, such as the network device receiving information/signals from the terminal device, and/or the network device sending information/signals to the terminal device, which are omitted here.
  • An embodiment of the present application further provides a terminal device, which may be, for example, a UE, but the present application is not limited thereto and may also be other terminal devices.
  • a terminal device which may be, for example, a UE, but the present application is not limited thereto and may also be other terminal devices.
  • FIG12 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1200 may include a processor 1201 and a memory 1202; the memory 1202 stores data and programs and is coupled to the processor 1201. It is worth noting that the figure is exemplary; other types of structures may also be used to supplement or replace the structure to implement telecommunication functions or other functions.
  • the functionality of the apparatus of the embodiment of the second aspect may be integrated into the processor 1201, wherein the processor 1201 may be configured to execute a program to implement the method described in the embodiment of the first aspect, the contents of which are incorporated herein and will not be repeated here.
  • the apparatus of the embodiment of the second aspect may be configured separately from the processor 1201.
  • the apparatus of the embodiment of the second aspect may be configured as a chip connected to the processor 1201, and the functions of the apparatus of the embodiment of the second aspect may be implemented through the control of the processor 1201.
  • the terminal device 1200 may further include: a communication module 1203, an input unit 1204, a display 1205, and a power supply 1206.
  • the functions of the above components are similar to those in the prior art and are not described in detail here. It is worth noting that the terminal device 1200 does not necessarily include all the components shown in FIG12 , and the above components are not necessary; in addition, the terminal device 1200 may also include components not shown in FIG12 , and reference may be made to the relevant art.
  • An embodiment of the present application further provides a network device, which may be, for example, a base station, but the present application is not limited thereto and may also be other network devices.
  • a network device which may be, for example, a base station, but the present application is not limited thereto and may also be other network devices.
  • FIG13 is a schematic diagram of the composition of a network device according to an embodiment of the present application.
  • the network device 1300 may include: a processor 1301 and a memory 1302; the memory 1302 is coupled to the processor 1301.
  • the memory 1302 may store various data; in addition, it may store information processing programs, and execute the programs under the control of the processor 1301.
  • the functionality of the apparatus 1100 of the embodiment of the second aspect may be integrated into the processor 1301, wherein the processor 1301 may be configured to execute a program to implement the method as described in FIG. 9 of the embodiment of the first aspect, the contents of which are incorporated herein and will not be repeated here.
  • the device 1100 of the embodiment of the second aspect may be configured separately from the processor 1301.
  • the device 1100 of the embodiment of the second aspect may be configured as a chip connected to the processor 1301, and the functions of the device 1100 of the embodiment of the second aspect may be implemented through the control of the processor 1301.
  • the network device 1300 may further include: transceivers 1303 and 1304.
  • transceivers 1303 and 1304. The functions of the above components are similar to those in the prior art and are not described in detail here. It is worth noting that the network device 1300 does not necessarily include all the components shown in FIG13 ; in addition, the network device 1300 may also include components not shown in FIG13 , which may refer to the prior art.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the method described in the embodiment of the first aspect.
  • An embodiment of the present application further provides a storage medium storing a computer program, wherein the computer program enables a terminal device to execute the method described in the embodiment of the first aspect.
  • the above devices and methods of the present application can be implemented by hardware, or by hardware combined with software.
  • the present application relates to such a computer-readable program, which, when executed by a logic component, enables the logic component to implement the above-mentioned devices or components, or enables the logic component to implement the various methods or steps described above.
  • the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, etc.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in the figure and/or one or more combinations of the functional block diagrams may correspond to various software modules of the computer program flow or to various hardware modules.
  • These software modules may correspond to the various steps shown in the figure, respectively.
  • These hardware modules may be implemented by solidifying these software modules, for example, using a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • the software module may be located in a RAM memory, a flash memory, a ROM memory, an EPROM memory, an EEPROM memory, a register, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to a processor so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and the storage medium may be located in an ASIC.
  • the software module may be stored in a memory of a mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module may be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks may be implemented as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or any appropriate combination thereof for performing the functions described in the present application.
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks may also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in communication with a DSP, or any other such configuration.
  • a failure detection and recovery method comprising:
  • the terminal device performs failure detection
  • the terminal device When the terminal device detects one of link failure, measurement reporting failure, failure to receive a cell switching command, terminal processing failure and switching failure, it applies the stored configuration and/or reports the failure to the network device via a secondary cell and/or a non-service cell.
  • terminal device When the terminal device detects one of link failure, measurement reporting failure, cell switching command reception failure, terminal processing failure and switching failure, applying the stored configuration
  • the failure is reported to the network device via the secondary cell and/or the non-serving cell.
  • reporting the failure to the network device via the secondary cell and/or the non-serving cell comprises:
  • the failure is reported to the network device via a non-serving cell.
  • the stored configuration is the configuration of the cell or cell group in the RRC reconfiguration message received and stored by the terminal device.
  • the configuration of the cell or cell group includes the configuration of the primary cell and/or the configuration of the secondary cell and beam information
  • the beam information is TCI status information of a downlink channel or an uplink channel or a reference signal.
  • the terminal device applies M TCI status information indicated in the more than N TCI status information or by default or determined by evaluation, where M ⁇ N, N is 1 or 2, depending on the capability of the terminal device.
  • the non-serving cell is a candidate cell for handover or a cell associated with the serving cell.
  • reporting the failure to the network device via the secondary cell and/or the non-serving cell comprises reporting at least one of the following:
  • the cell information of the failed cell includes at least one of the following: a cell index and a cell ID.
  • the failure reason includes at least one of the following: the corresponding timer timeout, the number of received NACKs reaches the maximum value, and the RAP transmission reaches the maximum number;
  • the failure type includes at least one of the following: link failure, measurement reporting failure, failure to receive a cell switching command, terminal processing failure, and switching failure.
  • the measurement results include measurement results of beams and/or cells of failed cells and/or candidate cells that meet the conditions based on L1 measurement or based on L3 measurement.
  • the desired processing includes at least one of the following: beam change, cell change.
  • the terminal device determines that a link failure is detected.
  • the physical layer of the terminal device measures the configured reference signal and provides poor and/or good quality indications to the higher layer of the terminal device;
  • the higher layer of the terminal device determines whether a link failure is detected based on the received indication and/or timer.
  • the high layer is the MAC layer and/or the RRC layer.
  • BFD-RS Reference signal for beam failure detection configuration
  • RLM-RS Reference signal for radio link monitoring configuration
  • Reference signals configured for fast or low-layer radio link failure detection.
  • the reference signal is configured per serving cell.
  • the L1 measurement result is worse and/or better than a configured first threshold
  • the filtered L1 measurement result is worse and/or better than a configured second threshold.
  • the L1 measurement result comprises at least one of the following:
  • L1 RSRP including SS-RSRP or CSI-RSRP
  • L1 RSRQ including SS-RSRQ or CSI-RSRQ
  • the filtered L1 measurement result refers to a measurement result obtained after processing the L1 measurement result, including: an average value of L1 measurement results within a period of time, or an average value of multiple highest L1 measurement results.
  • the upper layer of the terminal device When the upper layer of the terminal device receives the indication of poor quality, start or restart the first timer; when the first timer times out, recalculate the number of indications of poor quality; when M consecutive indications of poor quality are received, determine that a link failure is detected; or
  • the second timer When the upper layer of the terminal device receives M consecutive indications of poor quality, the second timer is started; when the upper layer of the terminal device receives T indications of good quality, the second timer is stopped; when the second timer times out, it is determined that a link failure is detected; or
  • the upper layer of the terminal device When the upper layer of the terminal device receives M consecutive indications of poor quality, it is determined that a link failure is detected; when the upper layer of the terminal device receives T indications of good quality, the number of indications of poor quality is recalculated; or
  • the terminal device monitors the NACK and/or ACK of the HARQ process
  • the terminal device determines whether a link failure is detected according to the monitoring result.
  • determining whether a link failure is detected according to the monitoring result comprises:
  • the HARQ process is a designated HARQ process, or one HARQ process, or all HARQ processes.
  • the terminal device determines that a measurement reporting failure is detected.
  • the terminal device When generating or submitting to a lower layer or sending L1 or L2 signaling carrying a measurement result, the terminal device starts a fourth timer;
  • the terminal device determines that a measurement reporting failure has been detected.
  • the fourth timer is stopped when an ACK of the HARQ process carrying the L1 or L2 signaling of the measurement result is received, or an UL grant for scheduling a new transmission of the HARQ process is received, or a cell switching command is received.
  • the terminal device monitors NACK and/or ACK of the HARQ process of the L1 or L2 signaling carrying the measurement result;
  • the terminal device determines whether measurement reporting failure is detected according to the monitoring result.
  • determining whether measurement reporting failure is detected according to the monitoring result comprises:
  • the terminal device After the L1 or L2 signaling carrying the measurement result is successfully sent, if no cell switching command is received within a certain period of time, the terminal device determines that a failure to receive the cell switching command is detected.
  • the terminal device starts a fifth timer when receiving an ACK indication for the HARQ process of the L1 or L2 signaling carrying the measurement result;
  • the terminal device determines that a failure in receiving a cell switching command has been detected.
  • the fifth timer is stopped.
  • the cell switching command is carried via DCI or MAC CE or RRC message.
  • the terminal device determines that terminal processing failure is detected.
  • the configuration of the PCell includes a configuration of L1, L2 or L3;
  • the configuration of L1 or L2 or L3 includes at least one of MAC configuration, radio bearer configuration, and RF configuration.
  • the terminal device determines that a handover failure is detected.
  • the terminal device starts a sixth timer when receiving L1 or L2 signaling for triggering a cell change
  • the terminal device determines that a switching failure is detected.
  • the terminal device When the terminal device completes the random access process, or the terminal device starts to communicate with the indicated cell, or the terminal device sends information to the target cell to indicate the completion of switching or successful switching to the target cell, the terminal device stops the sixth timer.
  • the terminal device counts the number of sent RA preamble codes
  • the terminal device determines whether a switching failure is detected according to the statistical result.
  • determining whether a handover failure is detected according to the statistical result comprises:
  • the terminal device monitors the NACK and/or ACK of the HARQ process carrying the first UL data
  • the terminal device determines whether a switching failure is detected according to the monitoring result.
  • determining whether a switching failure is detected according to the monitoring result comprises:
  • the terminal device application receives the configuration used before the RRC reconfiguration message and/or the cell switching command including the configuration of the candidate cell.
  • a terminal device comprising a memory and a processor, wherein the memory stores a computer program, and the processor is configured to execute the computer program to implement the method as described in any one of Notes 1 to 44.
  • a communication system comprising a network device and the terminal device described in Note 45.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种失败检测及恢复方法和装置,所述方法包括:终端设备进行失败检测;当所述终端设备检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,应用存储的配置进行恢复和/或经由辅小区和/或非服务小区向网络设备上报所述失败。根据本申请实施例,当检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,终端应用存储的配置和/或经辅小区/非服务小区上报失败,由此,能进行更快地失败检测和恢复,从而减小业务中断时间,提升用户体验。

Description

失败检测及恢复方法和装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
网络控制的移动性适用于连接态终端,可以分为两种移动性,即小区级移动性和波束级移动性。
小区级移动性要求由显示RRC(Radio Resource Control,无线资源控制)信令来触发,即通过RRC信令触发切换。
RRC触发的切换机制要求UE(User Equipment,用户设备)至少重置MAC(Media Access Control,媒体接入控制)实体并重建RLC(Radio Link Control,无线链路控制),并且支持有和没有PDCP(Packet Data Convergence Protocol,分组数据汇聚层协议)实体重建的RRC管理的切换。
对于使用RLC AM(Achnowledged Mode,确认模式)模式的DRBs(Data Radio Bearer,数据无线承载),PDCP可以与安全密钥更新一起重建,或发起“没有密钥更新”的数据恢复过程。对于使用RLC UM(Unachnowledged Mode,非确认模式)模式的DRBs,PDCP可以与安全密钥更新一起重建,或“没有密钥更新”保持不变。对于SRBs(Signalling radio bearer,信令无线承载),PDCP可以“没有密钥更新”保持不变、丢弃存储的PDCP PDUs(Packet Data Unit,分组数据单元)/SDUs(Service Data Unit,业务数据单元),或与安全密钥更新一起重建。
另一方面,当终端从一个小区的覆盖区域移动到另一个小区的覆盖区域,在某一点需要执行服务小区改变。当前,服务小区改变由L3(Layer 3,层3)测量触发并由RRC信令完成,为PCell(Primary Cell,主小区)和PSCell(Primary Secondary Cell,主辅小区)改变触发的同步重配置(Reconfiguration with Synchronisation),以及SCells(Secondary Cell,辅小区)的释放增加,适用时。所有情况都涉及完整的L2(Layer 2,层2)(和L1(Layer 1,层1))重置,导致比波束切换移动性更长的时延、更大的开销和更长的中断时间。L1/L2移动性增强的目标是确保通过L1/L2信令的服务小区改变,以减小时延、开销和中断时间。
为了减小移动性时延,基于L1/L2的小区间移动性的机制和过程包括以下内容:
多个候选小区的配置和维护,以允许候选小区的配置的快速应用;
对于可能适用的场景,基于L1/L2信令的候选服务小区(包括特殊小区和辅小区)之间的动态切换机制;
小区间波束管理的L1增强,包括L1测量和上报,以及波束指示;
定时提前管理;以及
CU-DU(Centralized Unit-Distributed Unit,中央单元-分布式单元)接口信令以支持L1/L2移动性。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,在基于L1/L2的小区间移动性过程中,有些组成成分是使用现有机制完成新的任务,例如使用现有的RRC重配置过程完成新的候选配置;有些组成成分是新的过程,例如小区切换命令的处理过程。对于这两种情况,当前如何确定该过程失败从而采取恢复措施是未知的。另一方面,当前切换失败/无线链路失败/重配置失败都会发起RRC连接重建过程;如果重用该过程,将引入大的业务中断。
针对上述问题至少之一或其他类似问题,本申请实施例提供一种失败检测及恢复的方法和装置,能够更快地检测到可能发生的失败并更快地从失败恢复,从而减小业务中断时间,提升用户体验。
根据本申请实施例的一方面,提供一种失败检测及恢复装置,所述装置包括:
检测单元,其进行失败检测;
处理单元,其在所述检测单元检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,应用存储的配置进行恢复和/或经由辅小区和/或非服务小区向网络设备上报所述失败。
本申请实施例的有益效果之一在于:根据本申请实施例,当检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,终端应用存储的配置和/或经辅小区/非服务小区上报失败,由此,能进行更快地失败检测和恢复,从而减小业务中断时间,提升用户体验。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理 可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是基于L1/L2的小区间移动性的移动性时延的一示意图;
图2是本申请实施例的NG-RAN的部署场景的一示意图;
图3是本申请实施例的IAB的部署场景的一示意图;
图4是本申请实施例的失败检测及恢复方法的一示意图;
图5是本申请实施例的失败检测及恢复方法的另一示意图;
图6是本申请实施例的失败检测及恢复方法的又一示意图;
图7是本申请实施例的失败检测及恢复方法的再一示意图;
图8是本申请实施例的失败检测及恢复方法的又一示意图;
图9是本申请实施例的失败检测及恢复方法的又一示意图;
图10是本申请实施例的失败检测及恢复装置的一示意图;
图11是本申请实施例的失败检测及恢复装置的另一示意图;
图12是本申请实施例的终端设备的一示意图;
图13是本申请实施例的网络设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信***中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信***中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)、IAB(Integrated Access and Backhaul,集成接入和回程)节点或IAB-DU或IAB-donor。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。在不引起混淆的情况下,术语“小区”和“基站”可以互换。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE, Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、IAB-MT(Mobile Terminal,移动终端)、站(station),等等。
终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
目前,对于切换失败的检测和恢复,NR(New Radio,新无线/新空口)里支持基于定时器的切换失败(Handover Failure,HOF)过程。RRC连接重建过程用于切换失败的恢复,除了在某些CHO(Conditional Handover,条件切换)或DAPS(Dual Active Protocol Stack,双活动协议堆栈)切换场景里:
当DAPS切换失败,如果源链路尚未被释放,UE回退到源小区配置,恢复与源小区的连接,并通过源上报DAPS切换失败,不触发RRC连接重建;
当初始CHO执行尝试失败或HO切换失败,UE执行小区选择,且如果选择的小区是一个CHO候选且如果网络配置了UE切换/CHO失败后尝试CHO,那么UE尝试一次CHO执行,否则执行重建。
另外,对于无线链路失败的检测和恢复,当以下条件之一满足时,UE宣布无线链路失败(Radio Link Failure,RLF):
来自物理层的无线问题的指示之后启动的无线问题定时器超时(如果这个定时器超时前无线问题被恢复,UE停止这个定时器);或者
触发配置了定时器的一个测量ID的测量报告时启动的定时器超时同时另一个无线问题定时器正在运行;或者
随机接入过程失败;或者
RLC失败;或者
检测到使用共享频谱信道接入操作的持续上行LBT(listen before talk,先听后说)失败;或者
对于IAB-MT,收到来自其父节点的BH RLF(回程无线链路失败)指示。
在DAPS切换的情况下,UE继续源小区里的无线链路失败的检测,直到向目标小区的随机接入过程成功完成。
RLF宣布后,UE:
保持RRC_CONNECTED;
在DAPS切换的情况下,对于源小区里的RLF:
停止所有通过源链路的数据发送或接收并释放这个源链路,但维持源RRC配置;
如果之后在目标小区检测到切换失败,UE:
选择一个合适的小区,然后发起RRC重建;
如果在宣布切换失败后一定时间内未找到合适的小区,进入RRC_IDLE;在CHO的情况下,对于源小区里的RLF:
选择一个合适的小区且如果选择的小区是一个CHO候选且如果网络配置了UE切换/CHO失败后尝试CHO,那么UE尝试一次CHO执行,否则执行重建;
如果在宣布切换失败后一定时间内未找到合适的小区,进入RRC_IDLE;
否则,对于服务小区里的RLF或DAPS切换情况下对于释放源小区前目标小区里的RLF:
选择一个合适的小区,然后发起RRC重建;
如果在宣布RLF后一定时间内未找到合适的小区,进入RRC_IDLE。
发明人发现,目前,基于L1/L2的小区间移动性的移动性时延包括图1所示的成分(component),各个成分的含义(meaning)如表1所示。
表1:
Figure PCTCN2022122936-appb-000001
Figure PCTCN2022122936-appb-000002
以上的时间值(value)只是示例。
如前所述,针对失败检测,在基于L1/L2的小区间移动性过程中,有些组成成分是使用现有机制完成新的任务,有些组成成分是新的过程,而如何确定该过程失败从而采取恢复措施是未知的;另一方面,针对失败恢复,当前的失败都会发起RRC连接重建过程,如果重用该过程,将引入大的业务中断。
针对以上问题至少之一,提出了本申请,下面结合附图和具体实施方式对本申请实施例进行说明。
在本申请实施例中,失败检测及恢复的场景包括但不限于切换场景、CA(carrier aggregation,载波聚合)场景以及DC(Dual Connectivity,双连接)场景。其中,切换场景即仅PCell的移动性。CA场景例如包括:目标PCell/目标SCell(s)不是当前服务小 区的场景,即有PCell改变的CA→CA场景;目标PCell是一个当前SCell的场景;目标SCell是当前PCell的场景。此外,DC场景例如PSCell发生改变的场景(包括非CA场景和CA场景)。
在本申请实施例中,源小区和目标小区可能是同步或异步的,可能是同频或异频,可能工作在FR1(频率范围1)和FR2(频率范围2)上。
图2是本申请实施例的NG-RAN部署场景的一示意图,如图2所示,NG-RAN包括一组通过NG接口连接到5GC的gNBs。gNBs间可以通过Xn接口互联。一个gNB可以包括一个gNB-CU和一个或多个gNB-DU(s),一个gNB-CU和一个gNB-DU间通过F1接口连接,一个gNB-DU仅能连接到一个gNB-CU。
图3是本申请实施例的IAB部署场景的一示意图,如图3所示,NG-RAN通过IAB-node无线连接到能够为IAB-nodes服务的gNB,被称为IAB-donor来支持IAB。IAB-donor包括一个IAB-donor-CU和一个或多个IAB-donor-DU(s)。
在本申请实施例中,除非特别说明,所有为gNB-DU定义的功能都同样适用于IAB-DU和IAB-donor-DU,所有为gNB-CU定义的功能同样适用于IAB-donor-CU,所有为UE定义的功能都同样适用于IAB-MT。
在以下的说明中,在不引起混淆的情况下,“失败”可以替换为“需要恢复的”,“如果…”可以替换为“在…情况下”或“当…时”,“认为发生了…失败”与“确定检测到…失败”可以互换,“确定是否发生了…失败”与“确定是否检测到…失败”可以互换。此外,在以下的说明中,低层是指物理层、RF(Radio Frequency,射频/无线电频率)链等,高层是指RRC层、MAC层等。
第一方面的实施例
本申请实施例提供一种失败检测及恢复方法,从终端设备的一侧进行说明。
图4是本申请实施例的失败检测及恢复方法的一示意图,如图4所示,该方法包括:
401,终端设备进行失败检测;
402,当所述终端设备检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,应用存储的配置进行恢复和/或经由辅小区和/或非服务小区向网络设备上报所述失败。
值得注意的是,以上附图4仅示意性地对本申请实施例进行了说明,但本申请不限于此。例如可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以 根据上述内容进行适当地变型,而不仅限于上述附图4的记载。
在上述实施例中,当检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,终端应用存储的配置和/或经辅小区/非服务小区上报失败,由此,能进行更快地失败检测和恢复,从而减小业务中断时间,提升用户体验。
在一些实施例中,当终端设备检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,应用存储的配置进行恢复;如果无法应用存储的配置进行恢复,则经由辅小区和/或非服务小区向网络设备上报该失败。也即,在检测到失败时,先应用存储的配置进行恢复,如果无法应用存储的配置进行恢复,例如,没有存储的配置,或者存储的配置无法成功进行恢复,再经由辅小区和/或非服务小区向网络设备上报失败。由此,减小了恢复的时延并且节省了恢复的信令开销。
在上述实施例中,存储的配置是指终端设备收到并存储的RRC重配置消息中的小区或小区组的配置。例如,终端设备在检测到上述失败之前收到的RRC重配置消息中的小区或小区组的配置,终端设备可以将该配置存储到本地,待检测到上述失败时,先尝试应用该配置进行恢复。
在上述实施例中,小区或小区组的配置包括主小区的配置和/或辅小区的配置。
例如,当检测到或触发了上述失败时,在小区选择或重选过程中,终端找到一个合适的小区,这个小区是包括在之前收到的RRC重配置消息里的一个主小区,则终端应用存储的这个小区的配置。可选地,终端还可以应用相应的辅小区的配置(如果有的话)。
再例如,当检测到或触发了上述失败时,如果满足之前收到的RRC重配置消息的一个小区或小区组的条件,终端应用存储的满足条件的一个小区的配置;如果这个满足条件的小区是主小区,则可选地终端还可以应用相应的辅小区的配置。
在上述实施例中,小区或小区组的配置还包括波束信息,该波束信息例如为下行信道或上行信道或参考信号的TCI(Transmission Configuration Indication,传输配置指示)状态信息。
在一些实施例中,如果该TCI状态信息为N个以上,则终端设备可以应用该N个以上的TCI状态信息中指示的或默认的或通过评估确定的M个TCI状态信息,其中,M≤N,并且,N是1或者2,取决于终端设备的能力。
例如,如果上述M个TCI状态信息是指示的或者默认的,则M=N,也即,终端设备应用指示的或默认的M个TCI状态信息;如果上述M个TCI状态信息是通过评估而确定的,则M≤N,也即,终端设备通过评估确定应用满足条件的M个TCI状态信息。
例如,根据终端设备1的能力,如果上述TCI状态信息为2个以上,则终端设备1可以应用其中至多前2个出现的TCI状态信息,或者应用满足候选波束条件的波束对应的至多2个TCI状态信息。又例如,根据终端设备2的能力,如果上述TCI状态信息为1个以上,则终端设备2可以应用其中第一个出现的TCI状态信息,或者应用满足候选波束条件的波束对应的一个TCI状态信息。
在另一些实施例中,经由辅小区和/或非服务小区向网络设备上报所述失败,包括:经由辅小区向网络设备上报上述失败;如果辅小区不可用,则经由非服务小区向网络设备上报上述失败。或者,在另一些实施例中,经由辅小区和/或非服务小区向网络设备上报所述失败,包括:经由非服务小区向网络设备上报上述失败;如果非服务小区不可用,则经由辅小区向网络设备上报上述失败,例如,非服务小区关联一个特殊小区。
例如,在检测到失败时,先应用存储的配置进行恢复,如果无法应用存储的配置进行恢复,例如没有存储的配置,或者存储的配置无法成功进行恢复,则经由辅小区向网络设备上报上述失败,如果辅小区不可用,再经由非服务小区向网络设备上报上述失败。
再例如,在检测到失败时,先由辅小区向网络设备上报上述失败;如果辅小区不可用,则经由非服务小区向网络设备上报上述失败;如果没有非服务小区或者非服务小区不可用,再应用存储的配置进行恢复。
以上两个例子只是举例说明,本申请不限于此。
在上述实施例中,非服务小区为切换的候选小区,例如候选主小区或候选辅小区;或者为当前服务小区关联的一个小区,例如终端设备正在使用其专用信道的小区,等等。
在上述实施例中,终端设备可以经由辅小区和/或非服务小区向网络设备上报以下内容:
失败小区的小区信息;
失败原因和/或失败类型;
测量结果;
期望的处理。
也即,终端设备通过上报上述内容至少之一来进行失败的上报。
在上述例子中,失败小区的小区信息可以包括小区索引和/或小区ID,例如PCI(Physical Cell Identifier,物理小区标识)、NCGI(NR Cell Global Identifier,全球标识符)等。其中,小区索引可以是服务小区索引(serving cell index);或者,也可以是RRC重配置消息中的小区或小区组的配置中小区或小区所在小区组出现的顺序,例如,第一 个出现的小区或小区组的配置,对应索引为0(或1),第二个出现的小区或小区组的配置,对应索引为1(或2),以此类推。
在上述例子中,失败原因可以是:相应的定时器超时、收到的NACK(Negative Acknowledgement,负向反馈)数达到最大值、RAP(Random Access Premble,随机接入前导码)传输达到最大数等;失败类型可以是:链路失败、测量上报失败、接收小区切换命令失败、终端处理失败、切换失败等。
在上述例子中,测量结果可以包括失败小区和/或满足条件的候选小区的基于L1测量或基于L3测量的波束和/或小区的测量结果。例如,终端设备上报失败小区的基于L1测量的波束测量结果;再例如,终端设备上报满足条件的候选小区的基于L1测量的波束测量结果,等等。
在上述例子中,期望的处理可以是波束改变或者小区改变,本申请不限于此。
例如,期望的处理是波束改变,则终端设备可以指示期望使用的波束或可用的波束,例如参考信号的标识,如SSB索引,CSI-RS ID或SRS ID等。可选地,终端设备还指示该波束的测量结果,如L1 SS-RSRP、L1 SS-SINR、L1 CSI-RSRP、L1 CSI-SINR等。
再例如,期望的处理是小区改变,则终端设备可以指示期望使用的小区或可用的小区,例如小区的标识或索引;小区标识可以是PCI或NCGI。可选地,终端设备还指示该小区的测量结果或小区参考信号的测量结果,如RSRP、RSRQ、SINR,或SS-RSRP、SS-SINR、CSI-RSRP、CSI-SINR等。
在本申请实施例中,终端设备可以通过RRC消息上报上述失败,也可以通过MAC CE(MAC Control Element,MAC控制单元)上报上述失败,本申请不限于此,例如,根据上报的内容,终端设备可以同时通过上述RRC消息和MAC CE上报上述失败。
例如,终端设备通过RRC消息上报上述失败。如果终端设备配置了双连接(例如NR-DC),且如果SRB1被配置为split SRB且未配置pdcp-Duplication,则终端设备设置该SRB1的PDCP实体的primaryPath参考SCG(Secondary Cell Group,辅小区组),该RRC消息通过该SRB1传输;否则,如果配置了SRB3且如果SCG传输未被挂起或允许时,该RRC消息(嵌入另外一个RRC消息里,例如ULInformationTransferMRDC消息)通过SRB3传输。该RRC消息可以是FailureInformation消息或MCGFailureInformation消息,或者一个新的RRC消息。
再例如,终端设备通过MAC CE上报上述失败。当辅小区或非服务小区有可用的UL-SCH(Uplink Shared Channel,上行链路共享信道)资源,且作为LCP(Logical Channel  Prioritization,逻辑信道优先级划分)的结果该资源足够容纳用于携带上述信息的MAC CE,则终端设备生成该MAC CE,否则触发SR(Scheduling Request,调度请求)。网络可以为这个SR配置专用的PUCCH(Physical Uplink Control Channel,物理上行链路控制通道)资源或SR ID或者使这个SR使用其他SR(例如LCH(Logical Channel,逻辑信道)对应的SR、持续LBT失败MAC CE对应的SR或BFR(Beam Failure Recovery,波束失败恢复)MAC CE对应的SR)的PUCCH资源或SR ID。这个MAC CE通过一个LCID(Logical Channel Identification,逻辑信道标识)或eLCID(增强的LCID)所在的MAC子头识别。
以上各个实施例仅对终端设备经由辅小区和/或非服务小区向网络设备上报上述失败进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
在本申请实施例中,在一些实施方式中,当无线链路质量或者控制信道的质量不好或差时,终端设备认为发生了链路失败。
在上述实施方式中,无线链路质量或者控制信道的质量通过L1测量结果或者过滤的L1测量结果来表征,当L1测量结果或者过滤的L1测量结果比配置的阈值差时,认为“质量不好或差”,同理,当L1测量结果或者过滤的L1测量结果比配置的阈值好时,认为“质量好”。在本申请实施例中,对阈值的取值不做限制,例如可以根据网络部署情况来设置。
在一些实施例中,终端设备进行失败检测,包括:终端设备的物理层对配置的参考信号进行测量,向高层提供质量差和/或好的指示,高层根据收到的指示和/或定时器,确定是否发生了链路失败。
在上述实施例中,参考信号可以是用于波束失败检测配置的参考信号(BFD-RS),或者是用于无线链路监听配置的参考信号(RLM-RS),或者是为快速或低层的无线链路失败检测配置的参考信号,本申请不限于此。
在上述实施例中,参考信号可以是按照每服务小区配置的,也即,每个服务小区被配置一个或一组参考信号。
在上述实施例中,质量差和/或好可以是:L1测量结果比配置的阈值(或其等价的值,称为第一阈值)差和/或好一个偏移或一段时间,或者是指,过滤的L1测量结果比配置的阈值(或其等价的值,称为第二阈值)差和/或好一个偏移或一段时间。这里,L1 测量结果可以是L1的RSRP,包括SS-RSRP或CSI-RSRP;也可以是L1的RSRQ,包括SS-RSRQ或CSI-RSRQ;还可以是L1的SINR,包括SS-SINR或CSI-SINR。
在上述实施例中,过滤的L1测量结果是指对L1测量结果进行处理(例如运算)后得到的测量结果,例如可以是一段时间内的多个L1测量结果的平均值,也可以是多个最高L1测量结果的平均值。
在上述实施例中,终端设备的高层根据收到的指示(质量差和/或好的指示)和/或定时器,确定是否发生了链路失败。这里,高层可以是MAC层和/或RRC层。
例如,当终端设备的高层收到质量差的指示时,启动或重启第一定时器;当第一定时器超时时,重新计算质量差的指示的数量;当收到连续M个质量差的指示时,认为发生了链路失败。也即,根据质量差的指示的数量确定是否发生了链路失败。
再例如,当终端设备的高层收到连续M个质量差的指示时,启动第二定时器;当终端设备的高层收到T个质量好的指示时,停止第二定时器;当第二定时器超时时,认为发生了链路失败。也即,根据定时器是否超时确定是否发生了链路失败。
再例如,当终端设备的高层在第三定时器运行期间收到连续M个质量差的指示时,认为发生了链路失败。也即,根据质量差的指示和定时器确定是否发生了链路失败。
再例如,当终端设备的高层收到连续M个质量差的指示时,认为发生了链路失败;当终端设备的高层收到T个质量好的指示时,重新计算质量差的指示的数量。也即,根据质量差的指示和质量好的指示确定是否发生了链路失败。
再例如,当终端设备的高层收到连续M个所述质量差的指示时,认为发生了链路失败。也即,仅根据质量差的指示确定是否发生了链路失败。
在上述实施例中,对各个定时器的取值不做限制,可以根据需要设定。
在另一些实施例中,终端设备进行失败检测,包括:终端设备对HARQ进程的NACK和/或ACK(Acknowledgement,正向反馈)进行监测,根据监测结果确定是否发生了链路失败。
例如,如果在一段时间内收到连续S个NACK指示,则认为发生了链路失败,和/或,如果在一段时间内未收到ACK指示(例如未收到连续S个ACK指示),则认为发生了链路失败。
在上述实施例中,HARQ进程可以是指定的HARQ进程,或者是一个HARQ进程,或者是所有的HARQ进程。
在上述实施例中,可以是终端设备的物理层对HARQ进程的NACK和/或ACK进 行监测,也可以是终端设备的MAC层对HARQ进程的NACK和/或ACK进行监测。
以上各个实施例仅对终端设备如何确定发生了链路失败进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
在本申请实施例中,在另一些实施方式中,当携带测量结果的L1或L2信令未能成功发送给网络设备时,终端设备认为发生了测量上报失败。
在一些实施例中,终端设备进行失败检测,包括:终端设备在生成或递交给低层或发送了携带测量结果的L1或L2信令时,启动第四定时器;在第四定时器超时时,认为发生了测量上报失败。
例如,在生成或发送携带测量结果的L1信令时,或者在生成携带测量结果的L2信令并将其递交给低层时,终端设备启动第四定时器,在第四定时器超时时,认为发生了测量上报失败。
在上述实施例中,在收到上述HARQ进程(也即,携带测量结果的L1或L2信令的HARQ进程)的ACK,或者收到调度该HARQ进程新传的UL授权,或者收到小区切换命令时,意味着测量上报已经成功,此时可以停止上述第四定时器。
在上述实施例中,小区切换命令可以通过DCI(Downlink Control Information,下行链路控制信息)、MAC CE、RRC消息等携带,本申请不限于此。
在另一些实施例中,终端设备进行失败检测,包括:终端设备对上述携带测量结果的L1或L2信令的HARQ进程的NACK和/或ACK进行监测,根据监测结果确定是否发生了测量上报失败。
例如,如果在一段时间内收到连续X个NACK指示,则认为发生了测量上报失败,和/或,如果在一段时间内未收到ACK指示(例如未收到连续X个ACK指示),则认为发生了测量上报失败。
在上述实施例中,可以是终端设备的物理层对上述携带测量结果的L1或L2信令的HARQ进程的NACK和/或ACK进行监测,也可以是终端设备的MAC层对上述携带测量结果的L1或L2信令的HARQ进程的NACK和/或ACK进行监测。
在上述实施例中,对第四定时器的取值不做限制,可以根据需要设定。
以上各个实施例仅对终端设备如何确定发生了测量上报失败进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
在本申请实施例中,在又一些实施方式中,携带测量结果的L1或L2信令被成功发送后,如果在一定时间内没收到小区切换命令,则终端设备认为发生了接收小区切换命令失败。
在一些实施例中,终端设备进行失败检测,包括:终端设备对携带测量结果的L1或L2信令的HARQ进程的ACK指示进行监测,当收到ACK指示时,启动第五定时器,在第五定时器超时时,认为发生了接收小区切换命令失败。
也即,对于携带测量结果的L1或L2信令的HARQ进程,终端设备在收到ACK指示时启动第五定时器,在第五定时器超时时,认为发生了接收小区切换命令失败。
在上述实施例中,终端设备在收到小区切换命令时,停止上述第五定时器。
在上述实施例中,小区切换命令可以通过DCI或者MAC CE或者RRC消息等携带,本申请不限于此。
在上述实施例中,对第五定时器的取值不做限制,可以根据需要设定。
以上各个实施例仅对终端设备如何确定发生了接收小区切换命令失败进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
在本申请实施例中,在又一些实施方式中,当终端设备无法遵从(comply with)携带候选小区信息的RRC重配置消息,或者无法遵从(comply with)携带候选小区信息的RRC重配置消息中PCell的配置,或者无法遵从(comply with)携带候选小区信息的RRC重配置消息中由L1或L2小区切换命令指示的PCell时,认为发生了终端处理失败。
在上述实施例中,终端处理包括对携带候选小区信息的RRC重配置消息和/或对L1或L2小区切换命令的处理,然而,由于终端能力的问题,其可能无法遵从上述携带候选小区信息的RRC重配置消息和/或L1或L2小区切换命令,则在其无法遵从上述携带候选小区信息的RRC重配置消息和/或L1或L2小区切换命令时,认为发生了终端处理失败。
在上述实施例中,PCell可以是上述携带候选小区信息的RRC重配置消息中的任意PCell的配置,也可以是上述携带候选小区信息的RRC重配置消息中的一个PCell的配置,本申请不限于此。
在上述实施例中,PCell的配置包看L1或L2或L3的配置,例如MAC配置、无线承载配置、RF配置等。
以上各个实施例仅对终端设备如何确定发生了终端处理失败进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
在本申请实施例中,在又一些实施方式中,当基于L1或L2信令的小区改变失败时,终端设备认为发生了切换失败。
在上述实施例中,终端设备基于L1或L2信令的小区改变是否成功或失败,确定是否发生了切换失败。
在一些实施例中,终端设备基于用于控制基于L1或L2信令的小区改变的定时器(称为第六定时器)来确定是发生了切换失败。
在上述实施例中,终端设备进行失败检测,包括:终端设备在收到用于触发小区改变的L1或L2信令时,启动第六定时器,在第六定时器超时时,认为发生了切换失败。
在上述实施例中,在终端设备完成随机接入过程,或者终端设备开始与指示的小区进行通信,或者终端设备向目标小区发生用于指示切换完成或成功切换到目标小区的信息时,意味着切换已经完成,此时,终端设备停止上述第六定时器。
在上述实施例中,对第六定时器的取值不做限制,可以根据需要设定。
在另一些实施例中,终端设备基于RA前导码的发送数来确定是否发生了切换失败。
在上述实施例中,终端设备进行失败检测,包括:终端设备对发送的RA前导码的数量进行统计,根据统计结果确定是否发生了切换失败。
例如,如果发送的RA前导码的数量超过一个阈值(称为第三阈值),则认为发生了切换失败。
在上述实施例中,对第三阈值的取值不做限制,可以根据需要设定。
在又一些实施例中,终端设备基于收到的ACK/NACK数来确定是否发生了切换失败。
在上述实施例中,终端设备进行失败检测,包括:终端设备对携带第一个UL数据的HARQ进程的NACK和/或ACK进行监测,根据监测结果确定是否发生了切换失败。
例如,如果在一段时间内收到连续Y个NACK指示,则认为发生了切换失败;和/或如果在一段时间内未收到ACK指示(例如未收到连续Y个ACK指示),则认为发生了切换失败。
以上各个实施例仅对终端设备如何确定是否发生了切换失败进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独 使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
在本申请实施例中,在一些实施方式中,当检测到失败,终端设备还可以应用收到包括候选小区的配置的RRC重配置消息和/或小区切换命令之前使用的配置。
例如,当检测到链路失败或者切换失败时,终端设备可以应用收到包括候选小区的配置的RRC重配置消息和/或小区切换命令之前使用的配置。
下面结合附图,对本申请实施例的方法进行示例性说明。
图5是本申请实施例的失败检测及恢复方法的另一示意图,如图5所示,该方法包括:
501,终端设备在收到候选配置后进行失败检测;
502,当所述终端设备检测到终端处理失败时,应用存储的配置和/或经由辅小区和/或非服务小区向网络设备上报所述失败。
在上述示例中,候选配置例如为携带候选小区信息的RRC重配置消息。
在上述示例中,进行失败检测的方法以及上报失败的方法已经在前面做了说明,其内容被合并于此,此处不再赘述。
图6是本申请实施例的失败检测及恢复方法的又一示意图,如图6所示,该方法包括:
601,终端设备在发送了测量报告后进行失败检测;
602,当所述终端设备检测到测量上报失败时,应用存储的配置和/或经由辅小区和/或非服务小区向网络设备上报所述失败。
在上述示例中,进行失败检测的方法以及上报失败的方法已经在前面做了说明,其内容被合并于此,此处不再赘述。
图7是本申请实施例的失败检测及恢复方法的再一示意图,如图7所示,该方法包括:
701,终端设备在发送了测量报告后进行失败检测;
702,当所述终端设备检测到接收小区切换命令失败时,应用存储的配置和/或经由辅小区和/或非服务小区向网络设备上报所述失败。
在上述示例中,进行失败检测的方法以及上报失败的方法已经在前面做了说明,其内容被合并于此,此处不再赘述。
图8是本申请实施例的失败检测及恢复方法的又一示意图,如图8所示,该方法包括:
801,终端设备在接收到小区切换命令后进行失败检测;
802,当所述终端设备检测到切换失败时,应用存储的配置和/或经由辅小区和/或非服务小区向网络设备上报所述失败。
在上述示例中,进行失败检测的方法以及上报失败的方法已经在前面做了说明,其内容被合并于此,此处不再赘述。
在上述示例中,可选的,如果终端设备应用了小区切换命令指示的小区的配置,则终端设备可以可以应用收到包括候选小区的配置的RRC重配置消息和/或小区切换命令之前使用的配置。
值得注意的是,以上附图5至图8仅示意性地对本申请实施例进行了说明,但本申请不限于此。例如可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图5至图8的记载。
本申请实施例还提供一种失败检测及恢复的方法,从网络侧进行说明,其中与前文相同的内容,不再赘述。
图9是本申请实施例的失败检测及恢复的方法的一示意图,如图9所述,该方法包括:
901,网络设备接收来自终端设备的失败上报,所述失败上报为所述终端设备检测到的链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个。
在上述实施例中,上述失败上报可以在终端设备经由辅小区上报的,也可以是终端设备经由非服务小区上报的。关于失败检测以及非服务小区的内容,已经在前面做了详细说明,此处不再赘述。
在一些实施例中,网络设备还可以为终端设备配置阈值,如前述的第一阈值至第三阈值等。本申请对具体的配置方法不做限制。
在一些实施例中,网络设备还可以为终端设备配置定时器,如前述的第一定时器至第六定时器等。本申请对具体的配置方法不做限制。
根据本申请实施例的方法,当检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,终端应用存储的配置和/或经辅小区/非服务小区上报失败,由此,能进行更快地失败检测和恢复,从而减小业务中断时间,提升用户体验。
第二方面的实施例
本申请实施例提供一种失败检测及恢复装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。本申请实施例的装置对应第一方面的实施例的图4的方法,其中与第一方面的实施例相同的内容不再重复说明。
图10是本申请实施例的失败检测及恢复装置的一个示例的示意图。如图10所示,本申请实施例的失败检测及恢复装置1000包括:
检测单元1001,其进行失败检测;
处理单元1002,其在检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,应用存储的配置进行恢复和/或经由辅小区和/或非服务小区向网络设备上报所述失败。
在一些实施例中,当检测单元1001检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,处理单元1002应用存储的配置进行恢复;如果处理单元1002无法应用存储的配置进行恢复,则处理单元1002经由辅小区和/或非服务小区向网络设备上报上述失败。
在一些实施例中,处理单元1002经由辅小区和/或非服务小区向网络设备上报所述失败,包括:经由辅小区向网络设备上报上述失败;如果辅小区不可用,则经由非服务小区向网络设备上报上述失败。
在一些实施例中,存储的配置是终端设备收到并存储的RRC重配置消息中的小区或小区组的配置。
其中,小区或小区组的配置可以包括主小区的配置和/或辅小区的配置以及波束信息;波束信息为下行信道或上行信道或参考信号的TCI状态信息。
在一些实施例中,如果TCI状态信息为N个以上,则处理单元1002应用N个以上的TCI状态信息中指示的或默认的或通过评估确定的M个TCI状态信息,其中,M≤N,N是1或2,取决于终端设备的能力。
在一些实施例中,非服务小区为切换的候选小区或服务小区关联的一个小区。
在一些实施例中,处理单元1002经由辅小区和/或非服务小区向网络设备上报上述失败,包括上报以下至少之一:失败小区的小区信息;失败原因和/或失败类型;测量结果;以及期望的处理。
在上述实施例中,失败小区的小区信息可以包括以下至少之一:小区索引、小区ID。
在上述实施例中,失败原因可以包括以下至少之一:相应的定时器超时、收到的 NACK数达到最大值、RAP传输达到最大数;失败类型包括以下至少之一:链路失败、测量上报失败、接收小区切换命令失败、终端处理失败、切换失败。
在上述实施例中,测量结果可以包括失败小区和/或满足条件的候选小区的基于L1测量或基于L3测量的波束和/或小区的测量结果。
在上述实施例中,期望的处理可以包括以下至少之一:波束改变、小区改变。
在一些实施例中,处理单元1002通过RRC消息或MAC CE上报上述失败。
在一些实施例中,当无线链路质量或者控制信道的质量不好或差时,检测单元1001认为发生了链路失败。
例如,检测单元1001(终端设备的物理层)对配置的参考信号进行测量,向高层提供质量差和/或好的指示;检测单元1001(终端设备的高层)根据收到的指示和/或定时器,确定是否发生了链路失败。
在上述示例中,高层可以是MAC层和/或RRC层。
在上述示例中,参考信号可以是以下之一:用于波束失败检测配置的参考信号(BFD-RS);用于无线链路监听配置的参考信号(RLM-RS);为快速或低层的无线链路失败检测配置的参考信号。
在上述示例中,参考信号可以是按照每服务小区配置的。
在上述示例中,质量差和/或好可以是指,L1测量结果比配置的第一阈值差和/或好;或者,过滤的L1测量结果比配置的第二阈值差和/或好。
在上述示例中,L1测量结果可以包括以下至少之一:L1的RSRP,包括SS-RSRP或CSI-RSRP;L1的RSRQ,包括SS-RSRQ或CSI-RSRQ;L1的SINR,包括SS-SINR或CSI-SINR。
在上述示例中,过滤的L1测量结果是指对L1测量结果进行处理后得到的测量结果,例如可以包括:一段时间内的L1测量结果的平均值,或者多个最高L1测量结果的平均值。
在一些实施方式中,当检测单元1001(终端设备的高层)收到质量差的指示时,启动或重启第一定时器;当第一定时器超时时,重新计算质量差的指示的数量;当收到连续M个质量差的指示时,认为发生了链路失败。
在一些实施方式中,当检测单元1001(终端设备的高层)收到连续M个质量差的指示时,启动第二定时器;当检测单元1001(终端设备的高层)收到T个质量好的指示时,停止第二定时器;当第二定时器超时时,认为发生了链路失败。
在一些实施方式中,当检测单元1001(终端设备的高层)在第三定时器运行期间收到连续M个质量差的指示时,认为发生了链路失败。
在一些实施方式中,当检测单元1001(终端设备的高层)收到连续M个质量差的指示时,认为发生了链路失败;当检测单元1001(终端设备的高层)收到T个质量好的指示时,重新计算质量差的指示的数量。
在一些实施方式中,当检测单元1001(终端设备的高层)收到连续M个所述质量差的指示时,认为发生了链路失败。
再例如,检测单元1001对HARQ进程的NACK和/或ACK进行监测;根据监测结果确定是否发生了链路失败。
在一些实施方式中,如果在一段时间内收到连续S个NACK指示,则认为发生了链路失败;和/或,如果在一段时间内未收到ACK指示,则认为发生了链路失败。
在上述示例中,HARQ进程可以是指定的HARQ进程,或者是一个HARQ进程,或者是所有的HARQ进程。
在另一些实施例中,当携带测量结果的L1或L2信令未能成功发送给网络时,检测单元1001认为发生了测量上报失败。
例如,在终端设备生成或递交给低层或发送了携带测量结果的L1或L2信令时,检测单元1001启动第四定时器;在第四定时器超时时,认为发生了测量上报失败。
在上述示例中,在终端设备收到携带测量结果的L1或L2信令的HARQ进程的ACK,或者收到调度所述HARQ进程新传的UL授权,或者收到小区切换命令时,检测单元1001停止第四定时器。
再例如,检测单元1001对携带测量结果的L1或L2信令的HARQ进程的NACK和/或ACK进行监测;根据监测结果确定是否发生了测量上报失败。
在一些实施方式中,如果在一段时间内收到连续X个NACK指示,则认为发生了测量上报失败;和/或,如果在一段时间内未收到ACK指示,则认为发生了测量上报失败。
在又一些实施例中,携带测量结果的L1或L2信令被成功发送后,如果在一定时间内没收到小区切换命令,检测单元1001认为发生了接收小区切换命令失败。
例如,对于携带测量结果的L1或L2信令的HARQ进程,在终端设备收到ACK指示时,检测单元1001启动第五定时器;在第五定时器超时时,认为发生了接收小区切换命令失败。
在上述示例中,在终端设备收到小区切换命令时,检测单元1001可以停止第五定时器。
在上述示例中,小区切换命令可以通过DCI或者MAC CE或者RRC消息携带。
在又一些实施例中,当终端设备无法遵从携带候选小区信息的RRC重配置消息,或者无法遵从携带候选小区信息的RRC重配置消息中PCell的配置,或者无法遵从携带候选小区信息的RRC重配置消息中由L1或L2小区切换命令指示的PCell时,检测单元1001认为发生了终端处理失败。
在上述实施例中,PCell的配置包括L1或L2或L3的配置;L1或L2或L3的配置包括MAC配置、无线承载配置、RF配置中的至少之一。
在又一些实施例中,当基于L1或L2信令的小区改变失败时,检测单元1001认为发生了切换失败。
例如,终端设备在收到用于触发小区改变的L1或L2信令时,检测单元1001启动第六定时器;在第六定时器超时时,认为发生了切换失败。
在上述示例中,在终端设备完成随机接入过程,或者终端设备开始与指示的小区进行通信时,或者终端设备向目标小区发送用于指示切换完成或成功切换到目标小区的信息时,检测单元1001停止第六定时器。
再例如,检测单元1001对终端设备发送的RA前导码的数量进行统计;根据统计结果确定是否发生了切换失败。
在一些实施方式中,如果终端设备发送的RA前导码的数量超过第三阈值,则检测单元1001认为发生了切换失败。
再例如,检测单元1001对携带第一个UL数据的HARQ进程的NACK和/或ACK进行监测;根据监测结果确定是否发生了切换失败。
在上述示例中,在一些实施方式中,如果在一段时间内终端设备收到连续Y个NACK指示,则检测单元1001认为发生了切换失败;和/或,如果在一段时间内终端设备未收到ACK指示,则检测单元1001认为发生了切换失败。
在本申请实施例中,可选的,在检测到失败的情况下,处理单元1002还可以应用终端设备收到包括候选小区的配置的RRC重配置消息和/或小区切换命令之前使用的配置。
本申请实施例提供一种失败检测及恢复装置。该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件。本申请实施例的装置对应第一方面的实 施例的图9的方法,其中与第一方面的实施例相同的内容不再重复说明。
图11是本申请实施例的失败检测及恢复装置的一个示例的示意图。如图11所示,本申请实施例的失败检测及恢复装置1100包括:
接收单元1101,其接收来自终端设备的失败上报,所述失败上报为所述终端设备检测到的链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个。
在上述实施例中,上述失败上报可以在终端设备经由辅小区上报的,也可以是终端设备经由非服务小区上报的。关于失败检测以及非服务小区的内容,已经在第一方面的实施例中做了详细说明,此处不再赘述。
在一些实施例中,如图11所示,该装置1100还包括:
第一配置单元1102,其为终端设备配置阈值,如第一方面的实施例所述的第一阈值至第三阈值等。本申请对具体的配置方法不做限制。
在一些实施例中,如图11所示,该装置1100还包括:
第二配置单元1103,其为终端设备配置定时器,如第一方面的实施例所述的第一定时器至第六定时器等。本申请对具体的配置方法不做限制。
以上对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的失败检测及恢复的装置1000和1100还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。此外,上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
根据本申请实施例的装置,减小了业务中断时间,提升了用户体验。
第三方面的实施例
本申请实施例还提供一种通信***,包括网络设备和终端设备。
在一些实施例中,终端设备包括第二方面的实施例的图10所示的装置,被配置为执行第一方面的实施例的图4所示的方法。由于在第一方面的实施例中,已经对该方法进行了详细说明,其内容被合并于此,不再重复说明。
在本申请实施例中,终端设备包括第二方面的实施例的图11所示的装置,被配置为执行第一方面的实施例的图9所示的方法。由于在第一方面的实施例中,已经对该方法进行了详细说明,其内容被合并于此,不再重复说明。此外,网络设备执行网络设备的常规操作,并且,网络设备还可以执行与终端设备的操作对应的操作,例如网络设备接收来自终端设备的信息/信号,和/或网络设备向终端设备发送信息/信号,此处省略说明。
本申请实施例还提供一种终端设备,该终端设备例如可以是UE,但本申请不限于此,还可以是其它的终端设备。
图12是本申请实施例的终端设备的示意图。如图12所示,该终端设备1200可以包括处理器1201和存储器1202;存储器1202存储有数据和程序,并耦合到处理器1201。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
在一些实施例中,第二方面的实施例的装置的功能可以被集成到处理器1201中,其中,处理器1201可以被配置为执行程序而实现如第一方面的实施例所述的方法,其内容被合并于此,此处不再重复说明。
在另一些实施例中,第二方面的实施例的装置可以与处理器1201分开配置,例如可以将第二方面的实施例的装置配置为与处理器1201连接的芯片,通过处理器1201的控制来实现第二方面的实施例的装置的功能。
如图12所示,该终端设备1200还可以包括:通信模块1203、输入单元1204、显示器1205、电源1206。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1200也并不是必须要包括图12中所示的所有部件,上述部件并不是必需的;此外,终端设备1200还可以包括图12中没有示出的部件,可以参考相关技术。
本申请实施例还提供一种网络设备,该网络设备例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图13是本申请实施例的网络设备的构成示意图。如图13所示,网络设备1300可以包括:处理器1301和存储器1302;存储器1302耦合到处理器1301。其中该存储器1302可存储各种数据;此外还存储信息处理的程序,并且在处理器1301的控制下执行该程序。
在一些实施例中,第二方面的实施例的装置1100的功能可以被集成到处理器1301中,其中,处理器1301可以被配置为执行程序而实现如第一方面的实施例的图9所述 的方法,其内容被合并于此,此处不再重复说明。
在另一些实施例中,第二方面的实施例的装置1100可以与处理器1301分开配置,例如可以将第二方面的实施例的装置1100配置为与处理器1301连接的芯片,通过处理器1301的控制来实现第二方面的实施例的装置1100的功能。
此外,如图13所示,网络设备1300还可以包括:收发机1303和1304。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1300也并不是必须要包括图13中所示的所有部件;此外,网络设备1300还可以包括图13中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一方面的实施例所述的方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一方面的实施例所述的方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可***移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可 以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
1.一种失败检测及恢复方法,包括:
终端设备进行失败检测;
当所述终端设备检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,应用存储的配置和/或经由辅小区和/或非服务小区向网络设备上报所述失败。
2.根据附记1所述的方法,其中,
当所述终端设备检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,应用存储的配置;
如果无法应用存储的配置进行恢复,则经由辅小区和/或非服务小区向网络设备上报所述失败。
3.根据附记1或2所述的方法,其中,经由辅小区和/或非服务小区向网络设备上报所述失败,包括:
经由辅小区向网络设备上报所述失败;
如果辅小区不可用,则经由非服务小区向网络设备上报所述失败。
4.根据附记1所述的方法,其中,
所述存储的配置是所述终端设备收到并存储的RRC重配置消息中的小区或小区组的配置。
5.根据附记4所述的方法,其中,
所述小区或小区组的配置包括主小区的配置和/或辅小区的配置以及波束信息;
所述波束信息为下行信道或上行信道或参考信号的TCI状态信息。
6.根据附记5所述的方法,其中,
如果所述TCI状态信息为N个以上,则所述终端设备应用所述N个以上的TCI状态信息中指示的或默认的或通过评估确定的M个TCI状态信息,其中,M≤N,N是1或2,取决于所述终端设备的能力。
7.根据附记1所述的方法,其中,
所述非服务小区为切换的候选小区或服务小区关联的一个小区。
8.根据附记1或7所述的方法,其中,经由辅小区和/或非服务小区向网络设备上报所述失败,包括上报以下至少之一:
失败小区的小区信息;
失败原因和/或失败类型;
测量结果;以及
期望的处理。
9.根据附记8所述的方法,其中,
失败小区的所述小区信息包括以下至少之一:小区索引、小区ID。
10.根据附记8所述的方法,其中,
所述失败原因包括以下至少之一:相应的定时器超时、收到的NACK数达到最大值、RAP传输达到最大数;
所述失败类型包括以下至少之一:链路失败、测量上报失败、接收小区切换命令失败、终端处理失败、切换失败。
11.根据附记8所述的方法,其中,
所述测量结果包括失败小区和/或满足条件的候选小区的基于L1测量或基于L3测量的波束和/或小区的测量结果。
12.根据附记8所述的方法,其中,
所述期望的处理包括以下至少之一:波束改变、小区改变。
13.根据附记1、7-12任一项所述的方法,其中,所述终端设备通过RRC消息或MAC CE上报所述失败。
14.根据附记1所述的方法,其中,
当无线链路质量或者控制信道的质量不好或差时,所述终端设备确定检测到链路失败。
15.根据附记1或14所述的方法,其中,所述终端设备进行失败检测,包括:
所述终端设备的物理层对配置的参考信号进行测量,向所述终端设备的高层提供质量差和/或好的指示;
所述终端设备的高层根据收到的所述指示和/或定时器,确定是否检测到链路失败。
16.根据附记15所述的方法,其中,
所述高层是MAC层和/或RRC层。
17.根据附记15所述的方法,其中,所述参考信号是以下之一:
用于波束失败检测配置的参考信号(BFD-RS);
用于无线链路监听配置的参考信号(RLM-RS);
为快速或低层的无线链路失败检测配置的参考信号。
18.根据附记17所述的方法,其中,
所述参考信号是按照每服务小区配置的。
19.根据附记15所述的方法,其中,质量差和/或好,是指,
L1测量结果比配置的第一阈值差和/或好;或者
过滤的L1测量结果比配置的第二阈值差和/或好。
20.根据附记19所述的方法,其中,所述L1测量结果包括以下至少之一:
L1的RSRP,包括SS-RSRP或CSI-RSRP;
L1的RSRQ,包括SS-RSRQ或CSI-RSRQ;
L1的SINR,包括SS-SINR或CSI-SINR。
21.根据附记19所述的方法,其中,
所述过滤的L1测量结果是指对所述L1测量结果进行处理后得到的测量结果,包括:一段时间内的L1测量结果的平均值,或者多个最高L1测量结果的平均值。
22.根据附记15所述的方法,其中,
当所述终端设备的高层收到所述质量差的指示时,启动或重启第一定时器;当所述第一定时器超时时,重新计算所述质量差的指示的数量;当收到连续M个所述质量差的指示时,确定检测到链路失败;或者
当所述终端设备的高层收到连续M个所述质量差的指示时,启动第二定时器;当所述终端设备的高层收到T个所述质量好的指示时,停止所述第二定时器;当所述第二定时器超时时,确定检测到链路失败;或者
当所述终端设备的高层在第三定时器运行期间收到连续M个所述质量差的指示时,确定检测到链路失败;或者
当所述终端设备的高层收到连续M个所述质量差的指示时,确定检测到链路失败;当所述终端设备的高层收到T个所述质量好的指示时,重新计算质量差的指示的数量;或者
当所述终端设备的高层收到连续M个所述质量差的指示时,确定检测到链路失败。
23.根据附记1或14所述的方法,其中,所述终端设备进行失败检测,包括:
所述终端设备对HARQ进程的NACK和/或ACK进行监测;
所述终端设备根据监测结果确定是否检测到链路失败。
24.根据附记23所述的方法,其中,根据监测结果确定是否检测到链路失败,包括:
如果在一段时间内收到连续S个NACK指示,则确定检测到链路失败;和/或,
如果在一段时间内未收到ACK指示,则确定检测到链路失败。
25.根据附记23或24所述的方法,其中,
所述HARQ进程是指定的HARQ进程,或者是一个HARQ进程,或者是所有的HARQ进程。
26.根据附记1所述的方法,其中,
当携带测量结果的L1或L2信令未能成功发送给网络时,所述终端设备确定检测到测量上报失败。
27.根据附记1或26所述的方法,其中,所述终端设备进行失败检测,包括:
在生成或递交给低层或发送了携带测量结果的L1或L2信令时,所述终端设备启动第四定时器;
在所述第四定时器超时时,所述终端设备确定检测到测量上报失败。
28.根据附记27所述的方法,其中,
在收到携带测量结果的L1或L2信令的HARQ进程的ACK,或者收到调度所述HARQ进程新传的UL授权,或者收到小区切换命令时,停止所述第四定时器。
29.根据附记1或26所述的方法,其中,所述终端设备进行失败检测,包括:
所述终端设备对携带测量结果的L1或L2信令的HARQ进程的NACK和/或ACK进行监测;
所述终端设备根据监测结果确定是否检测到测量上报失败。
30.根据附记29所述的方法,其中,根据监测结果确定是否检测到测量上报失败,包括:
如果在一段时间内收到连续X个NACK指示,则确定检测到测量上报失败;和/或,
如果在一段时间内未收到ACK指示,则确定检测到测量上报失败。
31.根据附记1所述的方法,其中,
携带测量结果的L1或L2信令被成功发送后,如果在一定时间内没收到小区切换命令,所述终端设备确定检测到接收小区切换命令失败。
32.根据附记1或31所述的方法,其中,所述终端设备进行失败检测,包括:
所述终端设备对于携带测量结果的L1或L2信令的HARQ进程,在收到ACK指示时,启动第五定时器;
在所述第五定时器超时时,所述终端设备确定检测到接收小区切换命令失败。
33.根据附记32所述的方法,其中,
在收到小区切换命令时,停止所述第五定时器。
34.根据附记32所述的方法,其中,
所述小区切换命令通过DCI或者MAC CE或者RRC消息携带。
35.根据附记1所述的方法,其中,
当所述终端设备无法遵从携带候选小区信息的RRC重配置消息,或者无法遵从携带候选小区信息的RRC重配置消息中PCell的配置,或者无法遵从携带候选小区信息的RRC重配置消息中由L1或L2小区切换命令指示的PCell时,所述终端设备确定检测到终端处理失败。
36.根据附记35所述的方法,其中,
所述PCell的配置包括L1或L2或L3的配置;
所述L1或L2或L3的配置包括MAC配置、无线承载配置、RF配置中的至少之一。
37.根据附记1所述的方法,其中,
当基于L1或L2信令的小区改变失败时,所述终端设备确定检测到切换失败。
38.根据附记1或37所述的方法,其中,所述终端设备进行失败检测,包括:
所述终端设备在收到用于触发小区改变的L1或L2信令时,启动第六定时器;
在所述第六定时器超时时,所述终端设备确定检测到切换失败。
39.根据附记38所述的方法,其中,
在所述终端设备完成随机接入过程,或者所述终端设备开始与指示的小区进行通信时,或者所述终端设备向目标小区发送用于指示切换完成或成功切换到目标小区的信息时,所述终端设备停止所述第六定时器。
40.根据附记1或37所述的方法,其中,所述终端设备进行失败检测,包括:
所述终端设备对发送的RA前导码的数量进行统计;
所述终端设备根据统计结果确定是否检测到切换失败。
41.根据附记40所述的方法,其中,根据统计结果确定是否检测到切换失败,包括:
如果发送的RA前导码的数量超过第三阈值,则确定检测到切换失败。
42.根据附记1或37所述的方法,其中,所述终端设备进行失败检测,包括:
所述终端设备对携带第一个UL数据的HARQ进程的NACK和/或ACK进行监测;
所述终端设备根据监测结果确定是否检测到切换失败。
43.根据附记42所述的方法,其中,根据监测结果确定是否检测到切换失败,包括:
如果在一段时间内收到连续Y个NACK指示,则确定检测到切换失败;和/或,
如果在一段时间内未收到ACK指示,则确定检测到切换失败。
44.根据附记1-43任一项所述的方法,其中,所述方法还包括:
所述终端设备应用收到包括候选小区的配置的RRC重配置消息和/或小区切换命令之前使用的配置。
45.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至44任一项所述的方法。
46.一种通信***,包括网络设备以及附记45所述的终端设备。

Claims (20)

  1. 一种失败检测及恢复装置,其中,所述装置包括:
    检测单元,其进行失败检测;
    处理单元,当所述检测单元检测到链路失败、测量上报失败、接收小区切换命令失败、终端处理失败和切换失败中的一个时,所述处理单元应用存储的配置和/或经由辅小区和/或非服务小区向网络设备上报所述失败。
  2. 根据权利要求1所述的装置,其中,
    所述存储的配置是所述终端设备收到并存储的无线资源控制重配置消息中的小区或小区组的配置。
  3. 根据权利要求2所述的装置,其中,
    所述小区或小区组的配置包括主小区的配置和/或辅小区的配置以及波束信息;
    所述波束信息为下行信道或上行信道或参考信号的传输配置指示状态信息。
  4. 根据权利要求1所述的装置,其中,
    所述非服务小区为切换的候选小区或服务小区关联的一个小区。
  5. 根据权利要求1所述的装置,其中,经由辅小区和/或非服务小区向网络设备上报所述失败,包括上报以下至少之一:
    失败小区的小区信息;
    失败原因和/或失败类型;
    测量结果;以及
    期望的处理。
  6. 根据权利要求5所述的装置,其中,
    所述失败原因包括以下至少之一:相应的定时器超时、收到的负向反馈数达到最大值、随机接入前导码传输达到最大数;
    所述失败类型包括以下至少之一:链路失败、测量上报失败、接收小区切换命令失败、终端处理失败、切换失败。
  7. 根据权利要求5所述的装置,其中,
    所述期望的处理包括以下至少之一:波束改变、小区改变。
  8. 根据权利要求1所述的装置,其中,所述检测单元进行失败检测,包括:
    所述检测单元在终端设备的物理层对配置的参考信号进行测量,向所述终端设备的高层提供质量差和/或好的指示;
    所述检测单元在终端设备的高层根据收到的所述指示和/或定时器,确定是否检测到链路失败。
  9. 根据权利要求8所述的装置,其中,所述参考信号是以下之一:
    用于波束失败检测配置的参考信号;
    用于无线链路监听配置的参考信号;
    为快速或低层的无线链路失败检测配置的参考信号。
  10. 根据权利要求8所述的装置,其中,
    当所述终端设备的高层收到所述质量差的指示时,所述检测单元启动或重启第一定时器;当所述第一定时器超时时,所述检测单元重新计算所述质量差的指示的数量;当所述终端设备的高层收到连续M个所述质量差的指示时,所述检测单元确定检测到链路失败;或者
    当所述终端设备的高层收到连续M个所述质量差的指示时,所述检测单元启动第二定时器;当所述终端设备的高层收到T个所述质量好的指示时,所述检测单元停止所述第二定时器;当所述第二定时器超时时,所述检测单元确定检测到链路失败;或者
    当所述终端设备的高层在第三定时器运行期间收到连续M个所述质量差的指示时,所述检测单元确定检测到链路失败;或者
    当所述终端设备的高层收到连续M个所述质量差的指示时,所述检测单元确定检测到链路失败;当所述终端设备的高层收到T个所述质量好的指示时,所述检测单元重新计算质量差的指示的数量;或者
    当所述终端设备的高层收到连续M个所述质量差的指示时,所述检测单元确定检测到链路失败。
  11. 根据权利要求1所述的装置,其中,所述检测单元进行失败检测,包括:
    所述检测单元对混合自动重传请求进程的负向反馈和/或正向反馈进行监测;
    所述检测单元根据监测结果确定是否检测到链路失败。
  12. 根据权利要求11所述的装置,其中,根据监测结果确定是否检测到链路失败,包括:
    如果在一段时间内收到连续S个负向反馈指示,则确定检测到链路失败;和/或,
    如果在一段时间内未收到正向反馈指示,则确定检测到链路失败。
  13. 根据权利要求1所述的装置,其中,
    当携带测量结果的层1或层2信令未能成功发送给网络时,所述检测单元确定检测 到测量上报失败。
  14. 根据权利要求1所述的装置,其中,
    携带测量结果的层1或层2信令被成功发送后,如果在一定时间内没收到小区切换命令,所述检测单元确定检测到接收小区切换命令失败。
  15. 根据权利要求1所述的装置,其中,
    当所述终端设备无法遵从携带候选小区信息的无线资源控制重配置消息,或者无法遵从携带候选小区信息的无线资源控制重配置消息中主小区的配置,或者无法遵从携带候选小区信息的无线资源控制重配置消息中由层1或层2小区切换命令指示的主小区时,所述检测单元确定检测到终端处理失败。
  16. 根据权利要求1所述的装置,其中,所述检测单元进行失败检测,包括:
    所述终端设备在收到用于触发小区改变的层1或层2信令时,所述检测单元启动第六定时器;
    在所述第六定时器超时时,所述检测单元确定检测到切换失败。
  17. 根据权利要求1所述的装置,其中,所述检测单元进行失败检测,包括:
    所述检测单元对发送的随机接入前导码的数量进行统计;
    所述检测单元根据统计结果确定是否检测到切换失败。
  18. 根据权利要求17所述的装置,其中,根据统计结果确定是否检测到切换失败,包括:
    如果发送的随机接入前导码的数量超过第三阈值,则确定检测到切换失败。
  19. 根据权利要求1所述的装置,其中,所述检测单元进行失败检测,包括:
    所述检测单元对携带第一个上行数据的混合自动重传请求进程的负向反馈和/或正向反馈进行监测;
    所述检测单元根据监测结果确定是否检测到切换失败。
  20. 根据权利要求1所述的装置,其中,
    所述处理单元应用收到包括候选小区的配置的无线资源控制重配置消息和/或小区切换命令之前使用的配置。
PCT/CN2022/122936 2022-09-29 2022-09-29 失败检测及恢复方法和装置 WO2024065543A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122936 WO2024065543A1 (zh) 2022-09-29 2022-09-29 失败检测及恢复方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122936 WO2024065543A1 (zh) 2022-09-29 2022-09-29 失败检测及恢复方法和装置

Publications (1)

Publication Number Publication Date
WO2024065543A1 true WO2024065543A1 (zh) 2024-04-04

Family

ID=90475501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122936 WO2024065543A1 (zh) 2022-09-29 2022-09-29 失败检测及恢复方法和装置

Country Status (1)

Country Link
WO (1) WO2024065543A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110839301A (zh) * 2018-08-16 2020-02-25 维沃移动通信有限公司 一种无线链路失败的信息处理方法、终端及网络设备
CN112996142A (zh) * 2019-12-12 2021-06-18 夏普株式会社 无线链路失败恢复方法以及用户设备
WO2021189442A1 (en) * 2020-03-27 2021-09-30 Lenovo (Beijing) Limited Method and apparatus for cho and fast mcg link recovery
US20210385703A1 (en) * 2020-06-04 2021-12-09 Electronics And Telecommunications Research Institute Method and apparatus for conditional handover operation in communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110839301A (zh) * 2018-08-16 2020-02-25 维沃移动通信有限公司 一种无线链路失败的信息处理方法、终端及网络设备
CN112996142A (zh) * 2019-12-12 2021-06-18 夏普株式会社 无线链路失败恢复方法以及用户设备
WO2021189442A1 (en) * 2020-03-27 2021-09-30 Lenovo (Beijing) Limited Method and apparatus for cho and fast mcg link recovery
US20210385703A1 (en) * 2020-06-04 2021-12-09 Electronics And Telecommunications Research Institute Method and apparatus for conditional handover operation in communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Failure Handling via CHO recovery", 3GPP DRAFT; R2-1915499, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 7 November 2019 (2019-11-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051815939 *
ZTE CORPORATION, SANECHIPS: "Discussion on fast RLF recovery when applying CHO and fast MCG recovery", 3GPP DRAFT; R2-2001260, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051849570 *

Similar Documents

Publication Publication Date Title
US11212863B2 (en) Dual connection communication method in wireless network, apparatus, and system
US11252629B2 (en) Method and apparatus for recovering network connection and communication system
US10129824B2 (en) Method and apparatus for transmitting and receiving data by using plurality of carriers in mobile communication systems
US11843441B2 (en) Mobility robustness optimization (MRO) for new radio
US9258747B2 (en) User equipment and methods for fast handover failure recovery in 3GPP LTE network
US9832806B2 (en) Method for processing radio link failure and device therefor
JP2021520658A (ja) 無線通信ネットワークにおけるユーザ装置、ネットワークノードおよび方法
KR20160109494A (ko) 무선 통신 시스템에서 면허 도움 접속 기술 활용 시 기지국의 데이터 스케쥴링을 위한 장치 및 방법
US20210251032A1 (en) Communication method, apparatus, and system
US11736994B2 (en) Network device handover method and terminal device
WO2021088077A1 (zh) 移动性优化方法及相关装置
JP2023535123A (ja) マスターセルグループのための方法および装置
US20230180338A1 (en) Communication control method
US20230072832A1 (en) Method and apparatus for consistent lbt failure detection and recovery in cell handover
US20230199578A1 (en) Managing configurations
US20230171648A1 (en) Method Network Optimization in Handover Failure Scenarios
WO2024065543A1 (zh) 失败检测及恢复方法和装置
US20230232300A1 (en) Ue fallback from dual-active protocol stack to conditional handover
US20230225004A1 (en) Method, device and computer readable medium for communications
CN116114311A (zh) 用于处理主小区组mcg故障和无线电链路故障rlf汇报的方法、产品和设备
JP7426383B2 (ja) 通信制御方法
WO2024092680A1 (zh) 小区激活或去激活的方法和装置
WO2024065551A1 (zh) 小区间移动性过程的触发方法和装置
US20240137786A1 (en) Multi-connectivity communication method and apparatus
WO2023130348A1 (zh) 中继选择或重选方法、装置和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960178

Country of ref document: EP

Kind code of ref document: A1