WO2024065397A1 - 两个反射面构成直角的复合棱镜及其激光测距望远镜 - Google Patents

两个反射面构成直角的复合棱镜及其激光测距望远镜 Download PDF

Info

Publication number
WO2024065397A1
WO2024065397A1 PCT/CN2022/122596 CN2022122596W WO2024065397A1 WO 2024065397 A1 WO2024065397 A1 WO 2024065397A1 CN 2022122596 W CN2022122596 W CN 2022122596W WO 2024065397 A1 WO2024065397 A1 WO 2024065397A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
laser
light
visible light
composite
Prior art date
Application number
PCT/CN2022/122596
Other languages
English (en)
French (fr)
Inventor
朱杰
高明晓
Original Assignee
重庆海蓝川马光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆海蓝川马光电科技有限公司 filed Critical 重庆海蓝川马光电科技有限公司
Priority to CN202280037751.3A priority Critical patent/CN117441115A/zh
Priority to PCT/CN2022/122596 priority patent/WO2024065397A1/zh
Publication of WO2024065397A1 publication Critical patent/WO2024065397A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/06Measuring telescopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/04Adaptation of rangefinders for combination with telescopes or binoculars
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Definitions

  • the invention relates to the field of laser ranging, in particular to a composite prism with two reflecting surfaces forming a right angle and a binocular laser ranging telescope optical system thereof.
  • the binocular laser ranging telescope optical system mainly adds a laser emission system and a laser receiving system.
  • the laser emission, laser receiving system and binocular telescopic observation system through a beam splitter prism so that they share two objective lenses respectively.
  • Some of the prism systems of existing binocular laser ranging telescopes use beam splitter prisms with large incident angles of light on the beam splitter film surface (incident angle greater than 30°). Due to the influence of polarization, the difficulty of coating high-performance beam splitter films is increased.
  • the present invention provides a compound prism with two reflecting surfaces forming a right angle and a binocular laser ranging telescope system produced by using the compound prism.
  • the two reflecting surfaces provided by the present invention constitute a right-angled composite prism, including a first prism and a second prism;
  • the first prism is a triangular prism
  • the second prism is a half-penta prism
  • the bottom surface of the first prism is glued to the first obtuse-angled surface of the second prism, and the glued surface is coated with a beam splitting film
  • the first inclined surface of the first prism serves as a reflecting surface and forms a right angle with the reflecting surface of the second prism
  • the second inclined surface of the first prism opposite to the right angle is parallel to the second obtuse-angled surface of the second prism, and can be an incident surface of visible light and laser, or an exit surface of visible light and laser.
  • the beam splitter film is a beam splitter film that reflects the third wavelength light and transmits the first wavelength visible light and the second wavelength visible light, or is a beam splitter film that reflects the third wavelength light and the second wavelength visible light and transmits the first wavelength visible light.
  • the composite prism of the present invention has an incident angle of light on the beam splitting film surface of the composite prism of The prism system is not used, so the processability is good; the incident light axis and the outgoing light axis are displaced horizontally, which is conducive to shortening the longitudinal length of the whole machine and using a larger diameter objective lens. Therefore, the limitations of the existing prism system are filled, and the functions, performances and structural forms of the laser ranging telescope are more diversified.
  • the above-mentioned composite prism can be used to construct a variety of laser ranging telescopes.
  • a binocular laser rangefinder telescope includes an objective lens, a Porro prism, a compound prism, a graticule, an eyepiece, a laser and a laser receiver.
  • the light incident surface and the light exit surface of the Porro prism are the same plane, one part is the light incident area, and the other part is the light exit area; the light incident area of the light incident/exit surface of the Porro prism is arranged opposite to the objective lens, the light exit area is adjacent to the second inclined surface of the first prism, and the main cross-sections of the Porro prism and the compound prism are perpendicular to each other.
  • the bonding surface of the first prism and the second prism is coated with a beam splitting film that reflects lasers and transmits visible light.
  • the graticule is arranged at the focal plane of the objective lens; the eyepiece is arranged on a light path perpendicular to the second obtuse surface of the second prism, and the laser and the laser receiver are arranged on a light path perpendicular to the reflective surface of the first prism.
  • the binocular laser rangefinder telescope includes an objective lens, a Porro prism, a compound prism, a graticule, an eyepiece, a laser and a laser receiver.
  • the light incident area of the light incident/exit surface of the Porro prism is arranged to face the objective lens, the light exit area is adjacent to the second obtuse surface of the second prism, and the main cross sections of the Porro prism and the compound prism are perpendicular to each other.
  • the bonding surface of the first prism and the second prism is coated with a beam splitting film that reflects laser and transmits visible light.
  • the graticule is arranged at the focal plane of the objective lens; the eyepiece is arranged on an optical path perpendicular to the second inclined surface of the first prism, and the laser and the laser receiver are installed on an optical path perpendicular to the reflective surface of the second prism.
  • the binocular laser rangefinder telescope includes an objective lens, a compound prism, a Porro prism, a graticule, an eyepiece, a laser receiver, a right-angle prism, a microchip laser, a negative lens and a positive lens.
  • the second obtuse surface of the second prism is arranged to face the objective lens, the light incident area of the Porro prism is adjacent to the second inclined surface of the first prism, and the main cross-sections of the Porro prism and the compound prism are perpendicular to each other.
  • the bonding surface of the first prism and the second prism is coated with a beam splitting film that reflects laser and transmits visible light.
  • the graticule is arranged at the focal plane of the objective lens, and the eyepiece is arranged on a light path perpendicular to the light exit surface of the Porro prism.
  • the right-angle prism is arranged on a light path perpendicular to the reflection surface of the second prism, a microchip laser and a negative lens are arranged on the reflection light path of one of the right-angle prisms, and a positive lens and a laser receiver are arranged on the reflection light path of the other right-angle prism.
  • the fourth technical solution is a binocular laser rangefinder telescope including an objective lens, a Porro prism, a compound prism, an eyepiece, a laser, a laser receiver, a display, a projection lens and a right-angle prism.
  • the light incident area of the light incident/exit surface of the Porro prism is arranged to face the objective lens, the light exit area is adjacent to the second inclined surface of the first prism, and the main cross-sections of the Porro prism and the compound prism are perpendicular to each other.
  • the bonding surface of the first prism and the second prism is coated with a beam splitting film that reflects laser and first wavelength visible light and transmits the remaining visible light.
  • the laser and the laser receiver are arranged on a light path perpendicular to the first inclined surface of the first prism, the eyepiece is arranged on a light path perpendicular to the second obtuse surface of the second prism, the right-angle prism is arranged on a light path perpendicular to the reflective surface of the second prism, and the projection lens and the display are arranged on the reflective light path of the right-angle prism.
  • the fifth technical solution is a binocular laser rangefinder telescope comprising an objective lens, a Porro prism, a compound prism, an eyepiece, a laser, a laser receiver, a display, a projection lens and a right-angle prism.
  • the light incident area of the light incident/exit surface of the Porro prism is arranged to face the objective lens, the light exit area is adjacent to the second obtuse surface of the second prism, and the main cross-sections of the Porro prism and the compound prism are perpendicular to each other.
  • the bonding surface of the first prism and the second prism is coated with a beam splitting film that reflects laser and first wavelength visible light and transmits the remaining visible light.
  • the laser and the laser receiver are arranged on a light path perpendicular to the reflection surface of the second prism.
  • the eyepiece is arranged on a light path perpendicular to the second inclined surface of the first prism.
  • the right-angle prism is installed on a light path perpendicular to the first inclined surface of the first prism, and the projection lens and the display are arranged on the reflection light path of the right-angle prism.
  • FIG1 is a schematic diagram of a first composite prism and its light beam transmission direction of the present invention.
  • FIG2 is a schematic diagram of a second composite prism and its light beam transmission direction according to the present invention.
  • FIG3 is a schematic diagram of a third composite prism and its light beam transmission direction of the present invention.
  • FIG4 is a schematic diagram of a fourth composite prism and its light beam transmission direction according to the present invention.
  • FIG5 is a schematic diagram of the optical system of the first embodiment of the binocular laser ranging telescope
  • FIG6 is a schematic diagram of an optical system of a second embodiment of a binocular laser ranging telescope
  • FIG7 is a schematic diagram of the optical system of a third embodiment of a binocular laser ranging telescope
  • FIG8 is a schematic diagram of the optical system of a fourth embodiment of a binocular laser ranging telescope
  • FIG. 9 is a schematic diagram of the optical system of the fifth embodiment of the binocular laser ranging telescope.
  • r1 represents the first wavelength visible light
  • r2 represents the second wavelength visible light
  • r3 represents the third wavelength light, abbreviated as laser r3
  • A1 represents the first prism
  • A2 represents the second prism, abbreviated as prism A1 and prism A2, respectively.
  • two reflecting surfaces form a right-angled composite prism, which is denoted as composite prism F1.
  • composite prism F1 includes prism A1 and prism A2, prism A1 is an isosceles triangle prism, and prism A2 is a half pentaprism.
  • the bottom surface 103 of prism A1 is glued to the first obtuse surface 201 of prism A2, and the glued surface is coated with a beam splitter film that reflects laser r3 and transmits visible light r1 and visible light r2.
  • the first inclined surface 102 of prism A1 forms a right angle with the reflecting surface 202 of prism A2; the second inclined surface 101 of prism A1 is parallel to the second obtuse surface 203 of prism A2.
  • the second inclined surface 101 of prism A1 is used as the incident surface of visible light r1, visible light r2 and laser r3, then the second obtuse surface 203 of prism A2 is the exit surface of visible light r1 and visible light r2, and the first inclined surface 102 of prism A1 is the exit surface of laser r3.
  • Visible light r1, visible light r2 and laser r3 enter the composite prism from the second inclined surface 101 of prism A1, and after being reflected by the first inclined surface 102 of the composite prism, visible light r1 and visible light r2 pass through the glued surface, and then reflect by the reflection surface 202 of prism A2, and emit from the second obtuse surface 203 of prism A2.
  • Laser r3 is reflected by the beam splitting film on the glued surface, and then reflected by the second inclined surface 101, and emits from the first inclined surface 102 of prism A1.
  • first inclined surface 102 of prism A1 is used as the incident surface of laser r3
  • laser r3 is reflected by the second inclined surface 101, the glued surface and the first inclined surface 102 of prism A1 in sequence, and emits from the second inclined surface 101.
  • two reflecting surfaces form a right-angled composite prism, which is denoted as composite prism F2, and includes prism A1 and prism A2.
  • Prism A1 is a triangular prism
  • prism A2 is a semi-penta prism, whose larger acute angle is twice the smaller acute angle.
  • the bottom surface 103 of prism A1 is glued to the first obtuse surface 201 of prism A2, and the glued surface is coated with a beam splitting film that reflects laser r3 and transmits visible light r1 and visible light r2.
  • the first inclined surface 102 of prism A1 forms a right angle with the reflecting surface 202 of prism A2; the second inclined surface 101 of prism A1 is parallel to the second obtuse surface 203 of prism A2.
  • the second obtuse surface 203 of prism A2 is used as the incident surface of visible light r1, r2 and laser r3, then the second inclined surface 101 of prism A1 is the exit surface of visible light r1, r2, and the reflecting surface 202 of prism A2 is the exit surface of laser r3.
  • the reflective surface 202 of prism A2 is used as the incident surface of laser r3, and the second obtuse surface 203 of prism A2 is the exit surface of laser r3.
  • Visible light r1, visible light r2 and laser r3 enter the composite prism from the second obtuse surface 203 of prism A2. After being reflected by the reflective surface 202 in the composite prism, visible light r1 and r2 pass through the bonding surface, and then reflect by the first inclined surface 102, and then emit from the second inclined surface 101; laser r3 is reflected by the bonding surface beam splitter film and emits from the reflective surface 202 of prism A2.
  • the reflective surface 202 of prism A2 is used as the incident surface of laser r3
  • laser r3 is reflected by the bonding surface beam splitter film, and then reflected by the reflective surface 202, and then emits from the second obtuse surface 203 of prism A2.
  • two reflecting surfaces constitute a right-angled composite prism, which is denoted as composite prism F3, and includes prism A1 and prism A2.
  • Prism A1 is an isosceles triangular prism with a vertex angle of 45°
  • prism A2 is a half-penta prism.
  • the bottom surface 103 of prism A1 is glued to the first obtuse surface 201 of prism A2, and the glued surface is coated with a beam splitting film that reflects laser r3 and visible light r2 and transmits visible light r1.
  • the second obtuse surface 101 of prism A1 is used as the incident surface of visible light r1 and laser r3, and the reflecting surface 202 of prism A2 is used as the incident surface of visible light r2, then the second obtuse surface 203 of prism A2 becomes the common exit surface of visible light r1 and r2, and the first obtuse surface 102 of prism A1 is the exit surface of laser r3.
  • the first obtuse surface 102 of prism A1 is used as the incident surface of laser r3
  • the second obtuse surface 101 of prism A1 becomes the exit surface of laser r3.
  • Visible light r1 and laser r3 enter the composite prism from the second inclined surface 101 of prism A1, and after being reflected by the surface 102 of prism A1, the visible light r1 passes through the glued surface, and then reflects by the reflective surface 202 of prism A2, and is emitted from the second obtuse surface 203 of prism A2; the laser r3 is reflected by the beam splitter film on the glued surface, and then reflects by the second inclined surface 101, and is emitted from the first inclined surface 102 of prism A1; the visible light r2 enters the composite prism from the reflective surface 202 of prism A2, and after being reflected by the beam splitter film on the glued surface, it coincides with the optical path of the visible light r1, and then reflects by the reflective surface 202, and is also emitted from the second obtuse surface 203 of prism A2.
  • the laser r3 When the laser r3 enters the composite prism from the first inclined surface 102 of prism A1, the laser r3 is sequentially reflected by the second inclined surface 101, the beam splitter film surface, and the first inclined surface 102 of prism A1, and is emitted from the second inclined surface 101.
  • two reflecting surfaces constitute a right-angle composite prism, which is denoted as composite prism F4 and includes prism A1 and prism A2.
  • a beam splitting film that reflects laser r3 and visible light r2 and transmits visible light r1 is plated on the bonding surface of prism A1 and prism A2.
  • the second obtuse surface 203 of prism A2 is used as the incident surface of visible light r1 and laser r3, and the first inclined surface 102 of prism A1 is used as the incident surface of visible light r2.
  • the second inclined surface 101 of prism A1 becomes the common exit surface of visible light r1 and r2; the reflecting surface 202 of prism A2 becomes the exit surface of laser r3.
  • Visible light r1 and laser r3 enter the composite prism from the second obtuse surface 203 of prism A2, and after being reflected by the reflective surface 202 of prism A2, visible light r1 passes through the glued surface, and then reflects from the first inclined surface 102 of prism A1 and then emits from its second inclined surface 101; while laser r3 is reflected by the beam splitter film on the glued surface and then emits from its reflective surface 202.
  • Visible light r2 enters the composite prism from the first inclined surface 102 of prism A1, and after being reflected from the second inclined surface 101 of prism A1 and the beam splitter film on the glued surface, it merges with visible light r1, and then reflects from the first inclined surface 102 of prism A1 and then emits from its second inclined surface 101.
  • the reflective surface 202 of prism A2 serves as the incident surface of laser r3
  • the second obtuse surface 203 of prism A2 becomes the exit surface of laser r3.
  • a binocular laser ranging telescope constructed using a compound prism F1 includes an objective lens 1, a Porro prism 2, a compound prism F1, a graticule 4, an eyepiece 5, a laser 6, and a laser receiver 7.
  • the light incident area of the Porro prism 2 faces the objective lens 1, and its light exit area faces and is adjacent to the second inclined surface 101 of the compound prism F1.
  • the Porro prism 2 and the compound prism F1 constitute a prism erecting system; the eyepiece 5 is arranged on an optical path perpendicular to the second obtuse surface 203 of the prism A2, and is coaxial with the objective lens 1, and its front focal plane coincides with the focal plane of the objective lens 1.
  • the objective lens 1, the prism erecting system, and the eyepiece 5 constitute a telescope observation system.
  • the laser 6 and the laser receiver 7 are arranged on an optical path perpendicular to the first inclined surface 102 of the prism A1.
  • the objective lens 1, Porro prism 2, prism A1 and laser receiver 7 constitute a laser receiving system; after the laser receiving system is integrated with the telescope observation system through the compound prism F1, the two share the objective lens 1.
  • the laser 6, prism A1, Porro prism 2 and objective lens 1 constitute a laser emitting system. After the laser emitting system is integrated with the telescope observation system through the compound prism F1, the two share an objective lens 1.
  • the dividing mirror 4 made of a transmission LCD or OLED is set on the common focal plane of the objective lens 1 and the eyepiece 5, and the telescope observation system becomes an optical system with the functions of telescopic observation, aiming and measurement data display.
  • the laser When the right lens barrel is aimed at the target to be measured, the laser is emitted to the target. After the laser is reflected by the target, the laser entering the left lens barrel is focused on the laser receiver 7 by the laser receiving system; the distance of the target to be measured is calculated based on the transmission time required from the emission to the reception of the laser signal, and is displayed on the graticule 4, and the measurement result can be observed through the eyepiece 5.
  • a binocular laser rangefinder telescope constructed using a compound prism F2 includes an objective lens 1, a Porro prism 2, a compound prism F2, a graticule 4, an eyepiece 5, a laser 6 and a laser receiver 7.
  • the light incident area of the Porro prism 2 faces the objective lens 1, the second obtuse surface 203 of the compound prism F2 faces and is adjacent to the light exit area of the Porro prism 2, and the Porro prism 2 and the compound prism F2 constitute a prism erecting system;
  • the eyepiece 5 is arranged on an optical path perpendicular to the second inclined surface 101 of the prism A1, and is coaxial with the objective lens 1, and its front focal plane coincides with the focal plane of the objective lens 1;
  • the objective lens 1, the prism erecting system and the eyepiece 5 constitute a telescope observation system.
  • the laser 6 and the laser receiver 7 are installed on an optical path perpendicular to the reflecting surface 202 of the prism A2.
  • the objective lens 1, Porro prism 2, prism A2 and laser receiver 7 constitute a laser receiving system; after the laser receiving system and the telescope observation system are integrated through the compound prism F2, the two share an objective lens 1.
  • the laser 6, prism A2, Porro prism 2 and objective lens 1 constitute a laser emitting system; after the laser emitting system and the telescope observation system are integrated through the compound prism F2, the two share an objective lens 1.
  • the graticule 4 made of a transmission LCD or OLED is set on the common focal plane of the objective lens 1 and the eyepiece 5, and the telescope observation system becomes an optical system with the functions of telescopic observation, aiming and displaying measurement data. Similar to Figure 5, this binocular laser ranging telescope calculates the target distance and displays it on the graticule 4 by emitting laser to the target and measuring the laser reciprocating transmission time, and the measurement result can be observed through the eyepiece 5.
  • the compound prism F2 can be arranged in front of the Porro prism 3, that is, close to the side of the objective lens 1, so that the laser transmission does not need to pass through the Porro prism 3, so as to reduce the laser transmission loss.
  • the second obtuse surface 203 of the compound prism F2 is arranged to face the objective lens 1, the light incident area of the Porro prism 3 is adjacent to the second inclined surface 101 of the compound prism F2, and the compound prism F2 and the Porro prism 3 form a prism erecting system; the eyepiece 5 is arranged on an optical path perpendicular to the light exit surface of the Porro prism 3, coaxial with the objective lens 1, and its front focal plane coincides with the focal plane of the objective lens 1.
  • the objective lens 1, the prism erecting system and the eyepiece 5 constitute a telescopic observation system; the laser receiver 10 and the positive lens 9 are installed on the optical path perpendicular to the reflection surface 202 of the prism A2 through the right-angle prism 8.
  • the objective lens 1, the prism A2, the right-angle prism 8, the positive lens 9 and the laser receiver 10 constitute a laser receiving system; this laser receiving system and the telescopic observation system share the same objective lens 1 after being integrated through the composite prism F2.
  • the microchip laser 6 and the negative lens 7 are installed on the optical path perpendicular to the reflection surface 202 of the prism A2 through the right-angle prism 8.
  • the microchip laser 6, negative lens 7, right-angle prism 8, prism A2 and objective lens 1 constitute a laser emission system;
  • the graticule 4 is set on the common focal plane of the objective lens 1 and the eyepiece 5, and the objective lens 1, the prism erecting system, the graticule 4 and the eyepiece 5 constitute a telescopic observation, aiming and measurement data display system; this system is integrated through the composite prism F2 and shares an objective lens 1 with the laser emission system.
  • this binocular laser rangefinder telescope calculates the distance of the measured target and displays it on the graticule 4 by emitting laser to the target and measuring the laser reciprocating transmission time, and observes the measurement result through the eyepiece 5.
  • a binocular laser ranging telescope constructed using a compound prism F3 includes an objective lens 1, a Porro prism 2, a compound prism F3, an eyepiece 5, a laser 6, a laser receiver 7, a display 8, a projection lens 9, and a right-angle prism 10.
  • the light incident area of the Porro prism 2 faces the objective lens 1, the second inclined surface 101 of the compound prism F3 faces and is adjacent to the light exit area of the Porro prism 2, and the Porro prism 2 and the compound prism F3 constitute a prism erecting system;
  • the eyepiece 5 is arranged on an optical path perpendicular to the second obtuse surface 203 of the prism A2, and is coaxial with the objective lens 1, and the front focal plane coincides with the focal plane of the objective lens 1.
  • the objective lens 1, the prism erecting system, and the eyepiece 5 constitute a telescopic observation system.
  • the laser 6 and the laser receiver 7 are arranged on an optical path perpendicular to the first inclined surface 102 of the prism A1.
  • the laser receiving system is composed of the objective lens 1, the Porro prism 2, the prism A1 and the laser receiver 7; after the laser receiving system and the telescopic observation system are integrated through the compound prism F3, the two share the same objective lens 1.
  • the laser 6, the prism A1, the Porro prism 2 and the objective lens 1 constitute the laser emission system; the display 8 and the projection lens 9 are arranged on the optical path perpendicular to the reflection surface 202 of the prism A2 through the right-angle prism 10, and the projection lens 9 projects the pattern and data displayed by the display 8 with the second wavelength visible light onto the common focal plane of the objective lens 1 and the eyepiece 5, making the telescopic observation system an optical system with telescopic observation, aiming and data display functions.
  • the two share the same objective lens 1.
  • This technical solution replaces the graticule made of the transmission type LCD or OLED with the projection pattern, which is conducive to improving the transmittance of the observation system.
  • a binocular laser ranging telescope constructed using a compound prism F4 includes an objective lens 1, a Porro prism 2, a compound prism F4, an eyepiece 5, a laser 6, a laser receiver 7, a display 8, a projection lens 9, and a right-angle prism 10.
  • the light incident area of the Porro prism 2 faces the objective lens 1, the second obtuse surface 203 of the compound prism F4 faces and is adjacent to the light exit area of the Porro prism 2, and the Porro prism 2 and the compound prism F4 constitute a prism erecting system;
  • the eyepiece 5 is arranged on an optical path perpendicular to the second inclined surface 101 of the prism A1, and is coaxial with the objective lens 1, and its front focal plane coincides with the focal plane of the objective lens 1.
  • the objective lens 1, the prism erecting system, and the eyepiece 5 constitute a telescopic observation system.
  • the laser 6 and the laser receiver 7 are arranged on an optical path perpendicular to the reflecting surface 202 of the prism A2.
  • the objective lens 1, Porro prism 2, prism A2, and laser receiver 7 constitute a laser receiving system.
  • This laser receiving system and the telescopic observation system are integrated through the compound prism F4, and share an objective lens 1.
  • the laser 6, prism A2, Porro prism 2, and objective lens 1 constitute a laser emission system.
  • the display 8 and projection lens 9 are arranged on an optical path perpendicular to the first inclined surface 102 of the prism A1 through a right-angle prism 10.
  • the projection lens 9 projects the pattern and data displayed by the display 8 with the second wavelength visible light onto the common focal plane of the objective lens 1 and the eyepiece 5, making the telescopic observation system an optical system with telescopic observation, aiming and data display functions. After this system and the laser emission system are integrated through the compound prism F4, the two share an objective lens 1.
  • This technical solution has basically the same characteristics as the laser ranging telescope technical solution shown in Figure 6, except that a projection system is used to project the content displayed on the display onto the focal plane of the objective lens instead of the graticule.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本发明公开了一种两个反射面构成直角的复合棱镜及其激光测距望远镜。该复合棱镜包括第一棱镜和第二棱镜,第一棱镜是三角形棱镜,第二棱镜是半五棱镜。第一棱镜的底面与第二棱镜的第一钝角面胶合,胶合面镀分束膜。第一棱镜的第一斜面作为反射面与第二棱镜的反射面构成直角,与所述直角相对的第一棱镜的第二斜面平行于第二棱镜的第二钝角面。所述复合棱镜与一件Porro棱镜组合,构成棱镜正像***,并能将望远观察和瞄准、投影显示***与激光发射***、激光接收***分别整合在一起,使望远镜***成为激光测距望远镜***。而且还能使激光测距望远镜的功能、性能、结构形式多样化。

Description

两个反射面构成直角的复合棱镜及其激光测距望远镜 技术领域
本发明涉及激光测距领域,具体是一种两个反射面构成直角的复合棱镜及其双目激光测距望远镜光学***。
背景技术
双目激光测距望远镜光学***相比双目望远镜光学***,主要增加了激光发射***和激光接收***。为了使激光测距望远镜减小体积、减轻重量,需要通过分束棱镜对激光发射、激光接收***与双目望远观察***进行整合,使它们分别共用两个物镜。现有双目激光测距望远镜的棱镜***,有的采用光线在分束膜面入射角偏大(入射角大于30°)的分束棱镜,由于偏振影响,增大了镀制高性能分束膜的难度。有的包含有屋脊棱镜;虽然屋脊棱镜结构紧凑,入射光轴与出射光轴横向错位较小,有利于缩小总体横向尺寸,但对物镜直径增加了限制;而且屋脊棱镜工艺难度较大,光轴在棱镜中折叠长度有限,会导致整体纵向长度较大,因此,其应用有一定局限性。
发明内容
鉴于上述背景技术,本发明提供了一种两个反射面构成直角的复合棱镜以及采用此复合棱镜而产生的双目激光测距望远镜***。
为实现上述目的,本发明提供的两个反射面构成直角的复合棱镜,包括第一棱镜和第二棱镜;第一棱镜是三角形棱镜,第二棱镜是半五棱镜,第一棱镜的底面与第二棱镜的第一钝角面胶合,胶合面镀分束膜;第一棱镜的第一斜面作为反射面与第二棱镜的反射面构成直角,与所述直角相对的第一棱镜的第二斜面平行于第二棱镜的第二钝角面,可以是可见光和激光的入射面,也可以是可见光和激光的出射面。
更具体地,所述分束膜为反射第三波长光并透射第一波长可见光和第二波长可见光的分束膜。或为反射第三波长光和第二波长可见光,并透射第一波长可见光的分束膜。
本发明所述复合棱镜,光线在复合棱镜的分束膜面入射角为
Figure PCTCN2022122596-appb-000001
左右,且没有采用屋脊棱镜,所以工艺性较好;其入射光轴与出 射光轴横向错位较大,有利于缩短整机的纵向长度,有利于采用直径较大的物镜。因此,填补了前述现有棱镜***的局限性,而且使激光测距望远镜的功能、性能、结构形式更加多样化。
采用上述复合棱镜可以构建多种激光测距望远镜,以下是其中五种技术方案:
第一技术方案,双目激光测距望远镜包括物镜、Porro棱镜、复合棱镜、分划镜、目镜、激光器和激光接收器。其中所述Porro棱镜的光入射面和光出射面是同一个平面,一部分是光入射区,另一部分是光出射区;设置Porro棱镜的光入射/出射面的光入射区对向物镜,光出射区与所述第一棱镜的第二斜面相向相邻,且使Porro棱镜与所述复合棱镜二者的主截面相互垂直。第一棱镜与第二棱镜的胶合面,镀反射激光并透射可见光分束膜。分划镜设置在物镜焦面处;目镜设置在垂直于第二棱镜第二钝角面的光路上,激光器和激光接收器设置在垂直于第一棱镜反射面的光路上。
第二技术方案,双目激光测距望远镜包括物镜、Porro棱镜、复合棱镜、分划镜、目镜、激光器和激光接收器。设置Porro棱镜的光入射/出射面的光入射区对向物镜,光出射区与所述第二棱镜的第二钝角面相向相邻,且使Porro棱镜与所述复合棱镜二者的主截面相互垂直。第一棱镜与第二棱镜的胶合面镀反射激光并透射可见光分束膜。分划镜设置在物镜焦面处;所述目镜设置在垂直于第一棱镜第二斜面的光路上,激光器和激光接收器安装在垂直于第二棱镜反射面的光路上。
第三技术方案,双目激光测距望远镜包括物镜、复合棱镜、Porro棱镜、分划镜、目镜、激光接收器、直角棱镜、微片激光器、负透镜和正透镜。设置所述第二棱镜的第二钝角面对向物镜,Porro棱镜的光入射区与第一棱镜的第二斜面相向相邻,且使Porro棱镜与所述复合棱镜二者的主截面相互垂直。第一棱镜与第二棱镜的胶合面,镀反射激光并透射可见光分束膜。分划镜设置于物镜焦面处,目镜设置在与Porro棱镜光出射面垂直的光路上。直角棱镜设置在垂直于第二棱镜反射面的光路上,在其中一个直角棱镜的反射光路上设置微片激光器和负透镜,另一个直角棱镜的反射光路上设置正透镜和激光接收 器。
第四技术方案,双目激光测距望远镜包括物镜、Porro棱镜、复合棱镜、目镜、激光器、激光接收器、显示器、投影镜头和直角棱镜。设置Porro棱镜的光入射/出射面的光入射区对向物镜,光出射区与所述第一棱镜的第二斜面相向相邻,且使Porro棱镜与所述复合棱镜二者的主截面相互垂直。第一棱镜与第二棱镜的胶合面,镀反射激光和第一波长可见光并透射其余可见光的分束膜。激光器和激光接收器设置在垂直于第一棱镜第一斜面的光路上,目镜设置在垂直于第二棱镜第二钝角面的光路上,直角棱镜设置在垂直于第二棱镜反射面的光路上,投影镜头和显示器设置在直角棱镜的反射光路上。
第五技术方案,双目激光测距望远镜包括物镜、Porro棱镜、复合棱镜、目镜、激光器、激光接收器、显示器、投影镜头和直角棱镜。设置Porro棱镜的光入射/出射面的光入射区对向物镜,光出射区与所述第二棱镜的第二钝角面相向相邻,且使Porro棱镜与所述复合棱镜二者的主截面相互垂直。第一棱镜与第二棱镜的胶合面,镀反射激光和第一波长可见光并透射其余可见光的分束膜。所述激光器和激光接收器设置在垂直于第二棱镜反射面的光路上。目镜设置在垂直于第一棱镜第二斜面的光路上。直角棱镜安装在垂直于第一棱镜第一斜面的光路上,投影镜头和显示器设置在直角棱镜的反射光路上。
附图说明
图1为本发明第一种复合棱镜及其光束传输方向示意图;
图2为本发明第二种复合棱镜及其光束传输方向示意图;
图3为本发明第三种复合棱镜及其光束传输方向示意图;
图4为本发明第四种复合棱镜及其光束传输方向示意图;
图5为双筒激光测距望远镜第一实施例光学***示意图;
图6为双筒激光测距望远镜第二实施例光学***示意图;
图7为双筒激光测距望远镜第三实施例光学***示意图;
图8为双筒激光测距望远镜第四实施例光学***示意图;
图9为双筒激光测距望远镜第五实施例光学***示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行比较详细、完整地描 述。所描述的实施例仅是本发明实施例的一部分,其他与本发明所述复合棱镜相关的实施例,也都属于本发明保护的范围。
在本发明的描述中,“第一”、“第二”、“第三”等顺序性用语仅用于描述目的,不表示其相对重要性。为描述简洁,进行以下符号说明:r1表示第一波长可见光,r2表示第二波长可见光,简写为可见光r1和可见光r2,r3表示第三波长光,简写为激光r3。A1表示第一棱镜,A2表示第二棱镜,分别简写为棱镜A1和棱镜A2。
如图1所示,两个反射面构成直角的复合棱镜,记为复合棱镜F1。包括棱镜A1和棱镜A2,棱镜A1是等腰三角形棱镜,棱镜A2是半五棱镜。棱镜A1的底面103与棱镜A2的第一钝角面201胶合,胶合面镀反射激光r3、透视可见光r1和可见光r2的分束膜。棱镜A1的第一斜面102与棱镜A2的反射面202构成直角;棱镜A1的第二斜面101平行于棱镜A2的第二钝角面203。将棱镜A1的第二斜面101作为可见光r1和可见光r2及激光r3的入射面,则棱镜A2的第二钝角面203是可见光r1和可见光r2的出射面,棱镜A1的第一斜面102是激光r3的出射面。可见光r1和可见光r2及激光r3从棱镜A1的第二斜面101进入复合棱镜,经复合棱镜的第一斜面102反射后,可见光r1和可见光r2穿过胶合面,再经棱镜A2的反射面202反射,从棱镜A2的第二钝角面203射出,激光r3经胶合面分束膜反射,再经第二斜面101反射,从棱镜A1的第一斜面102射出。当把棱镜A1的第一斜面102作为激光r3的入射面时,则激光r3依次经棱镜A1的第二斜面101、胶合面和第一斜面102反射,从第二斜面101射出。
如图2所示两个反射面构成直角的复合棱镜,记为复合棱镜F2,包括棱镜A1和棱镜A2。棱镜A1是三角形棱镜,棱镜A2是半五棱镜,其较大锐角的角值是较小锐角的一倍。棱镜A1的底面103与棱镜A2的第一钝角面201胶合,胶合面镀反射激光r3并透射可见光r1和可见光r2的分束膜。棱镜A1的第一斜面102与棱镜A2的反射面202构成直角;棱镜A1的第二斜面101平行于棱镜A2的第二钝角面203。将棱镜A2的第二钝角面203作为可见光r1、r2和激光r3的入射面,则棱镜A1的第二斜面101是可见光r1、r2的出射面,棱镜A2的反 射面202是激光r3的出射面。将棱镜A2的反射面202作为激光r3的入射面,则棱镜A2的第二钝角面203是激光r3的出射面。可见光r1、可见光r2及激光r3从棱镜A2的第二钝角面203进入复合棱镜,在复合棱镜中经反射面202反射后,可见光r1和r2穿过胶合面,再经第一斜面102反射,从第二斜面101射出;激光r3被胶合面分束膜反射,从棱镜A2的反射面202射出。当棱镜A2的反射面202作为激光r3的入射面时,则激光r3经胶合面分束膜反射,再经反射面202反射,从棱镜A2的第二钝角面203射出。
如图3所示两个反射面构成直角的复合棱镜,记为复合棱镜F3,包括棱镜A1和棱镜A2。棱镜A1是顶角为45°的等腰三角形棱镜,棱镜A2是半五棱镜。棱镜A1的底面103与棱镜A2的第一钝角面201胶合,胶合面镀反射激光r3和可见光r2并透射可见光r1的分束膜。将棱镜A1的第二斜面101作为可见光r1和激光r3的入射面,将棱镜A2的反射面202作为可见光r2的入射面,则棱镜A2的第二钝角面203成为可见光r1和r2共用的出射面,棱镜A1的第一斜面102是激光r3的出射面。当棱镜A1的第一斜面102作为激光r3的入射面时,则棱镜A1的第二斜面101成为激光r3的出射面。可见光r1和激光r3从棱镜A1的第二斜面101进入复合棱镜,经棱镜A1的102面反射后,其中可见光r1穿过胶合面,再经棱镜A2的反射面202反射,从棱镜A2的第二钝角面203射出;其中激光r3被胶合面的分束膜反射,再经第二斜面101反射,从棱镜A1的第一斜面102射出;可见光r2从棱镜A2的反射面202进入复合棱镜,被胶合面分束膜反射后,与可见光r1的光路重合,再经反射面202反射,也从棱镜A2的第二钝角面203射出。当使激光r3从棱镜A1的第一斜面102进入复合棱镜时,则激光r3依次经棱镜A1的第二斜面101、分束膜面和第一斜面102反射后,从第二斜面101射出。
如图4所示两个反射面构成直角的复合棱镜,记为复合棱镜F4,包括棱镜A1和棱镜A2。在棱镜A1与棱镜A2的胶合面镀反射激光r3和可见光r2,并透射可见光r1的分束膜。将棱镜A2的第二钝角面203作为可见光r1和激光r3的入射面,将棱镜A1的第一斜面102作为可见光r2的入射面,则棱镜A1的第二斜面101成为可见光r1 和r2共用的出射面;棱镜A2的反射面202成为激光r3的出射面。可见光r1和激光r3从棱镜A2的第二钝角面203进入复合棱镜,经棱镜A2的反射面202反射后,其中可见光r1穿过胶合面,再经棱镜A1的第一斜面102反射后从其第二斜面101射出;而激光r3则被胶合面的分束膜反射后从其反射面202射出。可见光r2从棱镜A1的第一斜面102面进入复合棱镜,经棱镜A1的第二斜面101面和胶合面分束膜反射后,与可见光r1合并,再经棱镜A1的第一斜面102反射后从其第二斜面101射出。当棱镜A2的反射面202作为激光r3的入射面时,则棱镜A2的第二钝角面203成为激光r3的出射面。
如图5所示,利用复合棱镜F1构建的双目激光测距望远镜,包括物镜1、Porro棱镜2、复合棱镜F1、分划镜4、目镜5、激光器6和激光接收器7。其中,Porro棱镜2的光入射区对向物镜1,其光出射区与复合棱镜F1的第二斜面101相向相邻,Porro棱镜2与复合棱镜F1二者构成棱镜正像***;目镜5设置在垂直于棱镜A2的第二钝角面203的光路上,并与物镜1同光轴,其前焦面与物镜1的焦面重合。物镜1、棱镜正像***和目镜5构成望远镜观察***。激光器6和激光接收器7设置在与棱镜A1的第一斜面102垂直的光路上。在双目激光测距望远镜的左侧镜筒中,物镜1、Porro棱镜2、棱镜A1和激光接收器7构成激光接收***;该激光接收***与望远镜观察***通过复合棱镜F1整合后,二者共用物镜1。在双目激光测距望远镜的右侧镜筒中,激光器6、棱镜A1、Porro棱镜2和物镜1构成激光发射***。该激光发射***与望远镜观察***通过复合棱镜F1整合后,二者共用一个物镜1。将用透射型LCD或OLED制成的分划镜4设置在物镜1和目镜5的共有焦面上,望远镜观察***成为兼具望远观察、瞄准和测量数据显示功能的光学***。
当用右镜筒瞄准被测目标时,向目标发射激光,激光被目标反射后,进入左镜筒的激光被激光接收***聚焦在激光接收器7上;根据从发射至收到激光信号所需传输时间计算出被测目标距离,并显示在分划镜4上,通过目镜5可观察到测量结果。
如图6所示,利用复合棱镜F2构建的双目激光测距望远镜,包括物镜1、Porro棱镜2、复合棱镜F2、分划镜4、目镜5、激光器6 和激光接收器7。其中,Porro棱镜2的光入射区对向物镜1,复合棱镜F2的第二钝角面203与Porro棱镜2的光出射区相向相邻,Porro棱镜2与复合棱镜F2二者构成棱镜正像***;目镜5设置在垂直于棱镜A1的第二斜面101的光路上,并与物镜1同光轴,其前焦面与物镜1的焦面重合;物镜1、棱镜正像***和目镜5构成望远镜观察***。激光器6和激光接收器7安装在与棱镜A2的反射面202垂直的光路上。在双目激光测距望远镜的左侧镜筒中,物镜1、Porro棱镜2、棱镜A2和激光接收器7构成激光接收***;该激光接收***与望远镜观察***通过复合棱镜F2整合后,二者共用一个物镜1。在双目激光测距望远镜的右侧镜筒中,激光器6、棱镜A2、Porro棱镜2和物镜1构成激光发射***;该激光发射***与望远镜观察***通过复合棱镜F2整合后,二者共用一个物镜1。将用透射型LCD或OLED制成的分划镜4设置在物镜1和目镜5的共有焦面上,望远镜观察***成为兼具望远观察、瞄准和显示测量数据功能的光学***。与图5同理,此双目激光测距望远镜通过向目标发射激光、测定激光往复传输时间,计算出目标距离并显示在分划镜4上,通过目镜5可观察到测量结果。
如图7所示,利用复合棱镜F2和微片激光器构建的双目激光测距望远镜,包括物镜1、复合棱镜F2、Porro棱镜3、分划镜4、目镜5、微片激光器6、负透镜7、直角棱镜8、正透镜9、激光接收器10。鉴于微片激光器6输出的激光束直径和束散很小,因而可以将复合棱镜F2设置在Porro棱镜3的前方,即靠近物镜1一侧,使激光传输不必穿过Porro棱镜3,以减少激光传输损耗。设置复合棱镜F2的第二钝角面203对向物镜1,Porro棱镜3的光入射区与复合棱镜F2的第二斜面101相向相邻,复合棱镜F2与Porro棱镜3二者构成棱镜正像***;目镜5设置在垂直于Porro棱镜3光出射面的光路上,与物镜1同光轴,其前焦面与物镜1的焦面重合。在双目激光测距望远镜的左侧镜筒中,物镜1、棱镜正像***和目镜5构成望远观察***;激光接收器10和正透镜9通过直角棱镜8安装在垂直于棱镜A2的反射面202的光路上。物镜1、棱镜A2、直角棱镜8、正透镜9和激光接收器10构成激光接收***;此激光接收***与望远观察***通过 复合棱镜F2整合后共用一个物镜1。在双目激光测距望远镜的右侧镜筒中,微片激光器6、负透镜7通过直角棱镜8安装在与棱镜A2的反射面202垂直的光路上。微片激光器6、负透镜7、直角棱镜8、棱镜A2和物镜1构成激光发射***;分划镜4设置在物镜1和目镜5的共有焦面上,物镜1、棱镜正像***、分划镜4和目镜5构成望远观察、瞄准和测量数据显示***;此***通过复合棱镜F2整合,与激光发射***共用一个物镜1。与图6同理,此双目激光测距望远镜通过向目标发射激光、测定激光往复传输时间,计算出被测目标距离并显示在分划镜4上,通过目镜5观察测量结果。
如图8所示,利用复合棱镜F3构建的双目激光测距望远镜,包括物镜1、Porro棱镜2、复合棱镜F3、目镜5、激光器6、激光接收器7、显示器8、投影镜头9和直角棱镜10。其中,Porro棱镜2的光入射区对向物镜1,复合棱镜F3的第二斜面101与Porro棱镜2的光出射区相向相邻,Porro棱镜2与复合棱镜F3二者构成棱镜正像***;目镜5设置在垂直于棱镜A2第二钝角面203的光路上,与物镜1同光轴,且前焦面与物镜1的焦面重合。物镜1、棱镜正像***和目镜5构成望远观察***。激光器6和激光接收器7设置在垂直于棱镜A1的第一斜面102的光路上。在双目激光测距望远镜的左侧镜筒中,物镜1、Porro棱镜2、棱镜A1和激光接收器7构成的激光接收***;该激光接收***与望远观察***经复合棱镜F3整合后,二者共用一个物镜1。在双目激光测距望远镜的右侧镜筒中,激光器6、棱镜A1、Porro棱镜2和物镜1构成激光发射***;显示器8、投影镜头9通过直角棱镜10设置在与棱镜A2的反射面202垂直的光路上,投影镜头9将显示器8用第二波长可见光显示的图案和数据投影到物镜1和目镜5的共有焦面上,使望远观察***成为兼具望远观察、瞄准和数据显示功能的光学***。此***与激光发射***经复合棱镜3整合后,二者共用一个物镜1。此技术方案用投影图案取代用透射型LCD或OLED制作的分划镜,有利于提高观察***的透过率。
如图9所示,利用复合棱镜F4构建的双目激光测距望远镜,包括物镜1、Porro棱镜2、复合棱镜F4、目镜5、激光器6、激光接收器7、显示器8、投影镜头9、直角棱镜10。其中,Porro棱镜2的光 入射区对向物镜1,复合棱镜F4的第二钝角面203与Porro棱镜2的光出射区相向相邻,Porro棱镜2与复合棱镜F4二者构成棱镜正像***;目镜5设置在垂直于棱镜A1第二斜面101的光路上,与物镜1同光轴,其前焦面与物镜1的焦面重合。物镜1、棱镜正像***和目镜5构成望远观察***。激光器6和激光接收器7设置在与棱镜A2的反射面202垂直的光路上。在双目激光测距望远镜的左侧镜筒中,物镜1、Porro棱镜2、棱镜A2、和激光接收器7构成激光接收***。此激光接收***与望远观察***经复合棱镜F4整合后,共用一个物镜1。在双目激光测距望远镜的右侧镜筒中,激光器6、棱镜A2、Porro棱镜2和物镜1构成激光发射***。显示器8、投影镜头9通过直角棱镜10设置在与棱镜A1的第一斜面102垂直的光路上,投影镜头9将显示器8用第二波长可见光显示的图案和数据投影到物镜1和目镜5的共有焦面上,使望远观察***成为兼具望远观察、瞄准和数据显示功能的光学***。此***与激光发射***经复合棱镜F4整合后,二者共用一个物镜1。
此技术方案与图6所示的激光测距望远镜技术方案具有基本相同的特性,不同之处在于,用投影***将显示器显示的内容投影到物镜焦面处,代替分划镜。

Claims (12)

  1. 两个反射面构成直角的复合棱镜,其特征在于:包括第一棱镜(A1)和第二棱镜(A2);第一棱镜(A1)是三角形棱镜,第二棱镜(A2)是半五棱镜,第一棱镜(A1)的底面(103)与第二棱镜(A2)的第一钝角面(201)胶合,胶合面镀分束膜;第一棱镜(A1)的第一斜面(102)作为反射面与第二棱镜(A2)的反射面(202)构成直角,与所述直角相对的第一棱镜(A1)的第二斜面(101)平行于第二棱镜(A2)的第二钝角面(203)。
  2. 根据权利要求1所述两个反射面构成直角的复合棱镜,其特征在于:所述分束膜为反射第三波长光(r3)并透射第一波长可见光(r1)和第二波长可见光(r2)的分束膜。
  3. 根据权利要求2所述两个反射面构成直角的复合棱镜,其特征在于:所述第一棱镜(A1)是等腰三角形棱镜,第一棱镜(A1)的第二斜面(101)作为第一波长可见光(r1)、第二波长可见光(r2)及第三波长光(r3)的入射面,则所述第二棱镜(A2)的第二钝角面(203)是第一波长可见光(r1)和第二波长可见光(r2)的出射面,所述第一棱镜(A1)的第一斜面(102)是第三波长光(r3)的出射面;或所述第一棱镜(A1)的第一斜面(102)面作为第三波长光(r3)的入射面,则第一棱镜(A1)的第二斜面(101)成为第三波长光(r3)的出射面。
  4. 根据权利要求2所述两个反射面构成直角的复合棱镜,其特征在于:所述第一棱镜(A1)是三角形棱镜,第二棱镜(A2)是半五棱镜,所述半五棱镜较大锐角的角值是较小锐角的一倍;所述第二棱镜(A2)的第二钝角面(203)作为第一波长可见光(r1)第二波长可见光(r2)及第三波长光(r3)的入射面,则第一棱镜(A1)的第二斜面(101)是第一波长可见光(r1)和第二波长可见光(r2)的出射面,第二棱镜(A2)的反射面(202)是第三波长光(r3)的出射面;或者第二棱镜(A2)的反射面(202)作为第三波长光(r3)的入射面,则第二棱镜(A2)的第二钝角面(203)成为第三波长光(r3)的出射面。
  5. 根据权利要求1所述两个反射面构成直角的复合棱镜,其特 征在于:所述分束膜为反射第三波长光(r3)和第二波长可见光(r2),并透射第一波长可见光(r1)的分束膜。
  6. 根据权利要求5所述两个反射面构成直角的复合棱镜,其特征在于:所述第一棱镜(A1)是顶角为45°的等腰三角形棱镜,第二棱镜(A2)是半五棱镜;所述第一棱镜(A1)的第二斜面(101)作为第一波长可见光(r1)和第三波长光(r3)的入射面,则第二棱镜(A2)的第二钝角面(203)是第一波长可见光(r1)的出射面,第一棱镜(A1)的第一斜面(102)是第三波长光(r3)的出射面,所述第二棱镜(A2)的反射面(202)作为第二波长可见光(r2)的入射面,则第二棱镜(A2)的第二钝角面(203)成为第二波长可见光(r2)与第一波长可见光(r1)共用的出射面;或第一棱镜(A1)的第一斜面(102)作为第三波长光(r3)的入射面,则第一棱镜(A1)的第二斜面(101)成为激光r3的出射面。
  7. 根据权利要求5所述两个反射面构成直角的复合棱镜,其特征在于:所述第二棱镜(A2)的第二钝角面(203)作为第一波长可见光(r1)和第三波长光(r3)的入射面,所述第一棱镜(A1)的第一斜面(102)作为第二波长可见光(r2)的入射面,则第一棱镜(A1)的第二斜面(101)成为第一波长可见光(r1)和第二波长可见光(r2)共用的出射面;第二棱镜(A2)的反射面(202)是第三波长光(r3)的出射面;或第二棱镜(A2)的反射面(202)作为第三波长光(r3)的入射面,则第二棱镜(A2)的第二钝角面(203)成为第三波长光(r3)的出射面。
  8. 一种使用权利要求3所述复合棱镜的双目激光测距望远镜,其特征在于:包括物镜(1)、Porro棱镜(2)、复合棱镜(3)、分划镜(4)、目镜(5)、激光器(6)和激光接收器(7),其中Porro棱镜(2)的光入射面和光出射面是同一平面,一部分是光入射区,另一部分是光出射区,设置其光入射区对向物镜(1),使光出射区与第一棱镜(A1)的第二斜面(101)相向相邻,并使Porro棱镜(2)和复合棱镜(3)的主截面相互垂直;分划镜(4)设置在物镜(1)的焦面处,目镜(5)设置在垂直于第二棱镜(A2)的第二钝角面(203)的光路上,激光器(6)和激光接收器(7)设置在与第一棱镜(A1) 的第一斜面(102)垂直的光路上。
  9. 一种使用权利要求4所述复合棱镜的双目激光测距望远镜,其特征在于:包括物镜(1)、Porro棱镜(2)、复合棱镜(3)、分划镜(4)、目镜(5)、激光器(6)和激光接收器(7),设置所述Porro棱镜(2)光入射区对向物镜(1),使其光出射区与第二棱镜(A2)的第二钝角面(203)相向相邻,并使Porro棱镜(2)与复合棱镜(3)的主截面相互垂直,分划镜(4)设置于物镜(1)焦面处,目镜(5)设置在垂直于第一棱镜(A1)第二斜面(101)的光路上,激光器(6)和激光接收器(7)安装在垂直于第二棱镜(A2)反射面(202)的光路上。
  10. 一种使用权利要求4所述复合棱镜的双目激光测距望远镜,其特征在于:包括物镜(1)、复合棱镜(2)、Porro棱镜(3)、分划镜(4)、目镜(5)、微片激光器(6)、负透镜(7)、直角棱镜(8)、正透镜(9)和激光接收器(10),设置所述复合棱镜(3)的第二钝角面(203)对向物镜(1),使Porro棱镜(3)的光入射区与第一棱镜(A1)第二斜面(101)相向相邻,并使Porro棱镜(2)和复合棱镜(3)的主截面相互垂直,直角棱镜(8)设置在与第二棱镜(A2)的反射面(202)垂直的光路上;在其中一个直角棱镜(8)的反射光路上设置微片激光器(6)和负透镜(7),另一个直角棱镜(8)的反射光路上设置正透镜(9)和激光接收器(10);分划镜(4)设置在物镜(1)的焦面处;目镜(5)设置在与Porro棱镜(2)光出射面垂直的光路上。
  11. 一种使用权利要求6所述复合棱镜的双目激光测距望远镜,其特征在于:包括物镜(1)、Porro棱镜(2)、复合棱镜(3)、目镜(5)、激光器(6)、激光接收器(7)、显示器(8)、投影镜头(9)和直角棱镜(10);设置Porro棱镜(2)的光入射区对向物镜(1),使光出射区与第一棱镜(A1)第二斜面(101)相向相邻,并使Porro棱镜(2)和复合棱镜(3)的主截面相互垂直;目镜(5)设置在垂直于第二棱镜(A2)第二钝角面(203)的光路上;直角棱镜(10)设置在垂直于第二棱镜(A2)反射面(202)的光路上,投影镜头(9)和显示器(8)设置在直角棱镜(10)的反射光路上;所述激光器(6) 和激光接收器(7)设置在垂直于第一棱镜(A1)第一斜面(102)的光路上。
  12. 一种使用权利要求7所述复合棱镜的激光测距望远镜,其特征在于:包括物镜(1)、Porro棱镜(2)、复合棱镜(3)、目镜(5)、激光器(6)、激光接收器(7)、显示器(8)、投影镜头(9)和直角棱镜(10),设置Porro棱镜(2)的光入射区对向物镜(1),使光出射区与第二棱镜(A2)第二钝角面(203)相向相邻,并使Porro棱镜(2)和复合棱镜(3)的主截面相互垂直;目镜(5)设置在垂直于第一棱镜(A1)第二斜面(101)的光路上;直角棱镜(10)安装在垂直于第一棱镜(A1)第一斜面(102)的光路上,投影镜头(9)和显示器(8)设置在直角棱镜(10)的反射光路上;所述激光器(6)和激光接收器(7)设置在垂直于第二棱镜(A2)反射面(202)的光路上。
PCT/CN2022/122596 2022-09-29 2022-09-29 两个反射面构成直角的复合棱镜及其激光测距望远镜 WO2024065397A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280037751.3A CN117441115A (zh) 2022-09-29 2022-09-29 两个反射面构成直角的复合棱镜及其激光测距望远镜
PCT/CN2022/122596 WO2024065397A1 (zh) 2022-09-29 2022-09-29 两个反射面构成直角的复合棱镜及其激光测距望远镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122596 WO2024065397A1 (zh) 2022-09-29 2022-09-29 两个反射面构成直角的复合棱镜及其激光测距望远镜

Publications (1)

Publication Number Publication Date
WO2024065397A1 true WO2024065397A1 (zh) 2024-04-04

Family

ID=89550268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122596 WO2024065397A1 (zh) 2022-09-29 2022-09-29 两个反射面构成直角的复合棱镜及其激光测距望远镜

Country Status (2)

Country Link
CN (1) CN117441115A (zh)
WO (1) WO2024065397A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221511A (ja) * 1996-12-04 1998-08-21 Asahi Optical Co Ltd プリズム及びプリズムを用いた眼視光学系
CN201449491U (zh) * 2009-05-20 2010-05-05 中国科学院西安光学精密机械研究所 利用分光棱镜实现ccd阵列拼接的装置
CN204302569U (zh) * 2014-12-04 2015-04-29 西安西光威信光电有限公司 具有测距功能的双目光学仪器
CN110286483A (zh) * 2018-12-27 2019-09-27 刘云坤 一种测距双筒望远镜光学***
CN110361861A (zh) * 2018-03-26 2019-10-22 昆明腾洋光学仪器有限公司 一种带数字显示激光测距功能的双筒望远镜
CN215491649U (zh) * 2021-05-24 2022-01-11 深圳市迈测科技股份有限公司 激光测距双筒望远镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221511A (ja) * 1996-12-04 1998-08-21 Asahi Optical Co Ltd プリズム及びプリズムを用いた眼視光学系
CN201449491U (zh) * 2009-05-20 2010-05-05 中国科学院西安光学精密机械研究所 利用分光棱镜实现ccd阵列拼接的装置
CN204302569U (zh) * 2014-12-04 2015-04-29 西安西光威信光电有限公司 具有测距功能的双目光学仪器
CN110361861A (zh) * 2018-03-26 2019-10-22 昆明腾洋光学仪器有限公司 一种带数字显示激光测距功能的双筒望远镜
CN110286483A (zh) * 2018-12-27 2019-09-27 刘云坤 一种测距双筒望远镜光学***
CN215491649U (zh) * 2021-05-24 2022-01-11 深圳市迈测科技股份有限公司 激光测距双筒望远镜

Also Published As

Publication number Publication date
CN117441115A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
US10520717B2 (en) Binocular capable of measuring distance and prism module thereof
CN110058419B (zh) 一种正像***及双筒激光测距望远镜
JP4936818B2 (ja) ダイクロイックプリズムによる光分割した測量機
WO2018112929A1 (zh) 用于多功能望远镜的复合棱镜及其双目望远镜光学***
WO2022052000A1 (zh) 基于等腰棱镜的复合棱镜及其激光测距望远镜
JP2001050742A (ja) 光学的距離測定装置
JP6539886B2 (ja) 像反転プリズム
CN111609830B (zh) 一种正像共轴光学***及双筒激光测距望远镜
WO2023213130A1 (zh) 一种光收发共轴的激光测距器件及光学模组
US7230684B2 (en) Method and apparatus for range finding with a single aperture
JPH0420915A (ja) 自動焦点望遠鏡
CN113534313A (zh) 光学装置及其棱镜模块
CN110044323B (zh) 一种轻小型多功能脉冲激光测距光学***
CN110286483B (zh) 一种测距双筒望远镜光学***
US2472600A (en) Optical erecting prism for folding a light path
WO2024065397A1 (zh) 两个反射面构成直角的复合棱镜及其激光测距望远镜
CN210221057U (zh) 测距仪光学***及望远镜测距仪
US20230341552A1 (en) Miniaturized wide-range laser range finder
CN218995714U (zh) 一种复合棱镜及其激光测距望远镜
CN111694144A (zh) 一种双筒激光共轴测距望远镜
CN209674002U (zh) 一种新型激光测距仪
US7599116B2 (en) Display device for telescope system
TWI745938B (zh) 光學裝置及其稜鏡模組
CN213069244U (zh) 一种复合棱镜及其激光测距望远镜
US20230341661A1 (en) Miniaturized monocular telescopic laser range finder

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280037751.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960034

Country of ref document: EP

Kind code of ref document: A1