WO2024063592A1 - Novel compound and organic light-emitting device comprising same - Google Patents

Novel compound and organic light-emitting device comprising same Download PDF

Info

Publication number
WO2024063592A1
WO2024063592A1 PCT/KR2023/014472 KR2023014472W WO2024063592A1 WO 2024063592 A1 WO2024063592 A1 WO 2024063592A1 KR 2023014472 W KR2023014472 W KR 2023014472W WO 2024063592 A1 WO2024063592 A1 WO 2024063592A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
deuterium
substituted
layer
mmol
Prior art date
Application number
PCT/KR2023/014472
Other languages
French (fr)
Korean (ko)
Inventor
김영석
김민준
정민우
서상덕
김동희
오중석
김소연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230126570A external-priority patent/KR20240041838A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2024063592A1 publication Critical patent/WO2024063592A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the present invention relates to novel compounds and organic light-emitting devices containing them.
  • organic luminescence refers to a phenomenon that converts electrical energy into light energy using organic materials.
  • Organic light-emitting devices using the organic light-emitting phenomenon have a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, so much research is being conducted.
  • Organic light emitting devices generally have a structure including an anode, a cathode, and an organic layer between the anode and the cathode.
  • the organic material layer is often composed of a multi-layer structure made of different materials to increase the efficiency and stability of the organic light-emitting device, and may be composed of, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • a voltage is applied between the two electrodes
  • holes are injected from the anode and electrons from the cathode into the organic material layer.
  • an exciton is formed, and this exciton is When it falls back to the ground state, it glows.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to novel compounds and organic light-emitting devices containing them.
  • the present invention provides a compound represented by the following formula (1):
  • Y is each independently O or S
  • R 1 is each independently hydrogen or deuterium
  • L 1 , L 2 , and L 3 are each independently a single bond, or a substituted or unsubstituted C 6-60 arylene, and
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted O and S,
  • At least one of R 1 , L 1 to L 3 , Ar 1 , and Ar 2 is deuterium or substituted with deuterium.
  • the present invention includes a first electrode; a second electrode provided opposite to the first electrode; and an organic light-emitting device comprising at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes a compound represented by Formula 1. to provide.
  • the compound represented by the above-mentioned formula 1 can be used as a material for the organic layer of an organic light-emitting device, and can improve efficiency, low driving voltage, and/or lifespan characteristics of the organic light-emitting device.
  • the compound represented by the above-mentioned formula 1 can be used as a hole injection, hole transport, hole injection and transport, light emitting, electron transport, or electron injection material.
  • Figure 1 shows an example of an organic light emitting device consisting of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • Figure 2 shows the substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (7), light emitting layer (3), hole blocking layer (8), electron injection and transport layer ( 9), and a cathode (4).
  • substituted or unsubstituted refers to deuterium; halogen group; Nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imide group; amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkylthioxy group; Arylthioxy group; Alkyl sulphoxy group; Aryl sulfoxy group; silyl group; boron group; Alkyl group; Cycloalkyl group; alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; heteroarylamine group; Arylamine group; Arylphosphine group; or substituted or unsubstituted with one or more substituents selected from the group consisting of heterocyclic groups containing one or more of N, O and S atoms, or substituted or unsubstituted with two or more of the above-
  • a substituent group in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, or it may be interpreted as a substituent in which two phenyl groups are connected.
  • the carbon number of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a compound with the following structure, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a straight-chain, branched-chain, or ring-chain alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the carbon number of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a compound with the following structure, but is not limited thereto.
  • the silyl group specifically includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited to this.
  • the boron group specifically includes trimethyl boron group, triethyl boron group, t-butyldimethyl boron group, triphenyl boron group, and phenyl boron group, but is not limited thereto.
  • halogen groups include fluorine, chlorine, bromine, or iodine.
  • the alkyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the carbon number of the alkyl group is 1 to 20. According to another embodiment, the carbon number of the alkyl group is 1 to 10. According to another embodiment, the carbon number of the alkyl group is 1 to 6. Specific examples of alkyl groups include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n.
  • -pentyl isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, etc., but is not limited to these
  • the alkenyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, etc., but are not limited to these.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 6.
  • Examples include, but are not limited to, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, and cyclooctyl.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, biphenyl group, or terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, etc., but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be combined with each other to form a spiro structure.
  • the fluorenyl group is substituted, It can be etc. However, it is not limited to this.
  • the heterocyclic group is a heterocyclic group containing one or more of O, N, Si, and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • heterocyclic groups include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, and acridyl group.
  • pyridazine group pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzooxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia
  • a zolyl group a phenothiazinyl group, and a dibenzofuranyl group.
  • the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above.
  • the aralkyl group, alkylaryl group, and alkylamine group are the same as the examples of the alkyl group described above.
  • the description regarding the heterocyclic group described above may be applied to heteroaryl among heteroarylamines.
  • the alkenyl group among the aralkenyl groups is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above can be applied, except that arylene is a divalent group.
  • the description of the heterocyclic group described above can be applied, except that heteroarylene is a divalent group.
  • the description of the aryl group or cycloalkyl group described above can be applied, except that the hydrocarbon ring is not monovalent and is formed by combining two substituents.
  • the description of the heterocyclic group described above can be applied, except that the heterocycle is not a monovalent group and is formed by combining two substituents.
  • deuterated or substituted with deuterium means that at least one of the replaceable hydrogens in a compound, a divalent linking group, or a monovalent substituent is replaced with deuterium.
  • unsubstituted or substituted with deuterium or “substituted or unsubstituted with deuterium” means “one to the maximum number of unsubstituted or replaceable hydrogens is substituted with deuterium.”
  • phenanthryl unsubstituted or substituted with deuterium means “unsubstituted or substituted with 1 to 9 deuteriums,” considering that the maximum number of hydrogens that can be substituted with deuterium in the phenanthryl structure is 9. It can be understood to mean “substituted phenanthryl.”
  • deuterated structure refers to compounds of all structures in which at least one hydrogen is replaced with deuterium, a divalent linking group, or a monovalent substituent.
  • deuterated structure of phenyl can be understood to refer to monovalent substituents of all structures in which at least one replaceable hydrogen in the phenyl group is replaced with deuterium, as follows.
  • the “deuterium substitution rate” or “deuteration degree” of a compound is the number of substituted deuteriums relative to the total number of hydrogens that can be present in the compound (the total sum of the number of hydrogens that can be replaced by deuterium and the number of substituted deuteriums in the compound). It means calculating the ratio as a percentage. Therefore, when the “deuterium substitution rate” or “deuteration degree” of a compound is “K%”, it means that K% of the hydrogen replaceable by deuterium in the compound has been replaced with deuterium.
  • the “deuterium substitution rate” or “deuteration degree” is determined by MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer), nuclear magnetic resonance spectroscopy ( 1H NMR), TLC/MS (Thin -It can be measured according to commonly known methods using Layer Chromatography/Mass Spectrometry) or GC/MS (Gas Chromatography/Mass Spectrometry). More specifically, when using MALDI-TOF MS, the “deuterium substitution rate” or “deuteration degree” is calculated by calculating the number of deuterium substituted in the compound through MALDI-TOF MS analysis, and then comparing the total number of hydrogens that may exist in the compound. The ratio of the number of deuteriums formed can be calculated as a percentage.
  • the present invention provides a compound represented by Formula 1 above.
  • the compound represented by Formula 1 is a specific position in the benzene ring at one end of the parent core structure of benzobisbenzofuran or benzobisbenzothiophene, that is, the oxygen in the terminal benzene ring condensed to benzothiophene or benzofuran.
  • it is a compound in which a tertiary amine group of a specific structure is bonded to the second carbon position from the sulfur atom, and at least one of the substituents of the compound is deuterium or is substituted with deuterium.
  • the compound has longer lifespan characteristics compared to compounds in which the substituent is light hydrogen, and therefore can be effectively applied to the light-emitting layer of an organic light-emitting device.
  • Y is each independently O or S
  • R 1 is each independently hydrogen or deuterium
  • L 1 , L 2 , and L 3 are each independently a single bond, or a substituted or unsubstituted C 6-60 arylene, and
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted O and S,
  • At least one of R 1 , L 1 to L 3 , Ar 1 , and Ar 2 is deuterium or substituted with deuterium.
  • all Y's are O, or all Y's are S, or one of the Y's is S and the others are O.
  • R 1 may be deuterium, and the remainder of R 1 may be hydrogen.
  • R 1 may be at least 3 or more or 3 to 9 deuteriums, or at least 4 or more or 4 to 9 deuteriums.
  • the remainder of R 1 may be hydrogen.
  • all of R 1 may be deuterium.
  • Y is each independently O or S
  • n is an integer from 1 to 9
  • L 1 , L 2 , and L 3 are each independently a single bond, or a substituted or unsubstituted C 6-60 arylene, and
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted O and S.
  • n is the number of deuterium substitutions in the parent nucleus structure of benzobisbenzofuran or benzobisbenzothiophene, and is indicated by b in relation to a representative example described later.
  • n 0, and n is at least 1 or 1 to 9.
  • L 1 , L 2 , and L 3 are each a single bond; Alternatively, it may be phenylene, phenylene substituted with at least one deuterium, naphthylene, or naphthylene substituted with at least one deuterium.
  • L 1 , L 2 , and L 3 are each a single bond; Alternatively, it may be phenylene, phenylene substituted with at least one or 1 to 4 deuteriums, naphthylene, or naphthylene substituted with at least 1 or 1 to 6 deuteriums.
  • L 1 , L 2 , and L 3 may each be a single bond or any one selected from the group consisting of the following.
  • L 1 and L 2 may each independently be a single bond or a hydrogen- or deuterium-substituted phenylene.
  • L 1 and L 2 may each independently be a single bond or phenylene, or phenylene with 4 deuterium substitutions, naphthylene, or naphthylene with 3 or more or 3 to 6 deuterium substitutions. there is.
  • L 1 and L 2 may each independently be a single bond, phenylene, or phenylene substituted with four deuteriums.
  • L 3 may be phenylene substituted with hydrogen or deuterium.
  • L 3 may be phenylene or phenylene substituted with four deuterium atoms.
  • At least one of L 1 , L 2 , and L 3 may be deuterium-substituted phenylene.
  • Ar 1 and Ar 2 are each independently C 6-19 aryl substituted with hydrogen or deuterium, C 6-14 aryl substituted with hydrogen or deuterium, or C 6-14 aryl substituted with hydrogen or deuterium. It may be C 2-19 heteroaryl substituted with or C 2-12 heteroaryl substituted with hydrogen or deuterium.
  • Ar 1 and Ar 2 is C 6-19 aryl substituted with deuterium, C 6-14 aryl substituted with hydrogen or deuterium, or C 2-19 heteroaryl substituted with deuterium or hydrogen or deuterium. It may be substituted C 2-12 heteroaryl.
  • Ar 1 and Ar 2 are each independently phenyl substituted with hydrogen or deuterium, biphenyl substituted with hydrogen or deuterium, naphthyl substituted with hydrogen or deuterium, phenanthryl substituted with hydrogen or deuterium, hydrogen or deuterium It may be dibenzofuranyl substituted with deuterium, dibenzothiophenyl substituted with hydrogen or deuterium, or carbazolyl substituted with hydrogen or deuterium.
  • Ar 1 and Ar 2 are each independently phenyl, phenyl substituted with 1 to 5 deuteriums, biphenyl, biphenyl substituted with 1 to 9 deuteriums, naphthyl, 1 to 7 deuteriums.
  • Ar 1 or Ar 2 may each be selected from the group consisting of:
  • Ar 1 and Ar 2 are each independently phenyl, phenyl substituted with 1 to 5 deuteriums, biphenyl, biphenyl substituted with 1 to 9 deuteriums, naphthyl, 1 to 7 deuteriums. Naphthyl substituted with deuterium, phenanthryl, phenanthryl substituted with 1 to 9 deuteriums, dibenzofuranyl, dibenzofuranyl substituted with 1 to 7 deuteriums, dibenzothiophenyl, or 1 to 9 deuteriums. It may be dibenzothiophenyl substituted with 7 deuteriums.
  • At least one of Ar 1 and Ar 2 may contain two or more benzene rings.
  • Ar 1 and Ar 2 is biphenyl substituted with hydrogen or deuterium, naphthyl substituted with hydrogen or deuterium, phenanthryl substituted with hydrogen or deuterium, and dibenzofuranyl substituted with hydrogen or deuterium. , or it may be dibenzothiophenyl substituted with hydrogen or deuterium.
  • Ar 1 and Ar 2 is biphenyl, biphenyl substituted with 1 to 9 deuteriums, naphthyl, naphthyl substituted with 1 to 7 deuteriums, phenanthryl, 1 to It may be phenanthryl, dibenzofuranyl substituted with 9 deuteriums, dibenzofuranyl substituted with 1 to 7 deuteriums, dibenzothiophenyl, or dibenzothiophenyl substituted with 1 to 7 deuteriums. .
  • Ar 1 and Ar 2 is biphenyl substituted with 5 or more or 5 to 9 deuteriums, naphthyl substituted with 4 or more or 4 to 7 deuteriums, or 4 or more or 4 deuteriums. It may be phenanthryl substituted with 2 to 9 deuteriums, dibenzofuranyl substituted with 2 or more or 2 to 7 deuteriums, and dibenzothiophenyl substituted with 2 or more or 2 to 7 deuteriums.
  • At least one of Ar 1 and Ar 2 may be C 6-19 aryl substituted with hydrogen or deuterium, or C 6-14 aryl substituted with hydrogen or deuterium.
  • Ar 1 and Ar 2 may be phenyl substituted with hydrogen or deuterium, biphenyl substituted with hydrogen or deuterium, naphthyl substituted with hydrogen or deuterium, or phenanthryl substituted with hydrogen or deuterium. there is.
  • Ar 1 and Ar 2 is phenyl, phenyl substituted with 1 to 5 deuteriums, biphenyl, biphenyl substituted with 1 to 9 deuteriums, naphthyl, 1 to 7 deuteriums. It may be naphthyl substituted with deuterium, phenanthryl, or phenanthryl substituted with 1 to 9 deuterium atoms.
  • Ar 1 and Ar 2 is phenyl, phenyl substituted with 1 to 5 deuteriums, biphenyl substituted with 5 or more or 5 to 9 deuteriums, 4 or more or 4 to 4 deuteriums. It may be naphthyl substituted with 7 deuteriums, or phenanthryl substituted with 4 or more or 4 to 9 deuteriums.
  • At least one of R 1 , L 1 to L 3 , Ar 1 , and Ar 2 may be deuterium or substituted with deuterium.
  • At least one of R 1 may be deuterium, or at least one of L 1 to L 3 may be phenylene substituted with deuterium, or at least one of Ar 1 and Ar 2 may be substituted with deuterium. .
  • At least one of R 1 is deuterium, and at least one of L 1 to L 3 is phenylene substituted with deuterium, or at least one of Ar 1 and Ar 2 is substituted with deuterium. You can.
  • Ar 1 when L 1 in Formula 1 and Formula 1-1 is a single bond, Ar 1 is C 6-19 aryl unsubstituted with deuterium, or C 2-19 heteroaryl substituted with hydrogen or deuterium. It may be, and when L 1 is substituted or unsubstituted C 6-60 arylene, Ar 1 is C 6-19 aryl substituted with hydrogen or deuterium, or C 2-19 heteroaryl substituted with hydrogen or deuterium. It can be.
  • Ar 2 when L 2 is a single bond, Ar 2 is deuterium-unsubstituted C 6-19 aryl, or hydrogen or deuterium-substituted C 2-19 heteroaryl, and L 2 is substituted or unsubstituted C 6- 60
  • Ar 2 may be C 6-19 aryl substituted with hydrogen or deuterium, or C 2-19 heteroaryl substituted with hydrogen or deuterium.
  • Ar 1 when L 1 is a single bond, Ar 1 is phenyl, biphenyl, naphthyl, phenanthryl, dibenzofuranyl substituted with hydrogen or deuterium, or hydrogen or deuterium. It may be substituted dibenzothiophenyl, and when L 1 is substituted or unsubstituted C 6-60 arylene, Ar 1 is phenyl substituted with hydrogen or deuterium, biphenyl substituted with hydrogen or deuterium, or hydrogen or deuterium.
  • Ar 2 may be naphthyl substituted with, phenanthryl substituted with hydrogen or deuterium, dibenzofuranyl substituted with hydrogen or deuterium, or dibenzothiophenyl substituted with hydrogen or deuterium.
  • Ar 2 may be phenyl, biphenyl, naphthyl, phenanthryl, dibenzofuranyl substituted with hydrogen or deuterium, or dibenzothiophenyl substituted with hydrogen or deuterium
  • L 2 is substituted or unsubstituted C 6-60 arylene
  • Ar 2 is phenyl substituted with hydrogen or deuterium, biphenyl substituted with hydrogen or deuterium, naphthyl substituted with hydrogen or deuterium, or hydrogen or deuterium. It may be substituted phenanthryl, dibenzofuranyl substituted with hydrogen or deuterium, or dibenzothiophenyl substituted with hydrogen or deuterium.
  • the compound contains at least one deuterium.
  • the total number of deuterium substitutions and the number of substitutions for each substituent of the compound are as described with a, b, c, d, e, f, and g in relation to the structural formula of a representative example described later, and detailed descriptions are omitted.
  • At least one of the substituents of the parent nucleus structure of benzobisbenzofuran or benzobisbenzothiophene in Formula 1 and Formula 1-1, that is, R 1 may be deuterium.
  • the deuterium substitution rate of the compound may be 1% to 100%.
  • the deuterium substitution rate of the compound is 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 28% or more, 30% or more, 32% or more, 35% or more, 38% or more, More than 40%, more than 42%, more than 45%, more than 48%, more than 50%, more than 52%, more than 55%, more than 58%, more than 60%, more than 62%, more than 65%, more than 68%, more than 70% It may be 72% or more, 75% or more, 78% or more, 80% or more, or 90% or more, and 100% or less.
  • the deuterium substitution rate of the compound is 20% or more, or 25% or more, 28% or more, 30% or more, 32% or more, 35% or more, 38% or more, 40% or more, 42% or more, 45% or more, 48% or more, 50% or more, but 100% or less, or 98% or less, 95% or less, 92% or less, 90% or less, 88% or less, 85% or less, 82% or less, 80% or less, 78% or less, It may be 75% or less, 72% or less, 70% or less, 68% or less, 65% or less, 62% or less, 60% or less, 58% or less, or 55% or less.
  • the compound may contain at least one deuterium or 1 to 50 deuteriums. More specifically, the compound contains at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 deuterium. , or 11 or more, but not more than 50, not more than 40, not more than 35, not more than 32, not more than 30, not more than 28, not more than 26, not more than 24, not more than 22, not more than 20, not more than 19. , may contain 18 or fewer, 17 or fewer, or 16 or fewer deuterium atoms.
  • the compounds represented by Formula 1 and Formula 1-1 may be those in which at least 3 or 3 to 35 deuteriums are substituted, and specifically, at least 4 or more or 4 to 30 deuteriums may be substituted. It may be substituted, or at least 6 or more or 6 to 25 deuteriums may be substituted, or at least 8 or more or 8 to 20 deuterium may be substituted. More specifically, at least 11 or 11 to 16 deuteriums may be substituted.
  • at least one of R 1 , L 1 to L 3 , and Ar 1 to Ar 2 may be at least 3 or 3 to 35 deuterium atoms or may be substituted with at least 3 or 3 to 35 deuterium atoms.
  • At least 4 or more or 4 to 30 deuteriums or at least 4 or more or 4 to 30 deuteriums, or at least 6 or more or 6 to 25 deuteriums, or at least 6 or more, or It may be substituted with 6 to 25 deuterium atoms, or may be substituted with at least 8 or 8 to 20 deuterium atoms, or may be substituted with at least 8 or 8 to 20 deuterium atoms. More specifically, at least one of R 1 , L 1 to L 3 , and Ar 1 to Ar 2 is at least 11 or 11 to 16 deuterium, or at least 11 or more or 11 to 16 deuterium. It may be substituted with deuterium
  • D is deuterium
  • a is the number of deuterium substitutions
  • a in the structural formula is the total number of deuterium substitutions in the compound, and a > 0, and is the total number of individual deuterium substitutions of each substituent.
  • a may be at least 1 or 1 to 50. More specifically, a in the structural formula is at least 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, or 11 or more, and is 50 or less, 40 or less. , 35 or less, 32 or less, 30 or less, 28 or less, 26 or less, 24 or less, 22 or less, 20 or less, 19 or less, 18 or less, 17 or less, or 16 or less.
  • a in the structural formula may be at least 3 or 3 to 35, or at least 4 or more or 4 to 30, or at least 6 or more, or 6 to 25, or at least 8 or more, or 8 to 20. More specifically, a in the structural formula may be at least 11 or more or 11 to 16.
  • the number of individual small and medium substitutions of each substituent constituting a in the structural formula can be expressed as b, c, d, e, f, and g, respectively, and can refer to the specific examples described below.
  • b is the number of deuterium substitutions in the parent nucleus structure of benzobisbenzofuran or benzobisbenzothiophene in Formula 1, and b > 0.
  • b may be at least 1 or 1 to 9.
  • c is the number of deuterium substituted in the L 1 substituent that is the linker in Formula 1
  • d is the number of deuterium substituted in the L 2 substituent that is the linker in Formula 1
  • e is the number of deuterium substituted in the L 2 substituent that is the linker in Formula 1.
  • f is the number of deuterium substituted in the Ar 1 substituent, which is the substituent of the tertiary amine group in Formula
  • g is the number of deuterium substituted by the Ar 2 substituent, which is the substituent of the tertiary amine group in Formula 1.
  • the total sum of c+d+e+f+g may be 0 to 49.
  • D is deuterium
  • a is the total number of deuterium substitutions
  • a > is the total number of individual deuterium substitutions of each substituent, and the specific range is as described above.
  • D is deuterium
  • a is the total number of deuterium substitutions in the compound
  • a may be at least 1 or 1 to 50, and the specific range is as described above.
  • b, c, d, e, f, g are the number of individual small and medium substitutions of each substituent in the structural formula
  • b may be at least 1 or 1 to 9
  • c+d+e+f+g The total may be 0 to 49, and the specific range is as described above.
  • the compound represented by Chemical Formula 1 can be prepared by the manufacturing method shown in Scheme 1 below.
  • the manufacturing method may be further detailed in the synthesis examples described later.
  • Q 1 is BO 2 C 2 (CH 3 ) 4 , or B(OH) 2 ,
  • p and q are each 0 or 1, provided that at least one of p and q is 0, and the remaining of p and q is 1.
  • Q 1 is B(OH) 2 .
  • Q 2 is Cl, Br, or I, preferably Cl, or Br, and more preferably Cl.
  • Scheme 1 is a specific position in the benzene ring at one end of the parent nucleus structure of benzobisbenzofuran or benzobisbenzothiophene, that is, an oxygen or sulfur atom in the terminal benzene ring condensed to benzothiophene or benzofuran.
  • This is a reaction to introduce a tertiary amine substituent of a specific structure at the second carbon position and replace it with deuterium.
  • the deuterium substitution reaction may be omitted, or the deuterium substitution reaction may be performed together to additionally substitute deuterium on the remaining substituents.
  • the base components include potassium carbonate (K 2 CO 3 ), sodium bicarbonate (NaHCO 3 ), cesium carbonate (Cs 2 CO 3 ), and sodium acetate (sodium).
  • acetate (NaOAc), potassium acetate (KOAc), sodium ethoxide (NaOEt), sodium tert-butoxide (NaOtBu), or triethylamine (Et 3 N), N,N-diisopropylethylamine (EtN(iPr) 2 ), etc. can be used.
  • the base component is potassium carbonate (K 2 CO 3 ), cesium carbonate (Cs 2 CO 3 ), potassium acetate (KOAc), and sodium tert-butoxide. butoxide, NaOtBu), or N,N-diisopropylethylamine (EtN(iPr) 2 ).
  • potassium carbonate (K 2 CO 3 ) can be used as a base component.
  • the palladium catalyst includes bis(tri-(tert-butyl)phosphine)palladium (0) (bis(tri-(tert-butyl)phosphine)palladium(0), Pd(t-Bu 3 P) 2 ), tetrakis(triphenylphosphine)palladium (0) (tetrakis(triphenylphosphine)palladium (0), Pd(PPh 3 ) 4 ), tris(dibenzylideneacetone)dipalladium (0) (tris (dibenzylideneacetone)-dipalladium (0), bis(dibenzylideneacetone)palladium (0), Pd(dba) 2 ) or palladium(II) acetate (palladium(II) acetate, Pd (OAc) 2 ) can be used, etc.
  • the palladium catalyst is bis(tri-(tert-butyl)phosphine)palladium (0) (bis(tri-(tert-butyl)phosphine)palladium(0 ), Pd(t-Bu 3 P) 2 ), tetrakis(triphenylphosphine)palladium (0), Pd(PPh 3 ) 4 ), or bis(dibenzylideneacetone ) It may be palladium (0) (bis(dibenzylideneacetone)palladium (0), Pd(dba) 2 ).
  • bis(tri-(tert-butyl)phosphine)palladium (0) bis (tri-(tert-butyl)phosphine)palladium(0), Pd(t-Bu 3 P) 2
  • bis(tri-(tert-butyl)phosphine)palladium(0), Pd(t-Bu 3 P) 2 can be used as a catalyst.
  • the present invention provides an organic light-emitting device containing the compound represented by Formula 1 above.
  • the present invention includes a first electrode; a second electrode provided opposite to the first electrode; and an organic light-emitting device comprising at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes a compound represented by Formula 1. do.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc. as an organic material layer.
  • the structure of the organic light emitting device is not limited to this and may include fewer organic layers.
  • the organic material layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously performs hole injection and transport, and the hole injection layer, the hole transport layer, or a layer that simultaneously performs hole injection and transport is represented by Formula 1 Contains the indicated compounds.
  • the organic layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously performs hole injection and transport, and the hole injection layer, the hole transport layer, or a layer that simultaneously performs hole injection and transport is represented by Formula 1 Contains the indicated compounds.
  • the organic material layer may include an electron blocking layer, and the electron blocking layer includes the compound represented by Chemical Formula 1.
  • the organic layer may include a light-emitting layer, and the light-emitting layer includes the compound represented by Chemical Formula 1.
  • the light emitting layer further includes a dopant compound.
  • the light-emitting layer includes the compound of Formula 1 and a dopant.
  • the light-emitting layer includes the compound of Formula 1 and a dopant, and includes the compound of Formula 1 and the dopant in a weight ratio of 100:1 to 1:1.
  • the light-emitting layer includes the compound of Formula 1 and a dopant, and includes the compound of Formula 1 and the dopant in an content ratio of 100:1 to 2:1.
  • the light-emitting layer includes the compound of Formula 1 and a dopant, and the compound of Formula 1 and the dopant are 100:1 to 5:1, or 100:1 to 10:1, or 100:1 to 20:1, or 100:1. It is included in a weight ratio of :1 to 30:1.
  • the dopant is a metal complex.
  • the dopant is an iridium-based metal complex.
  • the organic material layer includes a light-emitting layer
  • the light-emitting layer includes a dopant
  • the dopant material is selected from the structural formulas below.
  • the structure specified above is not limited to the dopant compound.
  • the organic material layer may include a hole blocking layer, and the hole blocking layer includes the compound represented by Chemical Formula 1.
  • the organic material layer may include an electron transport layer, an electron injection layer, or a layer that simultaneously performs electron injection and transport, and the electron transport layer, the electron injection layer, or a layer that simultaneously performs electron injection and transport is represented by Formula 1 Contains the indicated compounds.
  • the organic material layer includes a light-emitting layer and an electron-blocking layer
  • the light-emitting layer or the electron-blocking layer may include the compound represented by Formula 1.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. Additionally, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • Figure 1 shows an example of an organic light emitting device consisting of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • the compound represented by Formula 1 may be included in the light-emitting layer.
  • Figure 2 shows the substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (7), light emitting layer (3), hole blocking layer (8), electron injection and transport layer ( 9) and a cathode 4.
  • An example of an organic light-emitting device is shown.
  • the compound represented by Formula 1 may be included in one or more of the hole injection layer, hole transport layer, electron blocking layer, light emitting layer, hole blocking layer, and electron injection and transport layer.
  • the compound represented by Formula 1 may be included in the light-emitting layer, for example, as a host material of the light-emitting layer.
  • the organic light emitting device according to the present invention can be manufactured using materials and methods known in the art, except that at least one of the organic layers includes the compound represented by Formula 1 above. Additionally, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device can be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • an anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation.
  • a PVD physical vapor deposition
  • an organic material layer including a hole injection layer, a hole transport layer, an electron blocking layer, a light-emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer is formed thereon, and then a material that can be used as a cathode is deposited on it. It can be manufactured.
  • an organic light-emitting device can be made by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light-emitting device.
  • the compound represented by Formula 1 has excellent solubility in the solvent used in the solution application method, making it easy to apply the solution application method.
  • the solution application method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • the present invention provides a coating composition comprising the compound represented by Formula 1 and a solvent.
  • the solvent is not particularly limited as long as it is capable of dissolving or dispersing the compound according to the present invention, and examples include chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o -Chlorine-based solvents such as dichlorobenzene; Ether-based solvents such as tetrahydrofuran and dioxane; Aromatic hydrocarbon solvents such as toluene, xylene, trimethylbenzene, and mesitylene; Aliphatic hydrocarbon solvents such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; Ketone-based solvents such as acetone, methyl ethyl ketone, and cyclohexanone; Ester solvents such
  • Alcohol-based solvents such as methanol, ethanol, propanol, isopropanol, and cyclohexanol
  • Sulfoxide-based solvents such as dimethyl sulfoxide
  • amide-based solvents such as N-methyl-2-pyrrolidone and N,N-dimethylformamide
  • Benzoate-based solvents such as butyl benzoate and methyl-2-methoxybenzoate
  • tetralin Solvents such as 3-phenoxy-toluene may be mentioned.
  • the above-mentioned solvents may be used individually or two or more types of solvents may be mixed.
  • the viscosity of the coating composition is preferably 1 cP to 10 cP, and coating is easy within this range.
  • the concentration of the compound according to the present invention in the coating composition is preferably 0.1 wt/v% to 20 wt/v%.
  • the present invention provides a method of forming a functional layer using the above-described coating composition. Specifically, coating the coating composition according to the present invention described above by a solution process; and heat treating the coated coating composition.
  • the heat treatment temperature is preferably 150°C to 230°C. Additionally, the heat treatment time is 1 minute to 3 hours, and more preferably 10 minutes to 1 hour. Additionally, the heat treatment is preferably performed in an inert gas atmosphere such as argon or nitrogen.
  • the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.
  • the anode material is generally preferably a material with a large work function to facilitate hole injection into the organic layer.
  • Specific examples of the anode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline are included, but are not limited to these.
  • the cathode material is generally preferably a material with a small work function to facilitate electron injection into the organic layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; There are, but are not limited to, multi-layered materials such as LiF/Al or LiO 2 /Al.
  • the hole injection layer is a layer that injects holes from an electrode.
  • the hole injection material has the ability to transport holes, has an excellent hole injection effect at the anode, a light-emitting layer or a light-emitting material, and has an excellent hole injection effect on the light-emitting layer or light-emitting material.
  • a compound that prevents movement of excitons to the electron injection layer or electron injection material and has excellent thin film forming ability is preferred. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic material layer.
  • HOMO highest occupied molecular orbital
  • hole injection materials include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrilehexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light-emitting layer. It is a hole transport material that can receive holes from the anode or hole injection layer and transfer them to the light-emitting layer, and is a material with high mobility for holes. This is suitable. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers with both conjugated and non-conjugated portions, but are not limited to these.
  • the light-emitting material is a material capable of emitting light in the visible range by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and is preferably a material with good quantum efficiency for fluorescence or phosphorescence.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV) series polymer; Spiro compounds; Polyfluorene, rubrene, etc., but are not limited to these.
  • the light emitting layer may include a host material and a dopant material.
  • Host materials include condensed aromatic ring derivatives or heterocyclic ring-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, and ladder-type compounds. These include, but are not limited to, furan compounds and pyrimidine derivatives.
  • a compound according to the present invention is used as the host material.
  • Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, such as pyrene, anthracene, chrysene, and periplanthene
  • styrylamine compounds include substituted or unsubstituted arylamino groups.
  • arylvinyl group is substituted on the arylamine, and is substituted or unsubstituted with one or two or more substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group.
  • substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group.
  • styrylamine, styryldiamine, styryltriamine, styryltetraamine, etc. are included, but are not limited thereto.
  • metal complexes include, but are not limited to, iridium complexes and platinum complexes.
  • an iridium-based metal complex is used as the dopant material.
  • the light-emitting layer may be a red light-emitting layer, and when the compound according to the present invention is used as a host material, the stability of electrons and holes increases, energy is transferred from the host to the red dopant well, and the driving voltage of the organic light-emitting device, Luminous efficiency and lifespan characteristics can be improved.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light-emitting layer.
  • the electron transport material is a material that can easily inject electrons from the cathode and transfer them to the light-emitting layer, and a material with high electron mobility is suitable. do. Specific examples include Al complex of 8-hydroxyquinoline; Complex containing Alq 3 ; organic radical compounds; Hydroxyflavone-metal complexes, etc., but are not limited to these.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials with a low work function followed by an aluminum or silver layer. Specifically, cesium, barium, calcium, ytterbium and samarium, in each case followed by an aluminum layer or a silver layer.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an excellent electron injection effect from the cathode, a light-emitting layer or a light-emitting material, and hole injection of excitons generated in the light-emitting layer.
  • a compound that prevents movement to the layer and has excellent thin film forming ability is preferred. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc. and their derivatives, metals. Complex compounds and nitrogen-containing five-membered ring derivatives are included, but are not limited thereto.
  • metal complex compounds include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, Tris(2-methyl-8-hydroxyquinolinato)aluminum, Tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato) gallium, bis(2-methyl-8-quinolinato)(1-naphtolato) aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato) gallium, etc. It is not limited to this.
  • the organic light-emitting device according to the present invention may be a bottom-emitting device, a top-emitting device, or a double-sided light-emitting device. In particular, it may be a bottom-emitting device that requires relatively high luminous efficiency.
  • the compound according to the present invention may be included in an organic solar cell or an organic transistor in addition to an organic light-emitting device.
  • compound sub 1 (15 g, 51.2 mmol) and amine compound amine 1 (15.6 g, 53.8 mmol) were added to 300 mL of tetrahydrofuran (THF), stirred and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 21.2 g, 153.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.3 g, 0.5 mmol) was added. After reaction for 5 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • K 2 CO 3 potassium carbonate
  • Pd(t-Bu 3 P) 2 bis(tri-tert-butylphosphine)palladium(0)
  • compound 1_P1 (10 g, 19.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene (TCB) and stirred at room temperature.
  • TB 1,2,4-trichlorobenzene
  • Deuterium oxide DO , 14.4 g, 717.7 mmol
  • Tf 2 O Trifluoromethanesulfonic anhydride
  • Tf 2 O Trifluoromethanesulfonic anhydride
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • compound 2_P1 (10 g, 15.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (11.5 g, 573.5 mmol) was added to Trifluoromethanesulfonic anhydride (36 g, 127.4 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • compound 3_P1 (10 g, 15.3 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide 11 g, 550.6 mmol was added to Trifluoromethanesulfonic anhydride (34.5 g, 122.4 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • compound 4_P1 (10 g, 15.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (11.5 g, 573.5 mmol) was added to Trifluoromethanesulfonic anhydride (36 g, 127.4 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 5_P1 (10 g, 16.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (12.2 g, 608.4 mmol) was added to Trifluoromethanesulfonic anhydride (38.1 g, 135.2 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 6_P1 (10 g, 15 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (10.8 g, 539.1 mmol) was added to Trifluoromethanesulfonic anhydride (33.8 g, 119.8 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • compound 7_P1 (10 g, 15 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (10.8 g, 539.1 mmol) was added to Trifluoromethanesulfonic anhydride (33.8 g, 119.8 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • compound 8_P1 (10 g, 16.5 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (11.9 g, 592.4 mmol) was added to Trifluoromethanesulfonic anhydride (37.1 g, 131.6 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • compound 9_P1 (10 g, 14.6 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (10.5 g, 526.4 mmol) was added to Trifluoromethanesulfonic anhydride (33 g, 117 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • compound sub 1 (15 g, 51.2 mmol) and amine compound amine 10 (29.5 g, 53.8 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 21.2 g, 153.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.3 g, 0.5 mmol) was added. After reaction for 3 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • K 2 CO 3 potassium carbonate
  • Pd(t-Bu 3 P) 2 bis(tri-tert-butylphosphine)palladium(0)
  • the compound 10_P1 (10 g, 13.2 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (9.5 g, 473.7 mmol) was added to Trifluoromethanesulfonic anhydride (29.7 g, 105.3 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 11_P1 (10 g, 16.8 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature.
  • Deuterium oxide (12.1 g, 606.3 mmol) was added to Trifluoromethanesulfonic anhydride (38 g, 134.7 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 12_P1 (10 g, 13.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature.
  • Deuterium oxide (10 g, 500.1 mmol) was added to Trifluoromethanesulfonic anhydride (31.4 g, 111.1 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 13_P1 (10 g, 14.6 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature.
  • Deuterium oxide (10.5 g, 526.4 mmol) was added to Trifluoromethanesulfonic anhydride (33 g, 117 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 14_P1 (10 g, 14.3 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature.
  • Deuterium oxide (10.3 g, 514.4 mmol) was added to Trifluoromethanesulfonic anhydride (32.2 g, 114.3 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 15_P1 (10 g, 12.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature.
  • Deuterium oxide (9.3 g, 463.9 mmol) was added to Trifluoromethanesulfonic anhydride (29.1 g, 103.1 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 16_P1 (10 g, 14.6 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature.
  • Deuterium oxide (10.5 g, 526.4 mmol) was added to Trifluoromethanesulfonic anhydride (33 g, 117 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 17_P1 (10 g, 14.6 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature.
  • Deuterium oxide (10.5 g, 526.4 mmol) was added to Trifluoromethanesulfonic anhydride (33 g, 117 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 18_P1 (10 g, 14.3 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (10.3 g, 514.4 mmol) was added to Trifluoromethanesulfonic anhydride (32.2 g, 114.3 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 19_P1 (10 g, 14.3 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature.
  • Deuterium oxide (10.3 g, 514.4 mmol) was added to Trifluoromethanesulfonic anhydride (32.2 g, 114.3 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 20_P1 (10 g, 12.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (9.3 g, 463.9 mmol) was added to Trifluoromethanesulfonic anhydride (29.1 g, 103.1 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • compound 21_P1 (10 g, 14.3 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (10.3 g, 514.4 mmol) was added to Trifluoromethanesulfonic anhydride (32.2 g, 114.3 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 22_P1 (10 g, 12.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (9.3 g, 463.9 mmol) was added to Trifluoromethanesulfonic anhydride (29.1 g, 103.1 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 23_P1 (10 g, 14 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (10.1 g, 502.8 mmol) was added to Trifluoromethanesulfonic anhydride (31.5 g, 111.7 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 24_P1 (10 g, 14 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (10.1 g, 502.8 mmol) was added to Trifluoromethanesulfonic anhydride (31.5 g, 111.7 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • the compound 25_P1 (10 g, 12.6 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature.
  • Deuterium oxide (9.1 g, 454.5 mmol) was added to Trifluoromethanesulfonic anhydride (28.5 g, 101 mmol) at 0 o C, and stirred for 5 hours to prepare a solution.
  • the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) with a thickness of 1,000 ⁇ was placed in distilled water with a detergent dissolved in it and washed with ultrasonic waves.
  • a detergent manufactured by Fischer Co. was used, and distilled water filtered secondarily using a filter manufactured by Millipore Co. was used as distilled water.
  • ultrasonic cleaning was repeated twice with distilled water for 10 minutes.
  • the following compound HI-1 was formed as a hole injection layer to a thickness of 1150 ⁇ , and the following compound A-1 was p-doped at a concentration of 1.5%.
  • the following compound HT-1 was vacuum deposited to form a hole transport layer with a film thickness of 800 ⁇ .
  • the following compound EB-1 was vacuum deposited to form an electron blocking layer with a thickness of 150 ⁇ .
  • Compound 1 and Dp-7 were vacuum deposited at a weight ratio of 98:2 to form a red light-emitting layer with a thickness of 400 ⁇ .
  • the following compound HB-1 was vacuum deposited to form a hole blocking layer with a film thickness of 30 ⁇ .
  • the following ET-1 compound and the following LiQ compound were vacuum deposited at a weight ratio of 2:1 to form an electron injection and transport layer with a film thickness of 300 ⁇ .
  • lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 1,000 ⁇ were sequentially deposited to form a cathode, thereby manufacturing an organic light-emitting device.
  • the deposition rate of organic matter was maintained at 0.4 ⁇ /sec to 0.7 ⁇ /sec
  • the deposition rate of lithium fluoride of the cathode was maintained at 0.3 ⁇ /sec
  • aluminum was maintained at 2 ⁇ /sec
  • Organic light-emitting devices were manufactured by maintaining 2*10 -7 torr to 5*10 -6 torr.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that compounds 2 to 25 listed in Table 1 below were used instead of compound 1 as a host when forming the light-emitting layer in the organic light-emitting device of Example 1.
  • An organic light-emitting device was manufactured in the same manner as Example 1, except that the compounds listed in Table 2 below were used instead of Compound 1 as a host when forming the light-emitting layer in the organic light-emitting device of Example 1.
  • Comparative compounds RH-1 to RH-6, comparative compound 1_P1, and compound 13_P1 used in Table 2 below are respectively as follows.
  • the driving voltage and luminous efficiency were measured at a current density of 10 mA/cm 2 , and the lifespan T95 was 95% of the initial luminance at a current density of 50 mA/cm 2.
  • the time required to reduce to (T95, hr) was measured. The results are shown in Tables 1 and 2 below.
  • Example 1 Compound 1 4.03 24.01 170
  • Example 2 Compound 2 4.10 24.05 189
  • Example 3 Compound 3 4.15 24.12 184
  • Example 4 Compound 4 4.08 23.99 175
  • Example 5 Compound 5 4.11 24.09 182
  • Example 6 Compound 6 4.08 23.95
  • Example 7 Compound 7 4.07 24.11 191
  • Example 8 Compound 8 4.11 24.39 189
  • Example 9 Compound 9 4.10 24.38 187
  • Example 10 Compound 10 4.09 23.88 177
  • Example 11 Compound 11 4.12 24.05 181
  • Example 12 Compound 12 4.15 24.65 185
  • Example 13 Compound 13 4.09 24.15 180
  • Example 14 Compound 14 4.13 25.09 193
  • Example 15 Compound 15 4.02 25.69 192
  • Example 16 Compound 16 4.03 24.42 181
  • Example 17 Compound 17 4.12 23.95 185
  • Example 18 Compound 18 4.06 23.99
  • Example 19 Compound 19 4.08 24.
  • the red organic light emitting device of Example 1 used materials that were widely used in the past, and had a structure in which Compound 1 was used as the light emitting layer and Dp-7 was used as the dopant of the red light emitting layer.
  • organic light-emitting devices were manufactured using Compounds 2 to 25 instead of Compound 1, and in Comparative Examples 1 to 19, Comparative Compounds RH-1 to RH-6, Comparative Compound 1_P1, and Comparative Compound 13_P1 instead of Compound 1.
  • An organic light emitting device was manufactured using .
  • the compound represented by Formula 1 i.e., benzobisbenzofuran or benzobisbenzothiophene
  • the compound represented by Formula 1 is condensed at a specific position in the benzene ring at one end of the parent nucleus structure, i.e., benzothiophene or benzofuran.
  • the organic light emitting devices of Examples 1 to 25 could significantly improve lifespan characteristics while maintaining high efficiency. This can ultimately be judged to be because the compounds of the examples according to the present invention have higher stability to electrons and holes than the compounds of the comparative examples. In conclusion, it can be confirmed that the driving voltage, luminous efficiency, and lifespan characteristics of organic light-emitting devices can be improved when the compound of the present invention is used as a light-emitting layer or hole transport layer.
  • the organic light-emitting device manufactured using the compound according to the present invention as the host of the light-emitting layer exhibits superior performance in terms of efficiency and lifespan compared to the organic light-emitting device of the comparative example.
  • the compounds of the present invention exhibited superior properties in terms of efficiency and lifespan depending on the position and type of the substituent compared to the comparative compounds.
  • Substrate 2 Anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a novel compound and an organic light-emitting device comprising same.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자Novel compounds and organic light-emitting devices using them
관련 출원(들)과의 상호 인용Cross-Citation with Related Application(s)
본 출원은 2022년 9월 22일자 한국 특허 출원 제10-2022-0121090호 및 2023년 9월 21일자 한국 특허 출원 제10-2023-0126570호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2022-0121090 dated September 22, 2022 and Korean Patent Application No. 10-2023-0126570 dated September 21, 2023, and the relevant Korean patent applications All content disclosed in the literature is incorporated as part of this specification.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to novel compounds and organic light-emitting devices containing them.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, organic luminescence refers to a phenomenon that converts electrical energy into light energy using organic materials. Organic light-emitting devices using the organic light-emitting phenomenon have a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, so much research is being conducted.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. Organic light emitting devices generally have a structure including an anode, a cathode, and an organic layer between the anode and the cathode. The organic material layer is often composed of a multi-layer structure made of different materials to increase the efficiency and stability of the organic light-emitting device, and may be composed of, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer. In the structure of this organic light-emitting device, when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode into the organic material layer. When the injected holes and electrons meet, an exciton is formed, and this exciton is When it falls back to the ground state, it glows.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.The development of new materials for organic materials used in organic light-emitting devices as described above is continuously required.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호(Patent Document 0001) Korean Patent Publication No. 10-2000-0051826
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to novel compounds and organic light-emitting devices containing them.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:The present invention provides a compound represented by the following formula (1):
[화학식 1][Formula 1]
Figure PCTKR2023014472-appb-img-000001
Figure PCTKR2023014472-appb-img-000001
상기 화학식 1에서,In Formula 1,
Y는 각각 독립적으로 O 또는 S이고,Y is each independently O or S,
R1은 각각 독립적으로 수소 또는 중수소이고, R 1 is each independently hydrogen or deuterium,
L1, L2, 및 L3는 각각 독립적으로 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고, 및L 1 , L 2 , and L 3 are each independently a single bond, or a substituted or unsubstituted C 6-60 arylene, and
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이되, Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted O and S,
단, R1, L1 내지 L3, Ar1, 및 Ar2 중 적어도 하나 이상은 중수소이거나 중수소로 치환된 것이다.However, at least one of R 1 , L 1 to L 3 , Ar 1 , and Ar 2 is deuterium or substituted with deuterium.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는 것인, 유기 발광 소자를 제공한다. In addition, the present invention includes a first electrode; a second electrode provided opposite to the first electrode; and an organic light-emitting device comprising at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes a compound represented by Formula 1. to provide.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.The compound represented by the above-mentioned formula 1 can be used as a material for the organic layer of an organic light-emitting device, and can improve efficiency, low driving voltage, and/or lifespan characteristics of the organic light-emitting device. In particular, the compound represented by the above-mentioned formula 1 can be used as a hole injection, hole transport, hole injection and transport, light emitting, electron transport, or electron injection material.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. Figure 1 shows an example of an organic light emitting device consisting of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9), 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.Figure 2 shows the substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (7), light emitting layer (3), hole blocking layer (8), electron injection and transport layer ( 9), and a cathode (4).
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail to aid understanding.
본 명세서에서,
Figure PCTKR2023014472-appb-img-000002
또는
Figure PCTKR2023014472-appb-img-000003
는 다른 치환기에 연결되는 결합을 의미한다.
In this specification,
Figure PCTKR2023014472-appb-img-000002
or
Figure PCTKR2023014472-appb-img-000003
means a bond connected to another substituent.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.As used herein, the term “substituted or unsubstituted” refers to deuterium; halogen group; Nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imide group; amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkylthioxy group; Arylthioxy group; Alkyl sulphoxy group; Aryl sulfoxy group; silyl group; boron group; Alkyl group; Cycloalkyl group; alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; heteroarylamine group; Arylamine group; Arylphosphine group; or substituted or unsubstituted with one or more substituents selected from the group consisting of heterocyclic groups containing one or more of N, O and S atoms, or substituted or unsubstituted with two or more of the above-exemplified substituents linked. . For example, “a substituent group in which two or more substituents are connected” may be a biphenyl group. That is, the biphenyl group may be an aryl group, or it may be interpreted as a substituent in which two phenyl groups are connected.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In this specification, the carbon number of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a compound with the following structure, but is not limited thereto.
Figure PCTKR2023014472-appb-img-000004
Figure PCTKR2023014472-appb-img-000004
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the oxygen of the ester group may be substituted with a straight-chain, branched-chain, or ring-chain alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
Figure PCTKR2023014472-appb-img-000005
Figure PCTKR2023014472-appb-img-000005
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In this specification, the carbon number of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a compound with the following structure, but is not limited thereto.
Figure PCTKR2023014472-appb-img-000006
Figure PCTKR2023014472-appb-img-000006
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group specifically includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited to this.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes trimethyl boron group, triethyl boron group, t-butyldimethyl boron group, triphenyl boron group, and phenyl boron group, but is not limited thereto.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In this specification, examples of halogen groups include fluorine, chlorine, bromine, or iodine.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the carbon number of the alkyl group is 1 to 20. According to another embodiment, the carbon number of the alkyl group is 1 to 10. According to another embodiment, the carbon number of the alkyl group is 1 to 6. Specific examples of alkyl groups include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n. -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, etc., but is not limited to these.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, etc., but are not limited to these.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 6. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, Examples include, but are not limited to, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, and cyclooctyl.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a monocyclic aryl group, such as a phenyl group, biphenyl group, or terphenyl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, etc., but is not limited thereto.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2023014472-appb-img-000007
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
In the present specification, the fluorenyl group may be substituted, and two substituents may be combined with each other to form a spiro structure. When the fluorenyl group is substituted,
Figure PCTKR2023014472-appb-img-000007
It can be etc. However, it is not limited to this.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난트롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heterocyclic group is a heterocyclic group containing one or more of O, N, Si, and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms. Examples of heterocyclic groups include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, and acridyl group. , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzooxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia These include, but are not limited to, a zolyl group, a phenothiazinyl group, and a dibenzofuranyl group.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.In this specification, the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above. In this specification, the aralkyl group, alkylaryl group, and alkylamine group are the same as the examples of the alkyl group described above. In the present specification, the description regarding the heterocyclic group described above may be applied to heteroaryl among heteroarylamines. In this specification, the alkenyl group among the aralkenyl groups is the same as the example of the alkenyl group described above. In the present specification, the description of the aryl group described above can be applied, except that arylene is a divalent group. In the present specification, the description of the heterocyclic group described above can be applied, except that heteroarylene is a divalent group. In the present specification, the description of the aryl group or cycloalkyl group described above can be applied, except that the hydrocarbon ring is not monovalent and is formed by combining two substituents. In the present specification, the description of the heterocyclic group described above can be applied, except that the heterocycle is not a monovalent group and is formed by combining two substituents.
본 명세서에 있어서, "중수소화된 또는 중수소로 치환된"이라는 의미는 화합물, 2가의 연결기 또는 1가의 치환기 내 치환 가능한 수소 중 적어도 하나가 중수소로 치환됨을 의미한다. As used herein, “deuterated or substituted with deuterium” means that at least one of the replaceable hydrogens in a compound, a divalent linking group, or a monovalent substituent is replaced with deuterium.
또한, "비치환되거나 또는 중수소로 치환된" 또는 "중수소로 치환 또는 비치환된" 이라는 의미는 "비치환되거나 또는 치환 가능한 수소 중 1개 내지 최대 개수가 중수소로 치환된"을 의미한다. 일례로, "비치환되거나 또는 중수소로 치환된 페난트릴"이라는 용어는 페난트릴 구조 내 중수소로 치환 가능한 수소의 최대 개수가 9개라는 점 고려할 때, "비치환되거나 또는 1개 내지 9개의 중수소로 치환된 페난트릴"이라는 의미로 이해될 수 있다. In addition, “unsubstituted or substituted with deuterium” or “substituted or unsubstituted with deuterium” means “one to the maximum number of unsubstituted or replaceable hydrogens is substituted with deuterium.” For example, the term “phenanthryl unsubstituted or substituted with deuterium” means “unsubstituted or substituted with 1 to 9 deuteriums,” considering that the maximum number of hydrogens that can be substituted with deuterium in the phenanthryl structure is 9. It can be understood to mean “substituted phenanthryl.”
또한, "중수소화된 구조"라는 의미는 적어도 하나의 수소가 중수소로 치환된 모든 구조의 화합물, 2가의 연결기 또는 1가의 치환기를 포괄하는 것을 의미한다. 일례로, 페닐의 중수소화된 구조는 하기와 같이 페닐기 내 치환가능한 적어도 하나의 수소가 중수소로 치환된 모든 구조의 1가의 치환기들을 일컫는 것으로 이해될 수 있다.In addition, the meaning of “deuterated structure” refers to compounds of all structures in which at least one hydrogen is replaced with deuterium, a divalent linking group, or a monovalent substituent. For example, the deuterated structure of phenyl can be understood to refer to monovalent substituents of all structures in which at least one replaceable hydrogen in the phenyl group is replaced with deuterium, as follows.
Figure PCTKR2023014472-appb-img-000008
.
Figure PCTKR2023014472-appb-img-000008
.
또한, 화합물의 "중수소 치환율" 또는 "중수소화도"는 화합물 내 존재할 수 있는 수소의 총 개수(화합물 내 중수소로 치환 가능한 수소의 개수 및 치환된 중수소의 개수의 총 합)에 대한 치환된 중수소의 개수의 비율을 백분율로 계산한 것을 의미한다. 따라서 화합물의 "중수소 치환율" 또는 "중수소화도"가 "K%"라고 함은, 화합물 내 중수소로 치환 가능한 수소 중 K%가 중수소로 치환된 것을 의미한다. Additionally, the “deuterium substitution rate” or “deuteration degree” of a compound is the number of substituted deuteriums relative to the total number of hydrogens that can be present in the compound (the total sum of the number of hydrogens that can be replaced by deuterium and the number of substituted deuteriums in the compound). It means calculating the ratio as a percentage. Therefore, when the “deuterium substitution rate” or “deuteration degree” of a compound is “K%”, it means that K% of the hydrogen replaceable by deuterium in the compound has been replaced with deuterium.
이 때, 상기 "중수소 치환율" 또는 "중수소화도"는 MALDI-TOF MS(Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer), 핵자기 공명 분광법(1H NMR), TLC/MS(Thin-Layer Chromatography/Mass Spectrometry), 또는 GC/MS(Gas Chromatography/Mass Spectrometry) 등을 이용하여 통상적으로 알려진 방법에 따라 측정할 수 있다. 보다 구체적으로, MALDI-TOF MS를 이용하는 경우 상기 "중수소 치환율" 또는 "중수소화도"는 MALDI-TOF MS 분석을 통해 화합물 내에 치환된 중수소 개수를 구한 다음, 화합물 내 존재할 수 있는 수소의 총 개수 대비 치환된 중수소의 개수의 비율을 백분율로 계산하여 구할 수 있다. At this time, the “deuterium substitution rate” or “deuteration degree” is determined by MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer), nuclear magnetic resonance spectroscopy ( 1H NMR), TLC/MS (Thin -It can be measured according to commonly known methods using Layer Chromatography/Mass Spectrometry) or GC/MS (Gas Chromatography/Mass Spectrometry). More specifically, when using MALDI-TOF MS, the “deuterium substitution rate” or “deuteration degree” is calculated by calculating the number of deuterium substituted in the compound through MALDI-TOF MS analysis, and then comparing the total number of hydrogens that may exist in the compound. The ratio of the number of deuteriums formed can be calculated as a percentage.
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다. The present invention provides a compound represented by Formula 1 above.
구체적으로, 상기 화학식 1로 표시되는 화합물은 벤조비스벤조퓨란 또는 벤조비스벤조티오펜의 모핵 구조 중 한쪽 말단의 벤젠 고리에서 특정 위치, 즉, 벤조티오펜이나 벤조퓨란에 축합된 말단 벤젠 고리 중 산소 또는 황 원자로부터 두번째 탄소 위치에, 특정 구조의 3차 아민기가 결합된 화합물로서, 상기 화합물의 치환기 중 적어도 하나 이상이 중수소이거나, 혹은 중수소로 치환된 것을 특징으로 한다. 특히, 상기 화합물은 치환기가 경수소인 화합물에 비하여, 장수명 특성을 가지고 있으며, 이에 따라 유기 발광 소자의 발광층에 효과적으로 적용할 수 있다.Specifically, the compound represented by Formula 1 is a specific position in the benzene ring at one end of the parent core structure of benzobisbenzofuran or benzobisbenzothiophene, that is, the oxygen in the terminal benzene ring condensed to benzothiophene or benzofuran. Alternatively, it is a compound in which a tertiary amine group of a specific structure is bonded to the second carbon position from the sulfur atom, and at least one of the substituents of the compound is deuterium or is substituted with deuterium. In particular, the compound has longer lifespan characteristics compared to compounds in which the substituent is light hydrogen, and therefore can be effectively applied to the light-emitting layer of an organic light-emitting device.
좀더 구체적으로, 상기 화학식 1에서, More specifically, in Formula 1 above,
Y는 각각 독립적으로 O 또는 S이고,Y is each independently O or S,
R1은 각각 독립적으로 수소 또는 중수소이고, R 1 is each independently hydrogen or deuterium,
L1, L2, 및 L3는 각각 독립적으로 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고, 및L 1 , L 2 , and L 3 are each independently a single bond, or a substituted or unsubstituted C 6-60 arylene, and
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이되, Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted O and S,
단, R1, L1 내지 L3, Ar1, 및 Ar2 중 적어도 하나 이상은 중수소이거나 중수소로 치환된 것이다. However, at least one of R 1 , L 1 to L 3 , Ar 1 , and Ar 2 is deuterium or substituted with deuterium.
바람직하게는, 상기 화학식 1에서, Y은 모두 O이거나, 또는 Y는 모두 S이거나, 또는 Y 중 하나는 S이고, 나머지는 O이다.Preferably, in Formula 1, all Y's are O, or all Y's are S, or one of the Y's is S and the others are O.
한편, R1 중 적어도 하나 이상이 중수소이고, R1 중 나머지는 수소일 수 있다. 바람직하게는, R1 중 적어도 3개 이상 또는 3개 내지 9개의 중수소이거나, 적어도 4개 이상 또는 4개 내지 9개의 중수소일 수 있다. 이때, R1 중 나머지는 수소일 수 있다. 또는, R1 모두가 중수소일 수 있다. Meanwhile, at least one of R 1 may be deuterium, and the remainder of R 1 may be hydrogen. Preferably, R 1 may be at least 3 or more or 3 to 9 deuteriums, or at least 4 or more or 4 to 9 deuteriums. At this time, the remainder of R 1 may be hydrogen. Alternatively, all of R 1 may be deuterium.
특히, 상기 화학식 1에서 벤조비스벤조퓨란 또는 벤조비스벤조티오펜의 모핵 구조에 중수소가 치환된 경우, 즉, R1 중 적어도 하나 이상이 중수소인 경우에는 하기 화학식 1-1로 표시될 수 있다. In particular, when deuterium is substituted in the parent nucleus structure of benzobisbenzofuran or benzobisbenzothiophene in Formula 1, that is, when at least one of R 1 is deuterium, it may be represented by the following Formula 1-1.
[화학식 1-1][Formula 1-1]
Figure PCTKR2023014472-appb-img-000009
Figure PCTKR2023014472-appb-img-000009
상기 화학식 1에서,In Formula 1,
Y는 각각 독립적으로 O 또는 S이고,Y is each independently O or S,
D는 중수소이고, D is deuterium,
n은 1 내지 9의 정수이고, n is an integer from 1 to 9,
L1, L2, 및 L3는 각각 독립적으로 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고, 및 L 1 , L 2 , and L 3 are each independently a single bond, or a substituted or unsubstituted C 6-60 arylene, and
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이다.Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted O and S.
상기 화학식 1-1에서, n은 벤조비스벤조퓨란 또는 벤조비스벤조티오펜의 모핵 구조에 중수소가 치환된 갯수이며, 후술되는 대표적인 일례 관련하여 b로 표시한 바와 같다. 여기서, n > 0 이고, n는 적어도 1 이상 또는 1 내지 9이다. In Formula 1-1, n is the number of deuterium substitutions in the parent nucleus structure of benzobisbenzofuran or benzobisbenzothiophene, and is indicated by b in relation to a representative example described later. Here, n > 0, and n is at least 1 or 1 to 9.
한편, 상기 화학식 1 및 화학식 1-1에서, L1, L2, 및 L3는 각각 단일결합이거나; 또는 페닐렌, 적어도 하나 이상의 중수소가 치환된 페닐렌, 나프틸렌, 또는 적어도 하나 이상의 중수소가 치환된 나프틸렌일 수 있다.Meanwhile, in Formula 1 and Formula 1-1, L 1 , L 2 , and L 3 are each a single bond; Alternatively, it may be phenylene, phenylene substituted with at least one deuterium, naphthylene, or naphthylene substituted with at least one deuterium.
일예로, L1, L2, 및 L3는 각각 단일결합이거나; 또는 페닐렌, 적어도 1개 이상 또는 1개 내지 4개의 중수소가 치환된 페닐렌, 나프틸렌, 혹은 1개 이상 또는 1개 내지 6개의 중수소가 치환된 나프틸렌일 수 있다. For example, L 1 , L 2 , and L 3 are each a single bond; Alternatively, it may be phenylene, phenylene substituted with at least one or 1 to 4 deuteriums, naphthylene, or naphthylene substituted with at least 1 or 1 to 6 deuteriums.
구체적으로, L1, L2, 및 L3는 각각 단일결합이거나, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다. Specifically, L 1 , L 2 , and L 3 may each be a single bond or any one selected from the group consisting of the following.
Figure PCTKR2023014472-appb-img-000010
.
Figure PCTKR2023014472-appb-img-000010
.
좀더 구체적으로, L1, 및 L2은 각각 독립적으로 단일 결합, 또는 수소 또는 중수소가 치환된 페닐렌일 수 있다. More specifically, L 1 and L 2 may each independently be a single bond or a hydrogen- or deuterium-substituted phenylene.
일예로, L1, 및 L2은 각각 독립적으로 단일 결합이거나 페닐렌, 또는 4개의 중수소가 치환된 페닐렌, 나프틸렌, 혹은 3개 이상 또는 3개 내지 6개의 중수소가 치환된 나프틸렌일 수 있다. 바람직하게는, L1, 및 L2은 각각 독립적으로 단일 결합이거나 페닐렌, 또는 4개의 중수소가 치환된 페닐렌일 수 있다. For example, L 1 and L 2 may each independently be a single bond or phenylene, or phenylene with 4 deuterium substitutions, naphthylene, or naphthylene with 3 or more or 3 to 6 deuterium substitutions. there is. Preferably, L 1 and L 2 may each independently be a single bond, phenylene, or phenylene substituted with four deuteriums.
또한, L3은 수소 또는 중수소가 치환된 페닐렌일 수 있다. Additionally, L 3 may be phenylene substituted with hydrogen or deuterium.
일예로, L3은 페닐렌, 또는 4개의 중수소가 치환된 페닐렌일 수 있다. For example, L 3 may be phenylene or phenylene substituted with four deuterium atoms.
바람직하게는, L1, L2, 및 L3 중 적어도 하나 이상은 중수소가 치환된 페닐렌일 수 있다. Preferably, at least one of L 1 , L 2 , and L 3 may be deuterium-substituted phenylene.
한편, 상기 화학식 1 및 화학식 1-1에서, Ar1 및 Ar2은 각각 독립적으로 수소 또는 중수소로 치환된 C6-19 아릴 혹은 수소 또는 중수소로 치환된 C6-14 아릴이거나, 또는 수소 또는 중수소로 치환된 C2-19 헤테로아릴 혹은 수소 또는 중수소로 치환된 C2-12 헤테로아릴일 수 있다. Meanwhile, in Formula 1 and Formula 1-1, Ar 1 and Ar 2 are each independently C 6-19 aryl substituted with hydrogen or deuterium, C 6-14 aryl substituted with hydrogen or deuterium, or C 6-14 aryl substituted with hydrogen or deuterium. It may be C 2-19 heteroaryl substituted with or C 2-12 heteroaryl substituted with hydrogen or deuterium.
구체적으로 Ar1 및 Ar2 중 적어도 하나 이상은 중수소로 치환된 C6-19 아릴 혹은 수소 또는 중수소로 치환된 C6-14 아릴, 또는 중수소로 치환된 C2-19 헤테로아릴 혹은 수소 또는 중수소로 치환된 C2-12 헤테로아릴일 수 있다. Specifically, at least one of Ar 1 and Ar 2 is C 6-19 aryl substituted with deuterium, C 6-14 aryl substituted with hydrogen or deuterium, or C 2-19 heteroaryl substituted with deuterium or hydrogen or deuterium. It may be substituted C 2-12 heteroaryl.
좀더 구체적으로, Ar1 및 Ar2는 각각 독립적으로 수소 또는 중수소로 치환된 페닐, 수소 또는 중수소로 치환된 비페닐, 수소 또는 중수소로 치환된 나프틸, 수소 또는 중수소로 치환된 페난트릴, 수소 또는 중수소로 치환된 디벤조퓨라닐, 수소 또는 중수소로 치환된 디벤조티오페닐, 혹은 수소 또는 중수소로 치환된 카바졸릴일 수 있다. More specifically, Ar 1 and Ar 2 are each independently phenyl substituted with hydrogen or deuterium, biphenyl substituted with hydrogen or deuterium, naphthyl substituted with hydrogen or deuterium, phenanthryl substituted with hydrogen or deuterium, hydrogen or deuterium It may be dibenzofuranyl substituted with deuterium, dibenzothiophenyl substituted with hydrogen or deuterium, or carbazolyl substituted with hydrogen or deuterium.
바람직하게는, Ar1 및 Ar2는 각각 독립적으로 페닐, 1개 내지 5개의 중수소로 치환된 페닐, 비페닐, 1개 내지 9개의 중수소로 치환된 비페닐, 나프틸, 1개 내지 7개의 중수소로 치환된 나프틸, 페난트릴, 1개 내지 9개의 중수소로 치환된 페난트릴, 디벤조퓨라닐, 1개 내지 7개의 중수소로 치환된 디벤조퓨라닐, 디벤조티오페닐, 1개 내지 7개의 중수소로 치환된 디벤조티오페닐, 카바졸릴, 또는 1개 내지 8개의 중수소로 치환된 카바졸릴일 수 있다. Preferably, Ar 1 and Ar 2 are each independently phenyl, phenyl substituted with 1 to 5 deuteriums, biphenyl, biphenyl substituted with 1 to 9 deuteriums, naphthyl, 1 to 7 deuteriums. Naphthyl substituted with, phenanthryl, phenanthryl substituted with 1 to 9 deuteriums, dibenzofuranyl, dibenzofuranyl substituted with 1 to 7 deuteriums, dibenzothiophenyl, 1 to 7 deuteriums It may be dibenzothiophenyl substituted with deuterium, carbazolyl, or carbazolyl substituted with 1 to 8 deuterium atoms.
일예로, 상기 화학식 1에서, Ar1 또는 Ar2는 각각 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다. For example, in Formula 1, Ar 1 or Ar 2 may each be selected from the group consisting of:
Figure PCTKR2023014472-appb-img-000011
Figure PCTKR2023014472-appb-img-000011
Figure PCTKR2023014472-appb-img-000012
Figure PCTKR2023014472-appb-img-000012
Figure PCTKR2023014472-appb-img-000013
Figure PCTKR2023014472-appb-img-000013
Figure PCTKR2023014472-appb-img-000014
.
Figure PCTKR2023014472-appb-img-000014
.
좀더 바람직하게는, Ar1 및 Ar2는 각각 독립적으로 페닐, 1개 내지 5개의 중수소로 치환된 페닐, 비페닐, 1개 내지 9개의 중수소로 치환된 비페닐, 나프틸, 1개 내지 7개의 중수소로 치환된 나프틸, 페난트릴, 1개 내지 9개의 중수소로 치환된 페난트릴, 디벤조퓨라닐, 1개 내지 7개의 중수소로 치환된 디벤조퓨라닐, 디벤조티오페닐, 또는 1개 내지 7개의 중수소로 치환된 디벤조티오페닐일 수 있다. More preferably, Ar 1 and Ar 2 are each independently phenyl, phenyl substituted with 1 to 5 deuteriums, biphenyl, biphenyl substituted with 1 to 9 deuteriums, naphthyl, 1 to 7 deuteriums. Naphthyl substituted with deuterium, phenanthryl, phenanthryl substituted with 1 to 9 deuteriums, dibenzofuranyl, dibenzofuranyl substituted with 1 to 7 deuteriums, dibenzothiophenyl, or 1 to 9 deuteriums. It may be dibenzothiophenyl substituted with 7 deuteriums.
한편, 상기 화학식 1 및 화학식 1-1에서, Ar1 및 Ar2 중 적어도 하나 이상은 벤젠 고리 둘 이상이 포함된 것일 수 있다. Meanwhile, in Formula 1 and Formula 1-1, at least one of Ar 1 and Ar 2 may contain two or more benzene rings.
구체적으로, Ar1 및 Ar2 중 적어도 하나 이상은 수소 또는 중수소로 치환된 비페닐, 수소 또는 중수소로 치환된 나프틸, 수소 또는 중수소로 치환된 페난트릴, 수소 또는 중수소로 치환된 디벤조퓨라닐, 혹은 수소 또는 중수소로 치환된 디벤조티오페닐일 수 있다. Specifically, at least one of Ar 1 and Ar 2 is biphenyl substituted with hydrogen or deuterium, naphthyl substituted with hydrogen or deuterium, phenanthryl substituted with hydrogen or deuterium, and dibenzofuranyl substituted with hydrogen or deuterium. , or it may be dibenzothiophenyl substituted with hydrogen or deuterium.
좀더 구체적으로, Ar1 및 Ar2 중 적어도 하나 이상은 비페닐, 1개 내지 9개의 중수소로 치환된 비페닐, 나프틸, 1개 내지 7개의 중수소로 치환된 나프틸, 페난트릴, 1개 내지 9개의 중수소로 치환된 페난트릴, 디벤조퓨라닐, 1개 내지 7개의 중수소로 치환된 디벤조퓨라닐, 디벤조티오페닐, 혹은 1개 내지 7개의 중수소로 치환된 디벤조티오페닐일 수 있다. More specifically, at least one of Ar 1 and Ar 2 is biphenyl, biphenyl substituted with 1 to 9 deuteriums, naphthyl, naphthyl substituted with 1 to 7 deuteriums, phenanthryl, 1 to It may be phenanthryl, dibenzofuranyl substituted with 9 deuteriums, dibenzofuranyl substituted with 1 to 7 deuteriums, dibenzothiophenyl, or dibenzothiophenyl substituted with 1 to 7 deuteriums. .
일예로, Ar1 및 Ar2 중 적어도 하나 이상은 5개 이상 또는 5개 내지 9개의 중수소로 치환된 비페닐, 4개 이상 또는 4개 내지 7개의 중수소로 치환된 나프틸, 4개 이상 또는 4개 내지 9개의 중수소로 치환된 페난트릴, 2개 이상 또는 2개 내지 7개의 중수소로 치환된 디벤조퓨라닐, 2개 이상 또는 2개 내지 7개의 중수소로 치환된 디벤조티오페닐일 수 있다. For example, at least one of Ar 1 and Ar 2 is biphenyl substituted with 5 or more or 5 to 9 deuteriums, naphthyl substituted with 4 or more or 4 to 7 deuteriums, or 4 or more or 4 deuteriums. It may be phenanthryl substituted with 2 to 9 deuteriums, dibenzofuranyl substituted with 2 or more or 2 to 7 deuteriums, and dibenzothiophenyl substituted with 2 or more or 2 to 7 deuteriums.
다른 한편, 상기 화학식 1 및 화학식 1-1에서, Ar1 및 Ar2 중 적어도 하나 이상은 수소 또는 중수소로 치환된 C6-19 아릴 혹은 수소 또는 중수소로 치환된 C6-14 아릴일 수 있다. On the other hand, in Formula 1 and Formula 1-1, at least one of Ar 1 and Ar 2 may be C 6-19 aryl substituted with hydrogen or deuterium, or C 6-14 aryl substituted with hydrogen or deuterium.
구체적으로, Ar1 및 Ar2 중 적어도 하나 이상은 수소 또는 중수소로 치환된 페닐, 수소 또는 중수소로 치환된 비페닐, 수소 또는 중수소로 치환된 나프틸, 혹은 수소 또는 중수소로 치환된 페난트릴일 수 있다. Specifically, at least one of Ar 1 and Ar 2 may be phenyl substituted with hydrogen or deuterium, biphenyl substituted with hydrogen or deuterium, naphthyl substituted with hydrogen or deuterium, or phenanthryl substituted with hydrogen or deuterium. there is.
좀더 구체적으로, Ar1 및 Ar2 중 적어도 하나 이상은 페닐, 1개 내지 5개의 중수소로 치환된 페닐, 비페닐, 1개 내지 9개의 중수소로 치환된 비페닐, 나프틸, 1개 내지 7개의 중수소로 치환된 나프틸, 페난트릴, 혹은 1개 내지 9개의 중수소로 치환된 페난트릴일 수 있다. More specifically, at least one of Ar 1 and Ar 2 is phenyl, phenyl substituted with 1 to 5 deuteriums, biphenyl, biphenyl substituted with 1 to 9 deuteriums, naphthyl, 1 to 7 deuteriums. It may be naphthyl substituted with deuterium, phenanthryl, or phenanthryl substituted with 1 to 9 deuterium atoms.
일예로, Ar1 및 Ar2 중 적어도 하나 이상은, 페닐, 1개 내지 5개의 중수소로 치환된 페닐, 5개 이상 또는 5개 내지 9개의 중수소로 치환된 비페닐, 4개 이상 또는 4개 내지 7개의 중수소로 치환된 나프틸, 4개 이상 또는 4개 내지 9개의 중수소로 치환된 페난트릴일 수 있다. For example, at least one of Ar 1 and Ar 2 is phenyl, phenyl substituted with 1 to 5 deuteriums, biphenyl substituted with 5 or more or 5 to 9 deuteriums, 4 or more or 4 to 4 deuteriums. It may be naphthyl substituted with 7 deuteriums, or phenanthryl substituted with 4 or more or 4 to 9 deuteriums.
한편, 상기 화학식 1 및 화학식 1-1에서, R1, L1 내지 L3, Ar1, 및 Ar2 중 적어도 하나 이상은 중수소이거나 중수소로 치환된 것일 수 있다. Meanwhile, in Formula 1 and Formula 1-1, at least one of R 1 , L 1 to L 3 , Ar 1 , and Ar 2 may be deuterium or substituted with deuterium.
구체적으로, R1 중 적어도 하나 이상은 중수소이거나, 또는 L1 내지 L3 중 적어도 하나 이상은 중수소로 치환된 페닐렌이거나, 또는 Ar1 및 Ar2 중 적어도 하나 이상은 중수소로 치환된 것일 수 있다. Specifically, at least one of R 1 may be deuterium, or at least one of L 1 to L 3 may be phenylene substituted with deuterium, or at least one of Ar 1 and Ar 2 may be substituted with deuterium. .
좀더 구체적으로, R1 중 적어도 하나 이상은 중수소이며, 이와 함께 L1 내지 L3 중 적어도 하나 이상은 중수소로 치환된 페닐렌이거나, 또는 Ar1 및 Ar2 중 적어도 하나 이상은 중수소로 치환된 것일 수 있다.More specifically, at least one of R 1 is deuterium, and at least one of L 1 to L 3 is phenylene substituted with deuterium, or at least one of Ar 1 and Ar 2 is substituted with deuterium. You can.
바람직한 일 구현예에서, 상기 화학식 1 및 화학식 1-1에서 L1이 단일결합인 경우, Ar1은 중수소 비치환된 C6-19 아릴이거나, 또는 수소 또는 중수소로 치환된 C2-19 헤테로아릴일 수 있고, L1이 치환 또는 비치환된 C6-60 아릴렌인 경우, Ar1은 수소 또는 중수소로 치환된 C6-19 아릴이거나, 또는 수소 또는 중수소로 치환된 C2-19 헤테로아릴일 수 있다. 또한, L2가 단일결합인 경우, Ar2는 중수소 비치환된 C6-19 아릴이거나, 또는 수소 또는 중수소로 치환된 C2-19 헤테로아릴이고, L2가 치환 또는 비치환된 C6-60 아릴렌인 경우, Ar2는 수소 또는 중수소로 치환된 C6-19 아릴이거나, 또는 수소 또는 중수소로 치환된 C2-19 헤테로아릴일 수 있다. In a preferred embodiment, when L 1 in Formula 1 and Formula 1-1 is a single bond, Ar 1 is C 6-19 aryl unsubstituted with deuterium, or C 2-19 heteroaryl substituted with hydrogen or deuterium. It may be, and when L 1 is substituted or unsubstituted C 6-60 arylene, Ar 1 is C 6-19 aryl substituted with hydrogen or deuterium, or C 2-19 heteroaryl substituted with hydrogen or deuterium. It can be. In addition, when L 2 is a single bond, Ar 2 is deuterium-unsubstituted C 6-19 aryl, or hydrogen or deuterium-substituted C 2-19 heteroaryl, and L 2 is substituted or unsubstituted C 6- 60 In the case of arylene, Ar 2 may be C 6-19 aryl substituted with hydrogen or deuterium, or C 2-19 heteroaryl substituted with hydrogen or deuterium.
구체적으로, 상기 화학식 1 및 화학식 1-1에서 L1이 단일결합인 경우, Ar1은 페닐, 비페닐,나프틸, 페난트릴, 수소 또는 중수소로 치환된 디벤조퓨라닐, 또는 수소 또는 중수소로 치환된 디벤조티오페닐일 수 있고, L1이 치환 또는 비치환된 C6-60 아릴렌인 경우, Ar1은 수소 또는 중수소로 치환된 페닐, 수소 또는 중수소로 치환된 비페닐, 수소 또는 중수소로 치환된 나프틸, 수소 또는 중수소로 치환된 페난트릴, 수소 또는 중수소로 치환된 디벤조퓨라닐, 또는 수소 또는 중수소로 치환된 디벤조티오페닐일 수 있다. 또한, L2가 단일결합인 경우, Ar2는 페닐, 비페닐,나프틸, 페난트릴, 수소 또는 중수소로 치환된 디벤조퓨라닐, 또는 수소 또는 중수소로 치환된 디벤조티오페닐일 수 있고, L2가 치환 또는 비치환된 C6-60 아릴렌인 경우, Ar2는 수소 또는 중수소로 치환된 페닐, 수소 또는 중수소로 치환된 비페닐, 수소 또는 중수소로 치환된 나프틸, 수소 또는 중수소로 치환된 페난트릴, 수소 또는 중수소로 치환된 디벤조퓨라닐, 또는 수소 또는 중수소로 치환된 디벤조티오페닐일 수 있다.Specifically, in Formula 1 and Formula 1-1, when L 1 is a single bond, Ar 1 is phenyl, biphenyl, naphthyl, phenanthryl, dibenzofuranyl substituted with hydrogen or deuterium, or hydrogen or deuterium. It may be substituted dibenzothiophenyl, and when L 1 is substituted or unsubstituted C 6-60 arylene, Ar 1 is phenyl substituted with hydrogen or deuterium, biphenyl substituted with hydrogen or deuterium, or hydrogen or deuterium. It may be naphthyl substituted with, phenanthryl substituted with hydrogen or deuterium, dibenzofuranyl substituted with hydrogen or deuterium, or dibenzothiophenyl substituted with hydrogen or deuterium. In addition, when L 2 is a single bond, Ar 2 may be phenyl, biphenyl, naphthyl, phenanthryl, dibenzofuranyl substituted with hydrogen or deuterium, or dibenzothiophenyl substituted with hydrogen or deuterium, When L 2 is substituted or unsubstituted C 6-60 arylene, Ar 2 is phenyl substituted with hydrogen or deuterium, biphenyl substituted with hydrogen or deuterium, naphthyl substituted with hydrogen or deuterium, or hydrogen or deuterium. It may be substituted phenanthryl, dibenzofuranyl substituted with hydrogen or deuterium, or dibenzothiophenyl substituted with hydrogen or deuterium.
한편, 상기 화합물은 적어도 하나 이상의 중수소를 포함하는 것이다.Meanwhile, the compound contains at least one deuterium.
상기 화합물의 중수소 치환 총 개수 및 각 치환기별 치환 개수는, 후술되는 대표적인 일례의 구조식 관련하여 a, b, c, d, e, f, g로 설명한 바와 같으며, 구체적인 설명은 생략한다. The total number of deuterium substitutions and the number of substitutions for each substituent of the compound are as described with a, b, c, d, e, f, and g in relation to the structural formula of a representative example described later, and detailed descriptions are omitted.
특히, 상기 화합물은 상기 화학식 1 및 화학식 1-1에서 벤조비스벤조퓨란 또는 벤조비스벤조티오펜의 모핵 구조의 치환기, 즉, R1 중 적어도 하나 이상이 중수소일 수 있다. In particular, in the above compounds, at least one of the substituents of the parent nucleus structure of benzobisbenzofuran or benzobisbenzothiophene in Formula 1 and Formula 1-1, that is, R 1 , may be deuterium.
이때, 화합물의 중수소 치환율은 1% 내지 100%일 수 있다. 구체적으로는, 상기 화합물의 중수소 치환율은 5% 이상, 10% 이상, 15% 이상, 20% 이상, 25% 이상, 28% 이상, 30% 이상, 32% 이상, 35% 이상, 38% 이상, 40% 이상, 42% 이상, 45% 이상, 48% 이상, 50% 이상, 52% 이상, 55% 이상, 58% 이상, 60% 이상, 62% 이상, 65% 이상, 68% 이상, 70% 이상, 72% 이상, 75% 이상, 78% 이상, 80% 이상, 또는 90% 이상이면서, 100% 이하일 수 있다. At this time, the deuterium substitution rate of the compound may be 1% to 100%. Specifically, the deuterium substitution rate of the compound is 5% or more, 10% or more, 15% or more, 20% or more, 25% or more, 28% or more, 30% or more, 32% or more, 35% or more, 38% or more, More than 40%, more than 42%, more than 45%, more than 48%, more than 50%, more than 52%, more than 55%, more than 58%, more than 60%, more than 62%, more than 65%, more than 68%, more than 70% It may be 72% or more, 75% or more, 78% or more, 80% or more, or 90% or more, and 100% or less.
일예로, 상기 화합물의 중수소 치환율은 20% 이상, 또는 25% 이상, 28% 이상, 30% 이상, 32% 이상, 35% 이상, 38% 이상, 40% 이상, 42% 이상, 45% 이상, 48% 이상, 50% 이상이면서, 100% 이하, 또는 98% 이하, 95% 이하, 92% 이하, 90% 이하, 88% 이하, 85% 이하, 82% 이하, 80% 이하, 78% 이하, 75% 이하, 72% 이하, 70% 이하, 68% 이하, 65% 이하, 62% 이하, 60% 이하, 58% 이하, 또는 55% 이하일 수 있다.For example, the deuterium substitution rate of the compound is 20% or more, or 25% or more, 28% or more, 30% or more, 32% or more, 35% or more, 38% or more, 40% or more, 42% or more, 45% or more, 48% or more, 50% or more, but 100% or less, or 98% or less, 95% or less, 92% or less, 90% or less, 88% or less, 85% or less, 82% or less, 80% or less, 78% or less, It may be 75% or less, 72% or less, 70% or less, 68% or less, 65% or less, 62% or less, 60% or less, 58% or less, or 55% or less.
또한, 상기 화합물은 적어도 하나 이상의 중수소 또는 1개 내지 50개의 중수소를 포함할 수 있다. 보다 구체적으로는, 상기 화합물은 중수소를 적어도 1개 이상, 2개 이상, 3개 이상, 4개 이상, 5개 이상, 6개 이상, 7개 이상, 8개 이상, 9개 이상, 10개 이상, 또는 11개 이상이면서, 50개 이하, 40개 이하, 35개 이하, 32개 이하, 30개 이하, 28개 이하, 26개 이하, 24개 이하, 22개 이하, 20개 이하, 19개 이하, 18개 이하, 17개 이하, 또는 16개 이하의 중수소를 포함할 수 있다.Additionally, the compound may contain at least one deuterium or 1 to 50 deuteriums. More specifically, the compound contains at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 deuterium. , or 11 or more, but not more than 50, not more than 40, not more than 35, not more than 32, not more than 30, not more than 28, not more than 26, not more than 24, not more than 22, not more than 20, not more than 19. , may contain 18 or fewer, 17 or fewer, or 16 or fewer deuterium atoms.
일예로, 상기 화학식 1 및 화학식 1-1로 표시되는 화합물은, 적어도 3개 이상 또는 3개 내지 35개의 중수소가 치환된 것일 수 있으며, 구체적으로는 적어도 4개 이상 또는 4개 내지 30개의 중수소가 치환된 것이거나, 또는 적어도 6개 이상 또는 6개 내지 25개의 중수소가 치환된 것이거나, 적어도 8개 이상 또는 8개 내지 20개의 중수소가 치환된 것일 수 있다. 좀더 구체적으로는 적어도 11개 이상 또는 11개 내지 16개의 중수소가 치환된 것일 수 있다. 예컨대, R1, L1 내지 L3, 및 Ar1 내지 Ar2 중 적어도 하나 이상은, 적어도 3개 이상 또는 3개 내지 35개가 중수소이거나 적어도 3개 이상 또는 3개 내지 35개의 중수소 치환된 것일 수 있으며, 또는 적어도 4개 이상 또는 4개 내지 30개가 중수소이거나 적어도 4개 이상 또는 4개 내지 30개의 중수소로 치환된 것이거나, 또는 적어도 6개 이상 또는 6개 내지 25개의 중수소이거나 적어도 6개 이상 또는 6개 내지 25개의 중수소로 치환된 것이거나, 적어도 8개 이상 또는 8개 내지 20개의 중수소 이거나 적어도 8개 이상 또는 8개 내지 20개의 중수소로 치환된 것일 수 있다. 좀더 구체적으로는, R1, L1 내지 L3, 및 Ar1 내지 Ar2 중 적어도 하나 이상은, 적어도 11개 이상 또는 11개 내지 16개가 중수소이거나, 또는 적어도 11개 이상 또는 11개 내지 16개의 중수소로 치환된 것일 수 있다As an example, the compounds represented by Formula 1 and Formula 1-1 may be those in which at least 3 or 3 to 35 deuteriums are substituted, and specifically, at least 4 or more or 4 to 30 deuteriums may be substituted. It may be substituted, or at least 6 or more or 6 to 25 deuteriums may be substituted, or at least 8 or more or 8 to 20 deuterium may be substituted. More specifically, at least 11 or 11 to 16 deuteriums may be substituted. For example, at least one of R 1 , L 1 to L 3 , and Ar 1 to Ar 2 may be at least 3 or 3 to 35 deuterium atoms or may be substituted with at least 3 or 3 to 35 deuterium atoms. or at least 4 or more or 4 to 30 deuteriums, or at least 4 or more or 4 to 30 deuteriums, or at least 6 or more or 6 to 25 deuteriums, or at least 6 or more, or It may be substituted with 6 to 25 deuterium atoms, or may be substituted with at least 8 or 8 to 20 deuterium atoms, or may be substituted with at least 8 or 8 to 20 deuterium atoms. More specifically, at least one of R 1 , L 1 to L 3 , and Ar 1 to Ar 2 is at least 11 or 11 to 16 deuterium, or at least 11 or more or 11 to 16 deuterium. It may be substituted with deuterium
일예로, 상기 화학식 1에 포함된 모든 수소는 중수소로 치환될 수 있다. For example, all hydrogen contained in Formula 1 may be replaced with deuterium.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다.Representative examples of the compound represented by Formula 1 are as follows.
Figure PCTKR2023014472-appb-img-000015
Figure PCTKR2023014472-appb-img-000015
Figure PCTKR2023014472-appb-img-000016
Figure PCTKR2023014472-appb-img-000016
Figure PCTKR2023014472-appb-img-000017
Figure PCTKR2023014472-appb-img-000017
Figure PCTKR2023014472-appb-img-000018
Figure PCTKR2023014472-appb-img-000018
Figure PCTKR2023014472-appb-img-000019
Figure PCTKR2023014472-appb-img-000019
Figure PCTKR2023014472-appb-img-000020
Figure PCTKR2023014472-appb-img-000020
Figure PCTKR2023014472-appb-img-000021
Figure PCTKR2023014472-appb-img-000021
Figure PCTKR2023014472-appb-img-000022
Figure PCTKR2023014472-appb-img-000022
Figure PCTKR2023014472-appb-img-000023
Figure PCTKR2023014472-appb-img-000023
Figure PCTKR2023014472-appb-img-000024
Figure PCTKR2023014472-appb-img-000024
Figure PCTKR2023014472-appb-img-000025
Figure PCTKR2023014472-appb-img-000025
Figure PCTKR2023014472-appb-img-000026
Figure PCTKR2023014472-appb-img-000026
Figure PCTKR2023014472-appb-img-000027
Figure PCTKR2023014472-appb-img-000027
Figure PCTKR2023014472-appb-img-000028
Figure PCTKR2023014472-appb-img-000028
Figure PCTKR2023014472-appb-img-000029
Figure PCTKR2023014472-appb-img-000029
Figure PCTKR2023014472-appb-img-000030
Figure PCTKR2023014472-appb-img-000030
Figure PCTKR2023014472-appb-img-000031
Figure PCTKR2023014472-appb-img-000031
Figure PCTKR2023014472-appb-img-000032
Figure PCTKR2023014472-appb-img-000032
Figure PCTKR2023014472-appb-img-000033
Figure PCTKR2023014472-appb-img-000033
Figure PCTKR2023014472-appb-img-000034
Figure PCTKR2023014472-appb-img-000034
Figure PCTKR2023014472-appb-img-000035
Figure PCTKR2023014472-appb-img-000035
Figure PCTKR2023014472-appb-img-000036
Figure PCTKR2023014472-appb-img-000036
Figure PCTKR2023014472-appb-img-000037
Figure PCTKR2023014472-appb-img-000037
Figure PCTKR2023014472-appb-img-000038
Figure PCTKR2023014472-appb-img-000038
Figure PCTKR2023014472-appb-img-000039
Figure PCTKR2023014472-appb-img-000039
Figure PCTKR2023014472-appb-img-000040
Figure PCTKR2023014472-appb-img-000040
Figure PCTKR2023014472-appb-img-000041
Figure PCTKR2023014472-appb-img-000041
Figure PCTKR2023014472-appb-img-000042
Figure PCTKR2023014472-appb-img-000042
Figure PCTKR2023014472-appb-img-000043
Figure PCTKR2023014472-appb-img-000043
Figure PCTKR2023014472-appb-img-000044
Figure PCTKR2023014472-appb-img-000044
Figure PCTKR2023014472-appb-img-000045
Figure PCTKR2023014472-appb-img-000045
Figure PCTKR2023014472-appb-img-000046
Figure PCTKR2023014472-appb-img-000046
Figure PCTKR2023014472-appb-img-000047
Figure PCTKR2023014472-appb-img-000047
Figure PCTKR2023014472-appb-img-000048
Figure PCTKR2023014472-appb-img-000048
Figure PCTKR2023014472-appb-img-000049
Figure PCTKR2023014472-appb-img-000049
Figure PCTKR2023014472-appb-img-000050
Figure PCTKR2023014472-appb-img-000050
Figure PCTKR2023014472-appb-img-000051
Figure PCTKR2023014472-appb-img-000051
Figure PCTKR2023014472-appb-img-000052
Figure PCTKR2023014472-appb-img-000052
Figure PCTKR2023014472-appb-img-000053
Figure PCTKR2023014472-appb-img-000053
Figure PCTKR2023014472-appb-img-000054
Figure PCTKR2023014472-appb-img-000054
Figure PCTKR2023014472-appb-img-000055
Figure PCTKR2023014472-appb-img-000055
Figure PCTKR2023014472-appb-img-000056
Figure PCTKR2023014472-appb-img-000056
Figure PCTKR2023014472-appb-img-000057
Figure PCTKR2023014472-appb-img-000057
Figure PCTKR2023014472-appb-img-000058
Figure PCTKR2023014472-appb-img-000058
Figure PCTKR2023014472-appb-img-000059
Figure PCTKR2023014472-appb-img-000059
Figure PCTKR2023014472-appb-img-000060
Figure PCTKR2023014472-appb-img-000060
Figure PCTKR2023014472-appb-img-000061
Figure PCTKR2023014472-appb-img-000061
Figure PCTKR2023014472-appb-img-000062
Figure PCTKR2023014472-appb-img-000062
Figure PCTKR2023014472-appb-img-000063
Figure PCTKR2023014472-appb-img-000063
Figure PCTKR2023014472-appb-img-000064
Figure PCTKR2023014472-appb-img-000064
Figure PCTKR2023014472-appb-img-000065
Figure PCTKR2023014472-appb-img-000065
Figure PCTKR2023014472-appb-img-000066
Figure PCTKR2023014472-appb-img-000066
Figure PCTKR2023014472-appb-img-000067
Figure PCTKR2023014472-appb-img-000067
Figure PCTKR2023014472-appb-img-000068
Figure PCTKR2023014472-appb-img-000068
Figure PCTKR2023014472-appb-img-000069
Figure PCTKR2023014472-appb-img-000069
Figure PCTKR2023014472-appb-img-000070
Figure PCTKR2023014472-appb-img-000070
상기 식 중 D는 중수소이고, a은 중수소 치환 갯수이며, a > 0 이다. In the above formula, D is deuterium, a is the number of deuterium substitutions, and a > 0.
구체적으로, 상기 구조식 중 a은 상기 화합물의 중수소 치환 총 갯수로 a > 0 이고, 각 치환기들의 개별 중소수 치환 개수의 총합이다. 상기 구조식 중 a는 적어도 1 이상 또는 1 내지 50일 수 있다. 좀더 구체적으로, 상기 구조식 중 a는 적어도 1 이상, 2 이상, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 또는 11 이상이면서, 50 이하, 40 이하, 35 이하, 32 이하, 30 이하, 28 이하, 26 이하, 24 이하, 22 이하, 20 이하, 19 이하, 18 이하, 17 이하, 또는 16 이하일 수 있다. 일예로, 상기 구조식 중 a는 적어도 3 이상 또는 3 내지 35이거나, 또는 적어도 4 이상 또는 4 내지 30이거나, 또는 적어도 6 이상 또는 6 내지 25이거나, 또는 적어도 8 이상 또는 8 내지 20일 수 있다. 보다 구체적으로, 상기 구조식 중 a는 적어도 11 이상 또는 11 내지 16일 수 있다. Specifically, a in the structural formula is the total number of deuterium substitutions in the compound, and a > 0, and is the total number of individual deuterium substitutions of each substituent. In the above structural formula, a may be at least 1 or 1 to 50. More specifically, a in the structural formula is at least 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, or 11 or more, and is 50 or less, 40 or less. , 35 or less, 32 or less, 30 or less, 28 or less, 26 or less, 24 or less, 22 or less, 20 or less, 19 or less, 18 or less, 17 or less, or 16 or less. For example, a in the structural formula may be at least 3 or 3 to 35, or at least 4 or more or 4 to 30, or at least 6 or more, or 6 to 25, or at least 8 or more, or 8 to 20. More specifically, a in the structural formula may be at least 11 or more or 11 to 16.
좀더 구체적으로, 상기 구조식 중 a를 구성하는 각 치환기들의 개별 중소수 치환 개수는 각각 b, c, d, e, f, g로 표시할 수 있으며, 후술되는 구체적인 일례에 나타낸 바를 참조할 수 있다. 이 때, b는 상기 화학식 1에서 벤조비스벤조퓨란 또는 벤조비스벤조티오펜의 모핵 구조에 중수소가 치환된 갯수이며, b > 0 일 수 있다. 예컨대, b는 적어도 1 이상 또는 1 내지 9일 수 있다. 또한, c는 상기 화학식 1에서 링커인 L1 치환기에 중수소가 치환된 갯수이며, d는 상기 화학식 1에서 링커인 L2 치환기에 중수소가 치환된 갯수이며, e는 상기 화학식 1에서 링커인 L3 치환기에 중수소가 치환된 갯수이며, f는 상기 화학식 1에서 3차 아민 그룹의 치환기인 Ar1 치환기에 중수소가 치환된 갯수이며, g는 상기 화학식 1에서 3차 아민 그룹의 치환기인 Ar2 치환기에 중수소가 치환된 갯수이다. 여기서, c+d+e+f+g의 총합은 0 내지 49 일 수 있다. More specifically, the number of individual small and medium substitutions of each substituent constituting a in the structural formula can be expressed as b, c, d, e, f, and g, respectively, and can refer to the specific examples described below. At this time, b is the number of deuterium substitutions in the parent nucleus structure of benzobisbenzofuran or benzobisbenzothiophene in Formula 1, and b > 0. For example, b may be at least 1 or 1 to 9. In addition, c is the number of deuterium substituted in the L 1 substituent that is the linker in Formula 1, d is the number of deuterium substituted in the L 2 substituent that is the linker in Formula 1, and e is the number of deuterium substituted in the L 2 substituent that is the linker in Formula 1. is the number of deuterium substituted in the substituent, f is the number of deuterium substituted in the Ar 1 substituent, which is the substituent of the tertiary amine group in Formula 1, and g is the number of deuterium substituted by the Ar 2 substituent, which is the substituent of the tertiary amine group in Formula 1. This is the number of deuterium substitutions. Here, the total sum of c+d+e+f+g may be 0 to 49.
한편, 상기 화학식 1로 표시되는 화합물의 구체적인 일예는 하기와 같다.Meanwhile, specific examples of the compound represented by Formula 1 are as follows.
Figure PCTKR2023014472-appb-img-000071
Figure PCTKR2023014472-appb-img-000071
Figure PCTKR2023014472-appb-img-000072
Figure PCTKR2023014472-appb-img-000072
Figure PCTKR2023014472-appb-img-000073
.
Figure PCTKR2023014472-appb-img-000073
.
상기 구조식 중 D는 중수소이고, a은 중수소 치환 총 갯수이며, a > 0 이고, 각 치환기들의 개별 중소수 치환 개수의 총합으로, 구체적인 범위는 전술한 바와 같다. In the above structural formula, D is deuterium, a is the total number of deuterium substitutions, a > 0, and is the total number of individual deuterium substitutions of each substituent, and the specific range is as described above.
한편, 상기 화학식 1로 표시되는 화합물의 좀더 구체적인 일예는 하기와 같다.Meanwhile, a more specific example of the compound represented by Formula 1 is as follows.
Figure PCTKR2023014472-appb-img-000074
Figure PCTKR2023014472-appb-img-000074
Figure PCTKR2023014472-appb-img-000075
Figure PCTKR2023014472-appb-img-000075
Figure PCTKR2023014472-appb-img-000076
.
Figure PCTKR2023014472-appb-img-000076
.
상기 식 중 D는 중수소이고, a은 상기 화합물의 중수소 치환 총 갯수이며, a > 0 이고, 각 치환기들의 개별 중소수 치환 개수의 총합이다. 이 때, a는 적어도 1 이상 또는 1 내지 50일 수 있으며, 구체적인 범위는 전술한 바와 같다. 또한, b, c, d, e, f, g는 상기 구조식 중 각 치환기들의 개별 중소수 치환 개수이며, b는 적어도 1 이상 또는 1 내지 9일 수 있고, c+d+e+f+g의 총합은 0 내지 49 일 수 있으며, 구체적인 범위는 전술한 바와 같다. In the above formula, D is deuterium, a is the total number of deuterium substitutions in the compound, a > 0, and is the total number of individual deuterium substitutions of each substituent. At this time, a may be at least 1 or 1 to 50, and the specific range is as described above. In addition, b, c, d, e, f, g are the number of individual small and medium substitutions of each substituent in the structural formula, b may be at least 1 or 1 to 9, and c+d+e+f+g The total may be 0 to 49, and the specific range is as described above.
한편, 상기 화학식 1로 표시되는 화합물은 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다. 상기 제조 방법은 후술할 합성예에서 보다 구체화될 수 있다.Meanwhile, the compound represented by Chemical Formula 1 can be prepared by the manufacturing method shown in Scheme 1 below. The manufacturing method may be further detailed in the synthesis examples described later.
[반응식 1][Scheme 1]
Figure PCTKR2023014472-appb-img-000077
Figure PCTKR2023014472-appb-img-000077
상기 반응식 1에서, Y, R1, L1, L2, L3, Ar1, 및 Ar2은 상기 화학식 1에서 정의한 바와 같으며, In Scheme 1, Y, R 1 , L 1 , L 2 , L 3 , Ar 1 , and Ar 2 are as defined in Formula 1,
Q1은 BO2C2(CH3)4, 또는 B(OH)2이고, Q 1 is BO 2 C 2 (CH 3 ) 4 , or B(OH) 2 ,
Q2는 할로겐이며, Q 2 is halogen,
p 및 q는 각각 0 또는 1이되, 단, p 및 q 중 적어도 하나는 0이고, p 및 q 중 나머지는 1이다. p and q are each 0 or 1, provided that at least one of p and q is 0, and the remaining of p and q is 1.
일예로, Q1은 B(OH)2이다. For example, Q 1 is B(OH) 2 .
일예로, Q2는 Cl, Br, 또는 I이며, 바람직하게는 Cl, 또는 Br이며, 좀더 바람직하게는 Cl이다. In one example, Q 2 is Cl, Br, or I, preferably Cl, or Br, and more preferably Cl.
구체적으로, 상기 반응식 1은, 벤조비스벤조퓨란 또는 벤조비스벤조티오펜의 모핵 구조 중 한쪽 말단의 벤젠 고리에서 특정 위치, 즉, 벤조티오펜이나 벤조퓨란에 축합된 말단 벤젠 고리 중 산소 또는 황 원자로부터 두번째 탄소 위치에, 특정 구조의 3차 아민 치환기를 도입하고, 중수소로 치환하는 반응이다. 여기서, 상기 반응식 1에서 중수소 치환된 반응물을 사용하는 경우, 중수소 치환 반응은 생략하거나, 또는 나머지 치환기에 추가 중수소 치환을 위하여 중수소 치환 반응을 함께 수행할 수도 있다. 상기 반응식 1에서, 상술한 특정 구조의 벤조비스벤조퓨란 또는 벤조비스벤조티오펜의 모핵 구조에 특정 구조의 3차 아민 치환기를 도입하는 반응은, 염기(base) 존재 하에서 팔라듐 촉매(Pd catalyst)로 반응시키는 것으로 이뤄진다. 또한, 상기 화합물에서 수소 치환기를 중수소로 치환하는 반응은, 상술한 바와 같이 3차 아민을 도입한 화합물을 Deuterium oxide (D2O) 및 Trifluoromethanesulfonic anhydride (Tf2O)의 존재 하에서 반응시키는 것으로 이뤄진다. 이러한 반응식 1의 구체적인 반응 조건은 이 분야에서 알려진 공지의 반응을 참조로 수행할 수 있다. 상기 제조 방법은 후술할 합성예에서 보다 구체화될 수 있다.Specifically, Scheme 1 is a specific position in the benzene ring at one end of the parent nucleus structure of benzobisbenzofuran or benzobisbenzothiophene, that is, an oxygen or sulfur atom in the terminal benzene ring condensed to benzothiophene or benzofuran. This is a reaction to introduce a tertiary amine substituent of a specific structure at the second carbon position and replace it with deuterium. Here, when using the deuterium-substituted reactant in Scheme 1, the deuterium substitution reaction may be omitted, or the deuterium substitution reaction may be performed together to additionally substitute deuterium on the remaining substituents. In Scheme 1, the reaction of introducing a tertiary amine substituent of a specific structure into the parent core structure of benzobisbenzofuran or benzobisbenzothiophene of a specific structure described above is carried out using a palladium catalyst (Pd catalyst) in the presence of a base. It is done by reacting. In addition, the reaction of replacing the hydrogen substituent in the above compound with deuterium is accomplished by reacting the compound into which the tertiary amine is introduced as described above in the presence of Deuterium oxide (D 2 O) and Trifluoromethanesulfonic anhydride (Tf 2 O). The specific reaction conditions of Scheme 1 can be performed by referring to known reactions known in the field. The manufacturing method may be further detailed in the synthesis examples described later.
또한, 상기 반응식 1에서, 염기 성분으로는 포타슘 카보네이트 (potassium carbonate, K2CO3), 소듐 바이카보네이트(sodium bicarbonate, NaHCO3), 세슘 카보네이트(Cesium carbonate, Cs2CO3), 소듐 아세테이트(sodium acetate, NaOAc), 포타슘 아세테이트(potassium acetate, KOAc), 소듐 에톡사이드(sodium ethoxide, NaOEt), 소듐 터트-부톡사이드(sodium tert-butoxide, NaOtBu), 또는 트리에틸아민(triethylamine, Et3N), N,N-디이소프로필에틸아민(N,N-diisopropylethylamine, EtN(iPr)2) 등을 사용할 수 있다. 바람직하게는, 상기 염기 성분은 포타슘 카보네이트 (potassium carbonate, K2CO3), 세슘 카보네이트(Cesium carbonate, Cs2CO3), 포타슘 아세테이트(potassium acetate, KOAc), 소듐 터트-부톡사이드(sodium tert-butoxide, NaOtBu), 또는 N,N-디이소프로필에틸아민(N,N-diisopropylethylamine, EtN(iPr)2)일 수 있다. 특히, 상기 반응식 1에서, 포타슘 카보네이트 (potassium carbonate, K2CO3)를 염기 성분으로 사용할 수 있다. In addition, in Scheme 1, the base components include potassium carbonate (K 2 CO 3 ), sodium bicarbonate (NaHCO 3 ), cesium carbonate (Cs 2 CO 3 ), and sodium acetate (sodium). acetate (NaOAc), potassium acetate (KOAc), sodium ethoxide (NaOEt), sodium tert-butoxide (NaOtBu), or triethylamine (Et 3 N), N,N-diisopropylethylamine (EtN(iPr) 2 ), etc. can be used. Preferably, the base component is potassium carbonate (K 2 CO 3 ), cesium carbonate (Cs 2 CO 3 ), potassium acetate (KOAc), and sodium tert-butoxide. butoxide, NaOtBu), or N,N-diisopropylethylamine (EtN(iPr) 2 ). In particular, in Scheme 1, potassium carbonate (K 2 CO 3 ) can be used as a base component.
또한, 상기 반응식 1에서, 상기 팔라듐 촉매로는 비스(트리-(터트-부틸)포스핀)팔라듐 (0) (bis(tri-(tert-butyl)phosphine)palladium(0), Pd(t-Bu3P)2), 테트라키스(트리페닐포스핀)팔라듐 (0) (tetrakis(triphenylphosphine)palladium (0), Pd(PPh3)4), 트리스(디벤질리덴아세톤)디팔라듐 (0) (tris(dibenzylideneacetone)-dipalladium (0), 비스(디벤질리덴아세톤)팔라듐 (0) (bis(dibenzylideneacetone)palladium (0), Pd(dba)2) 또는 팔라듐(II)아세테이트(palladium(II) acetate, Pd(OAc)2) 등을 사용할 수 있다. 바람직하게는, 상기 팔라듐 촉매는 비스(트리-(터트-부틸)포스핀)팔라듐 (0) (bis(tri-(tert-butyl)phosphine)palladium(0), Pd(t-Bu3P)2), 테트라키스(트리페닐포스핀)팔라듐 (0) (tetrakis(triphenylphosphine)palladium (0), Pd(PPh3)4), 또는 비스(디벤질리덴아세톤)팔라듐 (0) (bis(dibenzylideneacetone)palladium (0), Pd(dba)2)일 수 있다. 특히, 상기 반응식 1에서, 비스(트리-(터트-부틸)포스핀)팔라듐 (0) (bis(tri-(tert-butyl)phosphine)palladium(0), Pd(t-Bu3P)2)를 촉매로 사용할 수 있다. In addition, in Scheme 1, the palladium catalyst includes bis(tri-(tert-butyl)phosphine)palladium (0) (bis(tri-(tert-butyl)phosphine)palladium(0), Pd(t-Bu 3 P) 2 ), tetrakis(triphenylphosphine)palladium (0) (tetrakis(triphenylphosphine)palladium (0), Pd(PPh 3 ) 4 ), tris(dibenzylideneacetone)dipalladium (0) (tris (dibenzylideneacetone)-dipalladium (0), bis(dibenzylideneacetone)palladium (0), Pd(dba) 2 ) or palladium(II) acetate (palladium(II) acetate, Pd (OAc) 2 ) can be used, etc. Preferably, the palladium catalyst is bis(tri-(tert-butyl)phosphine)palladium (0) (bis(tri-(tert-butyl)phosphine)palladium(0 ), Pd(t-Bu 3 P) 2 ), tetrakis(triphenylphosphine)palladium (0), Pd(PPh 3 ) 4 ), or bis(dibenzylideneacetone ) It may be palladium (0) (bis(dibenzylideneacetone)palladium (0), Pd(dba) 2 ). In particular, in Scheme 1, bis(tri-(tert-butyl)phosphine)palladium (0) (bis (tri-(tert-butyl)phosphine)palladium(0), Pd(t-Bu 3 P) 2 ) can be used as a catalyst.
한편, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. Meanwhile, the present invention provides an organic light-emitting device containing the compound represented by Formula 1 above. In one example, the present invention includes a first electrode; a second electrode provided opposite to the first electrode; and an organic light-emitting device comprising at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes a compound represented by Formula 1. do.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 전자저지층, 발광층, 정공저지층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc. as an organic material layer. However, the structure of the organic light emitting device is not limited to this and may include fewer organic layers.
또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. In addition, the organic material layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously performs hole injection and transport, and the hole injection layer, the hole transport layer, or a layer that simultaneously performs hole injection and transport is represented by Formula 1 Contains the indicated compounds.
또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. In addition, the organic layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously performs hole injection and transport, and the hole injection layer, the hole transport layer, or a layer that simultaneously performs hole injection and transport is represented by Formula 1 Contains the indicated compounds.
또한, 상기 유기물 층은 전자저지층을 포함할 수 있고, 상기 전자저지층은 상기 화학식 1로 표시되는 화합물을 포함한다. Additionally, the organic material layer may include an electron blocking layer, and the electron blocking layer includes the compound represented by Chemical Formula 1.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. Additionally, the organic layer may include a light-emitting layer, and the light-emitting layer includes the compound represented by Chemical Formula 1.
또한, 상기 발광층은 도펀트 화합물을 더 포함한다. Additionally, the light emitting layer further includes a dopant compound.
또한, 상기 발광층은 화학식 1의 화합물과 도펀트를 포함한다. Additionally, the light-emitting layer includes the compound of Formula 1 and a dopant.
일예로, 상기 발광층은 화학식 1의 화합물과 도펀트를 포함하고, 화학식 1의 화합물과 도펀트를 100:1 내지 1:1의 중량비로 포함한다. For example, the light-emitting layer includes the compound of Formula 1 and a dopant, and includes the compound of Formula 1 and the dopant in a weight ratio of 100:1 to 1:1.
또한, 상기 발광층은 화학식 1의 화합물과 도펀트를 포함하고, 화학식 1의 화합물과 도펀트를 100:1 내지 2:1의 함량비로 포함한다. Additionally, the light-emitting layer includes the compound of Formula 1 and a dopant, and includes the compound of Formula 1 and the dopant in an content ratio of 100:1 to 2:1.
또한, 상기 발광층은 화학식 1의 화합물과 도펀트를 포함하고, 화학식 1의 화합물과 도펀트를 100:1 내지 5:1, 또는 100:1 내지 10:1, 또는 100:1 내지 20:1, 또는 100:1 내지 30:1의 중량비로 포함한다. In addition, the light-emitting layer includes the compound of Formula 1 and a dopant, and the compound of Formula 1 and the dopant are 100:1 to 5:1, or 100:1 to 10:1, or 100:1 to 20:1, or 100:1. It is included in a weight ratio of :1 to 30:1.
일예로, 상기 도펀트는 금속착체이다. For example, the dopant is a metal complex.
구체적으로, 상기 도펀트는 이리듐계 금속착체이다.Specifically, the dopant is an iridium-based metal complex.
또한, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 도펀트를 포함하고, 상기 도펀트 물질은 하기 구조식들 중에서 선택된다.Additionally, the organic material layer includes a light-emitting layer, the light-emitting layer includes a dopant, and the dopant material is selected from the structural formulas below.
Figure PCTKR2023014472-appb-img-000078
Figure PCTKR2023014472-appb-img-000078
Figure PCTKR2023014472-appb-img-000079
Figure PCTKR2023014472-appb-img-000079
Figure PCTKR2023014472-appb-img-000080
Figure PCTKR2023014472-appb-img-000080
Figure PCTKR2023014472-appb-img-000081
.
Figure PCTKR2023014472-appb-img-000081
.
상기 명시된 구조는 도판트 화합물로 이에 한정하는 것은 아니다. The structure specified above is not limited to the dopant compound.
또한, 상기 유기물 층은 정공저지층을 포함할 수 있고, 상기 정공저지층은 상기 화학식 1로 표시되는 화합물을 포함한다. Additionally, the organic material layer may include a hole blocking layer, and the hole blocking layer includes the compound represented by Chemical Formula 1.
또한, 상기 유기물 층은 전자수송층, 전자주입층, 또는 전자 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 전자수송층, 전자주입층, 또는 전자 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. In addition, the organic material layer may include an electron transport layer, an electron injection layer, or a layer that simultaneously performs electron injection and transport, and the electron transport layer, the electron injection layer, or a layer that simultaneously performs electron injection and transport is represented by Formula 1 Contains the indicated compounds.
또한, 상기 유기물 층은 발광층 및 전자저지층을 포함하고, 상기 발광층 또는 전자저지층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. Additionally, the organic material layer includes a light-emitting layer and an electron-blocking layer, and the light-emitting layer or the electron-blocking layer may include the compound represented by Formula 1.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.Additionally, the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. Additionally, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다. Figure 1 shows an example of an organic light emitting device consisting of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. In this structure, the compound represented by Formula 1 may be included in the light-emitting layer.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 전자저지층, 발광층, 정공저지층, 및 전자 주입 및 수송층 중 1층 이상에 포함될 수 있다. 구체적으로, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있으며, 예컨대, 발광층의 호스트 재료로 포함될 수 있다. Figure 2 shows the substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (7), light emitting layer (3), hole blocking layer (8), electron injection and transport layer ( 9) and a cathode 4. An example of an organic light-emitting device is shown. In this structure, the compound represented by Formula 1 may be included in one or more of the hole injection layer, hole transport layer, electron blocking layer, light emitting layer, hole blocking layer, and electron injection and transport layer. Specifically, the compound represented by Formula 1 may be included in the light-emitting layer, for example, as a host material of the light-emitting layer.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. The organic light emitting device according to the present invention can be manufactured using materials and methods known in the art, except that at least one of the organic layers includes the compound represented by Formula 1 above. Additionally, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 전자저지층, 발광층, 정공저지층, 전자 수송층, 및 전자주입층 등을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. For example, the organic light emitting device according to the present invention can be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, an anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation. Then, an organic material layer including a hole injection layer, a hole transport layer, an electron blocking layer, a light-emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer is formed thereon, and then a material that can be used as a cathode is deposited on it. It can be manufactured. In addition to this method, an organic light-emitting device can be made by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 특히, 상기 화학식 1로 표시되는 화합물은 용액 도포법에 사용되는 용매에 대한 용해도가 우수하여, 용액 도포법을 적용하기 용이하다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition, the compound represented by Formula 1 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light-emitting device. In particular, the compound represented by Formula 1 has excellent solubility in the solvent used in the solution application method, making it easy to apply the solution application method. Here, the solution application method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
이에, 본 발명은 상기 화학식 1로 표시되는 화합물 및 용매를 포함하는 코팅 조성물을 제공한다. Accordingly, the present invention provides a coating composition comprising the compound represented by Formula 1 and a solvent.
상기 용매는 본 발명에 따른 화합물을 용해 또는 분산시킬 수 있는 용매이면 특별히 제한되지 않으며, 일례로 클로로포름, 염화메틸렌, 1,2-디클로로에탄, 1,1,2-트리클로로에탄, 클로로벤젠, o-디클로로벤젠 등의 염소계 용매; 테트라하이드로퓨란, 디옥산 등의 에테르계 용매; 톨루엔, 크실렌, 트리메틸벤젠, 메시틸렌 등의 방향족 탄화수소계 용매; 시클로헥산, 메틸시클로헥산, n-펜탄, n-헥산, n-헵탄, n-옥탄, n-노난, n-데칸 등의 지방족 탄화수소계 용매; 아세톤, 메틸에틸케톤, 시클로헥사논 등의 케톤계 용매; 아세트산에틸, 아세트산부틸, 에틸셀로솔브아세테이트 등의 에스테르계 용매; 에틸렌글리콜, 에틸렌글리콜모노부틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 디메톡시에탄, 프로필렌글리콜, 디에톡시메탄, 트리에틸렌글리콜모노에틸에테르, 글리세린, 1,2-헥산디올 등의 다가 알코올 및 그의 유도체; 메탄올, 에탄올, 프로판올, 이소프로판올, 시클로헥산올 등의 알코올계 용매; 디메틸술폭사이드 등의 술폭사이드계 용매; 및 N-메틸-2-피롤리돈, N,N-디메틸포름아미드 등의 아미드계 용매; 부틸벤조에이트, 메틸-2-메톡시벤조에이트 등의 벤조에이트계 용매; 테트랄린; 3-phenoxy-toluene 등의 용매를 들 수 있다. 또한, 상술한 용매를 1종 단독으로 사용하거나 2종 이상의 용매를 혼합하여 사용할 수 있다. The solvent is not particularly limited as long as it is capable of dissolving or dispersing the compound according to the present invention, and examples include chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o -Chlorine-based solvents such as dichlorobenzene; Ether-based solvents such as tetrahydrofuran and dioxane; Aromatic hydrocarbon solvents such as toluene, xylene, trimethylbenzene, and mesitylene; Aliphatic hydrocarbon solvents such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; Ketone-based solvents such as acetone, methyl ethyl ketone, and cyclohexanone; Ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate; Polyhydric acids such as ethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, dimethoxyethane, propylene glycol, diethoxymethane, triethylene glycol monoethyl ether, glycerin, 1,2-hexanediol, etc. alcohol and its derivatives; Alcohol-based solvents such as methanol, ethanol, propanol, isopropanol, and cyclohexanol; Sulfoxide-based solvents such as dimethyl sulfoxide; and amide-based solvents such as N-methyl-2-pyrrolidone and N,N-dimethylformamide; Benzoate-based solvents such as butyl benzoate and methyl-2-methoxybenzoate; tetralin; Solvents such as 3-phenoxy-toluene may be mentioned. In addition, the above-mentioned solvents may be used individually or two or more types of solvents may be mixed.
또한, 상기 코팅 조성물의 점도는 1 cP 내지 10 cP가 바람직하며, 상기의 범위에서 코팅이 용이하다. 또한, 상기 코팅 조성물 내 본 발명에 따른 화합물의 농도는 0.1 wt/v% 내지 20 wt/v%인 것이 바람직하다. Additionally, the viscosity of the coating composition is preferably 1 cP to 10 cP, and coating is easy within this range. In addition, the concentration of the compound according to the present invention in the coating composition is preferably 0.1 wt/v% to 20 wt/v%.
또한, 본 발명은 상술한 코팅 조성물을 사용하여 기능층을 형성하는 방법을 제공한다. 구체적으로, 상술한 본 발명에 따른 코팅 조성물을 용액 공정으로 코팅하는 단계; 및 상기 코팅된 코팅 조성물을 열처리하는 단계를 포함한다. Additionally, the present invention provides a method of forming a functional layer using the above-described coating composition. Specifically, coating the coating composition according to the present invention described above by a solution process; and heat treating the coated coating composition.
상기 열처리 단계에서 열처리 온도는 150 ℃ 내지 230 ℃가 바람직하다. 또한, 상기 열처리 시간은 1 분 내지 3 시간이고, 보다 바람직하게는 10 분 내지 1 시간이다. 또한, 상기 열처리는 아르곤, 질소 등의 불활성 기체 분위기에서 수행하는 것이 바람직하다. In the heat treatment step, the heat treatment temperature is preferably 150°C to 230°C. Additionally, the heat treatment time is 1 minute to 3 hours, and more preferably 10 minutes to 1 hour. Additionally, the heat treatment is preferably performed in an inert gas atmosphere such as argon or nitrogen.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.In one example, the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. The anode material is generally preferably a material with a large work function to facilitate hole injection into the organic layer. Specific examples of the anode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline are included, but are not limited to these.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. The cathode material is generally preferably a material with a small work function to facilitate electron injection into the organic layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; There are, but are not limited to, multi-layered materials such as LiF/Al or LiO 2 /Al.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. The hole injection layer is a layer that injects holes from an electrode. The hole injection material has the ability to transport holes, has an excellent hole injection effect at the anode, a light-emitting layer or a light-emitting material, and has an excellent hole injection effect on the light-emitting layer or light-emitting material. A compound that prevents movement of excitons to the electron injection layer or electron injection material and has excellent thin film forming ability is preferred. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic material layer. Specific examples of hole injection materials include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrilehexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances. organic substances, anthraquinone, polyaniline, and polythiophene series conductive polymers, etc., but are not limited to these.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. The hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light-emitting layer. It is a hole transport material that can receive holes from the anode or hole injection layer and transfer them to the light-emitting layer, and is a material with high mobility for holes. This is suitable. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers with both conjugated and non-conjugated portions, but are not limited to these.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. The light-emitting material is a material capable of emitting light in the visible range by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and is preferably a material with good quantum efficiency for fluorescence or phosphorescence. Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV) series polymer; Spiro compounds; Polyfluorene, rubrene, etc., but are not limited to these.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 바람직하게는, 상기 호스트 재료로서 본 발명에 따른 화합물을 사용한다. The light emitting layer may include a host material and a dopant material. Host materials include condensed aromatic ring derivatives or heterocyclic ring-containing compounds. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds, and heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, and ladder-type compounds. These include, but are not limited to, furan compounds and pyrimidine derivatives. Preferably, a compound according to the present invention is used as the host material.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. 바람직하게는, 상기 도펀트 재료로서 이리듐계 금속 착제를 사용한다. Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes. Specifically, aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, such as pyrene, anthracene, chrysene, and periplanthene, and styrylamine compounds include substituted or unsubstituted arylamino groups. It is a compound in which at least one arylvinyl group is substituted on the arylamine, and is substituted or unsubstituted with one or two or more substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group. Specifically, styrylamine, styryldiamine, styryltriamine, styryltetraamine, etc. are included, but are not limited thereto. Additionally, metal complexes include, but are not limited to, iridium complexes and platinum complexes. Preferably, an iridium-based metal complex is used as the dopant material.
상기 발광층은 적색 발광층일 수 있으며, 본 발명에 따른 화합물을 호스트 재료로 사용할 경우, 전자와 정공에 대한 안정도가 높아지며, 호스트에서 적색 도판트로의 에너지 전달이 잘 이뤄지면서, 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 향상시킬 수 있다. The light-emitting layer may be a red light-emitting layer, and when the compound according to the present invention is used as a host material, the stability of electrons and holes increases, energy is transferred from the host to the red dopant well, and the driving voltage of the organic light-emitting device, Luminous efficiency and lifespan characteristics can be improved.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 음극(cathode) 물질과 함께 사용할 수 있다. 특히, 적절한 음극(cathode) 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light-emitting layer. The electron transport material is a material that can easily inject electrons from the cathode and transfer them to the light-emitting layer, and a material with high electron mobility is suitable. do. Specific examples include Al complex of 8-hydroxyquinoline; Complex containing Alq 3 ; organic radical compounds; Hydroxyflavone-metal complexes, etc., but are not limited to these. The electron transport layer can be used with any desired cathode material as used according to the prior art. In particular, examples of suitable cathode materials are conventional materials with a low work function followed by an aluminum or silver layer. Specifically, cesium, barium, calcium, ytterbium and samarium, in each case followed by an aluminum layer or a silver layer.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. The electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an excellent electron injection effect from the cathode, a light-emitting layer or a light-emitting material, and hole injection of excitons generated in the light-emitting layer. A compound that prevents movement to the layer and has excellent thin film forming ability is preferred. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc. and their derivatives, metals. Complex compounds and nitrogen-containing five-membered ring derivatives are included, but are not limited thereto.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.Examples of the metal complex compounds include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, Tris(2-methyl-8-hydroxyquinolinato)aluminum, Tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato) gallium, bis(2-methyl-8-quinolinato)(1-naphtolato) aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato) gallium, etc. It is not limited to this.
본 발명에 따른 유기 발광 소자는 배면 발광(bottom emission) 소자, 전면 발광(top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.The organic light-emitting device according to the present invention may be a bottom-emitting device, a top-emitting device, or a double-sided light-emitting device. In particular, it may be a bottom-emitting device that requires relatively high luminous efficiency.
또한, 본 발명에 따른 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.Additionally, the compound according to the present invention may be included in an organic solar cell or an organic transistor in addition to an organic light-emitting device.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.The preparation of the compound represented by Formula 1 and an organic light-emitting device containing the same will be described in detail in the following Examples. However, the following examples are for illustrating the present invention, and the scope of the present invention is not limited thereto.
[실시예][Example]
합성예 1Synthesis Example 1
Figure PCTKR2023014472-appb-img-000082
Figure PCTKR2023014472-appb-img-000082
질소 분위기 하에서 화합물 sub 1 (15 g, 51.2 mmol)와 아민 화합물 amine 1 (15.6 g, 53.8 mmol)를 테트라하이드로퓨란 (THF) 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 21.2 g, 153.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.3 g, 0.5 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 1_P1을 15.4 g 제조하였다. (수율 60%, MS: [M+H]+ = 502). Under a nitrogen atmosphere, compound sub 1 (15 g, 51.2 mmol) and amine compound amine 1 (15.6 g, 53.8 mmol) were added to 300 mL of tetrahydrofuran (THF), stirred and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 21.2 g, 153.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.3 g, 0.5 mmol) was added. After reaction for 5 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.4 g of compound 1_P1. (Yield 60%, MS: [M+H] + = 502).
질소 분위기 하에서 상기 화합물 1_P1 (10 g, 19.9 mmol)를 1,2,4-trichlorobenzene (TCB) 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (D2O, 14.4 g, 717.7 mmol)을 Trifluoromethanesulfonic anhydride (Tf2O, 45 g, 159.5 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 1을 5.2 g 얻었다. (수율 51%, MS: [M+H]+ = 513). Under a nitrogen atmosphere, compound 1_P1 (10 g, 19.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene (TCB) and stirred at room temperature. In another container, Deuterium oxide ( DO , 14.4 g, 717.7 mmol) was added to Trifluoromethanesulfonic anhydride (Tf 2 O, 45 g, 159.5 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.2 g of Compound 1. (Yield 51%, MS: [M+H] + = 513).
합성예 2Synthesis Example 2
Figure PCTKR2023014472-appb-img-000083
Figure PCTKR2023014472-appb-img-000083
질소 분위기 하에서 화합물 sub 1 (15 g, 51.2 mmol)와 아민 화합물 amine 2 (22.3 g, 53.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 21.2 g, 153.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.3 g, 0.5 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 2_P1을 23.5 g 제조하였다. (수율 73%, MS: [M+H]+ = 628).Under a nitrogen atmosphere, compound sub 1 (15 g, 51.2 mmol) and amine compound amine 2 (22.3 g, 53.8 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 21.2 g, 153.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.3 g, 0.5 mmol) was added. After reaction for 4 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.5 g of compound 2_P1. (Yield 73%, MS: [M+H] + = 628).
질소 분위기 하에서 상기 화합물 2_P1 (10 g, 15.9 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (11.5 g, 573.5 mmol)을 Trifluoromethanesulfonic anhydride (36 g, 127.4 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 2를 7 g 얻었다. (수율 69%, MS: [M+H]+ = 641).Under a nitrogen atmosphere, compound 2_P1 (10 g, 15.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (11.5 g, 573.5 mmol) was added to Trifluoromethanesulfonic anhydride (36 g, 127.4 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7 g of Compound 2. (Yield 69%, MS: [M+H] + = 641).
합성예 3Synthesis Example 3
Figure PCTKR2023014472-appb-img-000084
Figure PCTKR2023014472-appb-img-000084
질소 분위기 하에서 화합물 sub 1 (15 g, 51.2 mmol)와 아민 화합물 amine 3 (23.7 g, 53.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 21.2 g, 153.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.3 g, 0.5 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 3_P1을 22.8 g 제조하였다. (수율 68%, MS: [M+H]+ = 654).Under a nitrogen atmosphere, compound sub 1 (15 g, 51.2 mmol) and amine compound amine 3 (23.7 g, 53.8 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 21.2 g, 153.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.3 g, 0.5 mmol) was added. After reaction for 2 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 22.8 g of compound 3_P1. (Yield 68%, MS: [M+H] + = 654).
질소 분위기 하에서 상기 화합물 3_P1 (10 g, 15.3 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (11 g, 550.6 mmol)을 Trifluoromethanesulfonic anhydride (34.5 g, 122.4 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 3을 5.1 g 얻었다. (수율 50%, MS: [M+H]+ = 669).Under a nitrogen atmosphere, compound 3_P1 (10 g, 15.3 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (11 g, 550.6 mmol) was added to Trifluoromethanesulfonic anhydride (34.5 g, 122.4 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reaction for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.1 g of compound 3. (50% yield, MS: [M+H] + = 669).
합성예 4Synthesis Example 4
Figure PCTKR2023014472-appb-img-000085
Figure PCTKR2023014472-appb-img-000085
질소 분위기 하에서 화합물 sub 1 (15 g, 51.2 mmol)와 아민 화합물 amine 4 (22.3 g, 53.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 21.2 g, 153.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.3 g, 0.5 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 4_P1을 24.1 g 제조하였다. (수율 75%, MS: [M+H]+ = 628).Under a nitrogen atmosphere, compound sub 1 (15 g, 51.2 mmol) and amine compound amine 4 (22.3 g, 53.8 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 21.2 g, 153.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.3 g, 0.5 mmol) was added. After reaction for 2 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.1 g of compound 4_P1. (Yield 75%, MS: [M+H] + = 628).
질소 분위기 하에서 상기 화합물 4_P1 (10 g, 15.9 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (11.5 g, 573.5 mmol)을 Trifluoromethanesulfonic anhydride (36 g, 127.4 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 4를 5.2 g 얻었다. (수율 51%, MS: [M+H]+ = 640).Under a nitrogen atmosphere, compound 4_P1 (10 g, 15.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (11.5 g, 573.5 mmol) was added to Trifluoromethanesulfonic anhydride (36 g, 127.4 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.2 g of compound 4. (Yield 51%, MS: [M+H] + = 640).
합성예 5Synthesis Example 5
Figure PCTKR2023014472-appb-img-000086
Figure PCTKR2023014472-appb-img-000086
질소 분위기 하에서 화합물 sub 1 (15 g, 51.2 mmol)와 아민 화합물 amine 5 (20.4 g, 53.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 21.2 g, 153.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.3 g, 0.5 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 5_P1을 18.2 g 제조하였다. (수율 60%, MS: [M+H]+ = 592).Under a nitrogen atmosphere, compound sub 1 (15 g, 51.2 mmol) and amine compound amine 5 (20.4 g, 53.8 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 21.2 g, 153.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.3 g, 0.5 mmol) was added. After reaction for 3 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.2 g of compound 5_P1. (Yield 60%, MS: [M+H] + = 592).
질소 분위기 하에서 상기 화합물 5_P1 (10 g, 16.9 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (12.2 g, 608.4 mmol)을 Trifluoromethanesulfonic anhydride (38.1 g, 135.2 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 5를 6.1 g 얻었다. (수율 60%, MS: [M+H]+ = 605).Under a nitrogen atmosphere, the compound 5_P1 (10 g, 16.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (12.2 g, 608.4 mmol) was added to Trifluoromethanesulfonic anhydride (38.1 g, 135.2 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.1 g of compound 5. (Yield 60%, MS: [M+H] + = 605).
합성예 6Synthesis Example 6
Figure PCTKR2023014472-appb-img-000087
Figure PCTKR2023014472-appb-img-000087
질소 분위기 하에서 화합물 sub 1 (15 g, 51.2 mmol)와 아민 화합물 amine 6 (24.5 g, 53.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 21.2 g, 153.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.3 g, 0.5 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 6_P1을 25 g 제조하였다. (수율 73%, MS: [M+H]+ = 668).Under a nitrogen atmosphere, compound sub 1 (15 g, 51.2 mmol) and amine compound amine 6 (24.5 g, 53.8 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 21.2 g, 153.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.3 g, 0.5 mmol) was added. After reaction for 4 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 25 g of compound 6_P1. (Yield 73%, MS: [M+H] + = 668).
질소 분위기 하에서 상기 화합물 6_P1 (10 g, 15 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10.8 g, 539.1 mmol)을 Trifluoromethanesulfonic anhydride (33.8 g, 119.8 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 6을 5.6 g 얻었다. (수율 55%, MS: [M+H]+ = 684).Under a nitrogen atmosphere, the compound 6_P1 (10 g, 15 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (10.8 g, 539.1 mmol) was added to Trifluoromethanesulfonic anhydride (33.8 g, 119.8 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.6 g of compound 6. (55% yield, MS: [M+H] + = 684).
합성예 7Synthesis Example 7
Figure PCTKR2023014472-appb-img-000088
Figure PCTKR2023014472-appb-img-000088
질소 분위기 하에서 화합물 sub 1 (15 g, 51.2 mmol)와 아민 화합물 amine 7 (24.5 g, 53.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 21.2 g, 153.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.3 g, 0.5 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 7_P1을 23.6 g 제조하였다. (수율 69%, MS: [M+H]+ = 668).Under a nitrogen atmosphere, compound sub 1 (15 g, 51.2 mmol) and amine compound amine 7 (24.5 g, 53.8 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 21.2 g, 153.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.3 g, 0.5 mmol) was added. After reaction for 5 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.6 g of compound 7_P1. (Yield 69%, MS: [M+H] + = 668).
질소 분위기 하에서 상기 화합물 7_P1 (10 g, 15 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10.8 g, 539.1 mmol)을 Trifluoromethanesulfonic anhydride (33.8 g, 119.8 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 7를 5.7 g 얻었다. (수율 56%, MS: [M+H]+ = 683).Under a nitrogen atmosphere, compound 7_P1 (10 g, 15 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (10.8 g, 539.1 mmol) was added to Trifluoromethanesulfonic anhydride (33.8 g, 119.8 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.7 g of compound 7. (Yield 56%, MS: [M+H] + = 683).
합성예 8Synthesis Example 8
Figure PCTKR2023014472-appb-img-000089
Figure PCTKR2023014472-appb-img-000089
질소 분위기 하에서 화합물 sub 1 (15 g, 51.2 mmol)와 아민 화합물 amine 8 (21.3 g, 53.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 21.2 g, 153.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.3 g, 0.5 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 8_P1을 21.8 g 제조하였다. (수율 70%, MS: [M+H]+ = 608).Under a nitrogen atmosphere, compound sub 1 (15 g, 51.2 mmol) and amine compound amine 8 (21.3 g, 53.8 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 21.2 g, 153.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.3 g, 0.5 mmol) was added. After reaction for 4 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.8 g of compound 8_P1. (Yield 70%, MS: [M+H] + = 608).
질소 분위기 하에서 상기 화합물 8_P1 (10 g, 16.5 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (11.9 g, 592.4 mmol)을 Trifluoromethanesulfonic anhydride (37.1 g, 131.6 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 8를 5.7 g 얻었다. (수율 56%, MS: [M+H]+ = 622).Under a nitrogen atmosphere, compound 8_P1 (10 g, 16.5 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (11.9 g, 592.4 mmol) was added to Trifluoromethanesulfonic anhydride (37.1 g, 131.6 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.7 g of compound 8. (Yield 56%, MS: [M+H] + = 622).
합성예 9Synthesis Example 9
Figure PCTKR2023014472-appb-img-000090
Figure PCTKR2023014472-appb-img-000090
질소 분위기 하에서 화합물 sub 1 (15 g, 51.2 mmol)와 아민 화합물 amine 9 (25.4 g, 53.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 21.2 g, 153.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.3 g, 0.5 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 9_P1을 21.4 g 제조하였다. (수율 61%, MS: [M+H]+ = 684).Under a nitrogen atmosphere, compound sub 1 (15 g, 51.2 mmol) and amine compound amine 9 (25.4 g, 53.8 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 21.2 g, 153.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.3 g, 0.5 mmol) was added. After reaction for 4 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.4 g of compound 9_P1. (Yield 61%, MS: [M+H] + = 684).
질소 분위기 하에서 상기 화합물 9_P1 (10 g, 14.6 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10.5 g, 526.4 mmol)을 Trifluoromethanesulfonic anhydride (33 g, 117 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 9를 5.1 g 얻었다. (수율 50%, MS: [M+H]+ = 697).Under a nitrogen atmosphere, compound 9_P1 (10 g, 14.6 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (10.5 g, 526.4 mmol) was added to Trifluoromethanesulfonic anhydride (33 g, 117 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.1 g of compound 9. (50% yield, MS: [M+H] + = 697).
합성예 10Synthesis Example 10
Figure PCTKR2023014472-appb-img-000091
Figure PCTKR2023014472-appb-img-000091
질소 분위기 하에서 화합물 sub 1 (15 g, 51.2 mmol)와 아민 화합물 amine 10 (29.5 g, 53.8 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 21.2 g, 153.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.3 g, 0.5 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 10_P1을 26.5 g 제조하였다. (수율 68%, MS: [M+H]+ = 760).Under a nitrogen atmosphere, compound sub 1 (15 g, 51.2 mmol) and amine compound amine 10 (29.5 g, 53.8 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 21.2 g, 153.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.3 g, 0.5 mmol) was added. After reaction for 3 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26.5 g of compound 10_P1. (Yield 68%, MS: [M+H] + = 760).
질소 분위기 하에서 상기 화합물 10_P1 (10 g, 13.2 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (9.5 g, 473.7 mmol)을 Trifluoromethanesulfonic anhydride (29.7 g, 105.3 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 10을 6.9 g 얻었다. (수율 68%, MS: [M+H]+ = 772).Under a nitrogen atmosphere, the compound 10_P1 (10 g, 13.2 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (9.5 g, 473.7 mmol) was added to Trifluoromethanesulfonic anhydride (29.7 g, 105.3 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.9 g of compound 10. (Yield 68%, MS: [M+H] + = 772).
합성예 11Synthesis Example 11
Figure PCTKR2023014472-appb-img-000092
Figure PCTKR2023014472-appb-img-000092
질소 분위기 하에서 화합물 sub 2 (15 g, 48.6 mmol)와 아민 화합물 amine 11 (18.6 g, 51 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 20.1 g, 145.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 11_P1을 17.6 g 제조하였다. (수율 61%, MS: [M+H]+ = 594).Under a nitrogen atmosphere, compound sub 2 (15 g, 48.6 mmol) and amine compound amine 11 (18.6 g, 51 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 20.1 g, 145.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 2 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, and then filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.6 g of compound 11_P1. (Yield 61%, MS: [M+H] + = 594).
질소 분위기 하에서 상기 화합물 11_P1 (10 g, 16.8 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (12.1 g, 606.3 mmol)을 Trifluoromethanesulfonic anhydride (38 g, 134.7 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 11을 6.7 g 얻었다. (수율 66%, MS: [M+H]+ = 605).The compound 11_P1 (10 g, 16.8 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature. In another container, Deuterium oxide (12.1 g, 606.3 mmol) was added to Trifluoromethanesulfonic anhydride (38 g, 134.7 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.7 g of compound 11. (Yield 66%, MS: [M+H] + = 605).
합성예 12Synthesis Example 12
Figure PCTKR2023014472-appb-img-000093
Figure PCTKR2023014472-appb-img-000093
질소 분위기 하에서 화합물 sub 2 (15 g, 48.6 mmol)와 아민 화합물 amine 12 (25.1 g, 51 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 20.1 g, 145.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 12_P1을 24.8 g 제조하였다. (수율 71%, MS: [M+H]+ = 720).Under a nitrogen atmosphere, compound sub 2 (15 g, 48.6 mmol) and amine compound amine 12 (25.1 g, 51 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 20.1 g, 145.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 3 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.8 g of compound 12_P1. (Yield 71%, MS: [M+H] + = 720).
질소 분위기 하에서 상기 화합물 12_P1 (10 g, 13.9 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10 g, 500.1 mmol)을 Trifluoromethanesulfonic anhydride (31.4 g, 111.1 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 12를 6.9 g 얻었다. (수율 68%, MS: [M+H]+ = 732).The compound 12_P1 (10 g, 13.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature. In another container, Deuterium oxide (10 g, 500.1 mmol) was added to Trifluoromethanesulfonic anhydride (31.4 g, 111.1 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.9 g of compound 12. (Yield 68%, MS: [M+H] + = 732).
합성예 13Synthesis Example 13
Figure PCTKR2023014472-appb-img-000094
Figure PCTKR2023014472-appb-img-000094
질소 분위기 하에서 화합물 sub 2 (15 g, 48.6 mmol)와 아민 화합물 amine 13 (23.2 g, 51 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 20.1 g, 145.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 13_P1을 21.9 g 제조하였다. (수율 66%, MS: [M+H]+ = 684).Under a nitrogen atmosphere, compound sub 2 (15 g, 48.6 mmol) and amine compound amine 13 (23.2 g, 51 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 20.1 g, 145.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 4 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.9 g of compound 13_P1. (Yield 66%, MS: [M+H] + = 684).
질소 분위기 하에서 상기 화합물 13_P1 (10 g, 14.6 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10.5 g, 526.4 mmol)을 Trifluoromethanesulfonic anhydride (33 g, 117 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 13을 6.2 g 얻었다. (수율 61%, MS: [M+H]+ = 699).The compound 13_P1 (10 g, 14.6 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature. In another container, Deuterium oxide (10.5 g, 526.4 mmol) was added to Trifluoromethanesulfonic anhydride (33 g, 117 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.2 g of compound 13. (Yield 61%, MS: [M+H] + = 699).
합성예 14Synthesis Example 14
Figure PCTKR2023014472-appb-img-000095
Figure PCTKR2023014472-appb-img-000095
질소 분위기 하에서 화합물 sub 2 (15 g, 48.6 mmol)와 아민 화합물 amine 14 (24 g, 51 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 20.1 g, 145.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 14_P1을 24.5 g 제조하였다. (수율 72%, MS: [M+H]+ = 700).Under a nitrogen atmosphere, compound sub 2 (15 g, 48.6 mmol) and amine compound amine 14 (24 g, 51 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 20.1 g, 145.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 2 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.5 g of compound 14_P1. (Yield 72%, MS: [M+H] + = 700).
질소 분위기 하에서 상기 화합물 14_P1 (10 g, 14.3 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10.3 g, 514.4 mmol)을 Trifluoromethanesulfonic anhydride (32.2 g, 114.3 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 14를 5.9 g 얻었다. (수율 58%, MS: [M+H]+ = 714).The compound 14_P1 (10 g, 14.3 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature. In another container, Deuterium oxide (10.3 g, 514.4 mmol) was added to Trifluoromethanesulfonic anhydride (32.2 g, 114.3 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.9 g of compound 14. (58% yield, MS: [M+H] + = 714).
합성예 15Synthesis Example 15
Figure PCTKR2023014472-appb-img-000096
Figure PCTKR2023014472-appb-img-000096
질소 분위기 하에서 화합물 sub 2 (15 g, 48.6 mmol)와 아민 화합물 amine 15 (27.9 g, 51 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 20.1 g, 145.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 15_P1을 27.9 g 제조하였다. (수율 74%, MS: [M+H]+ = 776).Under a nitrogen atmosphere, compound sub 2 (15 g, 48.6 mmol) and amine compound amine 15 (27.9 g, 51 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 20.1 g, 145.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 4 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 27.9 g of compound 15_P1. (Yield 74%, MS: [M+H] + = 776).
질소 분위기 하에서 상기 화합물 15_P1 (10 g, 12.9 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (9.3 g, 463.9 mmol)을 Trifluoromethanesulfonic anhydride (29.1 g, 103.1 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 15를 5.2 g 얻었다. (수율 51%, MS: [M+H]+ = 787).The compound 15_P1 (10 g, 12.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature. In another container, Deuterium oxide (9.3 g, 463.9 mmol) was added to Trifluoromethanesulfonic anhydride (29.1 g, 103.1 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.2 g of compound 15. (51% yield, MS: [M+H] + = 787).
합성예 16Synthesis Example 16
Figure PCTKR2023014472-appb-img-000097
Figure PCTKR2023014472-appb-img-000097
질소 분위기 하에서 화합물 sub 3 (15 g, 48.6 mmol)와 아민 화합물 amine 16 (23.2 g, 51 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 20.1 g, 145.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 16_P1을 22.9 g 제조하였다. (수율 69%, MS: [M+H]+ = 684).Under a nitrogen atmosphere, compound sub 3 (15 g, 48.6 mmol) and amine compound amine 16 (23.2 g, 51 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 20.1 g, 145.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 3 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 22.9 g of compound 16_P1. (Yield 69%, MS: [M+H] + = 684).
질소 분위기 하에서 상기 화합물 16_P1 (10 g, 14.6 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10.5 g, 526.4 mmol)을 Trifluoromethanesulfonic anhydride (33 g, 117 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 16을 5.7 g 얻었다. (수율 56%, MS: [M+H]+ = 696).The compound 16_P1 (10 g, 14.6 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature. In another container, Deuterium oxide (10.5 g, 526.4 mmol) was added to Trifluoromethanesulfonic anhydride (33 g, 117 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.7 g of compound 16. (Yield 56%, MS: [M+H] + = 696).
합성예 17Synthesis Example 17
Figure PCTKR2023014472-appb-img-000098
Figure PCTKR2023014472-appb-img-000098
질소 분위기 하에서 화합물 sub 3 (15 g, 48.6 mmol)와 아민 화합물 amine 17 (23.2 g, 51 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 20.1 g, 145.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 17_P1을 23.6 g 제조하였다. (수율 71%, MS: [M+H]+ = 684).Under a nitrogen atmosphere, compound sub 3 (15 g, 48.6 mmol) and amine compound amine 17 (23.2 g, 51 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 20.1 g, 145.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 3 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.6 g of compound 17_P1. (Yield 71%, MS: [M+H] + = 684).
질소 분위기 하에서 상기 화합물 17_P1 (10 g, 14.6 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10.5 g, 526.4 mmol)을 Trifluoromethanesulfonic anhydride (33 g, 117 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 17을 6.9 g 얻었다. (수율 68%, MS: [M+H]+ = 698).The compound 17_P1 (10 g, 14.6 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature. In another container, Deuterium oxide (10.5 g, 526.4 mmol) was added to Trifluoromethanesulfonic anhydride (33 g, 117 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.9 g of compound 17. (Yield 68%, MS: [M+H] + = 698).
합성예 18Synthesis Example 18
Figure PCTKR2023014472-appb-img-000099
Figure PCTKR2023014472-appb-img-000099
질소 분위기 하에서 화합물 sub 3 (15 g, 48.6 mmol)와 아민 화합물 amine 18 (24 g, 51 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 20.1 g, 145.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 18_P1을 23.1 g 제조하였다. (수율 68%, MS: [M+H]+ = 700).Under a nitrogen atmosphere, compound sub 3 (15 g, 48.6 mmol) and amine compound amine 18 (24 g, 51 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 20.1 g, 145.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 2 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 23.1 g of compound 18_P1. (Yield 68%, MS: [M+H] + = 700).
질소 분위기 하에서 상기 화합물 18_P1 (10 g, 14.3 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10.3 g, 514.4 mmol)을 Trifluoromethanesulfonic anhydride (32.2 g, 114.3 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 18을 5.2 g 얻었다. (수율 51%, MS: [M+H]+ = 713).Under a nitrogen atmosphere, the compound 18_P1 (10 g, 14.3 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (10.3 g, 514.4 mmol) was added to Trifluoromethanesulfonic anhydride (32.2 g, 114.3 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.2 g of compound 18. (51% yield, MS: [M+H] + = 713).
합성예 19Synthesis Example 19
Figure PCTKR2023014472-appb-img-000100
Figure PCTKR2023014472-appb-img-000100
질소 분위기 하에서 화합물 sub 3 (15 g, 48.6 mmol)와 아민 화합물 amine 19 (24 g, 51 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 20.1 g, 145.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 19_P1을 22.4 g 제조하였다. (수율 66%, MS: [M+H]+ = 700).Under a nitrogen atmosphere, compound sub 3 (15 g, 48.6 mmol) and amine compound amine 19 (24 g, 51 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 20.1 g, 145.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 4 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 22.4 g of compound 19_P1. (Yield 66%, MS: [M+H] + = 700).
질소 분위기 하에서 상기 화합물 19_P1 (10 g, 14.3 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10.3 g, 514.4 mmol)을 Trifluoromethanesulfonic anhydride (32.2 g, 114.3 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 19를 6.4 g 얻었다. (수율 63%, MS: [M+H]+ = 715).The compound 19_P1 (10 g, 14.3 mmol) was added to 200 mL of 1,2,4-trichlorobenzene under a nitrogen atmosphere and stirred at room temperature. In another container, Deuterium oxide (10.3 g, 514.4 mmol) was added to Trifluoromethanesulfonic anhydride (32.2 g, 114.3 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.4 g of compound 19. (Yield 63%, MS: [M+H] + = 715).
합성예 20Synthesis Example 20
Figure PCTKR2023014472-appb-img-000101
Figure PCTKR2023014472-appb-img-000101
질소 분위기 하에서 화합물 sub 3 (15 g, 48.6 mmol)와 아민 화합물 amine 20 (27.9 g, 51 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 20.1 g, 145.7 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 20_P1을 26 g 제조하였다. (수율 69%, MS: [M+H]+ = 776).Under a nitrogen atmosphere, compound sub 3 (15 g, 48.6 mmol) and amine compound amine 20 (27.9 g, 51 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 20.1 g, 145.7 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 4 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 26 g of compound 20_P1. (Yield 69%, MS: [M+H] + = 776).
질소 분위기 하에서 상기 화합물 20_P1 (10 g, 12.9 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (9.3 g, 463.9 mmol)을 Trifluoromethanesulfonic anhydride (29.1 g, 103.1 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 20을 7.1 g 얻었다. (수율 70%, MS: [M+H]+ = 788). Under a nitrogen atmosphere, the compound 20_P1 (10 g, 12.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (9.3 g, 463.9 mmol) was added to Trifluoromethanesulfonic anhydride (29.1 g, 103.1 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.1 g of compound 20. (Yield 70%, MS: [M+H] + = 788).
합성예 21Synthesis Example 21
Figure PCTKR2023014472-appb-img-000102
Figure PCTKR2023014472-appb-img-000102
질소 분위기 하에서 화합물 sub 4 (15 g, 46.2 mmol)와 아민 화합물 amine 21 (22.1 g, 48.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 19.1 g, 138.5 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 21_P1을 20.3 g 제조하였다. (수율 63%, MS: [M+H]+ = 700).Under a nitrogen atmosphere, compound sub 4 (15 g, 46.2 mmol) and amine compound amine 21 (22.1 g, 48.5 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 19.1 g, 138.5 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 2 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.3 g of compound 21_P1. (Yield 63%, MS: [M+H] + = 700).
질소 분위기 하에서 상기 화합물 21_P1 (10 g, 14.3 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10.3 g, 514.4 mmol)을 Trifluoromethanesulfonic anhydride (32.2 g, 114.3 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 21을 5.1 g 얻었다. (수율 50%, MS: [M+H]+ = 715).Under a nitrogen atmosphere, compound 21_P1 (10 g, 14.3 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (10.3 g, 514.4 mmol) was added to Trifluoromethanesulfonic anhydride (32.2 g, 114.3 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.1 g of compound 21. (50% yield, MS: [M+H] + = 715).
합성예 22Synthesis Example 22
Figure PCTKR2023014472-appb-img-000103
Figure PCTKR2023014472-appb-img-000103
질소 분위기 하에서 화합물 sub 4 (15 g, 46.2 mmol)와 아민 화합물 amine 22 (25.8 g, 48.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 19.1 g, 138.5 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 22_P1을 21.5 g 제조하였다. (수율 60%, MS: [M+H]+ = 776).Under a nitrogen atmosphere, compound sub 4 (15 g, 46.2 mmol) and amine compound amine 22 (25.8 g, 48.5 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 19.1 g, 138.5 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 3 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.5 g of compound 22_P1. (Yield 60%, MS: [M+H] + = 776).
질소 분위기 하에서 상기 화합물 22_P1 (10 g, 12.9 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (9.3 g, 463.9 mmol)을 Trifluoromethanesulfonic anhydride (29.1 g, 103.1 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 22를 6 g 얻었다. (수율 59%, MS: [M+H]+ = 789).Under a nitrogen atmosphere, the compound 22_P1 (10 g, 12.9 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (9.3 g, 463.9 mmol) was added to Trifluoromethanesulfonic anhydride (29.1 g, 103.1 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6 g of compound 22. (Yield 59%, MS: [M+H] + = 789).
합성예 23Synthesis Example 23
Figure PCTKR2023014472-appb-img-000104
Figure PCTKR2023014472-appb-img-000104
질소 분위기 하에서 화합물 sub 4 (15 g, 46.2 mmol)와 아민 화합물 amine 23 (22.9 g, 48.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 19.1 g, 138.5 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 23_P1을 24.1 g 제조하였다. (수율 73%, MS: [M+H]+ = 716).Under a nitrogen atmosphere, compound sub 4 (15 g, 46.2 mmol) and amine compound amine 23 (22.9 g, 48.5 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 19.1 g, 138.5 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 4 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.1 g of compound 23_P1. (Yield 73%, MS: [M+H] + = 716).
질소 분위기 하에서 상기 화합물 23_P1 (10 g, 14 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10.1 g, 502.8 mmol)을 Trifluoromethanesulfonic anhydride (31.5 g, 111.7 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 23을 5.6 g 얻었다. (수율 55%, MS: [M+H]+ = 730).Under a nitrogen atmosphere, the compound 23_P1 (10 g, 14 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (10.1 g, 502.8 mmol) was added to Trifluoromethanesulfonic anhydride (31.5 g, 111.7 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.6 g of compound 23. (55% yield, MS: [M+H] + = 730).
합성예 24Synthesis Example 24
Figure PCTKR2023014472-appb-img-000105
Figure PCTKR2023014472-appb-img-000105
질소 분위기 하에서 화합물 sub 4 (15 g, 46.2 mmol)와 아민 화합물 amine 24 (22.9 g, 48.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 19.1 g, 138.5 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 24_P1을 22.1 g 제조하였다. (수율 67%, MS: [M+H]+ = 716).Under a nitrogen atmosphere, compound sub 4 (15 g, 46.2 mmol) and amine compound amine 24 (22.9 g, 48.5 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 19.1 g, 138.5 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 5 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 22.1 g of compound 24_P1. (Yield 67%, MS: [M+H] + = 716).
질소 분위기 하에서 상기 화합물 24_P1 (10 g, 14 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (10.1 g, 502.8 mmol)을 Trifluoromethanesulfonic anhydride (31.5 g, 111.7 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 24를 5.8 g 얻었다. (수율 57%, MS: [M+H]+ = 728).Under a nitrogen atmosphere, the compound 24_P1 (10 g, 14 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (10.1 g, 502.8 mmol) was added to Trifluoromethanesulfonic anhydride (31.5 g, 111.7 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.8 g of compound 24. (Yield 57%, MS: [M+H] + = 728).
합성예 25Synthesis Example 25
Figure PCTKR2023014472-appb-img-000106
Figure PCTKR2023014472-appb-img-000106
질소 분위기 하에서 화합물 sub 4 (15 g, 46.2 mmol)와 아민 화합물 amine 25 (26.5 g, 48.5 mmol)를 THF 300 mL에 넣고 교반 및 환류하였다. 이 후 potassium carbonate (K2CO3, 19.1 g, 138.5 mmol)를 물 100 mL에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2, 0.2 g, 0.5 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 화합물 25_P1을 29.2 g 제조하였다. (수율 80%, MS: [M+H]+ = 792).Under a nitrogen atmosphere, compound sub 4 (15 g, 46.2 mmol) and amine compound amine 25 (26.5 g, 48.5 mmol) were added to 300 mL of THF, stirred, and refluxed. Afterwards, potassium carbonate (K 2 CO 3 , 19.1 g, 138.5 mmol) was dissolved in 100 mL of water, stirred sufficiently, and bis(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu 3 P) 2 , 0.2 g, 0.5 mmol) was added. After reaction for 4 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 29.2 g of compound 25_P1. (80% yield, MS: [M+H] + = 792).
질소 분위기 하에서 상기 화합물 25_P1 (10 g, 12.6 mmol)를 1,2,4-trichlorobenzene 200 mL에 넣고 상온에서 교반하였다. 다른 용기에서 0 oC 조건으로 Deuterium oxide (9.1 g, 454.5 mmol)을 Trifluoromethanesulfonic anhydride (28.5 g, 101 mmol)에 투입하고, 5 시간 동안 교반하여, 용액을 만들었다. 이후, 만들어 놓은 1,2,4-trichlorobenzene의 혼합 용액에 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합 용액을 적가하고, 140 oC까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수 황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼 크로마토그래피로 정제해서 화합물 25을 5.2 g 얻었다. (수율 51%, MS: [M+H]+ = 803). Under a nitrogen atmosphere, the compound 25_P1 (10 g, 12.6 mmol) was added to 200 mL of 1,2,4-trichlorobenzene and stirred at room temperature. In another container, Deuterium oxide (9.1 g, 454.5 mmol) was added to Trifluoromethanesulfonic anhydride (28.5 g, 101 mmol) at 0 o C, and stirred for 5 hours to prepare a solution. Afterwards, the mixed solution of trifluoromethanesulfonic anhydride and Deuterium oxide was added dropwise to the prepared mixed solution of 1,2,4-trichlorobenzene, and the temperature was raised to 140 o C and stirred while maintained. After reacting for 10 hours, it was cooled to room temperature and the organic layer and water layer were separated. Afterwards, the organic layer was neutralized with an aqueous potassium carbonate solution. After washing twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 5.2 g of compound 25. (Yield 51%, MS: [M+H] + = 803).
실시예 1Example 1
ITO(indium tin oxide)가 1,000 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with a thin film of ITO (indium tin oxide) with a thickness of 1,000 Å was placed in distilled water with a detergent dissolved in it and washed with ultrasonic waves. At this time, a detergent manufactured by Fischer Co. was used, and distilled water filtered secondarily using a filter manufactured by Millipore Co. was used as distilled water. After washing the ITO for 30 minutes, ultrasonic cleaning was repeated twice with distilled water for 10 minutes. After washing with distilled water, it was ultrasonic washed with solvents of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. Additionally, the substrate was cleaned for 5 minutes using oxygen plasma and then transported to a vacuum evaporator.
이렇게 준비된 ITO 투명 전극 위에, 정공주입층으로 하기 화합물 HI-1을 1150 Å의 두께로 형성하되 하기 화합물 A-1을 1.5% 농도로 p-도핑 하였다. 상기 정공주입층 위에, 하기 화합물 HT-1을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에, 하기 화합물 EB-1을 진공 증착하여 막 두께 150 Å의 전자저지층을 형성하였다. 이어서, 상기 전자저지층 위에, 앞서 제조한 하기 화합물 1과 하기 화합물 Dp-7을 98:2의 중량비로 진공 증착하여 막 두께 400 Å의 적색 발광층을 형성하였다. 상기 발광층 위에, 하기 화합물 HB-1을 진공 증착하여 막 두께 30 Å의 정공저지층을 형성하였다. 이어서, 상기 정공저지층 위에, 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 막 두께 300 Å의 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에, 순차적으로 12 Å 두께로 리튬플로라이드(LiF)와 1,000 Å 두께로 알루미늄을 증착하여 음극을 형성하여, 유기 발광 소자를 제조하였다. On the ITO transparent electrode prepared in this way, the following compound HI-1 was formed as a hole injection layer to a thickness of 1150 Å, and the following compound A-1 was p-doped at a concentration of 1.5%. On the hole injection layer, the following compound HT-1 was vacuum deposited to form a hole transport layer with a film thickness of 800 Å. Next, on the hole transport layer, the following compound EB-1 was vacuum deposited to form an electron blocking layer with a thickness of 150 Å. Next, on the electron blocking layer, Compound 1 and Dp-7, prepared previously, were vacuum deposited at a weight ratio of 98:2 to form a red light-emitting layer with a thickness of 400 Å. On the light emitting layer, the following compound HB-1 was vacuum deposited to form a hole blocking layer with a film thickness of 30 Å. Next, on the hole blocking layer, the following ET-1 compound and the following LiQ compound were vacuum deposited at a weight ratio of 2:1 to form an electron injection and transport layer with a film thickness of 300 Å. On the electron injection and transport layer, lithium fluoride (LiF) to a thickness of 12 Å and aluminum to a thickness of 1,000 Å were sequentially deposited to form a cathode, thereby manufacturing an organic light-emitting device.
Figure PCTKR2023014472-appb-img-000107
.
Figure PCTKR2023014472-appb-img-000107
.
상기의 과정에서 유기물의 증착 속도는 0.4 Å/sec 내지 0.7 Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2*10-7 torr 내지 5*10-6 torr를 유지하여, 유기 발광 소자를 제작하였다In the above process, the deposition rate of organic matter was maintained at 0.4 Å/sec to 0.7 Å/sec, the deposition rate of lithium fluoride of the cathode was maintained at 0.3 Å/sec, and aluminum was maintained at 2 Å/sec, and the vacuum level during deposition was Organic light-emitting devices were manufactured by maintaining 2*10 -7 torr to 5*10 -6 torr.
실시예 2 내지 25Examples 2 to 25
실시예 1의 유기 발광 소자에서 발광층 형성시 호스트로서 화합물 1 대신에, 하기 표 1에 기재된 화합물 2 내지 25을 각각 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.An organic light-emitting device was manufactured in the same manner as in Example 1, except that compounds 2 to 25 listed in Table 1 below were used instead of compound 1 as a host when forming the light-emitting layer in the organic light-emitting device of Example 1.
Figure PCTKR2023014472-appb-img-000108
Figure PCTKR2023014472-appb-img-000108
Figure PCTKR2023014472-appb-img-000109
Figure PCTKR2023014472-appb-img-000109
Figure PCTKR2023014472-appb-img-000110
.
Figure PCTKR2023014472-appb-img-000110
.
비교예 1 내지 8Comparative Examples 1 to 8
실시예 1의 유기 발광 소자에서 발광층 형성시 호스트로서 화합물 1 대신에, 하기 표 2에 기재된 화합물을 각각 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 2에서 사용한 비교 화합물 RH-1 내지 RH-6, 비교 화합물 1_P1, 및 화합물 13_P1은 각각 아래와 같다.An organic light-emitting device was manufactured in the same manner as Example 1, except that the compounds listed in Table 2 below were used instead of Compound 1 as a host when forming the light-emitting layer in the organic light-emitting device of Example 1. Comparative compounds RH-1 to RH-6, comparative compound 1_P1, and compound 13_P1 used in Table 2 below are respectively as follows.
Figure PCTKR2023014472-appb-img-000111
.
Figure PCTKR2023014472-appb-img-000111
.
[실험예][Experimental example]
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 대하여, 10 mA/cm2의 전류 밀도에서 구동 전압과 발광 효율을 측정하였으며, 수명 T95는 50 mA/cm2의 전류 밀도에서 초기 휘도 대비 95%로 감소되는 데 소요되는 시간(T95, hr)을 측정하였다. 그 결과를 하기 표 1 및 표 2에 나타냈다. For the organic light emitting devices manufactured in the above examples and comparative examples, the driving voltage and luminous efficiency were measured at a current density of 10 mA/cm 2 , and the lifespan T95 was 95% of the initial luminance at a current density of 50 mA/cm 2. The time required to reduce to (T95, hr) was measured. The results are shown in Tables 1 and 2 below.
호스트 물질host material 구동전압(V)Driving voltage (V) 전류효율(cd/A)Current efficiency (cd/A) 수명(T95%@10mA)Lifespan (T95%@10mA)
실시예 1Example 1 화합물 1 Compound 1 4.034.03 24.0124.01 170170
실시예 2Example 2 화합물 2 compound 2 4.104.10 24.0524.05 189189
실시예 3Example 3 화합물 3 Compound 3 4.154.15 24.1224.12 184184
실시예 4Example 4 화합물 4 Compound 4 4.084.08 23.9923.99 175175
실시예 5Example 5 화합물 5 Compound 5 4.114.11 24.0924.09 182182
실시예 6Example 6 화합물 6 Compound 6 4.084.08 23.9523.95 183183
실시예 7Example 7 화합물 7 Compound 7 4.074.07 24.1124.11 191191
실시예 8Example 8 화합물 8 compound 8 4.114.11 24.3924.39 189189
실시예 9Example 9 화합물 9Compound 9 4.104.10 24.3824.38 187187
실시예 10Example 10 화합물 10Compound 10 4.094.09 23.8823.88 177177
실시예 11Example 11 화합물 11Compound 11 4.124.12 24.0524.05 181181
실시예 12Example 12 화합물 12Compound 12 4.154.15 24.6524.65 185185
실시예 13Example 13 화합물 13Compound 13 4.094.09 24.1524.15 180180
실시예 14Example 14 화합물 14Compound 14 4.134.13 25.0925.09 193193
실시예 15Example 15 화합물 15Compound 15 4.024.02 25.6925.69 192192
실시예 16Example 16 화합물 16Compound 16 4.034.03 24.4224.42 181181
실시예 17Example 17 화합물 17Compound 17 4.124.12 23.9523.95 185185
실시예 18Example 18 화합물 18Compound 18 4.064.06 23.9923.99 195195
실시예 19Example 19 화합물 19Compound 19 4.084.08 24.0524.05 190190
실시예 20Example 20 화합물 20Compound 20 4.114.11 24.6524.65 189189
실시예 21Example 21 화합물 21Compound 21 4.074.07 23.8523.85 184184
실시예 22Example 22 화합물 22Compound 22 4.094.09 24.0224.02 183183
실시예 23Example 23 화합물 23Compound 23 4.054.05 24.1424.14 179179
실시예 24Example 24 화합물 24Compound 24 4.044.04 24.1124.11 195195
실시예 25Example 25 화합물 25Compound 25 4.104.10 23.9523.95 185185
호스트 물질host material 구동전압(V)Driving voltage (V) 전류효율(cd/A)Current efficiency (cd/A) 수명(T95%@10mA)Lifespan (T95%@10mA)
비교예 1Comparative Example 1 화합물 RH-1Compound RH-1 4.884.88 17.5417.54 4545
비교예 2Comparative Example 2 화합물 RH-2Compound RH-2 4.874.87 18.0018.00 5858
비교예 3Comparative Example 3 화합물 RH-3Compound RH-3 4.794.79 17.6517.65 4343
비교예 4Comparative Example 4 화합물 RH-4Compound RH-4 4.954.95 17.7217.72 4949
비교예 5Comparative Example 5 화합물 RH-5Compound RH-5 4.864.86 16.9916.99 5151
비교예 6Comparative Example 6 화합물 RH-6Compound RH-6 4.934.93 17.8517.85 5050
비교예 7Comparative Example 7 화합물 1_P1Compound 1_P1 4.054.05 23.9823.98 8181
비교예 8Comparative Example 8 화합물 13_P1Compound 13_P1 4.084.08 24.0624.06 7575
실시예 1 내지 25 및 비교예 1 내지 8에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 각각 상기 표 1 및 표 2의 결과를 얻었다. 상기 실시예 1의 적색 유기 발광 소자는 종래 널리 사용되고 있는 물질을 사용하였으며, 발광층으로 화합물 1을 사용하고, 적색 발광층의 도판트로 Dp-7을 사용하는 구조이다. 실시예 2 내지 25는 화합물 1 대신 화합물 2 내지 25를 사용하여 유기 발광 소자를 제조하였으며, 비교예 1 내지 19는 화합물 1 대신 비교 화합물 RH-1 내지 RH-6, 비교 화합물 1_P1, 및 비교 화합물 13_P1을 사용하여 유기 발광 소자를 제조하였다. When current was applied to the organic light emitting devices manufactured in Examples 1 to 25 and Comparative Examples 1 to 8, the results shown in Tables 1 and 2 were obtained, respectively. The red organic light emitting device of Example 1 used materials that were widely used in the past, and had a structure in which Compound 1 was used as the light emitting layer and Dp-7 was used as the dopant of the red light emitting layer. In Examples 2 to 25, organic light-emitting devices were manufactured using Compounds 2 to 25 instead of Compound 1, and in Comparative Examples 1 to 19, Comparative Compounds RH-1 to RH-6, Comparative Compound 1_P1, and Comparative Compound 13_P1 instead of Compound 1. An organic light emitting device was manufactured using .
상기 표 1의 결과로부터 화학식 1의 구조를 갖는 화합물들을 유기 전계 발광 소자의 발광층에 적용하였을 경우, 저전압, 고효율, 장수명의 특성을 갖는 소자를 얻을 수 있음을 확인하였다. From the results in Table 1, it was confirmed that when compounds having the structure of Formula 1 were applied to the light-emitting layer of an organic electroluminescent device, a device with low voltage, high efficiency, and long lifespan characteristics could be obtained.
구체적으로, 본 발명에 따라 화학식 1로 표시되는 화합물, 즉, 벤조비스벤조퓨란 또는 벤조비스벤조티오펜의 모핵 구조 중 한쪽 말단의 벤젠 고리에서 특정 위치, 즉, 벤조티오펜이나 벤조퓨란에 축합된 말단 벤젠 고리 중 산소 또는 황 원자로부터 두번째 탄소 위치에, 특정 구조의 3차 아민기가 결합된 화합물을 발광층 호스트 물질로 사용한 실시예 1 내지 25의 유기 발광 소자는, 상기 비교 화합물 RH-1 내지 RH-6, 비교 화합물 1_P1, 및 비교 화합물 13_P1을 발광층 호스트 물질로 사용한 비교예 1 내지 8의 유기 발광 소자 모두에 비해 구동 전압이 크게 낮아졌으며, 효율 측면에도 상승을 한 것으로 보아 호스트에서 적색 도판트로의 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한, 실시예 1 내지 25의 유기 발광 소자는 높은 효율을 유지하면서도 수명 특성을 크게 개선시킬 수 있는 것을 알 수 있었다. 이는 결국 비교예의 화합물보다 본 발명에 따른 실시예의 화합물이 전자와 정공에 대한 안정도가 높기 때문이라 판단할 수 있다. 결론적으로 본 발명의 화합물을 발광층이나 정공수송층으로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다. Specifically, according to the present invention, the compound represented by Formula 1, i.e., benzobisbenzofuran or benzobisbenzothiophene, is condensed at a specific position in the benzene ring at one end of the parent nucleus structure, i.e., benzothiophene or benzofuran. The organic light-emitting devices of Examples 1 to 25 in which a compound in which a tertiary amine group of a specific structure is bonded to the second carbon position from the oxygen or sulfur atom in the terminal benzene ring was used as the emitting layer host material, the comparative compounds RH-1 to RH- 6, Comparative Compound 1_P1, and Comparative Compound 13_P1, compared to all of the organic light emitting devices of Comparative Examples 1 to 8 using Comparative Compound 1_P1 as the emitting layer host material, the driving voltage was significantly lowered, and the efficiency also increased, indicating that the energy from the host to the red dopant was increased. I could see that the delivery was going well. In addition, it was found that the organic light emitting devices of Examples 1 to 25 could significantly improve lifespan characteristics while maintaining high efficiency. This can ultimately be judged to be because the compounds of the examples according to the present invention have higher stability to electrons and holes than the compounds of the comparative examples. In conclusion, it can be confirmed that the driving voltage, luminous efficiency, and lifespan characteristics of organic light-emitting devices can be improved when the compound of the present invention is used as a light-emitting layer or hole transport layer.
특히, 본 발명에 따른 화합물을 발광층의 호스트로 사용하여 제조된 유기 발광 소자의 경우에 비교예의 유기 발광 소자에 비하여 효율 및 수명 측면에서 더욱 우수한 성능을 나타내는 것을 알 수 있다. In particular, it can be seen that the organic light-emitting device manufactured using the compound according to the present invention as the host of the light-emitting layer exhibits superior performance in terms of efficiency and lifespan compared to the organic light-emitting device of the comparative example.
상기와 같이, 본 발명의 화합물들이 비교예 화합물들에 비하여 치환기의 위치 및 치환기의 종류에 따라 효율 및 수명 측면에서 우수한 특성을 나타냄을 확인할 수 있었다.As described above, it was confirmed that the compounds of the present invention exhibited superior properties in terms of efficiency and lifespan depending on the position and type of the substituent compared to the comparative compounds.
[부호의 설명][Explanation of symbols]
1: 기판 2: 양극1: Substrate 2: Anode
3: 발광층 4: 음극3: light emitting layer 4: cathode
5: 정공주입층 6: 정공수송층5: hole injection layer 6: hole transport layer
7: 전자저지층 8: 정공저지층7: electron blocking layer 8: hole blocking layer
9: 전자 주입 및 수송층9: Electron injection and transport layer

Claims (15)

  1. 하기 화학식 1로 표시되는 화합물:Compound represented by Formula 1:
    [화학식 1][Formula 1]
    Figure PCTKR2023014472-appb-img-000112
    Figure PCTKR2023014472-appb-img-000112
    상기 화학식 1에서,In Formula 1,
    Y는 각각 독립적으로 O 또는 S이고,Y is each independently O or S,
    R1은 각각 독립적으로 수소 또는 중수소이고, R 1 is each independently hydrogen or deuterium,
    L1, L2, 및 L3는 각각 독립적으로 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고, 및L 1 , L 2 , and L 3 are each independently a single bond, or a substituted or unsubstituted C 6-60 arylene, and
    Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이되, Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing at least one selected from the group consisting of substituted or unsubstituted O and S,
    단, R1, L1 내지 L3, Ar1, 및 Ar2 중 적어도 하나 이상은 중수소이거나 중수소로 치환된 것이다. However, at least one of R 1 , L 1 to L 3 , Ar 1 , and Ar 2 is deuterium or substituted with deuterium.
  2. 제1항에 있어서,According to paragraph 1,
    R1 중 적어도 하나 이상은 중수소인, At least one of R 1 is deuterium,
    화합물.compound.
  3. 제1항에 있어서,According to paragraph 1,
    L1, 및 L2은 각각 독립적으로 단일 결합, 또는 수소 또는 중수소가 치환된 페닐렌인, L 1 and L 2 are each independently a single bond or phenylene substituted with hydrogen or deuterium,
    화합물.compound.
  4. 제1항에 있어서,According to paragraph 1,
    L3은 수소 또는 중수소가 치환된 페닐렌인, L 3 is hydrogen or deuterium substituted phenylene,
    화합물.compound.
  5. 제1항에 있어서,According to paragraph 1,
    L1, L2, 및 L3 중 적어도 하나 이상은 중수소가 치환된 페닐렌인, At least one of L 1 , L 2 , and L 3 is deuterium-substituted phenylene,
    화합물.compound.
  6. 제1항에 있어서,According to paragraph 1,
    Ar1 및 Ar2은 각각 독립적으로 수소 또는 중수소로 치환된 C6-19 아릴이거나, 또는 수소 또는 중수소로 치환된 C2-19 헤테로아릴인, Ar 1 and Ar 2 are each independently C 6-19 aryl substituted with hydrogen or deuterium, or C 2-19 heteroaryl substituted with hydrogen or deuterium,
    화합물.compound.
  7. 제1항에 있어서,According to paragraph 1,
    Ar1 및 Ar2 중 적어도 하나 이상은 중수소로 치환된 C6-19 아릴, 또는 중수소로 치환된 C2-19 헤테로아릴인, At least one of Ar 1 and Ar 2 is C 6-19 aryl substituted with deuterium, or C 2-19 heteroaryl substituted with deuterium,
    화합물.compound.
  8. 제1항에 있어서,According to paragraph 1,
    Ar1 및 Ar2는 각각 독립적으로 수소 또는 중수소로 치환된 페닐, 수소 또는 중수소로 치환된 비페닐, 수소 또는 중수소로 치환된 나프틸, 수소 또는 중수소로 치환된 페난트릴, 수소 또는 중수소로 치환된 디벤조퓨라닐, 또는 수소 또는 중수소로 치환된 디벤조티오페닐인, Ar 1 and Ar 2 are each independently phenyl substituted with hydrogen or deuterium, biphenyl substituted with hydrogen or deuterium, naphthyl substituted with hydrogen or deuterium, phenanthryl substituted with hydrogen or deuterium, Dibenzofuranyl, or dibenzothiophenyl substituted with hydrogen or deuterium,
    화합물.compound.
  9. 제1항에 있어서,According to paragraph 1,
    Ar1 및 Ar2 중 적어도 하나 이상은 수소 또는 중수소로 치환된 비페닐, 수소 또는 중수소로 치환된 나프틸, 수소 또는 중수소로 치환된 페난트릴, 수소 또는 중수소로 치환된 디벤조퓨라닐인, At least one of Ar 1 and Ar 2 is biphenyl substituted with hydrogen or deuterium, naphthyl substituted with hydrogen or deuterium, phenanthryl substituted with hydrogen or deuterium, and dibenzofuranyl substituted with hydrogen or deuterium,
    화합물.compound.
  10. 제1항에 있어서,According to paragraph 1,
    L1이 단일결합인 경우, Ar1은 중수소 비치환된 C6-19 아릴이거나, 또는 수소 또는 중수소로 치환된 C2-19 헤테로아릴이고, When L 1 is a single bond, Ar 1 is C 6-19 aryl unsubstituted by deuterium, or C 2-19 heteroaryl substituted by hydrogen or deuterium,
    L1이 치환 또는 비치환된 C6-60 아릴렌인 경우, Ar1은 수소 또는 중수소로 치환된 C6-19 아릴이거나, 또는 수소 또는 중수소로 치환된 C2-19 헤테로아릴이며, When L 1 is substituted or unsubstituted C 6-60 arylene, Ar 1 is C 6-19 aryl substituted with hydrogen or deuterium, or C 2-19 heteroaryl substituted with hydrogen or deuterium,
    L2가 단일결합인 경우, Ar2는 중수소 비치환된 C6-19 아릴이거나, 또는 수소 또는 중수소로 치환된 C2-19 헤테로아릴이고, 및When L 2 is a single bond, Ar 2 is C 6-19 aryl unsubstituted by deuterium, or C 2-19 heteroaryl substituted by hydrogen or deuterium, and
    L2가 치환 또는 비치환된 C6-60 아릴렌인 경우, Ar2는 수소 또는 중수소로 치환된 C6-19 아릴이거나, 또는 수소 또는 중수소로 치환된 C2-19 헤테로아릴인,When L 2 is substituted or unsubstituted C 6-60 arylene, Ar 2 is C 6-19 aryl substituted with hydrogen or deuterium, or C 2-19 heteroaryl substituted with hydrogen or deuterium,
    화합물.compound.
  11. 제1항에 있어서,According to paragraph 1,
    상기 화학식 1로 표시되는 화합물은, 1개 내지 50개의 중수소가 치환된 것인, The compound represented by Formula 1 is one in which 1 to 50 deuterium atoms are substituted,
    화합물.compound.
  12. 제1항에 있어서,According to paragraph 1,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인, The compound represented by Formula 1 is any one selected from the group consisting of:
    화합물:compound:
    Figure PCTKR2023014472-appb-img-000113
    Figure PCTKR2023014472-appb-img-000113
    Figure PCTKR2023014472-appb-img-000114
    Figure PCTKR2023014472-appb-img-000114
    Figure PCTKR2023014472-appb-img-000115
    Figure PCTKR2023014472-appb-img-000115
    Figure PCTKR2023014472-appb-img-000116
    Figure PCTKR2023014472-appb-img-000116
    Figure PCTKR2023014472-appb-img-000117
    Figure PCTKR2023014472-appb-img-000117
    Figure PCTKR2023014472-appb-img-000118
    Figure PCTKR2023014472-appb-img-000118
    Figure PCTKR2023014472-appb-img-000119
    Figure PCTKR2023014472-appb-img-000119
    Figure PCTKR2023014472-appb-img-000120
    Figure PCTKR2023014472-appb-img-000120
    Figure PCTKR2023014472-appb-img-000121
    Figure PCTKR2023014472-appb-img-000121
    Figure PCTKR2023014472-appb-img-000122
    Figure PCTKR2023014472-appb-img-000122
    Figure PCTKR2023014472-appb-img-000123
    Figure PCTKR2023014472-appb-img-000123
    Figure PCTKR2023014472-appb-img-000124
    Figure PCTKR2023014472-appb-img-000124
    Figure PCTKR2023014472-appb-img-000125
    Figure PCTKR2023014472-appb-img-000125
    Figure PCTKR2023014472-appb-img-000126
    Figure PCTKR2023014472-appb-img-000126
    Figure PCTKR2023014472-appb-img-000127
    Figure PCTKR2023014472-appb-img-000127
    Figure PCTKR2023014472-appb-img-000128
    Figure PCTKR2023014472-appb-img-000128
    Figure PCTKR2023014472-appb-img-000129
    Figure PCTKR2023014472-appb-img-000129
    Figure PCTKR2023014472-appb-img-000130
    Figure PCTKR2023014472-appb-img-000130
    Figure PCTKR2023014472-appb-img-000131
    Figure PCTKR2023014472-appb-img-000131
    Figure PCTKR2023014472-appb-img-000132
    Figure PCTKR2023014472-appb-img-000132
    Figure PCTKR2023014472-appb-img-000133
    Figure PCTKR2023014472-appb-img-000133
    Figure PCTKR2023014472-appb-img-000134
    Figure PCTKR2023014472-appb-img-000134
    Figure PCTKR2023014472-appb-img-000135
    Figure PCTKR2023014472-appb-img-000135
    Figure PCTKR2023014472-appb-img-000136
    Figure PCTKR2023014472-appb-img-000136
    Figure PCTKR2023014472-appb-img-000137
    Figure PCTKR2023014472-appb-img-000137
    Figure PCTKR2023014472-appb-img-000138
    Figure PCTKR2023014472-appb-img-000138
    Figure PCTKR2023014472-appb-img-000139
    Figure PCTKR2023014472-appb-img-000139
    Figure PCTKR2023014472-appb-img-000140
    Figure PCTKR2023014472-appb-img-000140
    Figure PCTKR2023014472-appb-img-000141
    Figure PCTKR2023014472-appb-img-000141
    Figure PCTKR2023014472-appb-img-000142
    Figure PCTKR2023014472-appb-img-000142
    Figure PCTKR2023014472-appb-img-000143
    Figure PCTKR2023014472-appb-img-000143
    Figure PCTKR2023014472-appb-img-000144
    Figure PCTKR2023014472-appb-img-000144
    Figure PCTKR2023014472-appb-img-000145
    Figure PCTKR2023014472-appb-img-000145
    Figure PCTKR2023014472-appb-img-000146
    Figure PCTKR2023014472-appb-img-000146
    Figure PCTKR2023014472-appb-img-000147
    Figure PCTKR2023014472-appb-img-000147
    Figure PCTKR2023014472-appb-img-000148
    Figure PCTKR2023014472-appb-img-000148
    Figure PCTKR2023014472-appb-img-000149
    Figure PCTKR2023014472-appb-img-000149
    Figure PCTKR2023014472-appb-img-000150
    Figure PCTKR2023014472-appb-img-000150
    Figure PCTKR2023014472-appb-img-000151
    Figure PCTKR2023014472-appb-img-000151
    Figure PCTKR2023014472-appb-img-000152
    Figure PCTKR2023014472-appb-img-000152
    Figure PCTKR2023014472-appb-img-000153
    Figure PCTKR2023014472-appb-img-000153
    Figure PCTKR2023014472-appb-img-000154
    Figure PCTKR2023014472-appb-img-000154
    Figure PCTKR2023014472-appb-img-000155
    Figure PCTKR2023014472-appb-img-000155
    Figure PCTKR2023014472-appb-img-000156
    Figure PCTKR2023014472-appb-img-000156
    Figure PCTKR2023014472-appb-img-000157
    Figure PCTKR2023014472-appb-img-000157
    Figure PCTKR2023014472-appb-img-000158
    Figure PCTKR2023014472-appb-img-000158
    Figure PCTKR2023014472-appb-img-000159
    Figure PCTKR2023014472-appb-img-000159
    Figure PCTKR2023014472-appb-img-000160
    Figure PCTKR2023014472-appb-img-000160
    Figure PCTKR2023014472-appb-img-000161
    Figure PCTKR2023014472-appb-img-000161
    Figure PCTKR2023014472-appb-img-000162
    Figure PCTKR2023014472-appb-img-000162
    Figure PCTKR2023014472-appb-img-000163
    Figure PCTKR2023014472-appb-img-000163
    Figure PCTKR2023014472-appb-img-000164
    Figure PCTKR2023014472-appb-img-000164
    Figure PCTKR2023014472-appb-img-000165
    Figure PCTKR2023014472-appb-img-000165
    Figure PCTKR2023014472-appb-img-000166
    Figure PCTKR2023014472-appb-img-000166
    Figure PCTKR2023014472-appb-img-000167
    Figure PCTKR2023014472-appb-img-000167
    Figure PCTKR2023014472-appb-img-000168
    Figure PCTKR2023014472-appb-img-000168
    상기 식 중 D는 중수소이고, a은 중수소 치환 갯수이며, a > 0 이다. In the above formula, D is deuterium, a is the number of deuterium substitutions, and a > 0.
  13. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제12항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.first electrode; a second electrode provided opposite to the first electrode; And an organic light-emitting device comprising at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer includes the compound according to any one of claims 1 to 12. An organic light-emitting device.
  14. 제13항에 있어서, According to clause 13,
    상기 화합물을 포함하는 유기물층은 발광층인, The organic material layer containing the compound is a light emitting layer,
    유기 발광 소자.Organic light emitting device.
  15. 제13항에 있어서, According to clause 13,
    상기 화합물은 발광층의 호스트 재료로서 포함되는, The compound is included as a host material of the light-emitting layer,
    유기 발광 소자.Organic light emitting device.
PCT/KR2023/014472 2022-09-23 2023-09-22 Novel compound and organic light-emitting device comprising same WO2024063592A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220121090 2022-09-23
KR10-2022-0121090 2022-09-23
KR1020230126570A KR20240041838A (en) 2022-09-23 2023-09-21 Novel compound and organic light emitting device comprising the same
KR10-2023-0126570 2023-09-21

Publications (1)

Publication Number Publication Date
WO2024063592A1 true WO2024063592A1 (en) 2024-03-28

Family

ID=90454993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014472 WO2024063592A1 (en) 2022-09-23 2023-09-22 Novel compound and organic light-emitting device comprising same

Country Status (1)

Country Link
WO (1) WO2024063592A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190012468A (en) * 2017-07-27 2019-02-11 에스에프씨 주식회사 organic light-emitting diode with high efficiency, low voltage and long lifetime
US20190152985A1 (en) * 2016-12-14 2019-05-23 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
KR20200000518A (en) * 2018-06-22 2020-01-03 삼성디스플레이 주식회사 Condensed compound and organic light emitting device comprising the same
KR20210067976A (en) * 2019-11-29 2021-06-08 주식회사 엘지화학 Organic light emitting device
CN113563204A (en) * 2021-08-30 2021-10-29 上海钥熠电子科技有限公司 Triarylamine compound and application thereof in organic electroluminescent display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190152985A1 (en) * 2016-12-14 2019-05-23 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
KR20190012468A (en) * 2017-07-27 2019-02-11 에스에프씨 주식회사 organic light-emitting diode with high efficiency, low voltage and long lifetime
KR20200000518A (en) * 2018-06-22 2020-01-03 삼성디스플레이 주식회사 Condensed compound and organic light emitting device comprising the same
KR20210067976A (en) * 2019-11-29 2021-06-08 주식회사 엘지화학 Organic light emitting device
CN113563204A (en) * 2021-08-30 2021-10-29 上海钥熠电子科技有限公司 Triarylamine compound and application thereof in organic electroluminescent display device

Similar Documents

Publication Publication Date Title
WO2016195441A1 (en) Nitrogen-containing condensed cyclic compound and organic light emitting element using same
WO2021182775A1 (en) Organic light-emitting device
WO2021096228A1 (en) Organic light emitting device
WO2022039520A1 (en) Novel compound and organic light-emitting device comprising same
WO2022031036A1 (en) Organic light emitting device
WO2021221475A1 (en) Organic light-emitting device
WO2022086168A1 (en) Organic light-emitting device
WO2021066623A1 (en) Organic light emitting device
WO2017052221A1 (en) Novel compound and organic light-emitting element comprising same
WO2022250386A1 (en) Organic light-emitting device
WO2022045743A1 (en) Novel compound and organic light-emitting device using same
WO2022039518A1 (en) Novel compound and organic light-emitting device comprising same
WO2021177632A1 (en) Novel compound and organic light-emitting device using same
WO2021210910A1 (en) Novel compound and organic light emitting device using same
WO2024063592A1 (en) Novel compound and organic light-emitting device comprising same
WO2023018267A1 (en) Novel compound, and organic light-emitting device using same
WO2023096426A1 (en) Novel compound and organic light-emitting element using same
WO2023239189A1 (en) Novel compound and organic light emitting device using same
WO2023200282A1 (en) Novel compound and organic light-emitting element using same
WO2021230690A1 (en) Novel compound and organic light-emitting element comprising same
WO2022260443A1 (en) Novel compound and organic light emitting device using same
WO2023085833A1 (en) Novel compound and organic light emitting device comprising same
WO2024085607A1 (en) Novel compound and organic light-emitting device comprising same
WO2023096465A1 (en) Novel compound and organic light emitting device comprising same
WO2023096454A1 (en) Novel compound and organic light-emitting device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868644

Country of ref document: EP

Kind code of ref document: A1