WO2024063153A1 - Fiber production method - Google Patents

Fiber production method Download PDF

Info

Publication number
WO2024063153A1
WO2024063153A1 PCT/JP2023/034377 JP2023034377W WO2024063153A1 WO 2024063153 A1 WO2024063153 A1 WO 2024063153A1 JP 2023034377 W JP2023034377 W JP 2023034377W WO 2024063153 A1 WO2024063153 A1 WO 2024063153A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
group
raw material
reactant
manufacturing
Prior art date
Application number
PCT/JP2023/034377
Other languages
French (fr)
Japanese (ja)
Inventor
千里 岡田
友浩 樽野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024063153A1 publication Critical patent/WO2024063153A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products

Definitions

  • the present invention relates to a fiber manufacturing method.
  • CCS carbon capture and storage
  • CCU carbon capture and utilization
  • Adsorbents used in adsorption methods can adsorb acidic gases, for example, by contacting with the atmosphere.
  • Patent Document 1 discloses the use of fibers as an adsorbent for carbon dioxide.
  • a method for producing a fiber comprising: A manufacturing method, wherein the ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f capable of reacting with the primary amino group in the compound group is 0.9 or less. I will provide a.
  • FIG. 1 is a diagram for explaining a manufacturing method according to an embodiment of the present invention. It is a figure for explaining the manufacturing method concerning the modification of the present invention. It is a perspective view which shows typically the guide part of the discharge part shown in FIG. 2A. It is a figure for explaining the manufacturing method concerning another modification of the present invention.
  • FIG. 3 is a diagram for explaining a method for measuring the amount of carbon dioxide adsorbed by fibers.
  • FIG. 1 is a perspective view schematically showing an example of a structure including a fiber sheet. It is a perspective view which shows typically the modification of the structure provided with the fiber sheet. 1 is a scanning electron microscope (SEM) image of the fiber of Example 1. 3 is a SEM image of the fiber of Example 2.
  • SEM scanning electron microscope
  • 3 is a SEM image of the fiber of Example 3.
  • 3 is a SEM image of the fiber of Example 4.
  • 3 is a SEM image of the fiber of Example 5.
  • 3 is a SEM image of the fiber of Example 6.
  • 7 is a SEM image of the fiber of Example 7.
  • FIG. 7 is a SEM image of the fiber of Example 8.
  • the manufacturing method includes: Step I of obtaining a reactant by at least partially reacting a group of compounds including a compound C1 having a primary amino group and a compound C2 having a functional group f capable of reacting with the primary amino group; Step II of forming the raw material containing the reactant into a fiber shape; A method for producing a fiber, comprising: The ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f capable of reacting with the primary amino group in the compound group is 0.9 or less.
  • the average fiber diameter of the fibers is 1 to 1000 nm.
  • the compound C1 contains an amine monomer.
  • the functional group f contains an epoxy group.
  • the reaction of the compound group is a curing reaction, and the reactant is in a B-stage state.
  • the raw material contains a thermoplastic resin.
  • the thermoplastic resin includes a polyvinyl alcohol resin.
  • the raw material contains water.
  • step II the raw material is discharged from a discharge portion and formed into a fiber shape.
  • the raw material discharged from the discharge portion is brought into contact with a gas flow.
  • the gas flow includes compressed air.
  • the raw material is discharged from the discharge portion while a voltage is applied to the raw material.
  • step II a fibrous molded body containing the reactant and the unreacted compound group is obtained, and the manufacturing method further includes step III of allowing the reaction between the reactant and the unreacted compound group to proceed in the molded article.
  • the fiber is used as an acidic gas adsorbent.
  • the method for producing the fiber F of the present embodiment involves at least partially reacting a compound group containing a compound C1 having a primary amino group and a compound C2 having a functional group f capable of reacting with the primary amino group.
  • the method includes a step I of obtaining the product P1, and a step II of molding the raw material M containing the reactant P1 into a fiber shape.
  • the ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f capable of reacting with the primary amino group in the compound group is 0.9 or less.
  • the compound group includes compounds C1 and C2.
  • Compound C1 includes, for example, an amine monomer.
  • the amine monomer is a monomer containing at least one primary amino group.
  • the number of primary amino groups contained in the amine monomer is preferably 2 or more, may be 3 or more, or may be 4 or more.
  • the upper limit of the number of primary amino groups is not particularly limited, and is, for example, 100, or may be 10.
  • the amine monomer may contain a secondary amino group or a tertiary amino group in addition to the primary amino group.
  • the molecular weight of the amine monomer is not particularly limited, and may be, for example, 100 or more, 200 or more, 300 or more, 500 or more, 1000 or more, or even 1500 or more.
  • the upper limit of the molecular weight of the amine monomer is not particularly limited, and may be, for example, 10,000 or 5,000.
  • the molecular weight of the amine monomer is in some cases less than 1000, preferably less than 500.
  • amine monomers include ethylamine, ethylenediamine, 1,4-butylenediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, diethylenetriamine, triethylene Tetramine, tetraethylenepentamine, iminobispropylamine, bis(hexamethylene)triamine, 1,3,6-trisaminomethylhexane, tris(2-aminoethyl)amine, N,N'-bis(3-aminopropyl) )
  • Aliphatic amines such as ethylenediamine, polymethylenediamine, trimethylhexamethylenediamine, polyetherdiamine; isophoronediamine, menthanediamine, piperazine, N-aminoethylpiperazine, 3,9-bis(3-aminopropyl)2,4, Alicyclic amines such as 8,10-tetraoxaspiro
  • compound C2 has a functional group f that can react with a primary amino group.
  • the functional group f include an epoxy group, a carboxyl group, an aldehyde group, a ketone group, and an isocyanate group. It is preferable that the functional group f contains an epoxy group.
  • Compound C2 includes, for example, an epoxy monomer. Note that the compound C2 may contain an aldehyde monomer such as glutaraldehyde.
  • the epoxy monomer contains at least one epoxy group as the functional group f.
  • the number of epoxy groups contained in the epoxy monomer is preferably 2 or more, may be 3 or more, or may be 4 or more.
  • the upper limit of the number of epoxy groups contained in the epoxy monomer is not particularly limited, and is, for example, 100 or may be 10.
  • the molecular weight of the epoxy monomer is not particularly limited, and is, for example, less than 1,000, preferably 500 or less. In some cases, the molecular weight of the epoxy monomer may be between 1000 and 50000.
  • epoxy monomer examples include n-butyl glycidyl ether, higher alcohol glycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, p-sec-butylphenyl glycidyl ether, t-butylphenyl Monofunctional epoxy compounds such as glycidyl ether; diepoxy alkanes such as 1,5-hexadiene diepoxide, 1,7-octadiene diepoxide, and 1,9-decadiene diepoxide; (poly)ethylene glycol diglycidyl ether, ( Poly)propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexaned
  • the epoxy monomer may be an aromatic epoxy resin, a non-aromatic epoxy resin, etc.
  • aromatic epoxy resins include polyphenyl-based epoxy resins, epoxy resins containing a fluorene ring, epoxy resins containing triglycidyl isocyanurate, and epoxy resins containing a heteroaromatic ring (for example, a triazine ring).
  • Polyphenyl-based epoxy resins include bisphenol A epoxy resin, brominated bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol AD epoxy resin, stilbene epoxy resin, biphenyl epoxy resin, and bisphenol A novolac epoxy resin.
  • Non-aromatic epoxy resins include aliphatic glycidyl ether type epoxy resins, aliphatic glycidyl ester type epoxy resins, alicyclic glycidyl ether type epoxy resins, alicyclic glycidyl amine type epoxy resins, and alicyclic glycidyl ester type epoxy resins. etc.
  • Epoxy monomers can be used alone or in combination of two or more.
  • the epoxy monomer preferably contains at least one selected from the group consisting of diepoxy alkanes, ether group-containing polyfunctional epoxy compounds, and amino group-containing polyfunctional epoxy compounds.
  • a diepoxy alkane or ether group-containing polyfunctional epoxy compound and an amino group-containing polyfunctional epoxy compound may be used in combination.
  • Specific examples of preferred epoxy monomers include 1,7-octadiene diepoxide (ODE), ethylene glycol diglycidyl ether (EDE), 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N , N',N'-tetraglycidyl-m-xylene diamine, and the like.
  • ODE 1,7-octadiene diepoxide
  • EEE ethylene glycol diglycidyl ether
  • 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane N,N , N',N'-tetraglycidy
  • the ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f that can react with the primary amino group in the compound group is 0.9 or less. . Specifically, the blending ratio of compounds C1 and C2 is adjusted so that the ratio X/A is 0.9 or less. In addition, when the ratio X/A is 0.9 or less, a primary amino group or a secondary amino group is present in the reactant P1 obtained by at least partially reacting the compound group.
  • the secondary amino group is a functional group suitable for appropriately adjusting the adsorption and desorption properties of acidic gas in the fiber F.
  • the above equivalent weight A can be calculated, for example, from the equivalent weight of active hydrogen contained in the primary amino group in the compound group.
  • the functional group f is an epoxy group
  • one primary amino group can react with two functional groups f using two active hydrogens contained in the primary amino group. That is, in this case, the equivalent weight A corresponds to the active hydrogen equivalent weight of the primary amino group in the compound group.
  • the functional group f is a carboxyl group, an aldehyde group, a ketone group, or an isocyanate group
  • one primary amino group can react with one functional group f.
  • the ratio X/A is preferably 0.8 or less, and may be 0.7 or less, 0.6 or less, 0.5 or less, and even 0.4 or less. As the ratio X/A becomes smaller, the density of nitrogen element in the fiber F increases, and the amount of acid gas adsorbed by the fiber F tends to improve.
  • the lower limit of the ratio X/A is not particularly limited, and may be, for example, 0.1 or 0.2.
  • step I a group of compounds including compounds C1 and C2 are at least partially reacted to obtain reactant P1.
  • the compound group is partially reacted.
  • the reaction of the compound group is a curing reaction, and that the reactant P1 is in a B-stage (semi-cured) state.
  • the reactant P1 examples include amine polymers containing structural units derived from epoxy monomers. This amine polymer can be obtained by the reaction of a group of compounds comprising amine monomers and epoxy monomers.
  • the reactant P1 may be a polymer of a monomer group comprising an amine monomer and an epoxy monomer (in particular a polymer of an amine monomer and an epoxy monomer).
  • the reaction of the compound group can be performed, for example, by applying energy to the solution S1 containing the compound group.
  • Solution S1 may contain other components such as a solvent and a reaction accelerator in addition to the compound group, or may not contain other components.
  • the solution S1 may be substantially composed only of the compound group.
  • the reaction accelerator include tertiary amines such as triethylamine and tributylamine; 2-phenol-4-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenol-4,5-dihydroxyimidazole. Examples include imidazoles.
  • These reaction accelerators can, for example, promote a reaction for synthesizing a polymer of an amine monomer and an epoxy monomer.
  • the energy added to the solution S1 is preferably thermal energy.
  • the energy added to the solution S1 may be light energy.
  • thermal energy can be added to solution S1 by heating the solution S1.
  • the heating temperature of the solution S1 is not particularly limited, and is, for example, 30°C to 100°C.
  • the heating time of the solution S1 is not particularly limited, and is, for example, 10 minutes to 2 hours.
  • the solution S1 may be heated while stirring the solution S1.
  • a reactant P1 is formed in the solution S1. That is, a solution S1 containing the reactant P1 can be obtained.
  • the solution S1 usually contains the unreacted compound group (specifically, the unreacted compounds C1 and C2) together with the reactant P1.
  • step II raw material M containing reactant P1 is prepared.
  • the raw material M can be produced, for example, by mixing a solution S1 containing the above reactant P1 and a solution S2 containing the thermoplastic resin T.
  • the raw material M produced by this method contains a thermoplastic resin T.
  • the viscosity of the raw material M can be adjusted appropriately, which tends to allow the raw material M to be easily molded into a fiber shape.
  • the raw material M containing the thermoplastic resin T tends to be easily applied to the electrospinning method described below.
  • thermoplastic resin T has solubility in water.
  • the thermoplastic resin T has solubility means that 1 g or more of the thermoplastic resin T can be dissolved in the mentioned solvent per 100 g of the mentioned solvent under the condition of 95 ° C.
  • the thermoplastic resin T may have solubility in alcohol, particularly lower alcohol.
  • thermoplastic resin T examples include polyvinyl alcohol resin, polyvinylpyrrolidone resin, polyurethane resin, (meth)acrylic resin, polyester resin, polyether resin, and the like.
  • the thermoplastic resin T can be used alone or in combination of two or more.
  • the thermoplastic resin T preferably contains at least one selected from the group consisting of polyvinyl alcohol resin, polyvinylpyrrolidone resin, and polyether resin, and particularly preferably contains polyvinyl alcohol resin.
  • polyether resins include polyethylene glycol and polyethylene oxide.
  • the weight average molecular weight of the thermoplastic resin T is not particularly limited, and is, for example, 1,000 to 1,000,000.
  • thermoplastic resin T in solution S2 is not particularly limited and is, for example, 1 wt% to 20 wt%.
  • the upper limit of the content of thermoplastic resin T may be 10 wt% or less.
  • the solution S2 contains a solvent in addition to the thermoplastic resin T, for example.
  • the solvent contained in the solution S2 include water, alcohol, and especially lower alcohol.
  • the raw material M further contains, for example, a solvent derived from the solution S2. It is preferable that the raw material M contains water as a solvent.
  • the raw material M may further contain components other than the reactant P1, the thermoplastic resin T, and the solvent.
  • Other components include, for example, unreacted compounds, the above-mentioned reaction accelerators, plasticizers, fillers, pigments, dyes, anti-aging agents, conductive materials, antistatic agents, ultraviolet absorbers, flame retardants, and antioxidants. agents, surfactants, etc.
  • the raw material M prepared by mixing the solutions S1 and S2 there is a tendency that further progress of the reaction between the reactant P1 and the unreacted compound group is suppressed.
  • plasticizer examples include low molecular weight (eg, weight average molecular weight less than 1000) polyethylene glycol. According to the plasticizer, the diffusibility of acidic gas inside the fiber F tends to improve. By improving the diffusivity of acidic gas inside fiber F, the rate of adsorption of acidic gas by fiber F and the rate of desorption of acidic gas from fiber F tend to improve.
  • the solid content concentration in the raw material M is not particularly limited, and may be, for example, 50 wt% or less, 30 wt% or less, 20 wt% or less, or even 15 wt% or less.
  • the lower the solid content concentration in the raw material M the lower the average fiber diameter of the resulting fibers F tends to be.
  • the lower limit of the solid content concentration in the raw material M is not particularly limited, and may be, for example, 3 wt% or 5 wt%.
  • the ratio (blending ratio) of the total weight D of the reactant P1 and the unreacted compound group to the weight of the solution S2 is not particularly limited, and is, for example, 1:3 to 1:20, preferably The ratio is 1:7 to 1:12.
  • the ratio of the total weight D to the total value of the total weight D of the reactant P1 and the unreacted compound group and the weight of the thermoplastic resin T (hereinafter referred to as "XA ratio") is From the viewpoint of improving adsorption of acidic gas, the content is, for example, 20 wt% or more, 30 wt% or more, 40 wt% or more, 50 wt% or more, 55 wt% or more, 60 wt% or more, 65 wt% or more, and even 70 wt% or more. Good too.
  • the upper limit of the XA rate is not particularly limited, and may be, for example, 90 wt% or 80 wt%.
  • step II for example, the raw material M is discharged from the discharge section and the raw material M is formed into a fiber shape.
  • An example of a manufacturing apparatus including a discharge section is a manufacturing apparatus 10A shown in FIG. 1, for example.
  • the manufacturing device 10A is a manufacturing device suitable for the SBS (Solution Blow Spinning) method.
  • the SBS method has excellent productivity and is suitable for the manufacturing method of this embodiment.
  • the manufacturing apparatus 10A compared to the manufacturing apparatus 10C described later, there is no need to charge the raw material M, so it is easier to adjust the above-mentioned XA rate to a high value.
  • the manufacturing apparatus 10A includes, for example, a first discharge section 1, a collection section 2, and a second discharge section 3.
  • the second discharge section 3 faces the collection section 2 while being separated from the collection section 2 via a space.
  • the first discharge section 1 is arranged such that its discharge port is located between the collection section 2 and the second discharge section 3.
  • the distance between the discharge port of the first discharge section 1 and the collection section 2 is not particularly limited, and is, for example, 10 cm to 100 cm.
  • the first discharge section 1 includes, for example, a main body section 4 and a guide section 5.
  • the main body part 4 is a member for accommodating the raw material M and for sending the raw material M to the guide part 5, and is typically a syringe main body.
  • the main body portion 4 extends, for example, orthogonally to the direction from the second discharge portion 3 toward the collection portion 2.
  • the guide portion 5 is a member for sending the raw material M from the main body portion 4 to the discharge port, and is typically a syringe needle.
  • the guide portion 5 includes, for example, a first portion 5a, a second portion 5b, and a bent portion 5c.
  • the first portion 5a extends from the main body 4 to the bent portion 5c, for example, perpendicular to the direction from the second discharge portion 3 toward the collection portion 2.
  • the first portion 5a allows the raw material M to be sent from the main body 4 to the space between the collection portion 2 and the second discharge portion 3.
  • the second portion 5b extends from the bent portion 5c to the discharge port, for example, in the direction from the second discharge portion 3 toward the collection portion 2.
  • the second portion 5b allows the raw material M to be discharged in the direction from the second discharge portion 3 toward the collection portion 2 in the space between the collection portion 2 and the second discharge portion 3.
  • the guide portion 5 may not include the second portion 5b and may be composed of only the first portion 5a.
  • the size of the guide portion 5 is not particularly limited, and is, for example, 20 to 30 gauge (G).
  • the inner diameter of the guide portion 5, particularly the second portion 5b, is, for example, 0.13 mm to 0.58 mm.
  • the second discharge part 3 is a member that discharges a gas flow to be brought into contact with the raw material M discharged from the guide part 5 of the first discharge part 1, and is, for example, a nozzle.
  • the inner diameter of the discharge port of the second discharge portion 3 is, for example, 1 to 10 mm.
  • the gas stream includes, for example, compressed air, and is typically compressed air itself.
  • the gas flow can be provided using, for example, a pressure reducing valve (not shown).
  • the collecting section 2 is a member that collects the fibrous molded body formed by the raw material M coming into contact with the gas flow.
  • a wire mesh or the like can be used as the collection section 2.
  • the collecting section 2 may be a winding roll capable of winding up the fiber shaped body.
  • the raw material M can be formed into a fiber shape, for example, by the following method.
  • the raw material M is discharged from the first discharge section 1, specifically from the guide section 5.
  • the discharge amount of the raw material M from the first discharge section 1 is not particularly limited, and is, for example, 0.1 mL/hr to 10 mL/hr.
  • a gas flow is discharged from the second discharge section 3, and the raw material M discharged from the first discharge section 1 is brought into contact with the gas flow.
  • the amount of gas flow discharged from the second discharge portion 3 is not particularly limited, and is, for example, 45 L/min to 200 L/min.
  • the wind speed of the gas flow discharged from the second discharge part 3 is not particularly limited, and is, for example, 50 m/s to 300 m/s.
  • the manufacturing apparatus 10A does not need to include a heating section that heats the raw material M and the molded body in the space described above, a light emitting element that irradiates the raw material M and the molded body with light, and the like.
  • the manufacturing apparatus used in step II is not limited to the manufacturing apparatus 10A shown in FIG. Modifications of the manufacturing apparatus used in step II will be described below with reference to FIGS. 2A to 3. Elements that are common between the manufacturing apparatus 10A and the modified manufacturing apparatuses 10B and 10C are given the same reference numerals, and their descriptions may be omitted. The descriptions regarding these manufacturing devices can be mutually applied unless technically contradictory.
  • the manufacturing apparatus 10B shown in FIG. 2A is a manufacturing apparatus suitable for the SBS method.
  • the manufacturing apparatus 10B does not include the second discharge section 3, and faces the collection section 2 in a state where the discharge section (first discharge section) 1 is spaced apart from the collection section 2.
  • the guide portion 5 of the discharge portion 1 does not have a bent portion and extends in the direction from the main body portion 4 toward the collection portion 2 .
  • FIG. 2B is a perspective view showing the vicinity of the discharge port of the guide section 5 in the manufacturing apparatus 10B.
  • the guide portion 5 has, for example, a coaxial double tube structure.
  • the guide portion 5 includes an outer tube 6 and an inner tube 7 surrounded by the outer tube 6 and extending in the same direction as the outer tube 6.
  • the inner tube 7 is connected to the main body section 4, and is configured so that the raw material M can be discharged from the inner tube 7.
  • the guide portion 5 is configured to be able to discharge a gas flow from between the outer tube 6 and the inner tube 7.
  • the raw material M can be formed into a fiber shape, for example, by the following method.
  • the raw material M is discharged from the inner tube 7 of the guide section 5, and a gas flow is discharged from between the outer tube 6 and the inner tube 7.
  • the solvent is removed from the raw material M, and a fibrous molded body is obtained.
  • This molded body is sent along with the gas flow in the advancing direction of the gas flow, and is collected by the collection section 2 .
  • the manufacturing apparatus 10C shown in FIG. 3 does not include the second discharge section 3, and the discharge section (first discharge section) 1 faces the collection section 2 while being separated from the collection section 2 through a space. are doing.
  • the discharge section 1 and the collection section 2 are lined up in the horizontal direction.
  • the discharge section 1 and the collection section 2 may be arranged in the vertical direction.
  • the discharge section 1 may be located above the collection section 2 or may be located below the collection section 2.
  • the distance between the discharge section 1 and the collection section 2 is not particularly limited, and is, for example, 5 cm to 15 cm.
  • the manufacturing apparatus 10C further includes, for example, a power source 9.
  • the power source 9 is electrically connected to each of the discharge section 1 and the collection section 2, and can apply voltage to the discharge section 1 and the collection section 2.
  • the discharge section 1 is configured such that when a voltage is applied to the discharge section 1, a voltage is also applied to the raw material M accommodated within the discharge section 1.
  • Examples of the power source 9 include an AC-DC converter, a power generator, and a battery.
  • the manufacturing apparatus 10C equipped with a power source 9 is suitable for electrospinning. However, in the manufacturing apparatus 10C, a spinning method other than the electrospinning method may be performed.
  • the raw material M can be formed into a fiber shape, for example, by the following method.
  • the raw material M is discharged from the discharge section 1 while a voltage is applied to the raw material M.
  • the voltage can be applied to the raw material M by applying a voltage to the discharge section 1 using the power source 9.
  • the magnitude of the voltage applied to the raw material M is not particularly limited, and is, for example, 5 to 20 kV.
  • a conical Taylor cone made up of the discharged material 8 is formed near the outlet of the raw material M in the discharge section 1 .
  • the composition of the discharged material 8 constituting the Taylor cone is usually the same as the composition of the raw material M. From the tip of the Taylor cone, a fibrous molded body composed of the discharged material 8 is discharged toward the space between the discharge section 1 and the collection section 2 . This molded body moves to the collecting section 2 and is collected therein.
  • the fibrous molded article contains the reactant P1, and further contains, for example, the thermoplastic resin T and an unreacted compound group.
  • the manufacturing method of the present embodiment may further include step III of proceeding the reaction between the reactant P1 and the unreacted compound group in this molded article. Through step III, fibers F can be formed from the molded body.
  • the manufacturing method of this embodiment does not include Step III, and the fibrous molded body obtained in the above Step II can be regarded as fiber F. .
  • the reaction between the reactant P1 and the unreacted compound group can be carried out, for example, by applying energy to the molded body.
  • the energy applied to the molded body include thermal energy and light energy.
  • thermal energy can be applied to the compact by heating the compact.
  • the heating temperature of the molded body is not particularly limited, and is, for example, 50°C to 150°C.
  • the heating time of the molded body is not particularly limited, and is, for example, 10 minutes to 5 hours.
  • the molded body may be heated in a reduced pressure atmosphere or a vacuum atmosphere.
  • Fiber F has the same composition and structure as the fibrous molded product obtained in Step II, for example, except that it contains reactant P2 instead of reactant P1 and unreacted compound group.
  • the fiber F produced by the manufacturing method of this embodiment contains reactant P2 (or reactant P1), and further contains, for example, thermoplastic resin T.
  • reactant P1 and the reactant P2 may be collectively referred to simply as the reactant P.
  • Reactant P has an amino group derived from compound C1.
  • Reactant P has the function of adsorbing acidic gas due to the amino group.
  • Reactant P contains, for example, at least one amino group selected from the group consisting of a primary amino group, a secondary amino group, and a tertiary amino group.
  • the reactant P preferably contains at least one selected from the group consisting of a primary amino group and a secondary amino group, and particularly preferably contains a secondary amino group.
  • the reactant P having a secondary amino group there is a tendency that the adsorbed acidic gas can be easily desorbed. That is, by using the reactant P having a secondary amino group, the fiber F can be regenerated under relatively mild conditions.
  • the reactant P may contain a tertiary amino group, but does not need to contain a tertiary amino group.
  • the content of amino groups, especially primary amino groups or secondary amino groups, in reactant P is, for example, 10 wt% or more, preferably 30 wt% or more. The higher this content is, the more acidic gas adsorption properties of fiber F tend to improve.
  • the upper limit of the content of amino groups in the reactant P is not particularly limited, and is, for example, 80 wt%.
  • the reactant P may contain a functional group other than an amino group.
  • examples of other functional groups include hydroxyl group, ether group, ester group, and amide group, with hydroxyl group being preferred.
  • Reactant P may be composed only of hydrocarbon groups, amino groups, and hydroxyl groups.
  • the reactant P includes, for example, a structural unit U1 derived from the compound C1 and a structural unit U2 derived from the compound C2.
  • the content of the structural unit U1 in the reactant P is, for example, 30 wt% or more, preferably 50 wt% or more.
  • the upper limit of the content of the structural unit U1 in the reactant P is not particularly limited, and is, for example, 80 wt%.
  • the content of the structural unit U2 in the reactant P is, for example, 20 wt% to 70 wt%.
  • the glass transition temperature Tg of the reactant P is not particularly limited, and is, for example, 40°C or lower, preferably 30°C or lower, more preferably 20°C or lower, and even more preferably 10°C or lower.
  • the lower limit of the glass transition temperature Tg of the reactant P is preferably ⁇ 100° C. from the viewpoint of ensuring sufficient adsorption of acidic gas in the fiber F.
  • the glass transition temperature Tg means the midpoint glass transition temperature (T mg ) determined in accordance with the provisions of JIS K7121:1987. Note that the reactant P usually corresponds to a thermosetting resin.
  • the weight average molecular weight of the reactant P is not particularly limited, and is, for example, 500 or more, preferably 1,000 or more, more preferably 10,000 or more, and still more preferably 100,000 or more.
  • the upper limit of the weight average molecular weight of the reactant P is, for example, 10,000,000.
  • the content of the reactant P in the fiber F is, for example, 20 wt% or more, 30 wt% or more, 40 wt% or more, 50 wt% or more, 55 wt% or more, 60 wt% or more, 65 wt% or more, and even 70 wt% or more. Good too. The higher the content of the reactant P, the more the acid gas adsorption properties of the fiber F tend to improve.
  • the upper limit of the content of reactant P is not particularly limited, and is, for example, 90 wt%, and may be 80 wt%.
  • the content of the thermoplastic resin T in the fiber F is not particularly limited, and is, for example, 80 wt% or less, 70 wt% or less, 60 wt% or less, 50 wt% or less, 45 wt% or less, 40 wt% or less, 35 wt% or less, and even It may be 30 wt% or less.
  • the lower limit of the content rate of the thermoplastic resin T is, for example, 10 wt%, and may be 20 wt%, from the viewpoint of easily producing the fiber F.
  • the fiber F may be substantially composed of only the reactant P and the thermoplastic resin T, but may also contain other components in addition to the reactant P and the thermoplastic resin T. Examples of other components include those mentioned above for the raw material M.
  • the density d of the nitrogen element in the fiber F is not particularly limited, and is, for example, 1 mmol/g or more, preferably 3 mmol/g or more, more preferably 5 mmol/g or more, and still more preferably 7 mmol/g or more. be.
  • the upper limit of the density d of the nitrogen element is not particularly limited, and may be, for example, 50 mmol/g, or 20 mmol/g. Note that when all the nitrogen elements contained in the fiber F are derived from amino groups, the density d of the nitrogen element can be regarded as the density of the amino groups in the fiber F.
  • the weight ratio w (N ratio) of the nitrogen element contained in the fiber F is not particularly limited, and is, for example, 5 wt% or more, 7 wt% or more, 9 wt% or more, 10 wt% or more, 11 wt% or more, 12 wt% or more. , 13 wt% or more, 14 wt% or more, or even 15 wt% or more.
  • the upper limit of the weight ratio w is, for example, 50 wt%, and may be 30 wt%.
  • the ratio of the amount of the nitrogen element contained in the fiber F to the amount of all the elements constituting the fiber F is not particularly limited, and is, for example, 1 mol% or more, preferably 5 mol% or more, More preferably, it is 7 mol% or more, may be 8 mol% or more, may be 9 mol% or more, and may be 10 mol% or more.
  • the upper limit of this ratio is not particularly limited, and is, for example, 30 mol%.
  • the amount of each element constituting the fiber F can be measured by CHN elemental analysis.
  • the fiber F is composed of only a main body portion containing the reactant P, for example. In other words, the fiber F does not have a coating layer covering the surface of the main body. For example, the reactant P exists uniformly in the fiber F.
  • Fiber F is not particularly limited. Fiber F may be a short fiber or a long fiber. Fiber F may or may not have a branched structure.
  • the fiber F is a nanofiber having an average fiber diameter of 1 to 1000 nm.
  • Nanofibers have a large specific surface area and tend to have high adsorption performance for acidic gases. Nanofibers also have the advantage of suppressing pressure loss in fluids that come into contact with nanofibers due to the slipflow effect. Furthermore, because the molecules constituting the nanofiber material are arranged regularly in the nanofiber, the nanofiber also tends to have high mechanical properties and heat resistance.
  • the average fiber diameter of the fiber F is preferably 900 nm or less, and may be 800 nm or less, 700 nm or less, 600 nm or less, 500 nm or less, or even 400 nm or less.
  • the average fiber diameter of fiber F can be determined by the following method. First, a plurality of fibers F are observed using a scanning electron microscope. In the obtained electron microscope image, the fiber diameters of at least 15 fibers F are calculated by image processing. The average value of the obtained calculated values can be regarded as the average fiber diameter of the fiber F.
  • Fiber F tends to have high adsorption to acidic gases such as carbon dioxide.
  • the adsorption amount A1 of carbon dioxide is 0.1 mmol/g or more.
  • the adsorption amount A1 of carbon dioxide is preferably 0.3 mmol/g or more, 0.5 mmol/g or more, 0.7 mmol/g or more, 0.8 mmol/g or more, 0.9 mmol/g or more, 1.0 mmol /g or more, 1.1 mmol/g or more, 1.2 mmol/g or more, 1.3 mmol/g or more, 1.4 mmol/g or more, 1.5 mmol/g or more, 1.6 mmol/g or more, 1.7 mmol/ g or more, 1.8 mmol/g or more, 1.9 mmol/g or more, 2.0 mmol/g or more, 2.1 mmol/g or more, 2.2 mmol/g or more, even 2.3 mmol/g or more good.
  • the upper limit of the adsorption amount A1 of carbon dioxide is not particularly limited, and is, for example, 10 mmol/g.
  • fiber F tends to have a high adsorption rate for acidic gases such as carbon dioxide.
  • the adsorption rate of the fiber F can be evaluated by the ratio R of the adsorption amount A2 (mmol/g) of carbon dioxide when the fiber F is brought into contact with the mixed gas G for 60 minutes to the above adsorption amount A1 (mmol/g).
  • the ratio R is, for example, 20% or more, and may be 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, or even 80% or more.
  • the upper limit of the ratio R is not particularly limited, and is, for example, 100%, and may be 80% depending on the case.
  • the adsorption amount A2 of carbon dioxide is, for example, 0.05 mmol/g or more, preferably 0.1 mmol/g or more, more preferably 0.2 mmol/g or more, and still more preferably 0.3 mmol/g. g or more, particularly preferably 0.4 mmol/g or more, may be 0.5 mmol/g or more, may be 0.6 mmol/g or more, and may be 0.7 mmol/g or more. Good too.
  • the upper limit of the adsorption amount A2 of carbon dioxide is not particularly limited, and is, for example, 5 mmol/g.
  • the adsorption amounts A1 and A2 can be measured using a measuring device 20 shown in FIG. 4, for example.
  • the measuring device 20 includes a first tank 30 and a second tank 31.
  • the first tank 30 stores dry nitrogen
  • the second tank 31 stores a mixed gas of dry nitrogen and dry carbon dioxide.
  • the concentration of carbon dioxide in the mixed gas in the second tank 31 is, for example, 5 vol%.
  • the measuring device 20 further includes a first container 40 containing water 70 and a first path 60 for sending nitrogen from the first tank 30 to the first container 40.
  • the first path 60 has one end connected to the gas outlet of the first tank 30 and the other end disposed in the water 70 of the first container 40 .
  • the nitrogen sent from the first tank 30 to the first container 40 is humidified by contacting the water 70.
  • a mass flow controller 35 for adjusting the flow rate of nitrogen sent from the first tank 30 to the first container 40 is arranged in the first path 60 .
  • the measuring device 20 further includes a second container 41, a second path 62, and a bypass path 61.
  • the second path 62 connects the first container 40 and the second container 41.
  • the humidified nitrogen sent to the first container 40 is sent to the second container 41 through the second path 62.
  • the bypass path 61 branches from the first path 60 at a position between the first tank 30 and the mass flow controller 35 and is connected to the second path 62 .
  • a portion of the nitrogen sent from the first tank 30 flows into the bypass path 61 and is sent to the second container 41 through the second path 62.
  • a mass flow controller 36 is arranged in the bypass path 61 to adjust the flow rate of nitrogen sent from the first tank 30 to the bypass path 61 .
  • the measuring device 20 further includes a third path 63 for sending the mixed gas from the second tank 31 to the second path 62.
  • the third path 63 has one end connected to the gas outlet of the second tank 31 and the other end connected to the second path 62.
  • a mass flow controller 37 is arranged in the third path 63 to adjust the flow rate of the mixed gas sent from the second tank 31 to the second path 62.
  • the mixed gas sent to the second path 62 is sent to the second container 41 through the second path 62.
  • the measuring device 20 further includes a third container 42 and a fourth path 64.
  • the third container 42 accommodates water 71 and the adsorption part 21 arranged in the water 71.
  • the temperature of the water 71 is maintained at 23°C.
  • the adsorption section 21 has a gas inlet 22 and a gas outlet 23.
  • the adsorption section 21 functions as a container that accommodates the fiber F therein.
  • the suction part 21 is configured so that water 71 does not seep into the interior.
  • the adsorption unit 21 is typically a tube made of a hydrophobic resin, for example, a fluororesin such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA).
  • the tube serving as the suction part 21 has an inner diameter of 4 mm and an outer diameter of 6 mm.
  • the suction section 21 is configured to be detachable from the measuring device 20.
  • the measuring device 20 can also be used as an acidic gas adsorption device equipped with the adsorption section 21.
  • the present invention provides an acid gas adsorption device 20 comprising an adsorption section 21 having a gas inlet 22 and a gas outlet 23, where the adsorption section 21 accommodates a fiber F.
  • the fourth path 64 connects the second container 41 and the third container 42. Specifically, the fourth path 64 is connected to the gas inlet 22 of the adsorption section 21 in the third container 42 .
  • a first concentration meter 50 for measuring the concentration of carbon dioxide in the gas supplied to the adsorption unit 21 is arranged in the fourth path 64 .
  • the measuring device 20 further includes a fifth path 65 that is connected to the gas outlet 23 of the adsorbing section 21 and discharging gas from the adsorbing section 21 to the outside of the measuring device 20.
  • a second concentration meter 51 for measuring the concentration of carbon dioxide in the gas discharged from the adsorption section 21 is arranged in the fifth path 65 .
  • the fifth path 65 may further include a back pressure valve that adjusts the pressure within the adsorption section 21 to a constant value.
  • Each path of the measuring device 20 is composed of, for example, metal or resin piping.
  • the fiber F is subjected to a drying process.
  • the drying treatment is performed, for example, by treating the fiber F at 60° C. for 2 hours or more in a vacuum atmosphere.
  • the fibers F after drying are filled into the adsorption section 21.
  • the weight of the fibers F filled in the adsorption section 21 is, for example, 50 mg.
  • the fourth path 64 and the fifth path 65 are connected to both ends of the adsorption section 21 , and the adsorption section 21 is immersed in the water 71 in the third container 42 .
  • the nitrogen from the first tank 30 and the mixed gas from the second tank 31 are transferred to the second container 41 through the first path 60, second path 62, bypass path 61, and third path 63 of the measuring device 20. supply to.
  • These gases are mixed in the second container 41 to obtain a mixed gas G composed of carbon dioxide, nitrogen, and water vapor.
  • the concentration of carbon dioxide in the mixed gas G is adjusted to 400 volppm.
  • the mixed gas G has a temperature of 23° C. and a humidity of 50% RH.
  • the mixed gas G is supplied to the adsorption unit 21 through the fourth path 64 at a flow rate sufficient for the weight of the fiber F, for example, at a flow rate of 300 mL/min for 50 mg of fiber F.
  • the pressure of the mixed gas G is adjusted to, for example, 107 kPa by a back pressure valve.
  • the adsorption unit 21 is taken out from the third container 42, and the adsorption unit 21 is immersed in a hot water bath (not shown) at 80° C. for 2 hours or more.
  • the adsorption unit 21 is immersed in the hot water bath until the concentration of carbon dioxide measured by the first concentration meter 50 and the concentration of carbon dioxide measured by the second concentration meter 51 become substantially the same value. .
  • the pretreatment of the fibers F in the adsorption section 21 is completed.
  • the amount M1 of carbon dioxide adsorbed by the fiber F up to 15 hours from the start and the amount M2 of carbon dioxide adsorbed by the fiber F up to 60 minutes from the start are measured.
  • the amount of carbon dioxide adsorbed by the fiber F is determined by measuring the difference over time between the concentration of carbon dioxide measured by the first concentration meter 50 and the concentration of carbon dioxide measured by the second concentration meter 51. It can be calculated from Based on the substance amount M1, the amount of carbon dioxide adsorbed by 1 g of fiber F in 15 hours is calculated, and the obtained calculated value is specified as the adsorption amount A1. Furthermore, the amount of carbon dioxide that 1 g of fiber F adsorbs in 60 minutes is calculated based on the amount of material M2, and the obtained calculated value is specified as the amount of adsorption A2.
  • the fiber F of this embodiment is suitable as an adsorbent for acidic gas.
  • the acidic gas include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxides (SOx), hydrogen cyanide, and nitrogen oxides (NOx), with carbon dioxide being preferred.
  • the use of fiber F is not limited to use as an adsorbent for acidic gas.
  • Fiber F may be used as an adsorbent for metal ions.
  • the fiber F can be used, for example, by the following method.
  • a mixed gas containing an acid gas is brought into contact with the fiber F.
  • the mixed gas contains, for example, other gases in addition to the acid gas.
  • the other gases include non-polar gases such as hydrogen and nitrogen, and inert gases such as helium, and nitrogen is preferred.
  • the mixed gas is typically air.
  • the mixed gas may be off-gas from a chemical plant or a thermal power plant.
  • the temperature of the mixed gas is, for example, room temperature (23° C.).
  • the concentration of acidic gas in the mixed gas is not particularly limited, and is, for example, 0.01 vol% (100 volppm) or more, preferably 0.04 vol% (400 volppm) or more, under standard conditions (0 ° C., 101 kPa), and 1 It may be .0vol% or more.
  • the upper limit of the concentration of carbon dioxide in the mixed gas is not particularly limited, and is, for example, 10 vol% in a standard state.
  • the pressure of the mixed gas is typically equal to the atmospheric pressure in the environment in which the fiber F is used. However, the mixed gas brought into contact with the fiber F may be pressurized.
  • the fiber F that has come into contact with the mixed gas adsorbs the acidic gas contained in the mixed gas.
  • the operation of bringing the mixed gas into contact with the fibers F is performed, for example, until the adsorption of acidic gas by the fibers F reaches equilibrium.
  • the fiber F that has adsorbed the acidic gas is subjected to a regeneration process.
  • the regeneration process can be carried out by heating the fiber F, for example.
  • the heating temperature of the fiber F is, for example, 50 to 80°C.
  • Fiber F may be heated under a reduced pressure atmosphere or under a vacuum atmosphere.
  • acidic gas is desorbed from the fiber F.
  • the acidic gas, especially carbon dioxide, released from the fiber F can be used as a raw material for chemical synthesis or as dry ice.
  • the acid gas adsorption operation by the fiber F and the regeneration process of the fiber F can be performed using the above-mentioned measuring device 20 (acid gas adsorption device).
  • the fiber sheet of this embodiment includes the fibers F described above. Specifically, the fiber sheet is an aggregate of a plurality of fibers F.
  • the fiber sheet may be substantially composed only of fibers F.
  • the fiber sheet may be a woven fabric or a nonwoven fabric.
  • the shape of the fiber sheet is not particularly limited, and examples thereof include a flat plate, a corrugated shape, and a pleated shape.
  • two or more fibers F may be welded at a portion where they intersect.
  • the strength of the fiber sheet tends to improve.
  • the fibers F do not need to be welded to each other.
  • the structure 15 of this embodiment includes the above-described fiber sheet 11 and a ventilation path 14.
  • the structure 15 is typically a honeycomb structure having a plurality of ventilation channels 14 extending in the same direction.
  • the fiber sheet 11 may be supported by a support (not shown).
  • the fiber sheet 11 and the support may be fixed by a fixing means.
  • a specific example of the fixing means is an adhesive, specifically an adhesive sheet containing an adhesive.
  • adhesive is used to include pressure-sensitive adhesives.
  • the structure 15 includes, for example, an adsorbent unit U in which a corrugated fiber sheet 11A and a flat fiber sheet 11B are laminated.
  • a plurality of peaks 12 and a plurality of troughs 13 are arranged alternately.
  • a ventilation path 14 is formed between the peaks 12 or troughs 13 of the fiber sheet 11A and the fiber sheet 11B.
  • the direction x is the direction (wave direction) in which the plurality of peaks 12 and the plurality of troughs 13 of the fiber sheet 11A are alternately arranged.
  • the direction y is the lamination direction of the fiber sheets 11A and 11B in the adsorbent unit U.
  • the direction z is a direction perpendicular to each of the directions x and y, and is the direction in which the ventilation path 14 extends.
  • the structure 15 includes, for example, a plurality of adsorbent units U.
  • the number of adsorbent units U in the structure 15 is not particularly limited, and is, for example, 2 to 100.
  • the plurality of adsorbent units U are stacked in the direction y so that the plurality of fiber sheets 11A and the plurality of fiber sheets 11B are alternately arranged.
  • the structure 15 has a block shape because the plurality of adsorbent units U are stacked.
  • the ventilation path 14 is a through hole that penetrates the structure 15 in the direction z. Ventilation path 14 is surrounded by fiber sheets 11A and 11B. In the structure 15, the acidic gas is efficiently adsorbed by the fiber sheets 11A and 11B while moving in the direction z through the ventilation path 14.
  • the structure 15 in which the ventilation path 14 has a large cross-sectional area is suitable for reducing pressure loss that occurs when it comes into contact with acidic gas. According to the structure 15 with reduced pressure loss, for example, the power of a fan used to move acid gas can be reduced. Note that when the amount of amino groups per unit volume of the fiber sheet 11 is large, acidic gas tends to be able to be sufficiently adsorbed even when the thickness of the fiber sheet 11 is small.
  • the shape of the structure 15 including the fiber sheet 11 is not limited to that shown in FIG. 5A.
  • the structure 16 shown in FIG. 5B has a shape in which one adsorbent unit U is wound around the central tube 80. Except for this, the configuration of structure 16 is the same as that of structure 15.
  • the structure 16 has a cylindrical shape.
  • the plurality of peaks 12 and the plurality of valleys 13 of the fiber sheet 11A are arranged alternately in the circumferential direction of the structure 16.
  • a ventilation path 14 formed between the peaks 12 or troughs 13 of the fiber sheet 11A and the fiber sheet 11B penetrates the structure 16 in the direction in which the central tube 80 extends.
  • the acidic gas is efficiently adsorbed by the fiber sheets 11A and 11B while moving in the direction in which the central tube 80 extends through the ventilation path 14.
  • Example 1 First, as compound C1, 0.97 g of triethylenetetramine (TETA manufactured by Sigma-Aldrich) was prepared, and as compound C2, 0.80 g of 1,7-octadiene diepoxide (ODE manufactured by Tokyo Kasei Kogyo Co., Ltd.) was prepared. , 0.20 g of 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane (TETRAD-C manufactured by Mitsubishi Gas Chemical Co., Ltd.) were prepared. These were placed in a screw tube bottle to prepare a solution S1 consisting of the above compound group. The ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f (epoxy group) capable of reacting with a primary amino group in the compound group was 0.5.
  • TETA triethylenetetramine
  • ODE 1,7-octadiene diepoxide
  • TETRAD-C 1,3-bis(N,
  • thermoplastic resin T 4 g of polyvinyl alcohol (PVA-117 manufactured by Kuraray Co., Ltd.: degree of saponification 98, degree of polymerization 1700) as thermoplastic resin T was dissolved in 96 g of pure water to obtain an aqueous solution (solution S2) with a concentration of 4 wt%. .
  • solution S2 4 g of polyvinyl alcohol (PVA-117 manufactured by Kuraray Co., Ltd.: degree of saponification 98, degree of polymerization 1700) as thermoplastic resin T was dissolved in 96 g of pure water to obtain an aqueous solution (solution S2) with a concentration of 4 wt%. .
  • the above solutions S1 and S2 were mixed to produce a raw material M.
  • the ratio (blending ratio) of the total weight D of reactant P1 and unreacted compound group to the weight of solution S2 was 1:9.
  • the raw material M was molded into a fiber shape.
  • the distance between the discharge port of the first discharge section 1 and the collection section 2 (collection distance) was 30 cm.
  • the first discharge part an all-plastic syringe (5 mL) manufactured by HANKE and a plastic needle (size: 27G) manufactured by Musashi Engineering was used.
  • the raw material M was discharged using a syringe pump at a discharge rate of 2 mL/hr.
  • a nozzle with an outlet diameter of 4 mm was used as the second discharge part 3.
  • Compressed air was discharged from the second discharge part 3 at a discharge rate of 64 L/min.
  • the compressed air was prepared using a pressure reducing valve.
  • the raw material M discharged from the first discharge section 1 came into contact with compressed air, thereby obtaining a fibrous molded body.
  • the fibrous molded body was collected by the collecting section 2.
  • a wire mesh was used as the collection section 2.
  • the fibrous molded body was heated at 80° C. for 2 hours in a vacuum atmosphere. As a result, the reaction between the reactant P1 and the unreacted compound group progressed in the molded body, and the fiber of Example 1 was obtained.
  • Example 2 Fibers of Examples 2 to 6 were obtained in the same manner as in Example 1, except that the materials and manufacturing conditions used were changed as shown in Table 1.
  • Example 7 First, 1.59 g of polyethyleneimine (Epomin SP-006 manufactured by Nippon Shokubai Co., Ltd.) was prepared as compound C1, and 0.80 g of ethylene glycol diglycidyl ether (Denacol EX-810 manufactured by Nagase ChemteX Co., Ltd.) was prepared as compound C2. and 0.20 g of 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane (TETRAD-C manufactured by Mitsubishi Gas Chemical Co., Ltd.) were prepared. These were placed in a screw tube bottle to prepare a solution S1 consisting of the above compound group. The ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f (epoxy group) capable of reacting with a primary amino group in the compound group was 0.5.
  • thermoplastic resin T 6 g of polyvinyl alcohol (PVA-117 manufactured by Kuraray Co., Ltd.: degree of saponification 98, degree of polymerization 1700) as thermoplastic resin T was dissolved in 94 g of pure water to obtain an aqueous solution (solution S2) with a concentration of 6 wt%. .
  • solution S2 6 g of polyvinyl alcohol (PVA-117 manufactured by Kuraray Co., Ltd.: degree of saponification 98, degree of polymerization 1700) as thermoplastic resin T was dissolved in 94 g of pure water to obtain an aqueous solution (solution S2) with a concentration of 6 wt%. .
  • the above solutions S1 and S2 were mixed to produce a raw material M.
  • the ratio (blending ratio) of the total weight D of the reactant P1 and the unreacted compound group to the weight of the solution S2 was 1:10.
  • the raw material M was molded into a fiber shape.
  • a voltage of 10 kV was applied to the raw material M.
  • the distance between the discharge section 1 and the collection section 2 was 8 cm.
  • an all-plastic syringe (5 mL) manufactured by HANKE, in which a non-bevel needle (size: 22G) manufactured by Terumo Corporation was set, was used.
  • the raw material M was discharged by pushing a plunger included in a syringe at a speed of 0.008 cm/min.
  • the raw material M was discharged from the discharge section 1 and formed into a fiber shape.
  • the fibrous molded body was collected by the collecting section 2.
  • the fibrous molded body was heated at 80° C. for 2 hours in a vacuum atmosphere. As a result, the reaction between the reactant P1 and the unreacted compound group progressed in the molded body, and the fiber of Example 7 was obtained.
  • Example 8 A fiber of Example 8 was obtained by the same method as Example 7, except that the amounts of compound C1 and thermoplastic resin T used were changed as shown in Table 1.
  • Table 1 The abbreviations in Table 1 are as follows.
  • ODE 1,7-octadiene diepoxide (manufactured by Tokyo Kasei Kogyo Co., Ltd., ODE)
  • EDE Ethylene glycol diglycidyl ether (manufactured by Nagase ChemteX, Denacol EX-810)
  • TC 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane (manufactured by Mitsubishi Gas Chemical Co., Ltd., TETRAD-C)
  • TX N,N,N',N'-tetraglycidyl-m-xylene diamine (manufactured by Mitsubishi Gas Chemical Co., Ltd., TETRAD-X)
  • TETA triethylenetetramine (manufactured by Sigma-Aldrich, TETA)
  • SP006 Polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., Epo
  • the compounds C1 and C2 are blended so that the ratio X/A is 0.9 or less, so that secondary amino groups are present in the reactants contained in the fiber.
  • the secondary amino group is a functional group suitable for appropriately adjusting the adsorption and desorption properties of acidic gases in fibers, so these fibers are suitable as adsorbents for acidic gases. It is estimated to be.
  • the fiber manufactured by the manufacturing method of this embodiment is suitable as an adsorbent for acidic gases, for example, carbon dioxide in the atmosphere.

Abstract

The present invention provides a novel method for producing fibers that are suitable for an acidic gas adsorbent. This fiber production method includes a step I for obtaining a reactant P1 by at least partially reacting a compound group including a compound C1 having a primary amino group and a compound C2 having a functional group f that can react with the primary amino group, and a step II for forming a raw material M containing the reactant P1 into a fibrous shape. The ratio X/A of the equivalent X of the functional group f in the compound group to the equivalent A of the functional group f that can react with the primary amino group in the compound group is 0.9 or less.

Description

ファイバーの製造方法Fiber manufacturing method
 本発明は、ファイバーの製造方法に関する。 The present invention relates to a fiber manufacturing method.
 近年、大気中における二酸化炭素の量を低減するために、二酸化炭素回収・貯留(CCS:Carbon capture and storage)や二酸化炭素回収・利用(CCU:Carbon capture and utilization)が検討されている。CCSやCCUでは、大気から二酸化炭素を分離することによって、二酸化炭素の回収が行われることがある。 In recent years, carbon capture and storage (CCS) and carbon capture and utilization (CCU) have been considered in order to reduce the amount of carbon dioxide in the atmosphere. In CCS and CCU, carbon dioxide capture may be performed by separating carbon dioxide from the atmosphere.
 二酸化炭素などの酸性ガスを大気から分離する方法として、酸性ガスを吸着材に吸着させて分離する吸着法が開発されている。吸着法で利用される吸着材は、例えば、大気と接触することによって、酸性ガスを吸着できる。 As a method for separating acidic gases such as carbon dioxide from the atmosphere, an adsorption method has been developed in which acidic gases are adsorbed onto an adsorbent and separated. Adsorbents used in adsorption methods can adsorb acidic gases, for example, by contacting with the atmosphere.
 吸着材としては、比表面積が大きく、高い吸着性能を有する観点から、ファイバーであることが好ましい。例えば、特許文献1には、ファイバーを二酸化炭素の吸着材として利用することが開示されている。 As an adsorbent, it is preferable to use fibers, which have a large specific surface area and high adsorption performance. For example, Patent Document 1 discloses the use of fibers as an adsorbent for carbon dioxide.
特開2016-17236号公報JP2016-17236A
 酸性ガスの吸着材に適したファイバーの新たな製造方法が求められている。 There is a need for a new method for producing fibers suitable for adsorbing acid gases.
 本発明は、
 1級アミノ基を有する化合物C1と、前記1級アミノ基と反応可能な官能基fを有する化合物C2とを含む化合物群を少なくとも部分的に反応させて反応物を得る工程Iと、
 前記反応物を含む原料をファイバー状に成形する工程IIと、
を含む、ファイバーの製造方法であって、
 前記化合物群中の前記1級アミノ基によって反応可能な前記官能基fの当量Aに対する、前記化合物群中の前記官能基fの当量Xの比X/Aが0.9以下である、製造方法を提供する。
The present invention
Step I of obtaining a reactant by at least partially reacting a group of compounds including a compound C1 having a primary amino group and a compound C2 having a functional group f capable of reacting with the primary amino group;
Step II of forming the raw material containing the reactant into a fiber shape;
A method for producing a fiber, comprising:
A manufacturing method, wherein the ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f capable of reacting with the primary amino group in the compound group is 0.9 or less. I will provide a.
 本発明によれば、酸性ガスの吸着材に適したファイバーの新たな製造方法を提供できる。 According to the present invention, it is possible to provide a new method for producing fibers suitable as adsorbents for acidic gases.
本発明の一実施形態にかかる製造方法を説明するための図である。FIG. 1 is a diagram for explaining a manufacturing method according to an embodiment of the present invention. 本発明の変形例にかかる製造方法を説明するための図である。It is a figure for explaining the manufacturing method concerning the modification of the present invention. 図2Aに示した吐出部のガイド部を模式的に示す斜視図である。It is a perspective view which shows typically the guide part of the discharge part shown in FIG. 2A. 本発明の別の変形例にかかる製造方法を説明するための図である。It is a figure for explaining the manufacturing method concerning another modification of the present invention. ファイバーによる二酸化炭素の吸着量の測定方法を説明するための図である。FIG. 3 is a diagram for explaining a method for measuring the amount of carbon dioxide adsorbed by fibers. 繊維シートを備えた構造体の一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of a structure including a fiber sheet. 繊維シートを備えた構造体の変形例を模式的に示す斜視図である。It is a perspective view which shows typically the modification of the structure provided with the fiber sheet. 実施例1のファイバーの走査型電子顕微鏡(SEM)画像である。1 is a scanning electron microscope (SEM) image of the fiber of Example 1. 実施例2のファイバーのSEM画像である。3 is a SEM image of the fiber of Example 2. 実施例3のファイバーのSEM画像である。3 is a SEM image of the fiber of Example 3. 実施例4のファイバーのSEM画像である。3 is a SEM image of the fiber of Example 4. 実施例5のファイバーのSEM画像である。3 is a SEM image of the fiber of Example 5. 実施例6のファイバーのSEM画像である。3 is a SEM image of the fiber of Example 6. 実施例7のファイバーのSEM画像である。7 is a SEM image of the fiber of Example 7. 実施例8のファイバーのSEM画像である。FIG. 7 is a SEM image of the fiber of Example 8.
 本発明の第1態様にかかる製造方法は、
 1級アミノ基を有する化合物C1と、前記1級アミノ基と反応可能な官能基fを有する化合物C2とを含む化合物群を少なくとも部分的に反応させて反応物を得る工程Iと、
 前記反応物を含む原料をファイバー状に成形する工程IIと、
を含む、ファイバーの製造方法であって、
 前記化合物群中の前記1級アミノ基によって反応可能な前記官能基fの当量Aに対する、前記化合物群中の前記官能基fの当量Xの比X/Aが0.9以下である。
The manufacturing method according to the first aspect of the present invention includes:
Step I of obtaining a reactant by at least partially reacting a group of compounds including a compound C1 having a primary amino group and a compound C2 having a functional group f capable of reacting with the primary amino group;
Step II of forming the raw material containing the reactant into a fiber shape;
A method for producing a fiber, comprising:
The ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f capable of reacting with the primary amino group in the compound group is 0.9 or less.
 本発明の第2態様において、例えば、第1態様にかかる製造方法では、前記ファイバーの平均繊維径が1~1000nmである。 In the second aspect of the present invention, for example, in the manufacturing method according to the first aspect, the average fiber diameter of the fibers is 1 to 1000 nm.
 本発明の第3態様において、例えば、第1又は第2態様にかかる製造方法では、前記化合物C1は、アミンモノマーを含む。 In the third aspect of the present invention, for example, in the production method according to the first or second aspect, the compound C1 contains an amine monomer.
 本発明の第4態様において、例えば、第1~第3態様のいずれか1つにかかる製造方法では、前記官能基fがエポキシ基を含む。 In the fourth aspect of the present invention, for example, in the production method according to any one of the first to third aspects, the functional group f contains an epoxy group.
 本発明の第5態様において、例えば、第1~第4態様のいずれか1つにかかる製造方法では、前記化合物群の反応が硬化反応であり、前記反応物がBステージの状態である。 In the fifth aspect of the present invention, for example, in the production method according to any one of the first to fourth aspects, the reaction of the compound group is a curing reaction, and the reactant is in a B-stage state.
 本発明の第6態様において、例えば、第1~第5態様のいずれか1つにかかる製造方法では、前記原料が熱可塑性樹脂を含む。 In a sixth aspect of the present invention, for example, in the manufacturing method according to any one of the first to fifth aspects, the raw material contains a thermoplastic resin.
 本発明の第7態様において、例えば、第6態様にかかる製造方法では、前記熱可塑性樹脂がポリビニルアルコール樹脂を含む。 In the seventh aspect of the present invention, for example, in the manufacturing method according to the sixth aspect, the thermoplastic resin includes a polyvinyl alcohol resin.
 本発明の第8態様において、例えば、第1~第7態様のいずれか1つにかかる製造方法では、前記原料が水を含む。 In the eighth aspect of the present invention, for example, in the production method according to any one of the first to seventh aspects, the raw material contains water.
 本発明の第9態様において、例えば、第1~第8態様のいずれか1つにかかる製造方法では、前記工程IIにおいて、前記原料を吐出部から吐出して、前記原料をファイバー状に成形する。 In the ninth aspect of the present invention, for example, in the manufacturing method according to any one of the first to eighth aspects, in step II, the raw material is discharged from a discharge portion and formed into a fiber shape.
 本発明の第10態様において、例えば、第9態様にかかる製造方法では、前記吐出部から吐出された前記原料をガス流と接触させる。 In the tenth aspect of the present invention, for example, in the manufacturing method according to the ninth aspect, the raw material discharged from the discharge portion is brought into contact with a gas flow.
 本発明の第11態様において、例えば、第10態様にかかる製造方法では、前記ガス流が圧縮空気を含む。 In the eleventh aspect of the present invention, for example, in the manufacturing method according to the tenth aspect, the gas flow includes compressed air.
 本発明の第12態様において、例えば、第9態様にかかる製造方法では、前記原料に電圧を印加した状態で、前記原料を前記吐出部から吐出する。 In the twelfth aspect of the present invention, for example, in the manufacturing method according to the ninth aspect, the raw material is discharged from the discharge portion while a voltage is applied to the raw material.
 本発明の第13態様において、例えば、第1~第12態様のいずれか1つにかかる製造方法では、前記工程IIにおいて、前記反応物及び未反応の前記化合物群を含むファイバー状の成形体が得られ、前記製造方法は、前記成形体において、前記反応物と未反応の前記化合物群との反応を進行させる工程IIIをさらに含む。 In the thirteenth aspect of the present invention, for example, in the manufacturing method according to any one of the first to twelfth aspects, in the step II, a fibrous molded body containing the reactant and the unreacted compound group is obtained, and the manufacturing method further includes step III of allowing the reaction between the reactant and the unreacted compound group to proceed in the molded article.
 本発明の第14態様において、例えば、第1~第13態様のいずれか1つにかかる製造方法では、前記ファイバーは、酸性ガス吸着材として用いられる。 In the fourteenth aspect of the present invention, for example, in the manufacturing method according to any one of the first to thirteenth aspects, the fiber is used as an acidic gas adsorbent.
 以下、本発明の詳細を説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。 The details of the present invention will be described below, but the following description is not intended to limit the present invention to specific embodiments.
<ファイバーの製造方法>
 本実施形態のファイバーFの製造方法は、1級アミノ基を有する化合物C1と、1級アミノ基と反応可能な官能基fを有する化合物C2とを含む化合物群を少なくとも部分的に反応させて反応物P1を得る工程Iと、当該反応物P1を含む原料Mをファイバー状に成形する工程IIと、を含む。上記の化合物群中の1級アミノ基によって反応可能な官能基fの当量Aに対する、化合物群中の官能基fの当量Xの比X/Aが0.9以下である。
<Fiber manufacturing method>
The method for producing the fiber F of the present embodiment involves at least partially reacting a compound group containing a compound C1 having a primary amino group and a compound C2 having a functional group f capable of reacting with the primary amino group. The method includes a step I of obtaining the product P1, and a step II of molding the raw material M containing the reactant P1 into a fiber shape. The ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f capable of reacting with the primary amino group in the compound group is 0.9 or less.
(工程I)
 まず、工程Iについて詳細に説明する。上述のとおり、化合物群は、化合物C1及びC2を含む。化合物C1は、例えば、アミンモノマーを含む。
(Process I)
First, Step I will be explained in detail. As mentioned above, the compound group includes compounds C1 and C2. Compound C1 includes, for example, an amine monomer.
 アミンモノマーは、1級アミノ基を少なくとも1つ含むモノマーである。アミンモノマーに含まれる1級アミノ基の数は、好ましくは2以上であり、3以上であってもよく、4以上であってもよい。1級アミノ基の数の上限値は、特に限定されず、例えば100であり、10であってもよい。アミンモノマーは、1級アミノ基の他に、2級アミノ基や3級アミノ基を含んでいてもよい。アミンモノマーの分子量は、特に限定されず、例えば100以上であり、200以上、300以上、500以上、1000以上、さらには1500以上であってもよい。アミンモノマーの分子量の上限値は、特に限定されず、例えば10000であり、5000であってもよい。アミンモノマーの分子量は、場合によっては、1000未満であり、好ましくは500以下である。 The amine monomer is a monomer containing at least one primary amino group. The number of primary amino groups contained in the amine monomer is preferably 2 or more, may be 3 or more, or may be 4 or more. The upper limit of the number of primary amino groups is not particularly limited, and is, for example, 100, or may be 10. The amine monomer may contain a secondary amino group or a tertiary amino group in addition to the primary amino group. The molecular weight of the amine monomer is not particularly limited, and may be, for example, 100 or more, 200 or more, 300 or more, 500 or more, 1000 or more, or even 1500 or more. The upper limit of the molecular weight of the amine monomer is not particularly limited, and may be, for example, 10,000 or 5,000. The molecular weight of the amine monomer is in some cases less than 1000, preferably less than 500.
 アミンモノマーとしては、例えば、エチルアミン、エチレンジアミン、1,4-ブチレンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、1,3,6-トリスアミノメチルヘキサン、トリス(2-アミノエチル)アミン、N,N’-ビス(3-アミノプロピル)エチレンジアミン、ポリメチレンジアミン、トリメチルヘキサメチレンジアミン、ポリエーテルジアミンなどの脂肪族アミン;イソホロンジアミン、メンタンジアミン、ピペラジン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ(5,5)ウンデカンアダクト、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、これらの変性品などの脂環族アミン;ポリエチレンイミン、ポリアルキレンポリアミンなどの脂肪族ポリアミン;アミノエチル化アクリルポリマーなどのアミノ基を有する(メタ)アクリル系ポリマー;ポリアミン類とダイマー酸との反応によって形成される脂肪族ポリアミドアミンなどが挙げられる。アミンモノマーは、脂肪族アミン、特にトリエチレンテトラミン(TETA)や、脂肪族ポリアミン、特にポリエチレンイミン(PEI)を含むことが好ましい。アミンモノマーは、単独で又は2種以上を組み合わせて使用できる。 Examples of amine monomers include ethylamine, ethylenediamine, 1,4-butylenediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, diethylenetriamine, triethylene Tetramine, tetraethylenepentamine, iminobispropylamine, bis(hexamethylene)triamine, 1,3,6-trisaminomethylhexane, tris(2-aminoethyl)amine, N,N'-bis(3-aminopropyl) ) Aliphatic amines such as ethylenediamine, polymethylenediamine, trimethylhexamethylenediamine, polyetherdiamine; isophoronediamine, menthanediamine, piperazine, N-aminoethylpiperazine, 3,9-bis(3-aminopropyl)2,4, Alicyclic amines such as 8,10-tetraoxaspiro(5,5)undecane adduct, bis(4-amino-3-methylcyclohexyl)methane, bis(4-aminocyclohexyl)methane, and modified products thereof; polyethyleneimine , aliphatic polyamines such as polyalkylene polyamines; (meth)acrylic polymers having amino groups such as aminoethylated acrylic polymers; and aliphatic polyamide amines formed by reaction of polyamines and dimer acids. Preferably, the amine monomers include aliphatic amines, especially triethylenetetramine (TETA), and aliphatic polyamines, especially polyethyleneimine (PEI). Amine monomers can be used alone or in combination of two or more.
 上述のとおり、化合物C2は、1級アミノ基と反応可能な官能基fを有する。官能基fとしては、エポキシ基、カルボキシル基、アルデヒド基、ケトン基、イソシアネート基などが挙げられる。官能基fは、エポキシ基を含むことが好ましい。化合物C2は、例えば、エポキシモノマーを含む。なお、化合物C2は、グルタルアルデヒドなどのアルデヒドモノマーを含んでいてもよい。 As described above, compound C2 has a functional group f that can react with a primary amino group. Examples of the functional group f include an epoxy group, a carboxyl group, an aldehyde group, a ketone group, and an isocyanate group. It is preferable that the functional group f contains an epoxy group. Compound C2 includes, for example, an epoxy monomer. Note that the compound C2 may contain an aldehyde monomer such as glutaraldehyde.
 エポキシモノマーは、官能基fとして、エポキシ基を少なくとも1つ含む。エポキシモノマーに含まれるエポキシ基の数は、好ましくは2以上であり、3以上であってもよく、4以上であってもよい。エポキシモノマーに含まれるエポキシ基の数の上限値は、特に限定されず、例えば100であり、10であってもよい。エポキシモノマーの分子量は、特に限定されず、例えば1000未満であり、好ましくは500以下である。場合によっては、エポキシモノマーの分子量は、1000~50000であってもよい。 The epoxy monomer contains at least one epoxy group as the functional group f. The number of epoxy groups contained in the epoxy monomer is preferably 2 or more, may be 3 or more, or may be 4 or more. The upper limit of the number of epoxy groups contained in the epoxy monomer is not particularly limited, and is, for example, 100 or may be 10. The molecular weight of the epoxy monomer is not particularly limited, and is, for example, less than 1,000, preferably 500 or less. In some cases, the molecular weight of the epoxy monomer may be between 1000 and 50000.
 エポキシモノマーとしては、例えば、n-ブチルグリシジルエーテル、高級アルコールグリシジルエーテル、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、クレジルグリシジルエーテル、p-sec-ブチルフェニルグリシジルエーテル、t-ブチルフェニルグリシジルエーテルなどの単官能エポキシ化合物;1,5-ヘキサジエンジエポキシド、1,7-オクタジエンジエポキシド、1,9-デカジエンジエポキシドなどのジエポキシアルカン;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテルなどのエーテル基含有多官能エポキシ化合物;N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンなどのアミノ基含有多官能エポキシ化合物が挙げられる。 Examples of the epoxy monomer include n-butyl glycidyl ether, higher alcohol glycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, p-sec-butylphenyl glycidyl ether, t-butylphenyl Monofunctional epoxy compounds such as glycidyl ether; diepoxy alkanes such as 1,5-hexadiene diepoxide, 1,7-octadiene diepoxide, and 1,9-decadiene diepoxide; (poly)ethylene glycol diglycidyl ether, ( Poly)propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane polyglycidyl ether, pentaerythritol tetraglycidyl ether, glycerol poly Polyfunctional epoxy compounds containing ether groups such as glycidyl ether and sorbitol polyglycidyl ether; N,N,N',N'-tetraglycidyl-m-xylene diamine, 1,3-bis(N,N-diglycidylaminomethyl) Examples include amino group-containing polyfunctional epoxy compounds such as cyclohexane.
 エポキシモノマーは、芳香族エポキシ樹脂、非芳香族エポキシ樹脂などであってもよい。芳香族エポキシ樹脂としては、ポリフェニルベースエポキシ樹脂、フルオレン環を含むエポキシ樹脂、トリグリシジルイソシアヌレートを含むエポキシ樹脂、複素芳香環(例えば、トリアジン環)を含むエポキシ樹脂等が挙げられる。ポリフェニルベースエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、スチルベン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、テトラキス(ヒドロキシフェニル)エタンベースエポキシ樹脂等が挙げられる。非芳香族エポキシ樹脂としては、脂肪族グリシジルエーテル型エポキシ樹脂、脂肪族グリシジルエステル型エポキシ樹脂、脂環族グリシジルエーテル型エポキシ樹脂、脂環族グリシジルアミン型エポキシ樹脂、脂環族グリシジルエステル型エポキシ樹脂等が挙げられる。エポキシモノマーは、単独で又は2種以上を組み合わせて使用できる。 The epoxy monomer may be an aromatic epoxy resin, a non-aromatic epoxy resin, etc. Examples of aromatic epoxy resins include polyphenyl-based epoxy resins, epoxy resins containing a fluorene ring, epoxy resins containing triglycidyl isocyanurate, and epoxy resins containing a heteroaromatic ring (for example, a triazine ring). Polyphenyl-based epoxy resins include bisphenol A epoxy resin, brominated bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol AD epoxy resin, stilbene epoxy resin, biphenyl epoxy resin, and bisphenol A novolac epoxy resin. , cresol novolac type epoxy resin, diaminodiphenylmethane type epoxy resin, tetrakis(hydroxyphenyl)ethane-based epoxy resin, and the like. Non-aromatic epoxy resins include aliphatic glycidyl ether type epoxy resins, aliphatic glycidyl ester type epoxy resins, alicyclic glycidyl ether type epoxy resins, alicyclic glycidyl amine type epoxy resins, and alicyclic glycidyl ester type epoxy resins. etc. Epoxy monomers can be used alone or in combination of two or more.
 エポキシモノマーは、ジエポキシアルカン、エーテル基含有多官能エポキシ化合物及びアミノ基含有多官能エポキシ化合物からなる群より選ばれる少なくとも1つを含むことが好ましい。エポキシモノマーとして、ジエポキシアルカン又はエーテル基含有多官能エポキシ化合物と、アミノ基含有多官能エポキシ化合物とを組み合わせて使用してもよい。好ましいエポキシモノマーの具体例としては、1,7-オクタジエンジエポキシド(ODE)、エチレングリコールジグリシジルエーテル(EDE)、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミンなどが挙げられる。なお、単官能エポキシ化合物を用いる場合は、2つ以上のエポキシ基を含む他のエポキシモノマーと組み合わせて用いることが好ましい。単官能エポキシ化合物は、化合物群の粘度を調節するための反応性希釈剤として利用することもできる。 The epoxy monomer preferably contains at least one selected from the group consisting of diepoxy alkanes, ether group-containing polyfunctional epoxy compounds, and amino group-containing polyfunctional epoxy compounds. As the epoxy monomer, a diepoxy alkane or ether group-containing polyfunctional epoxy compound and an amino group-containing polyfunctional epoxy compound may be used in combination. Specific examples of preferred epoxy monomers include 1,7-octadiene diepoxide (ODE), ethylene glycol diglycidyl ether (EDE), 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N , N',N'-tetraglycidyl-m-xylene diamine, and the like. In addition, when using a monofunctional epoxy compound, it is preferable to use it in combination with another epoxy monomer containing two or more epoxy groups. Monofunctional epoxy compounds can also be utilized as reactive diluents to adjust the viscosity of the compounds.
 上述のとおり、工程Iでは、化合物群中の1級アミノ基によって反応可能な官能基fの当量Aに対する、化合物群中の官能基fの当量Xの比X/Aが0.9以下である。詳細には、比X/Aが0.9以下となるように、化合物C1及びC2の配合比率が調整されている。なお、比X/Aが0.9以下であることによって、化合物群を少なくとも部分的に反応させて得られる反応物P1には、1級アミノ基や2級アミノ基が存在する。特に、2級アミノ基は、ファイバーFにおける酸性ガスの吸着性及び脱離性を適切に調整することに適した官能基である。 As mentioned above, in step I, the ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f that can react with the primary amino group in the compound group is 0.9 or less. . Specifically, the blending ratio of compounds C1 and C2 is adjusted so that the ratio X/A is 0.9 or less. In addition, when the ratio X/A is 0.9 or less, a primary amino group or a secondary amino group is present in the reactant P1 obtained by at least partially reacting the compound group. In particular, the secondary amino group is a functional group suitable for appropriately adjusting the adsorption and desorption properties of acidic gas in the fiber F.
 上記の当量Aは、例えば、化合物群中の1級アミノ基に含まれる活性水素の当量から算出することができる。一例として、官能基fがエポキシ基である場合、1つの1級アミノ基は、1級アミノ基に含まれる2つの活性水素によって、2つの官能基fと反応可能である。すなわち、この場合、当量Aは、化合物群中の1級アミノ基の活性水素の当量と一致する。なお、官能基fがカルボキシル基、アルデヒド基、ケトン基、又はイソシアネート基である場合、1つの1級アミノ基は、1つの官能基fと反応可能である。 The above equivalent weight A can be calculated, for example, from the equivalent weight of active hydrogen contained in the primary amino group in the compound group. As an example, when the functional group f is an epoxy group, one primary amino group can react with two functional groups f using two active hydrogens contained in the primary amino group. That is, in this case, the equivalent weight A corresponds to the active hydrogen equivalent weight of the primary amino group in the compound group. In addition, when the functional group f is a carboxyl group, an aldehyde group, a ketone group, or an isocyanate group, one primary amino group can react with one functional group f.
 化合物群において、比X/Aは、好ましくは0.8以下であり、0.7以下、0.6以下、0.5以下、さらには0.4以下であってもよい。比X/Aが小さければ小さいほど、ファイバーFにおける窒素元素の密度が増加し、ファイバーFによる酸性ガスの吸着量が向上する傾向がある。比X/Aの下限値は、特に限定されず、例えば0.1であり、0.2であってもよい。 In the compound group, the ratio X/A is preferably 0.8 or less, and may be 0.7 or less, 0.6 or less, 0.5 or less, and even 0.4 or less. As the ratio X/A becomes smaller, the density of nitrogen element in the fiber F increases, and the amount of acid gas adsorbed by the fiber F tends to improve. The lower limit of the ratio X/A is not particularly limited, and may be, for example, 0.1 or 0.2.
 工程Iでは、化合物C1及びC2を含む化合物群を少なくとも部分的に反応させて反応物P1を得る。工程Iでは、化合物群を部分的に反応させることが好ましい。詳細には、化合物群の反応が硬化反応であり、反応物P1がBステージ(半硬化)の状態であることが好ましい。 In step I, a group of compounds including compounds C1 and C2 are at least partially reacted to obtain reactant P1. In step I, it is preferred that the compound group is partially reacted. Specifically, it is preferable that the reaction of the compound group is a curing reaction, and that the reactant P1 is in a B-stage (semi-cured) state.
 反応物P1としては、例えば、エポキシモノマーに由来する構成単位を含むアミンポリマーが挙げられる。このアミンポリマーは、アミンモノマー及びエポキシモノマーを含む化合物群の反応によって得ることができる。詳細には、反応物P1は、アミンモノマー及びエポキシモノマーを含むモノマー群の重合体(特にアミンモノマーとエポキシモノマーとの重合体)であってもよい。 Examples of the reactant P1 include amine polymers containing structural units derived from epoxy monomers. This amine polymer can be obtained by the reaction of a group of compounds comprising amine monomers and epoxy monomers. In particular, the reactant P1 may be a polymer of a monomer group comprising an amine monomer and an epoxy monomer (in particular a polymer of an amine monomer and an epoxy monomer).
 化合物群の反応は、例えば、化合物群を含む溶液S1にエネルギーを加えることによって行うことができる。溶液S1は、化合物群以外に、溶媒、反応促進剤などの他の成分を含んでいてもよく、他の成分を含んでいなくてもよい。溶液S1は、実質的に化合物群のみから構成されていてもよい。なお、反応促進剤としては、例えば、トリエチルアミン、トリブチルアミンなどの3級アミン;2-フェノール-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェノール-4,5-ジヒドロキシイミダゾールなどのイミダゾール類が挙げられる。これらの反応促進剤は、例えば、アミンモノマーとエポキシモノマーとの重合体を合成するための反応を促進することができる。 The reaction of the compound group can be performed, for example, by applying energy to the solution S1 containing the compound group. Solution S1 may contain other components such as a solvent and a reaction accelerator in addition to the compound group, or may not contain other components. The solution S1 may be substantially composed only of the compound group. Examples of the reaction accelerator include tertiary amines such as triethylamine and tributylamine; 2-phenol-4-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenol-4,5-dihydroxyimidazole. Examples include imidazoles. These reaction accelerators can, for example, promote a reaction for synthesizing a polymer of an amine monomer and an epoxy monomer.
 溶液S1に加えるエネルギーは、熱エネルギーであることが好ましい。ただし、溶液S1に加えるエネルギーは、光エネルギーであってもよい。一例として、溶液S1を加熱することによって、溶液S1に熱エネルギーを加えることができる。溶液S1の加熱温度は、特に限定されず、例えば30℃~100℃である。溶液S1の加熱時間は、特に限定されず、例えば10分~2時間である。溶液S1を撹拌しながら、溶液S1の加熱を行ってもよい。 The energy added to the solution S1 is preferably thermal energy. However, the energy added to the solution S1 may be light energy. As an example, thermal energy can be added to solution S1 by heating the solution S1. The heating temperature of the solution S1 is not particularly limited, and is, for example, 30°C to 100°C. The heating time of the solution S1 is not particularly limited, and is, for example, 10 minutes to 2 hours. The solution S1 may be heated while stirring the solution S1.
 化合物群の反応が進行することによって、溶液S1中では、反応物P1が形成される。すなわち、反応物P1を含む溶液S1を得ることができる。化合物群が部分的に反応した場合、溶液S1は、通常、反応物P1とともに、未反応の化合物群(詳細には、未反応の化合物C1及びC2)を含む。 As the reaction of the compound group progresses, a reactant P1 is formed in the solution S1. That is, a solution S1 containing the reactant P1 can be obtained. When the compound group has partially reacted, the solution S1 usually contains the unreacted compound group (specifically, the unreacted compounds C1 and C2) together with the reactant P1.
(工程II)
 次に、工程IIについて、詳細に説明する。工程IIでは、まず、反応物P1を含む原料Mを準備する。原料Mは、例えば、上記の反応物P1を含む溶液S1と、熱可塑性樹脂Tを含む溶液S2とを混合することによって作製できる。この方法によって作製された原料Mは、熱可塑性樹脂Tを含んでいる。熱可塑性樹脂Tによれば、原料Mの粘度を適切に調整でき、これにより、原料Mをファイバー状に容易に成形できる傾向がある。さらに、熱可塑性樹脂Tが帯電しやすいため、熱可塑性樹脂Tを含む原料Mは、後述するエレクトロスピニング法を適用しやすい傾向がある。
(Process II)
Next, Step II will be explained in detail. In step II, first, raw material M containing reactant P1 is prepared. The raw material M can be produced, for example, by mixing a solution S1 containing the above reactant P1 and a solution S2 containing the thermoplastic resin T. The raw material M produced by this method contains a thermoplastic resin T. According to the thermoplastic resin T, the viscosity of the raw material M can be adjusted appropriately, which tends to allow the raw material M to be easily molded into a fiber shape. Furthermore, since the thermoplastic resin T is easily charged, the raw material M containing the thermoplastic resin T tends to be easily applied to the electrospinning method described below.
 熱可塑性樹脂Tは、水に対する溶解性を有することが好ましい。本明細書において、「熱可塑性樹脂Tが溶解性を有する」とは、95℃の条件下で、言及した溶媒100gに対して1g以上の熱可塑性樹脂Tが当該溶媒に溶解できることを意味し、好ましくは、23℃の条件下で、言及した溶媒100gに対して1g以上の熱可塑性樹脂Tが当該溶媒に溶解できることを意味する。熱可塑性樹脂Tは、アルコール、特に低級アルコール、に対する溶解性を有していてもよい。 It is preferable that the thermoplastic resin T has solubility in water. As used herein, "the thermoplastic resin T has solubility" means that 1 g or more of the thermoplastic resin T can be dissolved in the mentioned solvent per 100 g of the mentioned solvent under the condition of 95 ° C. Preferably, it means that 1 g or more of the thermoplastic resin T can be dissolved in the mentioned solvent per 100 g of the mentioned solvent under the condition of 23°C. The thermoplastic resin T may have solubility in alcohol, particularly lower alcohol.
 熱可塑性樹脂Tの具体例としては、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、ポリウレタン樹脂、(メタ)アクリル樹脂、ポリエステル樹脂、ポリエーテル樹脂などが挙げられる。熱可塑性樹脂Tは、単独で又は2種以上を組み合わせて使用できる。熱可塑性樹脂Tは、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂及びポリエーテル樹脂からなる群より選ばれる少なくとも1つを含むことが好ましく、ポリビニルアルコール樹脂を含むことが特に好ましい。ポリエーテル樹脂の具体例としては、ポリエチレングリコール、ポリエチレンオキサイドなどが挙げられる。 Specific examples of the thermoplastic resin T include polyvinyl alcohol resin, polyvinylpyrrolidone resin, polyurethane resin, (meth)acrylic resin, polyester resin, polyether resin, and the like. The thermoplastic resin T can be used alone or in combination of two or more. The thermoplastic resin T preferably contains at least one selected from the group consisting of polyvinyl alcohol resin, polyvinylpyrrolidone resin, and polyether resin, and particularly preferably contains polyvinyl alcohol resin. Specific examples of polyether resins include polyethylene glycol and polyethylene oxide.
 熱可塑性樹脂Tの重量平均分子量は、特に限定されず、例えば1000~10000000である。 The weight average molecular weight of the thermoplastic resin T is not particularly limited, and is, for example, 1,000 to 1,000,000.
 溶液S2における熱可塑性樹脂Tの含有率は、特に限定されず、例えば、1wt%~20wt%である。熱可塑性樹脂Tの含有率の上限は、10wt%以下であってもよい。 The content of thermoplastic resin T in solution S2 is not particularly limited and is, for example, 1 wt% to 20 wt%. The upper limit of the content of thermoplastic resin T may be 10 wt% or less.
 溶液S2は、例えば、熱可塑性樹脂T以外に溶媒を含む。溶液S2に含まれる溶媒としては、例えば、水、アルコール、特に低級アルコール、などが挙げられる。言い換えると、原料Mは、例えば、溶液S2に由来する溶媒をさらに含んでいる。原料Mは、溶媒として、水を含むことが好ましい。 The solution S2 contains a solvent in addition to the thermoplastic resin T, for example. Examples of the solvent contained in the solution S2 include water, alcohol, and especially lower alcohol. In other words, the raw material M further contains, for example, a solvent derived from the solution S2. It is preferable that the raw material M contains water as a solvent.
 原料Mは、反応物P1、熱可塑性樹脂T及び溶媒以外の他の成分をさらに含んでいてもよい。他の成分としては、例えば、未反応の化合物群、上述の反応促進剤、可塑剤、充填剤、顔料、染料、老化防止剤、導電材、帯電防止剤、紫外線吸収剤、難燃剤、酸化防止剤、界面活性剤などが挙げられる。なお、溶液S1及びS2を混合して作製した原料Mでは、反応物P1と未反応の化合物群との反応がさらに進行することが抑制されている傾向がある。 The raw material M may further contain components other than the reactant P1, the thermoplastic resin T, and the solvent. Other components include, for example, unreacted compounds, the above-mentioned reaction accelerators, plasticizers, fillers, pigments, dyes, anti-aging agents, conductive materials, antistatic agents, ultraviolet absorbers, flame retardants, and antioxidants. agents, surfactants, etc. In addition, in the raw material M prepared by mixing the solutions S1 and S2, there is a tendency that further progress of the reaction between the reactant P1 and the unreacted compound group is suppressed.
 可塑剤としては、例えば、低分子量(例えば、重量平均分子量が1000未満)のポリエチレングリコールなどが挙げられる。可塑剤によれば、ファイバーFの内部での酸性ガスの拡散性が向上する傾向がある。ファイバーFの内部での酸性ガスの拡散性が向上することによって、ファイバーFによる酸性ガスの吸着速度や、ファイバーFからの酸性ガスの脱離速度が向上する傾向がある。 Examples of the plasticizer include low molecular weight (eg, weight average molecular weight less than 1000) polyethylene glycol. According to the plasticizer, the diffusibility of acidic gas inside the fiber F tends to improve. By improving the diffusivity of acidic gas inside fiber F, the rate of adsorption of acidic gas by fiber F and the rate of desorption of acidic gas from fiber F tend to improve.
 原料Mにおける固形分濃度は、特に限定されず、例えば50wt%以下であり、30wt%以下、20wt%以下、さらには15wt%以下であってもよい。原料Mにおける固形分濃度が低ければ低いほど、得られるファイバーFの平均繊維径が減少する傾向がある。原料Mにおける固形分濃度の下限値は、特に限定されず、例えば3wt%であり、5wt%であってもよい。 The solid content concentration in the raw material M is not particularly limited, and may be, for example, 50 wt% or less, 30 wt% or less, 20 wt% or less, or even 15 wt% or less. The lower the solid content concentration in the raw material M, the lower the average fiber diameter of the resulting fibers F tends to be. The lower limit of the solid content concentration in the raw material M is not particularly limited, and may be, for example, 3 wt% or 5 wt%.
 原料Mにおいて、反応物P1及び未反応の化合物群の合計重量Dと、溶液S2の重量との比(配合比)は、特に限定されず、例えば1:3~1:20であり、好ましくは1:7~1:12である。 In the raw material M, the ratio (blending ratio) of the total weight D of the reactant P1 and the unreacted compound group to the weight of the solution S2 is not particularly limited, and is, for example, 1:3 to 1:20, preferably The ratio is 1:7 to 1:12.
 原料Mにおいて、反応物P1及び未反応の化合物群の合計重量Dと熱可塑性樹脂Tの重量との合計値に対する、合計重量Dの比率(以下、「XA率」と称する)は、ファイバーFにおける酸性ガスの吸着性を向上させる観点から、例えば20wt%以上であり、30wt%以上、40wt%以上、50wt%以上、55wt%以上、60wt%以上、65wt%以上、さらには70wt%以上であってもよい。XA率の上限値は、特に限定されず、例えば90wt%であり、80wt%であってもよい。 In the raw material M, the ratio of the total weight D to the total value of the total weight D of the reactant P1 and the unreacted compound group and the weight of the thermoplastic resin T (hereinafter referred to as "XA ratio") is From the viewpoint of improving adsorption of acidic gas, the content is, for example, 20 wt% or more, 30 wt% or more, 40 wt% or more, 50 wt% or more, 55 wt% or more, 60 wt% or more, 65 wt% or more, and even 70 wt% or more. Good too. The upper limit of the XA rate is not particularly limited, and may be, for example, 90 wt% or 80 wt%.
 工程IIでは、例えば、原料Mを吐出部から吐出して、原料Mをファイバー状に成形する。吐出部を備えた製造装置としては、例えば、図1に示す製造装置10Aが挙げられる。製造装置10Aは、SBS(Solution Blow Spinning)法に適した製造装置である。SBS法は、生産性に優れており、本実施形態の製造方法に適している。製造装置10Aでは、後述する製造装置10Cに比べて、原料Mを帯電させる必要がないため、上記のXA率を高い値に調整しやすい。 In step II, for example, the raw material M is discharged from the discharge section and the raw material M is formed into a fiber shape. An example of a manufacturing apparatus including a discharge section is a manufacturing apparatus 10A shown in FIG. 1, for example. The manufacturing device 10A is a manufacturing device suitable for the SBS (Solution Blow Spinning) method. The SBS method has excellent productivity and is suitable for the manufacturing method of this embodiment. In the manufacturing apparatus 10A, compared to the manufacturing apparatus 10C described later, there is no need to charge the raw material M, so it is easier to adjust the above-mentioned XA rate to a high value.
 製造装置10Aは、例えば、第1吐出部1、捕集部2及び第2吐出部3を備える。第2吐出部3は、空間を介して捕集部2と離間した状態で、捕集部2と対向している。第1吐出部1は、その吐出口が捕集部2及び第2吐出部3の間に位置するように配置されている。第1吐出部1の吐出口と捕集部2との距離(捕集距離)は、特に限定されず、例えば10cm~100cmである。 The manufacturing apparatus 10A includes, for example, a first discharge section 1, a collection section 2, and a second discharge section 3. The second discharge section 3 faces the collection section 2 while being separated from the collection section 2 via a space. The first discharge section 1 is arranged such that its discharge port is located between the collection section 2 and the second discharge section 3. The distance between the discharge port of the first discharge section 1 and the collection section 2 (collection distance) is not particularly limited, and is, for example, 10 cm to 100 cm.
 第1吐出部1は、例えば、本体部4及びガイド部5を有する。本体部4は、原料Mを収容するとともに、ガイド部5に原料Mを送るための部材であり、典型的にはシリンジ本体である。本体部4は、例えば、第2吐出部3から捕集部2に向かう方向に直交して延びている。 The first discharge section 1 includes, for example, a main body section 4 and a guide section 5. The main body part 4 is a member for accommodating the raw material M and for sending the raw material M to the guide part 5, and is typically a syringe main body. The main body portion 4 extends, for example, orthogonally to the direction from the second discharge portion 3 toward the collection portion 2.
 ガイド部5は、原料Mを本体部4から吐出口まで送るための部材であり、典型的にはシリンジ針である。ガイド部5は、例えば、第1部分5a、第2部分5b及び屈曲部5cを含む。 The guide portion 5 is a member for sending the raw material M from the main body portion 4 to the discharge port, and is typically a syringe needle. The guide portion 5 includes, for example, a first portion 5a, a second portion 5b, and a bent portion 5c.
 第1部分5aは、例えば、第2吐出部3から捕集部2に向かう方向に直交して、本体部4から屈曲部5cまで延びている。第1部分5aによれば、本体部4から、捕集部2及び第2吐出部3の間の空間に原料Mを送ることができる。第2部分5bは、例えば、第2吐出部3から捕集部2に向かう方向に、屈曲部5cから吐出口まで延びている。第2部分5bによれば、捕集部2及び第2吐出部3の間の空間において、第2吐出部3から捕集部2に向かう方向に原料Mを吐出することができる。なお、場合によっては、ガイド部5は、第2部分5bを含んでおらず、第1部分5aのみから構成されていてもよい。 The first portion 5a extends from the main body 4 to the bent portion 5c, for example, perpendicular to the direction from the second discharge portion 3 toward the collection portion 2. The first portion 5a allows the raw material M to be sent from the main body 4 to the space between the collection portion 2 and the second discharge portion 3. The second portion 5b extends from the bent portion 5c to the discharge port, for example, in the direction from the second discharge portion 3 toward the collection portion 2. The second portion 5b allows the raw material M to be discharged in the direction from the second discharge portion 3 toward the collection portion 2 in the space between the collection portion 2 and the second discharge portion 3. Note that in some cases, the guide portion 5 may not include the second portion 5b and may be composed of only the first portion 5a.
 ガイド部5のサイズは、特に限定されず、例えば20~30ゲージ(G)である。ガイド部5、特に第2部分5bの内径は、例えば、0.13mm~0.58mmである。 The size of the guide portion 5 is not particularly limited, and is, for example, 20 to 30 gauge (G). The inner diameter of the guide portion 5, particularly the second portion 5b, is, for example, 0.13 mm to 0.58 mm.
 第2吐出部3は、第1吐出部1のガイド部5から吐出された原料Mに接触させるガス流を吐出する部材であり、例えばノズルである。第2吐出部3の吐出口の内径は、例えば1~10mmである。ガス流は、例えば、圧縮空気を含み、典型的には圧縮空気そのものである。ガス流は、例えば、減圧弁(図示せず)などを利用して準備することができる。 The second discharge part 3 is a member that discharges a gas flow to be brought into contact with the raw material M discharged from the guide part 5 of the first discharge part 1, and is, for example, a nozzle. The inner diameter of the discharge port of the second discharge portion 3 is, for example, 1 to 10 mm. The gas stream includes, for example, compressed air, and is typically compressed air itself. The gas flow can be provided using, for example, a pressure reducing valve (not shown).
 捕集部2は、原料Mがガス流と接触することによって形成されたファイバー状の成形体を捕集する部材である。捕集部2としては、金網などを用いることができる。捕集部2は、ファイバー状の成形体を巻き取ることができる巻き取りロールであってもよい。 The collecting section 2 is a member that collects the fibrous molded body formed by the raw material M coming into contact with the gas flow. As the collection section 2, a wire mesh or the like can be used. The collecting section 2 may be a winding roll capable of winding up the fiber shaped body.
 製造装置10Aを用いた場合、例えば、次の方法によって、原料Mをファイバー状に成形することができる。まず、原料Mを第1吐出部1、詳細にはガイド部5から吐出する。第1吐出部1からの原料Mの吐出量は、特に限定されず、例えば0.1mL/hr~10mL/hrである。次に、第2吐出部3からガス流を吐出し、第1吐出部1から吐出された原料Mをガス流と接触させる。第2吐出部3からのガス流の吐出量は、特に限定されず、例えば45L/min~200L/minである。第2吐出部3から吐出されたガス流の風速は、特に限定されず、例えば50m/s~300m/sである。 When using the manufacturing apparatus 10A, the raw material M can be formed into a fiber shape, for example, by the following method. First, the raw material M is discharged from the first discharge section 1, specifically from the guide section 5. The discharge amount of the raw material M from the first discharge section 1 is not particularly limited, and is, for example, 0.1 mL/hr to 10 mL/hr. Next, a gas flow is discharged from the second discharge section 3, and the raw material M discharged from the first discharge section 1 is brought into contact with the gas flow. The amount of gas flow discharged from the second discharge portion 3 is not particularly limited, and is, for example, 45 L/min to 200 L/min. The wind speed of the gas flow discharged from the second discharge part 3 is not particularly limited, and is, for example, 50 m/s to 300 m/s.
 第1吐出部1から吐出された原料Mをガス流と接触させることによって、原料Mから溶媒が除去され、ファイバー状の成形体が得られる。この成形体は、ガス流とともに、ガス流の進行方向に送られ、捕集部2で捕集される。なお、本実施形態の製造方法では、捕集部2及び第2吐出部3の間の空間で、原料Mや成形体に、熱エネルギーや光エネルギーなどのエネルギーを加える必要がない。すなわち、製造装置10Aは、上記の空間で原料Mや成形体を加熱する加熱部や、原料Mや成形体に光を照射する発光素子などの構成を備えていなくてもよい。 By bringing the raw material M discharged from the first discharge part 1 into contact with the gas flow, the solvent is removed from the raw material M, and a fibrous molded body is obtained. This molded body is sent along with the gas flow in the advancing direction of the gas flow, and is collected by the collection section 2 . In addition, in the manufacturing method of this embodiment, there is no need to apply energy such as thermal energy or light energy to the raw material M or the molded body in the space between the collection section 2 and the second discharge section 3. That is, the manufacturing apparatus 10A does not need to include a heating section that heats the raw material M and the molded body in the space described above, a light emitting element that irradiates the raw material M and the molded body with light, and the like.
 工程IIで用いられる製造装置は、図1に示す製造装置10Aに限定されない。以下では、工程IIで用いられる製造装置の変形例について、図2A~3を用いて説明する。製造装置10Aと、変形例の製造装置10B及び10Cとで共通する要素には同じ参照符号を付し、それらの説明を省略することがある。これらの製造装置に関する説明は、技術的に矛盾しない限り、相互に適用されうる。 The manufacturing apparatus used in step II is not limited to the manufacturing apparatus 10A shown in FIG. Modifications of the manufacturing apparatus used in step II will be described below with reference to FIGS. 2A to 3. Elements that are common between the manufacturing apparatus 10A and the modified manufacturing apparatuses 10B and 10C are given the same reference numerals, and their descriptions may be omitted. The descriptions regarding these manufacturing devices can be mutually applied unless technically contradictory.
 製造装置10Aと同様に、図2Aに示す製造装置10Bは、SBS法に適した製造装置である。製造装置10Bは、第2吐出部3を備えておらず、吐出部(第1吐出部)1が空間を介して捕集部2と離間した状態で、捕集部2と対向している。吐出部1のガイド部5は、屈曲部を有しておらず、本体部4から捕集部2に向かう方向に延びている。 Similarly to the manufacturing apparatus 10A, the manufacturing apparatus 10B shown in FIG. 2A is a manufacturing apparatus suitable for the SBS method. The manufacturing apparatus 10B does not include the second discharge section 3, and faces the collection section 2 in a state where the discharge section (first discharge section) 1 is spaced apart from the collection section 2. The guide portion 5 of the discharge portion 1 does not have a bent portion and extends in the direction from the main body portion 4 toward the collection portion 2 .
 図2Bは、製造装置10Bにおけるガイド部5の吐出口付近を示す斜視図である。図2Bに示すように、製造装置10Bにおいて、ガイド部5は、例えば、同軸二重管構造を有している。詳細には、ガイド部5は、外管6と、外管6に取り囲まれ、外管6と同じ方向に延びている内管7とを有する。このガイド部5において、内管7は、本体部4と接続されており、内管7から原料Mを吐出できるように構成されている。さらに、ガイド部5は、外管6と内管7との間からガス流を吐出できるように構成されている。 FIG. 2B is a perspective view showing the vicinity of the discharge port of the guide section 5 in the manufacturing apparatus 10B. As shown in FIG. 2B, in the manufacturing apparatus 10B, the guide portion 5 has, for example, a coaxial double tube structure. Specifically, the guide portion 5 includes an outer tube 6 and an inner tube 7 surrounded by the outer tube 6 and extending in the same direction as the outer tube 6. In this guide section 5, the inner tube 7 is connected to the main body section 4, and is configured so that the raw material M can be discharged from the inner tube 7. Furthermore, the guide portion 5 is configured to be able to discharge a gas flow from between the outer tube 6 and the inner tube 7.
 製造装置10Bを用いた場合、例えば、次の方法によって、原料Mをファイバー状に成形することができる。まず、ガイド部5の内管7から原料Mを吐出するとともに、外管6と内管7との間からガス流を吐出する。内管7から吐出された原料Mがガス流と接触することによって、原料Mから溶媒が除去され、ファイバー状の成形体が得られる。この成形体は、ガス流とともに、ガス流の進行方向に送られ、捕集部2で捕集される。 When using the manufacturing apparatus 10B, the raw material M can be formed into a fiber shape, for example, by the following method. First, the raw material M is discharged from the inner tube 7 of the guide section 5, and a gas flow is discharged from between the outer tube 6 and the inner tube 7. When the raw material M discharged from the inner tube 7 comes into contact with the gas flow, the solvent is removed from the raw material M, and a fibrous molded body is obtained. This molded body is sent along with the gas flow in the advancing direction of the gas flow, and is collected by the collection section 2 .
 図3に示す製造装置10Cは、第2吐出部3を備えておらず、吐出部(第1吐出部)1が空間を介して捕集部2と離間した状態で、捕集部2と対向している。図3において、吐出部1と捕集部2とは、横方向に並んでいる。ただし、吐出部1と捕集部2とは、縦方向に並んでいてもよい。例えば、吐出部1は、捕集部2の上方に位置していてもよく、捕集部2の下方に位置していてもよい。吐出部1と捕集部2との距離(捕集距離)は、特に限定されず、例えば5cm~15cmである。 The manufacturing apparatus 10C shown in FIG. 3 does not include the second discharge section 3, and the discharge section (first discharge section) 1 faces the collection section 2 while being separated from the collection section 2 through a space. are doing. In FIG. 3, the discharge section 1 and the collection section 2 are lined up in the horizontal direction. However, the discharge section 1 and the collection section 2 may be arranged in the vertical direction. For example, the discharge section 1 may be located above the collection section 2 or may be located below the collection section 2. The distance between the discharge section 1 and the collection section 2 (collection distance) is not particularly limited, and is, for example, 5 cm to 15 cm.
 製造装置10Cは、例えば、電源9をさらに備えている。電源9は、吐出部1及び捕集部2のそれぞれに電気的に接続されており、吐出部1及び捕集部2に電圧を印加することができる。吐出部1は、吐出部1に電圧が印加されると、吐出部1内に収容された原料Mにも電圧が印加されるように構成されている。電源9としては、例えば、AC-DCコンバータ、発電装置、電池などが挙げられる。電源9を備えた製造装置10Cは、エレクトロスピニング法に適している。ただし、製造装置10Cでは、エレクトロスピニング法以外の他の紡糸方法が行われてもよい。 The manufacturing apparatus 10C further includes, for example, a power source 9. The power source 9 is electrically connected to each of the discharge section 1 and the collection section 2, and can apply voltage to the discharge section 1 and the collection section 2. The discharge section 1 is configured such that when a voltage is applied to the discharge section 1, a voltage is also applied to the raw material M accommodated within the discharge section 1. Examples of the power source 9 include an AC-DC converter, a power generator, and a battery. The manufacturing apparatus 10C equipped with a power source 9 is suitable for electrospinning. However, in the manufacturing apparatus 10C, a spinning method other than the electrospinning method may be performed.
 製造装置10Cを用いた場合、例えば、次の方法によって、原料Mをファイバー状に成形することができる。まず、原料Mに電圧を印加した状態で、原料Mを吐出部1から吐出する。原料Mへの電圧の印加は、電源9により吐出部1に電圧を印加することによって行うことができる。原料Mに印加する電圧の大きさは、特に限定されず、例えば5~20kVである。原料Mに電圧が印加されると、吐出部1における原料Mの出口付近に、吐出物8で構成された円錐形状のテーラーコーンが形成される。テーラーコーンを構成する吐出物8の組成は、通常、原料Mの組成と同じである。テーラーコーンの先端からは、吐出物8で構成されたファイバー状の成形体が、吐出部1及び捕集部2の間の空間に向かって放出される。この成形体は、捕集部2に移動し、捕集部2で捕集される。 When using the manufacturing apparatus 10C, the raw material M can be formed into a fiber shape, for example, by the following method. First, the raw material M is discharged from the discharge section 1 while a voltage is applied to the raw material M. The voltage can be applied to the raw material M by applying a voltage to the discharge section 1 using the power source 9. The magnitude of the voltage applied to the raw material M is not particularly limited, and is, for example, 5 to 20 kV. When a voltage is applied to the raw material M, a conical Taylor cone made up of the discharged material 8 is formed near the outlet of the raw material M in the discharge section 1 . The composition of the discharged material 8 constituting the Taylor cone is usually the same as the composition of the raw material M. From the tip of the Taylor cone, a fibrous molded body composed of the discharged material 8 is discharged toward the space between the discharge section 1 and the collection section 2 . This molded body moves to the collecting section 2 and is collected therein.
(工程III)
 ファイバー状の成形体は、反応物P1を含み、例えば、熱可塑性樹脂Tや未反応の化合物群をさらに含む。本実施形態の製造方法は、この成形体において、反応物P1と未反応の化合物群との反応を進行させる工程IIIをさらに含んでいてもよい。工程IIIによって、成形体からファイバーFを形成することができる。なお、成形体が未反応の化合物群を含まない場合、本実施形態の製造方法は、工程IIIを含まず、上記の工程IIで得られたファイバー状の成形体をファイバーFとみなすことができる。
(Process III)
The fibrous molded article contains the reactant P1, and further contains, for example, the thermoplastic resin T and an unreacted compound group. The manufacturing method of the present embodiment may further include step III of proceeding the reaction between the reactant P1 and the unreacted compound group in this molded article. Through step III, fibers F can be formed from the molded body. In addition, when the molded body does not contain an unreacted compound group, the manufacturing method of this embodiment does not include Step III, and the fibrous molded body obtained in the above Step II can be regarded as fiber F. .
 反応物P1と未反応の化合物群との反応は、例えば、成形体にエネルギーを加えることによって行うことができる。成形体に加えるエネルギーとしては、熱エネルギーや光エネルギーが挙げられる。一例として、成形体を加熱することによって、成形体に熱エネルギーを加えることができる。成形体の加熱温度は、特に限定されず、例えば50℃~150℃である。成形体の加熱時間は、特に限定されず、例えば10分~5時間である。成形体の加熱は、減圧雰囲気や真空雰囲気下で行ってもよい。 The reaction between the reactant P1 and the unreacted compound group can be carried out, for example, by applying energy to the molded body. Examples of the energy applied to the molded body include thermal energy and light energy. As an example, thermal energy can be applied to the compact by heating the compact. The heating temperature of the molded body is not particularly limited, and is, for example, 50°C to 150°C. The heating time of the molded body is not particularly limited, and is, for example, 10 minutes to 5 hours. The molded body may be heated in a reduced pressure atmosphere or a vacuum atmosphere.
 反応物P1と未反応の化合物群との反応が進行することによって、反応物P1よりも重量平均分子量が大きい反応物P2が形成される。ファイバーFは、例えば、反応物P1及び未反応の化合物群に代えて反応物P2を含むことを除き、工程IIで得られたファイバー状の成形体と同じ組成及び構造を有する。 As the reaction between the reactant P1 and the unreacted compound group progresses, a reactant P2 having a larger weight average molecular weight than the reactant P1 is formed. Fiber F has the same composition and structure as the fibrous molded product obtained in Step II, for example, except that it contains reactant P2 instead of reactant P1 and unreacted compound group.
(ファイバー)
 本実施形態の製造方法によって作製されたファイバーFは、反応物P2(又は反応物P1)を含み、例えば熱可塑性樹脂Tをさらに含む。以下では、反応物P1、反応物P2をまとめて単に反応物Pと呼ぶことがある。
(fiber)
The fiber F produced by the manufacturing method of this embodiment contains reactant P2 (or reactant P1), and further contains, for example, thermoplastic resin T. Hereinafter, the reactant P1 and the reactant P2 may be collectively referred to simply as the reactant P.
 反応物Pは、化合物C1に由来するアミノ基を有する。反応物Pは、アミノ基に起因して、酸性ガスを吸着する機能を有する。反応物Pは、例えば、アミノ基として、1級アミノ基、2級アミノ基及び3級アミノ基からなる群より選ばれる少なくとも1つを含む。酸性ガスの吸着性の観点から、反応物Pは、1級アミノ基及び2級アミノ基からなる群より選ばれる少なくとも1つを含むことが好ましく、2級アミノ基を含むことが特に好ましい。2級アミノ基を有する反応物Pによれば、吸着した酸性ガスを容易に脱離できる傾向もある。すなわち、2級アミノ基を有する反応物Pによれば、比較的温和な条件でファイバーFの再生処理を行うことができる。なお、反応物Pは、3級アミノ基を含んでいてもよいが、3級アミノ基を含まなくてもよい。 Reactant P has an amino group derived from compound C1. Reactant P has the function of adsorbing acidic gas due to the amino group. Reactant P contains, for example, at least one amino group selected from the group consisting of a primary amino group, a secondary amino group, and a tertiary amino group. From the viewpoint of adsorption of acidic gas, the reactant P preferably contains at least one selected from the group consisting of a primary amino group and a secondary amino group, and particularly preferably contains a secondary amino group. According to the reactant P having a secondary amino group, there is a tendency that the adsorbed acidic gas can be easily desorbed. That is, by using the reactant P having a secondary amino group, the fiber F can be regenerated under relatively mild conditions. Note that the reactant P may contain a tertiary amino group, but does not need to contain a tertiary amino group.
 反応物Pにおけるアミノ基、特に1級アミノ基又は2級アミノ基、の含有率は、例えば10wt%以上であり、好ましくは30wt%以上である。この含有率が高ければ高いほど、ファイバーFにおける酸性ガスの吸着性が向上する傾向がある。反応物Pにおけるアミノ基の含有率の上限値は、特に限定されず、例えば80wt%である。 The content of amino groups, especially primary amino groups or secondary amino groups, in reactant P is, for example, 10 wt% or more, preferably 30 wt% or more. The higher this content is, the more acidic gas adsorption properties of fiber F tend to improve. The upper limit of the content of amino groups in the reactant P is not particularly limited, and is, for example, 80 wt%.
 反応物Pは、アミノ基以外の他の官能基を含んでいてもよい。他の官能基としては、例えば、ヒドロキシル基、エーテル基、エステル基、アミド基などが挙げられ、ヒドロキシル基が好ましい。反応物Pは、炭化水素基、アミノ基及びヒドロキシル基のみから構成されていてもよい。 The reactant P may contain a functional group other than an amino group. Examples of other functional groups include hydroxyl group, ether group, ester group, and amide group, with hydroxyl group being preferred. Reactant P may be composed only of hydrocarbon groups, amino groups, and hydroxyl groups.
 反応物Pは、例えば、化合物C1に由来する構成単位U1及び化合物C2に由来する構成単位U2を含む。反応物Pにおける構成単位U1の含有率は、例えば30wt%以上であり、好ましくは50wt%以上である。反応物Pにおける構成単位U1の含有率の上限値は、特に限定されず、例えば80wt%である。反応物Pにおける構成単位U2の含有率は、例えば20wt%~70wt%である。 The reactant P includes, for example, a structural unit U1 derived from the compound C1 and a structural unit U2 derived from the compound C2. The content of the structural unit U1 in the reactant P is, for example, 30 wt% or more, preferably 50 wt% or more. The upper limit of the content of the structural unit U1 in the reactant P is not particularly limited, and is, for example, 80 wt%. The content of the structural unit U2 in the reactant P is, for example, 20 wt% to 70 wt%.
 反応物Pのガラス転移温度Tgは、特に限定されず、例えば40℃以下であり、好ましくは30℃以下であり、より好ましくは20℃以下であり、さらに好ましくは10℃以下である。反応物Pのガラス転移温度Tgがこの程度に低い場合、比較的温和な条件、例えば低温での加熱処理、でファイバーFの再生処理を行うことができる。反応物Pのガラス転移温度Tgの下限値は、ファイバーFにおける酸性ガスの吸着性を十分に確保する観点から、-100℃であることが好ましい。本明細書において、ガラス転移温度Tgは、JIS K7121:1987の規定に準拠して求められる中間点ガラス転移温度 (Tmg)を意味する。なお、反応物Pは、通常、熱硬化性樹脂に相当する。 The glass transition temperature Tg of the reactant P is not particularly limited, and is, for example, 40°C or lower, preferably 30°C or lower, more preferably 20°C or lower, and even more preferably 10°C or lower. When the glass transition temperature Tg of the reactant P is as low as this, the fiber F can be regenerated under relatively mild conditions, such as heat treatment at a low temperature. The lower limit of the glass transition temperature Tg of the reactant P is preferably −100° C. from the viewpoint of ensuring sufficient adsorption of acidic gas in the fiber F. In this specification, the glass transition temperature Tg means the midpoint glass transition temperature (T mg ) determined in accordance with the provisions of JIS K7121:1987. Note that the reactant P usually corresponds to a thermosetting resin.
 反応物Pの重量平均分子量は、特に限定されず、例えば500以上であり、好ましくは1000以上であり、より好ましくは10000以上であり、さらに好ましくは100000以上である。反応物Pの重量平均分子量の上限値は、例えば10000000である。 The weight average molecular weight of the reactant P is not particularly limited, and is, for example, 500 or more, preferably 1,000 or more, more preferably 10,000 or more, and still more preferably 100,000 or more. The upper limit of the weight average molecular weight of the reactant P is, for example, 10,000,000.
 ファイバーFにおける反応物Pの含有率は、例えば20wt%以上であり、30wt%以上、40wt%以上、50wt%以上、55wt%以上、60wt%以上、65wt%以上、さらには70wt%以上であってもよい。反応物Pの含有率が高ければ高いほど、ファイバーFにおける酸性ガスの吸着性が向上する傾向がある。反応物Pの含有率の上限値は、特に限定されず、例えば90wt%であり、80wt%であってもよい。 The content of the reactant P in the fiber F is, for example, 20 wt% or more, 30 wt% or more, 40 wt% or more, 50 wt% or more, 55 wt% or more, 60 wt% or more, 65 wt% or more, and even 70 wt% or more. Good too. The higher the content of the reactant P, the more the acid gas adsorption properties of the fiber F tend to improve. The upper limit of the content of reactant P is not particularly limited, and is, for example, 90 wt%, and may be 80 wt%.
 ファイバーFにおける熱可塑性樹脂Tの含有率は、特に限定されず、例えば80wt%以下であり、70wt%以下、60wt%以下、50wt%以下、45wt%以下、40wt%以下、35wt%以下、さらには30wt%以下であってもよい。熱可塑性樹脂Tの含有率の下限値は、ファイバーFを容易に作製できる観点から、例えば10wt%であり、20wt%であってもよい。 The content of the thermoplastic resin T in the fiber F is not particularly limited, and is, for example, 80 wt% or less, 70 wt% or less, 60 wt% or less, 50 wt% or less, 45 wt% or less, 40 wt% or less, 35 wt% or less, and even It may be 30 wt% or less. The lower limit of the content rate of the thermoplastic resin T is, for example, 10 wt%, and may be 20 wt%, from the viewpoint of easily producing the fiber F.
 ファイバーFは、実質的に反応物P及び熱可塑性樹脂Tのみから構成されていてもよいが、反応物P及び熱可塑性樹脂T以外の他の成分をさらに含んでいてもよい。他の成分としては、原料Mについて上述したものが挙げられる。 The fiber F may be substantially composed of only the reactant P and the thermoplastic resin T, but may also contain other components in addition to the reactant P and the thermoplastic resin T. Examples of other components include those mentioned above for the raw material M.
 ファイバーFにおける窒素元素の密度dは、特に限定されず、例えば1mmol/g以上であり、好ましくは3mmol/g以上であり、より好ましくは5mmol/g以上であり、さらに好ましくは7mmol/g以上である。窒素元素の密度dの上限値は、特に限定されず、例えば50mmol/gであり、20mmol/gであってもよい。なお、ファイバーFに含まれる全ての窒素元素がアミノ基に由来する場合、窒素元素の密度dは、ファイバーFにおけるアミノ基の密度とみなすことができる。 The density d of the nitrogen element in the fiber F is not particularly limited, and is, for example, 1 mmol/g or more, preferably 3 mmol/g or more, more preferably 5 mmol/g or more, and still more preferably 7 mmol/g or more. be. The upper limit of the density d of the nitrogen element is not particularly limited, and may be, for example, 50 mmol/g, or 20 mmol/g. Note that when all the nitrogen elements contained in the fiber F are derived from amino groups, the density d of the nitrogen element can be regarded as the density of the amino groups in the fiber F.
 窒素元素の密度dは、次の方法によって測定できる。まず、市販のCHN元素分析装置を用いて、ファイバーFに含まれる窒素元素の重量比率w(wt%)を測定する。得られた結果に基づいて、下記式(1)から窒素元素の密度dを算出することができる。
 密度d(mmol/g)=(重量比率w(wt%)×1000)/(窒素の原子量×100) (1)
The density d of nitrogen element can be measured by the following method. First, the weight ratio w (wt%) of the nitrogen element contained in the fiber F is measured using a commercially available CHN elemental analyzer. Based on the obtained results, the density d of nitrogen element can be calculated from the following formula (1).
Density d (mmol/g) = (weight ratio w (wt%) × 1000) / (atomic weight of nitrogen × 100) (1)
 なお、ファイバーFに含まれる窒素元素の重量比率w(N比率)は、特に限定されず、例えば5wt%以上であり、7wt%以上、9wt%以上、10wt%以上、11wt%以上、12wt%以上、13wt%以上、14wt%以上、さらには15wt%以上であってもよい。重量比率wの上限値は、例えば50wt%であり、30wt%であってもよい。 The weight ratio w (N ratio) of the nitrogen element contained in the fiber F is not particularly limited, and is, for example, 5 wt% or more, 7 wt% or more, 9 wt% or more, 10 wt% or more, 11 wt% or more, 12 wt% or more. , 13 wt% or more, 14 wt% or more, or even 15 wt% or more. The upper limit of the weight ratio w is, for example, 50 wt%, and may be 30 wt%.
 さらに、ファイバーFを構成する全元素の物質量に対する、ファイバーFに含まれる窒素元素の物質量の比率は、特に限定されず、例えば1モル%以上であり、好ましくは5モル%以上であり、より好ましくは7モル%以上であり、8モル%以上であってもよく、9モル%以上であってもよく、10モル%以上であってもよい。この比率の上限値は、特に限定されず、例えば、30モル%である。ファイバーFを構成する各元素の物質量は、CHN元素分析によって測定できる。 Further, the ratio of the amount of the nitrogen element contained in the fiber F to the amount of all the elements constituting the fiber F is not particularly limited, and is, for example, 1 mol% or more, preferably 5 mol% or more, More preferably, it is 7 mol% or more, may be 8 mol% or more, may be 9 mol% or more, and may be 10 mol% or more. The upper limit of this ratio is not particularly limited, and is, for example, 30 mol%. The amount of each element constituting the fiber F can be measured by CHN elemental analysis.
[ファイバーの構造や物性]
 ファイバーFは、例えば、反応物Pを含む本体部のみから構成されている。言い換えると、ファイバーFは、本体部の表面を被覆している被覆層を備えていない。反応物Pは、例えば、ファイバーF中に均一に存在している。
[Fiber structure and physical properties]
The fiber F is composed of only a main body portion containing the reactant P, for example. In other words, the fiber F does not have a coating layer covering the surface of the main body. For example, the reactant P exists uniformly in the fiber F.
 ファイバーFの構造は、特に限定されない。ファイバーFは、短繊維であってもよく、長繊維であってもよい。ファイバーFは、分岐構造を有していてもよく、有していなくてもよい。 The structure of fiber F is not particularly limited. Fiber F may be a short fiber or a long fiber. Fiber F may or may not have a branched structure.
 ファイバーFは、1~1000nmの平均繊維径を有するナノファイバーであることが好ましい。ナノファイバーは、比表面積が大きく、酸性ガスに対して高い吸着性能を有する傾向がある。ナノファイバーには、スリップフロー効果により、ナノファイバーと接触した流体の圧力損失を抑制できる利点もある。さらに、ナノファイバー中では、ナノファイバーの材料を構成する分子が規則正しく配列するため、ナノファイバーについて、高い力学特性や耐熱性が得られる傾向もある。 Preferably, the fiber F is a nanofiber having an average fiber diameter of 1 to 1000 nm. Nanofibers have a large specific surface area and tend to have high adsorption performance for acidic gases. Nanofibers also have the advantage of suppressing pressure loss in fluids that come into contact with nanofibers due to the slipflow effect. Furthermore, because the molecules constituting the nanofiber material are arranged regularly in the nanofiber, the nanofiber also tends to have high mechanical properties and heat resistance.
 ファイバーFの平均繊維径は、好ましくは900nm以下であり、800nm以下、700nm以下、600nm以下、500nm以下、さらには400nm以下であってもよい。ファイバーFの平均繊維径が小さければ小さいほど、ファイバーFにおける酸性ガスの吸着速度が向上する傾向がある。ファイバーFの平均繊維径は、次の方法によって特定できる。まず、複数のファイバーFを走査型電子顕微鏡で観察する。得られた電子顕微鏡像において、少なくとも15本のファイバーFの繊維径を画像処理によって算出する。得られた算出値の平均値をファイバーFの平均繊維径とみなすことができる。 The average fiber diameter of the fiber F is preferably 900 nm or less, and may be 800 nm or less, 700 nm or less, 600 nm or less, 500 nm or less, or even 400 nm or less. The smaller the average fiber diameter of the fibers F, the faster the acid gas adsorption rate in the fibers F tends to be. The average fiber diameter of fiber F can be determined by the following method. First, a plurality of fibers F are observed using a scanning electron microscope. In the obtained electron microscope image, the fiber diameters of at least 15 fibers F are calculated by image processing. The average value of the obtained calculated values can be regarded as the average fiber diameter of the fiber F.
[ファイバーによる二酸化炭素の吸着量]
 ファイバーFは、二酸化炭素などの酸性ガスに対する吸着性が高い傾向がある。一例として、二酸化炭素、窒素及び水蒸気から構成された混合ガスGに、ファイバーFを15時間接触させたときの二酸化炭素の吸着量A1が0.1mmol/g以上である。二酸化炭素の吸着量A1は、好ましくは0.3mmol/g以上であり、0.5mmol/g以上、0.7mmol/g以上、0.8mmol/g以上、0.9mmol/g以上、1.0mmol/g以上、1.1mmol/g以上、1.2mmol/g以上、1.3mmol/g以上、1.4mmol/g以上、1.5mmol/g以上、1.6mmol/g以上、1.7mmol/g以上、1.8mmol/g以上、1.9mmol/g以上、2.0mmol/g以上、2.1mmol/g以上、2.2mmol/g以上、さらには2.3mmol/g以上であってもよい。二酸化炭素の吸着量A1の上限値は、特に限定されず、例えば10mmol/gである。
[Amount of carbon dioxide adsorbed by fiber]
Fiber F tends to have high adsorption to acidic gases such as carbon dioxide. As an example, when the fiber F is brought into contact with a mixed gas G composed of carbon dioxide, nitrogen, and water vapor for 15 hours, the adsorption amount A1 of carbon dioxide is 0.1 mmol/g or more. The adsorption amount A1 of carbon dioxide is preferably 0.3 mmol/g or more, 0.5 mmol/g or more, 0.7 mmol/g or more, 0.8 mmol/g or more, 0.9 mmol/g or more, 1.0 mmol /g or more, 1.1 mmol/g or more, 1.2 mmol/g or more, 1.3 mmol/g or more, 1.4 mmol/g or more, 1.5 mmol/g or more, 1.6 mmol/g or more, 1.7 mmol/ g or more, 1.8 mmol/g or more, 1.9 mmol/g or more, 2.0 mmol/g or more, 2.1 mmol/g or more, 2.2 mmol/g or more, even 2.3 mmol/g or more good. The upper limit of the adsorption amount A1 of carbon dioxide is not particularly limited, and is, for example, 10 mmol/g.
 さらに、ファイバーFは、二酸化炭素などの酸性ガスに対する吸着速度が大きい傾向がある。ファイバーFの吸着速度は、上記の吸着量A1(mmol/g)に対する、ファイバーFを混合ガスGに60分間接触させたときの二酸化炭素の吸着量A2(mmol/g)の比率Rによって評価できる。比率Rは、例えば20%以上であり、30%以上、40%以上、50%以上、60%以上、70%以上、さらには80%以上であってもよい。比率Rの上限値は、特に限定されず、例えば100%であり、場合によっては80%であってもよい。 Furthermore, fiber F tends to have a high adsorption rate for acidic gases such as carbon dioxide. The adsorption rate of the fiber F can be evaluated by the ratio R of the adsorption amount A2 (mmol/g) of carbon dioxide when the fiber F is brought into contact with the mixed gas G for 60 minutes to the above adsorption amount A1 (mmol/g). . The ratio R is, for example, 20% or more, and may be 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, or even 80% or more. The upper limit of the ratio R is not particularly limited, and is, for example, 100%, and may be 80% depending on the case.
 なお、二酸化炭素の吸着量A2は、例えば0.05mmol/g以上であり、好ましくは0.1mmol/g以上であり、より好ましくは0.2mmol/g以上であり、さらに好ましくは0.3mmol/g以上であり、特に好ましくは0.4mmol/g以上であり、0.5mmol/g以上であってもよく、0.6mmol/g以上であってもよく、0.7mmol/g以上であってもよい。二酸化炭素の吸着量A2の上限値は、特に限定されず、例えば5mmol/gである。 The adsorption amount A2 of carbon dioxide is, for example, 0.05 mmol/g or more, preferably 0.1 mmol/g or more, more preferably 0.2 mmol/g or more, and still more preferably 0.3 mmol/g. g or more, particularly preferably 0.4 mmol/g or more, may be 0.5 mmol/g or more, may be 0.6 mmol/g or more, and may be 0.7 mmol/g or more. Good too. The upper limit of the adsorption amount A2 of carbon dioxide is not particularly limited, and is, for example, 5 mmol/g.
[二酸化炭素の吸着量の測定方法]
 以下では、二酸化炭素の吸着量A1及びA2の測定方法について説明する。吸着量A1及びA2は、例えば、図4に示す測定装置20を用いて測定することができる。測定装置20は、第1タンク30及び第2タンク31を備えている。一例として、第1タンク30が乾燥状態の窒素を貯蔵し、第2タンク31が、乾燥状態の窒素と乾燥状態の二酸化炭素との混合ガスを貯蔵している。第2タンク31の混合ガスにおける二酸化炭素の濃度は、例えば、5vol%である。
[Method of measuring carbon dioxide adsorption amount]
Below, a method for measuring the adsorption amounts A1 and A2 of carbon dioxide will be explained. The adsorption amounts A1 and A2 can be measured using a measuring device 20 shown in FIG. 4, for example. The measuring device 20 includes a first tank 30 and a second tank 31. As an example, the first tank 30 stores dry nitrogen, and the second tank 31 stores a mixed gas of dry nitrogen and dry carbon dioxide. The concentration of carbon dioxide in the mixed gas in the second tank 31 is, for example, 5 vol%.
 測定装置20は、水70を収容した第1容器40と、第1タンク30からの窒素を第1容器40に送るための第1経路60とをさらに備えている。第1経路60は、第1タンク30のガス出口に接続された一端と、第1容器40の水70中に配置された他端とを有する。第1タンク30から第1容器40に送られた窒素は、水70と接触することによって加湿される。第1経路60には、第1タンク30から第1容器40に送られる窒素の流量を調節するためのマスフローコントローラ35が配置されている。 The measuring device 20 further includes a first container 40 containing water 70 and a first path 60 for sending nitrogen from the first tank 30 to the first container 40. The first path 60 has one end connected to the gas outlet of the first tank 30 and the other end disposed in the water 70 of the first container 40 . The nitrogen sent from the first tank 30 to the first container 40 is humidified by contacting the water 70. A mass flow controller 35 for adjusting the flow rate of nitrogen sent from the first tank 30 to the first container 40 is arranged in the first path 60 .
 測定装置20は、第2容器41、第2経路62及びバイパス経路61をさらに備えている。第2経路62は、第1容器40と第2容器41とを接続している。第1容器40に送られ、加湿された窒素は、第2経路62を通じて、第2容器41に送られる。バイパス経路61は、第1タンク30とマスフローコントローラ35との間の位置において、第1経路60から分岐し、第2経路62に接続している。第1タンク30から送られた窒素の一部は、バイパス経路61に流入し、第2経路62を通じて第2容器41に送られる。バイパス経路61には、第1タンク30からバイパス経路61に送られる窒素の流量を調節するためのマスフローコントローラ36が配置されている。 The measuring device 20 further includes a second container 41, a second path 62, and a bypass path 61. The second path 62 connects the first container 40 and the second container 41. The humidified nitrogen sent to the first container 40 is sent to the second container 41 through the second path 62. The bypass path 61 branches from the first path 60 at a position between the first tank 30 and the mass flow controller 35 and is connected to the second path 62 . A portion of the nitrogen sent from the first tank 30 flows into the bypass path 61 and is sent to the second container 41 through the second path 62. A mass flow controller 36 is arranged in the bypass path 61 to adjust the flow rate of nitrogen sent from the first tank 30 to the bypass path 61 .
 測定装置20は、第2タンク31からの混合ガスを第2経路62に送るための第3経路63をさらに備えている。第3経路63は、第2タンク31のガス出口に接続された一端と、第2経路62に接続された他端とを有する。第3経路63には、第2タンク31から第2経路62に送られる混合ガスの流量を調節するためのマスフローコントローラ37が配置されている。第2経路62に送られた混合ガスは、第2経路62を通じて第2容器41に送られる。 The measuring device 20 further includes a third path 63 for sending the mixed gas from the second tank 31 to the second path 62. The third path 63 has one end connected to the gas outlet of the second tank 31 and the other end connected to the second path 62. A mass flow controller 37 is arranged in the third path 63 to adjust the flow rate of the mixed gas sent from the second tank 31 to the second path 62. The mixed gas sent to the second path 62 is sent to the second container 41 through the second path 62.
 測定装置20は、第3容器42及び第4経路64をさらに備えている。第3容器42は、水71と、水71中に配置された吸着部21とを収容する。第3容器42において、水71の温度は、23℃に維持される。吸着部21は、ガス入口22と、ガス出口23とを有する。吸着部21は、その内部にファイバーFを収容する容器として機能する。吸着部21は、水71が内部に浸み込まないように構成されている。吸着部21は、典型的には、疎水性の樹脂、例えばテトラフルオロエチレン-パーフルオロアルコキシエチレン共重合体(PFA)などのフッ素樹脂、で構成されたチューブである。一例として、吸着部21としてのチューブは、内径が4mmであり、外径が6mmである。吸着部21は、測定装置20に対して、着脱可能に構成されている。 The measuring device 20 further includes a third container 42 and a fourth path 64. The third container 42 accommodates water 71 and the adsorption part 21 arranged in the water 71. In the third container 42, the temperature of the water 71 is maintained at 23°C. The adsorption section 21 has a gas inlet 22 and a gas outlet 23. The adsorption section 21 functions as a container that accommodates the fiber F therein. The suction part 21 is configured so that water 71 does not seep into the interior. The adsorption unit 21 is typically a tube made of a hydrophobic resin, for example, a fluororesin such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA). As an example, the tube serving as the suction part 21 has an inner diameter of 4 mm and an outer diameter of 6 mm. The suction section 21 is configured to be detachable from the measuring device 20.
 なお、測定装置20は、吸着部21を備えた酸性ガス吸着装置として用いることも可能である。本発明は、その別の側面から、ガス入口22と、ガス出口23とを有する吸着部21を備え、吸着部21は、ファイバーFを収容している、酸性ガス吸着装置20を提供する。 Note that the measuring device 20 can also be used as an acidic gas adsorption device equipped with the adsorption section 21. From another aspect, the present invention provides an acid gas adsorption device 20 comprising an adsorption section 21 having a gas inlet 22 and a gas outlet 23, where the adsorption section 21 accommodates a fiber F.
 第4経路64は、第2容器41と第3容器42とを接続している。詳細には、第4経路64は、第3容器42において、吸着部21のガス入口22に接続されている。第4経路64には、吸着部21に供給されるガスにおける二酸化炭素の濃度を測定するための第1濃度計50が配置されている。 The fourth path 64 connects the second container 41 and the third container 42. Specifically, the fourth path 64 is connected to the gas inlet 22 of the adsorption section 21 in the third container 42 . A first concentration meter 50 for measuring the concentration of carbon dioxide in the gas supplied to the adsorption unit 21 is arranged in the fourth path 64 .
 測定装置20は、吸着部21のガス出口23に接続され、吸着部21から測定装置20の外部にガスを排出するための第5経路65をさらに備えている。第5経路65には、吸着部21から排出されるガスにおける二酸化炭素の濃度を測定するための第2濃度計51が配置されている。第5経路65には、吸着部21内の圧力を一定の値に調整する背圧弁がさらに配置されていてもよい。 The measuring device 20 further includes a fifth path 65 that is connected to the gas outlet 23 of the adsorbing section 21 and discharging gas from the adsorbing section 21 to the outside of the measuring device 20. A second concentration meter 51 for measuring the concentration of carbon dioxide in the gas discharged from the adsorption section 21 is arranged in the fifth path 65 . The fifth path 65 may further include a back pressure valve that adjusts the pressure within the adsorption section 21 to a constant value.
 測定装置20の各経路は、例えば、金属製又は樹脂製の配管で構成されている。 Each path of the measuring device 20 is composed of, for example, metal or resin piping.
[前処理]
 吸着量A1及びA2の測定方法では、まず、ファイバーFについて乾燥処理が行われる。乾燥処理は、例えば、真空雰囲気下、60℃の条件でファイバーFを2時間以上処理することによって行われる。次に、露点約-60℃のドライルーム内で、乾燥処理後のファイバーFを吸着部21に充填する。吸着部21に充填されるファイバーFの重量は、例えば50mgである。次に、吸着部21の両端に第4経路64及び第5経路65を接続し、吸着部21を第3容器42の水71に浸漬させる。
[Preprocessing]
In the method for measuring the adsorption amounts A1 and A2, first, the fiber F is subjected to a drying process. The drying treatment is performed, for example, by treating the fiber F at 60° C. for 2 hours or more in a vacuum atmosphere. Next, in a dry room with a dew point of about -60° C., the fibers F after drying are filled into the adsorption section 21. The weight of the fibers F filled in the adsorption section 21 is, for example, 50 mg. Next, the fourth path 64 and the fifth path 65 are connected to both ends of the adsorption section 21 , and the adsorption section 21 is immersed in the water 71 in the third container 42 .
 次に、測定装置20の第1経路60、第2経路62、バイパス経路61及び第3経路63を通じて、第1タンク30からの窒素、及び、第2タンク31からの混合ガスを第2容器41に供給する。第2容器41内で、これらのガスが混合され、二酸化炭素、窒素及び水蒸気から構成された混合ガスGが得られる。第2容器41内では、混合ガスGにおける二酸化炭素の濃度が400volppmに調整される。混合ガスGは、温度が23℃であり、湿度が50%RHである。混合ガスGは、第4経路64を通じて、ファイバーFの重量に対して十分な流量、例えば、50mgのファイバーFに対して300mL/minの流量で、吸着部21に供給される。吸着部21内において、混合ガスGの圧力は、背圧弁によって、例えば107kPaに調節される。 Next, the nitrogen from the first tank 30 and the mixed gas from the second tank 31 are transferred to the second container 41 through the first path 60, second path 62, bypass path 61, and third path 63 of the measuring device 20. supply to. These gases are mixed in the second container 41 to obtain a mixed gas G composed of carbon dioxide, nitrogen, and water vapor. In the second container 41, the concentration of carbon dioxide in the mixed gas G is adjusted to 400 volppm. The mixed gas G has a temperature of 23° C. and a humidity of 50% RH. The mixed gas G is supplied to the adsorption unit 21 through the fourth path 64 at a flow rate sufficient for the weight of the fiber F, for example, at a flow rate of 300 mL/min for 50 mg of fiber F. In the adsorption section 21, the pressure of the mixed gas G is adjusted to, for example, 107 kPa by a back pressure valve.
 次に、混合ガスGが吸着部21に供給されている状態で、吸着部21を第3容器42から取り出し、吸着部21を80℃の湯浴(図示せず)に2時間以上浸漬させる。吸着部21の湯浴への浸漬は、第1濃度計50で測定された二酸化炭素の濃度と、第2濃度計51で測定された二酸化炭素の濃度とが実質的に同じ値になるまで行う。これにより、吸着部21内のファイバーFについて、前処理が完了する。 Next, while the mixed gas G is being supplied to the adsorption unit 21, the adsorption unit 21 is taken out from the third container 42, and the adsorption unit 21 is immersed in a hot water bath (not shown) at 80° C. for 2 hours or more. The adsorption unit 21 is immersed in the hot water bath until the concentration of carbon dioxide measured by the first concentration meter 50 and the concentration of carbon dioxide measured by the second concentration meter 51 become substantially the same value. . As a result, the pretreatment of the fibers F in the adsorption section 21 is completed.
[吸着試験]
 次に、混合ガスGが吸着部21に供給されている状態で、吸着部21を湯浴から取り出し、第3容器42の23℃の水浴(水71)に浸漬させる。これにより、吸着部21内のファイバーFについて、吸着試験を開始する。吸着試験は、開始してから15時間経過するまで行う。吸着試験を15時間行った場合、ファイバーFによる二酸化炭素の吸着は、通常、平衡に達しているとみなすことができる。
[Adsorption test]
Next, while the mixed gas G is being supplied to the adsorption unit 21, the adsorption unit 21 is taken out of the water bath and immersed in a 23° C. water bath (water 71) in the third container 42. As a result, an adsorption test is started for the fiber F in the adsorption section 21. The adsorption test is carried out until 15 hours have passed since the start. When the adsorption test is conducted for 15 hours, the adsorption of carbon dioxide by fiber F can generally be considered to have reached equilibrium.
 吸着試験では、開始から15時間までにファイバーFが吸着した二酸化炭素の物質量M1と、開始から60分までにファイバーFが吸着した二酸化炭素の物質量M2とを測定する。ファイバーFが吸着した二酸化炭素の物質量は、第1濃度計50で測定された二酸化炭素の濃度と、第2濃度計51で測定された二酸化炭素の濃度との差を経時的に測定した結果から算出することができる。物質量M1に基づいて、1gのファイバーFが15時間で吸着する二酸化炭素の物質量を算出し、得られた算出値を吸着量A1として特定する。さらに、物質量M2に基づいて、1gのファイバーFが60分で吸着する二酸化炭素の物質量を算出し、得られた算出値を吸着量A2として特定する。 In the adsorption test, the amount M1 of carbon dioxide adsorbed by the fiber F up to 15 hours from the start and the amount M2 of carbon dioxide adsorbed by the fiber F up to 60 minutes from the start are measured. The amount of carbon dioxide adsorbed by the fiber F is determined by measuring the difference over time between the concentration of carbon dioxide measured by the first concentration meter 50 and the concentration of carbon dioxide measured by the second concentration meter 51. It can be calculated from Based on the substance amount M1, the amount of carbon dioxide adsorbed by 1 g of fiber F in 15 hours is calculated, and the obtained calculated value is specified as the adsorption amount A1. Furthermore, the amount of carbon dioxide that 1 g of fiber F adsorbs in 60 minutes is calculated based on the amount of material M2, and the obtained calculated value is specified as the amount of adsorption A2.
[ファイバーの用途]
 本実施形態のファイバーFは、酸性ガスの吸着材に適している。酸性ガスとしては、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、シアン化水素、窒素酸化物(NOx)などが挙げられ、好ましくは二酸化炭素である。ただし、ファイバーFの用途は、酸性ガスの吸着材としての用途に限定されない。ファイバーFは、金属イオンの吸着材として用いられてもよい。
[Applications of fiber]
The fiber F of this embodiment is suitable as an adsorbent for acidic gas. Examples of the acidic gas include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxides (SOx), hydrogen cyanide, and nitrogen oxides (NOx), with carbon dioxide being preferred. However, the use of fiber F is not limited to use as an adsorbent for acidic gas. Fiber F may be used as an adsorbent for metal ions.
 ファイバーFは、例えば、次の方法によって使用することができる。まず、酸性ガスを含む混合ガスをファイバーFと接触させる。混合ガスは、例えば、酸性ガス以外の他のガスを含んでいる。他のガスとしては、例えば、水素、窒素などの非極性ガス、及び、ヘリウムなどの不活性ガスが挙げられ、好ましくは窒素である。混合ガスは、典型的には大気である。混合ガスは、化学プラント又は火力発電のオフガスであってもよい。 The fiber F can be used, for example, by the following method. First, a mixed gas containing an acid gas is brought into contact with the fiber F. The mixed gas contains, for example, other gases in addition to the acid gas. Examples of the other gases include non-polar gases such as hydrogen and nitrogen, and inert gases such as helium, and nitrogen is preferred. The mixed gas is typically air. The mixed gas may be off-gas from a chemical plant or a thermal power plant.
 混合ガスの温度は、例えば室温(23℃)である。混合ガスにおける酸性ガスの濃度は、特に限定されず、標準状態(0℃、101kPa)で、例えば0.01vol%(100volppm)以上であり、好ましくは0.04vol%(400volppm)以上であり、1.0vol%以上であってもよい。混合ガスにおける二酸化炭素の濃度の上限値は、特に限定されず、標準状態で、例えば10vol%である。混合ガスの圧力は、典型的には、ファイバーFの使用環境における大気圧に等しい。ただし、ファイバーFと接触させる混合ガスは、加圧されていてもよい。 The temperature of the mixed gas is, for example, room temperature (23° C.). The concentration of acidic gas in the mixed gas is not particularly limited, and is, for example, 0.01 vol% (100 volppm) or more, preferably 0.04 vol% (400 volppm) or more, under standard conditions (0 ° C., 101 kPa), and 1 It may be .0vol% or more. The upper limit of the concentration of carbon dioxide in the mixed gas is not particularly limited, and is, for example, 10 vol% in a standard state. The pressure of the mixed gas is typically equal to the atmospheric pressure in the environment in which the fiber F is used. However, the mixed gas brought into contact with the fiber F may be pressurized.
 混合ガスと接触したファイバーFは、混合ガスに含まれる酸性ガスを吸着する。混合ガスをファイバーFに接触させる操作は、例えば、ファイバーFによる酸性ガスの吸着が平衡に達するまで行う。 The fiber F that has come into contact with the mixed gas adsorbs the acidic gas contained in the mixed gas. The operation of bringing the mixed gas into contact with the fibers F is performed, for example, until the adsorption of acidic gas by the fibers F reaches equilibrium.
 次に、酸性ガスを吸着したファイバーFについて再生処理を行う。再生処理は、例えば、ファイバーFを加熱することによって実施できる。ファイバーFの加熱温度は、例えば50~80℃である。ファイバーFは、減圧雰囲気下又は真空雰囲気下で加熱されてもよい。ファイバーFを加熱することにより、酸性ガスがファイバーFから脱離する。これにより、ファイバーFが再生され、ファイバーFを繰り返し使用することができる。ファイバーFから脱離した酸性ガス、特に二酸化炭素、は、化学品の合成原料やドライアイスとして利用することができる。なお、ファイバーFによる酸性ガスの吸着操作、及びファイバーFの再生処理は、上述した測定装置20(酸性ガス吸着装置)を用いて実施することが可能である。 Next, the fiber F that has adsorbed the acidic gas is subjected to a regeneration process. The regeneration process can be carried out by heating the fiber F, for example. The heating temperature of the fiber F is, for example, 50 to 80°C. Fiber F may be heated under a reduced pressure atmosphere or under a vacuum atmosphere. By heating the fiber F, acidic gas is desorbed from the fiber F. As a result, the fiber F is regenerated and can be used repeatedly. The acidic gas, especially carbon dioxide, released from the fiber F can be used as a raw material for chemical synthesis or as dry ice. Note that the acid gas adsorption operation by the fiber F and the regeneration process of the fiber F can be performed using the above-mentioned measuring device 20 (acid gas adsorption device).
<繊維シートの実施形態>
 本実施形態の繊維シートは、上記のファイバーFを含む。詳細には、繊維シートは、複数のファイバーFの集合体である。繊維シートは、実質的にファイバーFのみから構成されていてもよい。繊維シートは、織布であってもよく、不織布であってもよい。繊維シートの形状としては、特に限定されず、平板状、コルゲート状、プリーツ状などが挙げられる。
<Embodiment of fiber sheet>
The fiber sheet of this embodiment includes the fibers F described above. Specifically, the fiber sheet is an aggregate of a plurality of fibers F. The fiber sheet may be substantially composed only of fibers F. The fiber sheet may be a woven fabric or a nonwoven fabric. The shape of the fiber sheet is not particularly limited, and examples thereof include a flat plate, a corrugated shape, and a pleated shape.
 繊維シートにおいて、2つ以上のファイバーFが交差する部分において、これらのファイバーFが溶着していてもよい。ファイバーF同士が部分的に溶着することによって、繊維シートの強度が向上する傾向がある。ただし、繊維シートの比表面積を向上させる観点から、ファイバーF同士は、互いに溶着していなくてもよい。 In the fiber sheet, two or more fibers F may be welded at a portion where they intersect. By partially welding the fibers F to each other, the strength of the fiber sheet tends to improve. However, from the viewpoint of improving the specific surface area of the fiber sheet, the fibers F do not need to be welded to each other.
<構造体の実施形態>
 図5Aに示すとおり、本実施形態の構造体15は、上述の繊維シート11と、通気経路14とを備える。構造体15は、典型的には、同じ方向に延びている複数の通気経路14を有するハニカム構造体である。
<Embodiment of structure>
As shown in FIG. 5A, the structure 15 of this embodiment includes the above-described fiber sheet 11 and a ventilation path 14. The structure 15 is typically a honeycomb structure having a plurality of ventilation channels 14 extending in the same direction.
 構造体15において、繊維シート11は、支持体(図示せず)によって支持されていてもよい。繊維シート11と支持体は、固定手段によって固定されていてもよい。固定手段の具体例は、接着剤、詳細には接着剤を含む接着シートなどである。本明細書において、「接着剤」の用語は、粘着剤(pressure-sensitive adhesive)を包含する用語として使用される。 In the structure 15, the fiber sheet 11 may be supported by a support (not shown). The fiber sheet 11 and the support may be fixed by a fixing means. A specific example of the fixing means is an adhesive, specifically an adhesive sheet containing an adhesive. In this specification, the term "adhesive" is used to include pressure-sensitive adhesives.
 構造体15は、例えば、コルゲート状の繊維シート11Aと、平板状の繊維シート11Bとが積層された吸着材ユニットUを備えている。繊維シート11Aにおいて、複数の山部12と複数の谷部13とが交互に並んでいる。繊維シート11Aの山部12又は谷部13と、繊維シート11Bとの間に、通気経路14が形成されている。本実施形態において、方向xは、繊維シート11Aの複数の山部12と複数の谷部13とが交互に並んでいる方向(波方向)である。方向yは、吸着材ユニットUにおける繊維シート11A及び11Bの積層方向である。方向zは、方向x及びyのそれぞれに直交する方向であり、通気経路14が延びている方向である。 The structure 15 includes, for example, an adsorbent unit U in which a corrugated fiber sheet 11A and a flat fiber sheet 11B are laminated. In the fiber sheet 11A, a plurality of peaks 12 and a plurality of troughs 13 are arranged alternately. A ventilation path 14 is formed between the peaks 12 or troughs 13 of the fiber sheet 11A and the fiber sheet 11B. In this embodiment, the direction x is the direction (wave direction) in which the plurality of peaks 12 and the plurality of troughs 13 of the fiber sheet 11A are alternately arranged. The direction y is the lamination direction of the fiber sheets 11A and 11B in the adsorbent unit U. The direction z is a direction perpendicular to each of the directions x and y, and is the direction in which the ventilation path 14 extends.
 構造体15は、例えば、複数の吸着材ユニットUを備えている。構造体15における吸着材ユニットUの数は、特に限定されず、例えば2~100である。構造体15において、複数の吸着材ユニットUは、複数の繊維シート11Aと複数の繊維シート11Bとが交互に並ぶように、方向yに積層されている。複数の吸着材ユニットUが積層されていることによって、構造体15は、ブロックの形状を有する。 The structure 15 includes, for example, a plurality of adsorbent units U. The number of adsorbent units U in the structure 15 is not particularly limited, and is, for example, 2 to 100. In the structure 15, the plurality of adsorbent units U are stacked in the direction y so that the plurality of fiber sheets 11A and the plurality of fiber sheets 11B are alternately arranged. The structure 15 has a block shape because the plurality of adsorbent units U are stacked.
 通気経路14は、構造体15を方向zに貫通する貫通孔である。通気経路14は、繊維シート11A及び11Bによって囲まれている。構造体15において、酸性ガスは、通気経路14を通じて方向zに移動しつつ、繊維シート11A及び11Bによって効率的に吸着される。 The ventilation path 14 is a through hole that penetrates the structure 15 in the direction z. Ventilation path 14 is surrounded by fiber sheets 11A and 11B. In the structure 15, the acidic gas is efficiently adsorbed by the fiber sheets 11A and 11B while moving in the direction z through the ventilation path 14.
 構造体15では、繊維シート11A及び11Bの厚さが小さければ小さいほど、通気経路14の断面積を大きく調整できる。通気経路14の断面積が大きい構造体15は、酸性ガスと接触したときなどに生じる圧力損失を低減することに適している。圧力損失が低減された構造体15によれば、例えば、酸性ガスを移動させるために用いられるファンの動力を低減することができる。なお、繊維シート11の単位体積当たりのアミノ基の物質量が大きいと、繊維シート11の厚さが小さい場合であっても酸性ガスを十分に吸着できる傾向がある。 In the structure 15, the smaller the thickness of the fiber sheets 11A and 11B, the larger the cross-sectional area of the ventilation path 14 can be adjusted. The structure 15 in which the ventilation path 14 has a large cross-sectional area is suitable for reducing pressure loss that occurs when it comes into contact with acidic gas. According to the structure 15 with reduced pressure loss, for example, the power of a fan used to move acid gas can be reduced. Note that when the amount of amino groups per unit volume of the fiber sheet 11 is large, acidic gas tends to be able to be sufficiently adsorbed even when the thickness of the fiber sheet 11 is small.
<構造体の変形例>
 繊維シート11を備える構造体15の形状は、図5Aに示したものに限定されない。図5Bに示す構造体16は、1つの吸着材ユニットUが中心管80に巻き付けられた形状を有する。このことを除き、構造体16の構成は、構造体15の構成と同じである。
<Example of modification of structure>
The shape of the structure 15 including the fiber sheet 11 is not limited to that shown in FIG. 5A. The structure 16 shown in FIG. 5B has a shape in which one adsorbent unit U is wound around the central tube 80. Except for this, the configuration of structure 16 is the same as that of structure 15.
 構造体16は、円柱形状を有している。構造体16において、繊維シート11Aの複数の山部12と複数の谷部13とは、構造体16の周方向に交互に並んでいる。繊維シート11Aの山部12又は谷部13と、繊維シート11Bとの間に形成された通気経路14は、中心管80が延びる方向に構造体16を貫通している。構造体16において、酸性ガスは、通気経路14を通じて、中心管80が延びる方向に移動しつつ、繊維シート11A及び11Bによって効率的に吸着される。 The structure 16 has a cylindrical shape. In the structure 16, the plurality of peaks 12 and the plurality of valleys 13 of the fiber sheet 11A are arranged alternately in the circumferential direction of the structure 16. A ventilation path 14 formed between the peaks 12 or troughs 13 of the fiber sheet 11A and the fiber sheet 11B penetrates the structure 16 in the direction in which the central tube 80 extends. In the structure 16, the acidic gas is efficiently adsorbed by the fiber sheets 11A and 11B while moving in the direction in which the central tube 80 extends through the ventilation path 14.
 以下に、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited thereto.
(実施例1)
 まず、化合物C1として、トリエチレンテトラミン(Shigma-Aldrich社製のTETA)0.97gを準備し、化合物C2として、1,7-オクタジエンジエポキシド(東京化成工業社製のODE)0.80gと、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン(三菱ガス化学社製のTETRAD-C)0.20gとを準備した。これらをスクリュー管瓶に入れ、上記の化合物群からなる溶液S1を調製した。化合物群中の1級アミノ基によって反応可能な官能基f(エポキシ基)の当量Aに対する、化合物群中の官能基fの当量Xの比X/Aは0.5であった。
(Example 1)
First, as compound C1, 0.97 g of triethylenetetramine (TETA manufactured by Sigma-Aldrich) was prepared, and as compound C2, 0.80 g of 1,7-octadiene diepoxide (ODE manufactured by Tokyo Kasei Kogyo Co., Ltd.) was prepared. , 0.20 g of 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane (TETRAD-C manufactured by Mitsubishi Gas Chemical Co., Ltd.) were prepared. These were placed in a screw tube bottle to prepare a solution S1 consisting of the above compound group. The ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f (epoxy group) capable of reacting with a primary amino group in the compound group was 0.5.
 次に、溶液S1をホットスターラーで攪拌することによって、溶液S1中で化合物群を部分的に反応させ、反応物P1を合成した。反応物P1は、Bステージの状態であった。ホットスターラーによる撹拌は、温度60℃、攪拌速度400rpmの条件で60分間行った。 Next, by stirring the solution S1 with a hot stirrer, the compound group was partially reacted in the solution S1, and a reactant P1 was synthesized. Reactant P1 was in B stage. Stirring with a hot stirrer was performed for 60 minutes at a temperature of 60° C. and a stirring speed of 400 rpm.
 次に、熱可塑性樹脂Tとしてのポリビニルアルコール(クラレ社製PVA-117:けん化度98、重合度1700)4gを純水96gに溶解させて、4wt%の濃度の水溶液(溶液S2)を得た。次に、上記の溶液S1と溶液S2とを混合し、原料Mを作製した。原料Mにおいて、反応物P1及び未反応の化合物群の合計重量Dと、溶液S2の重量との比(配合比)は、1:9であった。 Next, 4 g of polyvinyl alcohol (PVA-117 manufactured by Kuraray Co., Ltd.: degree of saponification 98, degree of polymerization 1700) as thermoplastic resin T was dissolved in 96 g of pure water to obtain an aqueous solution (solution S2) with a concentration of 4 wt%. . Next, the above solutions S1 and S2 were mixed to produce a raw material M. In raw material M, the ratio (blending ratio) of the total weight D of reactant P1 and unreacted compound group to the weight of solution S2 was 1:9.
 次に、図1に示した製造装置10Aを用いて、原料Mをファイバー状に成形した。製造装置10Aにおいて、第1吐出部1の吐出口と捕集部2との距離(捕集距離)は30cmであった。第1吐出部1としては、HANKE社製のオールプラスチックシリンジ(5mL)に、武蔵エンジニアリング社製のプラスチックニードル(サイズ:27G)をセットしたものを用いた。原料Mの吐出は、シリンジポンプを用いて、吐出量2mL/hrの条件で行った。 Next, using the manufacturing apparatus 10A shown in FIG. 1, the raw material M was molded into a fiber shape. In the manufacturing apparatus 10A, the distance between the discharge port of the first discharge section 1 and the collection section 2 (collection distance) was 30 cm. As the first discharge part 1, an all-plastic syringe (5 mL) manufactured by HANKE and a plastic needle (size: 27G) manufactured by Musashi Engineering was used. The raw material M was discharged using a syringe pump at a discharge rate of 2 mL/hr.
 第2吐出部3としては、吐出口の内径が4mmであるノズルを用いた。第2吐出部3からは、64L/minの吐出量で圧縮空気を吐出した。圧縮空気は、減圧弁を利用して準備した。 A nozzle with an outlet diameter of 4 mm was used as the second discharge part 3. Compressed air was discharged from the second discharge part 3 at a discharge rate of 64 L/min. The compressed air was prepared using a pressure reducing valve.
 製造装置10Aでは、第1吐出部1から吐出された原料Mが圧縮空気と接触することによって、ファイバー状の成形体が得られた。ファイバー状の成形体は、捕集部2で捕集された。捕集部2としては金網を用いた。 In the manufacturing apparatus 10A, the raw material M discharged from the first discharge section 1 came into contact with compressed air, thereby obtaining a fibrous molded body. The fibrous molded body was collected by the collecting section 2. A wire mesh was used as the collection section 2.
 次に、真空雰囲気下で、ファイバー状の成形体を80℃で2時間加熱した。これにより、成形体中で反応物P1と未反応の化合物群との反応が進行し、実施例1のファイバーが得られた。 Next, the fibrous molded body was heated at 80° C. for 2 hours in a vacuum atmosphere. As a result, the reaction between the reactant P1 and the unreacted compound group progressed in the molded body, and the fiber of Example 1 was obtained.
(実施例2~6)
 用いた材料や製造条件を表1に示すように変更したことを除き、実施例1と同じ方法によって実施例2~6のファイバーを得た。
(Examples 2 to 6)
Fibers of Examples 2 to 6 were obtained in the same manner as in Example 1, except that the materials and manufacturing conditions used were changed as shown in Table 1.
(実施例7)
 まず、化合物C1として、ポリエチレンイミン(日本触媒社製のエポミンSP-006)1.59gを準備し、化合物C2として、エチレングリコールジグリシジルエーテル(ナガセケムテックス社製のデナコールEX-810)0.80gと、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン(三菱ガス化学社製のTETRAD-C)0.20gとを準備した。これらをスクリュー管瓶に入れ、上記の化合物群からなる溶液S1を調製した。化合物群中の1級アミノ基によって反応可能な官能基f(エポキシ基)の当量Aに対する、化合物群中の官能基fの当量Xの比X/Aは0.5であった。
(Example 7)
First, 1.59 g of polyethyleneimine (Epomin SP-006 manufactured by Nippon Shokubai Co., Ltd.) was prepared as compound C1, and 0.80 g of ethylene glycol diglycidyl ether (Denacol EX-810 manufactured by Nagase ChemteX Co., Ltd.) was prepared as compound C2. and 0.20 g of 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane (TETRAD-C manufactured by Mitsubishi Gas Chemical Co., Ltd.) were prepared. These were placed in a screw tube bottle to prepare a solution S1 consisting of the above compound group. The ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f (epoxy group) capable of reacting with a primary amino group in the compound group was 0.5.
 次に、溶液S1をホットスターラーで攪拌することによって、溶液S1中で化合物群を部分的に反応させ、反応物P1を合成した。反応物P1は、Bステージの状態であった。ホットスターラーによる撹拌は、温度40℃、攪拌速度400rpmの条件で35分間行った。 Next, by stirring the solution S1 with a hot stirrer, the compound group was partially reacted in the solution S1, and a reactant P1 was synthesized. Reactant P1 was in B stage. Stirring with a hot stirrer was performed for 35 minutes at a temperature of 40° C. and a stirring speed of 400 rpm.
 次に、熱可塑性樹脂Tとしてのポリビニルアルコール(クラレ社製PVA-117:けん化度98、重合度1700)6gを純水94gに溶解させて、6wt%の濃度の水溶液(溶液S2)を得た。次に、上記の溶液S1と溶液S2とを混合し、原料Mを作製した。原料Mにおいて、反応物P1及び未反応の化合物群の合計重量Dと、溶液S2の重量との比(配合比)は、1:10であった。 Next, 6 g of polyvinyl alcohol (PVA-117 manufactured by Kuraray Co., Ltd.: degree of saponification 98, degree of polymerization 1700) as thermoplastic resin T was dissolved in 94 g of pure water to obtain an aqueous solution (solution S2) with a concentration of 6 wt%. . Next, the above solutions S1 and S2 were mixed to produce a raw material M. In the raw material M, the ratio (blending ratio) of the total weight D of the reactant P1 and the unreacted compound group to the weight of the solution S2 was 1:10.
 次に、図3に示した製造装置10Cを用いて、原料Mをファイバー状に成形した。原料Mを吐出部1から吐出するときには、原料Mに10kVの電圧を印加した。製造装置10Cにおいて、吐出部1と捕集部2との距離(捕集距離)は8cmであった。吐出部1としては、HANKE社製のオールプラスチックシリンジ(5mL)に、テルモ社製のノンベベル針(サイズ:22G)をセットしたものを用いた。原料Mの吐出は、シリンジが備えるプランジャを0.008cm/minの速度で押し込むことによって行った。 Next, using the manufacturing apparatus 10C shown in FIG. 3, the raw material M was molded into a fiber shape. When the raw material M was discharged from the discharge section 1, a voltage of 10 kV was applied to the raw material M. In the manufacturing apparatus 10C, the distance between the discharge section 1 and the collection section 2 (collection distance) was 8 cm. As the discharge part 1, an all-plastic syringe (5 mL) manufactured by HANKE, in which a non-bevel needle (size: 22G) manufactured by Terumo Corporation was set, was used. The raw material M was discharged by pushing a plunger included in a syringe at a speed of 0.008 cm/min.
 製造装置10Cでは、吐出部1から原料Mが吐出され、ファイバー状に成形された。ファイバー状の成形体は、捕集部2で捕集された。 In the manufacturing apparatus 10C, the raw material M was discharged from the discharge section 1 and formed into a fiber shape. The fibrous molded body was collected by the collecting section 2.
 次に、真空雰囲気下で、ファイバー状の成形体を80℃で2時間加熱した。これにより、成形体中で反応物P1と未反応の化合物群との反応が進行し、実施例7のファイバーが得られた。 Next, the fibrous molded body was heated at 80° C. for 2 hours in a vacuum atmosphere. As a result, the reaction between the reactant P1 and the unreacted compound group progressed in the molded body, and the fiber of Example 7 was obtained.
(実施例8)
 化合物C1や熱可塑性樹脂Tの使用量を表1に示すように変更したことを除き、実施例7と同じ方法によって実施例8のファイバーを得た。
(Example 8)
A fiber of Example 8 was obtained by the same method as Example 7, except that the amounts of compound C1 and thermoplastic resin T used were changed as shown in Table 1.
[走査型電子顕微鏡による観察]
 実施例1~8のファイバーについて、走査型電子顕微鏡(SEM)を用いて、拡大倍率5000倍で観察を行った。観察結果を図6~13に示す。
[Observation using a scanning electron microscope]
The fibers of Examples 1 to 8 were observed using a scanning electron microscope (SEM) at a magnification of 5000 times. The observation results are shown in Figures 6 to 13.
[平均繊維径]
 実施例1~8のファイバーについて、上述した方法によって平均繊維径を測定した。結果を表1に示す。
[Average fiber diameter]
The average fiber diameters of the fibers of Examples 1 to 8 were measured by the method described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中の略称は以下のとおりである。
 ODE:1,7-オクタジエンジエポキシド(東京化成工業社製、ODE)
 EDE:エチレングリコールジグリシジルエーテル(ナガセケムテックス社製、デナコールEX-810)
 T-C:1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン(三菱ガス化学社製、TETRAD-C)
 T-X:N,N,N’,N’-テトラグリシジル-m-キシレンジアミン(三菱ガス化学社製、TETRAD-X)
 TETA:トリエチレンテトラミン(Shigma-Aldrich社製、TETA)
 SP006:ポリエチレンイミン(日本触媒社製、エポミンSP-006、重量平均分子量約600)
 PVA117:ポリビニルアルコール(クラレ社製、PVA-117、けん化度98、重合度1700)
 PVA217:ポリビニルアルコール(クラレ社製、PVA-217、けん化度88、重合度1700)
The abbreviations in Table 1 are as follows.
ODE: 1,7-octadiene diepoxide (manufactured by Tokyo Kasei Kogyo Co., Ltd., ODE)
EDE: Ethylene glycol diglycidyl ether (manufactured by Nagase ChemteX, Denacol EX-810)
TC: 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane (manufactured by Mitsubishi Gas Chemical Co., Ltd., TETRAD-C)
TX: N,N,N',N'-tetraglycidyl-m-xylene diamine (manufactured by Mitsubishi Gas Chemical Co., Ltd., TETRAD-X)
TETA: triethylenetetramine (manufactured by Sigma-Aldrich, TETA)
SP006: Polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., Epomin SP-006, weight average molecular weight approximately 600)
PVA117: Polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA-117, degree of saponification 98, degree of polymerization 1700)
PVA217: Polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA-217, degree of saponification 88, degree of polymerization 1700)
 走査型電子顕微鏡による観察によって、実施例1~8において、ファイバーが得られたことを確認した。これらの実施例では、比X/Aが0.9以下となるように、化合物C1及びC2が配合されており、これにより、ファイバーに含まれる反応物には2級アミノ基が存在する。上述のとおり、2級アミノ基は、ファイバーにおける酸性ガスの吸着性及び脱離性を適切に調整することに適した官能基であるため、これらのファイバーは、酸性ガスの吸着材に適していると推定される。 It was confirmed by observation using a scanning electron microscope that fibers were obtained in Examples 1 to 8. In these examples, the compounds C1 and C2 are blended so that the ratio X/A is 0.9 or less, so that secondary amino groups are present in the reactants contained in the fiber. As mentioned above, the secondary amino group is a functional group suitable for appropriately adjusting the adsorption and desorption properties of acidic gases in fibers, so these fibers are suitable as adsorbents for acidic gases. It is estimated to be.
 本実施形態の製造方法によって製造されたファイバーは、酸性ガスの吸着材に適している。このファイバーは、例えば、大気中の二酸化炭素を吸着することができる。
 
The fiber manufactured by the manufacturing method of this embodiment is suitable as an adsorbent for acidic gases, for example, carbon dioxide in the atmosphere.

Claims (14)

  1.  1級アミノ基を有する化合物C1と、前記1級アミノ基と反応可能な官能基fを有する化合物C2とを含む化合物群を少なくとも部分的に反応させて反応物を得る工程Iと、
     前記反応物を含む原料をファイバー状に成形する工程IIと、
    を含む、ファイバーの製造方法であって、
     前記化合物群中の前記1級アミノ基によって反応可能な前記官能基fの当量Aに対する、前記化合物群中の前記官能基fの当量Xの比X/Aが0.9以下である、製造方法。
    Step I of obtaining a reactant by at least partially reacting a group of compounds including a compound C1 having a primary amino group and a compound C2 having a functional group f capable of reacting with the primary amino group;
    Step II of forming the raw material containing the reactant into a fiber shape;
    A method for producing a fiber, comprising:
    A manufacturing method, wherein the ratio X/A of the equivalent weight X of the functional group f in the compound group to the equivalent weight A of the functional group f capable of reacting with the primary amino group in the compound group is 0.9 or less. .
  2.  前記ファイバーの平均繊維径が1~1000nmである、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the average fiber diameter of the fibers is 1 to 1000 nm.
  3.  前記化合物C1は、アミンモノマーを含む、請求項1に記載の製造方法。 The method of claim 1, wherein the compound C1 includes an amine monomer.
  4.  前記官能基fがエポキシ基を含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the functional group f includes an epoxy group.
  5.  前記化合物群の反応が硬化反応であり、
     前記反応物がBステージの状態である、請求項1に記載の製造方法。
    The reaction of the compound group is a curing reaction,
    The manufacturing method according to claim 1, wherein the reactant is in a B-stage state.
  6.  前記原料が熱可塑性樹脂を含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the raw material contains a thermoplastic resin.
  7.  前記熱可塑性樹脂がポリビニルアルコール樹脂を含む、請求項6に記載の製造方法。 The manufacturing method according to claim 6, wherein the thermoplastic resin includes a polyvinyl alcohol resin.
  8.  前記原料が水を含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the raw material contains water.
  9.  前記工程IIにおいて、前記原料を吐出部から吐出して、前記原料をファイバー状に成形する、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein in the step II, the raw material is discharged from a discharge part to form the raw material into a fiber shape.
  10.  前記吐出部から吐出された前記原料をガス流と接触させる、請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein the raw material discharged from the discharge section is brought into contact with a gas flow.
  11.  前記ガス流が圧縮空気を含む、請求項10に記載の製造方法。 11. The method of claim 10, wherein the gas stream includes compressed air.
  12.  前記原料に電圧を印加した状態で、前記原料を前記吐出部から吐出する、請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein the raw material is discharged from the discharge section while a voltage is applied to the raw material.
  13.  前記工程IIにおいて、前記反応物及び未反応の前記化合物群を含むファイバー状の成形体が得られ、
     前記製造方法は、前記成形体において、前記反応物と未反応の前記化合物群との反応を進行させる工程IIIをさらに含む、請求項1に記載の製造方法。
    In the step II, a fibrous molded body containing the reactant and the unreacted compound group is obtained,
    2. The manufacturing method according to claim 1, further comprising step III of allowing the reaction between the reactant and the unreacted compound group to proceed in the molded body.
  14.  前記ファイバーは、酸性ガス吸着材として用いられる、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the fiber is used as an acid gas adsorbent.
PCT/JP2023/034377 2022-09-22 2023-09-21 Fiber production method WO2024063153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-151762 2022-09-22
JP2022151762 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024063153A1 true WO2024063153A1 (en) 2024-03-28

Family

ID=90454473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034377 WO2024063153A1 (en) 2022-09-22 2023-09-21 Fiber production method

Country Status (1)

Country Link
WO (1) WO2024063153A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316811A (en) * 1993-05-07 1994-11-15 Nichibi:Kk Method for producing chelate fiber
JP2013501163A (en) * 2009-08-07 2013-01-10 アールストロム コーポレイション Nanofibers and webs comprising nanofibers with improved chemical and physical stability
WO2021200348A1 (en) * 2020-03-31 2021-10-07 株式会社クラレ Carbon dioxide-absorbing fiber and production method therefor
WO2021246383A1 (en) * 2020-06-02 2021-12-09 日東電工株式会社 Acid gas adsorption and desorption material
WO2022202152A1 (en) * 2021-03-26 2022-09-29 日東電工株式会社 Fiber, fiber sheet, method for producing fiber, and acidic gas adsorption device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316811A (en) * 1993-05-07 1994-11-15 Nichibi:Kk Method for producing chelate fiber
JP2013501163A (en) * 2009-08-07 2013-01-10 アールストロム コーポレイション Nanofibers and webs comprising nanofibers with improved chemical and physical stability
WO2021200348A1 (en) * 2020-03-31 2021-10-07 株式会社クラレ Carbon dioxide-absorbing fiber and production method therefor
WO2021246383A1 (en) * 2020-06-02 2021-12-09 日東電工株式会社 Acid gas adsorption and desorption material
WO2022202152A1 (en) * 2021-03-26 2022-09-29 日東電工株式会社 Fiber, fiber sheet, method for producing fiber, and acidic gas adsorption device

Similar Documents

Publication Publication Date Title
Abbasi et al. Carbon dioxide adsorption on grafted nanofibrous adsorbents functionalized using different amines
WO2022202152A1 (en) Fiber, fiber sheet, method for producing fiber, and acidic gas adsorption device
CN115702037A (en) Acidic gas adsorption/desorption material
WO2024063153A1 (en) Fiber production method
EP4316647A1 (en) Acidic gas adsorbent, method for producing acidic gas adsorbent, and acidic gas adsorption device
WO2023063050A1 (en) Acidic gas adsorbent, structure provided with acidic gas adsorbent, acidic gas adsorption device, acidic gas recovery device, method for producing acidic gas adsorbent, and sheet-like structure
WO2024071229A1 (en) Method for producing acidic gas adsorbent sheet, and acidic gas adsorbent sheet
WO2023149438A1 (en) Acidic gas adsorbent, structure comprising acidic gas adsorbent, acidic gas adsorption device, and acidic gas adsorbent production method
KR20170071867A (en) Electrospinning devices for manufacturing mask
KR101811648B1 (en) Mask and method of manufacturing the same
KR101775906B1 (en) Nanofiber filter including hydrophilic polyurethane nanofiber and hydrophobic polymer nanofiber with epoxy-amine adhension layer and its manufacturing method
KR101765171B1 (en) Nanofiber filter including hydrophilic polyurethane nanofiber and heat resistant polymer nanofiber with epoxy-amine adhension layer and its manufacturing method
KR101811649B1 (en) Mask and method of manufacturing the same
KR101775912B1 (en) Nanofiber filter including polyamide nanofiber and hydrophobic polymer nanofiber with epoxy-amine adhension layer and its manufacturing method
WO2022270169A1 (en) Carbon dioxide recovery device
KR101824488B1 (en) Electrospinning devices for manufacturing mask
KR101775909B1 (en) Nanofiber filter including polyacrylonitrile nanofiber and heat resistant polymer nanofiber with epoxy-amine adhension layer and its manufacturing method
KR101765166B1 (en) Nanofiber filter including hydrophilic polyurethane nanofiber and hydrophobic polymer nanofiber with epoxy-amine adhension layer and its manufacturing method
KR101775904B1 (en) Nanofiber filter including polyether sulfone nanofiber and hydrophobic polymer nanofiber with epoxy-curing agent adhension layer and its manufacturing method
KR101775907B1 (en) Nanofiber filter including polyvinyl alcohol nanofiber and heat resistant polymer nanofiber with epoxy-amine adhension layer and its manufacturing method
KR101775905B1 (en) Nanofiber filter including polyamide nanofiber and hydrophobic polymer nanofiber with epoxy-amine adhension layer and its manufacturing method
KR20170060905A (en) Nanofiber filter including hydrophilic polymer nanofiber with epoxy resin-curing agent adhension layer and its manufacturing method
KR101775908B1 (en) Nanofiber filter including polyether sulfone nanofiber and heat resistant polymer nanofiber with epoxy-amine adhension layer and its manufacturing method
KR101771923B1 (en) Nanofiber filter including polyether sulfone nanofiber and hydrophobic polymer nanofiber with epoxy-amine adhension layer and its manufacturing method
KR101775911B1 (en) Nanofiber filter including polyvinyl alcohol nanofiber and hydrophobic polymer nanofiber with epoxy-amine adhension layer and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868274

Country of ref document: EP

Kind code of ref document: A1