WO2024062892A1 - Cylinder device - Google Patents

Cylinder device Download PDF

Info

Publication number
WO2024062892A1
WO2024062892A1 PCT/JP2023/031753 JP2023031753W WO2024062892A1 WO 2024062892 A1 WO2024062892 A1 WO 2024062892A1 JP 2023031753 W JP2023031753 W JP 2023031753W WO 2024062892 A1 WO2024062892 A1 WO 2024062892A1
Authority
WO
WIPO (PCT)
Prior art keywords
side chamber
pump
rod
liquid
piston
Prior art date
Application number
PCT/JP2023/031753
Other languages
French (fr)
Japanese (ja)
Inventor
大和 久保
達也 野間
和隆 稲満
央道 菅原
広昭 糸川
Original Assignee
カヤバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ株式会社 filed Critical カヤバ株式会社
Publication of WO2024062892A1 publication Critical patent/WO2024062892A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics

Definitions

  • the present invention relates to a cylinder device.
  • a conventional cylinder device for example, as disclosed in JP2009-196597A, it is applied to an active suspension installed between a vehicle body and an axle.
  • a piston that is movably inserted into the cylinder to divide the inside of the cylinder into an upper chamber and a lower chamber, a rod that is connected to the piston, and a damper that communicates with the upper and lower chambers and provides resistance to the flow of liquid passing through them.
  • the pump includes a flow path, a pump flow path that connects the upper chamber and the lower chamber in parallel with the damping passage, a bidirectional discharge type pump provided in the middle of the pump flow path, and a motor that drives the pump. It is composed of
  • the cylinder When a conventional cylinder device is used as an active suspension, the cylinder is connected to one side of the car body and the axle, and the rod is connected to the other side of the car body and the axle, and the pump is driven by a motor to act as an actuator.
  • the control force it generates can suppress vehicle body vibrations, and when it expands and contracts due to vehicle body vibrations, it can also function as a damper that generates damping force and suppresses vehicle body vibrations.
  • a mold damper can function as an actuator by simply providing a pump channel that communicates an upper chamber and a lower chamber, and a pump installed in the pump channel.
  • an object of the present invention is to provide a cylinder device that can function as an actuator even if it is a single rod type.
  • the cylinder device in the problem-solving means of the present invention includes a cylinder, a rod that is movably inserted into the cylinder in the axial direction, and a rod that is coupled to the rod and movably inserted into the cylinder.
  • a piston that divides the inside of the cylinder into a rod side chamber and a piston side chamber; a reservoir chamber that stores liquid; a damping passage that communicates between the rod side chamber and the piston side chamber and provides resistance to the flow of liquid passing therethrough; and a piston side chamber.
  • a compression side damping passage that provides resistance to the flow of liquid from the reservoir chamber to the rod side chamber, a growth side suction passage that only allows liquid to flow from the reservoir chamber to the rod side chamber, and a pressure side suction passage that only allows liquid to flow from the reservoir chamber to the piston side chamber.
  • a pressure side suction passage a pump flow passage that communicates the rod side chamber and the piston side chamber in parallel with the damping passage, a bidirectional discharge type pump provided in the pump flow passage, and a motor that drives the pump. It is configured.
  • another cylinder device in the problem solving means of the present invention includes a cylinder, a rod that is movably inserted into the cylinder in the axial direction, and a rod that is connected to the rod and movably inserted into the cylinder.
  • a piston that divides the interior into a rod side chamber and a piston side chamber, a reservoir chamber that stores liquid, a pressure side damping passage that provides resistance to the flow of liquid from the piston side chamber to the reservoir chamber, and a pressure side damping passage that provides resistance to the flow of liquid from the reservoir chamber to the rod side chamber.
  • a growth side suction passage that only allows flow a pressure side suction passage that only allows liquid flow from the reservoir chamber to the piston side chamber, a pump passage that communicates the rod side chamber and the piston side chamber, and a pump passage that is provided in the pump passage.
  • the cylinder device configured in this way, even if the pump is driven to supply liquid from the rod side chamber to the piston side chamber, it is possible to supply liquid from the reservoir chamber to the rod side chamber because it is provided with the expansion side suction passage. As a result, the pressure in the rod side chamber does not become negative pressure.
  • the cylinder device of the present invention even if it is a single rod type, it can function as an actuator.
  • FIG. 1 is a circuit diagram of a cylinder device in one embodiment.
  • FIG. 2 is a diagram showing the characteristics of the control force and expansion/contraction speed of the cylinder device in one embodiment.
  • FIG. 3 is a circuit diagram of a cylinder device in a modification of one embodiment.
  • a cylinder device 1 in one embodiment includes a cylinder 2, a rod 3 inserted movably in the axial direction into the cylinder 2, and a rod 3 connected to the rod 3 and movable inside the cylinder 2.
  • a piston 4 that is freely inserted and divides the inside of the cylinder 2 into a rod side chamber R1 and a piston side chamber R2, a reservoir chamber R that stores liquid, and a flow of liquid that communicates with and passes through the rod side chamber R1 and the piston side chamber R2.
  • the pump 10 includes a bidirectional discharge type pump 10 and a motor 11 that drives the pump 10.
  • the cylinder 2 When applying the cylinder device 1 to a vehicle, the cylinder 2 may be connected to an unsprung member of the vehicle, the rod 3 may be connected to a sprung member, and the rod 3 may be interposed between the sprung member and the unsprung member.
  • the cylinder device 1 suppresses vibrations of the vehicle body, which is a sprung member, and the vehicle wheels, which are unsprung members, by the control force it exerts.
  • the force output by the cylinder device 1 is referred to as a control force
  • the control force that promotes the expansion and contraction of the cylinder device 1 is referred to as a thrust force.
  • the control force that prevents contraction is called the damping force.
  • the cylinder 2 has a cylindrical shape, and an annular rod guide 19 is attached to the upper end in FIG. 1, and the lower end in FIG. 1 is closed by a lid 20.
  • the rod 3 is inserted into the cylinder 2 via the inner periphery of the rod guide 19 so as to be movable in the axial direction, and its upper end in FIG. 1 projects outward from the cylinder 2.
  • the cylinder device 1 includes an outer cylinder 21 that covers the outer circumference of the cylinder 2. The upper end and lower end of the outer cylinder 21 in FIG. ing.
  • the tip of the rod 3, which is the lower end in FIG. 1, is connected to the piston 4 inserted into the cylinder 2, and the base end, which is the upper end of the rod 3 in FIG. 2 It sticks out.
  • a bracket is provided at the upper end of the rod 3 in FIG. provided.
  • the inside of the cylinder 2 is divided into a rod side chamber R1 through which the rod 3 at the upper side in FIG. 1 is inserted through the entire length by the piston 4, and a piston side chamber R2 through which the rod 3 at the lower side in FIG.
  • the rod side chamber R1 and the piston side chamber R2 are filled with liquid such as hydraulic oil.
  • the reservoir chamber R is filled with liquid and gas.
  • the liquid in the rod side chamber R1, the piston side chamber R2, and the reservoir chamber R may be other liquids such as water or an aqueous solution in addition to the hydraulic oil.
  • the gas in the reservoir chamber R is preferably an inert gas such as nitrogen, but may also be air.
  • the cylinder device 1 is a single rod type hydraulic cylinder, and when the rod 3 moves in the vertical direction in FIG. 1 with the piston 4 relative to the cylinder 2, the rod 3 moves inside the cylinder 2. The volume displaced changes.
  • the damping passage 5 is provided in the piston 4 in the cylinder device 1 of this embodiment.
  • the damping passage 5 includes a passage 5a that communicates the rod side chamber R1 and the piston side chamber R2, and a damping valve 5b provided in the passage 5a.
  • the damping valve 5b provides resistance to the flow of liquid passing therethrough while allowing the flow of liquid from the rod side chamber R1 to the piston side chamber R2 and the flow of liquid from the piston side chamber R2 to the rod side chamber R1. Therefore, the damping passage 5 is set to allow both the flow of liquid from the rod side chamber R1 to the piston side chamber R2 and the flow of liquid from the piston side chamber R2 to the rod side chamber R1.
  • the damping passage 5 includes a passage provided with a damping valve that only allows the flow of liquid from the rod side chamber R1 to the piston side chamber R2 and provides resistance to the flow of liquid, and a passage that is provided with a damping valve that provides resistance to the flow of liquid from the piston side chamber R2 to the rod side chamber R1.
  • the passage may include a passage provided with a damping valve that only allows the flow of liquid and provides resistance to the flow of liquid.
  • the damping valve 5b may be a variable throttle valve that can change the resistance given to the flow of liquid.
  • the damping passage 5 may be provided at a location other than the piston 4.
  • the compression side damping passage 6 is provided in the lid 20, and allows only a passage 6a that communicates the piston side chamber R2 and the reservoir chamber R, and a flow of liquid from the piston side chamber R2 toward the reservoir chamber R to prevent the flow of the liquid.
  • the piston side chamber R2 is provided with a damping valve 6b that provides resistance to the piston side chamber R2, and is set as a one-way passageway that only allows liquid to flow from the piston side chamber R2 toward the reservoir chamber R.
  • the extension side suction passage 7 includes a passage 7a that communicates the reservoir chamber R and the rod side chamber R1, and a check valve 7b that allows only the flow of liquid from the reservoir chamber R to the rod side chamber R1. It is set as a one-way passage that only allows the flow of liquid toward the rod side chamber R1.
  • the pressure side suction passage 8 is provided in the lid 20 and includes a passage 8a that communicates between the reservoir chamber R and the piston side chamber R2, and a check valve 8b that allows only the flow of liquid from the reservoir chamber R to the piston side chamber R2. , and is set as a one-way passageway that only allows liquid to flow from the reservoir chamber R to the piston side chamber R2.
  • the pump passage 9 is parallel to the damping passage 5 and communicates the rod side chamber R1 and the piston side chamber R2, and a pump 10 is provided in the middle.
  • the pump 10 is set as a bidirectional discharge type, such as a vane pump, a gear pump, or an axial pump, which is equipped with a rotating shaft (not shown) and can suck in and discharge fluid by rotating the rotating shaft. Any material that can forcibly drive the rotating shaft by the flow may be used.
  • a rotating shaft of the pump 10 is connected to a motor 11.
  • the motor 11 can be driven by electricity, and when forced to rotate by input from the pump 10 side, generates electricity and generates torque that suppresses the rotation of the pump 10.
  • the motor 11 may be any type of motor, whether direct current or alternating current, such as a brushless motor, induction motor, synchronous motor, etc. Note that a variable throttle valve may be provided in the pump channel 9 in series with the pump 10.
  • the cylinder device 1 is configured as described above, and the operation of the cylinder device 1 will be described below. First, the operation of the cylinder device 1 when the pump 10 is stopped will be described.
  • the piston 4 moves upward in FIG. 1 relative to the cylinder 2, the rod side chamber R1 is reduced, and the piston side chamber R2 is expanded.
  • the liquid in the contracting rod side chamber R1 moves through the damping passage 5 and the pump flow path 9 to the expanding piston side chamber R2.
  • the rod 3 retreats from the cylinder 2, causing a shortage of liquid in the cylinder 2, but the shortage of liquid is supplied from the reservoir chamber R to the piston side chamber R2 via the compression side suction passage 8.
  • the damping valve 5b in the damping passage 5 provides resistance to the flow of liquid, and the pump 10 is rotated by the liquid flowing through the pump flow path 9, which also provides resistance to the flow of liquid passing through the pump 10, so that the pressure in the rod side chamber R1 increases.
  • the check valve 8b in the compression side suction passage 8 opens and the piston side chamber R2 is connected to the reservoir chamber R, so the pressure in the piston side chamber R2 becomes the tank pressure.
  • the tank pressure is the pressure in the reservoir chamber R, and is the pressure of the gas sealed in the reservoir chamber R.
  • the damping valve 5b in the damping passage 5 provides resistance to the flow of liquid, and as the pump 10 is rotated by the liquid flowing in the pump flow path 9, it also provides resistance to the flow of liquid passing through the pump 10. Therefore, the pressure in the piston side chamber R2 becomes higher than the pressure in the rod side chamber R1. Further, the pressure in the piston side chamber R2 is higher than that in the reservoir chamber R because the pressure side damping passage 6 provides resistance to the flow of liquid. In this manner, when the cylinder device 1 is contracted, the pressure in the piston side chamber R2 becomes higher than the pressure in the rod side chamber R1, and the cylinder device 1 exerts a compression side damping force that prevents the piston 4 from moving downward with respect to the cylinder 2. Occur.
  • the damping force generated by the cylinder device 1 has a passive characteristic that increases according to the expansion and contraction speed of the cylinder device 1, and the cylinder device 1 functions as a damper by exerting a damping force that prevents expansion and contraction.
  • the operation of the cylinder device 1 when the pump 10 is driven to cause the cylinder device 1 to function as an actuator will be described.
  • the pump 10 sucks liquid from the piston side chamber R2 and supplies the liquid to the rod side chamber R1
  • the liquid supplied into the rod side chamber R1 generates a force that presses the piston 4 downward in FIG. 1 against the cylinder 2.
  • the rod 3 withdraws from the cylinder 2, so that liquid is supplied from the reservoir chamber R to the expanding piston side chamber R2 via the pressure side suction passage 8. Therefore, when the cylinder device 1 is extended while driving the pump 10 to supply liquid to the rod side chamber R1, as shown in the first quadrant in FIG. 2, the pump 10 is driven against the damping force of the passive characteristic.
  • the damping force generated by this can be superimposed in the direction of pushing down the piston 4, and depending on the amount of current applied to the motor 11, passive characteristics and characteristics when maximum current is applied to the motor 11 shown by solid line A in FIG.
  • the control force of the cylinder device 1 can be adjusted in magnitude in the area X1 between the lines.
  • the cylinder device 1 expands by applying a force to push down the piston 4 by driving the pump 10, and generates a damping force that prevents the expansion.
  • the pump 10 is driven, a part of the liquid supplied into the rod side chamber R1 moves to the piston side chamber R2 via the damping passage 5, but more liquid passes through the damping passage 5 than when the pump 10 is stopped. Since the flow rate increases, the pressure difference between the rod side chamber R1 and the piston side chamber R2 becomes larger than when the pump 10 is stopped, so the cylinder device 1 can generate a larger damping force than with passive characteristics.
  • the control force of the cylinder device 1 becomes a passive characteristic.
  • the reason why the cylinder device 1 generates a damping force is because the amount of volume expansion of the rod side chamber R1, which is expanded by the contraction of the cylinder device 1, exceeds the maximum flow rate that can be supplied into the rod side chamber R1, which is expanded by the pump 10. As the liquid moves through the damping passage 5 from the piston side chamber R2 to the rod side chamber R1, the pressure in the piston side chamber R2 becomes greater than the pressure in the rod side chamber R1, and the cylinder device 1 no longer has a thrust that promotes contraction.
  • the cylinder device 1 in the second quadrant, is in a state where it is contracting due to the drive of the pump 10 and actively generating thrust that promotes the contraction. Further, in the third quadrant, the cylinder device 1 is in a state where it is contracting and generating a damping force that prevents the contraction, and the cylinder device 1 is in a state where the force pushing down the piston 4 due to the drive of the pump 10 is generated by the cylinder device 1 rather than the passive characteristic. It operates to reduce the damping force.
  • the check valve 7b in the extension side suction passage 7 opens to connect the reservoir chamber R and the rod side chamber R1, and the expanded portion of the rod side chamber R1 and the liquid supplied to the piston side chamber R2 by the pump 10 are replenished from the reservoir chamber R, preventing the rod side chamber R1 from becoming negative pressure, and the cylinder device 1 can function as an actuator by the drive of the pump 10.
  • the pump 10 When the cylinder device 1 contracts while driving the pump 10 to supply liquid to the piston side chamber R2, the pump 10 is driven against the damping force of the passive characteristic, as shown in the third quadrant in FIG.
  • the damping force generated by this can be superimposed in the direction of pushing up the piston 4, and depending on the amount of current applied to the motor 11, passive characteristics and characteristics when maximum current is applied to the motor 11 as shown by solid line B in FIG.
  • the control force of the cylinder device 1 can be adjusted in magnitude in the region Y1 between the lines.
  • the cylinder device 1 contracts by applying a force to push up the piston 4 by driving the pump 10, and generates a damping force that prevents the contraction.
  • the pump 10 supplies liquid only from the rod side chamber R1 to the piston side chamber R2, the amount of liquid in the cylinder 2 will be insufficient, but in the cylinder device 1 of this embodiment, the expansion side suction passage 7 is provided. Therefore, the insufficient amount of liquid is supplied from the reservoir chamber R via the extension side suction passage 7. Therefore, the insufficient liquid in the cylinder 2 is replenished from the reservoir chamber R, so that the inside of the rod side chamber R1 is prevented from becoming a negative pressure, and the cylinder device 1 can function as an actuator by driving the pump 10.
  • the thrust generated by driving the pump 10 can be superimposed on the passive characteristics in the direction of pushing up the piston 4, as shown in the fourth and first quadrants of Figure 2, and the control force of the cylinder device 1 can be adjusted in size in the area Y2 between the passive characteristics and the characteristic line when the maximum current is applied to the motor 11, as shown by the solid line B in Figure 2, depending on the amount of current applied to the motor 11.
  • the control force of the cylinder device 1 becomes passive and the cylinder device 1 generates a damping force.
  • the volume expansion amount of the piston side chamber R2 expanded by the extension of the cylinder device 1 exceeds the maximum flow rate that can be supplied into the piston side chamber R2 expanded by the pump 10, and the liquid moves from the rod side chamber R1 to the piston side chamber R2 through the damping passage 5, and the pressure of the rod side chamber R1 becomes greater than the pressure of the piston side chamber R2, and the cylinder device 1 can no longer exert a thrust that promotes extension. In this way, the cylinder device 1 is in a state in which it actively generates a thrust that promotes extension while extending by the drive of the pump 10 in the fourth quadrant.
  • the cylinder device 1 is in a state in which it generates a damping force that hinders extension while extending in the first quadrant, and operates so that the force that pushes up the piston 4 by the drive of the pump 10 reduces the damping force generated by the cylinder device 1 more than the passive characteristic.
  • the cylinder device 1 configured in this manner can function both as a damper and an actuator, and when expanded or contracted in response to an external force, suppresses the rotation of the pump 10 with the torque of the motor 11, that is, moves the motor 11 into a braking region. can be used to cause the motor 11 to generate a torque opposite to the rotational direction of the pump 10. Therefore, the cylinder device 1 can perform power regeneration by using the motor 11 in the braking region, causing the motor 11 to generate electricity, converting kinetic energy into electrical energy.
  • the damping valve 5b provided in the damping passage 5 in the cylinder device 1 is a variable throttle valve, and the variable throttle valve is provided in the pump flow path 9 in series with the pump 10, the opening degree of the two variable throttle valves can be adjusted. Since the torque and rotational speed of the motor 11 operating in the braking region can be controlled, the efficiency of power regeneration of the motor 11 can also be improved.
  • the cylinder device 1 of the present embodiment includes a cylinder 2, a rod 3 that is movably inserted into the cylinder 2 in the axial direction, and a cylinder that is connected to the rod 3 and is movably inserted into the cylinder 2.
  • a piston 4 that divides the inside of the cylinder 2 into a rod side chamber R1 and a piston side chamber R2, a reservoir chamber R that stores liquid, and a damping that provides resistance to the flow of liquid that communicates with the rod side chamber R1 and piston side chamber R2 and passes through it.
  • a passage 5 a compression side damping passage 6 that provides resistance to the flow of liquid from the piston side chamber R2 to the reservoir chamber R, a rebound side suction passage 7 that allows only the flow of liquid from the reservoir chamber R to the rod side chamber R1, and a reservoir chamber R2.
  • a pressure side suction passage 8 that allows only the flow of liquid from the chamber R to the piston side chamber R2, a pump passage 9 that is parallel to the damping passage 5 and communicates the rod side chamber R1 and the piston side chamber R2, and the pump passage 9.
  • the pump 10 includes a bidirectional discharge type pump 10 and a motor 11 that drives the pump 10.
  • the cylinder device 1 configured in this way, even if the pump 10 is driven to supply liquid from the rod side chamber R1 to the piston side chamber R2, since the expansion side suction passage 7 is provided, the liquid is supplied from the reservoir chamber R to the rod side chamber R2. Liquid can be supplied to R1, and the pressure in the rod side chamber R1 does not become negative. Therefore, according to the cylinder device 1 of this embodiment, even if it is configured as a single rod type cylinder device, it can function not only as a damper but also as an actuator.
  • the cylinder device 1a of the modification example eliminates the damping passage 5 in the cylinder device 1 of the embodiment, and instead includes a damping valve 12 and a non-return valve parallel to each other in the middle of the pump flow path 9.
  • a valve 13 is provided in series with the pump 10.
  • the damping valve 12 is provided in the pump flow path 9 that communicates the rod side chamber R1 and the piston side chamber R2, and provides resistance to the flow of liquid passing therethrough.
  • the check valve 13 is installed in parallel with the damping valve 12 in the middle of the pump flow path 9, and allows only the flow of liquid from the piston side chamber R2 to the rod side chamber R1, and from the rod side chamber R1 to the piston side chamber R2. Block the flow of liquid. In this way, the damping valve 12 and the check valve 13 are arranged in parallel with each other in the pump channel 9, and are arranged in series with the pump 10.
  • damping valve 12 since the damping valve 12 is arranged in parallel with the check valve 13, it allows not only the flow of liquid from the rod side chamber R1 to the piston side chamber R2, but also the flow of liquid from the piston side chamber R2 to the rod side chamber R1.
  • damping valves such as throttle valves and chokes that allow bidirectional flow
  • damping valves that allow only the flow of liquid from the rod side chamber R1 to the piston side chamber R2 and provide resistance to the flow of the liquid may also be used.
  • the damping valve 12 may include a leaf valve and an orifice arranged in parallel with the leaf valve.
  • the damping valve 12 may be an electromagnetic valve capable of adjusting damping force, such as a variable throttle valve.
  • the cylinder device 1a in the modified example includes a growth side relief valve 14 and a pressure side relief valve 15 on the piston 4.
  • the expansion-side relief valve 14 opens when the pressure in the rod-side chamber R1 reaches a predetermined expansion-side relief pressure, and allows the liquid in the rod-side chamber R1 to move to the piston-side chamber R2, thereby reducing the pressure in the rod-side chamber R1.
  • This protects a sealing member (not shown) that seals between the piston rod 3 and the rod guide 19 by preventing the pressure from becoming excessively high, and also prevents liquid from leaking out of the cylinder device 1a.
  • the pressure side relief valve 15 opens when the pressure in the piston side chamber R2 reaches a predetermined pressure side relief pressure, and allows the liquid in the piston side chamber R2 to move to the rod side chamber R1.
  • the cylinder device 1a is protected by preventing the pressure from becoming excessively high.
  • the damping valve 12 and the pump 10 provide resistance to the flow of liquid passing through the pump channel 9, the pressure in the rod side chamber R1 increases.
  • the check valve 8b in the pressure side suction passage 8 opens and the piston side chamber R2 is communicated with the reservoir chamber R, the pressure in the piston side chamber R2 becomes the tank pressure.
  • the cylinder device 1a when the cylinder device 1a is extended, the pressure in the rod side chamber R1 becomes higher than the pressure in the piston side chamber R2, and the cylinder device 1a generates an expansion side damping force that prevents the piston 4 from moving upward relative to the cylinder 2. occurs.
  • the relief valve 14 on the expansion side opens and the pressure in the rod side chamber R1 becomes excessively high. is prevented.
  • the pressure in the piston side chamber R2 is higher than that in the reservoir chamber R because the pressure side damping passage 6 provides resistance to the flow of liquid.
  • the pressure in the piston side chamber R2 becomes higher than the pressure in the rod side chamber R1, and the cylinder device 1a exerts a compression side damping force that prevents the piston 4 from moving downward with respect to the cylinder 2. Occur. Note that when the cylinder device 1a contracts at high speed and the pressure in the piston side chamber R2 reaches the pressure side relief pressure, the pressure side relief valve 15 opens to prevent the pressure in the piston side chamber R2 from becoming excessively high. be done.
  • the characteristics of the control force and the expansion/contraction speed of the cylinder device 1a are similar to those of the cylinder device 1, and the cylinder device 1a generates
  • the passive characteristic is such that the control force increases according to the speed of expansion and contraction of the cylinder device 1a, and the cylinder device 1a functions as a damper by exerting a damping force that prevents expansion and contraction.
  • the damping force of the passive characteristic is The damping force generated by driving the pump 10 can be superimposed in the direction of pushing down the piston 4, and depending on the amount of current given to the motor 11, the passive characteristic and the maximum
  • the control force of the cylinder device 1a can be adjusted in magnitude in the region X1 between the characteristic line and the characteristic line when a current is applied.
  • the cylinder device 1a expands by applying a force to push down the piston 4 by driving the pump 10, and generates a damping force that prevents the expansion. Note that by driving the pump 10, the pressure difference between the rod side chamber R1 and the piston side chamber R2 becomes larger than when the pump 10 is stopped, so the cylinder device 1a can generate a larger damping force than with passive characteristics.
  • the control force of the cylinder device 1a can be adjusted in magnitude in the region X2 between the characteristic line and the characteristic line.
  • the cylinder device 1a is in a state where it is contracting due to the drive of the pump 10 and actively generating thrust that promotes the contraction.
  • the cylinder device 1a is in a state in which it is contracting and generating a damping force that prevents the contraction, and the cylinder device 1a is in a state where the force pushing down the piston 4 due to the drive of the pump 10 causes the cylinder device 1a to generate more force than the passive characteristic. It operates to reduce the damping force.
  • the pump 10 When the cylinder device 1a contracts while driving the pump 10 to supply liquid to the piston side chamber R2, as shown in the third quadrant in FIG. 2, the pump 10 is driven against the damping force of the passive characteristic.
  • the damping force generated by this can be superimposed in the direction of pushing up the piston 4, and depending on the amount of current applied to the motor 11, passive characteristics and characteristics when maximum current is applied to the motor 11 as shown by solid line B in FIG.
  • the control force of the cylinder device 1a can be adjusted in magnitude in the region Y1 between the lines.
  • the cylinder device 1a contracts by applying a force to push up the piston 4 by driving the pump 10, and generates a damping force that prevents the contraction.
  • the pump 10 supplies liquid only from the rod side chamber R1 to the piston side chamber R2, the amount of liquid in the cylinder 2 will be insufficient, but in the cylinder device 1a of the present embodiment, the expansion side suction passage 7 is provided. Therefore, the insufficient amount of liquid is supplied from the reservoir chamber R via the extension side suction passage 7. Therefore, the insufficient liquid in the cylinder 2 is replenished from the reservoir chamber R, so that the inside of the rod side chamber R1 is prevented from becoming a negative pressure, and the cylinder device 1a can function as an actuator by driving the pump 10.
  • the cylinder device 1a When the cylinder device 1a is extended while driving the pump 10 to supply liquid to the piston side chamber R2, as shown in the fourth and first quadrants in FIG.
  • the thrust generated by driving can be superimposed in the direction of pushing up the piston 4, and depending on the amount of current given to the motor 11, the passive characteristic and the maximum current given to the motor 11 shown by the solid line B in FIG.
  • the control force of the cylinder device 1a can be adjusted in magnitude in the region Y2 between the characteristic line and the characteristic line. Note that when the maximum current is applied to the motor 11 shown by the solid line B in the fourth and first quadrants, when the expansion/contraction speed of the cylinder device 1a exceeds a certain expansion/contraction speed, the control force of the cylinder device 1a becomes a passive characteristic.
  • the reason why the cylinder device 1a generates a damping force is because the volume expansion amount of the piston side chamber R2, which is expanded by the expansion of the cylinder device 1a, exceeds the maximum flow rate that can be supplied into the piston side chamber R2, which is expanded by the pump 10. , liquid is now supplied from the reservoir R to the piston side chamber R2 via the pressure side suction passage 8, and the pressure in the rod side chamber R1 becomes greater than the pressure in the piston side chamber R2, so that the cylinder device 1a no longer extends. This is because it becomes impossible to exert the thrust that helps. In this manner, the cylinder device 1a is in a state in which it is being expanded by the drive of the pump 10 in the fourth quadrant, and is actively generating thrust that promotes the expansion.
  • the cylinder device 1a is in a state where it is elongating and generating a damping force that prevents the elongation, and the cylinder device 1a is in a state where the force pushing up the piston 4 due to the drive of the pump 10 causes the cylinder device 1a to generate more force than the passive characteristic. It operates to reduce the damping force.
  • the cylinder device 1a configured in this manner can function as an actuator, but the vibration of the vehicle body that is the damping target of the cylinder device 1a during running is limited to only relatively low frequency components in the sprung mass resonance frequency band. It contains high frequency components in the unsprung resonance frequency band input from the wheel side. If the control force generated by the cylinder device 1a is controlled by driving the pump 10 by the motor 11, the cylinder device 1a can sufficiently suppress relatively low-frequency vibrations in the sprung resonance frequency band of the vehicle body by only driving the pump 10. can.
  • the pump flow path 9 is provided with the damping valve 12 in series with the pump 10, as well as the compression side damping passage 6, so that when the pump 10 is driven, the cylinder device 1a moves at high speed
  • the damping valve 12 can generate a damping force corresponding to the high-frequency vibration. Can generate force.
  • the damping valve 12 is a variable throttle valve, the damping force generated by the cylinder device 1a can be adjusted in height when the cylinder device 1a vibrates at a high frequency and is extended. By exerting damping force suitable for suppression, vehicle body vibration can be further reduced.
  • the cylinder device 1a configured in this manner can function as both a damper and an actuator, and when it is expanded or contracted by an external force, it uses the torque of the motor 11 to suppress the rotation of the pump 10; that is, it can use the motor 11 in the braking region to generate torque in the opposite direction to the rotation direction of the pump 10. Therefore, the cylinder device 1a can use the motor 11 in the braking region to generate electricity, converting kinetic energy into electrical energy and performing power regeneration.
  • the cylinder device 1a of the present embodiment includes a cylinder 2, a rod 3 that is movably inserted into the cylinder 2 in the axial direction, and a rod 3 that is connected to the rod 3 and is movably inserted into the cylinder 2.
  • a piston 4 that divides the inside of the cylinder 2 into a rod side chamber R1 and a piston side chamber R2, a reservoir chamber R that stores liquid, and a pressure side damping passage 6 that provides resistance to the flow of liquid from the piston side chamber R2 to the reservoir chamber R.
  • a growth side suction passage 7 that allows only the flow of liquid from the reservoir chamber R to the rod side chamber R1, a pressure side suction passage 8 that only allows the flow of liquid from the reservoir chamber R to the piston side chamber R2, and the rod side chamber R1 and the piston.
  • a pump flow path 9 communicating with the side chamber R2, a damping valve 12 provided in the pump flow path 9, and a damping valve 12 provided in parallel with the damping valve 12 to allow only the flow of liquid from the piston side chamber R2 to the rod side chamber R1.
  • a bidirectional discharge type pump 10 is provided in series with the damping valve 12 and the check valve 13 with respect to the pump flow path 9, and a motor 11 that drives the pump 10. ing.
  • the expansion side suction passage 7 is provided, so that even if the pump 10 is driven to supply liquid from the rod side chamber R1 to the piston side chamber R2, the liquid is supplied from the reservoir chamber R to the rod side chamber R2. Liquid can be supplied to R1, and the pressure in the rod side chamber R1 does not become negative. Therefore, according to the cylinder device 1a of this embodiment, even if it is configured as a single rod type cylinder device, it can function not only as a damper but also as an actuator.
  • the cylinder device 1a of the present embodiment since the pump flow path 9 is provided with the damping valve 12 in series with the pump 10 and the compression side damping passage 6, the cylinder device 1a is activated when the pump 10 is driven.
  • the damping valve 12 When expanding at high speed, the damping valve 12 can generate a damping force corresponding to high frequency vibrations, and when the cylinder device 1a contracts at high speed when the pump 10 is driven, the compression side damping passage 6 can generate a damping force corresponding to high frequency vibrations. Can generate damping force.
  • the gas pressure in the reservoir chamber R may be increased, and the reservoir chamber R may be used as an accumulator to increase the pressure in the cylinder 2.
  • the outer cylinder 21 is provided on the outer periphery of the cylinder 2, and the reservoir chamber R is provided between the cylinder 2 and the outer cylinder 21.
  • the reservoir chamber R may be formed by a reservoir tank provided separately and independently from the cylinder 2 without providing the outer cylinder 21.
  • the reservoir chamber R and the rod side chamber R1 in the reservoir tank may be connected by a pipe that functions as the passage 7a of the extension side suction passage 7, and the reservoir chamber R and the piston side chamber R2 may be connected by a pipe that functions as the passage 6a of the compression side damping passage 6 and a pipe that functions as the passage 8a of the compression side suction passage 8.
  • the cylinder 2 when the reservoir chamber R is provided in the reservoir tank, and the cylinder device 1, 1a is applied to a vehicle, the cylinder 2 can be connected to one of the sprung and unsprung members, and the rod 3 can be connected to the other of the sprung and unsprung members.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Actuator (AREA)

Abstract

This cylinder device (1) comprises: a cylinder (2); a rod (3); a piston (4) that demarcates the inside of the cylinder (2) into a rod-side room (R1) and a piston-side room (R2); a reservoir room (R) that stores a liquid; an attenuation passage (5) that communicates the rod-side room (R1) and the piston-side room (R2), and applies resistance to a flow of liquid passing therethrough; a pressure-side attenuation path (6) that applies resistance to the flow of liquid from the piston-side room (R2) to the reservoir room (R); an extension-side suction passage (7) that allows only a flow of liquid from the reservoir room (R) to the rod-side room (R1); a pressure-side suction passage (8) that allows only a flow of liquid from the reservoir room (R) to the piston-side room (R2); a pump flow path (9) communicating the rod-side room (R1) and the piston-side room (R2) in parallel with the attenuation passage (5); a pump (10) midway on the pump flow path (9); and a motor (11) that drives the pump (10).

Description

シリンダ装置cylinder device
 本発明は、シリンダ装置に関する。 The present invention relates to a cylinder device.
 従来のシリンダ装置としては、たとえば、JP2009-196597Aに開示されているように、車両の車体と車軸との間に介装されるアクティブサスペンション等に適用され、具体的には、シリンダと、シリンダ内に移動自在に挿入されてシリンダ内を上室と下室とに区画するピストンと、ピストンに連結されるロッドと、上室と下室とを連通するとともに通過する液体の流れに抵抗を与える減衰流路と、減衰通路に並列して上室と下室とを連通するポンプ流路と、当該ポンプ流路の途中に設けられた双方向吐出型のポンプと、ポンプを駆動するモータとを備えて構成されている。 As a conventional cylinder device, for example, as disclosed in JP2009-196597A, it is applied to an active suspension installed between a vehicle body and an axle. A piston that is movably inserted into the cylinder to divide the inside of the cylinder into an upper chamber and a lower chamber, a rod that is connected to the piston, and a damper that communicates with the upper and lower chambers and provides resistance to the flow of liquid passing through them. The pump includes a flow path, a pump flow path that connects the upper chamber and the lower chamber in parallel with the damping passage, a bidirectional discharge type pump provided in the middle of the pump flow path, and a motor that drives the pump. It is composed of
 そして、従来のシリンダ装置は、アクティブサスペンションとして使用される場合、シリンダが車体と車軸の一方に連結されるとともに、ロッドが車体と車軸の他方に連結され、ポンプをモータによって駆動することによってアクチュエータとして機能して発生する制御力で車体の振動を抑制できるとともに、車体の振動によって伸縮すると減衰力を発生して車体の振動を抑制するダンパとしても機能できる。 When a conventional cylinder device is used as an active suspension, the cylinder is connected to one side of the car body and the axle, and the rod is connected to the other side of the car body and the axle, and the pump is driven by a motor to act as an actuator. The control force it generates can suppress vehicle body vibrations, and when it expands and contracts due to vehicle body vibrations, it can also function as a damper that generates damping force and suppresses vehicle body vibrations.
JP2009-196597AJP2009-196597A
 従来のシリンダ装置では、ロッドがシリンダ内にシリンダの軸方向の全長に亘って挿入されてロッドの両端がシリンダの両端から外部へ突出する所謂両ロッド型のシリンダ装置とされているので、両ロッド型のダンパに対して、単に、上室と下室とを連通するポンプ流路と、当該ポンプ流路に設置されるポンプとを設けることで、アクチュエータとして機能できる。 Conventional cylinder devices are so-called double-rod type cylinder devices in which the rod is inserted into the cylinder over the entire length in the axial direction of the cylinder, and both ends of the rod protrude from both ends of the cylinder to the outside. A mold damper can function as an actuator by simply providing a pump channel that communicates an upper chamber and a lower chamber, and a pump installed in the pump channel.
 ところが、片ロッド型のシリンダ装置とする場合、片ロッド型のダンパに対して、単に、ポンプ流路とポンプを追加しただけでは、アクチュエータとして機能できない。というのは、ロッドが挿通される上室と、ロッドが挿通されていない下室とでは、シリンダ装置が伸縮する際に過不足となる液体量が等しくならないために、ポンプを駆動してシリンダ装置を伸長させようと上室から下室へ液体を送り込むと、下室へ供給しなければならない液体量を上室で確保できず上室が負圧となってしまうからである。 However, in the case of a single-rod type cylinder device, simply adding a pump flow path and a pump to a single-rod type damper cannot function as an actuator. This is because the upper chamber where the rod is inserted and the lower chamber where the rod is not inserted do not have the same amount of liquid when the cylinder device expands or contracts. This is because if liquid is sent from the upper chamber to the lower chamber in an attempt to extend it, the upper chamber cannot secure the amount of liquid that must be supplied to the lower chamber, resulting in negative pressure in the upper chamber.
 そこで、本発明は、片ロッド型であってもアクチュエータとして機能できるシリンダ装置の提供を目的とする。 Therefore, an object of the present invention is to provide a cylinder device that can function as an actuator even if it is a single rod type.
 上記目的を達成するために、本発明の課題解決手段におけるシリンダ装置は、シリンダと、シリンダ内に軸方向へ移動可能に挿入されるロッドと、ロッドに連結されるとともにシリンダ内に移動自在に挿入されてシリンダ内をロッド側室とピストン側室とに区画するピストンと、液体を貯留するリザーバ室と、ロッド側室とピストン側室とを連通するとともに通過する液体の流れに抵抗を与える減衰通路と、ピストン側室からリザーバ室へ向かう液体の流れに抵抗を与える圧側減衰通路と、リザーバ室からロッド側室へ向かう液体の流れのみを許容する伸側吸込通路と、リザーバ室からピストン側室へ向かう液体の流れのみを許容する圧側吸込通路と、減衰通路と並列してロッド側室とピストン側室とを連通するポンプ流路と、ポンプ流路に設けられた双方向吐出型のポンプと、ポンプを駆動するモータとを備えて構成されている。 In order to achieve the above object, the cylinder device in the problem-solving means of the present invention includes a cylinder, a rod that is movably inserted into the cylinder in the axial direction, and a rod that is coupled to the rod and movably inserted into the cylinder. a piston that divides the inside of the cylinder into a rod side chamber and a piston side chamber; a reservoir chamber that stores liquid; a damping passage that communicates between the rod side chamber and the piston side chamber and provides resistance to the flow of liquid passing therethrough; and a piston side chamber. A compression side damping passage that provides resistance to the flow of liquid from the reservoir chamber to the rod side chamber, a growth side suction passage that only allows liquid to flow from the reservoir chamber to the rod side chamber, and a pressure side suction passage that only allows liquid to flow from the reservoir chamber to the piston side chamber. a pressure side suction passage, a pump flow passage that communicates the rod side chamber and the piston side chamber in parallel with the damping passage, a bidirectional discharge type pump provided in the pump flow passage, and a motor that drives the pump. It is configured.
 また、本発明の課題解決手段における他のシリンダ装置は、シリンダと、シリンダ内に軸方向へ移動可能に挿入されるロッドと、ロッドに連結されるとともにシリンダ内に移動自在に挿入されて、シリンダ内をロッド側室とピストン側室とに区画するピストンと、液体を貯留するリザーバ室と、ピストン側室からリザーバ室へ向かう液体の流れに抵抗を与える圧側減衰通路と、リザーバ室からロッド側室へ向かう液体の流れのみを許容する伸側吸込通路と、リザーバ室からピストン側室へ向かう液体の流れのみを許容する圧側吸込通路と、ロッド側室とピストン側室とを連通するポンプ流路と、ポンプ流路に設けられる減衰弁と、減衰弁に対して並列に設けられピストン側室からロッド側室へ向かう液体の流れのみを許容する逆止弁と、ポンプ流路に対して減衰弁および逆止弁と直列に設けられた双方向吐出型のポンプと、ポンプを駆動するモータとを備えて構成されている。 Further, another cylinder device in the problem solving means of the present invention includes a cylinder, a rod that is movably inserted into the cylinder in the axial direction, and a rod that is connected to the rod and movably inserted into the cylinder. A piston that divides the interior into a rod side chamber and a piston side chamber, a reservoir chamber that stores liquid, a pressure side damping passage that provides resistance to the flow of liquid from the piston side chamber to the reservoir chamber, and a pressure side damping passage that provides resistance to the flow of liquid from the reservoir chamber to the rod side chamber. A growth side suction passage that only allows flow, a pressure side suction passage that only allows liquid flow from the reservoir chamber to the piston side chamber, a pump passage that communicates the rod side chamber and the piston side chamber, and a pump passage that is provided in the pump passage. A damping valve, a check valve that is provided in parallel with the damping valve and allows only the flow of liquid from the piston side chamber to the rod side chamber, and a check valve that is provided in series with the damping valve and the check valve with respect to the pump flow path. It is configured to include a bidirectional discharge type pump and a motor that drives the pump.
 このように構成されたシリンダ装置によれば、ポンプを駆動してロッド側室からピストン側室へ液体を供給しても、伸側吸込通路を備えているのでリザーバ室からロッド側室へ液体の供給が可能となって、ロッド側室の圧力が負圧となることがなくなる。 According to the cylinder device configured in this way, even if the pump is driven to supply liquid from the rod side chamber to the piston side chamber, it is possible to supply liquid from the reservoir chamber to the rod side chamber because it is provided with the expansion side suction passage. As a result, the pressure in the rod side chamber does not become negative pressure.
 以上より、本発明のシリンダ装置によれば、片ロッド型であってもアクチュエータとして機能できる。 From the above, according to the cylinder device of the present invention, even if it is a single rod type, it can function as an actuator.
図1は、一実施の形態におけるシリンダ装置の回路図である。FIG. 1 is a circuit diagram of a cylinder device in one embodiment. 図2は、一実施の形態におけるシリンダ装置の制御力と伸縮速度との特性を示した図である。FIG. 2 is a diagram showing the characteristics of the control force and expansion/contraction speed of the cylinder device in one embodiment. 図3は、一実施の形態の変形例におけるシリンダ装置の回路図である。FIG. 3 is a circuit diagram of a cylinder device in a modification of one embodiment.
 以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態におけるシリンダ装置1は、図1に示すように、シリンダ2と、シリンダ2内に軸方向へ移動可能に挿入されるロッド3と、ロッド3に連結されるとともにシリンダ2内に移動自在に挿入されてシリンダ2内をロッド側室R1とピストン側室R2とに区画するピストン4と、液体を貯留するリザーバ室Rと、ロッド側室R1とピストン側室R2とを連通するとともに通過する液体の流れに抵抗を与える減衰通路5と、ピストン側室R2からリザーバ室Rへ向かう液体の流れに抵抗を与える圧側減衰通路6と、リザーバ室Rからロッド側室R1へ向かう液体の流れのみを許容する伸側吸込通路7と、リザーバ室Rからピストン側室R2へ向かう液体の流れのみを許容する圧側吸込通路8と、ロッド側室R1とピストン側室R2とを連通するポンプ流路9と、ポンプ流路9に設けられた双方向吐出型のポンプ10と、ポンプ10を駆動するモータ11とを備えて構成されている。 The present invention will be described below based on the embodiments shown in the figures. As shown in FIG. 1, a cylinder device 1 in one embodiment includes a cylinder 2, a rod 3 inserted movably in the axial direction into the cylinder 2, and a rod 3 connected to the rod 3 and movable inside the cylinder 2. A piston 4 that is freely inserted and divides the inside of the cylinder 2 into a rod side chamber R1 and a piston side chamber R2, a reservoir chamber R that stores liquid, and a flow of liquid that communicates with and passes through the rod side chamber R1 and the piston side chamber R2. a compression side damping passage 6 that provides resistance to the flow of liquid from the piston side chamber R2 to the reservoir chamber R, and an expansion side suction that only allows the flow of liquid from the reservoir chamber R to the rod side chamber R1. A passage 7, a pressure side suction passage 8 that allows only the flow of liquid from the reservoir chamber R to the piston side chamber R2, a pump passage 9 that communicates the rod side chamber R1 and the piston side chamber R2, and a pump passage 9 that is provided in the pump passage 9. The pump 10 includes a bidirectional discharge type pump 10 and a motor 11 that drives the pump 10.
 シリンダ装置1を車両に適用する場合、シリンダ2を車両のばね下部材に連結し、ロッド3をばね上部材に連結して、ばね上部材とばね下部材との間に介装すればよい。シリンダ装置1は、車両に適用されて使用される場合、発揮する制御力によってばね上部材である車両の車体とばね下部材である車両の車輪の振動を抑制する。なお、本書では、シリンダ装置1が出力する力を制御力と称し、前記制御力のうちシリンダ装置1の伸長および収縮を助長する制御力を推力と称し、前記制御力のうちシリンダ装置1の伸縮および収縮を妨げる制御力を減衰力と称する。 When applying the cylinder device 1 to a vehicle, the cylinder 2 may be connected to an unsprung member of the vehicle, the rod 3 may be connected to a sprung member, and the rod 3 may be interposed between the sprung member and the unsprung member. When used in a vehicle, the cylinder device 1 suppresses vibrations of the vehicle body, which is a sprung member, and the vehicle wheels, which are unsprung members, by the control force it exerts. In this document, the force output by the cylinder device 1 is referred to as a control force, and the control force that promotes the expansion and contraction of the cylinder device 1 is referred to as a thrust force. The control force that prevents contraction is called the damping force.
 以下、シリンダ装置1の各部について詳細に説明する。シリンダ2は、筒状であって、図1中上端に環状のロッドガイド19が取り付けられるとともに、図1中下端が蓋20によって閉塞されている。ロッド3は、ロッドガイド19の内周を介してシリンダ2内に軸方向へ移動可能に挿入されており、図1中上端をシリンダ2の外方へ突出させている。 Hereinafter, each part of the cylinder device 1 will be explained in detail. The cylinder 2 has a cylindrical shape, and an annular rod guide 19 is attached to the upper end in FIG. 1, and the lower end in FIG. 1 is closed by a lid 20. The rod 3 is inserted into the cylinder 2 via the inner periphery of the rod guide 19 so as to be movable in the axial direction, and its upper end in FIG. 1 projects outward from the cylinder 2.
 また、シリンダ装置1は、シリンダ2の外周を覆う外筒21を備えている。外筒21の図1中上端と下端は、シリンダ2と同様に、ロッドガイド19と蓋20とによって閉塞されており、シリンダ2と外筒21との間の環状隙間でリザーバ室Rが形成されている。 Further, the cylinder device 1 includes an outer cylinder 21 that covers the outer circumference of the cylinder 2. The upper end and lower end of the outer cylinder 21 in FIG. ing.
 そして、ロッド3の図1中下端である先端は、シリンダ2内に挿入されたピストン4に連結され、ロッド3の図1中上端である基端は、ロッドガイド19の内周を介してシリンダ2外へ突出している。また、ロッド3の図1中上端と、シリンダ2の下端を閉塞する蓋20には、図示はしないが、シリンダ装置1を車体と車輪との間の設置箇所へ取り付けることができるようにブラケットが設けられる。 The tip of the rod 3, which is the lower end in FIG. 1, is connected to the piston 4 inserted into the cylinder 2, and the base end, which is the upper end of the rod 3 in FIG. 2 It sticks out. In addition, although not shown, a bracket is provided at the upper end of the rod 3 in FIG. provided.
 シリンダ2内は、前述したようにピストン4によって図1中上方のロッド3が全長に亘って挿通されるロッド側室R1と図1中下方のロッド3が全長に亘って挿通されていないピストン側室R2とに区画されており、ロッド側室R1およびピストン側室R2内には作動油等の液体が充填されている。また、リザーバ室R内には、液体と気体とが充填されている。ロッド側室R1、ピストン側室R2およびリザーバ室Rの液体は、作動油の他にも水や水溶液といった他の液体であってもよい。リザーバ室Rの気体は、窒素等の不活性ガスとされるとよいが大気でもよい。なお、シリンダ装置1は、前述したように片ロッド型の液圧シリンダとされており、シリンダ2に対してロッド3がピストン4とともに図1中上下方向に移動すると、シリンダ2内でロッド3が押し退ける容積が変化する。 As described above, the inside of the cylinder 2 is divided into a rod side chamber R1 through which the rod 3 at the upper side in FIG. 1 is inserted through the entire length by the piston 4, and a piston side chamber R2 through which the rod 3 at the lower side in FIG. The rod side chamber R1 and the piston side chamber R2 are filled with liquid such as hydraulic oil. Further, the reservoir chamber R is filled with liquid and gas. The liquid in the rod side chamber R1, the piston side chamber R2, and the reservoir chamber R may be other liquids such as water or an aqueous solution in addition to the hydraulic oil. The gas in the reservoir chamber R is preferably an inert gas such as nitrogen, but may also be air. As mentioned above, the cylinder device 1 is a single rod type hydraulic cylinder, and when the rod 3 moves in the vertical direction in FIG. 1 with the piston 4 relative to the cylinder 2, the rod 3 moves inside the cylinder 2. The volume displaced changes.
 減衰通路5は、本実施の形態のシリンダ装置1では、ピストン4に設けられている。減衰通路5は、ロッド側室R1とピストン側室R2とを連通する通路5aと、通路5aに設けた減衰弁5bとを備えている。減衰弁5bは、ロッド側室R1からピストン側室R2へ向かう液体の流れとピストン側室R2からロッド側室R1へ向かう液体の流れを許容しつつ、通過する液体の流れに抵抗を与える。よって、減衰通路5は、ロッド側室R1からピストン側室R2へ向かう液体の流れと、ピストン側室R2からロッド側室R1へ向かう液体の流れとの双方を許容する通路に設定されている。なお、減衰通路5は、ロッド側室R1からピストン側室R2へ向かう液体の流れのみを許容して液体の流れに対して抵抗を与える減衰弁を備えた通路と、ピストン側室R2からロッド側室R1へ向かう液体の流れにのみを許容して液体の流れに抵抗を与える減衰弁を備えた通路とを備えて構成されてもよい。また、減衰弁5bは、液体の流れに与える抵抗を変化させ得る可変絞り弁であってもよい。さらに、減衰通路5は、ピストン4以外に設けられてもよい。 The damping passage 5 is provided in the piston 4 in the cylinder device 1 of this embodiment. The damping passage 5 includes a passage 5a that communicates the rod side chamber R1 and the piston side chamber R2, and a damping valve 5b provided in the passage 5a. The damping valve 5b provides resistance to the flow of liquid passing therethrough while allowing the flow of liquid from the rod side chamber R1 to the piston side chamber R2 and the flow of liquid from the piston side chamber R2 to the rod side chamber R1. Therefore, the damping passage 5 is set to allow both the flow of liquid from the rod side chamber R1 to the piston side chamber R2 and the flow of liquid from the piston side chamber R2 to the rod side chamber R1. Note that the damping passage 5 includes a passage provided with a damping valve that only allows the flow of liquid from the rod side chamber R1 to the piston side chamber R2 and provides resistance to the flow of liquid, and a passage that is provided with a damping valve that provides resistance to the flow of liquid from the piston side chamber R2 to the rod side chamber R1. The passage may include a passage provided with a damping valve that only allows the flow of liquid and provides resistance to the flow of liquid. Further, the damping valve 5b may be a variable throttle valve that can change the resistance given to the flow of liquid. Furthermore, the damping passage 5 may be provided at a location other than the piston 4.
 圧側減衰通路6は、蓋20に設けられており、ピストン側室R2とリザーバ室Rとを連通する通路6aと、ピストン側室R2からリザーバ室Rへ向かう液体の流れのみを許容して当該液体の流れに抵抗を与える減衰弁6bとを備え、ピストン側室R2からリザーバ室Rへ向かう液体の流れのみを許容する一方通行の通路に設定されている。 The compression side damping passage 6 is provided in the lid 20, and allows only a passage 6a that communicates the piston side chamber R2 and the reservoir chamber R, and a flow of liquid from the piston side chamber R2 toward the reservoir chamber R to prevent the flow of the liquid. The piston side chamber R2 is provided with a damping valve 6b that provides resistance to the piston side chamber R2, and is set as a one-way passageway that only allows liquid to flow from the piston side chamber R2 toward the reservoir chamber R.
 伸側吸込通路7は、リザーバ室Rとロッド側室R1とを連通する通路7aと、リザーバ室Rからロッド側室R1へ向かう液体の流れのみを許容する逆止弁7bとを備え、リザーバ室Rからロッド側室R1へ向かう液体の流れのみを許容する一方通行の通路に設定されている。 The extension side suction passage 7 includes a passage 7a that communicates the reservoir chamber R and the rod side chamber R1, and a check valve 7b that allows only the flow of liquid from the reservoir chamber R to the rod side chamber R1. It is set as a one-way passage that only allows the flow of liquid toward the rod side chamber R1.
 圧側吸込通路8は、蓋20に設けられており、リザーバ室Rとピストン側室R2とを連通する通路8aと、リザーバ室Rからピストン側室R2へ向かう液体の流れのみを許容する逆止弁8bとを備え、リザーバ室Rからピストン側室R2へ向かう液体の流れのみを許容する一方通行の通路に設定されている。 The pressure side suction passage 8 is provided in the lid 20 and includes a passage 8a that communicates between the reservoir chamber R and the piston side chamber R2, and a check valve 8b that allows only the flow of liquid from the reservoir chamber R to the piston side chamber R2. , and is set as a one-way passageway that only allows liquid to flow from the reservoir chamber R to the piston side chamber R2.
 ポンプ流路9は、減衰通路5と並列してロッド側室R1とピストン側室R2とを連通しており、途中にポンプ10が設けられている。ポンプ10は、双方向吐出型に設定され、たとえば、ベーンポンプ、ギアポンプやアキシャルポンプ等、図示しない回転軸を備えて当該回転軸の回転によって流体を吸込んで吐出することができるとともに、逆に流体の流れによって回転軸を強制的に駆動することができるものであればよい。ポンプ10の回転軸は、モータ11に接続されている。モータ11は、通電によって駆動でき、ポンプ10側からの入力によって強制的に回転駆動させられると発電してポンプ10の回転を抑制するトルクを発生する。モータ11は、直流、交流を問わず、種々の形式のモータ、たとえば、ブラシレスモータ、誘導モータ、同期モータ等とされればよい。なお、ポンプ流路9にポンプ10に対して可変絞り弁を直列に設けてもよい。 The pump passage 9 is parallel to the damping passage 5 and communicates the rod side chamber R1 and the piston side chamber R2, and a pump 10 is provided in the middle. The pump 10 is set as a bidirectional discharge type, such as a vane pump, a gear pump, or an axial pump, which is equipped with a rotating shaft (not shown) and can suck in and discharge fluid by rotating the rotating shaft. Any material that can forcibly drive the rotating shaft by the flow may be used. A rotating shaft of the pump 10 is connected to a motor 11. The motor 11 can be driven by electricity, and when forced to rotate by input from the pump 10 side, generates electricity and generates torque that suppresses the rotation of the pump 10. The motor 11 may be any type of motor, whether direct current or alternating current, such as a brushless motor, induction motor, synchronous motor, etc. Note that a variable throttle valve may be provided in the pump channel 9 in series with the pump 10.
 以上のようにシリンダ装置1は構成されており、以下にシリンダ装置1の作動を説明する。まず、ポンプ10を停止した状態のシリンダ装置1の作動について説明する。シリンダ装置1が伸長作動する場合、シリンダ2に対してピストン4が図1中上方へ移動して、ロッド側室R1が縮小されてピストン側室R2が拡大される。縮小するロッド側室R1内の液体は、減衰通路5とポンプ流路9を通過して拡大するピストン側室R2へ移動する。また、シリンダ装置1の伸長時には、ロッド3がシリンダ2内から退出してシリンダ2内で液体が不足するが、不足分の液体は、圧側吸込通路8を介してリザーバ室Rからピストン側室R2へ供給される。そして、減衰通路5における減衰弁5bが液体の流れに対して抵抗を与えるとともに、ポンプ流路9を流れる液体によってポンプ10が回転させられることによってポンプ10が通過する液体の流れに対しても抵抗を与えるので、ロッド側室R1の圧力が上昇する。他方、ピストン側室R2が圧側吸込通路8における逆止弁8bが開弁してリザーバ室Rに連通されるのでピストン側室R2の圧力はタンク圧になる。なお、タンク圧は、リザーバ室R内の圧力であってリザーバ室R内に封入されている気体の圧力である。このようにシリンダ装置1の伸長時では、ロッド側室R1の圧力がピストン側室R2の圧力よりも高くなって、シリンダ装置1は、ピストン4のシリンダ2に対する上方側への移動を妨げる伸側減衰力を発生する。 The cylinder device 1 is configured as described above, and the operation of the cylinder device 1 will be described below. First, the operation of the cylinder device 1 when the pump 10 is stopped will be described. When the cylinder device 1 extends, the piston 4 moves upward in FIG. 1 relative to the cylinder 2, the rod side chamber R1 is reduced, and the piston side chamber R2 is expanded. The liquid in the contracting rod side chamber R1 moves through the damping passage 5 and the pump flow path 9 to the expanding piston side chamber R2. Also, when the cylinder device 1 extends, the rod 3 retreats from the cylinder 2, causing a shortage of liquid in the cylinder 2, but the shortage of liquid is supplied from the reservoir chamber R to the piston side chamber R2 via the compression side suction passage 8. The damping valve 5b in the damping passage 5 provides resistance to the flow of liquid, and the pump 10 is rotated by the liquid flowing through the pump flow path 9, which also provides resistance to the flow of liquid passing through the pump 10, so that the pressure in the rod side chamber R1 increases. On the other hand, the check valve 8b in the compression side suction passage 8 opens and the piston side chamber R2 is connected to the reservoir chamber R, so the pressure in the piston side chamber R2 becomes the tank pressure. The tank pressure is the pressure in the reservoir chamber R, and is the pressure of the gas sealed in the reservoir chamber R. Thus, when the cylinder device 1 is extended, the pressure in the rod side chamber R1 becomes higher than the pressure in the piston side chamber R2, and the cylinder device 1 generates an extension side damping force that prevents the piston 4 from moving upward relative to the cylinder 2.
 シリンダ装置1が収縮する場合、シリンダ2に対してピストン4が図1中下方へ移動して、ピストン側室R2が縮小されてロッド側室R1が拡大される。縮小するピストン側室R2内の液体は、減衰通路5とポンプ流路9を通過して拡大するロッド側室R1へ移動する。また、シリンダ装置1の収縮時には、ロッド3がシリンダ2内へ侵入してシリンダ2内で液体が過剰となるが、過剰分の液体は、圧側減衰通路6を介してピストン側室R2からリザーバ室Rへ排出される。そして、減衰通路5における減衰弁5bが液体の流れに対して抵抗を与えるとともに、ポンプ流路9を流れる液体によってポンプ10が回転させられることによってポンプ10が通過する液体の流れに対しても抵抗を与えるので、ピストン側室R2の圧力はロッド側室R1の圧力よりも高くなる。また、ピストン側室R2の圧力は、圧側減衰通路6が液体の流れに抵抗を与えるので、リザーバ室Rよりも高くなる。このようにシリンダ装置1の収縮時では、ピストン側室R2の圧力はロッド側室R1の圧力よりも高くなって、シリンダ装置1は、ピストン4のシリンダ2に対する下方側への移動を妨げる圧側減衰力を発生する。このように、シリンダ装置1がポンプ10の停止時に外力によって強制的に伸縮させられると、シリンダ装置1の減衰力と伸縮速度との特性は、図2中で破線で示すように、シリンダ装置1が発生する減衰力がシリンダ装置1の伸縮速度に応じて大きくなるパッシブ特性となり、シリンダ装置1は伸縮を妨げる減衰力を発揮してダンパとして機能する。 When the cylinder device 1 contracts, the piston 4 moves downward in FIG. 1 with respect to the cylinder 2, the piston side chamber R2 is contracted and the rod side chamber R1 is expanded. The liquid in the piston side chamber R2, which is contracting, passes through the damping passage 5 and the pump passage 9, and moves to the rod side chamber R1, which is expanding. Furthermore, when the cylinder device 1 is contracted, the rod 3 enters into the cylinder 2 and there is excess liquid in the cylinder 2, but the excess liquid is transferred from the piston side chamber R2 to the reservoir chamber R via the compression side damping passage 6. is discharged to. The damping valve 5b in the damping passage 5 provides resistance to the flow of liquid, and as the pump 10 is rotated by the liquid flowing in the pump flow path 9, it also provides resistance to the flow of liquid passing through the pump 10. Therefore, the pressure in the piston side chamber R2 becomes higher than the pressure in the rod side chamber R1. Further, the pressure in the piston side chamber R2 is higher than that in the reservoir chamber R because the pressure side damping passage 6 provides resistance to the flow of liquid. In this manner, when the cylinder device 1 is contracted, the pressure in the piston side chamber R2 becomes higher than the pressure in the rod side chamber R1, and the cylinder device 1 exerts a compression side damping force that prevents the piston 4 from moving downward with respect to the cylinder 2. Occur. As described above, when the cylinder device 1 is forcibly expanded or contracted by an external force when the pump 10 is stopped, the characteristics of the damping force and the expansion/contraction speed of the cylinder device 1 change as shown by the broken line in FIG. The damping force generated by the cylinder device 1 has a passive characteristic that increases according to the expansion and contraction speed of the cylinder device 1, and the cylinder device 1 functions as a damper by exerting a damping force that prevents expansion and contraction.
 つづいて、ポンプ10を駆動してシリンダ装置1をアクチュエータとして機能させる場合のシリンダ装置1の作動について説明する。ポンプ10がピストン側室R2から液体を吸い込んでロッド側室R1へ液体を供給すると、ロッド側室R1内に供給される液体によってピストン4をシリンダ2に対して図1中下方へ押圧する力が発生する。ここで、シリンダ装置1が伸長する場合、ロッド3がシリンダ2内から退出するため、拡大するピストン側室R2内には圧側吸込通路8を介してリザーバ室Rから液体が供給される。よって、ロッド側室R1に液体を供給するようにポンプ10を駆動しつつシリンダ装置1が伸長する場合、図2中の第1象限に示すように、パッシブ特性の減衰力に対してポンプ10を駆動して発生する減衰力をピストン4を押し下げる方向に重畳させることができ、モータ11に与える電流量に応じてパッシブ特性と図2中の実線Aで示すモータ11に最大電流を与えた場合の特性線との間の領域X1でシリンダ装置1の制御力を大小調整できる。第1象限では、シリンダ装置1は、ポンプ10の駆動によってピストン4を押し下げる力を付加して伸長しつつ伸長を妨げる減衰力を発生している。なお、ポンプ10の駆動によって、ロッド側室R1内に供給される液体の一部は、減衰通路5を介してピストン側室R2へ移動するが、ポンプ10の停止時よりも減衰通路5を通過する液体の流量が多くなるので、ロッド側室R1とピストン側室R2との圧力差がポンプ10の停止時よりも大きくなるので、シリンダ装置1はパッシブ特性に比較して大きな減衰力を発生できるのである。 Next, the operation of the cylinder device 1 when the pump 10 is driven to cause the cylinder device 1 to function as an actuator will be described. When the pump 10 sucks liquid from the piston side chamber R2 and supplies the liquid to the rod side chamber R1, the liquid supplied into the rod side chamber R1 generates a force that presses the piston 4 downward in FIG. 1 against the cylinder 2. Here, when the cylinder device 1 extends, the rod 3 withdraws from the cylinder 2, so that liquid is supplied from the reservoir chamber R to the expanding piston side chamber R2 via the pressure side suction passage 8. Therefore, when the cylinder device 1 is extended while driving the pump 10 to supply liquid to the rod side chamber R1, as shown in the first quadrant in FIG. 2, the pump 10 is driven against the damping force of the passive characteristic. The damping force generated by this can be superimposed in the direction of pushing down the piston 4, and depending on the amount of current applied to the motor 11, passive characteristics and characteristics when maximum current is applied to the motor 11 shown by solid line A in FIG. The control force of the cylinder device 1 can be adjusted in magnitude in the area X1 between the lines. In the first quadrant, the cylinder device 1 expands by applying a force to push down the piston 4 by driving the pump 10, and generates a damping force that prevents the expansion. Note that when the pump 10 is driven, a part of the liquid supplied into the rod side chamber R1 moves to the piston side chamber R2 via the damping passage 5, but more liquid passes through the damping passage 5 than when the pump 10 is stopped. Since the flow rate increases, the pressure difference between the rod side chamber R1 and the piston side chamber R2 becomes larger than when the pump 10 is stopped, so the cylinder device 1 can generate a larger damping force than with passive characteristics.
 ポンプ10を駆動してポンプ10がピストン側室R2から液体を吸い込んでロッド側室R1へ液体を供給する場合であって、シリンダ装置1が収縮する場合、ロッド3がシリンダ2内へ侵入するため、縮小するピストン側室R2内の液体は圧側減衰通路6を介してリザーバ室Rへ排出される。よって、ロッド側室R1に液体を供給するようにポンプ10を駆動しつつシリンダ装置1が収縮する場合、図2中の第2象限および第3象限に示すように、パッシブ特性の推力に対してポンプ10を駆動して発生する推力をピストン4を押し下げる方向に重畳させることができ、モータ11に与える電流量に応じてパッシブ特性と図2中の実線Aで示すモータ11に最大電流を与えた場合の特性線との間の領域X2でシリンダ装置1の推力を大小調整できる。ポンプ10の駆動によって、ロッド側室R1内に供給される液体の一部は、減衰通路5を介してピストン側室R2へ移動するが、シリンダ装置1の収縮時でも、ロッド側室R1の圧力をピストン側室R2の圧力よりも大きくでき、シリンダ装置1は、収縮を助長する推力を発揮できる。 When the pump 10 is driven to suck liquid from the piston side chamber R2 and supply the liquid to the rod side chamber R1, and when the cylinder device 1 contracts, the rod 3 enters into the cylinder 2, so the contraction occurs. The liquid in the piston side chamber R2 is discharged to the reservoir chamber R via the pressure side damping passage 6. Therefore, when the cylinder device 1 contracts while driving the pump 10 to supply liquid to the rod side chamber R1, as shown in the second and third quadrants in FIG. The thrust generated by driving the motor 10 can be superimposed in the direction of pushing down the piston 4, and when the maximum current is applied to the motor 11 as shown by the solid line A in FIG. The thrust of the cylinder device 1 can be adjusted in magnitude in the region X2 between the characteristic line and the characteristic line. When the pump 10 is driven, a part of the liquid supplied into the rod side chamber R1 moves to the piston side chamber R2 via the damping passage 5, but even when the cylinder device 1 is contracted, the pressure in the rod side chamber R1 is reduced to the piston side chamber. The pressure can be higher than that of R2, and the cylinder device 1 can exert a thrust that promotes contraction.
 なお、第2象限および第3象限にて実線Aで示すモータ11に最大電流を与えた場合、シリンダ装置1の収縮速度がある収縮速度以上になるとシリンダ装置1の制御力がパッシブ特性となってシリンダ装置1が減衰力を発生してしまうのは、ポンプ10が拡大するロッド側室R1内へ供給可能な最大流量よりもシリンダ装置1の収縮によって拡大するロッド側室R1の容積拡大量が上回ってしまい、液体が減衰通路5をピストン側室R2からロッド側室R1へ移動するようになってピストン側室R2の圧力の方がロッド側室R1の圧力よりも大きくなって、シリンダ装置1がもはや収縮を助長する推力を発揮できなくなるからである。このように、シリンダ装置1は、第2象限ではポンプ10の駆動によって収縮しつつ積極的に収縮を助長する推力を発生している状態である。また、シリンダ装置1は、第3象限では、収縮しつつ収縮を妨げる減衰力を発生している状態であって、ポンプ10の駆動によってピストン4を押し下げる力でパッシブ特性よりもシリンダ装置1が発生する減衰力を低減するように作動している。 Note that when the maximum current is applied to the motor 11 shown by the solid line A in the second and third quadrants, when the contraction speed of the cylinder device 1 exceeds a certain contraction speed, the control force of the cylinder device 1 becomes a passive characteristic. The reason why the cylinder device 1 generates a damping force is because the amount of volume expansion of the rod side chamber R1, which is expanded by the contraction of the cylinder device 1, exceeds the maximum flow rate that can be supplied into the rod side chamber R1, which is expanded by the pump 10. As the liquid moves through the damping passage 5 from the piston side chamber R2 to the rod side chamber R1, the pressure in the piston side chamber R2 becomes greater than the pressure in the rod side chamber R1, and the cylinder device 1 no longer has a thrust that promotes contraction. This is because they will not be able to demonstrate their abilities. Thus, in the second quadrant, the cylinder device 1 is in a state where it is contracting due to the drive of the pump 10 and actively generating thrust that promotes the contraction. Further, in the third quadrant, the cylinder device 1 is in a state where it is contracting and generating a damping force that prevents the contraction, and the cylinder device 1 is in a state where the force pushing down the piston 4 due to the drive of the pump 10 is generated by the cylinder device 1 rather than the passive characteristic. It operates to reduce the damping force.
 次に、ポンプ10がロッド側室R1から液体を吸い込んでピストン側室R2へ液体を供給すると、ピストン側室R2内に供給される液体によってピストン4をシリンダ2に対して図1中上方へ押圧する力が発生する。ここで、シリンダ装置1が収縮する場合、ピストン4が図1中下方へ移動してロッド側室R1内が拡大されるとともにポンプ10の駆動によってロッド側室R1内の液体がピストン側室R2へ供給される。そのため、伸側吸込通路7における逆止弁7bが開弁してリザーバ室Rとロッド側室R1とが連通されて、ロッド側室R1の拡大分と、ポンプ10によってピストン側室R2へ供給される分の液体がリザーバ室Rから補充されるので、ロッド側室R1内が負圧になることが阻止され、シリンダ装置1はポンプ10の駆動によってアクチュエータとして機能できる。 Next, when the pump 10 sucks liquid from the rod side chamber R1 and supplies it to the piston side chamber R2, the liquid supplied into the piston side chamber R2 generates a force that presses the piston 4 upward in FIG. 1 against the cylinder 2. Here, when the cylinder device 1 contracts, the piston 4 moves downward in FIG. 1, expanding the rod side chamber R1, and the liquid in the rod side chamber R1 is supplied to the piston side chamber R2 by the drive of the pump 10. Therefore, the check valve 7b in the extension side suction passage 7 opens to connect the reservoir chamber R and the rod side chamber R1, and the expanded portion of the rod side chamber R1 and the liquid supplied to the piston side chamber R2 by the pump 10 are replenished from the reservoir chamber R, preventing the rod side chamber R1 from becoming negative pressure, and the cylinder device 1 can function as an actuator by the drive of the pump 10.
 そして、ピストン側室R2に液体を供給するようにポンプ10を駆動しつつシリンダ装置1が収縮する場合、図2中の第3象限に示すように、パッシブ特性の減衰力に対してポンプ10を駆動して発生する減衰力をピストン4を押し上げる方向に重畳させることができ、モータ11に与える電流量に応じてパッシブ特性と図2中の実線Bで示すモータ11に最大電流を与えた場合の特性線との間の領域Y1でシリンダ装置1の制御力を大小調整できる。第3象限では、シリンダ装置1は、ポンプ10の駆動によってピストン4を押し上げる力を付加して収縮しつつ収縮を妨げる減衰力を発生している。 When the cylinder device 1 contracts while driving the pump 10 to supply liquid to the piston side chamber R2, the pump 10 is driven against the damping force of the passive characteristic, as shown in the third quadrant in FIG. The damping force generated by this can be superimposed in the direction of pushing up the piston 4, and depending on the amount of current applied to the motor 11, passive characteristics and characteristics when maximum current is applied to the motor 11 as shown by solid line B in FIG. The control force of the cylinder device 1 can be adjusted in magnitude in the region Y1 between the lines. In the third quadrant, the cylinder device 1 contracts by applying a force to push up the piston 4 by driving the pump 10, and generates a damping force that prevents the contraction.
 ポンプ10を駆動してポンプ10がロッド側室R1から液体を吸い込んでピストン側室R2へ液体を供給する場合であって、シリンダ装置1が伸長する場合、ピストン4が図1中上方へ移動してピストン側室R2内が拡大されるとともにポンプ10の駆動によってロッド側室R1内の液体がピストン側室R2へ供給される。シリンダ装置1は、片ロッド型のシリンダ装置であるため、伸長時にはロッド3がシリンダ2内から退出して、ロッド側室R1内で減少する容積よりもピストン側室R2内で増大する容積の方が大きい。よって、ポンプ10でロッド側室R1のみから液体をピストン側室R2へ供給するとシリンダ2内で液体量が不足することになるが、本実施の形態のシリンダ装置1では伸側吸込通路7が設けられているので、不足分の液体量が伸側吸込通路7を介してリザーバ室Rから供給される。そのため、シリンダ2内で不足する液体がリザーバ室Rから補充されるので、ロッド側室R1内が負圧になることが阻止され、シリンダ装置1はポンプ10の駆動によってアクチュエータとして機能できる。 When the pump 10 is driven to suck liquid from the rod side chamber R1 and supply the liquid to the piston side chamber R2, and when the cylinder device 1 is extended, the piston 4 moves upward in FIG. The inside of the side chamber R2 is expanded, and the liquid inside the rod side chamber R1 is supplied to the piston side chamber R2 by driving the pump 10. Since the cylinder device 1 is a single-rod type cylinder device, the rod 3 leaves the cylinder 2 during extension, and the volume that increases in the piston side chamber R2 is larger than the volume that decreases in the rod side chamber R1. . Therefore, if the pump 10 supplies liquid only from the rod side chamber R1 to the piston side chamber R2, the amount of liquid in the cylinder 2 will be insufficient, but in the cylinder device 1 of this embodiment, the expansion side suction passage 7 is provided. Therefore, the insufficient amount of liquid is supplied from the reservoir chamber R via the extension side suction passage 7. Therefore, the insufficient liquid in the cylinder 2 is replenished from the reservoir chamber R, so that the inside of the rod side chamber R1 is prevented from becoming a negative pressure, and the cylinder device 1 can function as an actuator by driving the pump 10.
 そして、ピストン側室R2に液体を供給するようにポンプ10を駆動しつつシリンダ装置1が伸長する場合、図2中の第4象限および第1象限に示すように、パッシブ特性に対してポンプ10を駆動して発生する推力分をピストン4を押し上げる方向に重畳させることができ、モータ11に与える電流量に応じてパッシブ特性と図2中の実線Bで示すモータ11に最大電流を与えた場合の特性線との間の領域Y2でシリンダ装置1の制御力を大小調整できる。なお、第4象限および第1象限にて実線Bで示すモータ11に最大電流を与えた場合、シリンダ装置1の伸縮速度がある伸縮速度以上になるとシリンダ装置1の制御力がパッシブ特性となってシリンダ装置1が減衰力を発生してしまうのは、ポンプ10が拡大するピストン側室R2内へ供給可能な最大流量よりもシリンダ装置1の伸長によって拡大するピストン側室R2の容積拡大量が上回ってしまい、液体が減衰通路5をロッド側室R1からピストン側室R2へ移動するようになってロッド側室R1の圧力の方がピストン側室R2の圧力よりも大きくなって、シリンダ装置1がもはや伸長を助長する推力を発揮できなくなるからである。このように、シリンダ装置1は、第4象限ではポンプ10の駆動によって伸長しつつ積極的に伸長を助長する推力を発生している状態である。また、シリンダ装置1は、第1象限では、伸長しつつ伸長を妨げる減衰力を発生している状態であって、ポンプ10の駆動によってピストン4を押し上げる力でパッシブ特性よりもシリンダ装置1が発生する減衰力を低減するように作動している。 When the cylinder device 1 extends while driving the pump 10 to supply liquid to the piston side chamber R2, the thrust generated by driving the pump 10 can be superimposed on the passive characteristics in the direction of pushing up the piston 4, as shown in the fourth and first quadrants of Figure 2, and the control force of the cylinder device 1 can be adjusted in size in the area Y2 between the passive characteristics and the characteristic line when the maximum current is applied to the motor 11, as shown by the solid line B in Figure 2, depending on the amount of current applied to the motor 11. In addition, when the maximum current is applied to the motor 11 shown by the solid line B in the fourth and first quadrants, when the extension speed of the cylinder device 1 exceeds a certain extension speed, the control force of the cylinder device 1 becomes passive and the cylinder device 1 generates a damping force. This is because the volume expansion amount of the piston side chamber R2 expanded by the extension of the cylinder device 1 exceeds the maximum flow rate that can be supplied into the piston side chamber R2 expanded by the pump 10, and the liquid moves from the rod side chamber R1 to the piston side chamber R2 through the damping passage 5, and the pressure of the rod side chamber R1 becomes greater than the pressure of the piston side chamber R2, and the cylinder device 1 can no longer exert a thrust that promotes extension. In this way, the cylinder device 1 is in a state in which it actively generates a thrust that promotes extension while extending by the drive of the pump 10 in the fourth quadrant. Also, the cylinder device 1 is in a state in which it generates a damping force that hinders extension while extending in the first quadrant, and operates so that the force that pushes up the piston 4 by the drive of the pump 10 reduces the damping force generated by the cylinder device 1 more than the passive characteristic.
 このように構成されたシリンダ装置1は、ダンパとしてもアクチュエータとしても機能できるとともに、外力を受けて伸縮させられる場合、モータ11のトルクでポンプ10の回転を抑制する、すなわち、モータ11を制動領域で使用してモータ11にポンプ10の回転方向とは逆のトルクを発生させられる。よって、シリンダ装置1は、モータ11を制動領域で使用してモータ11に発電させて運動エネルギを電気エネルギに変換して電力回生を行うことができる。また、シリンダ装置1における減衰通路5に設けられる減衰弁5bを可変絞り弁とし、ポンプ流路9にポンプ10とともに直列に可変絞り弁を設ける場合には、2つの可変絞り弁の開度調整によって、制動領域で動作するモータ11のトルクと回転速度を制御できるので、モータ11の電力回生の効率を向上させることもできる。 The cylinder device 1 configured in this manner can function both as a damper and an actuator, and when expanded or contracted in response to an external force, suppresses the rotation of the pump 10 with the torque of the motor 11, that is, moves the motor 11 into a braking region. can be used to cause the motor 11 to generate a torque opposite to the rotational direction of the pump 10. Therefore, the cylinder device 1 can perform power regeneration by using the motor 11 in the braking region, causing the motor 11 to generate electricity, converting kinetic energy into electrical energy. In addition, when the damping valve 5b provided in the damping passage 5 in the cylinder device 1 is a variable throttle valve, and the variable throttle valve is provided in the pump flow path 9 in series with the pump 10, the opening degree of the two variable throttle valves can be adjusted. Since the torque and rotational speed of the motor 11 operating in the braking region can be controlled, the efficiency of power regeneration of the motor 11 can also be improved.
 以上、本実施の形態のシリンダ装置1は、シリンダ2と、シリンダ2内に軸方向へ移動可能に挿入されるロッド3と、ロッド3に連結されるとともにシリンダ2内に移動自在に挿入されてシリンダ2内をロッド側室R1とピストン側室R2とに区画するピストン4と、液体を貯留するリザーバ室Rと、ロッド側室R1とピストン側室R2とを連通するとともに通過する液体の流れに抵抗を与える減衰通路5と、ピストン側室R2からリザーバ室Rへ向かう液体の流れに抵抗を与える圧側減衰通路6と、リザーバ室Rからロッド側室R1へ向かう液体の流れのみを許容する伸側吸込通路7と、リザーバ室Rからピストン側室R2へ向かう液体の流れのみを許容する圧側吸込通路8と、減衰通路5と並列してロッド側室R1とピストン側室R2とを連通するポンプ流路9と、ポンプ流路9に設けられた双方向吐出型のポンプ10と、ポンプ10を駆動するモータ11とを備えて構成されている。 As described above, the cylinder device 1 of the present embodiment includes a cylinder 2, a rod 3 that is movably inserted into the cylinder 2 in the axial direction, and a cylinder that is connected to the rod 3 and is movably inserted into the cylinder 2. A piston 4 that divides the inside of the cylinder 2 into a rod side chamber R1 and a piston side chamber R2, a reservoir chamber R that stores liquid, and a damping that provides resistance to the flow of liquid that communicates with the rod side chamber R1 and piston side chamber R2 and passes through it. A passage 5, a compression side damping passage 6 that provides resistance to the flow of liquid from the piston side chamber R2 to the reservoir chamber R, a rebound side suction passage 7 that allows only the flow of liquid from the reservoir chamber R to the rod side chamber R1, and a reservoir chamber R2. A pressure side suction passage 8 that allows only the flow of liquid from the chamber R to the piston side chamber R2, a pump passage 9 that is parallel to the damping passage 5 and communicates the rod side chamber R1 and the piston side chamber R2, and the pump passage 9. The pump 10 includes a bidirectional discharge type pump 10 and a motor 11 that drives the pump 10.
 このように構成されたシリンダ装置1によれば、ポンプ10を駆動してロッド側室R1からピストン側室R2へ液体を供給しても、伸側吸込通路7を備えているのでリザーバ室Rからロッド側室R1へ液体の供給が可能となって、ロッド側室R1の圧力が負圧となることがない。よって、本実施の形態のシリンダ装置1によれば、片ロッド型のシリンダ装置として構成されていても、ダンパのみならずアクチュエータとしても機能できる。 According to the cylinder device 1 configured in this way, even if the pump 10 is driven to supply liquid from the rod side chamber R1 to the piston side chamber R2, since the expansion side suction passage 7 is provided, the liquid is supplied from the reservoir chamber R to the rod side chamber R2. Liquid can be supplied to R1, and the pressure in the rod side chamber R1 does not become negative. Therefore, according to the cylinder device 1 of this embodiment, even if it is configured as a single rod type cylinder device, it can function not only as a damper but also as an actuator.
 つづいて、図3に示した一実施の形態の変形例におけるシリンダ装置1aについて説明する。変形例のシリンダ装置1aは、図3に示すように、一実施の形態のシリンダ装置1における減衰通路5を廃止して、代わりにポンプ流路9の途中に互いに並列する減衰弁12および逆止弁13をポンプ10と直列に設けている。以下、変形例のシリンダ装置1aの構成部材のうち一実施の形態のシリンダ装置1と異なる構成部材について詳細に説明し、シリンダ装置1と同様の構成部材については説明が重複するため同じ符号を付して詳しい説明を省略する。 Next, a cylinder device 1a according to a modification of the embodiment shown in FIG. 3 will be described. As shown in FIG. 3, the cylinder device 1a of the modification example eliminates the damping passage 5 in the cylinder device 1 of the embodiment, and instead includes a damping valve 12 and a non-return valve parallel to each other in the middle of the pump flow path 9. A valve 13 is provided in series with the pump 10. Hereinafter, components of the cylinder device 1a of the modified example that are different from the cylinder device 1 of one embodiment will be explained in detail, and components similar to the cylinder device 1 will be given the same reference numerals because the explanation will be repeated. detailed explanation will be omitted.
 減衰弁12は、ロッド側室R1とピストン側室R2とを連通するポンプ流路9に設けられており、通過する液体の流れに対して抵抗を与える。逆止弁13は、ポンプ流路9の途中に減衰弁12と並列に設置されており、ピストン側室R2からロッド側室R1へ向かう液体の流れのみを許容してロッド側室R1からピストン側室R2へ向かう液体の流れを阻止する。このように減衰弁12と逆止弁13とは、互いに並列に配置されてポンプ流路9に設けられるとともに、ポンプ10に対しては直列に配置されている。なお、減衰弁12は、逆止弁13と並列に配置されているので、ロッド側室R1からピストン側室R2へ向かう液体の流れだけでなくピストン側室R2からロッド側室R1へ向かう液体の流れを許容する絞り弁やチョークといった双方向流れを許容する減衰弁の他にも、ロッド側室R1からピストン側室R2へ向かう液体の流れのみを許容して当該液体の流れに抵抗を与える減衰弁であってもよく、たとえば、リーフバルブやポペット弁であってもよい。また、減衰弁12は、リーフバルブとリーフバルブに並列されるオリフィスとで構成されてもよい。さらに、減衰弁12は、可変絞り弁等の減衰力調整が可能な電磁弁であってもよい。 The damping valve 12 is provided in the pump flow path 9 that communicates the rod side chamber R1 and the piston side chamber R2, and provides resistance to the flow of liquid passing therethrough. The check valve 13 is installed in parallel with the damping valve 12 in the middle of the pump flow path 9, and allows only the flow of liquid from the piston side chamber R2 to the rod side chamber R1, and from the rod side chamber R1 to the piston side chamber R2. Block the flow of liquid. In this way, the damping valve 12 and the check valve 13 are arranged in parallel with each other in the pump channel 9, and are arranged in series with the pump 10. In addition, since the damping valve 12 is arranged in parallel with the check valve 13, it allows not only the flow of liquid from the rod side chamber R1 to the piston side chamber R2, but also the flow of liquid from the piston side chamber R2 to the rod side chamber R1. In addition to damping valves such as throttle valves and chokes that allow bidirectional flow, damping valves that allow only the flow of liquid from the rod side chamber R1 to the piston side chamber R2 and provide resistance to the flow of the liquid may also be used. , for example, a leaf valve or a poppet valve. Further, the damping valve 12 may include a leaf valve and an orifice arranged in parallel with the leaf valve. Furthermore, the damping valve 12 may be an electromagnetic valve capable of adjusting damping force, such as a variable throttle valve.
 また、変形例におけるシリンダ装置1aは、伸側リリーフ弁14と圧側リリーフ弁15とをピストン4に備えている。伸側リリーフ弁14は、ロッド側室R1内の圧力が所定の伸側リリーフ圧になると開弁してロッド側室R1内の液体がピストン側室R2へ移動するのを許容して、ロッド側室R1内の圧力が過剰に高圧となるのを防止してピストンロッド3とロッドガイド19との間をシールする図外のシール部材を保護するとともに液体のシリンダ装置1a外への漏洩を防止する。また、圧側リリーフ弁15は、ピストン側室R2内の圧力が所定の圧側リリーフ圧になると開弁してピストン側室R2内の液体がロッド側室R1へ移動するのを許容して、ピストン側室R2内の圧力が過剰に高圧となるのを防止してシリンダ装置1aを保護する。 Further, the cylinder device 1a in the modified example includes a growth side relief valve 14 and a pressure side relief valve 15 on the piston 4. The expansion-side relief valve 14 opens when the pressure in the rod-side chamber R1 reaches a predetermined expansion-side relief pressure, and allows the liquid in the rod-side chamber R1 to move to the piston-side chamber R2, thereby reducing the pressure in the rod-side chamber R1. This protects a sealing member (not shown) that seals between the piston rod 3 and the rod guide 19 by preventing the pressure from becoming excessively high, and also prevents liquid from leaking out of the cylinder device 1a. Moreover, the pressure side relief valve 15 opens when the pressure in the piston side chamber R2 reaches a predetermined pressure side relief pressure, and allows the liquid in the piston side chamber R2 to move to the rod side chamber R1. The cylinder device 1a is protected by preventing the pressure from becoming excessively high.
 このように構成されたシリンダ装置1aの作動を説明する。まず、ポンプ10を停止した状態のシリンダ装置1aの作動について説明する。シリンダ装置1aが伸長作動する場合、シリンダ2に対してピストン4が図3中上方へ移動して、ロッド側室R1が縮小されてピストン側室R2が拡大される。縮小するロッド側室R1内の液体は、減衰弁12およびポンプ10を通過してポンプ流路9を介して拡大するピストン側室R2へ移動する。また、シリンダ装置1aの伸長時には、ロッド3がシリンダ2内から退出してシリンダ2内で液体が不足するが、不足分の液体は、圧側吸込通路8を介してリザーバ室Rからピストン側室R2へ供給される。そして、減衰弁12およびポンプ10がポンプ流路9を通過する液体の流れに対して抵抗を与えるので、ロッド側室R1の圧力が上昇する。他方、ピストン側室R2が圧側吸込通路8における逆止弁8bが開弁してリザーバ室Rに連通されるのでピストン側室R2の圧力はタンク圧になる。このようにシリンダ装置1aの伸長時では、ロッド側室R1の圧力がピストン側室R2の圧力よりも高くなって、シリンダ装置1aは、ピストン4のシリンダ2に対する上方側への移動を妨げる伸側減衰力を発生する。なお、シリンダ装置1aが高速で伸長作動して、ロッド側室R1内の圧力が伸側リリーフ圧に達すると伸側リリーフ弁14が開弁してロッド側室R1内の圧力が過剰に高圧となるのが防止される。 The operation of the cylinder device 1a configured in this way will be explained. First, the operation of the cylinder device 1a with the pump 10 stopped will be explained. When the cylinder device 1a is extended, the piston 4 moves upward in FIG. 3 relative to the cylinder 2, and the rod side chamber R1 is contracted and the piston side chamber R2 is expanded. The liquid in the contracting rod side chamber R1 passes through the damping valve 12 and the pump 10 and moves through the pump flow path 9 to the expanding piston side chamber R2. Further, when the cylinder device 1a is extended, the rod 3 withdraws from the cylinder 2 and there is a shortage of liquid in the cylinder 2, but the insufficient liquid is transferred from the reservoir chamber R to the piston side chamber R2 via the pressure side suction passage 8. Supplied. Then, since the damping valve 12 and the pump 10 provide resistance to the flow of liquid passing through the pump channel 9, the pressure in the rod side chamber R1 increases. On the other hand, since the check valve 8b in the pressure side suction passage 8 opens and the piston side chamber R2 is communicated with the reservoir chamber R, the pressure in the piston side chamber R2 becomes the tank pressure. In this way, when the cylinder device 1a is extended, the pressure in the rod side chamber R1 becomes higher than the pressure in the piston side chamber R2, and the cylinder device 1a generates an expansion side damping force that prevents the piston 4 from moving upward relative to the cylinder 2. occurs. Note that when the cylinder device 1a is extended at high speed and the pressure in the rod side chamber R1 reaches the relief pressure on the expansion side, the relief valve 14 on the expansion side opens and the pressure in the rod side chamber R1 becomes excessively high. is prevented.
 他方、シリンダ装置1aが収縮する場合、シリンダ2に対してピストン4が図3中下方へ移動して、ピストン側室R2が縮小されてロッド側室R1が拡大される。縮小するピストン側室R2内の液体は、逆止弁13とポンプ流路9を通過して拡大するロッド側室R1へ移動する。また、シリンダ装置1aの収縮時には、ロッド3がシリンダ2内へ侵入してシリンダ2内で液体が過剰となるが、過剰分の液体は、圧側減衰通路6を介してピストン側室R2からリザーバ室Rへ排出される。そして、ポンプ10が通過する液体の流れに対して抵抗を与えるので、ピストン側室R2の圧力はロッド側室R1の圧力よりも高くなる。また、ピストン側室R2の圧力は、圧側減衰通路6が液体の流れに抵抗を与えるので、リザーバ室Rよりも高くなる。このようにシリンダ装置1aの収縮時では、ピストン側室R2の圧力はロッド側室R1の圧力よりも高くなって、シリンダ装置1aは、ピストン4のシリンダ2に対する下方側への移動を妨げる圧側減衰力を発生する。なお、シリンダ装置1aが高速で収縮作動して、ピストン側室R2内の圧力が圧側リリーフ圧に達すると圧側リリーフ弁15が開弁してピストン側室R2内の圧力が過剰に高圧となるのが防止される。 On the other hand, when the cylinder device 1a contracts, the piston 4 moves downward in FIG. 3 with respect to the cylinder 2, the piston side chamber R2 is contracted and the rod side chamber R1 is expanded. The liquid in the piston side chamber R2, which is contracting, passes through the check valve 13 and the pump flow path 9, and moves to the rod side chamber R1, which is expanding. Further, when the cylinder device 1a contracts, the rod 3 enters into the cylinder 2 and an excess of liquid occurs in the cylinder 2, but the excess liquid is transferred from the piston side chamber R2 to the reservoir chamber R via the compression side damping passage 6. is discharged to. Since the pump 10 provides resistance to the flow of liquid passing therethrough, the pressure in the piston side chamber R2 becomes higher than the pressure in the rod side chamber R1. Further, the pressure in the piston side chamber R2 is higher than that in the reservoir chamber R because the pressure side damping passage 6 provides resistance to the flow of liquid. In this manner, when the cylinder device 1a is contracted, the pressure in the piston side chamber R2 becomes higher than the pressure in the rod side chamber R1, and the cylinder device 1a exerts a compression side damping force that prevents the piston 4 from moving downward with respect to the cylinder 2. Occur. Note that when the cylinder device 1a contracts at high speed and the pressure in the piston side chamber R2 reaches the pressure side relief pressure, the pressure side relief valve 15 opens to prevent the pressure in the piston side chamber R2 from becoming excessively high. be done.
 このように、シリンダ装置1aがポンプ10の停止時に外力によって強制的に伸縮させられると、シリンダ装置1aの制御力と伸縮速度との特性は、シリンダ装置1と同様に、シリンダ装置1aが発生する制御力がシリンダ装置1aの伸縮速度に応じて大きくなるパッシブ特性となり、シリンダ装置1aは伸縮を妨げる減衰力を発揮してダンパとして機能する。 As described above, when the cylinder device 1a is forcibly expanded or contracted by an external force when the pump 10 is stopped, the characteristics of the control force and the expansion/contraction speed of the cylinder device 1a are similar to those of the cylinder device 1, and the cylinder device 1a generates The passive characteristic is such that the control force increases according to the speed of expansion and contraction of the cylinder device 1a, and the cylinder device 1a functions as a damper by exerting a damping force that prevents expansion and contraction.
 つづいて、ポンプ10を駆動してシリンダ装置1aをアクチュエータとして機能させる場合のシリンダ装置1aの作動について説明する。ポンプ10がピストン側室R2から液体を吸い込んでロッド側室R1へ液体を供給すると、ロッド側室R1内に供給される液体によってピストン4をシリンダ2に対して図3中下方へ押圧する力が発生する。ポンプ流路9をピストン側室R2からロッド側室R1へ向かって流れる液体に対しては逆止弁13が開弁するので、ポンプ10から吐出される液体は、減衰弁12の抵抗を受けずにロッド側室R1へ移動できる。 Next, the operation of the cylinder device 1a when the pump 10 is driven to cause the cylinder device 1a to function as an actuator will be described. When the pump 10 sucks liquid from the piston side chamber R2 and supplies the liquid to the rod side chamber R1, the liquid supplied into the rod side chamber R1 generates a force that presses the piston 4 downward in FIG. 3 against the cylinder 2. Since the check valve 13 opens for liquid flowing from the piston side chamber R2 to the rod side chamber R1 in the pump flow path 9, the liquid discharged from the pump 10 flows into the rod without being subjected to resistance from the damping valve 12. You can move to side room R1.
 ここで、シリンダ装置1aが伸長する場合、ロッド3がシリンダ2内から退出するため、拡大するピストン側室R2内には圧側吸込通路8を介してリザーバ室Rから液体が供給される。よって、ロッド側室R1に液体を供給するようにポンプ10を駆動しつつシリンダ装置1aが伸長する場合、シリンダ装置1と同様に、図2中の第1象限に示すように、パッシブ特性の減衰力に対してポンプ10を駆動して発生する減衰力をピストン4を押し下げる方向に重畳させることができ、モータ11に与える電流量に応じてパッシブ特性と図2中の実線Aで示すモータ11に最大電流を与えた場合の特性線との間の領域X1でシリンダ装置1aの制御力を大小調整できる。第1象限では、シリンダ装置1aは、ポンプ10の駆動によってピストン4を押し下げる力を付加して伸長しつつ伸長を妨げる減衰力を発生している。なお、ポンプ10の駆動によって、ロッド側室R1とピストン側室R2との圧力差がポンプ10の停止時よりも大きくなるので、シリンダ装置1aはパッシブ特性に比較して大きな減衰力を発生できるのである。 Here, when the cylinder device 1a expands, the rod 3 withdraws from the cylinder 2, so liquid is supplied from the reservoir chamber R to the expanding piston side chamber R2 via the pressure side suction passage 8. Therefore, when the cylinder device 1a is extended while driving the pump 10 to supply liquid to the rod side chamber R1, similarly to the cylinder device 1, as shown in the first quadrant in FIG. 2, the damping force of the passive characteristic is The damping force generated by driving the pump 10 can be superimposed in the direction of pushing down the piston 4, and depending on the amount of current given to the motor 11, the passive characteristic and the maximum The control force of the cylinder device 1a can be adjusted in magnitude in the region X1 between the characteristic line and the characteristic line when a current is applied. In the first quadrant, the cylinder device 1a expands by applying a force to push down the piston 4 by driving the pump 10, and generates a damping force that prevents the expansion. Note that by driving the pump 10, the pressure difference between the rod side chamber R1 and the piston side chamber R2 becomes larger than when the pump 10 is stopped, so the cylinder device 1a can generate a larger damping force than with passive characteristics.
 ポンプ10を駆動してポンプ10がピストン側室R2から液体を吸い込んでロッド側室R1へ液体を供給する場合であって、シリンダ装置1aが収縮する場合、ロッド3がシリンダ2内へ侵入するため、縮小するピストン側室R2内の液体は圧側減衰通路6を介してリザーバ室Rへ排出される。よって、ロッド側室R1に液体を供給するようにポンプ10を駆動しつつシリンダ装置1aが収縮する場合、図2中の第2象限および第3象限に示すように、パッシブ特性の減衰力に対してポンプ10を駆動して発生する推力をピストン4を押し下げる方向に重畳させることができ、モータ11に与える電流量に応じてパッシブ特性と図2中の実線Aで示すモータ11に最大電流を与えた場合の特性線との間の領域X2でシリンダ装置1aの制御力を大小調整できる。ポンプ10の駆動によって、シリンダ装置1aの収縮時でも、ロッド側室R1の圧力をピストン側室R2の圧力よりも大きくでき、シリンダ装置1aは、収縮を助長する推力を発揮できる。 When the pump 10 is driven to suck liquid from the piston side chamber R2 and supply the liquid to the rod side chamber R1, and when the cylinder device 1a contracts, the rod 3 enters into the cylinder 2, so the contraction occurs. The liquid in the piston side chamber R2 is discharged to the reservoir chamber R via the pressure side damping passage 6. Therefore, when the cylinder device 1a contracts while driving the pump 10 to supply liquid to the rod side chamber R1, as shown in the second and third quadrants in FIG. The thrust generated by driving the pump 10 can be superimposed in the direction of pushing down the piston 4, and depending on the amount of current given to the motor 11, a maximum current is given to the motor 11 as shown by the solid line A in FIG. The control force of the cylinder device 1a can be adjusted in magnitude in the region X2 between the characteristic line and the characteristic line. By driving the pump 10, even when the cylinder device 1a is contracted, the pressure in the rod side chamber R1 can be made higher than the pressure in the piston side chamber R2, and the cylinder device 1a can exert a thrust that promotes the contraction.
 なお、第2象限および第3象限にて実線Aで示すモータ11に最大電流を与えた場合、シリンダ装置1aの収縮速度がある収縮速度以上になるとシリンダ装置1aの制御力がパッシブ特性となってシリンダ装置1aが減衰力を発生してしまうのは、ポンプ10が拡大するロッド側室R1内へ供給可能な最大流量よりもシリンダ装置1aの収縮によって拡大するロッド側室R1の容積拡大量が上回って伸側吸込通路7を介してリザーバRからロッド側室R1内に液体が供給されるようになり、ピストン側室R2の圧力の方がロッド側室R1の圧力よりも大きくなって、シリンダ装置1aがもはや収縮を助長する推力を発揮できなくなるからである。このように、シリンダ装置1aは、第2象限ではポンプ10の駆動によって収縮しつつ積極的に収縮を助長する推力を発生している状態である。また、シリンダ装置1aは、第3象限では、収縮しつつ収縮を妨げる減衰力を発生している状態であって、ポンプ10の駆動によってピストン4を押し下げる力でパッシブ特性よりもシリンダ装置1aが発生する減衰力を低減するように作動している。 Note that when the maximum current is applied to the motor 11 shown by the solid line A in the second and third quadrants, when the contraction speed of the cylinder device 1a exceeds a certain contraction speed, the control force of the cylinder device 1a becomes a passive characteristic. The reason why the cylinder device 1a generates a damping force is because the amount of volume expansion of the rod side chamber R1, which is expanded by the contraction of the cylinder device 1a, exceeds the maximum flow rate that can be supplied into the rod side chamber R1, which is expanded by the pump 10. Liquid is now supplied from the reservoir R into the rod side chamber R1 via the side suction passage 7, and the pressure in the piston side chamber R2 becomes greater than the pressure in the rod side chamber R1, so that the cylinder device 1a no longer contracts. This is because it becomes impossible to exert the thrust that helps. Thus, in the second quadrant, the cylinder device 1a is in a state where it is contracting due to the drive of the pump 10 and actively generating thrust that promotes the contraction. Further, in the third quadrant, the cylinder device 1a is in a state in which it is contracting and generating a damping force that prevents the contraction, and the cylinder device 1a is in a state where the force pushing down the piston 4 due to the drive of the pump 10 causes the cylinder device 1a to generate more force than the passive characteristic. It operates to reduce the damping force.
 次に、ポンプ10がロッド側室R1から液体を吸い込んでピストン側室R2へ液体を供給すると、ピストン側室R2内に供給される液体によってピストン4をシリンダ2に対して図3中上方へ押圧する力が発生する。ここで、シリンダ装置1aが収縮する場合、ピストン4が図3中下方へ移動してロッド側室R1内が拡大されるとともにポンプ10の駆動によってロッド側室R1内の液体がピストン側室R2へ供給される。そのため、伸側吸込通路7における逆止弁7bが開弁してリザーバ室Rとロッド側室R1とが連通されて、ロッド側室R1の拡大分と、ポンプ10によってピストン側室R2へ供給される分の液体がリザーバ室Rから補充されるので、ロッド側室R1内が負圧になることが阻止され、シリンダ装置1aはポンプ10の駆動によってアクチュエータとして機能できる。 Next, when the pump 10 sucks liquid from the rod side chamber R1 and supplies the liquid to the piston side chamber R2, the liquid supplied into the piston side chamber R2 creates a force that presses the piston 4 against the cylinder 2 upward in FIG. Occur. Here, when the cylinder device 1a contracts, the piston 4 moves downward in FIG. 3 to expand the inside of the rod side chamber R1, and the liquid inside the rod side chamber R1 is supplied to the piston side chamber R2 by driving the pump 10. . Therefore, the check valve 7b in the extension side suction passage 7 is opened, and the reservoir chamber R and the rod side chamber R1 are communicated with each other, and the expansion of the rod side chamber R1 and the amount supplied by the pump 10 to the piston side chamber R2 are communicated with each other. Since the liquid is replenished from the reservoir chamber R, negative pressure inside the rod side chamber R1 is prevented, and the cylinder device 1a can function as an actuator by driving the pump 10.
 そして、ピストン側室R2に液体を供給するようにポンプ10を駆動しつつシリンダ装置1aが収縮する場合、図2中の第3象限に示すように、パッシブ特性の減衰力に対してポンプ10を駆動して発生する減衰力をピストン4を押し上げる方向に重畳させることができ、モータ11に与える電流量に応じてパッシブ特性と図2中の実線Bで示すモータ11に最大電流を与えた場合の特性線との間の領域Y1でシリンダ装置1aの制御力を大小調整できる。第3象限では、シリンダ装置1aは、ポンプ10の駆動によってピストン4を押し上げる力を付加して収縮しつつ収縮を妨げる減衰力を発生している。 When the cylinder device 1a contracts while driving the pump 10 to supply liquid to the piston side chamber R2, as shown in the third quadrant in FIG. 2, the pump 10 is driven against the damping force of the passive characteristic. The damping force generated by this can be superimposed in the direction of pushing up the piston 4, and depending on the amount of current applied to the motor 11, passive characteristics and characteristics when maximum current is applied to the motor 11 as shown by solid line B in FIG. The control force of the cylinder device 1a can be adjusted in magnitude in the region Y1 between the lines. In the third quadrant, the cylinder device 1a contracts by applying a force to push up the piston 4 by driving the pump 10, and generates a damping force that prevents the contraction.
 ポンプ10を駆動してポンプ10がロッド側室R1から液体を吸い込んでピストン側室R2へ液体を供給する場合であって、シリンダ装置1が伸長する場合、ピストン4が図3中上方へ移動してピストン側室R2内が拡大されるとともにポンプ10の駆動によってロッド側室R1内の液体がピストン側室R2へ供給される。シリンダ装置1aは、片ロッド型のシリンダ装置であるため、伸長時にはロッド3がシリンダ2内から退出して、ロッド側室R1内で減少する容積よりもピストン側室R2内で増大する容積の方が大きい。よって、ポンプ10でロッド側室R1のみから液体をピストン側室R2へ供給するとシリンダ2内で液体量が不足することになるが、本実施の形態のシリンダ装置1aでは伸側吸込通路7が設けられているので、不足分の液体量が伸側吸込通路7を介してリザーバ室Rから供給される。そのため、シリンダ2内で不足する液体がリザーバ室Rから補充されるので、ロッド側室R1内が負圧になることが阻止され、シリンダ装置1aはポンプ10の駆動によってアクチュエータとして機能できる。 When the pump 10 is driven to suck liquid from the rod side chamber R1 and supply the liquid to the piston side chamber R2, and when the cylinder device 1 is extended, the piston 4 moves upward in FIG. The inside of the side chamber R2 is expanded, and the liquid inside the rod side chamber R1 is supplied to the piston side chamber R2 by driving the pump 10. Since the cylinder device 1a is a single rod type cylinder device, the rod 3 leaves the cylinder 2 when it is extended, and the volume that increases in the piston side chamber R2 is larger than the volume that decreases in the rod side chamber R1. . Therefore, if the pump 10 supplies liquid only from the rod side chamber R1 to the piston side chamber R2, the amount of liquid in the cylinder 2 will be insufficient, but in the cylinder device 1a of the present embodiment, the expansion side suction passage 7 is provided. Therefore, the insufficient amount of liquid is supplied from the reservoir chamber R via the extension side suction passage 7. Therefore, the insufficient liquid in the cylinder 2 is replenished from the reservoir chamber R, so that the inside of the rod side chamber R1 is prevented from becoming a negative pressure, and the cylinder device 1a can function as an actuator by driving the pump 10.
 そして、ピストン側室R2に液体を供給するようにポンプ10を駆動しつつシリンダ装置1aが伸長する場合、図2中の第4象限および第1象限に示すように、パッシブ特性に対してポンプ10を駆動して発生する推力分をピストン4を押し上げる方向に重畳させることができ、モータ11に与える電流量に応じてパッシブ特性と図2中の実線Bで示すモータ11に最大電流を与えた場合の特性線との間の領域Y2でシリンダ装置1aの制御力を大小調整できる。なお、第4象限および第1象限にて実線Bで示すモータ11に最大電流を与えた場合、シリンダ装置1aの伸縮速度がある伸縮速度以上になるとシリンダ装置1aの制御力がパッシブ特性となってシリンダ装置1aが減衰力を発生してしまうのは、ポンプ10が拡大するピストン側室R2内へ供給可能な最大流量よりもシリンダ装置1aの伸長によって拡大するピストン側室R2の容積拡大量が上回ってしまい、液体が圧側吸込通路8を介してリザーバRからピストン側室R2に供給されるようになり、ロッド側室R1の圧力の方がピストン側室R2の圧力よりも大きくなって、シリンダ装置1aがもはや伸長を助長する推力を発揮できなくなるからである。このように、シリンダ装置1aは、第4象限ではポンプ10の駆動によって伸長しつつ積極的に伸長を助長する推力を発生している状態である。また、シリンダ装置1aは、第1象限では、伸長しつつ伸長を妨げる減衰力を発生している状態であって、ポンプ10の駆動によってピストン4を押し上げる力でパッシブ特性よりもシリンダ装置1aが発生する減衰力を低減するように作動している。 When the cylinder device 1a is extended while driving the pump 10 to supply liquid to the piston side chamber R2, as shown in the fourth and first quadrants in FIG. The thrust generated by driving can be superimposed in the direction of pushing up the piston 4, and depending on the amount of current given to the motor 11, the passive characteristic and the maximum current given to the motor 11 shown by the solid line B in FIG. The control force of the cylinder device 1a can be adjusted in magnitude in the region Y2 between the characteristic line and the characteristic line. Note that when the maximum current is applied to the motor 11 shown by the solid line B in the fourth and first quadrants, when the expansion/contraction speed of the cylinder device 1a exceeds a certain expansion/contraction speed, the control force of the cylinder device 1a becomes a passive characteristic. The reason why the cylinder device 1a generates a damping force is because the volume expansion amount of the piston side chamber R2, which is expanded by the expansion of the cylinder device 1a, exceeds the maximum flow rate that can be supplied into the piston side chamber R2, which is expanded by the pump 10. , liquid is now supplied from the reservoir R to the piston side chamber R2 via the pressure side suction passage 8, and the pressure in the rod side chamber R1 becomes greater than the pressure in the piston side chamber R2, so that the cylinder device 1a no longer extends. This is because it becomes impossible to exert the thrust that helps. In this manner, the cylinder device 1a is in a state in which it is being expanded by the drive of the pump 10 in the fourth quadrant, and is actively generating thrust that promotes the expansion. Further, in the first quadrant, the cylinder device 1a is in a state where it is elongating and generating a damping force that prevents the elongation, and the cylinder device 1a is in a state where the force pushing up the piston 4 due to the drive of the pump 10 causes the cylinder device 1a to generate more force than the passive characteristic. It operates to reduce the damping force.
 このように構成されたシリンダ装置1aは、アクチュエータとして機能できるが、シリンダ装置1aの制振対象である車両における車体の走行中の振動は、ばね上共振周波数帯の比較的低周波の成分だけでなく、車輪側から入力されるばね下共振周波数帯の高周波成分を含んでいる。モータ11によるポンプ10の駆動でシリンダ装置1aが発生する制御力を制御すれば、ポンプ10の駆動のみでシリンダ装置1aは、車体のばね上共振周波数帯の比較的低周波の振動を十分に抑制できる。ところが、ポンプ流路9を形成するホースや配管の材質や長さ、シリンダ装置1aに入力される振動によるホースや配管の揺動によってポンプ10から高速でシリンダ2内へ圧力を供給するのが難しい場合があり、ポンプ10を高速で駆動しても、シリンダ2内に供給する圧力の応答遅れが生じて、ポンプ10の駆動のみではばね下共振周波数帯の高周波の振動を低減しづらい。これに対して、変形例のシリンダ装置1aでは、ポンプ流路9にポンプ10に直列に減衰弁12を備えるとともに、圧側減衰通路6を備えているので、ポンプ10の駆動時にシリンダ装置1aが高速で伸長する場合には、減衰弁12によって高周波振動に対応する減衰力を発生でき、ポンプ10の駆動時にシリンダ装置1aが高速で収縮する場合には、圧側減衰通路6によって高周波振動に対応する減衰力を発生できる。また、減衰弁12を可変絞り弁とする場合には、シリンダ装置1aが高周波で振動して伸長作動する際に、シリンダ装置1aが発生する減衰力を高低調整できるので、シリンダ装置1aに振動の抑制に適した減衰力を発揮させて車体の振動をより一層低減できる。 The cylinder device 1a configured in this manner can function as an actuator, but the vibration of the vehicle body that is the damping target of the cylinder device 1a during running is limited to only relatively low frequency components in the sprung mass resonance frequency band. It contains high frequency components in the unsprung resonance frequency band input from the wheel side. If the control force generated by the cylinder device 1a is controlled by driving the pump 10 by the motor 11, the cylinder device 1a can sufficiently suppress relatively low-frequency vibrations in the sprung resonance frequency band of the vehicle body by only driving the pump 10. can. However, it is difficult to supply pressure from the pump 10 into the cylinder 2 at high speed due to the material and length of the hoses and piping forming the pump channel 9, and the swinging of the hoses and piping due to vibrations input to the cylinder device 1a. In some cases, even if the pump 10 is driven at high speed, there is a delay in the response of the pressure supplied to the cylinder 2, making it difficult to reduce high-frequency vibrations in the unsprung resonance frequency band only by driving the pump 10. On the other hand, in the cylinder device 1a of the modified example, the pump flow path 9 is provided with the damping valve 12 in series with the pump 10, as well as the compression side damping passage 6, so that when the pump 10 is driven, the cylinder device 1a moves at high speed When the cylinder device 1a contracts at high speed when the pump 10 is driven, the damping valve 12 can generate a damping force corresponding to the high-frequency vibration. Can generate force. Furthermore, when the damping valve 12 is a variable throttle valve, the damping force generated by the cylinder device 1a can be adjusted in height when the cylinder device 1a vibrates at a high frequency and is extended. By exerting damping force suitable for suppression, vehicle body vibration can be further reduced.
 そして、このように構成されたシリンダ装置1aは、ダンパとしてもアクチュエータとしても機能できるとともに、外力を受けて伸縮させられる場合、モータ11のトルクでポンプ10の回転を抑制する、すなわち、モータ11を制動領域で使用してモータ11にポンプ10の回転方向とは逆のトルクを発生させられる。よって、シリンダ装置1aは、モータ11を制動領域で使用してモータ11に発電させて運動エネルギを電気エネルギに変換して電力回生を行うことができる。 The cylinder device 1a configured in this manner can function as both a damper and an actuator, and when it is expanded or contracted by an external force, it uses the torque of the motor 11 to suppress the rotation of the pump 10; that is, it can use the motor 11 in the braking region to generate torque in the opposite direction to the rotation direction of the pump 10. Therefore, the cylinder device 1a can use the motor 11 in the braking region to generate electricity, converting kinetic energy into electrical energy and performing power regeneration.
 以上、本実施の形態のシリンダ装置1aは、シリンダ2と、シリンダ2内に軸方向へ移動可能に挿入されるロッド3と、ロッド3に連結されるとともにシリンダ2内に移動自在に挿入されてシリンダ2内をロッド側室R1とピストン側室R2とに区画するピストン4と、液体を貯留するリザーバ室Rと、ピストン側室R2からリザーバ室Rへ向かう液体の流れに抵抗を与える圧側減衰通路6と、リザーバ室Rからロッド側室R1へ向かう液体の流れのみを許容する伸側吸込通路7と、リザーバ室Rからピストン側室R2へ向かう液体の流れのみを許容する圧側吸込通路8と、ロッド側室R1とピストン側室R2とを連通するポンプ流路9と、ポンプ流路9に設けられる減衰弁12と、減衰弁12に対して並列に設けられてピストン側室R2からロッド側室R1へ向かう液体の流れのみを許容する逆止弁13と、ポンプ流路9に対して減衰弁12および逆止弁13と直列に設けられた双方向吐出型のポンプ10と、ポンプ10を駆動するモータ11とを備えて構成されている。 As described above, the cylinder device 1a of the present embodiment includes a cylinder 2, a rod 3 that is movably inserted into the cylinder 2 in the axial direction, and a rod 3 that is connected to the rod 3 and is movably inserted into the cylinder 2. A piston 4 that divides the inside of the cylinder 2 into a rod side chamber R1 and a piston side chamber R2, a reservoir chamber R that stores liquid, and a pressure side damping passage 6 that provides resistance to the flow of liquid from the piston side chamber R2 to the reservoir chamber R. A growth side suction passage 7 that allows only the flow of liquid from the reservoir chamber R to the rod side chamber R1, a pressure side suction passage 8 that only allows the flow of liquid from the reservoir chamber R to the piston side chamber R2, and the rod side chamber R1 and the piston. A pump flow path 9 communicating with the side chamber R2, a damping valve 12 provided in the pump flow path 9, and a damping valve 12 provided in parallel with the damping valve 12 to allow only the flow of liquid from the piston side chamber R2 to the rod side chamber R1. A bidirectional discharge type pump 10 is provided in series with the damping valve 12 and the check valve 13 with respect to the pump flow path 9, and a motor 11 that drives the pump 10. ing.
 このように構成されたシリンダ装置1aによれば、ポンプ10を駆動してロッド側室R1からピストン側室R2へ液体を供給しても、伸側吸込通路7を備えているのでリザーバ室Rからロッド側室R1へ液体の供給が可能となって、ロッド側室R1の圧力が負圧となることがない。よって、本実施の形態のシリンダ装置1aによれば、片ロッド型のシリンダ装置として構成されていても、ダンパのみならずアクチュエータとしても機能できる。また、本実施の形態のシリンダ装置1aによれば、ポンプ流路9にポンプ10に直列に減衰弁12を備えるとともに、圧側減衰通路6を備えているので、ポンプ10の駆動時にシリンダ装置1aが高速で伸長する場合には、減衰弁12によって高周波振動に対応する減衰力を発生でき、ポンプ10の駆動時にシリンダ装置1aが高速で収縮する場合には、圧側減衰通路6によって高周波振動に対応する減衰力を発生できる。 According to the cylinder device 1a configured in this way, even if the pump 10 is driven to supply liquid from the rod side chamber R1 to the piston side chamber R2, the expansion side suction passage 7 is provided, so that even if the pump 10 is driven to supply liquid from the rod side chamber R1 to the piston side chamber R2, the liquid is supplied from the reservoir chamber R to the rod side chamber R2. Liquid can be supplied to R1, and the pressure in the rod side chamber R1 does not become negative. Therefore, according to the cylinder device 1a of this embodiment, even if it is configured as a single rod type cylinder device, it can function not only as a damper but also as an actuator. Further, according to the cylinder device 1a of the present embodiment, since the pump flow path 9 is provided with the damping valve 12 in series with the pump 10 and the compression side damping passage 6, the cylinder device 1a is activated when the pump 10 is driven. When expanding at high speed, the damping valve 12 can generate a damping force corresponding to high frequency vibrations, and when the cylinder device 1a contracts at high speed when the pump 10 is driven, the compression side damping passage 6 can generate a damping force corresponding to high frequency vibrations. Can generate damping force.
 なお、本実施の形態のシリンダ装置1,1aでは、リザーバ室R内のガス圧を高めて、リザーバ室Rをシリンダ2内の圧力を高めるアキュムレータとして利用してもよい。さらに、本実施の形態のシリンダ装置1,1aでは、シリンダ2の外周側に外筒21を設けてシリンダ2と外筒21との間にリザーバ室Rを設けているが、外筒21を設けずにリザーバ室Rをシリンダ2とは別個独立して設けられるリザーバタンクで形成してもよく、その場合、リザーバタンク内のリザーバ室Rとロッド側室R1とを伸側吸込通路7の通路7aとして機能する配管で接続するとともに、リザーバ室Rとピストン側室R2とを圧側減衰通路6の通路6aとして機能する配管および圧側吸込通路8の通路8aとして機能する配管で接続すればよい。このようにリザーバタンク内にリザーバ室Rを設ける場合、シリンダ装置1,1aを車両に適用する場合に、シリンダ2をばね上部材とばね下部材との一方に連結するとともに、ロッド3をばね上部材とばね下部材の他方に連結するようにできる。 In the cylinder device 1, 1a of this embodiment, the gas pressure in the reservoir chamber R may be increased, and the reservoir chamber R may be used as an accumulator to increase the pressure in the cylinder 2. Furthermore, in the cylinder device 1, 1a of this embodiment, the outer cylinder 21 is provided on the outer periphery of the cylinder 2, and the reservoir chamber R is provided between the cylinder 2 and the outer cylinder 21. However, the reservoir chamber R may be formed by a reservoir tank provided separately and independently from the cylinder 2 without providing the outer cylinder 21. In this case, the reservoir chamber R and the rod side chamber R1 in the reservoir tank may be connected by a pipe that functions as the passage 7a of the extension side suction passage 7, and the reservoir chamber R and the piston side chamber R2 may be connected by a pipe that functions as the passage 6a of the compression side damping passage 6 and a pipe that functions as the passage 8a of the compression side suction passage 8. In this way, when the reservoir chamber R is provided in the reservoir tank, and the cylinder device 1, 1a is applied to a vehicle, the cylinder 2 can be connected to one of the sprung and unsprung members, and the rod 3 can be connected to the other of the sprung and unsprung members.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, modifications, variations, and changes are possible without departing from the scope of the claims.
1,1a・・・シリンダ装置、2・・・シリンダ、3・・・ロッド、4・・・ピストン、5・・・減衰通路、6・・・圧側減衰通路、7・・・伸側吸込通路、8・・・圧側吸込通路、9・・・ポンプ流路、10・・・ポンプ、11・・・モータ、12・・・減衰弁、13・・・逆止弁、R・・・リザーバ室、R1・・・ロッド側室、R2・・・ピストン側室 1, 1a...cylinder device, 2...cylinder, 3...rod, 4...piston, 5...damping passage, 6...compression side damping passage, 7...retraction side suction passage, 8...compression side suction passage, 9...pump flow passage, 10...pump, 11...motor, 12...damping valve, 13...check valve, R...reservoir chamber, R1...rod side chamber, R2...piston side chamber

Claims (2)

  1.  シリンダ装置であって、
     シリンダと、
     前記シリンダ内に軸方向へ移動可能に挿入されるロッドと、
     前記ロッドに連結されるとともに前記シリンダ内に移動自在に挿入されて、前記シリンダ内をロッド側室とピストン側室とに区画するピストンと、
     液体を貯留するリザーバ室と、
     前記ロッド側室と前記ピストン側室とを連通するとともに通過する液体の流れに抵抗を与える減衰通路と、
     前記ピストン側室から前記リザーバ室へ向かう液体の流れに抵抗を与える圧側減衰通路と、
     前記リザーバ室から前記ロッド側室へ向かう液体の流れのみを許容する伸側吸込通路と、
     前記リザーバ室から前記ピストン側室へ向かう液体の流れのみを許容する圧側吸込通路と、
     前記減衰通路と並列して前記ロッド側室と前記ピストン側室とを連通するポンプ流路と、
     前記ポンプ流路に設けられた双方向吐出型のポンプと、
     前記ポンプを駆動するモータとを備えた
     シリンダ装置。
    A cylinder device,
    cylinder and
    a rod movably inserted into the cylinder in the axial direction;
    a piston connected to the rod and movably inserted into the cylinder to partition the inside of the cylinder into a rod side chamber and a piston side chamber;
    a reservoir chamber for storing liquid;
    a damping passage communicating with the rod side chamber and the piston side chamber and providing resistance to the flow of liquid passing therethrough;
    a pressure side damping passage that provides resistance to the flow of liquid from the piston side chamber toward the reservoir chamber;
    an extension side suction passage that only allows liquid to flow from the reservoir chamber toward the rod side chamber;
    a pressure side suction passage that only allows liquid to flow from the reservoir chamber to the piston side chamber;
    a pump flow path that communicates the rod side chamber and the piston side chamber in parallel with the damping passage;
    a bidirectional discharge type pump provided in the pump flow path;
    A cylinder device comprising: a motor that drives the pump.
  2.  シリンダ装置であって、
     シリンダと、
     前記シリンダ内に軸方向へ移動可能に挿入されるロッドと、
     前記ロッドに連結されるとともに前記シリンダ内に移動自在に挿入されて、前記シリンダ内をロッド側室とピストン側室とに区画するピストンと、
     液体を貯留するリザーバ室と、
     前記ピストン側室から前記リザーバ室へ向かう液体の流れに抵抗を与える圧側減衰通路と、
     前記リザーバ室から前記ロッド側室へ向かう液体の流れのみを許容する伸側吸込通路と、
     前記リザーバ室から前記ピストン側室へ向かう液体の流れのみを許容する圧側吸込通路と、
     前記ロッド側室と前記ピストン側室とを連通するポンプ流路と、
     前記ポンプ流路に設けられる減衰弁と、
     前記減衰弁に対して並列に設けられ、前記ピストン側室から前記ロッド側室へ向かう液体の流れのみを許容する逆止弁と、
     前記ポンプ流路に対して前記減衰弁および前記逆止弁と直列に設けられた双方向吐出型のポンプと、
     前記ポンプを駆動するモータとを備えた
     シリンダ装置。
    A cylinder device,
    cylinder and
    a rod movably inserted into the cylinder in the axial direction;
    a piston connected to the rod and movably inserted into the cylinder to partition the inside of the cylinder into a rod side chamber and a piston side chamber;
    a reservoir chamber for storing liquid;
    a pressure side damping passage that provides resistance to the flow of liquid from the piston side chamber toward the reservoir chamber;
    an extension side suction passage that only allows liquid to flow from the reservoir chamber toward the rod side chamber;
    a pressure side suction passage that only allows liquid to flow from the reservoir chamber to the piston side chamber;
    a pump flow path that communicates the rod side chamber and the piston side chamber;
    a damping valve provided in the pump flow path;
    a check valve that is provided in parallel with the damping valve and allows only the flow of liquid from the piston side chamber toward the rod side chamber;
    a bidirectional discharge pump provided in series with the damping valve and the check valve with respect to the pump flow path;
    A cylinder device comprising: a motor that drives the pump.
PCT/JP2023/031753 2022-09-22 2023-08-31 Cylinder device WO2024062892A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022151575 2022-09-22
JP2022-151575 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024062892A1 true WO2024062892A1 (en) 2024-03-28

Family

ID=90454199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031753 WO2024062892A1 (en) 2022-09-22 2023-08-31 Cylinder device

Country Status (1)

Country Link
WO (1) WO2024062892A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028121A (en) * 2002-06-21 2004-01-29 Kayaba Ind Co Ltd Damper
JP2015102101A (en) * 2013-11-21 2015-06-04 カヤバ工業株式会社 Buffering device
US20170043640A1 (en) * 2014-04-29 2017-02-16 Bayerische Motoren Werke Aktiengesellschaft Assembly of a Vibration Damper Associated with a Wheel of a Vehicle
JP2022524427A (en) * 2019-03-11 2022-05-02 クリアモーション,インコーポレイテッド Pressure-compensated active suspension actuator system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028121A (en) * 2002-06-21 2004-01-29 Kayaba Ind Co Ltd Damper
JP2015102101A (en) * 2013-11-21 2015-06-04 カヤバ工業株式会社 Buffering device
US20170043640A1 (en) * 2014-04-29 2017-02-16 Bayerische Motoren Werke Aktiengesellschaft Assembly of a Vibration Damper Associated with a Wheel of a Vehicle
JP2022524427A (en) * 2019-03-11 2022-05-02 クリアモーション,インコーポレイテッド Pressure-compensated active suspension actuator system

Similar Documents

Publication Publication Date Title
US11235635B2 (en) Active suspension with structural actuator
US9926918B2 (en) Energy-recuperating fluid vibration damper
CA2878316C (en) Actuator
KR101916612B1 (en) Railroad vibration control device
CN104100673B (en) Automobile power assembly semi-active control hydraulic mount
JP5543996B2 (en) Actuator
CN109311362A (en) Vehicle suspension with regeneration hydraulic damper and the system for adjusting vehicle attitude
CA2898605C (en) Actuator unit
US20150090549A1 (en) Shock absorber
JP5486367B2 (en) Actuator unit
EP2937574B1 (en) Actuator unit
JP2015102101A (en) Buffering device
WO2024062892A1 (en) Cylinder device
JP2007253921A (en) Damper with vehicle height adjusting function and vehicle equipped with the damper
JP7360355B2 (en) cylinder device
JP2015102100A (en) Buffering device
JP7393303B2 (en) cylinder device
JP2015101261A (en) Suspension device
JP2015101260A (en) Suspension device
JP2023119628A (en) Cylinder device
JP2022187971A (en) Cylinder device
JP2024044935A (en) damper
JP5391119B2 (en) Actuator unit
JP2001099219A (en) Hydraulic damping device
JP2002139090A (en) Valve structure of hydraulic shock absorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868016

Country of ref document: EP

Kind code of ref document: A1