WO2024062647A1 - System, method, and program for measuring characteristics of rectifier circuit for wireless power transmission - Google Patents

System, method, and program for measuring characteristics of rectifier circuit for wireless power transmission Download PDF

Info

Publication number
WO2024062647A1
WO2024062647A1 PCT/JP2023/005370 JP2023005370W WO2024062647A1 WO 2024062647 A1 WO2024062647 A1 WO 2024062647A1 JP 2023005370 W JP2023005370 W JP 2023005370W WO 2024062647 A1 WO2024062647 A1 WO 2024062647A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
power transmission
rectifier circuit
measurement
signal
Prior art date
Application number
PCT/JP2023/005370
Other languages
French (fr)
Japanese (ja)
Inventor
昂 平川
直輝 長谷川
悠太 中本
喜元 太田
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Publication of WO2024062647A1 publication Critical patent/WO2024062647A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves

Definitions

  • the present invention relates to a system, method, and program for measuring the characteristics of a rectifier circuit for wireless power transmission (WPT).
  • WPT wireless power transmission
  • a communication system that performs communication between a base station and a terminal device using at least part of a plurality of radio resources set in a radio frame (for example, see Patent Document 1).
  • a system that uses a mobile communication base station for wireless power transmission (WPT) as the power supply infrastructure for supplying power to the above-mentioned terminal devices is being considered.
  • WPT wireless power transmission
  • One of the challenges of such a system is to measure the characteristics of a rectifier circuit installed in a wireless power transmission receiving device when a high power signal is input, without damaging the rectifier circuit.
  • a system is a system that measures the characteristics of a rectifier circuit installed in a power receiving device for wireless power transmission. This system has characteristics at the time of power transmission wave input assuming that a power transmission wave signal used in the wireless power transmission is input to the rectifier circuit, and a measurement modulated wave whose power is smaller than that of the power transmission wave.
  • the rectifying circuit includes a measuring unit, and an estimating unit that estimates characteristics of the rectifier circuit when the power transmission wave signal is input based on the direct current characteristics of the output signal and the mapping.
  • the system may include a mapping determining unit that determines the mapping based on the characteristics when the power transmission wave is input and the characteristics when the measurement modulated wave is input.
  • the system may include a control unit that controls at least one of the measurement modulated wave and the load on the output signal from the rectifier circuit.
  • the power transmission wave is a continuous wave
  • the measurement modulation wave is a pulse modulation wave obtained by pulse modulating the power transmission wave with a predetermined duty ratio
  • the mapping information is a value of the duty ratio. May include.
  • the system may include a smoothing section that smoothes the output signal output from the rectifier circuit.
  • the relationship between the reflectance of the measurement modulated wave input to the rectifier circuit and the resistance of a load with respect to the output signal from the rectifier circuit is measured, and based on the measurement result, the reflectance is determined to be minimum.
  • the resistance of the load may be determined as a matching condition.
  • the matching condition may be used to set the resistance of the load when measuring the DC characteristics of the output signal, or the reflectance of the measurement modulated wave input to the rectifier circuit may be set.
  • the relationship between the reflectance and the resistance of the load when the power transmission wave is input to the rectifier circuit may be estimated based on the measurement result of the relationship between the power transmission wave and the resistance of the load.
  • a method is a method of measuring the characteristics of a rectifier circuit installed in a power receiving side device for wireless power transmission. This method is based on the power transmission wave input characteristics assuming that the power transmission wave signal used in the wireless power transmission is input to the rectifier circuit, and the measurement modulated wave whose power is smaller than the power transmission wave. Information on mapping from the measurement modulated wave input characteristics to the power transmission wave input characteristics determined based on the measurement modulated wave input characteristics assuming that a signal is input to the rectifier circuit. storing, generating a signal of the modulated wave for measurement and inputting it to the rectifier circuit, and measuring DC characteristics of an output signal output from the rectifier circuit into which the signal of the modulated wave for measurement was input. and estimating characteristics of the rectifier circuit when the power transmission wave signal is input based on the DC characteristics of the output signal and the mapping.
  • the method may include determining the mapping based on the characteristics when the power transmission wave is input and the characteristics when the measurement modulated wave is input.
  • the method may include controlling at least one of the measurement modulated wave and the load on the output signal from the rectifier circuit.
  • the power transmission wave is a continuous wave
  • the measurement modulation wave is a pulse modulation wave obtained by pulse modulating the power transmission wave with a predetermined duty ratio
  • the mapping information is a value of the duty ratio. May include.
  • the method may include smoothing the output signal output from the rectifier circuit.
  • the relationship between the reflectance of the measurement modulated wave input to the rectifier circuit and the resistance of a load with respect to the output signal from the rectifier circuit is measured, and based on the measurement result, the reflectance is determined to be minimum.
  • the method may include determining a resistance of the load as a matching condition.
  • the matching condition may be used to set the resistance of the load when measuring the DC characteristics of the output signal, or the method may include setting the resistance of the load when measuring the DC characteristics of the output signal, or
  • the method may include estimating the relationship between the reflectance and the resistance of the load when the power transmission wave is input to the rectifier circuit based on the measurement result of the relationship between the reflectance and the resistance of the load.
  • a program according to yet another aspect of the present invention is a program executed in a computer or processor included in a system for measuring characteristics of a rectifier circuit installed in a power receiving device for wireless power transmission.
  • This program describes the power transmission wave input characteristics assuming that the power transmission wave signal used in the wireless power transmission is input to the rectifier circuit, and the characteristics of the measurement modulated wave whose power is smaller than the power transmission wave.
  • Information on mapping from the measurement modulated wave input characteristics to the power transmission wave input characteristics determined based on the measurement modulated wave input characteristics assuming that a signal is input to the rectifier circuit.
  • the program may include a program code for determining the mapping based on the characteristics when the power transmission wave is input and the characteristics when the measurement modulated wave is input.
  • the program may include a program code for determining the mapping based on the characteristics when the power transmission wave is input and the characteristics when the measurement modulated wave is input.
  • the program may include a program code for controlling at least one of the measurement modulated wave and the load on the output signal from the rectifier circuit.
  • the power transmission wave is a continuous wave
  • the measurement modulation wave is a pulse modulation wave obtained by pulse modulating the power transmission wave with a predetermined duty ratio
  • the mapping information is a value of the duty ratio. May include.
  • the program may include a program code for smoothing the output signal output from the rectifier circuit.
  • the program code may include a program code for determining a resistance of the load as a matching condition.
  • it may include a program code for setting the resistance of the load when measuring the DC characteristic of the output signal using the matching condition, or a program code for setting the resistance of the load when measuring the DC characteristics of the output signal, or A program code for estimating the relationship between the reflectance and the resistance of the load when the power transmission wave is input to the rectifier circuit, based on the measurement result of the relationship between the reflectance of the modulated wave and the resistance of the load. May include.
  • the program that performs the estimation etc. includes a trained model used for machine learning.
  • the present invention it is possible to measure the characteristics of a rectifier circuit at the time of high power input when a power transmission wave signal is input without damaging the rectifier circuit installed in a power receiving side device for wireless power transmission.
  • FIG. 1 is an explanatory diagram showing an example of the overall configuration of a wireless power transmission system that can transmit power from a base station to a terminal device having a rectifier circuit whose characteristics can be measured with a measurement system according to an embodiment.
  • FIG. 2 is an explanatory diagram illustrating an example of power feeding from a base station of a wireless power transmission system to a plurality of terminal devices by beamforming for each terminal device.
  • FIG. 3 is a block diagram illustrating an example of the configuration of a base station and a terminal device that configure the wireless power transmission system.
  • FIG. 4A is an explanatory diagram illustrating an example of allocation of WPT blocks in radio resources (resource blocks) of a transmission signal including a WPT dummy signal transmitted from a base station.
  • FIG. 4A is an explanatory diagram illustrating an example of allocation of WPT blocks in radio resources (resource blocks) of a transmission signal including a WPT dummy signal transmitted from a base station.
  • FIG. 4B is an explanatory diagram showing an example of a spectrum on the frequency axis in OFDM secondary modulation of a transmission signal transmitted from a base station.
  • FIG. 5A is an explanatory diagram showing an example of arrangement of symbol points in QAM primary modulation of a communication signal transmitted from a base station.
  • FIG. 5B is an explanatory diagram showing an example of arrangement of symbol points in modulation of a WPT dummy signal transmitted from the base station.
  • FIG. 6 is a block diagram showing an example of the configuration of the measurement system according to the embodiment.
  • FIG. 7 is a graph showing an example of DC output characteristics calculated when a continuous wave of a WPT dummy signal is input to the rectifier circuit to be measured and when a measurement modulated wave is input.
  • FIG. 8 is an explanatory diagram showing an example of a pulse modulated wave that can be used as a modulated wave for measurement.
  • FIG. 9 is a graph showing an example of DC output characteristics calculated when a continuous wave of a WPT dummy signal is input to the rectifier circuit to be measured and when a pulse modulated wave is input as a measurement modulated wave.
  • FIG. 10 is a block diagram showing another example of the configuration of the measurement system according to the embodiment.
  • Figure 11 shows the relationship between the reflectance of the rectifier circuit and the resistance of the load calculated when a continuous wave of a WPT dummy signal is input to the rectifier circuit to be measured and when a pulse modulated wave is input as the measurement modulated wave. It is a graph showing an example.
  • the system using the rectifier circuit as the RF-DC conversion device to be measured by the measurement system is a system capable of wireless power transmission (WPT) from a mobile communication base station to a terminal device to be powered (e.g., a mobile communication UE (mobile station) or an IoT device).
  • This system is a power transmission system that effectively utilizes unused wireless resources (resource blocks) that are not used for communication among a plurality of wireless resources (resource blocks) set in a wireless frame of a downlink to a terminal device such as a UE, which is a power receiving device having a rectifier circuit, for wireless power transmission (WPT) to the terminal device.
  • the power transmission system may be a wireless communication system between a base station and a terminal device having a wireless power transmission (WPT) function from the base station to the terminal device.
  • the system according to the embodiment may also be a wireless power transmission (WPT) system from a base station to a terminal device having a wireless communication function between the base station and the terminal device.
  • WPT wireless power transmission
  • the measurement system of this embodiment is a measurement system that measures the characteristics of a rectifier circuit provided in a power receiving side device such as a terminal device of a wireless power transmission system (hereinafter also referred to as "WPT system"). It is possible to measure the characteristics of a rectifier circuit at the time of high power input to which a power transmission wave signal is input without damage.
  • WPT system wireless power transmission system
  • FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a WPT system that can transmit power from a base station to a terminal device that has a rectifier circuit whose characteristics can be measured with the measurement system according to the present embodiment.
  • the WPT system connects to a cellular base station 10 forming a communication area (cell) 10A, and is capable of wireless communication with the base station 10 by connecting to the base station 10 when located in the communication area 10A.
  • a power supply target terminal device hereinafter also referred to as "UE" (user equipment)
  • the base station 10 also functions as a power transmitting side device in the WPT system, and the terminal device 20 also functions as a power receiving side device.
  • the UE 20 may be a mobile station of a mobile communication system, or may be a combination of a communication device (for example, a mobile communication module) and various devices.
  • the UE 20 includes, for example, an array antenna having a plurality of antenna elements.
  • the UE 20 may be an IoT device (also referred to as "IoT equipment").
  • a base station 10 is equipped with a plurality of array antennas 110 having a large number of antenna elements, and can perform communication using a massive MIMO (hereinafter also referred to as "mMIMO") transmission method with a plurality of UEs 20.
  • mMIMO is a wireless transmission technology that achieves high-capacity, high-speed communication by transmitting and receiving data using the array antenna 110.
  • communication can be performed using an MU (Multi User)-MIMO transmission method that performs beamforming to form beams 10B in time division or simultaneously for each of the plurality of UEs 20.
  • MU Multi User
  • a part of the communication area 10A is a wireless power transmission area (hereinafter referred to as "WPT area") 10A' where wireless power transmission is performed from the base station 10 to the terminal device 20.
  • the WPT area 10A' may be a smaller area than the communication area 10A as shown in the figure, or may be an area having the same or approximately the same size and position as the communication area 10A.
  • unused radio resources that are not used for communication among resource blocks that are a plurality of radio resources (time/frequency resources) constituting a downlink radio frame from the base station 10 are ) is used as a wireless power transmission block.
  • the base station 10 sends a dummy signal for wireless power transmission (hereinafter also referred to as "WPT dummy signal") to a wireless power transmission block (WPT block), which is a wireless resource that is not used for communication. ) is generated and transmitted to the UE 20.
  • WPT dummy signal a dummy signal for wireless power transmission
  • WPT block wireless power transmission block
  • a technology called lean carrier has been proposed in which the minimum necessary reference signals (RS) and control signals are placed on only some of the subcarriers of a radio frame, and it is expected that the unused radio resources in the radio frame can be effectively utilized to transmit wireless power to UE 20.
  • RS minimum necessary reference signals
  • control signals are placed on only some of the subcarriers of a radio frame, and it is expected that the unused radio resources in the radio frame can be effectively utilized to transmit wireless power to UE 20.
  • the radio waves of communication signals transmitted and received between the base station 10 and the UE 20 and the radio waves of the transmission signal to which the WPT dummy signal is assigned are transmitted from the base station 10 to the UE 20, for example, are millimeter waves or microwaves.
  • FIG. 2 is an explanatory diagram showing an example of power feeding to each UE by beamforming from the base station 10 of the WPT system to a plurality of UEs 20.
  • a plurality of UEs 20(1) to 20(3) are located in a WPT area 10A' (see FIG. 1 described above) within a communication area 10A, and a beam formed by each UE is provided.
  • Power may be supplied to each UE 20(1) to 20(3) via 10B(1) to 10B(3).
  • the beams 10B(1) to 10B(3) may be formed, for example, by being switched in a time-division manner.
  • FIG. 3 is a block diagram illustrating an example of the main configurations of the base station 10 and terminal equipment (UE) 20 that configure the WPT system.
  • the base station 10 includes a base station device 100 and an antenna 110.
  • the antenna 110 is, for example, an array antenna having a large number of antenna elements as shown in FIG.
  • the antenna 110 may be singular or plural.
  • a plurality of antennas 110 may be arranged corresponding to a plurality of sector cells.
  • the base station device 100 includes a communication signal processing section 120 and a wireless processing section 130.
  • the communication signal processing unit 120 processes signals such as various user data and control information transmitted and received with the UE 20.
  • the communication signal processing unit 120 During downlink communication to the UE 20, the communication signal processing unit 120 generates a downlink transmission signal including a WPT dummy signal using an unused radio resource that is not used for communication among a plurality of radio resources. generate.
  • the WPT dummy signal can be generated by modulating with a modulation method that has a smaller PAPR (peak power to average power ratio) (also referred to as "wave height ratio”) than the communication signal.
  • PAPR peak power to average power ratio
  • the WPT dummy signal may be a modulated signal that is modulated using a Zadoff-Chu sequence code and has a constant amplitude and a phase that changes over time, or may be a modulated signal that is modulated using a Zadoff-Chu code, and may be a modulated signal that has a constant amplitude and a phase that changes over time.
  • the signal may be a signal modulated at a plurality of symbol points having the maximum amplitude or near the maximum amplitude.
  • the transmission signal generation uses primary modulation such as QAM (quadrature amplitude modulation) for communication signals and modulation with small PAPR for WPT dummy signals, and secondary modulation such as OFDM (orthogonal frequency division multiplexing) modulation. May include.
  • QAM quadrature amplitude modulation
  • OFDM orthogonal frequency division multiplexing
  • the radio processing unit 130 transmits the transmission signal generated by the communication signal processing unit 120 from the antenna 110 to the UE 20, and outputs the reception signal received from the UE 20 via the antenna 110 to the communication signal processing unit 120.
  • the process of including a dummy signal for WPT using unused radio resources in the transmission signal for downlink communication to UE 20, and the generation of a trigger signal used for signal separation and signal synthesis, etc., described below, may be performed based on subframes that constitute the radio frame of mobile communication.
  • the base station 10 may autonomously perform the process of including a WPT dummy signal using unused radio resources in the transmission signal of the downlink communication to the UE 20, or the process may be performed by the base station 10 autonomously, or upon request or instruction from the UE 20, or It may also be performed based on a request or instruction from an external platform (eg, server, cloud system).
  • an external platform eg, server, cloud system
  • the wireless processing unit 130 controls one or more beams formed by the array antenna 110 based on the BF control signal. Furthermore, the radio processing unit 130 transmits a downlink transmission signal including the WPT dummy signal generated by the communication signal processing unit 120 to the UE 20 via the antenna 110.
  • the base station 10 performs beamforming (BF) control to form individual beams 10B for each UE 20 or for each UE group in the target area to which a plurality of UEs 20 belong.
  • Wireless power transfer may be performed separately or for each UE group.
  • BF control for each UE 20 or for each UE group may be performed by digital BF control in the frequency domain in the communication signal processing section 120, or by analog BF control in the radio processing section 130.
  • the UE 20 includes an antenna 210, a wireless processing section 220, a communication signal processing section 230, a power output section 240, and a battery 250.
  • Antenna 210 is, for example, a small array antenna having a plurality of antenna elements.
  • the wireless processing unit 220 transmits transmission signals such as feedback information and user data generated by the communication signal processing unit 230 from the antenna 210 to the base station 10, and transmits received signals received from the base station 10 via the antenna 210 to communication. It is also output to the signal processing section 230.
  • the wireless processing unit 220 receives a transmission signal including a WPT dummy signal transmitted from the base station 10.
  • the power output unit 240 also includes a rectifier circuit (rectifier) 241 as, for example, an RF-DC converter, and uses the power of the received signal received from the base station 10 to charge the battery. Output as received power for use.
  • the battery 250 can be charged by the received power output from the power output unit 240.
  • FIG. 4A is an explanatory diagram showing an example of allocation of WPT blocks in radio resources (resource blocks) of transmission signals including WPT dummy signals transmitted from the base station 10 of the WPT system.
  • FIG. 4B is an explanatory diagram showing an example of a spectrum on the frequency axis in OFDM secondary modulation of a transmission signal transmitted from the base station 10.
  • multiple radio resources used in downlink communication and uplink communication in the WPT system are multiple resource blocks 30 defined by subcarriers on the frequency axis and slots on the time axis. .
  • Each resource block 30 has subcarriers 33 of a predetermined bandwidth that are orthogonal to each other on the frequency axis, as shown in FIG. 4B.
  • the resource block 30 configuring the radio resource in FIG. 4A is allocated to a plurality of consecutive subframes configuring a radio frame for mobile communication.
  • each subframe is composed of a predetermined number (for example, 20) of resource blocks, including a communication subframe (hereinafter referred to as "communication frame”) F1 and a WPT subframe (hereinafter referred to as "WPT frame”). (referred to as "frame”) F2 are located alternately.
  • the communication frame F1 includes a resource block 31 for uplink and downlink communication
  • the WPT frame F2 includes a WPT resource block 32 that is cross-hatched in the figure.
  • a plurality of uplink resource blocks are allocated to uplink communication signals of user data and communication signals of WPT feedback information from the UE 20, and a plurality of downlink resource blocks are allocated to uplink communication signals of user data and communication signals of WPT feedback information from the UE 20. These resource blocks are allocated to signals for downlink communication of user data and information. Further, a downlink WPT signal is allocated to the resource block 32 of the WPT frame F2.
  • a PAPR peak power to average power ratio
  • OFDM orthogonal frequency division multiplexing
  • FIG. 5A is an explanatory diagram showing an example of the arrangement of symbol points 40 in QAM primary modulation of a transmission signal transmitted from the base station 10 of the WPT system.
  • FIG. 5A is a diagram of a constellation showing the arrangement of multiple symbol points (64-value symbol points) in the case of the 64QAM method, where the horizontal axis shows in-phase channel components and the vertical axis shows orthogonal channel components.
  • a WPT dummy signal modulated at any symbol point among the plurality of symbol points 40 of the QAM system can be used.
  • a WPT dummy signal modulated at one or more of the outermost symbol points 41 having the maximum amplitude among the plurality of QAM symbol points 40 may be used.
  • the transmission power to the terminal device such as the UE 20 can be maximized.
  • modulation may be performed at any symbol point other than the outermost symbol point.
  • the symbol point used for modulating the WPT dummy signal may be determined and selected based on the transmission power instructed by power control information included in the feedback information received from the terminal device such as the UE 20.
  • the WPT dummy signal is generated based on the power reception beam information (for example, beam direction and beam width information), information on the direction of arrival of WPT radio waves, remaining battery power information, etc. included in the power reception terminal information received from the terminal device 20 such as
  • the symbol points used for modulation may be determined and selected.
  • FIG. 5B is an explanatory diagram showing another example of the arrangement of symbol points in the primary modulation of the WPT dummy signal transmitted from the base station 10 of the WPT system.
  • a WPT dummy signal may be used that is composed of an OFDM modulated signal modulated at symbol points 42 whose phase changes with the amplitude constant over time.
  • the OFDM modulated signal at symbol point 42 in FIG. 5B can be generated using, for example, a Zadoff-Chu sequence code.
  • the transmission power to the terminal device such as the UE 20 can be maximized.
  • the rectifier circuit is damaged by using a measurement modulation wave signal whose power is smaller than the WPT dummy signal, which is a high-power power transmission wave signal actually used in the WPT system.
  • the high power characteristics of the rectifier circuit are measured without
  • FIG. 6 is a block diagram showing an example of the configuration of the measurement system 50 according to the present embodiment.
  • the measurement system 50 includes a measurement modulated wave input device 510, a smoothing element 520, and a DC characteristic measurement device 530.
  • the measurement modulated wave input device 510 functions as an input unit that generates a measurement modulated wave signal and inputs it to the rectifier circuit 241 to be measured.
  • the smoothing element 520 is composed of a capacitor or the like, and functions as a smoothing section that smoothes the pulsating current component remaining in the output signal output from the rectifier circuit 241.
  • the smoothing element 520 may be the same element as the smoothing element mounted on the power output section 240 of the terminal device 20 or an element having a similar function.
  • the DC characteristic measuring device 530 stores a mapping F from the output characteristic fm(v) when the measurement modulated wave is input to the rectifier circuit 241 to the output characteristic fc(v) when the power transmission wave is input (high power input). Functions as a storage unit.
  • FIG. 7 is a graph showing an example of DC output characteristics calculated when a continuous wave of a WPT dummy signal is input to the rectifier circuit 241 to be measured and when a measurement modulated wave is input.
  • the output characteristic fc(v) when a power transmission wave is input is, as shown by curve C101 in FIG.
  • This is a DC output characteristic showing the relationship between the voltage v and current i of the DC output signal from the rectifier circuit 241 when a power transmission wave is input assuming a case where the power transmission wave is input.
  • the output characteristic fm(v) when the measurement modulation wave is input is a measurement modulation wave signal (hereinafter also referred to as "measurement modulation signal”) whose power is smaller than the power transmission wave.
  • This is a DC output characteristic showing the relationship between the voltage v and current i of the DC output signal from the rectifier circuit 241 when a measurement modulated wave is inputted to the rectifier circuit 241, assuming that the signal is input to the rectifier circuit 241.
  • the output characteristic fc (v) when the power transmission wave is input, the output characteristic fm (v) when the measurement modulated wave is input, and the mapping F are information about the power transmission wave, the measurement modulation wave, and the circuit configuration of the rectifier circuit 241. can be calculated and determined in advance using computer simulation.
  • the DC characteristic measuring device 530 also functions as a measurement unit that measures the DC characteristics of the output signal outputted via the smoothing element 520 from the rectifier circuit 241 into which the measurement modulated wave signal is input.
  • the DC characteristic measuring device 530 performs rectification at the time of high power input when a WPT dummy signal (power transmission wave signal) is input, based on the DC characteristic of the measured output signal and the predetermined mapping F. It also functions as an estimator that estimates the characteristics of the circuit 241.
  • FIG. 8 is an explanatory diagram showing an example of a pulse modulated wave 511 that can be used as a measurement modulated wave.
  • a pulse modulated wave 511 in FIG. 8 is a modulated wave obtained by pulse modulating a continuous wave power transmission wave at a predetermined duty ratio D.
  • the duty ratio D may be, for example, 10% or more and 50% or less.
  • Figure 9 is a graph showing an example of DC output characteristics calculated when a continuous wave of a WPT dummy signal is input to the rectifier circuit 241 under measurement, and when a pulse modulated wave with a duty ratio of D is input as the measurement modulated wave.
  • the information on the mapping F stored in the DC characteristic measuring device 530 includes information on this duty ratio D or information on its reciprocal.
  • FIG. 10 is a block diagram showing another example of the configuration of the measurement system 50 according to the embodiment.
  • the measurement system 50 includes a measurement modulated wave input to the rectifier circuit 241, a load 531 through which an output signal from the rectifier circuit 241 flows, or a control unit that controls both the measurement modulated wave and the load 531. Equipped with a control device. This control can improve the accuracy of measuring the characteristics of the rectifier circuit 241.
  • the relationship between the reflectance of the measurement modulated wave input from the measurement modulated wave input device 510 to the rectifier circuit 241 and the resistance of the load 531 for the output signal from the rectifier circuit 241 may be measured. Furthermore, the resistance of the load 531 at which the reflectance is minimized based on the measurement results may be determined as a matching condition, and the matching condition may be used to calibrate the measurement system, such as setting the resistance of the load 531 when measuring the DC characteristics of the output signal from the rectifier circuit 241.
  • Information on the reflectance of the modulated wave for measurement can be measured by the modulated wave input device for measurement 510 and passed to the DC characteristic measurement device 530, for example. Further, the resistance of the load 531 through which the output signal from the rectifier circuit 241 flows can be measured by, for example, the DC characteristic measuring device 530. Then, the DC characteristic measuring device 530 measures the relationship between the reflectance of the modulated wave for measurement and the resistance of the load 531, and based on the measurement result, the resistance of the load 531 where the reflectance is minimum is set to the rectifier circuit 241. This can be determined as a matching condition for the power output unit 240 included.
  • the power transmission wave is applied to the rectifier circuit 241 based on the mapping obtained in advance and the measurement result of the characteristic fm(R) of the load resistance r with respect to the reflectance when the signal of the modulated wave for measurement is input to the rectifier circuit 241. It is also possible to estimate the relationship between the reflectance and the resistance of the load when .
  • FIG. 11 shows the reflectance R of the rectifier circuit 241 and the resistance of the load 531 calculated when a continuous wave of the WPT dummy signal is input to the rectifier circuit 241 to be measured and when a pulse modulated wave is input as the measurement modulated wave. It is a graph showing an example of the relationship with r.
  • the characteristic fc(R) of the load resistance r with respect to the reflectance when a power transmission wave is input the characteristic fm(R) of the load resistance r with respect to the reflectance when a measurement modulated wave is input, and the mapping F are the power transmission wave
  • the measurement It can be calculated in advance using computer simulation based on the information on the modulated wave and the circuit configuration of the rectifier circuit 241.
  • the current-voltage output characteristic indicating the relationship between the DC current (i) and voltage (v) output from the rectifier circuit 241 is measured as the characteristic of the rectifier circuit when high power is input.
  • the present invention can also be applied to the case of measuring characteristics of the rectifier circuit 241 other than the DC current-voltage output characteristics.
  • the continuous wave of the WPT dummy signal it is not necessary to input the continuous wave of the WPT dummy signal to the rectifier circuit 241 for high power characteristic measurement, and the continuous wave of the WPT dummy signal can be inputted without damaging the rectifier circuit 241. It is possible to measure the characteristics of the rectifier circuit 241 when a high power input signal is input.
  • the present invention can provide a power supply infrastructure that can supply power to a large number of terminal devices 20 that can receive radio waves transmitted from a base station 10, thereby contributing to the achievement of Goal 9 of the Sustainable Development Goals (SDGs), which is to "build resilient infrastructure, promote inclusive and sustainable industrialization, and promote innovation and infrastructure.”
  • SDGs Sustainable Development Goals
  • processing steps and components of the measurement system, measurement modulated wave input device, DC characteristic measurement device, terminal device (UE, IoT device), base station, mobile station, relay device, and control device described in this specification can be implemented by various means.
  • these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
  • the means such as the processing unit used may be one or more of an application specific integrated circuit (ASIC), a digital signal processor (DSP), a digital signal processor (DSPD), a programmable logic device (PLD), a field programmable a gate array (FPGA), processor, controller, microcontroller, microprocessor, electronic device, other electronic unit, computer, or combination thereof designed to perform the functions described herein; It may be implemented inside.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • DSPD digital signal processor
  • PLD programmable logic device
  • FPGA field programmable a gate array
  • the means used to implement the components described above may include programs (e.g., procedures, functions, modules, instructions) that perform the functions described herein. , etc.).
  • any computer/processor readable medium tangibly embodying firmware and/or software code such as a processing unit, may be used to implement the above steps and components described herein. It may be used for implementation.
  • the firmware and/or software code may be stored in memory and executed by a computer or processor, eg, in a controller.
  • the memory may be implemented within the computer or processor, or external to the processor.
  • the firmware and/or software code may also be stored in, for example, random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), electrically erasable PROM (EEPROM), etc. ), flash memory, floppy disks, compact disks (CDs), digital versatile disks (DVDs), magnetic or optical data storage devices, etc. good.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile random access memory
  • PROM programmable read-only memory
  • EEPROM electrically erasable PROM
  • flash memory floppy disks
  • CDs compact disks
  • DVDs digital versatile disks
  • magnetic or optical data storage devices etc. good.
  • the code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
  • the medium may be a non-temporary recording medium.
  • the code of the program may be read and executed by a computer, processor, or other device or apparatus, and its format is not limited to a specific format.
  • the code of the program may be a source code, an object code, or a binary code, or may be a mixture of two or more of these codes.
  • Base station 10A Communication area 10A': WPT area 10B: Beam 20: Terminal device 50: Measurement system 100: Base station device 110: Antenna 120: Communication signal processing section 130: Radio processing section 210: Antenna 220: Radio processing Section 230: Communication signal processing section 240: Power output section 241: Rectifier circuit 250: Battery 510: Modulated wave input device for measurement 511: Pulse modulated wave 520: Smoothing element 530: DC characteristic measuring device 531: Load

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a system that can measure the characteristics of a rectifier circuit installed in a power receiving-side device for wireless power transmission during high power input when a power transmission wave signal is input, without damaging the rectifier circuit. The system comprises: a storage unit that stores a mapping from characteristics when a measurement modulated wave is input to characteristics when a power transmission wave is input, which is determined on the basis of the characteristics when the power transmission wave is input assuming a case where a power transmission wave signal used for wireless power transmission is input to a rectifier circuit and the characteristics when the measurement modulated wave is input assuming a case where a measurement modulation wave signal with lower power than the power transmission wave is input to the rectifier circuit; an input unit that generates a measurement modulated wave signal and inputs the generated measurement modulated wave signal to the rectifier circuit; a measurement unit that measures DC characteristics of an output signal output from the rectifier circuit into which the measurement modulated wave signal is input; and an estimation unit that estimates characteristics of the rectifier circuit when the power transmission wave signal is input on the basis of the DC characteristics of the output signal and the mapping.

Description

無線電力伝送用の整流回路の特性を測定するシステム、方法及びプログラムSystem, method and program for measuring characteristics of rectifier circuit for wireless power transmission
 本発明は、無線電力伝送(WPT)用の整流回路の特性を測定するシステム、方法及びプログラムに関するものである。 The present invention relates to a system, method, and program for measuring the characteristics of a rectifier circuit for wireless power transmission (WPT).
 従来、無線フレームに設定された複数の無線リソースの少なくとも一部を用いて基地局と端末装置との間で通信を行う通信システムが知られている(例えば、特許文献1参照)。 Conventionally, a communication system is known that performs communication between a base station and a terminal device using at least part of a plurality of radio resources set in a radio frame (for example, see Patent Document 1).
国際公開第2017/164220号International Publication No. 2017/164220
 従来の通信システムにおいて基地局に接続して通信する端末装置として、内蔵電池から供給される電力を主に利用する携帯型の端末装置がある。この端末装置では、内蔵電池の残量が少なくなったときに内蔵電池を充電する煩雑な作業が必要である。また、内蔵電池ではなく有線接続の電源ラインから供給される電力を利用する端末装置は、そのような電源ラインを利用可能な場所での使用に制限される。このように基地局に接続して通信を行う様々な端末装置への給電をまかなうことができるような給電インフラが未整備である。 In conventional communication systems, as a terminal device that connects to a base station and communicates, there is a portable terminal device that mainly uses power supplied from a built-in battery. This terminal device requires a complicated task of charging the built-in battery when its remaining capacity is low. Further, terminal devices that use power supplied from a wired power line instead of a built-in battery are limited to use in locations where such a power line can be used. In this way, power supply infrastructure that can supply power to various terminal devices that connect to base stations and communicate is not yet developed.
 第5世代及びその後の次世代の移動通信システムでは、基地局に接続して通信する端末装置(例えば、ユーザ装置、IoTデバイス等)が急増してくるのが予想され、膨大なトラフィックを捌く通信インフラの整備が進められている。しかしながら、上記通信を行う膨大な数の端末装置への給電をまかなうことができる給電インフラは未整備のままである。 In the 5th generation and subsequent next generation mobile communication systems, it is expected that the number of terminal devices (e.g., user equipment, IoT devices, etc.) that connect to base stations and communicate will rapidly increase, and communication that will handle a huge amount of traffic will be necessary. Infrastructure development is progressing. However, the power supply infrastructure capable of supplying power to the huge number of terminal devices that perform the above communication remains underdeveloped.
 上記端末装置へ給電する給電インフラとして、移動通信の基地局を用いて無線電力伝送(WPT)を行うシステムが検討されている。かかるシステムの課題の一つとして、無線電力伝送の受電側装置に搭載される整流回路を破損することなく、電力伝送波の信号が入力される大電力入力時の整流回路の特性を測定することがある。 A system that uses a mobile communication base station for wireless power transmission (WPT) as the power supply infrastructure for supplying power to the above-mentioned terminal devices is being considered. One of the challenges of such a system is to measure the characteristics of a rectifier circuit installed in a wireless power transmission receiving device when a high power signal is input, without damaging the rectifier circuit.
 本発明の一態様に係るシステムは、無線電力伝送の受電側装置に搭載される整流回路の特性を測定するシステムである。このシステムは、前記無線電力伝送に用いられる電力伝送波の信号が前記整流回路に入力された場合を想定した電力伝送波入力時特性と、前記電力伝送波よりも電力が小さい測定用変調波の信号が前記整流回路に入力された場合を想定した測定用変調波入力時特性とに基づいて決定された、前記測定用変調波入力時特性から前記電力伝送波入力時特性への写像を記憶する記憶部と、前記測定用変調波の信号を生成して前記整流回路に入力する入力部と、前記測定用変調波の信号を入力した前記整流回路から出力された出力信号の直流特性を測定する測定部と、前記出力信号の直流特性と前記写像とに基づいて、前記電力伝送波の信号が入力されるときの前記整流回路の特性を推定する推定部と、を備える。 A system according to one aspect of the present invention is a system that measures the characteristics of a rectifier circuit installed in a power receiving device for wireless power transmission. This system has characteristics at the time of power transmission wave input assuming that a power transmission wave signal used in the wireless power transmission is input to the rectifier circuit, and a measurement modulated wave whose power is smaller than that of the power transmission wave. storing a mapping from the measurement modulated wave input characteristic to the power transmission wave input characteristic determined based on the measurement modulated wave input characteristic assuming that a signal is input to the rectifier circuit; a storage unit, an input unit that generates a signal of the measurement modulated wave and inputs it to the rectifier circuit, and measures a DC characteristic of an output signal output from the rectifier circuit into which the measurement modulation wave signal is input. The rectifying circuit includes a measuring unit, and an estimating unit that estimates characteristics of the rectifier circuit when the power transmission wave signal is input based on the direct current characteristics of the output signal and the mapping.
 前記システムにおいて、前記電力伝送波入力時特性と前記測定用変調波入力時特性とに基づいて前記写像を決定する写像決定部を備えてもよい。 The system may include a mapping determining unit that determines the mapping based on the characteristics when the power transmission wave is input and the characteristics when the measurement modulated wave is input.
 前記システムにおいて、前記測定用変調波及び前記整流回路からの出力信号に対する負荷の少なくとも一方を制御する制御部を備えてもよい。 The system may include a control unit that controls at least one of the measurement modulated wave and the load on the output signal from the rectifier circuit.
 前記システムにおいて、前記電力伝送波は連続波であり、前記測定用変調波は、所定のデューティー比で電力伝送波をパルス変調したパルス変調波であり、前記写像の情報は、前記デューティー比の値を含んでもよい。 In the system, the power transmission wave is a continuous wave, the measurement modulation wave is a pulse modulation wave obtained by pulse modulating the power transmission wave with a predetermined duty ratio, and the mapping information is a value of the duty ratio. May include.
 前記システムにおいて、前記整流回路から出力された出力信号を平滑化する平滑化部を備えてもよい。 The system may include a smoothing section that smoothes the output signal output from the rectifier circuit.
 前記システムにおいて、前記整流回路に入力された前記測定用変調波の反射率と前記整流回路からの出力信号に対する負荷の抵抗との関係を測定し、その測定結果に基づいて前記反射率が極小となる前記負荷の抵抗を整合条件として決定してもよい。ここで、前記整合条件を用いて、前記出力信号の直流特性を測定するときの前記負荷の抵抗を設定してもよいし、又は、前記整流回路に入力された前記測定用変調波の反射率と前記負荷の抵抗との関係の測定結果に基づいて、前記整流回路に前記電力伝送波を入力したときの反射率と前記負荷の抵抗との関係を推定してもよい。 In the system, the relationship between the reflectance of the measurement modulated wave input to the rectifier circuit and the resistance of a load with respect to the output signal from the rectifier circuit is measured, and based on the measurement result, the reflectance is determined to be minimum. The resistance of the load may be determined as a matching condition. Here, the matching condition may be used to set the resistance of the load when measuring the DC characteristics of the output signal, or the reflectance of the measurement modulated wave input to the rectifier circuit may be set. The relationship between the reflectance and the resistance of the load when the power transmission wave is input to the rectifier circuit may be estimated based on the measurement result of the relationship between the power transmission wave and the resistance of the load.
 本発明の他の態様に係る方法は、無線電力伝送の受電側装置に搭載される整流回路の特性を測定する方法である。この方法は、前記無線電力伝送に用いられる電力伝送波の信号が前記整流回路に入力された場合を想定した電力伝送波入力時特性と、前記電力伝送波よりも電力が小さい測定用変調波の信号が前記整流回路に入力された場合を想定した測定用変調波入力時特性とに基づいて決定された、前記測定用変調波入力時特性から前記電力伝送波入力時特性への写像の情報を記憶することと、前記測定用変調波の信号を生成して前記整流回路に入力することと、前記測定用変調波の信号を入力した前記整流回路から出力された出力信号の直流特性を測定することと、前記出力信号の直流特性と前記写像とに基づいて、前記電力伝送波の信号が入力されるときの前記整流回路の特性を推定することと、を含む。 A method according to another aspect of the present invention is a method of measuring the characteristics of a rectifier circuit installed in a power receiving side device for wireless power transmission. This method is based on the power transmission wave input characteristics assuming that the power transmission wave signal used in the wireless power transmission is input to the rectifier circuit, and the measurement modulated wave whose power is smaller than the power transmission wave. Information on mapping from the measurement modulated wave input characteristics to the power transmission wave input characteristics determined based on the measurement modulated wave input characteristics assuming that a signal is input to the rectifier circuit. storing, generating a signal of the modulated wave for measurement and inputting it to the rectifier circuit, and measuring DC characteristics of an output signal output from the rectifier circuit into which the signal of the modulated wave for measurement was input. and estimating characteristics of the rectifier circuit when the power transmission wave signal is input based on the DC characteristics of the output signal and the mapping.
 前記方法において、前記電力伝送波入力時特性と前記測定用変調波入力時特性とに基づいて前記写像を決定することを含んでもよい。 The method may include determining the mapping based on the characteristics when the power transmission wave is input and the characteristics when the measurement modulated wave is input.
 前記方法において、前記測定用変調波及び前記整流回路からの出力信号に対する負荷の少なくとも一方を制御することを含んでもよい。 The method may include controlling at least one of the measurement modulated wave and the load on the output signal from the rectifier circuit.
 前記方法において、前記電力伝送波は連続波であり、前記測定用変調波は、所定のデューティー比で電力伝送波をパルス変調したパルス変調波であり、前記写像の情報は、前記デューティー比の値を含んでもよい。 In the method, the power transmission wave is a continuous wave, the measurement modulation wave is a pulse modulation wave obtained by pulse modulating the power transmission wave with a predetermined duty ratio, and the mapping information is a value of the duty ratio. May include.
 前記方法において、前記整流回路から出力された出力信号を平滑化することを含んでもよい。 The method may include smoothing the output signal output from the rectifier circuit.
 前記方法において、前記整流回路に入力された前記測定用変調波の反射率と前記整流回路からの出力信号に対する負荷の抵抗との関係を測定し、その測定結果に基づいて前記反射率が極小となる前記負荷の抵抗を整合条件として決定することを含んでもよい。ここで、前記整合条件を用いて、前記出力信号の直流特性を測定するときの前記負荷の抵抗を設定することを含んでもよいし、又は、前記整流回路に入力された前記測定用変調波の反射率と前記負荷の抵抗との関係の測定結果に基づいて、前記整流回路に前記電力伝送波を入力したときの反射率と前記負荷の抵抗との関係を推定することを含んでもよい。 In the method, the relationship between the reflectance of the measurement modulated wave input to the rectifier circuit and the resistance of a load with respect to the output signal from the rectifier circuit is measured, and based on the measurement result, the reflectance is determined to be minimum. The method may include determining a resistance of the load as a matching condition. Here, the matching condition may be used to set the resistance of the load when measuring the DC characteristics of the output signal, or the method may include setting the resistance of the load when measuring the DC characteristics of the output signal, or The method may include estimating the relationship between the reflectance and the resistance of the load when the power transmission wave is input to the rectifier circuit based on the measurement result of the relationship between the reflectance and the resistance of the load.
 本発明の更に他の態様に係るプログラムは、無線電力伝送の受電側装置に搭載される整流回路の特性を測定するシステムに備えるコンピュータ又はプロセッサにおいて実行されるプログラムである。このプログラムは、前記無線電力伝送に用いられる電力伝送波の信号が前記整流回路に入力された場合を想定した電力伝送波入力時特性と、前記電力伝送波よりも電力が小さい測定用変調波の信号が前記整流回路に入力された場合を想定した測定用変調波入力時特性とに基づいて決定された、前記測定用変調波入力時特性から前記電力伝送波入力時特性への写像の情報を記憶するためのプログラムコードと、前記測定用変調波の信号を生成して前記整流回路に入力するためのプログラムコードと、前記測定用変調波の信号を入力した前記整流回路から出力された出力信号の直流特性を測定するためのプログラムコードと、前記出力信号の直流特性と前記写像とに基づいて、前記電力伝送波の信号が入力されるときの前記整流回路の特性を推定するためのプログラムコードと、を含む。 A program according to yet another aspect of the present invention is a program executed in a computer or processor included in a system for measuring characteristics of a rectifier circuit installed in a power receiving device for wireless power transmission. This program describes the power transmission wave input characteristics assuming that the power transmission wave signal used in the wireless power transmission is input to the rectifier circuit, and the characteristics of the measurement modulated wave whose power is smaller than the power transmission wave. Information on mapping from the measurement modulated wave input characteristics to the power transmission wave input characteristics determined based on the measurement modulated wave input characteristics assuming that a signal is input to the rectifier circuit. a program code for storing, a program code for generating the measurement modulated wave signal and inputting it to the rectification circuit, and an output signal output from the rectification circuit into which the measurement modulation wave signal is input. and a program code for estimating the characteristics of the rectifier circuit when the power transmission wave signal is input, based on the DC characteristics of the output signal and the mapping. and, including.
 前記プログラムにおいて、前記電力伝送波入力時特性と前記測定用変調波入力時特性とに基づいて前記写像を決定するためのプログラムコードを含んでもよい。 The program may include a program code for determining the mapping based on the characteristics when the power transmission wave is input and the characteristics when the measurement modulated wave is input.
 前記プログラムにおいて、前記電力伝送波入力時特性と前記測定用変調波入力時特性とに基づいて前記写像を決定するためのプログラムコードを含んでもよい。 The program may include a program code for determining the mapping based on the characteristics when the power transmission wave is input and the characteristics when the measurement modulated wave is input.
 前記プログラムにおいて、前記測定用変調波及び前記整流回路からの出力信号に対する負荷の少なくとも一方を制御するためのプログラムコードを含んでもよい。 The program may include a program code for controlling at least one of the measurement modulated wave and the load on the output signal from the rectifier circuit.
 前記プログラムにおいて、前記電力伝送波は連続波であり、前記測定用変調波は、所定のデューティー比で電力伝送波をパルス変調したパルス変調波であり、前記写像の情報は、前記デューティー比の値を含んでもよい。 In the program, the power transmission wave is a continuous wave, the measurement modulation wave is a pulse modulation wave obtained by pulse modulating the power transmission wave with a predetermined duty ratio, and the mapping information is a value of the duty ratio. May include.
 前記プログラムにおいて、前記整流回路から出力された出力信号を平滑化するためのプログラムコードを含んでもよい。 The program may include a program code for smoothing the output signal output from the rectifier circuit.
 前記プログラムにおいて、前記整流回路に入力された前記測定用変調波の反射率と前記整流回路からの出力信号に対する負荷の抵抗との関係を測定し、その測定結果に基づいて前記反射率が極小となる前記負荷の抵抗を整合条件として決定するためのプログラムコードを含んでもよい。ここで、前記整合条件を用いて、前記出力信号の直流特性を測定するときの前記負荷の抵抗を設定するためのプログラムコードを含んでもよいし、又は、前記整流回路に入力された前記測定用変調波の反射率と前記負荷の抵抗との関係の測定結果に基づいて、前記整流回路に前記電力伝送波を入力したときの反射率と前記負荷の抵抗との関係を推定するためのプログラムコードを含んでもよい。 In the program, the relationship between the reflectance of the measurement modulated wave input to the rectifier circuit and the resistance of the load with respect to the output signal from the rectifier circuit is measured, and based on the measurement result, the reflectance is determined to be minimum. The program code may include a program code for determining a resistance of the load as a matching condition. Here, it may include a program code for setting the resistance of the load when measuring the DC characteristic of the output signal using the matching condition, or a program code for setting the resistance of the load when measuring the DC characteristics of the output signal, or A program code for estimating the relationship between the reflectance and the resistance of the load when the power transmission wave is input to the rectifier circuit, based on the measurement result of the relationship between the reflectance of the modulated wave and the resistance of the load. May include.
 また、前記推定などを行うプログラムには、機械学習に用いられる学習済モデルを含む。 Furthermore, the program that performs the estimation etc. includes a trained model used for machine learning.
 本発明によれば、無線電力伝送の受電側装置に搭載される整流回路を破損することなく、電力伝送波の信号が入力される大電力入力時の整流回路の特性を測定することができる。 According to the present invention, it is possible to measure the characteristics of a rectifier circuit at the time of high power input when a power transmission wave signal is input without damaging the rectifier circuit installed in a power receiving side device for wireless power transmission.
図1は、実施形態に係る測定システムで特性を測定可能な整流回路を有する端末装置に基地局から送電可能な無線電力伝送システムの全体構成の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of the overall configuration of a wireless power transmission system that can transmit power from a base station to a terminal device having a rectifier circuit whose characteristics can be measured with a measurement system according to an embodiment. 図2は、無線電力伝送システムの基地局から複数の端末装置へのビームフォーミングによる端末装置毎の給電の一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of power feeding from a base station of a wireless power transmission system to a plurality of terminal devices by beamforming for each terminal device. 図3は、無線電力伝送システムを構成する基地局及び端末装置の構成の一例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of the configuration of a base station and a terminal device that configure the wireless power transmission system. 図4Aは、基地局から送信されるWPT用ダミー信号を含む送信信号の無線リソース(リソースブロック)におけるWPTブロックの割り当ての一例を示す説明図である。FIG. 4A is an explanatory diagram illustrating an example of allocation of WPT blocks in radio resources (resource blocks) of a transmission signal including a WPT dummy signal transmitted from a base station. 図4Bは、基地局から送信される送信信号のOFDM方式の二次変調における周波数軸上のスペクトルの一例を示す説明図である。FIG. 4B is an explanatory diagram showing an example of a spectrum on the frequency axis in OFDM secondary modulation of a transmission signal transmitted from a base station. 図5Aは、基地局から送信される通信信号のQAM方式の一次変調におけるシンボル点の配置の一例を示す説明図である。FIG. 5A is an explanatory diagram showing an example of arrangement of symbol points in QAM primary modulation of a communication signal transmitted from a base station. 図5Bは、同基地局から送信されるWPT用ダミー信号の変調におけるシンボル点の配置の一例を示す説明図である。FIG. 5B is an explanatory diagram showing an example of arrangement of symbol points in modulation of a WPT dummy signal transmitted from the base station. 図6は、実施形態に係る測定システムの構成の一例を示すブロック図である。FIG. 6 is a block diagram showing an example of the configuration of the measurement system according to the embodiment. 図7は、測定対象の整流回路にWPT用ダミー信号の連続波を入力した場合及び測定用変調波を入力した場合について計算したDC出力特性の一例を示すグラフである。FIG. 7 is a graph showing an example of DC output characteristics calculated when a continuous wave of a WPT dummy signal is input to the rectifier circuit to be measured and when a measurement modulated wave is input. 図8は、測定用変調波として使用可能なパルス変調波の一例を示す説明図である。FIG. 8 is an explanatory diagram showing an example of a pulse modulated wave that can be used as a modulated wave for measurement. 図9は、測定対象の整流回路にWPT用ダミー信号の連続波を入力した場合及び測定用変調波としてパルス変調波を入力した場合について計算したDC出力特性の一例を示すグラフである。FIG. 9 is a graph showing an example of DC output characteristics calculated when a continuous wave of a WPT dummy signal is input to the rectifier circuit to be measured and when a pulse modulated wave is input as a measurement modulated wave. 図10は、実施形態に係る測定システムの構成の他の例を示すブロック図である。FIG. 10 is a block diagram showing another example of the configuration of the measurement system according to the embodiment. 図11は、測定対象の整流回路にWPT用ダミー信号の連続波を入力した場合及び測定用変調波としてパルス変調波を入力した場合について計算した整流回路の反射率と負荷の抵抗との関係の一例を示すグラフである。Figure 11 shows the relationship between the reflectance of the rectifier circuit and the resistance of the load calculated when a continuous wave of a WPT dummy signal is input to the rectifier circuit to be measured and when a pulse modulated wave is input as the measurement modulated wave. It is a graph showing an example.
 以下、図面を参照して本発明の実施形態について説明する。
 本書に記載された実施形態に係る測定システムで測定する測定対象のRF-DC変換装置としての整流回路を用いるシステムは、移動通信の基地局から給電対象の端末装置(例えば、移動通信のUE(移動局)やIoTデバイス)に対して無線電力伝送(WPT)することができるシステムである。このシステムは、例えば、整流回路を有する受電側装置であるUEなどの端末装置への下りリンクの無線フレームに設定された複数の無線リソース(リソースブロック)のうち通信に使用されていない通信未使用の無線リソース(リソースブロック)を端末装置への無線電力伝送(WPT)に有効活用した電力伝送システムである。電力伝送システムは、基地局から端末装置への無線電力伝送(WPT)機能を有する、基地局と端末装置との間の無線通信システムであってもよい。また、実施形態のシステムは、基地局と端末装置との間の無線通信機能を有する、基地局から端末装置への無線電力伝送(WPT)システムであってもよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The system using the rectifier circuit as the RF-DC conversion device to be measured by the measurement system according to the embodiment described in this specification is a system capable of wireless power transmission (WPT) from a mobile communication base station to a terminal device to be powered (e.g., a mobile communication UE (mobile station) or an IoT device). This system is a power transmission system that effectively utilizes unused wireless resources (resource blocks) that are not used for communication among a plurality of wireless resources (resource blocks) set in a wireless frame of a downlink to a terminal device such as a UE, which is a power receiving device having a rectifier circuit, for wireless power transmission (WPT) to the terminal device. The power transmission system may be a wireless communication system between a base station and a terminal device having a wireless power transmission (WPT) function from the base station to the terminal device. The system according to the embodiment may also be a wireless power transmission (WPT) system from a base station to a terminal device having a wireless communication function between the base station and the terminal device.
 特に、本実施形態の測定システムは、無線電力伝送システム(以下「WPTシステム」ともいう。)の端末装置等の受電側装置に設けられる整流回路の特性を測定する測定システムであり、整流回路を破損することなく、電力伝送波の信号が入力される大電力入力時の整流回路の特性を測定することができる。 In particular, the measurement system of this embodiment is a measurement system that measures the characteristics of a rectifier circuit provided in a power receiving side device such as a terminal device of a wireless power transmission system (hereinafter also referred to as "WPT system"). It is possible to measure the characteristics of a rectifier circuit at the time of high power input to which a power transmission wave signal is input without damage.
 図1は、本実施形態に係る測定システムで特性を測定可能な整流回路を有する端末装置に基地局から送電可能なWPTシステムの概略構成の一例を示す説明図である。図1において、WPTシステムは、通信エリア(セル)10Aを形成するセルラー方式の基地局10と、通信エリア10Aに在圏しているときに基地局10に接続して基地局10と無線通信可能な給電対象の端末装置(以下「UE」(ユーザ装置)ともいう。)20と、を有する。基地局10は、WPTシステムにおける送電側装置としても機能し、端末装置20は受電側装置としても機能する。 FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a WPT system that can transmit power from a base station to a terminal device that has a rectifier circuit whose characteristics can be measured with the measurement system according to the present embodiment. In FIG. 1, the WPT system connects to a cellular base station 10 forming a communication area (cell) 10A, and is capable of wireless communication with the base station 10 by connecting to the base station 10 when located in the communication area 10A. A power supply target terminal device (hereinafter also referred to as "UE" (user equipment)) 20 is included. The base station 10 also functions as a power transmitting side device in the WPT system, and the terminal device 20 also functions as a power receiving side device.
 UE20は、移動通信システムの移動局でもよいし、通信装置(例えば移動通信モジュール)と各種デバイスとを組み合わせたものであってもよい。UE20は、例えば複数のアンテナ素子を有するアレーアンテナを備える。UE20はIoTデバイス(「IoT機器」ともいう。)であってもよい。 The UE 20 may be a mobile station of a mobile communication system, or may be a combination of a communication device (for example, a mobile communication module) and various devices. The UE 20 includes, for example, an array antenna having a plurality of antenna elements. The UE 20 may be an IoT device (also referred to as "IoT equipment").
 図1において、基地局10は、多数のアンテナ素子を有する複数のアレーアンテナ110を備え、複数のUE20との間でmassive MIMO(以下「mMIMO」ともいう。)伝送方式の通信を行うことができる。mMIMOは、アレーアンテナ110を用いてデータ送受信を行うことにより大容量・高速通信を実現する無線伝送技術である。また、複数のUE20のそれぞれに対して時分割で又は同時にビーム10Bを形成するビームフォーミングを行うMU(Multi User)-MIMO伝送方式で通信を行うことができる。多素子のアレーアンテナを用いてMU-MIMO伝送を行うことにより、各UE20の通信環境に応じてUE20ごとに適切なビームを向けて通信できるため、セル全体の通信品質を改善できる。また、同一の無線リソース(時間・周波数リソース)を用いて複数のUE20との通信ができるため、システム容量を拡大することができる。 In FIG. 1, a base station 10 is equipped with a plurality of array antennas 110 having a large number of antenna elements, and can perform communication using a massive MIMO (hereinafter also referred to as "mMIMO") transmission method with a plurality of UEs 20. . mMIMO is a wireless transmission technology that achieves high-capacity, high-speed communication by transmitting and receiving data using the array antenna 110. Furthermore, communication can be performed using an MU (Multi User)-MIMO transmission method that performs beamforming to form beams 10B in time division or simultaneously for each of the plurality of UEs 20. By performing MU-MIMO transmission using a multi-element array antenna, it is possible to direct and communicate an appropriate beam to each UE 20 according to the communication environment of each UE 20, thereby improving the communication quality of the entire cell. Moreover, since communication with a plurality of UEs 20 can be performed using the same radio resource (time/frequency resource), system capacity can be expanded.
 また、図1において、通信エリア10A内の一部は、基地局10から端末装置20に向けて無線電力伝送を行う無線電力伝送エリア(以下「WPTエリア」という。)10A'になっている。WPTエリア10A'は図示のように通信エリア10Aよりも狭いエリアでもよいし、通信エリア10Aと同じ又はほぼ同じサイズ及び位置のエリアであってもよい。 Further, in FIG. 1, a part of the communication area 10A is a wireless power transmission area (hereinafter referred to as "WPT area") 10A' where wireless power transmission is performed from the base station 10 to the terminal device 20. The WPT area 10A' may be a smaller area than the communication area 10A as shown in the figure, or may be an area having the same or approximately the same size and position as the communication area 10A.
 WPTエリア10A'では、基地局10からの下りリンクの無線フレームを構成する複数の無線リソース(時間・周波数リソース)であるリソースブロックのうち通信に用いられていない通信未使用の無線リソース(リソースブロック)を無線電力伝送ブロックとして活用している。基地局10は、UE20への下りリンクの無線フレームにおいて、通信未使用の無線リソースである無線電力伝送ブロック(WPTブロック)に無線電力伝送用のダミー信号(以下「WPT用ダミー信号」ともいう。)を割り当てた送信信号を生成してUE20に送信する。 In the WPT area 10A', unused radio resources (resource blocks) that are not used for communication among resource blocks that are a plurality of radio resources (time/frequency resources) constituting a downlink radio frame from the base station 10 are ) is used as a wireless power transmission block. In the downlink radio frame to the UE 20, the base station 10 sends a dummy signal for wireless power transmission (hereinafter also referred to as "WPT dummy signal") to a wireless power transmission block (WPT block), which is a wireless resource that is not used for communication. ) is generated and transmitted to the UE 20.
 特に、第5世代又はそれ以降の世代の移動通信システムにおいては、無線フレームの一部のサブキャリアのみに必要最小限の参照信号(RS)や制御信号を配置するリーンキャリアという技術が提案されており、無線フレームにおける通信未使用の無線リソースの部分を有効活用してUE20への無線電力伝送を行うことが期待される。 In particular, for fifth-generation or later-generation mobile communication systems, a technology called lean carrier has been proposed in which the minimum necessary reference signals (RS) and control signals are placed on only some of the subcarriers of a radio frame, and it is expected that the unused radio resources in the radio frame can be effectively utilized to transmit wireless power to UE 20.
 基地局10とUE20との間で送受信される通信の信号の電波及び基地局10からUE20に送信されるWPT用ダミー信号を割り当てた送信信号の電波は、例えば、ミリ波又はマイクロ波である。 The radio waves of communication signals transmitted and received between the base station 10 and the UE 20 and the radio waves of the transmission signal to which the WPT dummy signal is assigned are transmitted from the base station 10 to the UE 20, for example, are millimeter waves or microwaves.
 図2は、WPTシステムの基地局10から複数のUE20へのビームフォーミングによるUE毎の給電の一例を示す説明図である。本実施形態において、図2に示すように通信エリア10A内のWPTエリア10A'(前述の図1参照)に複数のUE20(1)~20(3)が在圏し、UE毎に形成したビーム10B(1)~10B(3)を介して各UE20(1)~20(3)に給電してもよい。ビーム10B(1)~10B(3)は、例えば時分割で切り替えて形成してもよい。 FIG. 2 is an explanatory diagram showing an example of power feeding to each UE by beamforming from the base station 10 of the WPT system to a plurality of UEs 20. In this embodiment, as shown in FIG. 2, a plurality of UEs 20(1) to 20(3) are located in a WPT area 10A' (see FIG. 1 described above) within a communication area 10A, and a beam formed by each UE is provided. Power may be supplied to each UE 20(1) to 20(3) via 10B(1) to 10B(3). The beams 10B(1) to 10B(3) may be formed, for example, by being switched in a time-division manner.
 図3は、WPTシステムを構成する基地局10及び端末装置(UE)20の主要構成の一例を示すブロック図である。基地局10は、基地局装置100とアンテナ110とを備える。アンテナ110は、例えば、図1に示すように多数のアンテナ素子を有するアレーアンテナである。アンテナ110は単数でもよいし複数であってもよい。例えば、アンテナ110は複数のセクタセルに対応させて複数配置してもよい。 FIG. 3 is a block diagram illustrating an example of the main configurations of the base station 10 and terminal equipment (UE) 20 that configure the WPT system. The base station 10 includes a base station device 100 and an antenna 110. The antenna 110 is, for example, an array antenna having a large number of antenna elements as shown in FIG. The antenna 110 may be singular or plural. For example, a plurality of antennas 110 may be arranged corresponding to a plurality of sector cells.
 基地局装置100は、通信信号処理部120と無線処理部130とを備える。通信信号処理部120は、UE20との間で送受信される各種のユーザデータや制御情報等の信号を処理する。 The base station device 100 includes a communication signal processing section 120 and a wireless processing section 130. The communication signal processing unit 120 processes signals such as various user data and control information transmitted and received with the UE 20.
 通信信号処理部120は、UE20に対する下りリンクの通信の際に、複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いたWPT用ダミー信号を含む下りリンクの送信信号を生成する。例えば、WPT用ダミー信号は、通信信号よりもPAPR(ピーク電力対平均電力比)(「波高比」ともいう。)が小さい変調方式で変調して生成することができる。例えば、WPT用ダミー信号は、Zadoff-Chu系列の符号を用いて変調され、時間に対して振幅が一定で位相が変化する変調信号であってもよく、また、デジタル変調方式の複数のシンボル点のうち振幅が最大又は最大近傍の複数のシンボル点で変調された信号であってもよい。また例えば、送信信号の生成は、通信信号用のQAM(直交振幅変調)やWPT用ダミー信号用のPAPRが小さい変調等の一次変調、並びに、OFDM(直交周波数多重)変調等の二次変調を含んでもよい。 During downlink communication to the UE 20, the communication signal processing unit 120 generates a downlink transmission signal including a WPT dummy signal using an unused radio resource that is not used for communication among a plurality of radio resources. generate. For example, the WPT dummy signal can be generated by modulating with a modulation method that has a smaller PAPR (peak power to average power ratio) (also referred to as "wave height ratio") than the communication signal. For example, the WPT dummy signal may be a modulated signal that is modulated using a Zadoff-Chu sequence code and has a constant amplitude and a phase that changes over time, or may be a modulated signal that is modulated using a Zadoff-Chu code, and may be a modulated signal that has a constant amplitude and a phase that changes over time. The signal may be a signal modulated at a plurality of symbol points having the maximum amplitude or near the maximum amplitude. For example, the transmission signal generation uses primary modulation such as QAM (quadrature amplitude modulation) for communication signals and modulation with small PAPR for WPT dummy signals, and secondary modulation such as OFDM (orthogonal frequency division multiplexing) modulation. May include.
 無線処理部130は、通信信号処理部120で生成した送信信号をアンテナ110からUE20に送信したり、UE20からアンテナ110を介して受信した受信信号を通信信号処理部120に出力したりする。 The radio processing unit 130 transmits the transmission signal generated by the communication signal processing unit 120 from the antenna 110 to the UE 20, and outputs the reception signal received from the UE 20 via the antenna 110 to the communication signal processing unit 120.
 UE20に対する下りリンク通信の送信信号に通信未使用の無線リソースを用いたWPT用ダミー信号を含める処理や、後述の信号の分離や信号の合成等に用いるトリガー信号の生成は、移動通信の無線フレームを構成するサブフレームに基づいて行ってもよい。 The process of including a dummy signal for WPT using unused radio resources in the transmission signal for downlink communication to UE 20, and the generation of a trigger signal used for signal separation and signal synthesis, etc., described below, may be performed based on subframes that constitute the radio frame of mobile communication.
 また、UE20に対する下りリンク通信の送信信号に、通信未使用の無線リソースを用いたWPT用ダミー信号を含める処理は、基地局10が自律的に行ってもよいし、UE20からの要求若しくは指示又は外部プラットフォーム(例えば、サーバ、クラウドシステム)からの要求若しくは指示に基づいて行ってもよい。 Further, the base station 10 may autonomously perform the process of including a WPT dummy signal using unused radio resources in the transmission signal of the downlink communication to the UE 20, or the process may be performed by the base station 10 autonomously, or upon request or instruction from the UE 20, or It may also be performed based on a request or instruction from an external platform (eg, server, cloud system).
 また、無線処理部130は、BF制御信号に基づいてアレーアンテナ110で形成される一又は複数のビームを制御する。また、無線処理部130は、通信信号処理部120で生成されたWPT用ダミー信号を含む下りリンクの送信信号を、アンテナ110を介してUE20に送信する。 Additionally, the wireless processing unit 130 controls one or more beams formed by the array antenna 110 based on the BF control signal. Furthermore, the radio processing unit 130 transmits a downlink transmission signal including the WPT dummy signal generated by the communication signal processing unit 120 to the UE 20 via the antenna 110.
 基地局10は、UE20に対する下りリンクの通信の際に、UE20毎に又は複数のUE20が属するターゲットエリアのUEグループ毎に、個別のビーム10Bを形成するビームフォーミング(BF)制御を行い、UE20毎に又はUEグループ毎に無線電力伝送を行ってもよい。UE20毎又はUEグループ毎のBF制御は、通信信号処理部120における周波数領域のデジタルBF制御で行ってもよいし、無線処理部130におけるアナログBF制御で行ってもよい。 During downlink communication to the UE 20, the base station 10 performs beamforming (BF) control to form individual beams 10B for each UE 20 or for each UE group in the target area to which a plurality of UEs 20 belong. Wireless power transfer may be performed separately or for each UE group. BF control for each UE 20 or for each UE group may be performed by digital BF control in the frequency domain in the communication signal processing section 120, or by analog BF control in the radio processing section 130.
 図3において、UE20は、アンテナ210と無線処理部220と通信信号処理部230と電力出力部240と電池250とを含む。アンテナ210は、例えば複数のアンテナ素子を有する小型のアレーアンテナである。無線処理部220は、通信信号処理部230で生成したフィードバック情報やユーザデータ等の送信信号をアンテナ210から基地局10に送信したり、基地局10からアンテナ210を介して受信した受信信号を通信信号処理部230に出力したりする。 In FIG. 3, the UE 20 includes an antenna 210, a wireless processing section 220, a communication signal processing section 230, a power output section 240, and a battery 250. Antenna 210 is, for example, a small array antenna having a plurality of antenna elements. The wireless processing unit 220 transmits transmission signals such as feedback information and user data generated by the communication signal processing unit 230 from the antenna 210 to the base station 10, and transmits received signals received from the base station 10 via the antenna 210 to communication. It is also output to the signal processing section 230.
 無線処理部220は、基地局10から送信されたWPT用ダミー信号を含む送信信号を受信する。また、電力出力部240は、例えばRF-DC変換装置としての整流回路(整流器)241を有し、基地局10からのWPT用ダミー信号を含む送信信号を受信した受信信号の電力を、電池充電用の受電電力として出力する。電力出力部240から出力された受電電力により、電池250を充電することができる。 The wireless processing unit 220 receives a transmission signal including a WPT dummy signal transmitted from the base station 10. The power output unit 240 also includes a rectifier circuit (rectifier) 241 as, for example, an RF-DC converter, and uses the power of the received signal received from the base station 10 to charge the battery. Output as received power for use. The battery 250 can be charged by the received power output from the power output unit 240.
 図4Aは、WPTシステムの基地局10から送信されるWPT用ダミー信号を含む送信信号の無線リソース(リソースブロック)におけるWPTブロックの割り当ての一例を示す説明図である。また、図4Bは、基地局10から送信される送信信号のOFDM方式の二次変調における周波数軸上のスペクトルの一例を示す説明図である。図4Aに示すように、WPTシステムにおける下りリンク通信及び上りリンク通信で用いられる複数の無線リソースは、周波数軸上のサブキャリアと時間軸上のスロットとにより定義される複数のリソースブロック30である。各リソースブロック30は、図4Bに示すように周波数軸上で互いに直交する所定帯域幅のサブキャリア33を有する。 FIG. 4A is an explanatory diagram showing an example of allocation of WPT blocks in radio resources (resource blocks) of transmission signals including WPT dummy signals transmitted from the base station 10 of the WPT system. Further, FIG. 4B is an explanatory diagram showing an example of a spectrum on the frequency axis in OFDM secondary modulation of a transmission signal transmitted from the base station 10. As shown in FIG. 4A, multiple radio resources used in downlink communication and uplink communication in the WPT system are multiple resource blocks 30 defined by subcarriers on the frequency axis and slots on the time axis. . Each resource block 30 has subcarriers 33 of a predetermined bandwidth that are orthogonal to each other on the frequency axis, as shown in FIG. 4B.
 図4Aの無線リソースを構成するリソースブロック30は、移動通信の無線フレームを構成する連続の複数のサブフレームに割り当てられる。図示の例では、各サブフレームは所定数(例えば20個)のリソースブロックで構成され、通信用のサブフレーム(以下「通信用フレーム」という。)F1とWPT用のサブフレーム(以下「WPT用フレーム」という。)F2が交互に位置する。通信用フレームF1は、上りリンク及び下りリンクの通信用のリソースブロック31を含み、WPT用フレームF2は、図中のクロスハッチングを付しているWPT用のリソースブロック32を含む。通信用フレームF1のリソースブロック31のうち、上りリンクの複数のリソースブロックには、ユーザデータの上りリンク通信の信号及びUE20からのWPT用のフィードバック情報の通信の信号に割り当てられ、下りリンクの複数のリソースブロックには、ユーザデータや情報の下りリンク通信の信号に割り当てられる。また、WPT用フレームF2のリソースブロック32には、下りリンクのWPT用信号が割り当てられる。 The resource block 30 configuring the radio resource in FIG. 4A is allocated to a plurality of consecutive subframes configuring a radio frame for mobile communication. In the illustrated example, each subframe is composed of a predetermined number (for example, 20) of resource blocks, including a communication subframe (hereinafter referred to as "communication frame") F1 and a WPT subframe (hereinafter referred to as "WPT frame"). (referred to as "frame") F2 are located alternately. The communication frame F1 includes a resource block 31 for uplink and downlink communication, and the WPT frame F2 includes a WPT resource block 32 that is cross-hatched in the figure. Among the resource blocks 31 of the communication frame F1, a plurality of uplink resource blocks are allocated to uplink communication signals of user data and communication signals of WPT feedback information from the UE 20, and a plurality of downlink resource blocks are allocated to uplink communication signals of user data and communication signals of WPT feedback information from the UE 20. These resource blocks are allocated to signals for downlink communication of user data and information. Further, a downlink WPT signal is allocated to the resource block 32 of the WPT frame F2.
 WPTシステムでは、電力増幅器の高出力電力及び高効率の領域でWPT用ダミー信号を増幅できるように、WPT用ダミー信号として、図5A及び図5Bに例示するようなPAPR(ピーク電力対平均電力比)が通信信号よりも低いOFDM変調信号を用いてもよい。 In the WPT system, in order to amplify the WPT dummy signal in the region of high output power and high efficiency of the power amplifier, a PAPR (peak power to average power ratio) as illustrated in FIGS. 5A and 5B is used as the WPT dummy signal. ) may be used as an OFDM modulated signal that is lower than the communication signal.
 図5Aは、WPTシステムの基地局10から送信される送信信号のQAM方式の一次変調におけるシンボル点40の配置の一例を示す説明図である。図5Aは、64QAM方式の場合の複数のシンボル点(64値のシンボル点)の配置を示すコンスタレーションの図であり、横軸は同相チャネル成分を示し,縦軸は直交チャネル成分を示している。本実施形態において、QAM方式の複数のシンボル点40の任意のシンボル点で変調されたWPT用ダミー信号を用いることができる。例えば、QAM方式の複数のシンボル点40のうち、振幅が最大である最外周のいずれか一又は複数のシンボル点41で変調されたWPT用ダミー信号を用いてもよい。この場合は、UE20等の端末装置への伝送電力を最大化することができる。また、例えば伝送電力を最大化する必要のない場合は、最外周のシンボル点以外の任意のシンボル点で変調してもよい。例えば、UE20などの端末装置から受信したフィードバック情報に含まれる電力制御情報で指示された伝送電力に基づいて、WPT用ダミー信号の変調に用いるシンボル点を判断して選択してもよいし、UE20等の端末装置20から受信した受電端末情報に含まれる受電ビーム情報(例えばビーム方向やビーム幅の情報)、WPT電波の到来方向の情報、電池残量情報などに基づいて、WPT用ダミー信号の変調に用いるシンボル点を判断して選択してもよい。 FIG. 5A is an explanatory diagram showing an example of the arrangement of symbol points 40 in QAM primary modulation of a transmission signal transmitted from the base station 10 of the WPT system. FIG. 5A is a diagram of a constellation showing the arrangement of multiple symbol points (64-value symbol points) in the case of the 64QAM method, where the horizontal axis shows in-phase channel components and the vertical axis shows orthogonal channel components. . In this embodiment, a WPT dummy signal modulated at any symbol point among the plurality of symbol points 40 of the QAM system can be used. For example, a WPT dummy signal modulated at one or more of the outermost symbol points 41 having the maximum amplitude among the plurality of QAM symbol points 40 may be used. In this case, the transmission power to the terminal device such as the UE 20 can be maximized. Further, for example, if it is not necessary to maximize the transmission power, modulation may be performed at any symbol point other than the outermost symbol point. For example, the symbol point used for modulating the WPT dummy signal may be determined and selected based on the transmission power instructed by power control information included in the feedback information received from the terminal device such as the UE 20. The WPT dummy signal is generated based on the power reception beam information (for example, beam direction and beam width information), information on the direction of arrival of WPT radio waves, remaining battery power information, etc. included in the power reception terminal information received from the terminal device 20 such as The symbol points used for modulation may be determined and selected.
 図5Bは、WPTシステムの基地局10から送信されるWPTダミー信号の一次変調におけるシンボル点の配置の他の例を示す説明図である。図5Bのコンスタレーション図に示すように、時間に対して振幅が一定の条件で位相が変化するシンボル点42で変調されたOFDM変調信号からなるWPT用ダミー信号を用いてもよい。図5Bのシンボル点42でOFDM変調信号は、例えばZadoff-Chu系列の符号を用いて生成することができる。図5Bの変調信号で生成したWPT用ダミー信号を用いる場合も、UE20等の端末装置への伝送電力を最大化することができる。 FIG. 5B is an explanatory diagram showing another example of the arrangement of symbol points in the primary modulation of the WPT dummy signal transmitted from the base station 10 of the WPT system. As shown in the constellation diagram of FIG. 5B, a WPT dummy signal may be used that is composed of an OFDM modulated signal modulated at symbol points 42 whose phase changes with the amplitude constant over time. The OFDM modulated signal at symbol point 42 in FIG. 5B can be generated using, for example, a Zadoff-Chu sequence code. Also when using the WPT dummy signal generated with the modulated signal in FIG. 5B, the transmission power to the terminal device such as the UE 20 can be maximized.
 上記構成のWPTシステムにおいて、UE20等の端末装置に搭載される整流回路の設計にあたって、整流回路に大電力のWPT用ダミー信号が入力されるときの整流回路の特性を推定するために、大電力入力条件下での整流回路の特性(以下「大電力特性」ともいう。)を測定する必要がある。しかしながら、整流回路の大電力特性を測定するためにWPTシステムに実際に使用される大電力の電力伝送波の信号であるWPT用ダミー信号(例えば、大電力の連続波の信号)を入力すると、整流回路が破損するおそれがある。 In the WPT system with the above configuration, when designing a rectifier circuit installed in a terminal device such as UE20, high power It is necessary to measure the characteristics of the rectifier circuit under input conditions (hereinafter also referred to as "high power characteristics"). However, when inputting a WPT dummy signal (for example, a high-power continuous wave signal) that is a high-power power transmission wave signal actually used in the WPT system to measure the high-power characteristics of a rectifier circuit, The rectifier circuit may be damaged.
 そこで、本実施形態では、WPTシステムに実際に使用される大電力の電力伝送波の信号であるWPT用ダミー信号よりも電力が小さい測定用変調波の信号を利用することで、整流回路を破損させずに整流回路の大電力特性を測定している。 Therefore, in this embodiment, the rectifier circuit is damaged by using a measurement modulation wave signal whose power is smaller than the WPT dummy signal, which is a high-power power transmission wave signal actually used in the WPT system. The high power characteristics of the rectifier circuit are measured without
 図6は、本実施形態に係る測定システム50の構成の一例を示すブロック図である。図6において、測定システム50は、測定用変調波入力装置510と平滑化用素子520と直流特性測定装置530とを備える。 FIG. 6 is a block diagram showing an example of the configuration of the measurement system 50 according to the present embodiment. In FIG. 6, the measurement system 50 includes a measurement modulated wave input device 510, a smoothing element 520, and a DC characteristic measurement device 530.
 測定用変調波入力装置510は、測定用変調波の信号を生成して測定対象の整流回路241に入力する入力部として機能する。平滑化用素子520は、コンデンサなど等で構成され、整流回路241から出力された出力信号に残留する脈流成分を平滑化する平滑化部として機能する。平滑化用素子520は、端末装置20の電力出力部240に搭載される平滑化用素子と同一の素子又は同様な機能を有する素子であってもよい。 The measurement modulated wave input device 510 functions as an input unit that generates a measurement modulated wave signal and inputs it to the rectifier circuit 241 to be measured. The smoothing element 520 is composed of a capacitor or the like, and functions as a smoothing section that smoothes the pulsating current component remaining in the output signal output from the rectifier circuit 241. The smoothing element 520 may be the same element as the smoothing element mounted on the power output section 240 of the terminal device 20 or an element having a similar function.
 直流特性測定装置530は、整流回路241の測定用変調波入力時の出力特性fm(v)から電力伝送波入力時(大電力入力時)の出力特性fc(v)への写像Fを記憶する記憶部として機能する。 The DC characteristic measuring device 530 stores a mapping F from the output characteristic fm(v) when the measurement modulated wave is input to the rectifier circuit 241 to the output characteristic fc(v) when the power transmission wave is input (high power input). Functions as a storage unit.
 図7は、測定対象の整流回路241にWPT用ダミー信号の連続波を入力した場合及び測定用変調波を入力した場合について計算したDC出力特性の一例を示すグラフである。 FIG. 7 is a graph showing an example of DC output characteristics calculated when a continuous wave of a WPT dummy signal is input to the rectifier circuit 241 to be measured and when a measurement modulated wave is input.
 電力伝送波入力時の出力特性fc(v)は、図7の曲線C101に示すように、無線電力伝送(WPT)に用いられるWPTダミー信号(電力伝送波の信号)が整流回路241に入力された場合を想定した電力伝送波入力時における整流回路241からの直流出力信号の電圧vと電流iとの関係を示すDC出力特性である。 The output characteristic fc(v) when a power transmission wave is input is, as shown by curve C101 in FIG. This is a DC output characteristic showing the relationship between the voltage v and current i of the DC output signal from the rectifier circuit 241 when a power transmission wave is input assuming a case where the power transmission wave is input.
 測定用変調波入力時の出力特性fm(v)は、図7の曲線C102に示すように、電力伝送波よりも電力が小さい測定用変調波の信号(以下「測定変調信号」ともいう。)が整流回路241に入力された場合を想定した測定用変調波入力時における整流回路241からの直流出力信号の電圧vと電流iとの関係を示すDC出力特性である。 As shown by curve C102 in FIG. 7, the output characteristic fm(v) when the measurement modulation wave is input is a measurement modulation wave signal (hereinafter also referred to as "measurement modulation signal") whose power is smaller than the power transmission wave. This is a DC output characteristic showing the relationship between the voltage v and current i of the DC output signal from the rectifier circuit 241 when a measurement modulated wave is inputted to the rectifier circuit 241, assuming that the signal is input to the rectifier circuit 241.
 写像Fは、例えばfc(v)=F(fm(v))の関係を満たす写像であり、電力伝送波入力時(大電力入力時)の出力特性fc(v)と、測定用変調波入力時の出力特性fm(v)とに基づいて求めることができる。 The mapping F is a mapping that satisfies the relationship fc(v)=F(fm(v)), for example, and the output characteristic fc(v) at the time of power transmission wave input (at the time of high power input) and the modulated wave input for measurement It can be determined based on the output characteristic fm(v) at the time.
 例えば、電力伝送波入力時の出力特性fc(v)、測定用変調波入力時の出力特性fm(v)及び写像Fは、電力伝送波、測定用変調波及び整流回路241の回路構成の情報に基づき、コンピュータシミュレーションを用いて予め算出して決定することができる。 For example, the output characteristic fc (v) when the power transmission wave is input, the output characteristic fm (v) when the measurement modulated wave is input, and the mapping F are information about the power transmission wave, the measurement modulation wave, and the circuit configuration of the rectifier circuit 241. can be calculated and determined in advance using computer simulation.
 直流特性測定装置530は、測定用変調波の信号を入力した整流回路241から平滑化用素子520を介して出力された出力信号の直流特性を測定する測定部としても機能する。 The DC characteristic measuring device 530 also functions as a measurement unit that measures the DC characteristics of the output signal outputted via the smoothing element 520 from the rectifier circuit 241 into which the measurement modulated wave signal is input.
 また、直流特性測定装置530は、前記測定した出力信号の直流特性と予め求めた写像Fとに基づいて、WPTダミー信号(電力伝送波の信号)が入力されるときの大電力入力時の整流回路241の特性を推定する推定部としても機能する。 Further, the DC characteristic measuring device 530 performs rectification at the time of high power input when a WPT dummy signal (power transmission wave signal) is input, based on the DC characteristic of the measured output signal and the predetermined mapping F. It also functions as an estimator that estimates the characteristics of the circuit 241.
 図8は測定用変調波として使用可能なパルス変調波511の一例を示す説明図である。図8のパルス変調波511は、連続波である電力伝送波を所定のデューティー比Dでパルス変調した変調波である。パルス変調波511の1周期をTとし、パルス変調波511の連続波が出力されているアクティブ期間(ON期間)をTonとした場合、デューティー比Dは、D=Ton/Tで表される。デューティー比Dは、例えば10[%]以上50[%]以下であってもよい。 FIG. 8 is an explanatory diagram showing an example of a pulse modulated wave 511 that can be used as a measurement modulated wave. A pulse modulated wave 511 in FIG. 8 is a modulated wave obtained by pulse modulating a continuous wave power transmission wave at a predetermined duty ratio D. When one period of the pulse modulated wave 511 is T, and the active period (ON period) during which the continuous wave of the pulse modulated wave 511 is output is Ton, the duty ratio D is expressed as D=Ton/T. The duty ratio D may be, for example, 10% or more and 50% or less.
 図9は、測定対象の整流回路241にWPT用ダミー信号の連続波を入力した場合及び測定用変調波としてデューティー比Dのパルス変調波を入力した場合について計算したDC出力特性の一例を示すグラフである。 Figure 9 is a graph showing an example of DC output characteristics calculated when a continuous wave of a WPT dummy signal is input to the rectifier circuit 241 under measurement, and when a pulse modulated wave with a duty ratio of D is input as the measurement modulated wave.
 デューティー比Dのパルス変調波が整流回路241に入力される場合、図9の曲線C202に示す測定用変調波入力時の出力特性fm(v)は、図9の曲線C201に示す電力伝送波入力時の出力特性fc(v)のD倍になる。すなわち、fm(v)=Dfc(v)が成り立つので、fc(v)=F(fm(v))の関係を満たす写像Fは、1/Dである。直流特性測定装置530に記憶される写像Fの情報は、このデューティー比Dの情報又は逆数の情報を含む。 When a pulse modulated wave with a duty ratio of D is input to the rectifier circuit 241, the output characteristic fm(v) at the time of inputting the measurement modulated wave shown in curve C202 in FIG. 9 is equal to the power transmission wave input shown in curve C201 in FIG. It is D times the output characteristic fc(v) at the time. That is, since fm(v)=Dfc(v) holds, the mapping F that satisfies the relationship fc(v)=F(fm(v)) is 1/D. The information on the mapping F stored in the DC characteristic measuring device 530 includes information on this duty ratio D or information on its reciprocal.
 図10は、実施形態に係る測定システム50の構成の他の例を示すブロック図である。図10において、測定システム50は、整流回路241に入力する測定用変調波、整流回路241からの出力信号が流れる負荷531、又は、測定用変調波及び負荷531の両方を制御する制御部としての制御装置を備える。この制御により、整流回路241の特性の測定精度を高めることができる。 FIG. 10 is a block diagram showing another example of the configuration of the measurement system 50 according to the embodiment. In FIG. 10, the measurement system 50 includes a measurement modulated wave input to the rectifier circuit 241, a load 531 through which an output signal from the rectifier circuit 241 flows, or a control unit that controls both the measurement modulated wave and the load 531. Equipped with a control device. This control can improve the accuracy of measuring the characteristics of the rectifier circuit 241.
 なお、本実施形態において、測定用変調波入力装置510から整流回路241に入力された測定用変調波の反射率と整流回路241からの出力信号に対する負荷531の抵抗との関係を測定してもよい。また、この測定結果に基づいて反射率が極小となる負荷531の抵抗を整合条件として決定し、その整合条件を用いて、前記整流回路241からの出力信号の直流特性を測定するときの負荷531の抵抗の設定などの測定系の校正を行ってもよい。 In this embodiment, the relationship between the reflectance of the measurement modulated wave input from the measurement modulated wave input device 510 to the rectifier circuit 241 and the resistance of the load 531 for the output signal from the rectifier circuit 241 may be measured. Furthermore, the resistance of the load 531 at which the reflectance is minimized based on the measurement results may be determined as a matching condition, and the matching condition may be used to calibrate the measurement system, such as setting the resistance of the load 531 when measuring the DC characteristics of the output signal from the rectifier circuit 241.
 測定用変調波の反射率の情報は、例えば、測定用変調波入力装置510で測定して直流特性測定装置530に渡すことができる。また、整流回路241からの出力信号が流れる負荷531の抵抗は、例えば、直流特性測定装置530で測定することができる。そして、直流特性測定装置530は、測定用変調波の反射率と負荷531の抵抗との関係を測定し、その測定結果に基づいて反射率が極小となる負荷531の抵抗を、整流回路241を含む電力出力部240の整合条件として決定することできる。 Information on the reflectance of the modulated wave for measurement can be measured by the modulated wave input device for measurement 510 and passed to the DC characteristic measurement device 530, for example. Further, the resistance of the load 531 through which the output signal from the rectifier circuit 241 flows can be measured by, for example, the DC characteristic measuring device 530. Then, the DC characteristic measuring device 530 measures the relationship between the reflectance of the modulated wave for measurement and the resistance of the load 531, and based on the measurement result, the resistance of the load 531 where the reflectance is minimum is set to the rectifier circuit 241. This can be determined as a matching condition for the power output unit 240 included.
 また、予め求めた写像と、整流回路241に測定用変調波の信号を入力したときの反射率に対する負荷抵抗rの特性fm(R)の測定結果とに基づいて、整流回路241に電力伝送波を入力したときの反射率と負荷の抵抗との関係を推定してもよい。 Furthermore, the power transmission wave is applied to the rectifier circuit 241 based on the mapping obtained in advance and the measurement result of the characteristic fm(R) of the load resistance r with respect to the reflectance when the signal of the modulated wave for measurement is input to the rectifier circuit 241. It is also possible to estimate the relationship between the reflectance and the resistance of the load when .
 図11は、測定対象の整流回路241にWPT用ダミー信号の連続波を入力した場合及び測定用変調波としてパルス変調波を入力した場合について計算した整流回路241の反射率Rと負荷531の抵抗rとの関係の一例を示すグラフである。 FIG. 11 shows the reflectance R of the rectifier circuit 241 and the resistance of the load 531 calculated when a continuous wave of the WPT dummy signal is input to the rectifier circuit 241 to be measured and when a pulse modulated wave is input as the measurement modulated wave. It is a graph showing an example of the relationship with r.
 図11において、デューティー比Dのパルス変調波が整流回路241に入力される場合、図11の曲線C301に示す電力伝送波入力時の反射率に対する負荷抵抗rの特性fc(R)は、図11の曲線C302に示す測定用変調波入力時の反射率に対する負荷抵抗rの特性fm(R)のD倍になる。すなわち、fc(R)=Dfm(R)が成り立つので、fc(R)=F(fm(R))の関係を満たす写像Fは、1/Dである。 In FIG. 11, when a pulse modulated wave with a duty ratio D is input to the rectifier circuit 241, the characteristic fc(R) of the load resistance r with respect to the reflectance when the power transmission wave is input as shown by the curve C301 in FIG. It is D times the characteristic fm(R) of the load resistance r with respect to the reflectance when the measurement modulated wave is input as shown by the curve C302. That is, since fc(R)=Dfm(R) holds, the mapping F that satisfies the relationship fc(R)=F(fm(R)) is 1/D.
 写像Fは、例えばfc(R)=F(fm(R))の関係を満たす写像であり、電力伝送波入力時(大電力入力時)の反射率に対する負荷抵抗rの特性fc(R)と、測定用変調波入力時の反射率に対する負荷抵抗rの特性fm(R)とに基づいて求めることができる。 The mapping F is, for example, a mapping that satisfies the relationship fc(R)=F(fm(R)), and the characteristic fc(R) of the load resistance r with respect to the reflectance at the time of power transmission wave input (during high power input). , can be determined based on the characteristic fm(R) of the load resistance r with respect to the reflectance when the modulated wave for measurement is input.
 例えば、電力伝送波入力時の反射率に対する負荷抵抗rの特性fc(R)、測定用変調波入力時の反射率に対する負荷抵抗rの特性fm(R)及び写像Fは、電力伝送波、測定用変調波及び整流回路241の回路構成の情報に基づき、コンピュータシミュレーションを用いて予め算出することができる。 For example, the characteristic fc(R) of the load resistance r with respect to the reflectance when a power transmission wave is input, the characteristic fm(R) of the load resistance r with respect to the reflectance when a measurement modulated wave is input, and the mapping F are the power transmission wave, the measurement It can be calculated in advance using computer simulation based on the information on the modulated wave and the circuit configuration of the rectifier circuit 241.
 直流特性測定装置530は、予め求めたfc(R)=F(fm(R))の関係を満たす写像と、整流回路241に測定用変調波の信号を入力したときの反射率に対する負荷抵抗rの特性fm(R)の測定結果とに基づいて、整流回路241に電力伝送波を入力したときの反射率と負荷の抵抗との関係を推定することができる。 The DC characteristic measuring device 530 uses a mapping that satisfies the predetermined relationship fc(R)=F(fm(R)) and a load resistance r for the reflectance when a measurement modulated wave signal is input to the rectifier circuit 241. Based on the measurement result of the characteristic fm(R), it is possible to estimate the relationship between the reflectance and the resistance of the load when a power transmission wave is input to the rectifier circuit 241.
 なお、上記実施形態では、大電力入力時の整流回路の特性として整流回路241から出力される直流の電流(i)と電圧(v)との関係を示す電流-電圧出力特性を測定する場合について説明したが、本発明は、直流の電流-電圧出力特性以外の整流回路241の特性を測定する場合にも適用することができる。 Note that in the above embodiment, the current-voltage output characteristic indicating the relationship between the DC current (i) and voltage (v) output from the rectifier circuit 241 is measured as the characteristic of the rectifier circuit when high power is input. Although described above, the present invention can also be applied to the case of measuring characteristics of the rectifier circuit 241 other than the DC current-voltage output characteristics.
 以上、本実施形態によれば、大電力特性測定のために整流回路241にWPT用ダミー信号の連続波を入力する必要がなく、整流回路241を破損することなく、WPT用ダミー信号の連続波の信号が入力される大電力入力時の整流回路241の特性を測定することができる。 As described above, according to this embodiment, it is not necessary to input the continuous wave of the WPT dummy signal to the rectifier circuit 241 for high power characteristic measurement, and the continuous wave of the WPT dummy signal can be inputted without damaging the rectifier circuit 241. It is possible to measure the characteristics of the rectifier circuit 241 when a high power input signal is input.
 また、本発明は、基地局10から送信された電波を受信可能な多数の端末装置20への給電をまかなうことができる給電インフラを提供できるため、持続可能な開発目標(SDGs)の目標9「産業と技術革新の基盤をつくろう」の達成に貢献できる。 In addition, the present invention can provide a power supply infrastructure that can supply power to a large number of terminal devices 20 that can receive radio waves transmitted from a base station 10, thereby contributing to the achievement of Goal 9 of the Sustainable Development Goals (SDGs), which is to "build resilient infrastructure, promote inclusive and sustainable industrialization, and promote innovation and infrastructure."
 なお、本明細書で説明された処理工程並びに測定システム、測定用変調波入力装置、直流特性測定装置、端末装置(UE、IoTデバイス)、基地局、移動局、中継装置及び制御装置の構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。 Note that the processing steps and components of the measurement system, measurement modulated wave input device, DC characteristic measurement device, terminal device (UE, IoT device), base station, mobile station, relay device, and control device described in this specification can be implemented by various means. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
 ハードウェア実装については、実体(例えば、各種無線通信装置、基地局装置(Node B、Node G)、端末装置、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において上記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。 Regarding hardware implementation, in order to realize the above steps and components in entities (e.g., various wireless communication devices, base station devices (Node B, Node G), terminal devices, hard disk drive devices, or optical disk drive devices) The means such as the processing unit used may be one or more of an application specific integrated circuit (ASIC), a digital signal processor (DSP), a digital signal processor (DSPD), a programmable logic device (PLD), a field programmable a gate array (FPGA), processor, controller, microcontroller, microprocessor, electronic device, other electronic unit, computer, or combination thereof designed to perform the functions described herein; It may be implemented inside.
 また、ファームウェア及び/又はソフトウェア実装については、上記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された上記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、フラッシュメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。 Additionally, for firmware and/or software implementations, the means used to implement the components described above, such as processing units, may include programs (e.g., procedures, functions, modules, instructions) that perform the functions described herein. , etc.). In general, any computer/processor readable medium tangibly embodying firmware and/or software code, such as a processing unit, may be used to implement the above steps and components described herein. It may be used for implementation. For example, the firmware and/or software code may be stored in memory and executed by a computer or processor, eg, in a controller. The memory may be implemented within the computer or processor, or external to the processor. The firmware and/or software code may also be stored in, for example, random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), electrically erasable PROM (EEPROM), etc. ), flash memory, floppy disks, compact disks (CDs), digital versatile disks (DVDs), magnetic or optical data storage devices, etc. good. The code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であればよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。 Additionally, the medium may be a non-temporary recording medium. Further, the code of the program may be read and executed by a computer, processor, or other device or apparatus, and its format is not limited to a specific format. For example, the code of the program may be a source code, an object code, or a binary code, or may be a mixture of two or more of these codes.
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。 The description of the embodiments disclosed herein is also provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other variations without departing from the spirit or scope of this disclosure. Therefore, this disclosure is not to be limited to the examples and designs described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
10   :基地局
10A  :通信エリア
10A' :WPTエリア
10B  :ビーム
20   :端末装置
50   :測定システム
100  :基地局装置
110  :アンテナ
120  :通信信号処理部
130  :無線処理部
210  :アンテナ
220  :無線処理部
230  :通信信号処理部
240  :電力出力部
241  :整流回路
250  :電池
510  :測定用変調波入力装置
511  :パルス変調波
520  :平滑化用素子
530  :直流特性測定装置
531  :負荷
10: Base station 10A: Communication area 10A': WPT area 10B: Beam 20: Terminal device 50: Measurement system 100: Base station device 110: Antenna 120: Communication signal processing section 130: Radio processing section 210: Antenna 220: Radio processing Section 230: Communication signal processing section 240: Power output section 241: Rectifier circuit 250: Battery 510: Modulated wave input device for measurement 511: Pulse modulated wave 520: Smoothing element 530: DC characteristic measuring device 531: Load

Claims (10)

  1.  無線電力伝送の受電側装置に搭載される整流回路の特性を測定するシステムであって、
     前記無線電力伝送に用いられる電力伝送波の信号が前記整流回路に入力された場合を想定した電力伝送波入力時特性と、前記電力伝送波よりも電力が小さい測定用変調波の信号が前記整流回路に入力された場合を想定した測定用変調波入力時特性とに基づいて決定された、前記測定用変調波入力時特性から前記電力伝送波入力時特性への写像を記憶する記憶部と、
     前記測定用変調波の信号を生成して前記整流回路に入力する入力部と、
     前記測定用変調波の信号を入力した前記整流回路から出力された出力信号の直流特性を測定する測定部と、
     前記出力信号の直流特性と前記写像とに基づいて、前記電力伝送波の信号が入力されるときの前記整流回路の特性を推定する推定部と、
    を備える、ことを特徴とするシステム。
    A system for measuring the characteristics of a rectifier circuit installed in a power receiving device for wireless power transmission, the system comprising:
    A power transmission wave input characteristic assuming a case where a power transmission wave signal used in the wireless power transmission is input to the rectification circuit, and a measurement modulated wave signal having a smaller power than the power transmission wave is rectified. a storage unit that stores a mapping from the measurement modulated wave input characteristic to the power transmission wave input characteristic determined based on the measurement modulated wave input characteristic assumed to be input to the circuit;
    an input section that generates a signal of the measurement modulated wave and inputs it to the rectifier circuit;
    a measurement unit that measures DC characteristics of an output signal output from the rectifier circuit into which the measurement modulated wave signal is input;
    an estimation unit that estimates characteristics of the rectifier circuit when the power transmission wave signal is input based on the DC characteristics of the output signal and the mapping;
    A system comprising:
  2.  請求項1のシステムにおいて、
     前記電力伝送波入力時特性と前記測定用変調波入力時特性とに基づいて前記写像を決定する写像決定部を備える、
    ことを特徴とするシステム。
    The system of claim 1,
    comprising a mapping determination unit that determines the mapping based on the characteristics when the power transmission wave is input and the characteristics when the measurement modulated wave is input;
    A system characterized by:
  3.  請求項1のシステムにおいて、
     前記測定用変調波及び前記整流回路からの出力信号に対する負荷の少なくとも一方を制御する制御部を備える、
    ことを特徴とするシステム。
    The system of claim 1,
    comprising a control unit that controls at least one of the measurement modulated wave and a load on the output signal from the rectifier circuit;
    A system characterized by:
  4.  請求項1のシステムにおいて、
     前記電力伝送波は連続波であり、
     前記測定用変調波は、所定のデューティー比で電力伝送波をパルス変調したパルス変調波であり、
     前記写像の情報は、前記デューティー比の値を含む、
    ことを特徴とするシステム。
    The system of claim 1,
    The power transmission wave is a continuous wave,
    The measurement modulated wave is a pulse modulated wave obtained by pulse modulating a power transmission wave with a predetermined duty ratio,
    The information on the mapping includes the value of the duty ratio.
    A system characterized by:
  5.  請求項1のシステムにおいて、
     前記整流回路から出力された出力信号を平滑化する平滑化部を備える、
    ことを特徴とするシステム。
    The system of claim 1,
    comprising a smoothing section that smoothes the output signal output from the rectifier circuit;
    A system characterized by:
  6.  請求項1乃至5のいずれかのシステムにおいて、
     前記整流回路に入力された前記測定用変調波の反射率と前記整流回路からの出力信号に対する負荷の抵抗との関係を測定し、その測定結果に基づいて前記反射率が極小となる前記負荷の抵抗を整合条件として決定する、
    ことを特徴とするシステム。
    The system according to any one of claims 1 to 5,
    The relationship between the reflectance of the measurement modulated wave input to the rectifier circuit and the resistance of the load with respect to the output signal from the rectifier circuit is measured, and based on the measurement results, the relationship between the reflectance of the measurement modulated wave input to the rectifier circuit and the resistance of the load at which the reflectance is minimum is determined. Determine resistance as matching condition,
    A system characterized by:
  7.  請求項6のシステムにおいて、
     前記整合条件を用いて、前記出力信号の直流特性を測定するときの前記負荷の抵抗を設定する、
    ことを特徴とするシステム。
    The system of claim 6,
    using the matching condition to set the resistance of the load when measuring the DC characteristics of the output signal;
    A system characterized by:
  8.  請求項6のシステムにおいて、
     前記整流回路に入力された前記測定用変調波の反射率と前記負荷の抵抗との関係の測定結果に基づいて、前記整流回路に前記電力伝送波を入力したときの反射率と前記負荷の抵抗との関係を推定する、
    ことを特徴とするシステム。
    The system of claim 6,
    Based on the measurement result of the relationship between the reflectance of the measurement modulated wave input to the rectifier circuit and the resistance of the load, determine the reflectance and the resistance of the load when the power transmission wave is input to the rectifier circuit. estimate the relationship between
    A system characterized by:
  9.  無線電力伝送の受電側装置に搭載される整流回路の特性を測定する方法であって、
     前記無線電力伝送に用いられる電力伝送波の信号が前記整流回路に入力された場合を想定した電力伝送波入力時特性と、前記電力伝送波よりも電力が小さい測定用変調波の信号が前記整流回路に入力された場合を想定した測定用変調波入力時特性とに基づいて決定された、前記測定用変調波入力時特性から前記電力伝送波入力時特性への写像の情報を記憶することと、
     前記測定用変調波の信号を生成して前記整流回路に入力することと、
     前記測定用変調波の信号を入力した前記整流回路から出力された出力信号の直流特性を測定することと、
     前記出力信号の直流特性と前記写像とに基づいて、前記電力伝送波の信号が入力されるときの前記整流回路の特性を推定することと、
    を含む、ことを特徴とする方法。
    A method for measuring characteristics of a rectifier circuit installed in a power receiving device for wireless power transmission, the method comprising:
    A power transmission wave input characteristic assuming a case where a power transmission wave signal used for the wireless power transmission is input to the rectifier circuit, and a measurement modulated wave signal whose power is smaller than the power transmission wave is rectified. storing information on mapping from the measurement modulated wave input characteristic to the power transmission wave input characteristic determined based on the measurement modulated wave input characteristic assumed to be input to the circuit; ,
    generating a signal of the measurement modulated wave and inputting it to the rectifier circuit;
    Measuring the DC characteristics of an output signal output from the rectifier circuit into which the measurement modulated wave signal is input;
    estimating the characteristics of the rectifier circuit when the power transmission wave signal is input based on the DC characteristics of the output signal and the mapping;
    A method comprising:
  10.  無線電力伝送の受電側装置に搭載される整流回路の特性を測定するシステムに備えるコンピュータ又はプロセッサにおいて実行されるプログラムであって、
     前記無線電力伝送に用いられる電力伝送波の信号が前記整流回路に入力された場合を想定した電力伝送波入力時特性と、前記電力伝送波よりも電力が小さい測定用変調波の信号が前記整流回路に入力された場合を想定した測定用変調波入力時特性とに基づいて決定された、前記測定用変調波入力時特性から前記電力伝送波入力時特性への写像の情報を記憶するためのプログラムコードと、
     前記測定用変調波の信号を生成して前記整流回路に入力するためのプログラムコードと、
     前記測定用変調波の信号を入力した前記整流回路から出力された出力信号の直流特性を測定するためのプログラムコードと、
     前記出力信号の直流特性と前記写像とに基づいて、前記電力伝送波の信号が入力されるときの前記整流回路の特性を推定するためのプログラムコードと、
    を含む、ことを特徴とするプログラム。
    A program executed on a computer or processor included in a system for measuring characteristics of a rectifier circuit installed in a power receiving device for wireless power transmission,
    A power transmission wave input characteristic assuming a case where a power transmission wave signal used in the wireless power transmission is input to the rectification circuit, and a measurement modulated wave signal having a smaller power than the power transmission wave is rectified. for storing information on mapping from the measurement modulated wave input characteristic to the power transmission wave input characteristic determined based on the measurement modulated wave input characteristic assuming the case where the measurement modulated wave is input to the circuit. program code and
    a program code for generating a signal of the measurement modulated wave and inputting it to the rectifier circuit;
    a program code for measuring DC characteristics of an output signal output from the rectifier circuit into which the measurement modulated wave signal is input;
    a program code for estimating characteristics of the rectifier circuit when the power transmission wave signal is input based on the DC characteristics of the output signal and the mapping;
    A program characterized by:
PCT/JP2023/005370 2022-09-22 2023-02-16 System, method, and program for measuring characteristics of rectifier circuit for wireless power transmission WO2024062647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022151890A JP7281593B1 (en) 2022-09-22 2022-09-22 System, method and program for measuring characteristics of rectifier circuit for wireless power transmission
JP2022-151890 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024062647A1 true WO2024062647A1 (en) 2024-03-28

Family

ID=86395911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005370 WO2024062647A1 (en) 2022-09-22 2023-02-16 System, method, and program for measuring characteristics of rectifier circuit for wireless power transmission

Country Status (2)

Country Link
JP (1) JP7281593B1 (en)
WO (1) WO2024062647A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164220A1 (en) * 2016-03-25 2017-09-28 株式会社Nttドコモ User terminal, wireless base station, and wireless communication method
WO2020026412A1 (en) * 2018-08-02 2020-02-06 マクセル株式会社 Radio terminal device and radio power feed device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164220A1 (en) * 2016-03-25 2017-09-28 株式会社Nttドコモ User terminal, wireless base station, and wireless communication method
WO2020026412A1 (en) * 2018-08-02 2020-02-06 マクセル株式会社 Radio terminal device and radio power feed device

Also Published As

Publication number Publication date
JP2024046473A (en) 2024-04-03
JP7281593B1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
CN102356562B (en) Scheduling algorithms and apparatus for cooperative beamforming based on resource quality indication
CN102598807B (en) Communication system for inter-cell coordination
US10181965B2 (en) Channel estimation method and apparatus in wireless communication system
US8731553B2 (en) Cooperative communication methods and a device for a target terminal and a cooperative terminal
WO2022000402A1 (en) Surface element segmentation and node grouping for intelligent reflecting devices
EP2445276B1 (en) Method for cooperative control of power among base stations and base station device using same
US10849128B2 (en) Apparatus and method for transmitting signals using beam in wireless communication system
US10090974B2 (en) MIMO based adaptive beamforming over OFDMA architecture
JP6663256B2 (en) Wireless communication system and management device
CN104981986A (en) Transmitting node and method for rank determination
KR20120099107A (en) An uplink power control scheme
EP3580978B1 (en) System and method for providing explicit feedback in the uplink
WO2024062647A1 (en) System, method, and program for measuring characteristics of rectifier circuit for wireless power transmission
WO2023085054A1 (en) Wireless power transmission device, wireless power transmission system, method, and program
KR20230025425A (en) Segmenting Surface Elements and Grouping Nodes for Intelligent Reflective Devices
WO2024062645A1 (en) System for performing wireless power transmission, base station, method, and program
US11159209B2 (en) Method for configuring wireless transmitter, computer program product, storage medium, and wireless transmitter
US20140044033A1 (en) Apparatus and Method for Communication with a Number of User Equipments Using OFDMA
JP7350956B1 (en) System, base station, method and program for wireless power transmission
JP7362707B2 (en) Systems, base stations, terminal devices, methods and programs for communication and wireless power transmission
WO2024053130A1 (en) System for performing wireless power transmission, base station, method, and program
CN101547032B (en) Method and device for carrying out MU-MIMO under time duplex mode
CN118158697A (en) Parameter configuration method, device, equipment and readable storage medium
CN118157690A (en) Parameter configuration method, device, equipment and readable storage medium
WO2022211685A1 (en) Methods and apparatus for identifying a tilt angle for a wireless device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867779

Country of ref document: EP

Kind code of ref document: A1