WO2024061221A1 - 应用于浮空器的组合能源供电电路以及供电控制方法 - Google Patents

应用于浮空器的组合能源供电电路以及供电控制方法 Download PDF

Info

Publication number
WO2024061221A1
WO2024061221A1 PCT/CN2023/119745 CN2023119745W WO2024061221A1 WO 2024061221 A1 WO2024061221 A1 WO 2024061221A1 CN 2023119745 W CN2023119745 W CN 2023119745W WO 2024061221 A1 WO2024061221 A1 WO 2024061221A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power
power generation
voltage
power supply
Prior art date
Application number
PCT/CN2023/119745
Other languages
English (en)
French (fr)
Inventor
蔡榕
熊振阳
徐国宁
李永祥
贾忠臻
李兆杰
杜浩
黄庭双
Original Assignee
中国科学院空天信息创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院空天信息创新研究院 filed Critical 中国科学院空天信息创新研究院
Publication of WO2024061221A1 publication Critical patent/WO2024061221A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/109Scheduling or re-scheduling the operation of the DC sources in a particular order, e.g. connecting or disconnecting the sources in sequential, alternating or in subsets, to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy

Definitions

  • the present application relates to the field of power supply technology, and in particular, to a combined energy power supply circuit and a power supply control method applied to aerostats.
  • Aerostats generally refer to aircraft that are lighter than air and rely on atmospheric buoyancy to lift off. Long-endurance aerostats can make up for the inability of aircraft and satellites to sail for long periods of time and stay at fixed points. As the energy source of the long-endurance aerostat, the energy power supply system directly determines the continuous working time of the aerostat to perform long-endurance missions in the air and the power of the load it carries.
  • the technical problem is that the existing energy power supply system cannot meet the energy supply needs of the aerostat to perform long-duration missions in the air and the need to carry a larger power load.
  • This application provides a combined energy power supply circuit and power supply control method for aerostats to solve the problem that the existing energy power supply system cannot meet the energy supply needs of aerostats for long-duration missions in the air and that they carry larger Technical issues with power load requirements.
  • This application provides a combined energy power supply circuit for aerostats, including: solar power generation circuit, wind power generation circuit, laser power generation circuit, DC bus, energy storage battery and load circuit, wherein:
  • the solar power generation circuit, the wind power generation circuit, and the laser power generation circuit are all connected to the energy storage battery and the load circuit through the DC bus, and are used to supply power to the load circuit and to the storage circuit.
  • the battery can be charged;
  • the energy storage battery is connected to the load circuit through the DC bus and is used to supply power to the load circuit.
  • the wind power generation circuit includes a wind generator, a full-bridge rectifier circuit and a buck conversion circuit, wherein:
  • the full-bridge rectifier circuit is connected to the wind turbine and is used to convert the alternating current generated by the wind turbine into direct current;
  • the step-down conversion circuit is connected to the full-bridge rectifier circuit and is used to convert the DC voltage output by the full-bridge rectifier circuit into a wind power generation voltage that matches the DC bus voltage, and the DC bus voltage represents the DC voltage on the bus.
  • the solar power generation circuit includes a solar photovoltaic array and a first boost conversion circuit, wherein:
  • the solar photovoltaic array is used to convert solar energy into direct current output
  • the first boost conversion circuit is connected to the solar photovoltaic array and is used to convert the DC voltage output by the solar photovoltaic array into a solar power generation voltage that matches the DC bus voltage.
  • the laser power generation circuit includes a laser photovoltaic array and a second boost conversion circuit, wherein:
  • the laser photovoltaic array is used to convert laser energy into direct current output
  • the second boost conversion circuit is connected to the laser photovoltaic array and is used to convert the DC voltage output by the laser photovoltaic array into a laser power generation voltage that matches the DC bus voltage.
  • a combined energy power supply circuit for aerostats provided in this application, it also includes: a supercapacitor disposed between the energy storage battery and the load circuit;
  • the supercapacitor is connected to the load circuit through the DC bus and is used to store the energy output by the solar power generation circuit, the wind power generation circuit and the laser power generation circuit, and to provide power to the load circuit. .
  • This application also provides a power supply control method, including:
  • the power supply control signal of the combined energy power supply circuit is determined based on the current voltage and the maximum charging voltage of the energy storage battery; the power supply control signal acts on the solar power generation circuit, At least one of a wind power generation circuit, a laser power generation circuit and an energy storage battery;
  • the combined energy power supply circuit is a combined energy power supply circuit applied to an aerostat as described in any one of the above.
  • the power supply control signal of the combined energy power supply circuit is determined based on the current voltage and the maximum charging voltage of the energy storage battery, including:
  • a power supply control signal of the combined energy power supply circuit is determined based on the load power, the maximum charging power of the energy storage battery and the first total power.
  • determining the power supply control signal of the combined energy power supply circuit based on the load power, the maximum charging power of the energy storage battery and the first total power includes:
  • the load current and the charging current based on the maximum charging power, the DC bus voltage and the rated load power of the load circuit
  • the solar power generation circuit is controlled to output the maximum photovoltaic power generation power and the wind power generation circuit is controlled to output the maximum wind power generation power.
  • determining the power supply control signal of the combined energy power supply circuit based on the current voltage and the minimum discharge voltage of the energy storage battery includes:
  • control the solar power generation circuit When the current voltage of the energy storage battery is greater than the minimum discharge voltage, control the solar power generation circuit to output the maximum photovoltaic power generation power and control the wind power generation circuit to output the maximum wind power generation power, and control the energy storage battery to power the load circuit;
  • the solar power generation circuit When the current voltage of the energy storage battery is less than or equal to the minimum discharge voltage, the solar power generation circuit is controlled to output the maximum photovoltaic power generation power, the wind power generation circuit is controlled to output the maximum wind power generation power, and the laser power generation circuit is controlled to output the maximum laser power generation power.
  • the method further includes:
  • Obtain the output current and output voltage of the power generation circuit to be tracked which includes at least one of a solar power generation circuit, a wind power generation circuit, and a laser power generation circuit;
  • the power generation circuit to be tracked is controlled to output the maximum power generation based on the target control signal.
  • the combined energy power supply circuit and power supply control method applied to the aerostat provided by this application couple the wind power generation circuit and the laser power generation circuit with the solar power generation circuit to realize the situation when the energy provided by the solar power generation circuit cannot meet the requirements of the aerostat.
  • the energy generated by the wind power generation circuit and the laser power generation circuit is used as a supplementary energy supply for the aerostat to make up for the shortcomings of insufficient energy supply from the solar power generation circuit, thereby solving the existing problem.
  • the energy supply system cannot meet the technical problem of the aerostat's energy supply needs for long-duration missions in the air and its need to carry larger power loads.
  • Figure 1 is one of the circuit schematic diagrams of a combined energy power supply circuit applied to an aerostat provided by an embodiment of the present application;
  • Figure 2 is the second circuit schematic diagram of a combined energy power supply circuit applied to an aerostat provided by an embodiment of the present application
  • Figure 3 is a circuit diagram of a combined energy power supply circuit applied to an aerostat provided by an embodiment of the present application
  • Figure 4 is one of the flow diagrams of the power supply control method provided by the embodiment of the present application.
  • FIG. 5 is a second schematic flowchart of the power supply control method provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of the overall power supply control process in the embodiment of the present application.
  • FIG. 7 is a third schematic flowchart of the power supply control method provided by the embodiment of the present application.
  • Figure 8 is the fourth schematic flowchart of the power supply control method provided by the embodiment of the present application.
  • Figure 9 is a fifth schematic flowchart of the power supply control method provided by the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a power supply control circuit provided by an embodiment of the present application.
  • the present application provides a combined energy supply circuit for an aerostat, including: a solar power generation circuit 10, a wind power generation circuit 20, a laser power generation circuit 30, a DC bus 40, an energy storage battery 50 and a load circuit 60, wherein:
  • the solar power generation circuit 10 , the wind power generation circuit 20 , and the laser power generation circuit 30 are all connected to the energy storage battery 50 and the load circuit 60 through the DC bus 40 for supplying power to the load circuit 60 and charging the energy storage battery 50 .
  • the energy storage battery 50 is connected to the load circuit 60 through the DC bus 40 and is used to supply power to the load circuit 60 .
  • the busbar refers to a common path on which multiple devices are connected in the form of parallel branches.
  • the solar power generation circuit 10 the wind power generation circuit 20, the laser power generation circuit 30, the energy storage battery 50 and the load circuit 60 are connected to the DC bus 40 in the form of parallel branches.
  • Wind power generation is a clean and renewable way of generating electricity.
  • the wind power generation circuit 20 can continuously generate electricity.
  • Laser has the characteristics of good monochromaticity, strong directionality, high power density and concentrated energy, which can transmit energy in the form of light to a long distance in space.
  • the laser power generation circuit 30 utilizes the semiconductor photovoltaic power generation principle to convert light energy into electrical energy.
  • the combined energy power supply circuit provided by this application couples the wind power generation circuit 20 and the laser power generation circuit 30 with the solar power generation circuit 10 to realize the energy supply requirement of the aerostat when the energy provided by the solar power generation circuit 10 cannot meet the energy supply needs of the aerostat and its portability.
  • the energy generated by the wind power generation circuit 20 and the laser power generation circuit 30 is used as supplementary energy supply for the aerostat to make up for the shortcoming of insufficient energy supply from the solar power generation circuit 10, thereby solving the existing energy supply problem.
  • the system cannot meet the technical problems of the aerostat's energy supply needs for long-duration missions in the air and its need to carry larger power loads.
  • the wind power generation circuit 20 includes a wind generator 21, a full-bridge rectifier circuit 22 and a buck conversion circuit 23, wherein:
  • the full-bridge rectifier circuit 22 is connected to the wind turbine 21 and is used to convert the alternating current generated by the wind turbine 21 into direct current. Among them, the wind turbine 21 is used to convert wind energy into electrical energy and output alternating current.
  • the buck conversion circuit 23 is connected to the full-bridge rectifier circuit 22 and is used to convert the DC voltage output by the full-bridge rectifier circuit 22 into a wind power generation voltage that matches the DC bus voltage.
  • the DC bus voltage represents the voltage on the DC bus 40 .
  • the step-down conversion circuit 23 needs to be used to step down the voltage.
  • the conversion characteristics convert the DC voltage output by the full-bridge rectifier circuit 22 into a wind power generation voltage that matches the DC bus voltage.
  • the combined energy power supply circuit converts the alternating current generated by the wind turbine 21 into direct current through the full-bridge rectifier circuit 22, and performs step-down conversion on the DC voltage output by the full-bridge rectifier circuit 22 through the step-down conversion circuit 23. , so that the output wind power voltage matches the DC bus voltage, and since the DC bus voltage is different from the load circuit 60 requires the same load voltage, so the DC bus voltage output by the wind power generation circuit 20 can be directly used by the load circuit 60 without going through any voltage conversion circuit, thereby avoiding the use of a voltage conversion circuit to convert the DC bus voltage into the load voltage.
  • the defect of energy loss improves the energy utilization rate and the performance of the combined energy power supply circuit.
  • the wind power generation circuit 20 further includes a first diode and a first voltage stabilizing circuit
  • the buck conversion circuit 23 further includes a first synchronous rectifier circuit, wherein:
  • the anode of the first drain diode is connected to the full-bridge rectifier circuit 22, and the cathode is connected to the first voltage stabilizing circuit.
  • the first drain diode is used to input the DC voltage output by the full-bridge rectifier circuit 22 to the first voltage stabilizing circuit, so that the first voltage stabilizing circuit stabilizes the DC voltage output by the full-bridge rectifier circuit 22 and can also avoid energy storage.
  • the DC power output by the battery 50 is poured back into the wind turbine 21 through the DC bus 40 , causing damage to the wind turbine 21 .
  • the first voltage stabilizing circuits are respectively connected to the step-down conversion circuit 23 .
  • the step-down conversion circuit 23 is used to step-down convert the stabilized DC voltage and output the step-down converted wind power generation voltage to the DC bus 40 .
  • the first synchronous rectifier circuit in the buck conversion circuit 23 is used to be turned on when there is current flowing in the buck converting circuit 23 and turned off when there is no current flowing in the buck converting circuit 23 to replace the traditional freewheeling diode to reduce losses.
  • the combined energy power supply circuit also includes a third voltage stabilizing circuit 80.
  • the third voltage stabilizing circuit 80 is provided at the back end of the solar power generation circuit 10 and the wind power generation circuit 20, and is connected to the DC bus 40 for controlling The solar power generation voltage output by the solar power generation circuit 10, the wind power generation voltage output by the wind power generation circuit 20 and the DC bus voltage corresponding to the DC bus 40 are stabilized to stabilize the voltage input to both ends of the load circuit 60 through the DC bus 40, thereby improving Operation stability of load circuit 60.
  • the third voltage stabilizing circuit 80 is the fourth filter capacitor C 4 in FIG. 3 .
  • the fourth filter capacitor C 4 is provided at the back end of the solar power generation circuit 10 and the wind power generation circuit 20 and is connected to the DC bus 40 .
  • the wind power generation voltage output from the wind power generation circuit 20, and the DC bus 40 The DC bus voltage is filtered to stabilize the solar power generation voltage, wind power generation voltage and DC bus voltage.
  • the full-bridge rectifier circuit 22 is D birdge in FIG. 3
  • the first drain diode is D w in FIG. 3
  • the first voltage stabilizing circuit is the first filter capacitor C 1 in Figure 3
  • the first synchronous rectification circuit is the second field effect transistor Q 2 in FIG. 3
  • the buck conversion circuit 23 includes the first field effect transistor Q 1 , the first energy storage inductor L 1 and the second field effect transistor Q in FIG. 3 2 .
  • Uw in FIG. 3 represents the output voltage of the wind turbine 21.
  • the input end of the full-bridge rectifier circuit D birdge is connected to the wind turbine 21 for converting the alternating current generated by the wind turbine 21 into direct current.
  • the output end of the full-bridge rectifier circuit D birdge is connected to the buck conversion circuit 23 through the first filter capacitor C 1 .
  • the first filter capacitor C 1 is used to filter the DC voltage output by the full-bridge rectifier circuit D birdie to stabilize the DC voltage.
  • the first field effect transistor Q 1 is connected to the wind power generation control signal, and is used to turn on or off based on the high and low level changes of the wind power generation control signal, where the wind power generation control signal is a pulse signal.
  • the second field effect transistor Q 2 is used to be turned on when there is current flowing in the buck conversion circuit 23 and turned off when there is no current flowing, replacing the traditional freewheeling diode to reduce power loss.
  • the first field effect transistor Q 1 When the first field effect transistor Q 1 is turned on, the first energy storage inductor L 1 is charged based on the filtered DC voltage, and when the first field effect transistor Q 1 is turned off, the solar power generation circuit 10 Based on the filtered DC voltage and the energy stored in the first energy storage inductor L 1 , the fourth filter capacitor C 4 is charged, and the energy is transferred to the back-end DC bus 40 through the discharge of the fourth filter capacitor C 4 , and passes through the DC bus The DC output from 40 supplies power to the rear-end load circuit 60 and charges the energy storage battery 50 .
  • the solar power generation circuit 10 includes a solar photovoltaic array 11 and a first boost conversion circuit 12, wherein:
  • the solar photovoltaic array 11 is used to convert solar energy into direct current output.
  • the first boost conversion circuit 12 is connected to the solar photovoltaic array 11 and is used to convert the DC voltage output by the solar photovoltaic array 11 into a solar power generation voltage that matches the DC bus voltage.
  • the first boost conversion circuit 12 needs to utilize its boost conversion characteristics to convert the DC voltage output by the solar photovoltaic array 11
  • the solar power voltage matches the DC bus voltage. Since the load circuit 60 is connected to the DC bus 40 in the form of parallel branches, the DC bus voltage corresponding to the DC bus 40 is consistent with the load voltage of the load circuit 60 .
  • the solar photovoltaic array 11 is composed of a plurality of solar photovoltaic cells connected in series. Since the distribution of sunlight is uniform, as many solar photovoltaic cells as possible can be arranged in the solar photovoltaic array 11 to increase the output power of the solar photovoltaic array 11, thereby making the DC voltage output by the solar photovoltaic array 11 relatively high.
  • the combined energy power supply circuit boosts and converts the DC voltage output by the solar photovoltaic array 11 through the first boost conversion circuit 12, so that the output solar power generation voltage matches the DC bus voltage, and because the DC bus The voltage is consistent with the load voltage required by the load circuit 60. Therefore, the DC bus voltage output by the solar power generation circuit 10 can be directly used by the load circuit 60 without going through any voltage conversion circuit, thereby avoiding the use of a voltage conversion circuit to convert the DC bus voltage.
  • the defect of energy loss caused by the load voltage improves the energy utilization and the performance of the combined energy power supply circuit.
  • the solar power generation circuit 10 further includes a second drain diode and a second voltage stabilizing circuit
  • the first boost conversion circuit 12 further includes a second synchronous rectifier circuit, wherein:
  • the anode of the second drain diode is connected to the solar photovoltaic array 11, and the cathode is connected to the second voltage stabilizing circuit.
  • the second drain diode is used to input the DC power output by the solar photovoltaic array 11 to the second voltage stabilizing circuit, so that the second voltage stabilizing circuit can stabilize the DC voltage output by the solar photovoltaic array 11, and can also avoid the need for energy storage batteries.
  • the DC power output by 50 is poured back into the solar photovoltaic array 11 through the DC bus 40, thereby causing solar irradiation. Voltage array 11 is damaged.
  • the second voltage stabilizing circuit is connected to the first boost conversion circuit 12 .
  • the first boost conversion circuit 12 is used to perform step-up conversion on the stabilized DC voltage and output the solar power generation voltage to the DC bus 40 .
  • the second synchronous rectifier circuit is used to turn on when there is current flowing in the first boost conversion circuit 12 and to turn off when there is no current flowing in the first boost conversion circuit 12 to replace the traditional freewheeling diode to reduce losses.
  • the second drain diode is D pv in FIG. 3 .
  • the second voltage stabilizing circuit is the second filter capacitor C 2 in Figure 3
  • the second synchronous rectifier circuit is the third field effect transistor Q 3 in Figure 3
  • the first boost conversion circuit 12 includes the fourth field effect transistor in Figure 3 Effect transistor Q 4 , second energy storage inductor L 2 and third field effect transistor Q 3 .
  • U p v in Figure 3 represents the DC voltage output by the solar photovoltaic array 11.
  • the anode of the second drain diode D pv is connected to the solar photovoltaic array 11, and the cathode is connected to the second filter capacitor C 2 for inputting the DC power output by the solar photovoltaic array 11 to the second filter capacitor C 2 .
  • the second filter capacitor C 2 is used to filter the DC voltage output by the solar photovoltaic array 11 to stabilize the DC voltage output by the solar photovoltaic array 11 .
  • the fourth field effect transistor Q 4 is connected to the solar power generation control signal, and is used to turn on or off based on the high and low level changes of the solar power generation control signal, where the solar power generation control signal is a pulse signal.
  • the third field effect transistor Q 3 is used to be turned on when there is current flowing in the first boost conversion circuit 12 and turned off when there is no current flowing in the first boost conversion circuit 12 , to replace the traditional freewheeling diode to reduce losses.
  • the second energy storage inductor L 2 is connected to the second filter capacitor C 2 for charging or discharging based on the circuit state of the first boost conversion circuit 12 .
  • the solar power generation circuit 10 is based on The filtered DC voltage and the energy stored in the second energy storage inductor L 2 charge the fourth filter capacitor C 4 and discharge the energy through the fourth filter capacitor C 4 to the back-end DC bus 40 and pass through the DC bus 40 output DC Provide power to the back-end load circuit 60 and charge the energy storage battery 50 .
  • the laser power generation circuit 30 includes a laser photovoltaic array 31 and a second boost conversion circuit 32 , wherein the laser photovoltaic array 31 is used to convert laser energy into direct current output.
  • the second boost conversion circuit 32 is connected to the laser photovoltaic array 31 and is used to convert the DC voltage output by the laser photovoltaic array 31 into a laser power generation voltage that matches the DC bus voltage.
  • the second boost conversion circuit 32 needs to use its boost conversion characteristics to convert the DC voltage output by the laser photovoltaic array 31 into a DC voltage that is consistent with the DC bus voltage.
  • the bus voltage matches the laser generator voltage.
  • the laser photovoltaic array 31 is composed of multiple laser photovoltaic cells connected in series. Since the distribution of laser light is uneven, too many laser photovoltaic cells cannot be connected in series in the laser photovoltaic array 31, otherwise the laser photovoltaic array 31 will Multiple peaks will appear in the output characteristic curve, resulting in defects in the output power loss of the laser photovoltaic array 31. Therefore, the number of laser photovoltaic cells connected in series in the laser photovoltaic array 31 is relatively small, so the DC voltage output by the laser photovoltaic array 31 relatively low.
  • the combined energy power supply circuit provided in this embodiment boosts and converts the DC voltage output by the laser photovoltaic array 31 through the second boost conversion circuit 32, so as to output a laser power generation voltage that matches the DC bus voltage, and because the DC bus The DC bus voltage corresponding to 40 is consistent with the load voltage required by the load circuit 60. Therefore, the DC bus voltage output by the laser power generation circuit 30 can be directly used by the load circuit 60 without going through any voltage conversion circuit, thus avoiding the use of a voltage conversion circuit.
  • the disadvantage of converting DC bus voltage to load voltage leads to energy loss, improves energy utilization and performance of combined energy supply circuits.
  • the laser power generation circuit 30 further includes a third drain diode and a third voltage stabilizing circuit
  • the second boost conversion circuit 32 further includes a third synchronous rectifier circuit, wherein:
  • the anode of the third drain diode is connected to the laser photovoltaic array 31, and the cathode of the third drain diode is connected to the third voltage stabilizing circuit; the third drain diode is used to input the DC power output by the laser photovoltaic array 31 to the third voltage stabilizing circuit.
  • the third voltage stabilizing circuit is used to stabilize the DC voltage output by the laser photovoltaic array 31, and it can also prevent the DC output from the energy storage battery 50 from pouring back into the laser photovoltaic array 31 through the DC bus 40, thereby causing damage to the laser photovoltaic array 31. question.
  • the third voltage stabilizing circuit is connected to the second boost conversion circuit 32 .
  • the second boost conversion circuit 32 is used to perform step-up conversion on the stabilized DC voltage, and output the laser-generated voltage to the DC bus 40 .
  • the third synchronous rectifier circuit is used to turn on when there is current flowing in the second boost conversion circuit 32 and to turn off when there is no current flowing in the second boost conversion circuit 32 to replace the traditional freewheeling diode to reduce losses.
  • the third drain diode is D laser in FIG. 3 .
  • the third voltage stabilizing circuit is the third filter capacitor C 3 in Figure 3
  • the third synchronous rectifier circuit is the sixth field effect transistor Q 6 in Figure 3 .
  • the second boost conversion circuit 32 includes the fifth field effect transistor Q 5 , the third energy storage inductor L 3 and the sixth field effect transistor Q 6 in FIG. 3 .
  • U laser in Figure 3 represents the DC voltage output by the laser photovoltaic array 31.
  • the anode of the third diversion diode D laser is connected to the laser photovoltaic array 31, and the cathode of the third diversion diode D laser is connected to the third filter capacitor C 3 , which is used to input the DC power generated by the laser photovoltaic array 31 to the third filter capacitor C 3.
  • the third filter capacitor C 3 is used to filter the DC voltage output by the laser photovoltaic to stabilize the DC voltage.
  • the fifth field effect transistor Q 5 is connected to the laser power generation control signal, and is used to turn on or off based on the high and low level changes of the laser power generation control signal, where the laser power generation control signal is a pulse signal.
  • the sixth field effect transistor Q 6 is used to be turned on when there is current flowing in the second boost conversion circuit 32 and turned off when there is no current flowing in the second boost conversion circuit 32 , to replace the traditional freewheeling diode to reduce losses.
  • the third energy storage inductor L 3 is connected to the third filter capacitor C 3 for charging or discharging based on the filtered laser photovoltaic voltage.
  • the laser power generation circuit 30 matches the DC bus voltage corresponding to the DC bus 40 based on the filtered DC voltage and the energy stored in the third energy storage inductor L 3 . Laser power generation voltage.
  • the combined energy power supply circuit further includes a supercapacitor 70 disposed between the energy storage battery 50 and the load circuit 60 .
  • the supercapacitor 70 is connected to the load circuit 60 through the DC bus 40 and is used to store the energy output by the solar power generation circuit 10 , the wind power generation circuit 20 and the laser power generation circuit 30 , and to provide power to the load circuit 60 .
  • the power density of the electric energy generated by the laser power generation circuit 30 is high, the electric energy generated by the laser power generation circuit 30 needs to be quickly stored and output for utilization, while the energy storage speed and energy output speed of the energy storage battery 50 are relatively slow. , therefore, the fast charging and discharging characteristics of the supercapacitor 70 can be utilized to realize fast storage and output utilization of the electric energy output by the laser power generation circuit 30 .
  • the supercapacitor 70 is disposed between the energy storage battery 50 and the load circuit 60 , not only the electric energy output by the laser power generation circuit 30 can be quickly stored and output and utilized, but also the solar power generation circuit 10 and the wind power generation circuit 20 can be used. The output electric energy is quickly stored and output utilized.
  • the combined energy power supply circuit provided in this embodiment realizes rapid storage and output utilization of the electric energy output by the laser power generation circuit 30 by taking advantage of the fast charging and discharging characteristics of the supercapacitor 70, so that when the laser power generation circuit 30 needs to consume electric energy of the load circuit 60
  • the normal operation of the load circuit 60 is maintained through the rapid discharge of the supercapacitor 70, so that the load circuit 60 is in a stable working state, so that the aerostat can successfully complete the long-endurance mission of staying in the air, improving The stability and reliability of the combined energy power supply circuit.
  • the sixth field effect transistor Q 6 is connected to the laser power supply control signal, and is also used to turn on or off based on the laser power supply control signal.
  • the sixth field effect transistor Q 6 When the sixth field effect transistor Q 6 is turned on, power is supplied to the load circuit 60 through the laser power generation circuit 30 to and charging the energy storage battery 50 and the supercapacitor 70 .
  • the sixth field effect transistor Q6 When the sixth field effect transistor Q6 is turned off, the laser power generation circuit 30 is in a closed state and does not provide power or charge to the outside world.
  • the combined energy power supply circuit provided in this embodiment can realize the two functions of switching control and synchronous rectification of the laser power generation circuit 30 through a sixth field effect transistor Q6 , which optimizes the circuit structure of the combined energy power supply circuit and improves the efficiency of the combined energy power supply circuit.
  • the integration level of the energy power supply circuit further increases the power density of the combined energy power supply circuit.
  • the combined energy power supply circuit also includes a first switch circuit 81.
  • the first switch circuit 81 is provided at the back end of the solar power generation circuit 10 and the wind power generation circuit 20, and is connected to the DC bus 40 and the combined power supply control signal respectively. It is used to close or disconnect based on the combined power supply control signal to control the opening or closing of the solar power generation circuit 10 and the wind power generation circuit 20 .
  • the load circuit 60 is powered through the solar power generation circuit 10 and the wind power generation circuit 20 and the energy storage battery 50 and the supercapacitor 70 are charged.
  • the first switch circuit 81 is turned off, both the solar power generation circuit 10 and the wind power generation circuit 20 are in a closed state and do not provide power or charge to the outside world.
  • the first switch circuit 81 is a field effect transistor.
  • the first switch circuit 81 is the seventh field effect transistor Q 7 in FIG. 3 .
  • the combined energy power supply circuit also includes a second switch circuit 82.
  • the second switch circuit 82 is respectively connected to the energy storage battery 50 and the power control signal, and is used to close or disconnect based on the power control signal to control the energy storage.
  • the battery 50 is turned on or off.
  • the energy storage battery 50 When the second switch circuit 82 is closed, the energy storage battery 50 is charged through the solar power generation circuit 10 , the wind power generation circuit 20 or the laser power generation circuit 30 , or the load circuit 60 is powered through the energy storage battery 50 .
  • the second switch circuit 82 When the second switch circuit 82 is turned off, the energy storage battery 50 does not supply power to the outside world and does not charge.
  • the second switch circuit 82 is a field effect transistor. Further, the second switch circuit 82 is the eighth field effect transistor Q 8 in FIG. 3 .
  • the combined energy power supply circuit further includes a voltage converter, and the load circuit 60 is a DC load, wherein the DC bus 40 is connected to the DC load to drive the DC load to operate based on the DC bus voltage output by the DC bus 40 .
  • the combined energy power supply circuit for aerostats converts the alternating current generated by the wind turbine 21 through the wind power generation circuit 20 into stable direct current through the full-bridge rectifier circuit 22. Since the full-bridge The DC voltage output by the rectifier circuit 22 does not match the DC bus voltage of the DC bus 40. Therefore, the DC voltage is converted into a wind power generation voltage matching the DC bus voltage by the step-down conversion circuit 23 and output.
  • the solar power generation circuit 10 is connected in parallel with the wind power generation circuit 20 for charging the energy storage battery 50 and supplying power to the load circuit 60 .
  • the laser power generation circuit 30 serves as a backup power supply circuit for the aerostat, and is used to charge the energy storage battery 50 and power the energy storage battery 50 when the energy supplied by the solar power generation circuit 10 and the wind power generation circuit 20 is insufficient to meet the energy needs of the aerostat.
  • Load circuit 60 provides power to provide backup supply energy to the aerostat.
  • the energy storage battery 50 can be charged through the solar power generation circuit 10 and the wind power generation circuit 20 and the load circuit 60 can be powered through the DC bus.
  • the seventh field effect transistor Q7 is turned on and the eighth field effect transistor Q8 is turned off, the solar power generation circuit 10 and the wind power generation circuit 20 directly output power to the DC bus 40 to supply power to the load circuit 60.
  • the energy storage battery 50 can be charged through the laser power generation circuit 30 and the load circuit 60 can be powered through the DC bus.
  • the sixth field effect transistor Q6 is turned on and the eighth field effect transistor Q8 is turned off, the electric energy generated by the laser power generation circuit 30 is directly output to the DC bus 40 to power the load circuit 60, or is stored in the DC bus 40.
  • the supercapacitor 70 is used to quickly store the electric energy generated by the laser power generation circuit 30 and to supply power to the load circuit 60 through the supercapacitor 70 .
  • Step S1 Obtain wind power generation power, solar power generation power, load power, current voltage, current current, maximum charging voltage and minimum discharge voltage of the energy storage battery.
  • P w represents the wind power generation power
  • P pv represents the solar power generation power
  • P L represents the load power
  • U B represents the current voltage of the energy storage battery
  • U Bmax represents the maximum charging voltage of the energy storage battery
  • U Bmin represents the Minimum discharge voltage
  • the solar power generation circuit and the wind power generation circuit are in an open state.
  • the laser power generation circuit is in a closed state, and the power supply control circuit obtains wind power generation power, solar power generation power, load power, the current voltage of the energy storage battery, the maximum charging voltage, and the minimum discharge voltage.
  • Step S2 Calculate the first total power based on the wind power generation power and the solar power generation power, and determine whether the first total power is greater than the load power.
  • Step S3 when the first total power is greater than the load power, determine the power supply control signal of the combined energy power supply circuit based on the current voltage and the maximum charging voltage of the energy storage battery; the power supply control signal acts on the solar power generation circuit, wind power generation circuit, and laser At least one of a power generation circuit and an energy storage battery.
  • the current voltage of the energy storage battery is determined based on the current voltage and the maximum charging voltage of the energy storage battery. State of charge to prevent the energy storage battery from burning out due to overcharging, while improving the safety and reliability of the combined energy power supply circuit, while achieving reasonable distribution and efficient utilization of the electric energy generated by the power generation circuit.
  • Step S4 when the first total power is less than or equal to the load power, determine the power supply control signal of the combined energy power supply circuit based on the current voltage and the minimum discharge voltage of the energy storage battery; the combined energy power supply circuit supplies power for any of the above combined energy sources circuit.
  • the first total power is less than or equal to the load power, which means that the electric energy generated by the solar power generation circuit and the wind power generation circuit cannot meet the power demand of the load circuit. Therefore, it is necessary to further judge whether the current voltage of the energy storage battery is less than the minimum discharge voltage to determine the method of supplementing the lack of power for the load, thereby preventing the energy storage battery from being damaged due to excessive discharge and improving the stability, safety and reliability of the combined energy power supply circuit.
  • step S3 includes steps S31 to step S33, wherein: determining the power supply control signal of the combined energy power supply circuit based on the current voltage and the maximum charging voltage of the energy storage battery includes:
  • Step S31 determine whether the current voltage of the energy storage battery is greater than the maximum charging voltage.
  • Step S32 When the current voltage of the energy storage battery is greater than the maximum charging voltage, the DC bus voltage, wind power generation voltage and solar power generation voltage are all controlled to be the maximum charging voltage.
  • the energy storage battery is in a fully charged state, and the electric energy generated by the combined energy power supply circuit is greater than the energy consumed by the load circuit.
  • the solar power generation circuit and the wind power generation circuit are all the maximum charging voltage of the energy storage battery, so as to achieve the full charge state of the energy storage battery while meeting the power supply demand of the load circuit and the safety of the energy storage battery, thereby improving the utilization rate of the electric energy generated by the combined energy power supply circuit.
  • the wind power generation circuit and the solar power generation circuit are in a constant voltage output state.
  • Step S33 When the current voltage of the energy storage battery is less than or equal to the maximum charging voltage, determine the power supply control signal of the combined energy power supply circuit based on the load power, the maximum charging power of the energy storage battery and the first total power.
  • the energy storage battery since the energy storage battery has a maximum charging power, it needs to be based on the load power, energy storage battery The maximum charging power and the first total power determine the power supply control signal of the combined energy power supply circuit to prevent the energy storage battery from being burned out due to excessive current charging power, thereby improving the safety and reliability of the combined energy power supply circuit.
  • step S33 includes steps S331 to step S333, wherein:
  • Step S331 calculating the second total power based on the load power and the maximum charging power, and determining whether the first total power is greater than the second total power.
  • PBmax represents the maximum charging power.
  • Step S332 If the first total power is greater than the second total power, determine the load current and charging current based on the maximum charging power, the DC bus voltage, and the rated load power of the load circuit.
  • the charging current of the energy storage battery is determined based on the maximum charging power and DC bus voltage
  • the load current of the load circuit is determined based on the DC bus voltage and rated load power.
  • the first total power is greater than the load power
  • the current voltage of the energy storage battery is less than or equal to the maximum charging voltage
  • the first total power is greater than the second total power, that is, P w +P pv > P L , U B ⁇ U Bmax and P w +P pv > P L +P Bmin .
  • the electric energy generated by the combined energy power supply circuit meets the energy consumed by the load circuit
  • the additional power generated by the combined energy power supply circuit is greater than that of the energy storage battery.
  • the maximum charging power it can bear therefore, it is necessary to control the generated power of the combined energy power supply circuit, that is, while meeting the maximum charging power of the energy storage battery, the generated power of the combined energy power supply circuit is supplied according to the load power required by the load circuit, that is, based on
  • the maximum charging power, DC bus voltage and rated load power of the load circuit determine the load current and charging current. Since the DC bus voltage is a fixed value, the load power and charging power are controlled by controlling the load current and charging current.
  • the load current and the charging current are controlled by adjusting the duty ratios of the first field effect transistor Q1 and the fourth field effect transistor Q4 in FIG. 3 .
  • Step S333 When the first total power is less than or equal to the second total power, control the solar power generation circuit to output the maximum photovoltaic power generation power and control the wind power generation circuit to output the maximum wind power generation power.
  • the first total power is greater than the load power
  • the current voltage of the energy storage battery is less than or equal to the maximum charging voltage
  • the first total power is less than or equal to the second total power, that is, P w + P pv >P L , U B ⁇ U Bmax and P w +P pv ⁇ P L +P Bmin .
  • the generated power of the combined energy power supply circuit is less than the sum of the load consumption power and the maximum charging power of the energy storage battery. Therefore, control is required.
  • the combined energy power supply circuit outputs the maximum electric power, that is, it is necessary to control the solar power generation circuit to output the maximum photovoltaic power generation power and the wind power generation circuit to output the maximum wind power generation power, in order to improve the utilization rate of the power generation power of the combined energy power supply circuit.
  • the solar power generation circuit is controlled to output the maximum photovoltaic power generation power and the wind power generation circuit is controlled to output the maximum wind power generation power.
  • step S4 includes steps S41 to S43, wherein:
  • Step S41 determine whether the current voltage of the energy storage battery is greater than the minimum discharge voltage.
  • Step S42 When the current voltage of the energy storage battery is greater than the minimum discharge voltage, control the solar power generation circuit to output the maximum photovoltaic power generation and control the wind power generation circuit to output the maximum wind power generation power, and control the energy storage battery to power the load circuit.
  • the energy storage The battery has sufficient power, but the generated power of the combined energy power supply circuit cannot meet the power demand of the load circuit. Therefore, the load circuit needs to be supplemented with additional power through the energy storage battery, and the solar power generation circuit needs to be controlled to output the maximum photovoltaic power generation and wind power generation needs to be controlled.
  • the circuit outputs maximum wind power to save energy in the energy storage battery as much as possible.
  • Step S43 when the current voltage of the energy storage battery is less than or equal to the minimum discharge voltage
  • the solar power generation circuit is controlled to output the maximum photovoltaic power generation power
  • the wind power generation circuit is controlled to output the maximum wind power generation power
  • the laser power generation circuit is controlled to output the maximum laser power generation power.
  • the improved power supply control method of this embodiment further includes steps S5 to S8, wherein:
  • Step S5 Obtain the output current and output voltage of the power generation circuit to be tracked.
  • the power generation circuit to be tracked includes at least one of a solar power generation circuit, a wind power generation circuit, and a laser power generation circuit.
  • Step S6 obtaining an initial control signal based on the output current, the output voltage and the maximum power tracking algorithm.
  • Step S7 Obtain the current control parameters corresponding to the power generation circuit to be tracked, and adjust the initial control signal based on the current control parameters to obtain the target control signal.
  • the current control parameter is the power supply control signal in any of the above power supply control methods.
  • Step S8 Control the power generation circuit to be tracked to output the maximum power generation based on the target control signal.
  • the current power generation power of the power generation circuit to be tracked is obtained, and it is determined whether the current power generation power reaches the maximum power generation power of the power generation circuit to be tracked. If the current generated power does not reach the maximum generated power of the power generating circuit to be tracked, the above steps S6 to S8 are repeatedly executed until whether the current generated power of the power generating circuit to be tracked reaches its maximum generated power.
  • the present application provides a power supply control circuit, which includes: a power supply controller, a signal conditioning circuit 1, a signal conditioning circuit 2, a signal conditioning circuit 3, a pulse width modulation PWM controller, a proportional integral differential PID closed-loop feedback regulation circuit and a MOSFET drive circuit (Metal-Oxide-Semiconductor Field-Effect Transistor), wherein: the power supply controller is used to execute the power supply control method provided by any one of the above embodiments.
  • a power supply controller includes: a power supply controller, a signal conditioning circuit 1, a signal conditioning circuit 2, a signal conditioning circuit 3, a pulse width modulation PWM controller, a proportional integral differential PID closed-loop feedback regulation circuit and a MOSFET drive circuit (Metal-Oxide-Semiconductor Field-Effect Transistor), wherein: the power supply controller is used to execute the power supply control method provided by any one of the above embodiments.
  • MOSFET drive circuit Metal-Oxide-Semiconductor
  • the signal conditioning circuit 1 is connected to the solar power generation circuit and the power supply controller, and is used to condition the DC voltage sampling signal and the DC current sampling signal output by the solar power generation circuit, and transmit the conditioned first analog signal to the power supply controller.
  • the signal conditioning circuit 2 is connected to the wind power generation circuit and the power supply controller, and is used to condition the DC voltage sampling signal and the DC current sampling signal output by the wind power generation circuit, and transmit the conditioned second analog signal to the power supply controller.
  • the signal conditioning circuit 3 is connected to the laser power generation circuit and the power supply controller, and is used to condition the DC voltage sampling signal and the DC current sampling signal output by the laser power generation circuit, and transmit the conditioned third analog signal to the power supply controller.
  • signal conditioning refers to filtering and amplifying the voltage and current signals sampled by the voltage and current sensor.
  • Signal conditioning in digital input channels mainly includes debouncing, filtering, protection, level conversion, and isolation.
  • the power supply controller is used to convert the received first analog signal, the second analog signal and the third analog signal into a first digital signal, a second digital signal and a third digital signal and input them into an MPPT (Maximum Power Point Tracking) control algorithm to obtain a first duty cycle corresponding to the first digital signal, a second duty cycle corresponding to the second digital signal, and a third duty cycle corresponding to the second digital signal.
  • MPPT Maximum Power Point Tracking
  • the power supply controller is connected to the PWM controller and is also used to generate an initial PWM (Pulse Width Modulation) signal based on the first duty cycle, the second duty cycle and the third duty cycle, and input the initial PWM signal to the PWM controller.
  • PWM Pulse Width Modulation
  • the PWM controller is connected to the PID closed-loop feedback regulation circuit and the MOSFET drive circuit respectively, and is used to obtain a target PWM signal based on an initial PWM signal transmitted by the power supply controller and a current control parameter transmitted by the PID closed-loop feedback regulation circuit, and input the target PWM signal to the MOSFET drive circuit.
  • the MOSFET drive circuit is used to perform signal amplification processing based on the target PWM signal, and output the first control signal P1, the second control signal P2 and the third control signal P3.
  • the current control parameter is the power supply control signal in any of the above power supply control methods.
  • the first control signal P1 is the above-mentioned combined power supply control signal, which is used to control the on or off of the first field effect transistor Q 1 in Figure 3 to realize the control transformation and maximum power tracking of the output power of the wind power generation circuit.
  • the second control signal P2 is the above-mentioned laser power supply control signal and is used to control the on or off of the fourth field effect transistor Q4 in Figure 3 to achieve control conversion and maximum power tracking of the output power of the solar power generation circuit.
  • the third control signal P3 is the above-mentioned power control signal and is used to control the turn-on or turn-off of the fifth field effect transistor Q 5 in Figure 3 to achieve control conversion and maximum power tracking of the output power of the laser power generation circuit.
  • the power supply controller issues power according to the solar power generation circuit, wind power generation circuit, load power, laser power generation circuit power, energy storage battery state of charge and its maximum charging voltage, power and minimum discharge voltage, combined with the power supply control method of the combined energy power supply system.
  • the control signal acts on the field effect transistors Q 6 , Q 7 and Q 8 in the combined energy supply circuit.
  • Q 6 is used to control whether the laser power generation circuit is started or not
  • Q 7 is used to control whether the wind power generation circuit and solar power supply circuit are started or not
  • Q 8 is used to control the on and off of the charging and discharging circuit of the energy storage battery.
  • This application provides a power supply control circuit by taking solar power generation circuits and wind power generation
  • the combined power supply system composed of circuits is mainly used, and the laser power generation circuit is used as an energy supplement to realize the energy supply to the load circuit, thereby meeting the energy supply needs of the aerostat to perform long-duration missions in the air and the power needs of the load it carries.
  • the total power generation of the combined energy power supply circuit and the power consumption of the load circuit, as well as the state of charge and charge and discharge performance of the energy storage battery are comprehensively considered to ensure the system power. demand while avoiding overcharging and over-discharging of the energy storage battery.
  • the power supply control circuit controls the energy output of the solar power generation circuit and the wind power generation circuit to match the current energy required by the load circuit and the charge and discharge status of the energy storage battery to ensure the power balance of the combined energy power supply circuit and the safety of the aerostat. Safe power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种应用于浮空器的组合能源供电电路以及供电控制方法,涉及电源技术领域,所述组合能源供电电路包括:太阳能发电电路、风力发电电路、激光发电电路、直流母线、储能电池和负载电路,其中:所述太阳能发电电路、所述风力发电电路、所述激光发电电路均通过所述直流母线与所述储能电池以及所述负载电路连接,用于对所述负载电路进行供电以及对所述储能电池进行充电;所述储能电池通过所述直流母线与所述负载电路连接,用于对所述负载电路进行供电,实现基于浮空器的实际用电需求以及储能电池的荷电状态进行供电控制,以解决现有的能源供电***无法满足浮空器执行长航时驻空任务的能量供给需求以及其携带更大功率载荷的需求的技术问题。

Description

应用于浮空器的组合能源供电电路以及供电控制方法
相关申请的交叉引用
本申请要求于2022年9月23日提交的申请号为2022111616755,名称为“应用于浮空器的组合能源供电电路以及供电控制方法”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及电源技术领域,尤其涉及一种应用于浮空器的组合能源供电电路以及供电控制方法。
背景技术
浮空器一般是指比重轻于空气的、依靠大气浮力升空的飞行器。长航时浮空器可以弥补飞机和卫星无法长时间航行和定点驻留的缺陷。能源供电***作为长航时浮空器的能量来源,直接决定浮空器执行长航时驻空任务的连续工作时长以及其携带载荷的功率。
在现有技术中,由于高空气球和飞艇等类型的浮空器无法通过传输电缆从地面直接进行电力供应,因此一般采用太阳能发电电路和储能电池对浮空器进行供电。然而,由于太阳能发电电路的发电效率比较低,且太阳能光伏阵列的铺设面积以及储能电池的储能容量受到空间和重量的限制,从而无法满足浮空器执行长航时驻空任务的能量供给需求以及其携带更大功率载荷的需求。
因此,针对现有的能源供电***无法满足浮空器执行长航时驻空任务的能量供给需求以及其携带更大功率载荷的需求的技术问题。
发明内容
本申请提供一种应用于浮空器的组合能源供电电路以及供电控制方法,用以解决现有的能源供电***无法满足浮空器执行长航时驻空任务的能量供给需求以及其携带更大功率载荷的需求的技术问题。
本申请提供一种应用于浮空器的组合能源供电电路,包括:太阳能发电电路、风力发电电路、激光发电电路、直流母线、储能电池和负载电路,其中:
所述太阳能发电电路、所述风力发电电路、所述激光发电电路均通过所述直流母线与所述储能电池以及所述负载电路连接,用于对所述负载电路进行供电以及对所述储能电池进行充电;
所述储能电池通过所述直流母线与所述负载电路连接,用于对所述负载电路进行供电。
根据本申请提供的一种应用于浮空器的组合能源供电电路,所述风力发电电路包括风力发电机、全桥整流电路和降压变换电路,其中:
所述全桥整流电路与所述风力发电机连接,用于将所述风力发电机所产生的交流电转换为直流电;
所述降压变换电路与所述全桥整流电路连接,用于将所述全桥整流电路输出的直流电压变换为与直流母线电压相匹配的风力发电电压,所述直流母线电压表示所述直流母线上的电压。
根据本申请提供的一种应用于浮空器的组合能源供电电路,所述太阳能发电电路包括太阳能光伏阵列和第一升压变换电路,其中:
所述太阳能光伏阵列用于将太阳能转换为直流电输出;
所述第一升压变换电路与所述太阳能光伏阵列连接,用于将所述太阳能光伏阵列输出的直流电压变换为与直流母线电压相匹配的太阳能发电电压。
根据本申请提供的一种应用于浮空器的组合能源供电电路,所述激光发电电路包括激光光伏阵列和第二升压变换电路,其中:
所述激光光伏阵列用于将激光能量转换为直流电输出;
所述第二升压变换电路与所述激光光伏阵列连接,用于将所述激光光伏阵列输出的直流电压变换为与直流母线电压相匹配的激光发电电压。
根据本申请提供的一种应用于浮空器的组合能源供电电路,还包括:设置在所述储能电池与所述负载电路之间的超级电容;
所述超级电容通过所述直流母线与所述负载电路连接,用于对所述太阳能发电电路、所述风力发电电路以及所述激光发电电路输出的能量进行存储,并对所述负载电路进行供电。
本申请还提供一种供电控制方法,包括:
获取风力发电功率、太阳能发电功率、负载功率、储能电池的当前电压、当前电流、最大充电电压以及最小放电电压;
基于所述风力发电功率和太阳能发电功率计算第一总功率,并判断所述第一总功率是否大于所述负载功率;
在所述第一总功率大于所述负载功率的情况下,基于所述储能电池的当前电压和最大充电电压确定组合能源供电电路的供电控制信号;所述供电控制信号作用于太阳能发电电路、风力发电电路、激光发电电路和储能电池中的至少之一;
在所述第一总功率小于或者等于所述负载功率的情况下,基于所述储能电池的当前电压和最小放电电压确定组合能源供电电路的供电控制信号;
所述组合能源供电电路为如上述任一种所述的应用于浮空器的组合能源供电电路。
根据本申请提供的一种供电控制方法,所述基于所述储能电池的当前电压和最大充电电压确定组合能源供电电路的供电控制信号,包括:
判断所述储能电池的当前电压是否大于所述最大充电电压;
在所述储能电池的当前电压大于所述最大充电电压的情况下,控制直流母线电压、风力发电电压以及太阳能发电电压均为所述最大充电电压;
在所述储能电池的当前电压小于或者等于所述最大充电电压的 情况下,基于所述负载功率、储能电池的最大充电功率和所述第一总功率,确定组合能源供电电路的供电控制信号。
根据本申请提供的一种供电控制方法,所述基于所述负载功率、储能电池的最大充电功率和所述第一总功率,确定组合能源供电电路的供电控制信号,包括:
基于所述负载功率与所述最大充电功率计算第二总功率,并判断所述第一总功率是否大于所述第二总功率;
在所述第一总功率大于所述第二总功率的情况下,基于最大充电功率、直流母线电压以及负载电路的额定负载功率确定负载电流和充电电流;
在所述第一总功率小于或者等于所述第二总功率的情况下,控制太阳能发电电路输出最大光伏发电功率以及控制风力发电电路输出最大风力发电功率。
根据本申请提供的一种供电控制方法,所述基于所述储能电池的当前电压和最小放电电压确定组合能源供电电路的供电控制信号,包括:
判断所述储能电池的当前电压是否大于所述最小放电电压;
在所述储能电池的当前电压大于所述最小放电电压的情况下,控制太阳能发电电路输出最大光伏发电功率以及控制风力发电电路输出最大风力发电功率,并控制储能电池对负载电路进行供电;
在所述储能电池的当前电压小于或者等于所述最小放电电压的情况下,控制太阳能发电电路输出最大光伏发电功率、控制风力发电电路输出最大风力发电功率以及控制激光发电电路输出最大激光发电功率。
根据本申请提供的一种供电控制方法,所述方法还包括:
获取待跟踪发电电路的输出电流和输出电压,所述待跟踪发电电路包括太阳能发电电路、风力发电电路和激光发电电路中的至少之一;
基于所述输出电流、所述输出电压和最大功率跟踪算法获取初始控制信号;
获取待跟踪发电电路对应的当前控制参数,并基于所述当前控制参数调整所述初始控制信号,得到目标控制信号;
基于所述目标控制信号控制所述待跟踪发电电路输出最大发电功率。
本申请提供的应用于浮空器的组合能源供电电路以及供电控制方法,通过将风力发电电路和激光发电电路与太阳能发电电路相耦合,以实现在太阳能发电电路提供的能量无法满足浮空器的能量供给需求以及其携带载荷的功率需求的情况下,将风力发电电路和激光发电电路产生的能量作为浮空器的补充供给能量,以弥补太阳能发电电路供给能源不足的缺陷,从而解决了现有的能源供电***无法满足浮空器执行长航时驻空任务的能量供给需求以及其携带更大功率载荷的需求的技术问题。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的应用于浮空器的组合能源供电电路的电路示意图之一;
图2是本申请实施例提供的应用于浮空器的组合能源供电电路的电路示意图之二;
图3是本申请实施例提供的应用于浮空器的组合能源供电电路的电路图;
图4是本申请实施例提供的供电控制方法的流程示意图之一;
图5是本申请实施例提供的供电控制方法的流程示意图之二;
图6是本申请实施例中整体供电控制流程的示意图;
图7是本申请实施例提供的供电控制方法的流程示意图之三;
图8是本申请实施例提供的供电控制方法的流程示意图之四;
图9是本申请实施例提供的供电控制方法的流程示意图之五。
图10是本申请实施例提供的供电控制电路的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,本申请提供一种应用于浮空器的组合能源供电电路,包括:太阳能发电电路10、风力发电电路20、激光发电电路30、直流母线40、储能电池50和负载电路60,其中:
太阳能发电电路10、风力发电电路20、激光发电电路30均通过直流母线40与储能电池50以及负载电路60连接,用于对负载电路60进行供电以及对储能电池50进行充电。
储能电池50通过直流母线40与负载电路60连接,用于对负载电路60进行供电。
其中,母线是指多个设备以并列分支的形式接在其上的一条共用的通路。进一步地,太阳能发电电路10、风力发电电路20、激光发电电路30、储能电池50和负载电路60以并列分支的形式连接在直流母线40上。
风力发电作为一种清洁可再生的发电方式,在有风的环境下,风力发电电路20可源源不断的产生电能。激光因其单色性好、方向性强、功率密度大和能量集中的特点,可将能量以光的形式在空间中远 距离传输。激光发电电路30利用半导体光伏发电原理实现将光能转换为电能。
本申请提供的组合能源供电电路,通过将风力发电电路20和激光发电电路30与太阳能发电电路10相耦合,以实现在太阳能发电电路10提供的能量无法满足浮空器的能量供给需求以及其携带载荷的功率需求的情况下,将风力发电电路20和激光发电电路30产生的能量作为浮空器的补充供给能量,以弥补太阳能发电电路10供给能源不足的缺陷,从而解决了现有的能源供电***无法满足浮空器执行长航时驻空任务的能量供给需求以及其携带更大功率载荷的需求的技术问题。
在一个实施例中,如图2所示,风力发电电路20包括风力发电机21、全桥整流电路22和降压变换电路23,其中:
全桥整流电路22与风力发电机21连接,用于将风力发电机21所产生的交流电转换为直流电。其中,风力发电机21用于将风能转换为电能,并输出交流电。
降压变换电路23与全桥整流电路22连接,用于将全桥整流电路22输出的直流电压变换为与直流母线电压相匹配的风力发电电压,直流母线电压表示直流母线40上的电压。
需要说明的是,由于风力发电机21产生的交流电经全桥整流电路22变换后输出的直流电压较大,使得该直流电压与直流母线电压不匹配,因此需要降压变换电路23利用其降压变换的特性将全桥整流电路22输出的直流电压转换为与直流母线电压相匹配的风力发电电压。
本实施例提供的组合能源供电电路,通过全桥整流电路22将风力发电机21所产生的交流电转换为直流电,并通过降压变换电路23对全桥整流电路22输出的直流电压进行降压变换,以使输出的风力发电电压与直流母线电压相匹配,并且由于直流母线电压与负载电路 60所需的负载电压一致,因此基于风力发电电路20输出的直流母线电压无需经过任何电压转换电路就可以直接为负载电路60所用,从而可以避免采用电压转换电路将直流母线电压转换为负载电压导致能量损耗的缺陷,提高了能源利用率以及组合能源供电电路的性能。
在一个实施例中,风力发电电路20还包括第一引流二极管和第一稳压电路,降压变换电路23还包括第一同步整流电路,其中:
第一引流二极管的阳极与全桥整流电路22连接,阴极与第一稳压电路连接。第一引流二极管用于将全桥整流电路22输出的直流电输入至第一稳压电路,以使第一稳压电路对全桥整流电路22输出的直流电压进行稳压,并且还可以避免储能电池50输出的直流电通过直流母线40倒灌至风力发电机21中从而导致风力发电机21损坏的问题。
第一稳压电路分别与降压变换电路23连接,降压变换电路23用于对稳压后的直流电压进行降压变换,并输出降压变换后的风力发电电压至直流母线40。降压变换电路23中的第一同步整流电路用于在降压变换电路23中有电流流过时导通,没有电流流过时断开,以代替传统的续流二极管以降低损耗。
在一个实施例中,组合能源供电电路还包括第三稳压电路80,第三稳压电路80设置在太阳能发电电路10和风力发电电路20的后端,并与直流母线40连接,用于对太阳能发电电路10输出的太阳能发电电压、风力发电电路20输出的风力发电电压以及直流母线40对应的直流母线电压进行稳压处理,以稳定通过直流母线40输入至负载电路60两端的电压,从而提高负载电路60的工作稳定性。
进一步地,第三稳压电路80为图3中的第四滤波电容C4,第四滤波电容C4设置在太阳能发电电路10和风力发电电路20的后端,并与直流母线40连接,用于对太阳能发电电路10输出的太阳能发电电压、风力发电电路20输出的风力发电电压以及直流母线40对应的 直流母线电压进行滤波处理,以稳定太阳能发电电压、风力发电电压以及直流母线电压。
在一个实施例中,如图3所示,全桥整流电路22为图3中的Dbirdge,第一引流二极管为图3中的Dw。第一稳压电路为图3中的第一滤波电容C1。第一同步整流电路为图3中的第二场效应管Q2,降压变换电路23包括图3中的第一场效应管Q1、第一储能电感L1以及第二场效应管Q2。图3中的Uw表示风力发电机21的输出电压。
全桥整流电路Dbirdge的输入端与风力发电机21连接,用于将风力发电机21所产生的交流电转换为直流电。全桥整流电路Dbirdge的输出端通过第一滤波电容C1与降压变换电路23连接。
第一滤波电容C1用于对全桥整流电路Dbirdge输出的直流电压进行滤波处理,以稳定该直流电压。第一场效应管Q1与风力发电控制信号连接,用于基于风力发电控制信号的高低电平变化导通或者关断,其中,风力发电控制信号为脉冲信号。第二场效应管Q2用于在降压变换电路23中有电流流过时导通,没有电流流过时断开,以代替传统的续流二极管以降低电能损耗。
在第一场效应管Q1导通的情况下,第一储能电感L1基于滤波处理后的直流电压进行充电,并在第一场效应管Q1关断的情况下,太阳能发电电路10基于滤波处理后的直流电压以及第一储能电感L1存储的能量为第四滤波电容C4充电,并通过第四滤波电容C4放电将能量传递至后端的直流母线40,并通过直流母线40输出的直流电为后端的负载电路60进行供电以及对储能电池50充电。
在一个实施例中,如图2所示,太阳能发电电路10包括太阳能光伏阵列11和第一升压变换电路12,其中:
太阳能光伏阵列11用于将太阳能转换为直流电输出。第一升压变换电路12与太阳能光伏阵列11连接,用于将太阳能光伏阵列11输出的直流电压变换为与直流母线电压相匹配的太阳能发电电压。
需要说明的是,由于太阳能光伏阵列11输出的直流电压比较小且与直流母线电压不匹配,因此需要第一升压变换电路12利用其升压变换的特性将太阳能光伏阵列11输出的直流电压转换为直流母线电压相匹配的太阳能发电电压。由于负载电路60并列分支的形式连接在直流母线40上,因此,直流母线40对应的直流母线电压与负载电路60的负载电压一致。
需要进一步说明的是,太阳能光伏阵列11由多节太阳能光伏电池串联构成,由于太阳光的分布是均匀的,因此可以尽可能地在太阳能光伏阵列11中设置较多的太阳能光伏电池,以提高太阳能光伏阵列11的输出功率,从而使得太阳能光伏阵列11输出的直流电压比较高。
本实施例提供的组合能源供电电路,通过第一升压变换电路12对太阳能光伏阵列11输出的直流电压进行升压变换,以使输出的太阳能发电电压与直流母线电压相匹配,并且由于直流母线电压与负载电路60所需的负载电压一致,因此基于太阳能发电电路10输出的直流母线电压无需经过任何电压转换电路就可以直接为负载电路60所用,从而可以避免采用电压转换电路将直流母线电压转换为负载电压导致能量损耗的缺陷,提高了能源利用率以及组合能源供电电路的性能。
在一个实施例中,太阳能发电电路10还包括第二引流二极管和第二稳压电路,第一升压变换电路12还包括第二同步整流电路,其中:
第二引流二极管的阳极与太阳能光伏阵列11连接,阴极与第二稳压电路连接。第二引流二极管用于将太阳能光伏阵列11输出的直流电输入至第二稳压电路,以使第二稳压电路对太阳能光伏阵列11输出的直流电压进行稳压处理,并且还可以避免储能电池50输出的直流电通过直流母线40倒灌至太阳能光伏阵列11从而导致太阳能光 伏阵列11损坏的问题。
第二稳压电路与第一升压变换电路12连接。第一升压变换电路12用于对稳压处理后的直流电压进行升压变换,并输出太阳能发电电压至直流母线40。第二同步整流电路用于在第一升压变换电路12中有电流流过时导通,没有电流流过时断开,以代替传统的续流二极管以降低损耗。
在一个实施例中,如图3所示,第二引流二极管为图3中的Dpv。第二稳压电路为图3中的第二滤波电容C2,第二同步整流电路为图3中的第三场效应管Q3,第一升压变换电路12包括图3中的第四场效应管Q4、第二储能电感L2以及第三场效应管Q3。图3中的Upv表示太阳能光伏阵列11输出的直流电压。
第二引流二极管Dpv的阳极与太阳能光伏阵列11连接,阴极与第二滤波电容C2连接,用于将太阳能光伏阵列11输出的直流电输入至第二滤波电容C2。第二滤波电容C2用于对太阳能光伏阵列11输出的直流电压进行滤波处理,以稳定太阳能光伏阵列11输出的直流电压。
第四场效应管Q4与太阳能发电控制信号连接,用于基于太阳能发电控制信号的高低电平变化导通或者关断,其中,太阳能发电控制信号为脉冲信号。第三场效应管Q3用于在第一升压变换电路12中有电流流过时导通,没有电流流过时断开,以代替传统的续流二极管以降低损耗。第二储能电感L2与第二滤波电容C2连接,用于基于第一升压变换电路12的电路状态进行充电或者放电。
在第四场效应管Q4导通的情况下,第二储能电感L2基于滤波处理后的直流电压储存能量,并在第四场效应管Q4关断的情况下,太阳能发电电路10基于滤波处理后的直流电压以及第二储能电感L2存储的能量为第四滤波电容C4充电,并通过第四滤波电容C4放电将能量并传递至后端的直流母线40,并通过直流母线40输出的直流电 为后端的负载电路60进行供电以及对储能电池50充电。
在一个实施例中,如图2所示,激光发电电路30包括激光光伏阵列31和第二升压变换电路32,其中:激光光伏阵列31用于将激光能量转换为直流电输出。
第二升压变换电路32与激光光伏阵列31连接,用于将激光光伏阵列31输出的直流电压变换为与直流母线电压相匹配的激光发电电压。
需要说明的是,由于激光光伏阵列31输出的直流电压与直流母线电压不匹配,因此需要第二升压变换电路32利用其升压变换的特性将激光光伏阵列31输出的直流电压转换为与直流母线电压相匹配的激光发电电压。
需要进一步说明的是,激光光伏阵列31由多节激光光伏电池串联构成,由于激光的分布是不均匀的,因此不能在激光光伏阵列31中串联过多的激光光伏电池,否则激光光伏阵列31的输出特性曲线中会出现多个峰值,从而导致激光光伏阵列31的输出功率损耗的缺陷,因此,激光光伏阵列31中串联的激光光伏电池的数量比较少,因此使得激光光伏阵列31输出的直流电压比较低。
本实施例提供的组合能源供电电路,通过第二升压变换电路32对激光光伏阵列31输出的直流电压进行升压变换,以使输出与直流母线电压相匹配的激光发电电压,并且由于直流母线40对应的直流母线电压与负载电路60所需的负载电压一致,因此基于激光发电电路30输出的直流母线电压无需经过任何电压转换电路就可以直接为负载电路60所用,从而可以避免采用电压转换电路将直流母线电压转换为负载电压导致能量损耗的缺陷,提高了能源利用率以及组合能源供电电路的性能。
在一个实施例中,激光发电电路30还包括第三引流二极管和第三稳压电路,第二升压变换电路32还包括第三同步整流电路,其中:
第三引流二极管的阳极与激光光伏阵列31连接,第三引流二极管的阴极与第三稳压电路连接;第三引流二极管用于将激光光伏阵列31输出的直流电输入至第三稳压电路,以使第三稳压电路对激光光伏阵列31输出的直流电压进行稳压处理,并且还可以避免储能电池50输出的直流电通过直流母线40倒灌至激光光伏阵列31中从而导致激光光伏阵列31损坏的问题。
第三稳压电路与第二升压变换电路32连接。第二升压变换电路32用于对稳压处理后的直流电压进行升压变换,并输出激光发电电压至直流母线40。第三同步整流电路用于在第二升压变换电路32中有电流流过时导通,没有电流流过时断开,以代替传统的续流二极管以降低损耗。
在一个实施例中,如图3所示,第三引流二极管为图3中的Dlaser。第三稳压电路为图3中的第三滤波电容C3,第三同步整流电路为图3中的第六场效应管Q6。第二升压变换电路32包括图3中的第五场效应管Q5、第三储能电感L3和第六场效应管Q6。图3中的Ulaser表示激光光伏阵列31输出的直流电压。
第三引流二极管Dlaser的阳极与激光光伏阵列31连接,第三引流二极管Dlaser的阴极与第三滤波电容C3连接,用于将激光光伏阵列31所产生的直流电输入至第三滤波电容C3。第三滤波电容C3用于对激光光伏输出的直流电压进行滤波处理,以稳定该直流电压。
第五场效应管Q5与激光发电控制信号连接,用于基于激光发电控制信号的高低电平变化导通或者关断,其中,激光发电控制信号为脉冲信号。第六场效应管Q6用于在第二升压变换电路32中有电流流过时导通,没有电流流过时断开,以代替传统的续流二极管以降低损耗。第三储能电感L3与第三滤波电容C3连接,用于基于滤波处理后的激光光伏电压充电或者放电。
在第五场效应管Q5导通的情况下,第三储能电感L3进行储能, 并在第五场效应管Q5关断的情况下,激光发电电路30基于滤波处理后的直流电压以及第三储能电感L3存储的能量输出与直流母线40对应的直流母线电压相匹配的激光发电电压。
在一个实施例中,如图2所示,组合能源供电电路还包括设置在储能电池50与负载电路60之间的超级电容70。
超级电容70通过直流母线40与负载电路60连接,用于对太阳能发电电路10、风力发电电路20以及激光发电电路30输出的能量进行存储,并对负载电路60进行供电。
需要说明的是,由于激光发电电路30产生电能的功率密度较高,因此需要对激光发电电路30产生电能进行快速存储以及输出利用,而储能电池50的能量存储速度以及能量输出速度都比较慢,因此可以利用超级电容70快速充放电的特性,实现对激光发电电路30输出电能进行快速存储以及输出利用。
进一步地,由于超级电容70设置在储能电池50与负载电路60之间,因此不仅可以对激光发电电路30输出的电能进行快速存储以及输出利用,还可以对太阳能发电电路10以及风力发电电路20输出的电能进行快速存储以及输出利用。
本实施例提供的组合能源供电电路,通过利用超级电容70快速充放电的特性,实现对激光发电电路30输出电能进行快速存储以及输出利用,以在需要激光发电电路30对负载电路60的消耗电能进行补充供给的情况下,通过超级电容70的快速放电维持负载电路60的正常运作,以使负载电路60处于稳定的工作状态,从而使得浮空器可以顺利完成长航时驻空任务,提高了组合能源供电电路的稳定性以及可靠性。
在一个实施例中,第六场效应管Q6与激光供电控制信号连接,还用于基于激光供电控制信号进行导通或者关断。在第六场效应管Q6导通的情况下,通过激光发电电路30对负载电路60进行供电以 及对储能电池50和超级电容70进行充电。在第六场效应管Q6关断的情况下,激光发电电路30处于关闭状态,不对外界进行供电或者充电。
本实施例提供的组合能源供电电路,通过一个第六场效应管Q6即可实现激光发电电路30的开关控制以及同步整流这个两种功能,优化了组合能源供电电路的电路结构,提高了组合能源供电电路的集成度,进而提高了组合能源供电电路的功率密度。
在一个实施例中,组合能源供电电路还包括第一开关电路81,第一开关电路81设置在太阳能发电电路10和风力发电电路20的后端,分别与直流母线40以及组合供电控制信号连接,用于基于组合供电控制信号闭合或者断开,以控制太阳能发电电路10和风力发电电路20的开启或者关闭。
在第一开关电路81闭合的情况下,通过太阳能发电电路10和风力发电电路20对负载电路60进行供电以及对储能电池50和超级电容70进行充电。在第一开关电路81断开的情况下,太阳能发电电路10和风力发电电路20均处于关闭状态,不对外界进行供电或者充电。
进一步地,第一开关电路81为场效应管。第一开关电路81为图3中的第七场效应管Q7
在一个实施例中,组合能源供电电路还包括第二开关电路82,第二开关电路82分别与储能电池50以及电源控制信号连接,用于基于电源控制信号闭合或者断开,以控制储能电池50的开启或者关闭。
在第二开关电路82闭合的情况下,通过太阳能发电电路10、风力发电电路20或者激光发电电路30对储能电池50进行充电,或者通过储能电池50对负载电路60进行供电。在第二开关电路82断开的情况下,储能电池50不对外界进行供电,也不充电。
可选地,第二开关电路82为场效应管。进一步地,第二开关电路82为图3中的第八场效应管Q8
在一个实施例中,组合能源供电电路还包括电压变换器,负载电路60为直流负载,其中:直流母线40与直流负载连接,以基于直流母线40输出的直流母线电压驱动该直流负载运作。
综上所述,本申请提供的应用于浮空器的组合能源供电电路,通过风力发电电路20将风力发电机21产生的交流电,经全桥整流电路22后转化为稳定的直流电,由于全桥整流电路22输出的直流电压与直流母线40的直流母线电压不相匹配,因此,通过降压变换电路23将该直流电压变换为与直流母线电压相匹配的风力发电电压并输出。太阳能发电电路10与风力发电电路20并联连接,用于对储能电池50进行充电以及对负载电路60进行供电。激光发电电路30作为浮空器的备用供电电路,用于在太阳能发电电路10与风力发电电路20供给的能量不足以满足浮空器的能量需求的情况下,对储能电池50进行充电以及对负载电路60进行供电,以为浮空器提供备用供给能量。
在第七场效应管Q7和第八场效应管Q8导通的情况下,可实现通过太阳能发电电路10和风力发电电路20对储能电池50的充电和通过直流母线为负载电路60供电。在第七场效应管Q7导通,第八场效应管Q8关断的情况下,太阳能发电电路10和风力发电电路20直接输出到直流母线40为负载电路60供电。
在第六场效应管Q6和第八场效应管Q8导通的情况下,可实现通过激光发电电路30对储能电池50的充电和通过直流母线为负载电路60供电。在第六场效应管Q6导通,第八场效应管Q8关断的情况下,激光发电电路30产生的电能直接输出到直流母线40为负载电路60供电,或者通过直流母线40存储至超级电容70中,以实现激光发电电路30产生电能的快速存储,并通过超级电容70为负载电路60供电。
下面结合图4-图9描述本申请的供电控制方法。如图4所示,本 申请提供一种供电控制方法,包括:
步骤S1,获取风力发电功率、太阳能发电功率、负载功率、储能电池的当前电压、当前电流、最大充电电压以及最小放电电压。
其中,Pw表示风力发电功率,Ppv表示太阳能发电功率,PL表示负载功率,UB表示储能电池的当前电压,UBmax表示储能电池的最大充电电压,UBmin表示储能电池的最小放电电压。
具体地,在图3中的第七场效应管Q7和第八场效应管Q8导通,第六场效应管Q6关断的情况下,太阳能发电电路和风力发电电路处于开启状态,激光发电电路处于关闭状态,供电控制电路获取风力发电功率、太阳能发电功率、负载功率、储能电池的当前电压、最大充电电压以及最小放电电压。
步骤S2,基于风力发电功率和太阳能发电功率计算第一总功率,并判断第一总功率是否大于负载功率。
步骤S3,在第一总功率大于负载功率的情况下,基于储能电池的当前电压和最大充电电压确定组合能源供电电路的供电控制信号;供电控制信号作用于太阳能发电电路、风力发电电路、激光发电电路和储能电池中的至少之一。
需要说明的是,在第一总功率大于负载功率的情况下,组合能源供电电路产生的电能大于负载电路所消耗能量,因此,基于储能电池的当前电压和最大充电电压判断储能电池的当前荷电状态,以防止储能电池由于过充电而烧坏,在提高组合能源供电电路的安全性以及可靠性的同时,实现对发电电路产生电能的合理分配以及高效利用。
步骤S4,在第一总功率小于或者等于负载功率的情况下,基于储能电池的当前电压和最小放电电压确定组合能源供电电路的供电控制信号;组合能源供电电路为上述任意一种组合能源供电电路。
需要说明的是,第一总功率小于或者等于负载功率表示太阳能发电电路和风力发电电路所产生的电能无法满足负载电路用电需求,因 此,需要进一步判断储能电池的当前电压是否小于最小放电电压,以确定负载欠缺电能的补充方式,从而可以防止储能电池由于过度放电而损坏,提高了组合能源供电电路的稳定性、安全性以及可靠性。
在一个实施例中,如图5所示,上述步骤S3包括步骤S31至步骤S33,其中:基于储能电池的当前电压和最大充电电压确定组合能源供电电路的供电控制信号,包括:
步骤S31,判断储能电池的当前电压是否大于最大充电电压。
步骤S32,在储能电池的当前电压大于最大充电电压的情况下,控制直流母线电压、风力发电电压以及太阳能发电电压均为最大充电电压。
如图6所示,在第一总功率大于负载功率,且储能电池的当前电压大于最大充电电压的情况下,即Pw+Ppv>PL且UB>UBmax,储能电池处于满电状态,且组合能源供电电路产生的电能大于负载电路所消耗能量,此时为了防止储能电池过充电,需要控制太阳能发电电路和风力发电电路处于恒压输出状态,且直流母线电压、风力发电电压以及太阳能发电电压均为储能电池的最大充电电压,以实现在满足负载电路的供电需求以及储能电池的安全性的基础上,维持储能电池的满电状态,提高了组合能源供电电路产生电能的利用率。
进一步地,通过调节图3中的第一场效应管Q1以及第四场效应管Q4的占空比分别实现来实现风力发电电路和太阳能发电电路处于恒压输出状态。
步骤S33,在储能电池的当前电压小于或者等于最大充电电压的情况下,基于负载功率、储能电池的最大充电功率和第一总功率,确定组合能源供电电路的供电控制信号。
如图6所示,在第一总功率大于负载功率,且储能电池的当前电压小于或者等于最大充电电压的情况下,即Pw+Ppv>PL且UB≤UBmax,储能电池未处于满电状态,由于此时组合能源供电电路产生的电能大 于负载电路所消耗能量,此时组合能源供电电路在对负载电路供电的同时,还需对储能电池进行充电,但是,由于储能电池存在最大充电功率,因此需要基于负载功率、储能电池的最大充电功率和第一总功率确定组合能源供电电路的供电控制信号,以防止储能电池的当前充电功率过大而烧坏,提高了组合能源供电电路的安全性和可靠性。
在一个实施例中,如图7所示,上述步骤S33包括步骤S331至步骤S333,其中:
步骤S331,基于负载功率与最大充电功率计算第二总功率,并判断第一总功率是否大于第二总功率。其中,PBmax表示最大充电功率。
步骤S332,在第一总功率大于第二总功率的情况下,基于最大充电功率、直流母线电压以及负载电路的额定负载功率确定负载电流和充电电流。
具体地,由于直流母线电压为定值,因此基于最大充电功率和直流母线电压确定储能电池的充电电流,并基于直流母线电压和额定负载功率确定负载电路的负载电流。
如图6所示,在第一总功率大于负载功率,储能电池的当前电压小于或者等于最大充电电压,且第一总功率大于第二总功率的情况下,即Pw+Ppv>PL,UB≤UBmax且Pw+Ppv>PL+PBmin,组合能源供电电路产生的电能满足负载电路所消耗能量的同时,组合能源供电电路产生的额外功率大于储能电池所能承受的最大充电功率,因此需要控制组合能源供电电路的发电功率,即满足储能电池的最大充电功率的同时,使组合能源供电电路的发电功率依据负载电路所需的负载功率进行供给,即基于最大充电功率、直流母线电压以及负载电路的额定负载功率确定负载电流和充电电流,由于直流母线电压为定值,因此通过控制负载电流和充电电流以实现负载功率以及充电功率的控制。
进一步地,通过调节图3中的第一场效应管Q1以及第四场效应管Q4的占空比来实现负载电流和充电电流的控制。
步骤S333,在第一总功率小于或者等于第二总功率的情况下,控制太阳能发电电路输出最大光伏发电功率以及控制风力发电电路输出最大风力发电功率。
如图6所示,在第一总功率大于负载功率,储能电池的当前电压小于或者等于最大充电电压,且第一总功率小于或者等于第二总功率的情况下,即Pw+Ppv>PL,UB≤UBmax且Pw+Ppv≤PL+PBmin,组合能源供电电路的发电功率小于负载消耗功率与储能电池的最大充电功率的功率之和,因此,需要控制组合能源供电电路输出最大电功率,即需要控制太阳能发电电路输出最大光伏发电功率以及控制风力发电电路输出最大风力发电功率,以提高组合能源供电电路的发电功率的利用率。
进一步地,通过调节图3中的第一场效应管Q1以及第四场效应管Q4的占空比来控制太阳能发电电路输出最大光伏发电功率以及控制风力发电电路输出最大风力发电功率。
在一个实施例中,如图8所示,上述步骤S4包括步骤S41至步骤S43,其中:
步骤S41,判断储能电池的当前电压是否大于最小放电电压。
步骤S42,在储能电池的当前电压大于最小放电电压的情况下,控制太阳能发电电路输出最大光伏发电功率以及控制风力发电电路输出最大风力发电功率,并控制储能电池对负载电路进行供电。
如图6所示,在第一总功率小于或者等于负载功率,且储能电池的当前电压大于最小放电电压的情况下,即Pw+Pv≤PL且UB>UBmm,储能电池的电量充足,但是组合能源供电电路的发电功率无法满足负载电路的功率需求,因此需要通过储能电池对负载电路进行额外电能补充,并且需要控制太阳能发电电路输出最大光伏发电功率以及控制风力发电电路输出最大风力发电功率,以尽可能节省储能电池的能量。
步骤S43,在储能电池的当前电压小于或者等于最小放电电压的 情况下,控制太阳能发电电路输出最大光伏发电功率、控制风力发电电路输出最大风力发电功率以及控制激光发电电路输出最大激光发电功率。
如图6所示,在第一总功率小于或者等于负载功率,且储能电池的当前电压小于或者等于最小放电电压的情况下,即Pw+Pv≤PL且UB≤UBmin,组合能源供电电路的发电功率无法满足负载电路的功率需求,且储能电池的储能电池的当前电压小于最小放电标准,因此需要控制激光发电电路输出最大激光发电功率,以对负载电路进行额外电能补充以及对储能电池进行充电,从而防止储能电池过放电而停止能量供应,提高了组合能源供电电路的稳定性和可靠性。
在一个实施例中,如图9所示,本实施例提高的供电控制方法还包括步骤S5至步骤S8,其中:
步骤S5,获取待跟踪发电电路的输出电流和输出电压,待跟踪发电电路包括太阳能发电电路、风力发电电路和激光发电电路中的至少之一。
步骤S6,基于输出电流、输出电压和最大功率跟踪算法获取初始控制信号。
步骤S7,获取待跟踪发电电路对应的当前控制参数,并基于当前控制参数调整初始控制信号,得到目标控制信号。其中,当前控制参数为上述任意一种供电控制方法中的供电控制信号。
步骤S8,基于目标控制信号控制待跟踪发电电路输出最大发电功率。
进一步地,获取待跟踪发电电路的当前发电功率,判断当前发电功率是否达到待跟踪发电电路的最大发电功率。在当前发电功率未达到待跟踪发电电路的最大发电功率的情况下,重复执行上述步骤S6至上述步骤S8,直至待跟踪发电电路的当前发电功率是否达到其最大发电功率。
进一步地,判断当前光照强度或者温度是否发生变化,在当前光照强度或者温度发生变化的情况下,重复执行上述步骤S6至上述步骤S8。进一步地,判断负载电路的额定负载功率是否发生变化,在负载电路的额定负载功率发生变化的情况下,重复执行上述步骤S7至上述步骤S8。
如图10所示,本申请提供一种供电控制电路,供电控制电路包括:供电控制器、信号调理电路1、信号调理电路2、信号调理电路3、脉冲宽度调制PWM控制器、比例积分微分PID闭环反馈调节电路以及MOSFET驱动电路(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化物半导体场效应晶体管),其中:供电控制器用于执行上述任意一个实施例提供的供电控制方法。
信号调理电路1与太阳能发电电路以及供电控制器连接,用于对太阳能发电电路输出的直流电压采样信号和直流电流采样信号进行调理,并将调理后的第一模拟信号传输至供电控制器。
信号调理电路2与风力发电电路以及供电控制器连接,用于对风力发电电路输出的直流电压采样信号和直流电流采样信号进行调理,并将调理后的第二模拟信号传输至供电控制器。
信号调理电路3与激光发电电路以及供电控制器连接,用于对激光发电电路输出的直流电压采样信号和直流电流采样信号进行调理,并将调理后的第三模拟信号传输至供电控制器。其中,信号调理是指对电压电流传感器采样到的电压电流信号进行滤波和放大。数字量输入通道中的信号调理主要包括消抖、滤波、保护、电平转换以及隔离等。
供电控制器用于将接收到的第一模拟信号、第二模拟信号和第三模拟信号转换为第一数字信号、第二数字信号和第三数字信号并输入至MPPT(Maximum Power Point Tracking,最大功率点跟踪)控制算法,得到第一数字信号对应的第一占空比、第二数字信号对应的第二 占空比以及第三数字信号对应的第三占空比。
供电控制器与PWM控制器连接,还用于基于第一占空比、第二占空比以及第三占空比生成初始PWM(Pulse Width Modulation,脉冲宽度调制)信号,并将初始PWM信号输入至PWM控制器中。
PWM控制器分别与PID闭环反馈调节电路以及MOSFET驱动电路连接,用于基于供电控制器传输的初始PWM信号以及PID闭环反馈调节电路传输的当前控制参数得到目标PWM信号,并将目标PWM信号输入至MOSFET驱动电路。
MOSFET驱动电路,用于基于目标PWM信号进行信号放大处理,并输出第一控制信号P1、第二控制信号P2和第三控制信号P3。其中,当前控制参数为上述任意一种供电控制方法中的供电控制信号。
其中,第一控制信号P1为上述组合供电控制信号,用于控制图3中的第一场效应管Q1的导通或者关断,以实现对风力发电电路输出电能的控制变换和最大功率跟踪。第二控制信号P2为上述激光供电控制信号,用于控制图3中的第四场效应管Q4的导通或者关断,以实现对太阳能发电电路输出电能的控制变换和最大功率跟踪。第三控制信号P3为上述电源控制信号,用于控制图3中的第五场效应管Q5的导通或者关断,以实现对激光发电电路输出电能的控制变换和最大功率跟踪。
此外,供电控制器依据太阳能发电电路、风力发电电路、负载功率、激光发电电路功率、储能电池荷电状态及其最大充电电压、功率和最小放电电压,结合组合能源供电***供电控制方法发出供电控制信号作用于组合能源供电电路中的场效应管Q6、Q7和Q8。其中,Q6用于控制激光发电电路的启动与否,Q7用于控制风力发电电路和太阳能供电电路的启动与否,Q8用于控制储能电池的充电和放电电路的导通和切断。
本申请提供的供电控制电路,通过以太阳能发电电路和风力发电 电路构成的组合供电子***为主,以激光发电电路作为能量补充,实现对负载电路的能量供给,从而满足浮空器执行长航时驻空任务的能量供给需求以及其携带载荷的功率需求。通过对于组合能源***储能电池能量的合理分配和调度,综合考虑了组合能源供电电路的总发电量以及负载电路的电能消耗量以及储能电池的荷电状态和充放电性能,在保证***电能需求的同时以避免储能电池的过度充电以及过度放电。
另外,由于风力发电和太阳能光伏发电的发电功率与天气条件的关系十分密切,因此在风速或者光强发生变化的情况下,其组合能源供电电路的输出特性也会发生变化,需要供电控制器重新运行MPPT控制算法,以调整供电控制策略,从而保证组合能源供电电路持续满足浮空器执行长航驻空任务的能量供给需求以及其携带载荷的功率需求,提高组合能源供电电路的供电稳定性。在负载电路的功率需求较大的情况下,控制太阳能发电电路、风力发电电路输出最大功率,以提高***对能量的利用效率。
此外,通过供电控制电路控制太阳能发电电路和风力发电电路输出的能量与负载电路当前所需的能量以及储能电池的充放电状态相匹配,以保证组合能源供电电路的功率平衡以及浮空器的安全供电。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种应用于浮空器的组合能源供电电路,包括:太阳能发电电路、风力发电电路、激光发电电路、直流母线、储能电池和负载电路,其中:
    所述太阳能发电电路、所述风力发电电路、所述激光发电电路均通过所述直流母线与所述储能电池以及所述负载电路连接,用于对所述负载电路进行供电以及对所述储能电池进行充电;
    所述储能电池通过所述直流母线与所述负载电路连接,用于对所述负载电路进行供电。
  2. 根据权利要求1所述的应用于浮空器的组合能源供电电路,其中,所述风力发电电路包括风力发电机、全桥整流电路和降压变换电路,其中:
    所述全桥整流电路与所述风力发电机连接,用于将所述风力发电机所产生的交流电转换为直流电;
    所述降压变换电路与所述全桥整流电路连接,用于将所述全桥整流电路输出的直流电压变换为与直流母线电压相匹配的风力发电电压,所述直流母线电压表示所述直流母线上的电压。
  3. 根据权利要求1所述的应用于浮空器的组合能源供电电路,其中,所述太阳能发电电路包括太阳能光伏阵列和第一升压变换电路,其中:
    所述太阳能光伏阵列用于将太阳能转换为直流电输出;
    所述第一升压变换电路与所述太阳能光伏阵列连接,用于将所述太阳能光伏阵列输出的直流电压变换为与直流母线电压相匹配的太阳能发电电压。
  4. 根据权利要求1所述的应用于浮空器的组合能源供电电路,其中,所述激光发电电路包括激光光伏阵列和第二升压变换电路,其中:
    所述激光光伏阵列用于将激光能量转换为直流电输出;
    所述第二升压变换电路与所述激光光伏阵列连接,用于将所述激光光伏阵列输出的直流电压变换为与直流母线电压相匹配的激光发电电压。
  5. 根据权利要求1至4任一项所述的应用于浮空器的组合能源供电电路,还包括:设置在所述储能电池与所述负载电路之间的超级电容;
    所述超级电容通过所述直流母线与所述负载电路连接,用于对所述太阳能发电电路、所述风力发电电路以及所述激光发电电路输出的能量进行存储,并对所述负载电路进行供电。
  6. 一种供电控制方法,包括:
    获取风力发电功率、太阳能发电功率、负载功率、储能电池的当前电压、当前电流、最大充电电压以及最小放电电压;
    基于所述风力发电功率和太阳能发电功率计算第一总功率,并判断所述第一总功率是否大于所述负载功率;
    在所述第一总功率大于所述负载功率的情况下,基于所述储能电池的当前电压和最大充电电压确定组合能源供电电路的供电控制信号;所述供电控制信号作用于太阳能发电电路、风力发电电路、激光发电电路和储能电池中的至少之一;
    在所述第一总功率小于或者等于所述负载功率的情况下,基于所述储能电池的当前电压和最小放电电压确定组合能源供电电路的供电控制信号;
    所述组合能源供电电路为如权利要求1至5任一项所述的应用于浮空器的组合能源供电电路。
  7. 根据权利要求6所述的供电控制方法,其中,所述基于所述储能电池的当前电压和最大充电电压确定组合能源供电电路的供电控制信号,包括:
    判断所述储能电池的当前电压是否大于所述最大充电电压;
    在所述储能电池的当前电压大于所述最大充电电压的情况下,控制直流母线电压、风力发电电压以及太阳能发电电压均为所述最大充电电压;
    在所述储能电池的当前电压小于或者等于所述最大充电电压的情况下,基于所述负载功率、储能电池的最大充电功率和所述第一总功率,确定组合能源供电电路的供电控制信号。
  8. 根据权利要求7所述的供电控制方法,其中,所述基于所述负载功率、储能电池的最大充电功率和所述第一总功率,确定组合能源供电电路的供电控制信号,包括:
    基于所述负载功率与所述最大充电功率计算第二总功率,并判断所述第一总功率是否大于所述第二总功率;
    在所述第一总功率大于所述第二总功率的情况下,基于最大充电功率、直流母线电压以及负载电路的额定负载功率确定负载电流和充电电流;
    在所述第一总功率小于或者等于所述第二总功率的情况下,控制太阳能发电电路输出最大光伏发电功率以及控制风力发电电路输出最大风力发电功率。
  9. 根据权利要求6所述的供电控制方法,其中,所述基于所述储能电池的当前电压和最小放电电压确定组合能源供电电路的供电控制信号,包括:
    判断所述储能电池的当前电压是否大于所述最小放电电压;
    在所述储能电池的当前电压大于所述最小放电电压的情况下,控制太阳能发电电路输出最大光伏发电功率以及控制风力发电电路输出最大风力发电功率,并控制储能电池对负载电路进行供电;
    在所述储能电池的当前电压小于或者等于所述最小放电电压的情况下,控制太阳能发电电路输出最大光伏发电功率、控制风力发电 电路输出最大风力发电功率以及控制激光发电电路输出最大激光发电功率。
  10. 根据权利要求6所述的供电控制方法,还包括:
    获取待跟踪发电电路的输出电流和输出电压,所述待跟踪发电电路包括太阳能发电电路、风力发电电路和激光发电电路中的至少之一;
    基于所述输出电流、所述输出电压和最大功率跟踪算法获取初始控制信号;
    获取待跟踪发电电路对应的当前控制参数,并基于所述当前控制参数调整所述初始控制信号,得到目标控制信号;
    基于所述目标控制信号控制所述待跟踪发电电路输出最大发电功率。
PCT/CN2023/119745 2022-09-23 2023-09-19 应用于浮空器的组合能源供电电路以及供电控制方法 WO2024061221A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211161675.5 2022-09-23
CN202211161675.5A CN115241865B (zh) 2022-09-23 2022-09-23 应用于浮空器的组合能源供电电路以及供电控制方法

Publications (1)

Publication Number Publication Date
WO2024061221A1 true WO2024061221A1 (zh) 2024-03-28

Family

ID=83667085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119745 WO2024061221A1 (zh) 2022-09-23 2023-09-19 应用于浮空器的组合能源供电电路以及供电控制方法

Country Status (2)

Country Link
CN (1) CN115241865B (zh)
WO (1) WO2024061221A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241865B (zh) * 2022-09-23 2023-02-28 中国科学院空天信息创新研究院 应用于浮空器的组合能源供电电路以及供电控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505867A (zh) * 2015-01-04 2015-04-08 南京国臣信息自动化技术有限公司 一种交直流混合微电网***及其控制策略
CN104993774A (zh) * 2015-07-23 2015-10-21 北京天航华创科技股份有限公司 一种平流层飞艇用光能-风能一体化发电***
CN205407378U (zh) * 2016-02-18 2016-07-27 彭昌兰 基于风光互补以及热能回收的航拍机电源***以及航拍机
CN205647339U (zh) * 2016-05-24 2016-10-12 东莞前沿技术研究院 浮空器的激光充电装置、浮空器、激光器及浮空器***
US20170012464A1 (en) * 2009-08-28 2017-01-12 Robert Sant'Anselmo Systems, methods, and devices including modular, fixed and transportable structures incorporating solar and wind generation technologies for production of electricity
CN108674681A (zh) * 2018-03-22 2018-10-19 武汉理工大学 一种海陆两用自供能无人机航保基站
CN210793607U (zh) * 2019-10-29 2020-06-19 湖南航天远望科技有限公司 一种临近空间浮空器集群无线传能***
CN115241865A (zh) * 2022-09-23 2022-10-25 中国科学院空天信息创新研究院 应用于浮空器的组合能源供电电路以及供电控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108045585A (zh) * 2017-11-21 2018-05-18 中国电子科技集团公司第四十八研究所 可远程充电的无人机供电装置、无人机***及控制方法
CN109178312A (zh) * 2018-10-17 2019-01-11 江苏铨铨信息科技有限公司 配合卫星导航用激光充电光伏遥感无人飞行器及激光设备
US20200144866A1 (en) * 2018-11-01 2020-05-07 Lockheed Martin Corporation Remote power transmission to an airship
CN210653611U (zh) * 2019-06-12 2020-06-02 张毅 激光辐照多功能光伏风电动力飞艇

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170012464A1 (en) * 2009-08-28 2017-01-12 Robert Sant'Anselmo Systems, methods, and devices including modular, fixed and transportable structures incorporating solar and wind generation technologies for production of electricity
CN104505867A (zh) * 2015-01-04 2015-04-08 南京国臣信息自动化技术有限公司 一种交直流混合微电网***及其控制策略
CN104993774A (zh) * 2015-07-23 2015-10-21 北京天航华创科技股份有限公司 一种平流层飞艇用光能-风能一体化发电***
CN205407378U (zh) * 2016-02-18 2016-07-27 彭昌兰 基于风光互补以及热能回收的航拍机电源***以及航拍机
CN205647339U (zh) * 2016-05-24 2016-10-12 东莞前沿技术研究院 浮空器的激光充电装置、浮空器、激光器及浮空器***
CN108674681A (zh) * 2018-03-22 2018-10-19 武汉理工大学 一种海陆两用自供能无人机航保基站
CN210793607U (zh) * 2019-10-29 2020-06-19 湖南航天远望科技有限公司 一种临近空间浮空器集群无线传能***
CN115241865A (zh) * 2022-09-23 2022-10-25 中国科学院空天信息创新研究院 应用于浮空器的组合能源供电电路以及供电控制方法

Also Published As

Publication number Publication date
CN115241865B (zh) 2023-02-28
CN115241865A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
CN116349106A (zh) 一种储能***、储能***的控制方法及光伏发电***
CN102882370A (zh) 双向双输入buck直流变换器及其功率分配方法
TWI826868B (zh) 光伏儲能系統及其適用的控制方法
CN112838612A (zh) 一种直流微电网***及其控制方法
WO2024061221A1 (zh) 应用于浮空器的组合能源供电电路以及供电控制方法
US20130300196A1 (en) Multi-port inverter/converter system for dynamic micro-grid applications
CN110932349B (zh) 一种基于无线供电的箭上能源高效拓扑***
CN111900711A (zh) 一种离网型直流微电网的能量协调控制方法
Wang et al. Circuit configuration and control of a grid-tie small-scale wind generation system for expanded wind speed range
CN110138217B (zh) 一种三端口dc-dc变换器及其控制方法
Saranya et al. Design of Grid Independent EV Charging Station
Sekhar et al. A Non-isolated Two Port Converter for Battery charging and Auxilary supply applications
KR20080065817A (ko) 승압컨버터를 이용한 태양광 발전시스템
CN113241797B (zh) 一种直流耦合***及其控制方法
CN216355990U (zh) 智慧楼宇多功能储能***
CN110661299B (zh) 一种光伏***的功率控制方法及应用该方法的光伏***
CN112994211A (zh) 一种高效能空间电源传能***
KR20210109795A (ko) 신재생 에너지와 에너지 저장장치를 위한 전력계통 연계형 통합 컨버터
CN114402525A (zh) 对来自光伏装置的电力进行供应的光伏优化器电力***
Liang et al. A novel three-port dc-dc converter for photovoltaic electric vehicles
Qian et al. An integrated four-port converter for compact and efficient hybrid power systems
Kumar et al. Optimized Novel DC to DC Converter for PV Fed Grid Tied EV Charging Station
CN219659430U (zh) 一种智能混合供电***
RU2699084C1 (ru) Система электропитания космического аппарата
Joshi Intelligent Control Strategy to Enhance Power Smoothing of Renewable based Microgrid with Hybrid Energy Storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867508

Country of ref document: EP

Kind code of ref document: A1