WO2024058053A1 - Alkali metal element-containing halide, electrolyte, battery, and method for producing halide solid electrolyte - Google Patents

Alkali metal element-containing halide, electrolyte, battery, and method for producing halide solid electrolyte Download PDF

Info

Publication number
WO2024058053A1
WO2024058053A1 PCT/JP2023/032725 JP2023032725W WO2024058053A1 WO 2024058053 A1 WO2024058053 A1 WO 2024058053A1 JP 2023032725 W JP2023032725 W JP 2023032725W WO 2024058053 A1 WO2024058053 A1 WO 2024058053A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali metal
mol
halide
metal element
containing halide
Prior art date
Application number
PCT/JP2023/032725
Other languages
French (fr)
Japanese (ja)
Inventor
篤典 土居
貴裕 平井
洋 陰山
セドリック タッセル
風華 丁
Original Assignee
住友化学株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023026409A external-priority patent/JP2024040103A/en
Application filed by 住友化学株式会社, 国立大学法人京都大学 filed Critical 住友化学株式会社
Publication of WO2024058053A1 publication Critical patent/WO2024058053A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/36Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 halogen being the only anion, e.g. NaYF4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present disclosure relates to an alkali metal-containing halide, an electrolyte, a battery, and a method for producing a halide solid electrolyte.
  • Solid electrolytes have attracted attention as electrolytes used in electrochemical devices such as lithium ion batteries (Patent Documents 1 to 3). Solid electrolytes have superior high-temperature durability and high-voltage resistance compared to conventional electrolytes, so they are useful for improving battery performance such as safety, high capacity, rapid charging and discharging, and pack energy density. It is believed that.
  • solid electrolytes of lithium and halides containing metal elements other than lithium are known as materials used for solid electrolytes of lithium ion batteries.
  • Halide solid electrolytes are highly flexible, so they do not require sintering, and they do not emit harmful substances such as H 2 S, so they are highly safe. It has no advantages.
  • halide solid electrolytes have room for improvement in ionic conductivity.
  • the present disclosure has been made in view of the above circumstances, and aims to provide an alkali metal-containing halide with excellent ionic conductivity, a method for producing a halide solid electrolyte, and an electrolyte and battery comprising the same. do.
  • a compound containing an alkali metal element at least one metal element M selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Y, Al, Ga, In, Bi, Sb, Ge, Ti, Zr, Hf, Sn, Nb, Ta, and W, and a halogen element, and having a crystal structure belonging to the space group P63mc .
  • the halogen element comprises Cl.
  • [3] The compound of [1] or [2], wherein the metal element includes a trivalent metal element.
  • [5] The compound according to any one of [1] to [4], wherein the metal element M contains at least one element selected from the group consisting of Al, Ga, In, Sc, La, and Y.
  • [6] The compound according to any one of [1] to [5], wherein the metal element M contains two or more kinds of metal elements.
  • an alkali metal-containing halide with excellent ionic conductivity a method for producing a halide solid electrolyte, and an electrolyte and a battery including the same.
  • FIG. 1 is a diagram showing the results of single crystal X-ray diffraction measurement corresponding to the c-axis direction (001 direction) for the sample of Example 1.
  • FIG. 2 shows powder X-ray diffraction patterns of samples of Examples 1 to 4.
  • FIG. 3 is a powder X-ray diffraction chart for three crystal polymorphs of Li 3 ScCl 6 .
  • FIG. 4 is a ball-and-stick and polyhedral representation of the structure of ⁇ -Li 3 ScCl 6 .
  • FIG. 5 is a Cole-Cole diagram of ionic conductivity in Example 3.
  • FIG. 6 is a diagram showing the results of a charge/discharge test conducted at 0.1 C for Example 1.
  • FIG. 7 is a diagram showing the results of a charge/discharge test conducted at 0.2C for Example 1.
  • FIG. 8 is a diagram showing the cycle number and discharge capacity for Example 1 and ⁇ -Li 3 ScCl 6 .
  • the compound of this embodiment includes an alkali metal element, Mg, Ca, Sr, Ba, Zn, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Contains at least one metal element M selected from the group consisting of Lu, Y, Al, Ga, In, Bi, Sb, Ge, Ti, Zr, Hf, Sn, Nb, Ta, and W, and a halogen element It has a crystal structure belonging to the space group P6 3 mc.
  • the compound of this embodiment is also called an alkali metal containing halide.
  • Such compounds have excellent ionic conductivity. Therefore, it can be used as an ion conductive material containing the alkali metal-containing halide of this embodiment.
  • the crystal structure can be identified by X-ray diffraction measurements. In particular, it can be identified by Rietveld analysis.
  • the alkali metal element contained in the alkali metal-containing halide of this embodiment may be any of Li, Na, K, Rb, and Cs, but may also contain at least one of Li, Na, and K; and Na, and may contain Li.
  • the proportion of one type of alkali metal element may be 80 mol% or more, 90 mol% or more, or 95 mol% or more.
  • the one kind of alkali metal element may be at least one of Li, Na, and K, it may be at least one of Li and Na, and it may be Li.
  • the content of the alkali metal element in the alkali metal-containing halide may be 10 to 40 mol%, 15 to 35 mol%, 20 to 40 mol%, based on the total amount of atoms contained in the alkali metal-containing halide. It may be up to 30 mol%.
  • the metal element M may contain at least one element selected from the group consisting of La, Y, Ga, In, Sc, Bi, Sb, Ge, Zr, Sn, Nb, and Ta, and may include Ga, In, It may contain at least one element selected from the group consisting of Sc, La, Y, Sb and Bi, and may contain at least one element selected from the group consisting of Ga, In, Sc and La. It may contain Sc.
  • the alkali metal-containing halide may contain only one type of metal element M, or may contain two or more types of metal elements M. Further, the alkali metal-containing halide may contain a trivalent metal element M. When two or more types of metal elements M are included, two or more types of trivalent metal elements M may be included, but a trivalent metal element M and a valence other than trivalent (for example, divalent or tetravalent) or above or tetravalent) metal element M may be included. Examples of the divalent metal element M include Mg, Ca, Sr, Ba, and Zn.
  • Trivalent metal elements M include Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Y, Al, Ga, In, Bi, and Sb. Can be mentioned.
  • Examples of the tetravalent metal element M include Ge, Ti, Zr, Hf, and Sn.
  • Examples of the pentavalent metal element M include Nb, Ta, Sb, and Bi.
  • the metal elements M are selected from the group consisting of Sc, La, Y, Ga, In, Bi, Sb, Ge, Zr, Sn, Nb, and Ta. Sc and at least one element selected from the group consisting of Ga, Bi, Sb, Ge, Zr, Sn, Nb, and Ta. .
  • the content of trivalent metal elements may be 30 mol% or more, 40 mol% or more, 50 mol% or more, 80 mol% or more. Often, it may be 90 mol% or more, and it may be 95 mol% or more.
  • the content of Sc may be 30 mol% or more, 40 mol% or more, 50 mol% or more, 80 mol% or more, and 90 mol%. % or more, and may be 95 mol% or more.
  • the metal element M may include a trivalent metal element and a metal element other than trivalent.
  • the metal element other than trivalent may be a tetravalent metal element or a pentavalent metal element, and is at least one element selected from the group consisting of Ga, Ge, Sn, Zr, Bi, Nb, and Ta. It's good to be there.
  • the content of metal elements other than trivalent metal elements may be 50 mol% or less, may be 30 mol% or less, may be 20 mol% or less, and may be 15 mol% or less. The content may be 10 mol% or less.
  • the content of the metal element M in the alkali metal-containing halide may be 5 to 20 mol%, 8 to 15 mol%, 10 to 20 mol%, based on the total amount of atoms contained in the alkali metal-containing halide. It may be up to 15 mol%.
  • the halogen element contained in the alkali metal-containing halide of this embodiment may be any of F, Cl, Br, and I, and may contain at least one of Cl, Br, and I; , Cl, and Br, may contain at least one of F and Cl, and may contain Cl.
  • the alkali metal-containing halide may contain only one type of halogen element, or may contain two or more types of halogen elements. When the alkali metal-containing halide contains two or more types of halogen elements, the alkali metal-containing halide may contain Cl and at least one halogen element other than Cl, and may contain Cl and F. .
  • the content of the halogen element in the alkali metal-containing halide may be 40 to 80 mol%, 50 to 70 mol%, 55 to 80 mol%, based on the total amount of atoms contained in the alkali metal-containing halide. It may be 65 mol%.
  • the content of Cl in the alkali metal-containing halide may be 50 mol% or more, 60 mol% or more, 70 mol% or more based on the total amount of halogen elements contained in the alkali metal-containing halide. It may be 80 mol% or more.
  • the content of halogen elements other than Cl in the alkali metal-containing halide may be 50 mol% or less, 40 mol% or less, and 30 mol% or less based on the total amount of halogen elements contained in the alkali metal-containing halide. It may be mol% or less, and may be 20 mol% or less.
  • the content of halogen elements other than Cl in the alkali metal-containing halide may be 0.5 mol% or more, and 1 to 30 mol%, based on the total amount of halogen elements contained in the alkali metal-containing halide. It may well be between 3 and 20%.
  • the content of F in the alkali metal-containing halide may be 50 mol% or less, 40 mol% or less, and 30 mol% or less based on the total amount of halogen elements contained in the alkali metal-containing halide.
  • the amount may be 20 mol% or less.
  • the content of F in the alkali metal-containing halide may be 0.5 mol% or more, 1 to 30 mol%, 3 to 3 mol%, based on the total amount of halogen elements contained in the alkali metal-containing halide. It may be 20%.
  • the alkali metal-containing halide may be represented by the following compositional formula (1).
  • A is an alkali metal element
  • X is a halogen element
  • Z is an element other than A, M, and X, and 1 ⁇ 4, 0.5 ⁇ 2, 4 ⁇ 8, 0 ⁇ 0.5.
  • may be between 1.5 and 3.5, and between 2 and 3.2. ⁇ may be between 0.8 and 1.5, and between 1 and 1.5. ⁇ may be between 5 and 7, and between 5.5 and 6.5. ⁇ may be 2.1 to 3.1, or 2.3 to 3.05. ⁇ may be between 0.9 and 1.4, and between 0.95 and 1.3. ⁇ may be between 5.7 and 6.3, and between 5.9 and 6.1. ⁇ may be from 0 to 0.1, may be from 0 to 0.01, may be from 0 to 0.001, and ⁇ may be 0.
  • the element that can be introduced as Z is not particularly limited, but may be, for example, at least one selected from the group consisting of C, N, P, O and S; There may be at least one of the following.
  • the method for producing the alkali metal-containing halide of the present embodiment may include, for example, a method including a step of heating a raw material under a pressure of 1 GPa or more.
  • the heating temperature may be 200° C. or more.
  • the pressure to be applied is preferably 2 GPa or more, more preferably 4 GPa or more. Also, it is preferably 15 GPa or less, more preferably 10 GPa or less.
  • the upper and lower limits can be arbitrarily combined. By controlling the pressure within this range, it becomes easy to stabilize the structure of the alkali metal-containing halide.
  • the heating temperature is more preferably 250° C. or higher.
  • the heating temperature is also preferably 1500° C. or lower, and more preferably 1300° C. or lower.
  • the temperature rise rate may be 5° C./min to 200° C./min, 10° C./min to 150° C./min, 20° C./min to 100° C./min, or 30° C./min to 80° C./min.
  • the time required to reach the target heating temperature from the ambient temperature may be 0.1 to 45 minutes, 1 to 30 minutes, 5 to 25 minutes, or 10 to 20 minutes.
  • the temperature drop rate may be 50° C./min to 500° C./min, 80° C./min to 400° C./min, 100° C./min to 300° C./min, or 150° C./min to 250° C./min.
  • the time required to reach the ambient temperature (e.g., 25° C.) from the heating temperature may be 0.1 to 20 minutes, 0.5 to 15 minutes, 1 to 10 minutes, or 2 to 8 minutes.
  • the retention time at the heating temperature may be 0.1 to 10 hours, may be 0.5 to 7 hours, or may be 1 to 5 hours.
  • the pressure may be applied until a predetermined pressure is reached, and then the material may be heated. Alternatively, the temperature may be lowered until the predetermined temperature is reached, and then the pressure may be lowered.
  • raw materials include halides of alkali metals and halides of metal element M.
  • the alkali metal-containing halide of this embodiment can be used, for example, as a material for electrochemical devices such as capacitors and batteries.
  • electrolyte (solid electrolyte) materials examples include electrolyte (solid electrolyte) materials.
  • the battery examples include batteries such as lithium ion batteries and sodium ion batteries that charge and discharge by moving alkali metal ions between a positive electrode and a negative electrode.
  • the alkali metal-containing halide of this embodiment can be used as an electrode material, and may be included in at least one of the positive electrode and the negative electrode.
  • a lithium ion battery includes a positive electrode, a negative electrode, and an electrolyte (solid electrolyte) disposed between the positive electrode and the negative electrode.
  • the alkali metal-containing halide of this embodiment (in this case, a lithium-containing halide) may be included in the electrolyte of a lithium ion battery.
  • the positive electrode of a lithium ion battery is not particularly limited, and may contain a positive electrode active material and, if necessary, a conductive additive, a binder, and the like.
  • the positive electrode may be one in which a layer containing these materials is formed on a current collector.
  • a lithium-containing composite metal oxide containing lithium (Li) and at least one transition metal selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and Cu is used.
  • Examples of such lithium composite metal oxides include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 MnO 3 , LiNix Mny Co 1-x-y O 2 (0 ⁇ x+y ⁇ 1]), LiNix Co y Al 1-x-y O 2 [0 ⁇ x+y ⁇ 1]), LiCr 0.5 Mn 0.5 O 2 , LiFePO 4 , Li 2 FeP 2 O 7 , LiMnPO 4 , LiFeBO 3 , Li 3
  • Examples include V 2 (PO 4 ) 3 , Li 2 CuO 2 , Li 2 FeSiO 4 , Li 2 MnSiO 4 and the like.
  • the negative electrode of a lithium ion battery is not particularly limited, and may contain a negative electrode active material and, if necessary, a conductive aid, a binder, etc.
  • a negative electrode active material such as Li, Si, P, Sn, Si-Mn, Si-Co, Si-Ni, In, and Au, alloys containing these metals, carbon materials such as graphite, and lithium ions between the layers of the carbon materials. Examples include substances into which .
  • the material of the current collector is not particularly limited, and may be a single metal or an alloy of metals such as Cu, Mg, Ti, Fe, Co, Ni, Zn, Al, Ge, In, Au, Pt, Ag, and Pd.
  • the solid electrolyte layer may have multiple layers.
  • the structure may include a sulfide solid electrolyte layer.
  • a structure having a sulfide solid electrolyte layer between the solid electrolyte containing the lithium-containing halide of this embodiment and the negative electrode may be used.
  • the solid electrolyte layer containing a lithium-containing halide of this embodiment has high electrochemical stability, a short circuit will not occur within the battery even if it does not include a sulfide solid electrolyte layer and is in direct contact with the negative electrode. Hateful.
  • the sulfide solid electrolyte is not particularly limited, but includes, for example, Li 6 PS 5 Cl, Li 2 S-PS 5 , Li 10 GeP 2 S 12 , Li 9.6 P 3 S 12 , Li 9.54 Si 1. 74 P 1.44 S 11.7 Cl 0.3 , Li 3 PS 4 and the like.
  • Example 1 Synthesis of hexagonal Li 3 ScCl 6 ( ⁇ -Li 3 ScCl 6 )
  • stoichiometric amounts of LiCl and ScCl 3 were first mixed in a glove box with a nitrogen atmosphere. The mixture was then pressed into pellets with gold foil as a protective material. Typically, the pellets were inserted into a homemade gold crucible sleeve tube with a boron nitride (BN) lid. The sample-to-sleeve interface was then inserted into a graphite tube and encapsulated within a pyrophyllite cube for high-pressure reactions.
  • BN boron nitride
  • the sample cell was pressed to reach 5 GPa in 1 hour and then heated to 1000° C. for 3 hours. After being held at this temperature for 3 hours, the sample was quenched to room temperature within 5 minutes and then the pressure was released to atmospheric pressure for 2 hours. This yielded a lithium-containing chloride ( ⁇ -Li 3 ScCl 6 ).
  • Example 1' A lithium-containing chloride was produced in the same manner as in Example 1, except that the sample cell was pressed to a pressure of 8 GPa in 2 hours, and when the pressure was released, it was brought to atmospheric pressure in 12 hours.
  • FIG. 1 shows an X-ray diffraction measurement of the sample of Example 1 corresponding to the c-axis direction (001 direction).
  • Example 2 A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl and ScCl 3 were used in amounts having the composition shown in Table 2.
  • Example 5 A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl, ZrCl 4 and ScCl 3 were used in amounts having the composition shown in Table 2.
  • Example 20 A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl, LiF, and ScCl 3 were used in amounts having the composition shown in Table 2.
  • Comparative example 1 Ball mill Raw materials were prepared by weighing 0.3201 g of LiCl and 0.8799 g of ZrCl 4 in an argon atmosphere having a dew point of -70° C. or lower (hereinafter referred to as dry argon atmosphere). The above raw materials were put into a 50 ml zirconia pot for a planetary ball mill described below, and 65 g of 4 mm diameter zirconia balls were added thereto. A crude composition of Comparative Example 1 was obtained by mechanochemically treating at 380 rpm for 48 hours. The ball mill was operated in a mode in which the ball mill was stopped for 1 minute after every 10 minutes of rotation, and the direction of rotation was alternately switched between clockwise and counterclockwise.
  • the charged composition of the lithium-containing chloride is Li 2 ZrCl 6 .
  • Planetary ball mill device PM 400 manufactured by Verder Scientific Co., Ltd. - Annealing
  • the crude composition of Comparative Example 1 obtained above was heated at 230° C. for 5 hours in an argon atmosphere to obtain a lithium-containing chloride of Comparative Example 1 with a charging composition of Li 2 ZrCl 6 .
  • Measuring device SmartLab (manufactured by Rigaku Co., Ltd.)
  • X-ray generator CuK ⁇ source, voltage 40kV, current 50mA
  • ⁇ -Li 3 ScCl 6 (Synthesis of ⁇ -Li 3 ScCl 6 ) ⁇ -Li 3 ScCl 6 was obtained by heating a stoichiometric mixture of LiCl and ScCl 3 at 650° C. for 12 hours in a sealed silica tube. In addition, the temperature increase rate during heating was 2° C./min, and the temperature decreasing rate was also 2° C./min.
  • FIG. 3 shows the three crystal polymorphs of Li 3 ScCl 6 obtained by performing powder X-ray diffraction measurements on a sample ground in an agate mortar under the same conditions as the powder X-ray diffraction measurements described above. It is an X-ray diffraction chart.
  • Li 3 ScCl 6 has an ⁇ phase ( ⁇ -Li 3 ScCl 6 ) having a monoclinic (space group: C2/m) crystal structure and a cubic (space group: Fd-3m) crystal structure. It is known that two types of crystal polymorphs of the ⁇ phase ( ⁇ -Li 3 ScCl 6 ) exist. As shown in FIG.
  • Li 3 ScCl 6 synthesized as described above has a hexagonal crystal structure (space group: P6 3 mc), and is a novel crystal structure different from both ⁇ and ⁇ phases. It has a structure. Li 3 ScCl 6 with this new crystal structure is also called ⁇ -Li 3 ScCl 6 .
  • the wavelength of the CuK ⁇ ray (1.54059 ⁇ ) was input into crystal structure analysis software VESTA (Visualization for Electronic and Structural Analysis). By performing a simulation (theoretical calculation), a diffraction chart of ⁇ phase-Li 3 ScCl 6 was obtained. It also agrees well with the diffraction chart of ⁇ phase-Li 3 ScCl 6 (lowermost graph) obtained by theoretical calculation.
  • Table 1 shows ⁇ -Li 3 ScCl 6 crystal data obtained from single-crystal X-ray diffraction at 123K and structure optimization data.
  • Li 3 ScCl 6 -5 GPa and Li 3 ScCl 6 -8 GPa refer to samples obtained under pressures of 5 GPa and 8 GPa (ie Example 1 and Example 1'), respectively.
  • FIG. 4 is a ball-and-stick and polyhedral representation of the structure of ⁇ -Li 3 ScCl 6 .
  • a pressure molding die including a frame, a punch lower part, and a punch upper part was prepared.
  • the frame mold was made of insulating polycarbonate.
  • both the punch upper part and the punch lower part were made of electronically conductive stainless steel, and were electrically connected to terminals of an impedance analyzer (Solatron Analytical, Sl1260).
  • the ionic conductivity of the lithium-containing halide was measured by the following method. First, in a dry argon atmosphere, lithium-containing halide powder was filled onto the lower part of a punch inserted into the hollow part of the frame from vertically below. Then, by pushing the upper part of the punch into the hollow part of the frame from above, a pressure of 370 MPa was applied to the lithium-containing halide powder inside the pressure molding die. After pressure is applied, the punch is tightened and fixed from above and below with a jig, and while a constant pressure is maintained, the lithium-containing halide is measured by electrochemical impedance measurement using the impedance analyzer described above. Impedance was measured.
  • a Cole-Cole diagram was created from the impedance measurement results.
  • the real value of the impedance at the measurement point where the absolute value of the phase of the complex impedance was the smallest was regarded as the resistance value of the halide solid electrolyte material to ionic conduction.
  • the ionic conductivity was calculated based on the following mathematical formula (III). Table 2 shows the ionic conductivity ( ⁇ 25°C ) of each sample at 25°C.
  • (R SE ⁇ S/t) -1 ...(III) here, ⁇ is the ionic conductivity, S is the contact area of the lithium-containing halide with the upper part of the punch (equal to the cross-sectional area of the hollow part of the frame), R SE is the resistance value of the solid electrolyte material in impedance measurement, t is the thickness of the lithium-containing halide when pressure is applied.
  • FIG. 5 is a Cole-Cole diagram of ionic conductivity in Example 3.
  • FIG. 5 shows the measurement results at 25°C, 40°C, 60°C, 80°C and 100°C, respectively.
  • the charge/discharge test was carried out using the following product.
  • Charge/discharge tester Toyo System Co., Ltd. TOSCAT-3100
  • a charge/discharge test was conducted at 60° C. at three C rates: 0.1C, 1C, and 3C.
  • Charging was performed to 3.7 V using constant current and constant voltage (CCCV charging) at a current density corresponding to each C rate.
  • the discharge was carried out to 1.9V at a current density corresponding to each C rate.
  • a secondary battery was determined to be chargeable and dischargeable if an open circuit voltage was obtained without short circuiting after fabrication, and the charge capacity and discharge capacity were confirmed in the charge and discharge test described above.
  • Example 1 a charge/discharge test was conducted five times at a C rate of 0.1C and 0.2.
  • FIG. 6 is a diagram showing the results of a charge/discharge test conducted at 0.1 C for Example 1.
  • FIG. 7 is a diagram showing the results of a charge/discharge test conducted at 0.2C for Example 1.
  • FIG. 8 is a diagram showing the cycle number and discharge capacity for Example 1 and ⁇ -Li 3 ScCl 6 .
  • FIG. 8 shows the discharge capacity of ⁇ -Li 3 ScCl 6 measured for 5 cycles each at C rates of 0.1C, 0.2C, and 0.5C, and the discharge capacity measured for 10 cycles at 1C thereafter. Also shown is the discharge capacity of ⁇ -Li 3 ScCl 6 measured for 5 cycles each at a C rate of 0.1C and 0.2C.
  • the lithium-containing chlorides of Examples 1 to 5 and 20 had better ionic conductivity than the comparative example.
  • Li ion diffusion behavior was determined by calculating the Li mean square displacement of a compound belonging to the space group P6 3 mc based on a molecular dynamics simulation.
  • the density functional PBE was used, the nPT ensemble was used, the time step width was 1 fs, the simulation time was 300 ps, and the simulation temperature was 700K. Occupancy/occupancy of non-integer occupied number sites of trivalent atoms was selected according to the occupancy rate so as to be thermodynamically most stable.
  • Li ion mean square displacement ( ⁇ n (r(n, t) - r(n, 0)) 2 )/N...(nn)
  • r(n, t) is the coordinate of the n-th Li atom at time t
  • N is the total number of Li included in the calculation cell.
  • Example 1 Regarding ⁇ -Li 3 ScCl 6 of Example 1, the mean square displacement of Li in the compound was calculated based on molecular dynamics simulation. The results are listed in Table 3 below.
  • Example 12 For a compound having a crystal structure similar to ⁇ -Li 3 ScCl 6 and in which the Sc element site is occupied by two types of trivalent elements, the Li mean square displacement of the compound was calculated based on molecular dynamics simulation. I asked. For reference, an example in which Ga and Sc occupy 50 mol % of each site is shown, but this does not exclude other compositions. The results are listed in Table 3 below.
  • each of the compounds of Examples 1 and 6 to 19 exhibits a mean square displacement of Li ions of several ⁇ 2 or more.
  • the fact that the mean square displacement greatly exceeds several angstroms 2 means that Li is diffused in the solid, and the solid electrolyte is capable of conducting Li.

Abstract

Provided is a compound containing: an alkali metal element; at least one metal element M selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Y, Al, Ga, In, Bi, Sb, Ge, Ti, Zr, Hf, Sn, Nb, Ta, and W; and a halogen element, wherein the compound has a crystal structure belonging to a space group P63mc.

Description

アルカリ金属含有ハロゲン化物、電解質、電池及びハロゲン化物固体電解質の製造方法Alkali metal-containing halide, electrolyte, battery, and method for producing halide solid electrolyte
 本開示は、アルカリ金属含有ハロゲン化物、電解質、電池及びハロゲン化物固体電解質の製造方法に関する。 The present disclosure relates to an alkali metal-containing halide, an electrolyte, a battery, and a method for producing a halide solid electrolyte.
 近年、リチウムイオン電池等の電気化学デバイスに使用される電解質として、固体電解質が注目されている(特許文献1~3)。固体電解質は、従来の電解液と比較して、高温耐久性、高電圧耐性等に優れるため、安全性、高容量化、急速充放電、パックエネルギー密度などの電池の性能の向上に有用であると考えられている。 In recent years, solid electrolytes have attracted attention as electrolytes used in electrochemical devices such as lithium ion batteries (Patent Documents 1 to 3). Solid electrolytes have superior high-temperature durability and high-voltage resistance compared to conventional electrolytes, so they are useful for improving battery performance such as safety, high capacity, rapid charging and discharging, and pack energy density. It is believed that.
 特許文献1~3に記載されるように、リチウムイオン電池の固体電解質に使用される材料としてリチウム及びリチウム以外の金属元素を含むハロゲン化物の固体電解質が知られている。ハロゲン化物固体電解質は、柔軟性が高いため焼結を必要としないこと、HS等の有害な物質を放出しないため安全性が高いことなど、酸化物系又は硫化物系の固体電解質にはない利点を備えている。 As described in Patent Documents 1 to 3, solid electrolytes of lithium and halides containing metal elements other than lithium are known as materials used for solid electrolytes of lithium ion batteries. Halide solid electrolytes are highly flexible, so they do not require sintering, and they do not emit harmful substances such as H 2 S, so they are highly safe. It has no advantages.
国際公開第2020137026号International Publication No. 2020137026 国際公開第2022032311号International Publication No. 2022032311 国際公開第2021234416号International Publication No. 2021234416
 しかしながら、ハロゲン化物固体電解質は、イオン伝導度に改善の余地がある。 However, halide solid electrolytes have room for improvement in ionic conductivity.
 本開示は上述の事情に鑑みてなされたものであり、イオン伝導度に優れるアルカリ金属含有ハロゲン化物、及びハロゲン化物固体電解質の製造方法、並びにそれらを備える電解質、及び電池を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and aims to provide an alkali metal-containing halide with excellent ionic conductivity, a method for producing a halide solid electrolyte, and an electrolyte and battery comprising the same. do.
 本開示は、以下の実施形態[1]~[10]を含む。
[1]アルカリ金属元素と、Mg、Ca、Sr、Ba、Zn、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu、Y、Al、Ga、In、Bi、Sb、Ge、Ti、Zr、Hf、Sn、Nb、Ta、及びWからなる群から選択される少なくとも一種の金属元素Mと、ハロゲン元素とを含有し、空間群P6mcに帰属される結晶構造を有する、化合物。
[2]前記ハロゲン元素がClを含む、[2]の化合物。
[3]前記金属元素が3価の金属元素を含む、[1]又は[2]の化合物。
[4]下記組成式(1)で表される、[1]~[3]のいずれか一つの化合物。
αβγ・・・(1)
(式中、Aはアルカリ金属元素であり、Xは、ハロゲン元素であり、1≦α≦4、0.5≦β≦2、4≦γ≦8である。)
[5]金属元素MがAl、Ga、In、Sc、La、及びYからなる群から選択される少なくとも一種の元素を含む、[1]~[4]のいずれか一つの化合物。
[6]前記金属元素Mが2種以上の金属元素を含む、[1]~[5]のいずれか一つの化合物。
[7]前記ハロゲン元素が2種以上のハロゲン元素を含む、[1]~[6]のいずれか一つの化合物。
[8][1]~[7]のいずれか一つの化合物を含む、電解質。
[9][8]の電解質を含む、電池。
[10]原料を1GPa以上の圧力下で加熱する工程を含む、ハロゲン化物固体電解質の製造方法。
The present disclosure includes the following embodiments [1] to [10].
[1] A compound containing an alkali metal element, at least one metal element M selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Y, Al, Ga, In, Bi, Sb, Ge, Ti, Zr, Hf, Sn, Nb, Ta, and W, and a halogen element, and having a crystal structure belonging to the space group P63mc .
[2] The compound according to [2], wherein the halogen element comprises Cl.
[3] The compound of [1] or [2], wherein the metal element includes a trivalent metal element.
[4] Any one of the compounds [1] to [3] represented by the following composition formula (1):
A α M β X γ ... (1)
(In the formula, A is an alkali metal element, X is a halogen element, and 1≦α≦4, 0.5≦β≦2, and 4≦γ≦8.)
[5] The compound according to any one of [1] to [4], wherein the metal element M contains at least one element selected from the group consisting of Al, Ga, In, Sc, La, and Y.
[6] The compound according to any one of [1] to [5], wherein the metal element M contains two or more kinds of metal elements.
[7] The compound according to any one of [1] to [6], wherein the halogen element comprises two or more kinds of halogen elements.
[8] An electrolyte comprising any one of the compounds according to [1] to [7].
[9] A battery comprising the electrolyte of [8].
[10] A method for producing a halide solid electrolyte, comprising the step of heating a raw material under a pressure of 1 GPa or more.
 本開示によれば、イオン伝導度に優れるアルカリ金属含有ハロゲン化物、及びハロゲン化物固体電解質の製造方法、並びにそれらを備える電解質、及び電池を提供することができる。 According to the present disclosure, it is possible to provide an alkali metal-containing halide with excellent ionic conductivity, a method for producing a halide solid electrolyte, and an electrolyte and a battery including the same.
図1は、実施例1のサンプルについてc軸方向(001方向)に対応した単結晶X線回折測定の結果を示す図である。FIG. 1 is a diagram showing the results of single crystal X-ray diffraction measurement corresponding to the c-axis direction (001 direction) for the sample of Example 1. 図2は、実施例1~4のサンプルの粉末X線回折パターンである。FIG. 2 shows powder X-ray diffraction patterns of samples of Examples 1 to 4. 図3は、LiScClの3つの結晶多形についての粉末X線回折チャートである。FIG. 3 is a powder X-ray diffraction chart for three crystal polymorphs of Li 3 ScCl 6 . 図4は、γ-LiScClの構造のボール-アンド-スティック及び多面体表示である。FIG. 4 is a ball-and-stick and polyhedral representation of the structure of γ-Li 3 ScCl 6 . 図5は、実施例3のイオン伝導度のCole-Cole線図である。FIG. 5 is a Cole-Cole diagram of ionic conductivity in Example 3. 図6は、実施例1について0.1Cで充放電試験を行った結果を示す図である。FIG. 6 is a diagram showing the results of a charge/discharge test conducted at 0.1 C for Example 1. 図7は、実施例1について0.2Cで充放電試験を行った結果を示す図である。FIG. 7 is a diagram showing the results of a charge/discharge test conducted at 0.2C for Example 1. 図8は、実施例1と、α-LiScClについて、サイクル数と放電容量を示す図である。FIG. 8 is a diagram showing the cycle number and discharge capacity for Example 1 and α-Li 3 ScCl 6 .
 本実施形態の化合物は、アルカリ金属元素と、Mg、Ca、Sr、Ba、Zn、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu、Y、Al、Ga、In、Bi、Sb、Ge、Ti、Zr、Hf、Sn、Nb、Ta、及びWからなる群から選択される少なくとも一種の金属元素Mと、ハロゲン元素とを含有し、空間群P6mcに帰属される結晶構造を有する。なお、以下では、本実施形態の化合物をアルカリ金属含有ハロゲン化物とも呼ぶ。このような化合物はイオン伝導度に優れる。そのため、本実施形態のアルカリ金属含有ハロゲン化物を含むイオン伝導性物質として使用できる。
 結晶構造はX線回折測定によって同定することが可能である。特に、リートベルト解析によって同定することができる。
The compound of this embodiment includes an alkali metal element, Mg, Ca, Sr, Ba, Zn, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Contains at least one metal element M selected from the group consisting of Lu, Y, Al, Ga, In, Bi, Sb, Ge, Ti, Zr, Hf, Sn, Nb, Ta, and W, and a halogen element It has a crystal structure belonging to the space group P6 3 mc. In addition, below, the compound of this embodiment is also called an alkali metal containing halide. Such compounds have excellent ionic conductivity. Therefore, it can be used as an ion conductive material containing the alkali metal-containing halide of this embodiment.
The crystal structure can be identified by X-ray diffraction measurements. In particular, it can be identified by Rietveld analysis.
 また、ハロゲン化物固体電解質は、電気化学的な安定性に改善の余地があり、例えば、固体電解質として使用する場合に、負極との間に硫化物の分離膜を配置するなどしなければ、電池内で短絡が発生する場合がある。本実施形態のアルカリ金属含有ハロゲン化物は電気化学的な安定性にも優れる傾向にある。 In addition, there is room for improvement in electrochemical stability of halide solid electrolytes. For example, when used as a solid electrolyte, unless a sulfide separation membrane is placed between the negative electrode and the battery A short circuit may occur within the The alkali metal-containing halide of this embodiment also tends to have excellent electrochemical stability.
 本実施形態のアルカリ金属含有ハロゲン化物に含まれるアルカリ金属元素は、Li、Na、K、Rb及びCsのいずれであってもよいが、Li、Na及びKの少なくとも一種を含んでいてよく、Li及びNaの少なくとも一方を含んでいてよく、Liを含んでいてよい。 The alkali metal element contained in the alkali metal-containing halide of this embodiment may be any of Li, Na, K, Rb, and Cs, but may also contain at least one of Li, Na, and K; and Na, and may contain Li.
 アルカリ金属含有ハロゲン化物に含まれるアルカリ金属元素のうち、1種のアルカリ金属元素の割合が80モル%以上であってよく、90モル%以上であってよく、95モル%以上であってよい。当該1種のアルカリ金属元素はLi、Na及びKの少なくとも一種であってよく、Li及びNaの少なくとも一方であってよく、Liであってよい。 Among the alkali metal elements contained in the alkali metal-containing halide, the proportion of one type of alkali metal element may be 80 mol% or more, 90 mol% or more, or 95 mol% or more. The one kind of alkali metal element may be at least one of Li, Na, and K, it may be at least one of Li and Na, and it may be Li.
 アルカリ金属含有ハロゲン化物におけるアルカリ金属元素の含有量は、アルカリ金属含有ハロゲン化物に含まれる原子の総量に対して、10~40モル%であってよく、15~35モル%であってよく、20~30モル%であってよい。 The content of the alkali metal element in the alkali metal-containing halide may be 10 to 40 mol%, 15 to 35 mol%, 20 to 40 mol%, based on the total amount of atoms contained in the alkali metal-containing halide. It may be up to 30 mol%.
 金属元素Mは、La、Y、Ga、In、Sc、Bi、Sb、Ge、Zr、Sn、Nb、及びTaからなる群から選択される少なくとも一種の元素を含んでいてよく、Ga、In、Sc、La、Y、Sb及びBiからなる群から選択される少なくとも一種の元素を含んでいてよく、Ga、In、Sc、及びLaからなる群から選択される少なくとも一種の元素を含んでいても良く、Scを含んでいてよい。 The metal element M may contain at least one element selected from the group consisting of La, Y, Ga, In, Sc, Bi, Sb, Ge, Zr, Sn, Nb, and Ta, and may include Ga, In, It may contain at least one element selected from the group consisting of Sc, La, Y, Sb and Bi, and may contain at least one element selected from the group consisting of Ga, In, Sc and La. It may contain Sc.
 アルカリ金属含有ハロゲン化物は、1種のみの金属元素Mを含んでいてもよいが、2種以上の金属元素Mを含んでいてよい。また、アルカリ金属含有ハロゲン化物は、3価の金属元素Mを含んでいてよい。2種以上の金属元素Mが含まれる場合、3価の金属元素Mが2種以上含まれていてもよいが、3価の金属元素Mと3価以外の価数(例えば2価若しくは4価以上、又は4価)の金属元素Mとが含まれていてもよい。2価の金属元素Mとしては、Mg、Ca、Sr、Ba、及びZnが挙げられる。3価の金属元素Mとしては、Sc、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu、Y、Al、Ga、In、Bi、及びSbが挙げられる。4価の金属元素MとしてはGe、Ti、Zr、Hf、及びSnが挙げられる。5価の金属元素Mとしては、Nb、Ta、Sb及びBiが挙げられる。アルカリ金属含有ハロゲン化物が金属元素Mを2種以上含む場合、金属元素Mは、Scと、La、Y、Ga、In、Bi、Sb、Ge、Zr、Sn、Nb、及びTaからなる群から選択される少なくとも一種の元素とを含んでいてよく、Scと、Ga、Bi、Sb、Ge、Zr、Sn、Nb、及びTaからなる群から選択される少なくとも一種の元素とを含んでいてよい。 The alkali metal-containing halide may contain only one type of metal element M, or may contain two or more types of metal elements M. Further, the alkali metal-containing halide may contain a trivalent metal element M. When two or more types of metal elements M are included, two or more types of trivalent metal elements M may be included, but a trivalent metal element M and a valence other than trivalent (for example, divalent or tetravalent) or above or tetravalent) metal element M may be included. Examples of the divalent metal element M include Mg, Ca, Sr, Ba, and Zn. Trivalent metal elements M include Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Y, Al, Ga, In, Bi, and Sb. Can be mentioned. Examples of the tetravalent metal element M include Ge, Ti, Zr, Hf, and Sn. Examples of the pentavalent metal element M include Nb, Ta, Sb, and Bi. When the alkali metal-containing halide contains two or more metal elements M, the metal elements M are selected from the group consisting of Sc, La, Y, Ga, In, Bi, Sb, Ge, Zr, Sn, Nb, and Ta. Sc and at least one element selected from the group consisting of Ga, Bi, Sb, Ge, Zr, Sn, Nb, and Ta. .
 金属元素Mのうち、3価の金属元素の含有量は、30モル%以上であってよく、40モル%以上であってよく、50モル%以上であってよく、80モル%以上であってよく、90モル%以上であってよく、95モル%以上であってよい。金属元素Mのうち、Scの含有量は、30モル%以上であってよく、40モル%以上であってよく、50モル%以上であってよく、80モル%以上であってよく、90モル%以上であってよく、95モル%以上であってよい。 Of the metal elements M, the content of trivalent metal elements may be 30 mol% or more, 40 mol% or more, 50 mol% or more, 80 mol% or more. Often, it may be 90 mol% or more, and it may be 95 mol% or more. Among the metal elements M, the content of Sc may be 30 mol% or more, 40 mol% or more, 50 mol% or more, 80 mol% or more, and 90 mol%. % or more, and may be 95 mol% or more.
 金属元素Mは、3価の金属元素と、3価以外の金属元素とを含んでいてよい。3価以外の金属元素は、4価の金属元素又は5価の金属元素であってよく、Ga、Ge、Sn、Zr、Bi、Nb、及びTaからなる群から選択される少なくとも一種の元素であってよい。金属元素Mのうち、3価以外の金属元素の含有量は、50モル%以下であってよく、30モル%以下であってよく、20モル%以下であってよく、15モル%以下であってよく、10モル%以下であってよい。 The metal element M may include a trivalent metal element and a metal element other than trivalent. The metal element other than trivalent may be a tetravalent metal element or a pentavalent metal element, and is at least one element selected from the group consisting of Ga, Ge, Sn, Zr, Bi, Nb, and Ta. It's good to be there. Among the metal elements M, the content of metal elements other than trivalent metal elements may be 50 mol% or less, may be 30 mol% or less, may be 20 mol% or less, and may be 15 mol% or less. The content may be 10 mol% or less.
 アルカリ金属含有ハロゲン化物における金属元素Mの含有量は、アルカリ金属含有ハロゲン化物に含まれる原子の総量に対して、5~20モル%であってよく、8~15モル%であってよく、10~15モル%であってよい。 The content of the metal element M in the alkali metal-containing halide may be 5 to 20 mol%, 8 to 15 mol%, 10 to 20 mol%, based on the total amount of atoms contained in the alkali metal-containing halide. It may be up to 15 mol%.
 本実施形態のアルカリ金属含有ハロゲン化物に含まれるハロゲン元素は、F、Cl、Br、及びIのうちいずれであってもよいが、Cl、Br、及びIの少なくとも一種を含んでいてよく、F、Cl及びBrの少なくとも一方を含んでいてよく、F及びClの少なくとも一方を含んでいてよく、Clを含んでいてよい。アルカリ金属含有ハロゲン化物は、1種のみのハロゲン元素を含んでいてもよいが、2種以上のハロゲン元素を含んでいてもよい。アルカリ金属含有ハロゲン化物が2種以上のハロゲン元素を含む場合、アルカリ金属含有ハロゲン化物は、ClとCl以外のハロゲン元素のうち少なくとも一つとを含んでいてよく、ClとFとを含んでいてよい。 The halogen element contained in the alkali metal-containing halide of this embodiment may be any of F, Cl, Br, and I, and may contain at least one of Cl, Br, and I; , Cl, and Br, may contain at least one of F and Cl, and may contain Cl. The alkali metal-containing halide may contain only one type of halogen element, or may contain two or more types of halogen elements. When the alkali metal-containing halide contains two or more types of halogen elements, the alkali metal-containing halide may contain Cl and at least one halogen element other than Cl, and may contain Cl and F. .
 アルカリ金属含有ハロゲン化物におけるハロゲン元素の含有量は、アルカリ金属含有ハロゲン化物に含まれる原子の総量に対して、40~80モル%であってよく、50~70モル%であってよく、55~65モル%であってよい。アルカリ金属含有ハロゲン化物におけるClの含有量は、アルカリ金属含有ハロゲン化物に含まれるハロゲン元素の総量に対して50モル%以上であってよく、60モル%以上であってよく、70モル%以上であってよく、80モル%以上であってよい。アルカリ金属含有ハロゲン化物におけるCl以外のハロゲン元素の含有量は、アルカリ金属含有ハロゲン化物に含まれるハロゲン元素の総量に対して50モル%以下であってよく、40モル%以下であってよく、30モル%以下であってよく、20モル%以下であってよい。アルカリ金属含有ハロゲン化物におけるCl以外のハロゲン元素の含有量は、アルカリ金属含有ハロゲン化物に含まれるハロゲン元素の総量に対して0.5モル%以上であってよく、1~30モル%であってよく、3~20%であってよい。アルカリ金属含有ハロゲン化物におけるFの含有量は、アルカリ金属含有ハロゲン化物に含まれるハロゲン元素の総量に対して50モル%以下であってよく、40モル%以下であってよく、30モル%以下であってよく、20モル%以下であってよい。アルカリ金属含有ハロゲン化物におけるFの含有量は、アルカリ金属含有ハロゲン化物に含まれるハロゲン元素の総量に対して0.5モル%以上であってよく、1~30モル%であってよく、3~20%であってよい。 The content of the halogen element in the alkali metal-containing halide may be 40 to 80 mol%, 50 to 70 mol%, 55 to 80 mol%, based on the total amount of atoms contained in the alkali metal-containing halide. It may be 65 mol%. The content of Cl in the alkali metal-containing halide may be 50 mol% or more, 60 mol% or more, 70 mol% or more based on the total amount of halogen elements contained in the alkali metal-containing halide. It may be 80 mol% or more. The content of halogen elements other than Cl in the alkali metal-containing halide may be 50 mol% or less, 40 mol% or less, and 30 mol% or less based on the total amount of halogen elements contained in the alkali metal-containing halide. It may be mol% or less, and may be 20 mol% or less. The content of halogen elements other than Cl in the alkali metal-containing halide may be 0.5 mol% or more, and 1 to 30 mol%, based on the total amount of halogen elements contained in the alkali metal-containing halide. It may well be between 3 and 20%. The content of F in the alkali metal-containing halide may be 50 mol% or less, 40 mol% or less, and 30 mol% or less based on the total amount of halogen elements contained in the alkali metal-containing halide. The amount may be 20 mol% or less. The content of F in the alkali metal-containing halide may be 0.5 mol% or more, 1 to 30 mol%, 3 to 3 mol%, based on the total amount of halogen elements contained in the alkali metal-containing halide. It may be 20%.
 アルカリ金属含有ハロゲン化物は、下記組成式(1)で表されるものであってよい。
αβγδ・・・(1)
(式中、Aはアルカリ金属元素であり、Xはハロゲン元素であり、ZはA、M及びX以外の元素であり、1≦α≦4、0.5≦β≦2、4≦γ≦8、0≦δ≦0.5である。)
The alkali metal-containing halide may be represented by the following compositional formula (1).
A α M β X γ Z δ ...(1)
(In the formula, A is an alkali metal element, X is a halogen element, Z is an element other than A, M, and X, and 1≦α≦4, 0.5≦β≦2, 4≦γ≦ 8, 0≦δ≦0.5.)
 αは、1.5~3.5であってよく、2~3.2であってよい。βは、0.8~1.5であってよく、1~1.5であってよい。γは5~7であってよく、5.5~6.5であってよい。αとしては2.1~3.1であってよく、2.3~3.05であってよい。
 βは、0.9~1.4であってよく、0.95~1.3であってよく。
 γは、5.7~6.3であってよく、5.9~6.1であってよい。
 δは、0~0.1であってよく、0~0.01であってよく、0~0.001であってよく、δは0であってもよい。
 Zとして導入できる元素は、特に限定はされないが、例えば、C、N、P、O及びSからなる群から選択される少なくとも一つであってよく、N、P及びSからなる群から選択される少なくとも一つであってよい。
α may be between 1.5 and 3.5, and between 2 and 3.2. β may be between 0.8 and 1.5, and between 1 and 1.5. γ may be between 5 and 7, and between 5.5 and 6.5. α may be 2.1 to 3.1, or 2.3 to 3.05.
β may be between 0.9 and 1.4, and between 0.95 and 1.3.
γ may be between 5.7 and 6.3, and between 5.9 and 6.1.
δ may be from 0 to 0.1, may be from 0 to 0.01, may be from 0 to 0.001, and δ may be 0.
The element that can be introduced as Z is not particularly limited, but may be, for example, at least one selected from the group consisting of C, N, P, O and S; There may be at least one of the following.
 本実施形態のアルカリ金属含有ハロゲン化物の製造方法としては、例えば、原料を1GPa以上の圧力下で加熱する工程を含む方法が挙げられる。加熱温度としては、200℃以上であってよい。
 加圧する圧力としては、2GPa以上が好ましく、4GPa以上がより好ましい。また、15GPa以下が好ましく、10GPa以下が好ましい。上限と下限は任意に組み合わせることが可能である。この圧力範囲に制御することによって、アルカリ金属含有ハロゲン化物の構造を安定化させることが容易になる。
 加熱温度は250℃以上がより好ましい。また、加熱温度は1500℃以下であることが好ましく、1300℃以下であることが好ましい。この温度範囲に制御することによって、本実施形態のアルカリ金属含有ハロゲン化物の構造を安定化させることが容易になる。
 昇温レートは、5℃/分~200℃/分であってよく、10℃/分~150℃/分であってよく、20℃/分~100℃/分であってよく、30℃/分~80℃/分であってよい。雰囲気温度(例えば25℃)から目的の加熱温度まで達するのに要する時間は、0.1~45分であってよく、1~30分であってよく、5~25分であってよく、10~20分であってよい。
 降温レートは、50℃/分~500℃/分であってよく、80℃/分~400℃/分であってよく、100℃/分~300℃/分であってよく、150℃/分~250℃/分であってよい。加熱温度から雰囲気温度(例えば25℃)まで達するのに要する時間は、0.1~20分であってよく、0.5~15分であってよく、1~10分であってよく、2~8分であってよい。
 加熱温度での保持時間は、0.1~10時間であってよく、0.5~7時間であってよく、1~5時間であってよい。
 圧力を所定の圧力となるまで印加した後、加熱しても良い。また、降温し、所定の温度となった後、圧力を降圧しても良い。
The method for producing the alkali metal-containing halide of the present embodiment may include, for example, a method including a step of heating a raw material under a pressure of 1 GPa or more. The heating temperature may be 200° C. or more.
The pressure to be applied is preferably 2 GPa or more, more preferably 4 GPa or more. Also, it is preferably 15 GPa or less, more preferably 10 GPa or less. The upper and lower limits can be arbitrarily combined. By controlling the pressure within this range, it becomes easy to stabilize the structure of the alkali metal-containing halide.
The heating temperature is more preferably 250° C. or higher. The heating temperature is also preferably 1500° C. or lower, and more preferably 1300° C. or lower. By controlling the temperature within this range, it becomes easy to stabilize the structure of the alkali metal-containing halide of this embodiment.
The temperature rise rate may be 5° C./min to 200° C./min, 10° C./min to 150° C./min, 20° C./min to 100° C./min, or 30° C./min to 80° C./min. The time required to reach the target heating temperature from the ambient temperature (e.g., 25° C.) may be 0.1 to 45 minutes, 1 to 30 minutes, 5 to 25 minutes, or 10 to 20 minutes.
The temperature drop rate may be 50° C./min to 500° C./min, 80° C./min to 400° C./min, 100° C./min to 300° C./min, or 150° C./min to 250° C./min. The time required to reach the ambient temperature (e.g., 25° C.) from the heating temperature may be 0.1 to 20 minutes, 0.5 to 15 minutes, 1 to 10 minutes, or 2 to 8 minutes.
The retention time at the heating temperature may be 0.1 to 10 hours, may be 0.5 to 7 hours, or may be 1 to 5 hours.
The pressure may be applied until a predetermined pressure is reached, and then the material may be heated. Alternatively, the temperature may be lowered until the predetermined temperature is reached, and then the pressure may be lowered.
 原料としては、アルカリ金属のハロゲン化物及び金属元素Mのハロゲン化物が挙げられる。 Examples of raw materials include halides of alkali metals and halides of metal element M.
 本実施形態のアルカリ金属含有ハロゲン化物は、例えば、キャパシタ、電池等の電気化学デバイスの材料として使用することができる。そのような材料としては、例えば、電解質(固体電解質)の材料が挙げられる。電池としては、リチウムイオン電池、ナトリウムイオン電池等の正極及び負極の間をアルカリ金属イオンが移動することにより充放電を行う電池が挙げられる。また、本実施形態のアルカリ金属含有ハロゲン化物は、電極材料として使用することができ、正極及び負極の少なくとも一方に含まれていてよい。 The alkali metal-containing halide of this embodiment can be used, for example, as a material for electrochemical devices such as capacitors and batteries. Examples of such materials include electrolyte (solid electrolyte) materials. Examples of the battery include batteries such as lithium ion batteries and sodium ion batteries that charge and discharge by moving alkali metal ions between a positive electrode and a negative electrode. Further, the alkali metal-containing halide of this embodiment can be used as an electrode material, and may be included in at least one of the positive electrode and the negative electrode.
 以下、本実施形態の電池について、リチウムイオン電池を例にとって説明する。リチウムイオン電池は、正極及び負極と、当該正極及び負極の間に配置された電解質(固体電解質)とを含む。本実施形態のアルカリ金属含有ハロゲン化物(この場合、リチウム含有ハロゲン化物である)は、リチウムイオン電池の電解質に含まれていてよい。
 リチウムイオン電池の正極としては、特に限定されず、正極活物質を含み、且つ必要に応じて導電助剤、結合剤等を含むものであってよい。
 正極は、これらの材料を含む層が集電体上に形成されたものであってよい。正極活物質としては、例えば、リチウム(Li)と、V、Cr、Mn、Fe、Co、Ni、Cuからなる群から選択される少なくとも1種の遷移金属とを含むリチウム含有複合金属酸化物が挙げられる。このようなリチウム複合金属酸化物としては、例えば、LiCoO、LiNiO、LiMn、LiMnO、LiNiMnCo1-x-y[0<x+y<1])、LiNiCoAl1-x-y[0<x+y<1])、LiCr0.5Mn0.5、LiFePO、LiFeP、LiMnPO、LiFeBO、Li(PO、LiCuO、LiFeSiO、LiMnSiOなどが挙げられる。
The battery of this embodiment will be described below, taking a lithium ion battery as an example. A lithium ion battery includes a positive electrode, a negative electrode, and an electrolyte (solid electrolyte) disposed between the positive electrode and the negative electrode. The alkali metal-containing halide of this embodiment (in this case, a lithium-containing halide) may be included in the electrolyte of a lithium ion battery.
The positive electrode of a lithium ion battery is not particularly limited, and may contain a positive electrode active material and, if necessary, a conductive additive, a binder, and the like.
The positive electrode may be one in which a layer containing these materials is formed on a current collector. As the positive electrode active material, for example, a lithium-containing composite metal oxide containing lithium (Li) and at least one transition metal selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and Cu is used. Can be mentioned. Examples of such lithium composite metal oxides include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 MnO 3 , LiNix Mny Co 1-x-y O 2 (0<x+y<1]), LiNix Co y Al 1-x-y O 2 [0<x+y<1]), LiCr 0.5 Mn 0.5 O 2 , LiFePO 4 , Li 2 FeP 2 O 7 , LiMnPO 4 , LiFeBO 3 , Li 3 Examples include V 2 (PO 4 ) 3 , Li 2 CuO 2 , Li 2 FeSiO 4 , Li 2 MnSiO 4 and the like.
 リチウムイオン電池の負極としては特に限定されず、負極活物質を含み、且つ必要に応じて導電助剤、結合剤等を含むものであってよい。例えば、Li、Si、P、Sn、Si-Mn、Si-Co、Si-Ni、In、Auなどの金属及びこれらの金属を含む合金、グラファイト等の炭素材料、当該炭素材料の層間にリチウムイオンが挿入された物質などを挙げることができる。 The negative electrode of a lithium ion battery is not particularly limited, and may contain a negative electrode active material and, if necessary, a conductive aid, a binder, etc. For example, metals such as Li, Si, P, Sn, Si-Mn, Si-Co, Si-Ni, In, and Au, alloys containing these metals, carbon materials such as graphite, and lithium ions between the layers of the carbon materials. Examples include substances into which .
 集電体の材質は特に限定されず、Cu、Mg、Ti、Fe、Co、Ni、Zn、Al、Ge、In、Au、Pt、Ag、Pd等の金属の単体又は合金であってよい。 The material of the current collector is not particularly limited, and may be a single metal or an alloy of metals such as Cu, Mg, Ti, Fe, Co, Ni, Zn, Al, Ge, In, Au, Pt, Ag, and Pd.
 固体電解質層としては、複数の層を有していて良い。例えば、本実施形態のリチウム含有ハロゲン化物を含む固体電解質層に加え、硫化物固体電解質層を有する構成であっても良い。本実施形態のリチウム含有ハロゲン化物を含む固体電解質と負極の間に硫化物固体電解質層を有する構成であっても良い。ただし、本実施形態のリチウム含有ハロゲン化物を含む固体電解質層は電気化学的な安定性が高いため、硫化物固体電解質層を含まず、直接負極と接していても電池内での短絡が発生しにくい。硫化物固体電解質としては特に限定はされないが、例えば、LiPSCl、LiS-PS、Li10GeP12、Li9.612、Li9.54Si1.741.4411.7Cl0.3、LiPSなどが挙げられる。 The solid electrolyte layer may have multiple layers. For example, in addition to the lithium-containing halide-containing solid electrolyte layer of this embodiment, the structure may include a sulfide solid electrolyte layer. A structure having a sulfide solid electrolyte layer between the solid electrolyte containing the lithium-containing halide of this embodiment and the negative electrode may be used. However, since the solid electrolyte layer containing a lithium-containing halide of this embodiment has high electrochemical stability, a short circuit will not occur within the battery even if it does not include a sulfide solid electrolyte layer and is in direct contact with the negative electrode. Hateful. The sulfide solid electrolyte is not particularly limited, but includes, for example, Li 6 PS 5 Cl, Li 2 S-PS 5 , Li 10 GeP 2 S 12 , Li 9.6 P 3 S 12 , Li 9.54 Si 1. 74 P 1.44 S 11.7 Cl 0.3 , Li 3 PS 4 and the like.
(実施例1:六方晶LiScCl(γ-LiScCl)の合成)
 γ-LiScClを合成するために、まず、化学量論量のLiCl及びScClを窒素雰囲気のグローブボックス内で混合した。そして、混合物を保護材としての金箔と共にプレスしてペレットにした。典型的には、ペレットは、手製の金のるつぼ窒化ホウ素(BN)の蓋が付いたスリーブ管内に挿入された。次に、サンプルとスリーブ間は黒鉛管内に挿入され、高圧反応のためにパイロフィライトのキューブ内に封入された。サンプルセルはプレスされて1時間で5GPaに達し、その後、3時間で1000℃まで加熱された。この温度で3時間保持した後、サンプルは5分以内に室温までクエンチされ、その後圧力を開放し、2時間で大気圧とした。これにより、リチウム含有塩化物(γ-LiScCl)が得られた。
(Example 1: Synthesis of hexagonal Li 3 ScCl 6 (γ-Li 3 ScCl 6 ))
To synthesize γ-Li 3 ScCl 6 , stoichiometric amounts of LiCl and ScCl 3 were first mixed in a glove box with a nitrogen atmosphere. The mixture was then pressed into pellets with gold foil as a protective material. Typically, the pellets were inserted into a homemade gold crucible sleeve tube with a boron nitride (BN) lid. The sample-to-sleeve interface was then inserted into a graphite tube and encapsulated within a pyrophyllite cube for high-pressure reactions. The sample cell was pressed to reach 5 GPa in 1 hour and then heated to 1000° C. for 3 hours. After being held at this temperature for 3 hours, the sample was quenched to room temperature within 5 minutes and then the pressure was released to atmospheric pressure for 2 hours. This yielded a lithium-containing chloride (γ-Li 3 ScCl 6 ).
(実施例1’)
 サンプルセルを2時間で8GPaとなるようにプレスし、圧力を開放した際に12時間で大気圧としたこと以外は、実施例1と同様にリチウム含有塩化物を製造した。
(Example 1')
A lithium-containing chloride was produced in the same manner as in Example 1, except that the sample cell was pressed to a pressure of 8 GPa in 2 hours, and when the pressure was released, it was brought to atmospheric pressure in 12 hours.
<結晶構造の評価>
 無色透明な板状の結晶が構造決定のために選択された。単結晶X線構造決定(XRD)データは、Bruker Kappa APEX 2 CCD diffractometerを用い、123Kで単色化されたMoKα放射(λ=0.7107Å)により得られた。結晶と検出器の距離は50mmに調節された。データの縮小と統合にSAINTプログラムが使用された。構造は、直接法により確立され、OLEX2を使用してFに基づくフルマトリクスの最小二乗フィッティングにより最適化された。すべての原子はフルマトリクスの最小二乗法により最適化され、最終的な最小二乗最適化はF ≧2σ(F )を有するF に基づいた。数値的な吸収補正は、面検出器のためのSADABSプログラムを使用して実行した。構造は、金属カチオンの原子座標を決定するためにSHEL-XSを使用して解析された。
 代表的な単結晶のX線回折図形として、図1に、実施例1のサンプルについてc軸方向(001方向)に対応したX線回折測定を示す。
<Evaluation of crystal structure>
Colorless and transparent plate-like crystals were selected for structure determination. Single crystal X-ray structure determination (XRD) data were obtained using a Bruker Kappa APEX 2 CCD diffractometer with monochromated MoK α radiation (λ=0.7107 Å) at 123 K. The distance between the crystal and the detector was adjusted to 50 mm. The SAINT program was used for data reduction and consolidation. The structure was established by direct methods and optimized by full matrix least squares fitting based on F2 using OLEX2. All atoms were optimized by full matrix least squares, and the final least squares optimization was based on F 0 2 with F 0 2 ≧2σ (F 0 2 ). Numerical absorption corrections were performed using the SADABS program for area detectors. The structure was solved using SHEL-XS to determine the atomic coordinates of the metal cations.
As a typical single crystal X-ray diffraction pattern, FIG. 1 shows an X-ray diffraction measurement of the sample of Example 1 corresponding to the c-axis direction (001 direction).
(実施例2~4)
 表2の組成となる量でLiCl及びScClを使用したこと以外は、実施例1と同様にリチウム含有塩化物を製造した。
(Examples 2 to 4)
A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl and ScCl 3 were used in amounts having the composition shown in Table 2.
(実施例5)
 表2の組成となる量でLiCl、ZrCl及びScClを使用したこと以外は、実施例1と同様にリチウム含有塩化物を製造した。
(Example 5)
A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl, ZrCl 4 and ScCl 3 were used in amounts having the composition shown in Table 2.
(実施例20)
 表2の組成となる量でLiCl、LiF及びScClを使用したこと以外は、実施例1と同様にリチウム含有塩化物を製造した。
(Example 20)
A lithium-containing chloride was produced in the same manner as in Example 1, except that LiCl, LiF, and ScCl 3 were used in amounts having the composition shown in Table 2.
(比較例1)
・ボールミル
 -70℃以下の露点を有するアルゴン雰囲気中(以下、乾燥アルゴン雰囲気と記載する)で、LiClを0.3201g、ZrClを0.8799g秤量し、原料を用意した。
 下記の遊星ボールミル用の50mlの容積のジルコニアポットに上記原料を入れ、直径4mmのジルコニアボールを65g投入した。48時間、380rpmの条件でメカノケミカル的に反応するように処理することで比較例1の粗組成物を得た。ボールミルは、10分間回転させる毎に、インターバルとして1分間停止させ、回転方向を時計回りと反時計回り交互に切り替えるモードで実施した。当該リチウム含有塩化物の仕込み組成は、LiZrCl6である。
遊星ボールミル装置:ヴァーダー・サイエンティフィック株式会社製 PM 400
・アニーリング
 上記で得られた比較例1の粗組成物について、アルゴン雰囲気中で230℃で5時間加熱することにより、仕込み組成がLiZrCl6の比較例1のリチウム含有塩化物を得た。
(Comparative example 1)
- Ball mill Raw materials were prepared by weighing 0.3201 g of LiCl and 0.8799 g of ZrCl 4 in an argon atmosphere having a dew point of -70° C. or lower (hereinafter referred to as dry argon atmosphere).
The above raw materials were put into a 50 ml zirconia pot for a planetary ball mill described below, and 65 g of 4 mm diameter zirconia balls were added thereto. A crude composition of Comparative Example 1 was obtained by mechanochemically treating at 380 rpm for 48 hours. The ball mill was operated in a mode in which the ball mill was stopped for 1 minute after every 10 minutes of rotation, and the direction of rotation was alternately switched between clockwise and counterclockwise. The charged composition of the lithium-containing chloride is Li 2 ZrCl 6 .
Planetary ball mill device: PM 400 manufactured by Verder Scientific Co., Ltd.
- Annealing The crude composition of Comparative Example 1 obtained above was heated at 230° C. for 5 hours in an argon atmosphere to obtain a lithium-containing chloride of Comparative Example 1 with a charging composition of Li 2 ZrCl 6 .
<粉末X線回折測定>
 得られたリチウム含有ハロゲン化物について、25℃での粉末X線回折測定により、結晶構造の評価を行った。結果を表2に示す。また、実施例1~4の回折パターンを、図2に示す。いずれの実施例においても、空間群P6mcの結晶構造に帰属される回折ピークを有していることを確認した。粉末X線回折測定の測定条件について、下記の条件にて実施した。また、試料が直接大気に触れないように、グローブボックス中でサンプルスペースをポリイミドテープで保護してから測定を実施した。
 測定装置:  SmartLab (株式会社 リガク 製)
 X線発生器: CuKα線源 電圧40kV、電流50mA
 X線検出器: 半導体検出器
 測定範囲:  回折角2θ=5°~80°
 スキャンスピード:2.5°/分
<Powder X-ray diffraction measurement>
The crystal structure of the obtained lithium-containing halide was evaluated by powder X-ray diffraction measurement at 25°C. The results are shown in Table 2. Further, the diffraction patterns of Examples 1 to 4 are shown in FIG. It was confirmed that each of the examples had a diffraction peak attributed to the crystal structure of space group P6 3 mc. The powder X-ray diffraction measurement was carried out under the following conditions. In addition, measurements were performed after protecting the sample space with polyimide tape in a glove box so that the sample did not come into direct contact with the atmosphere.
Measuring device: SmartLab (manufactured by Rigaku Co., Ltd.)
X-ray generator: CuKα source, voltage 40kV, current 50mA
X-ray detector: Semiconductor detector Measurement range: Diffraction angle 2θ = 5° to 80°
Scan speed: 2.5°/min
(α-LiScClの合成)
 α-LiScClは、LiCl及びScClの化学量論的な混合物を封じたシリカ管内で650℃で12時間加熱することにより得られた。なお、加熱の際の昇温速度は2℃/分、降温速度も2℃/分で実施した。
(Synthesis of α-Li 3 ScCl 6 )
α-Li 3 ScCl 6 was obtained by heating a stoichiometric mixture of LiCl and ScCl 3 at 650° C. for 12 hours in a sealed silica tube. In addition, the temperature increase rate during heating was 2° C./min, and the temperature decreasing rate was also 2° C./min.
(β-LiScClの合成)
 化学量論量のLiCl及びScClを混合した。混合物をペレット化し、真空下で封じた石英管中に配置した。サンプルは、650℃で48時間加熱することにより得られた。なお、加熱の際の昇温速度、降温速度は5℃/分で実施した。
(Synthesis of β-Li 3 ScCl 6 )
Stoichiometric amounts of LiCl and ScCl3 were mixed. The mixture was pelleted and placed in a sealed quartz tube under vacuum. Samples were obtained by heating at 650°C for 48 hours. Note that the heating rate and cooling rate during heating were 5° C./min.
 図3は上述の粉末X線回折測定と同じ条件で、試料をメノウ乳鉢で粉砕したものについて、粉末X線回折測定を実施することで得られたLiScClの3つの結晶多形についてのX線回折チャートである。LiScClには、単斜晶(空間群:C2/m)の結晶構造を有するα相(α-LiScCl)と、立方晶(空間群:Fd-3m)の結晶構造を有するβ相(β-LiScCl)の2種類の結晶多形が存在することが知られている。図3に示されるように、上記のとおり合成されたLiScClは、六方晶(空間群:P6mc)の結晶構造をしており、α相及びβ相のいずれとも異なる新規な結晶構造を有している。この新規な結晶構造のLiScClをγ-LiScClとも呼ぶ。また、上述の単結晶X線構造解析で得られた結晶構造データを用いて、結晶構造解析ソフトウェアVESTA(Visualization for Electronic and Structural Analysis)によって、CuKα線の波長(1.54059Å)を入力して、シミュレーション(理論計算)を行うことによりγ相-LiScClの回折チャートが得られた。理論計算により求められたγ相-LiScClの回折チャート(最も下のグラフ)ともよく一致している。 Figure 3 shows the three crystal polymorphs of Li 3 ScCl 6 obtained by performing powder X-ray diffraction measurements on a sample ground in an agate mortar under the same conditions as the powder X-ray diffraction measurements described above. It is an X-ray diffraction chart. Li 3 ScCl 6 has an α phase (α-Li 3 ScCl 6 ) having a monoclinic (space group: C2/m) crystal structure and a cubic (space group: Fd-3m) crystal structure. It is known that two types of crystal polymorphs of the β phase (β-Li 3 ScCl 6 ) exist. As shown in FIG. 3, Li 3 ScCl 6 synthesized as described above has a hexagonal crystal structure (space group: P6 3 mc), and is a novel crystal structure different from both α and β phases. It has a structure. Li 3 ScCl 6 with this new crystal structure is also called γ-Li 3 ScCl 6 . Furthermore, using the crystal structure data obtained by the single crystal X-ray structure analysis described above, the wavelength of the CuKα ray (1.54059 Å) was input into crystal structure analysis software VESTA (Visualization for Electronic and Structural Analysis). By performing a simulation (theoretical calculation), a diffraction chart of γ phase-Li 3 ScCl 6 was obtained. It also agrees well with the diffraction chart of γ phase-Li 3 ScCl 6 (lowermost graph) obtained by theoretical calculation.
 表1に123Kにおける単結晶X線回折から得られたγ-LiScCl結晶データと構造最適化のデータを示す。LiScCl-5GPa及びLiScCl-8GPaはそれぞれ5GPa及び8GPaの圧力下で得られたサンプル(つまり、実施例1及び実施例1’)を意味する。図4は、γ-LiScClの構造のボール-アンド-スティック及び多面体表示である。 Table 1 shows γ-Li 3 ScCl 6 crystal data obtained from single-crystal X-ray diffraction at 123K and structure optimization data. Li 3 ScCl 6 -5 GPa and Li 3 ScCl 6 -8 GPa refer to samples obtained under pressures of 5 GPa and 8 GPa (ie Example 1 and Example 1'), respectively. FIG. 4 is a ball-and-stick and polyhedral representation of the structure of γ-Li 3 ScCl 6 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<イオン伝導度の評価>
 枠型、パンチ下部及びパンチ上部を備える加圧成形ダイスを用意した。なお、枠型は、絶縁性ポリカーボネートから形成されていた。また、パンチ上部及びパンチ下部は、いずれも、電子伝導性のステンレスから形成されており、インピーダンスアナライザー(Solatron Analytical社製 Sl1260)の端子にそれぞれ電気的に接続されていた。
<Evaluation of ionic conductivity>
A pressure molding die including a frame, a punch lower part, and a punch upper part was prepared. Note that the frame mold was made of insulating polycarbonate. Moreover, both the punch upper part and the punch lower part were made of electronically conductive stainless steel, and were electrically connected to terminals of an impedance analyzer (Solatron Analytical, Sl1260).
 上記加圧成形ダイスを用いて、下記の方法により、リチウム含有ハロゲン化物のイオン伝導度が測定された。まず、乾燥アルゴン雰囲気中で、リチウム含有ハロゲン化物の粉末を、枠型の中空部に鉛直下方から挿入されたパンチ下部上に充填した。そして、パンチ上部を枠型の中空部に上から押し込むことにより、加圧成形ダイスの内部で、リチウム含有ハロゲン化物の粉末に370MPaの圧力が印加された。圧力が印加された後、治具でパンチを上下から締め付けて固定し、一定圧力が保持されたままの状態で、上記インピーダンスアナライザーを用いて、電気化学的インピーダンス測定法により、リチウム含有ハロゲン化物のインピーダンスが測定された。 Using the pressure molding die described above, the ionic conductivity of the lithium-containing halide was measured by the following method. First, in a dry argon atmosphere, lithium-containing halide powder was filled onto the lower part of a punch inserted into the hollow part of the frame from vertically below. Then, by pushing the upper part of the punch into the hollow part of the frame from above, a pressure of 370 MPa was applied to the lithium-containing halide powder inside the pressure molding die. After pressure is applied, the punch is tightened and fixed from above and below with a jig, and while a constant pressure is maintained, the lithium-containing halide is measured by electrochemical impedance measurement using the impedance analyzer described above. Impedance was measured.
 インピーダンス測定結果から、Cole-Cole線図のグラフを作成した。Cole-Cole線図において、複素インピーダンスの位相の絶対値が最も小さい測定点でのインピーダンスの実数値を、ハロゲン化物固体電解質材料のイオン伝導に対する抵抗値と見なした。当該抵抗値を用いて、以下の数式(III)に基づいてイオン伝導度が算出された。各試料の25℃でのイオン伝導度(σ25℃)を表2に示す。
σ=(RSE×S/t)-1・・・(III)
ここで、
σはイオン伝導度であり、
Sは、リチウム含有ハロゲン化物のパンチ上部との接触面積(枠型の中空部の断面積に等しい)であり、
SEは、インピーダンス測定における固体電解質材料の抵抗値であり、
tは、圧力が印加された際のリチウム含有ハロゲン化物の厚みである。
A Cole-Cole diagram was created from the impedance measurement results. In the Cole-Cole diagram, the real value of the impedance at the measurement point where the absolute value of the phase of the complex impedance was the smallest was regarded as the resistance value of the halide solid electrolyte material to ionic conduction. Using the resistance value, the ionic conductivity was calculated based on the following mathematical formula (III). Table 2 shows the ionic conductivity (σ 25°C ) of each sample at 25°C.
σ=(R SE ×S/t) -1 ...(III)
here,
σ is the ionic conductivity,
S is the contact area of the lithium-containing halide with the upper part of the punch (equal to the cross-sectional area of the hollow part of the frame),
R SE is the resistance value of the solid electrolyte material in impedance measurement,
t is the thickness of the lithium-containing halide when pressure is applied.
 図5は実施例3のイオン伝導度のCole-Cole線図である。図5には、それぞれ、25℃、40℃、60℃、80℃及び100℃での測定結果が示されている。 FIG. 5 is a Cole-Cole diagram of ionic conductivity in Example 3. FIG. 5 shows the measurement results at 25°C, 40°C, 60°C, 80°C and 100°C, respectively.
<二次電池の作製>
 乾燥アルゴン雰囲気中で、リチウム含有ハロゲン化物、及びLiNi1/3Mn1/3Co1/3、及びアセチレンブラックをそれぞれ29質量部、67質量部、及び4質量部秤量し、乳鉢で混合することで、混合物を得た。
 内径10mmの絶縁性の筒の中でリチウム含有ハロゲン化物を100mg、上記の混合物を15mgを順に積層して、積層体を得た。積層体に370MPaの圧力を印加し、第1電極(上記混合物の層)及び固体電解質層(上記リチウム含有ハロゲン化物の層)が形成された。
 次に、In箔60mgを固体電解質層に接触させるようにして入れ、さらにLi箔2mgをIn箔と接触させるように入れ、積層体を得た。積層体に370MPaの圧力を印加し、第2電極が形成された。
 ステンレス鋼で形成された集電体が第1電極及び第2電極に取り付けられ、次いで、当該集電体にリード線が取り付けられた。全ての部材はデシケータ中に配置され、密閉されており、このようにして二次電池が得られた。
<Preparation of secondary battery>
In a dry argon atmosphere, 29 parts by mass, 67 parts by mass, and 4 parts by mass of a lithium-containing halide, LiNi 1/3 Mn 1/3 Co 1/3 O 2 , and acetylene black were weighed, respectively, and mixed in a mortar. A mixture was thus obtained.
In an insulating cylinder having an inner diameter of 10 mm, 100 mg of a lithium-containing halide and 15 mg of the above mixture were stacked in order to obtain a laminate. A pressure of 370 MPa was applied to the laminate to form a first electrode (layer of the above mixture) and a solid electrolyte layer (layer of the lithium-containing halide).
Next, 60 mg of In foil was placed in contact with the solid electrolyte layer, and 2 mg of Li foil was placed in contact with the In foil to obtain a laminate. A pressure of 370 MPa was applied to the laminate to form a second electrode.
A current collector made of stainless steel was attached to the first and second electrodes, and then a lead wire was attached to the current collector. All the members were placed in a desiccator and sealed, and thus a secondary battery was obtained.
<充放電試験>
 充放電試験機としては、下記の製品を用いて実施した。
 充放電試験機:東洋システム株式会社 TOSCAT-3100
 60℃において、0.1C、1C及び3Cの3通りのCレートで充放電試験を実施した。
 定電流定電圧(CCCV充電)で、それぞれのCレートに対応した電流密度で3.7Vまで充電を行った。
放電は、それぞれのCレートに対応した電流密度で、1.9Vまで放電した。
 二次電池作製後に短絡することなく、開回路電圧が得られ、上記の充放電試験において充電容量、及び放電容量が確認されたものを、充放電可能と判断した。
 また、実施例1について、0.1C及び0.2のCレートで5回の充放電試験を行った。図6は、実施例1について0.1Cで充放電試験を行った結果を示す図である。図7は、実施例1について0.2Cで充放電試験を行った結果を示す図である。図8は、実施例1と、α-LiScClについて、サイクル数と放電容量を示す図である。図8において、γ-LiScClについて、0.1C、0.2C及び0.5CのCレートでそれぞれ5サイクルずつ測定した放電容量と、その後1Cで10サイクル測定した放電容量を示す。また、α-LiScClについて、0.1C及び0.2CのCレートでそれぞれ5サイクルずつ測定した放電容量を示す。
<Charge/discharge test>
The charge/discharge test was carried out using the following product.
Charge/discharge tester: Toyo System Co., Ltd. TOSCAT-3100
A charge/discharge test was conducted at 60° C. at three C rates: 0.1C, 1C, and 3C.
Charging was performed to 3.7 V using constant current and constant voltage (CCCV charging) at a current density corresponding to each C rate.
The discharge was carried out to 1.9V at a current density corresponding to each C rate.
A secondary battery was determined to be chargeable and dischargeable if an open circuit voltage was obtained without short circuiting after fabrication, and the charge capacity and discharge capacity were confirmed in the charge and discharge test described above.
Further, for Example 1, a charge/discharge test was conducted five times at a C rate of 0.1C and 0.2. FIG. 6 is a diagram showing the results of a charge/discharge test conducted at 0.1 C for Example 1. FIG. 7 is a diagram showing the results of a charge/discharge test conducted at 0.2C for Example 1. FIG. 8 is a diagram showing the cycle number and discharge capacity for Example 1 and α-Li 3 ScCl 6 . FIG. 8 shows the discharge capacity of γ-Li 3 ScCl 6 measured for 5 cycles each at C rates of 0.1C, 0.2C, and 0.5C, and the discharge capacity measured for 10 cycles at 1C thereafter. Also shown is the discharge capacity of α-Li 3 ScCl 6 measured for 5 cycles each at a C rate of 0.1C and 0.2C.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~5及び20のリチウム含有塩化物は、比較例と比較して、良好なイオン伝導度が得られた。 The lithium-containing chlorides of Examples 1 to 5 and 20 had better ionic conductivity than the comparative example.
<Liイオン拡散挙動の計算及び計算結果の評価>
 Liイオン拡散挙動について分子動力学シミュレーションに基づいて、空間群P6mcに属する化合物のLi平均二乗変位を計算して求めた。
<Calculation of Li ion diffusion behavior and evaluation of calculation results>
Li ion diffusion behavior was determined by calculating the Li mean square displacement of a compound belonging to the space group P6 3 mc based on a molecular dynamics simulation.
 目下、本願特許請求の範囲を制限することを望むものではないが、本願で示される全てのLiイオンの拡散挙動およびその結果として得られる平均二乗変位は、当業者に広く使用されかつ知られているオーストリア共和国・ウイーン大学が提供する計算化学ソフトウェア「Vienna ab initio simulation package (VASP)」を使用することで計算した。
 具体的には、Liが36個、3価原子が12個、Clが72個のスーパーセルを用いて分子動力学計算を実施し、Liの平均二乗変位を求めた。元素置換構造についてはこの構造をもとに上記方法にて元素置換を行った。計算条件としては、密度汎関数PBEを使用して、nPTアンサンブルを使用し、時間刻み幅は1fs、シミュレーション時間は300ps、シミュレーション温度700KでMD計算をすることによって求めた。3価原子の非整数占有数サイトは熱力学的に最も安定となるように占有率に従って占有/被占有を選択した。
At present, without wishing to limit the scope of the claims herein, all Li ion diffusion behaviors and resulting mean square displacements presented herein are widely used and known to those skilled in the art. The calculations were performed using the computational chemistry software "Vienna ab initio simulation package (VASP)" provided by the University of Vienna in the Republic of Austria.
Specifically, a molecular dynamics calculation was performed using a supercell with 36 Li atoms, 12 trivalent atoms, and 72 Cl atoms, and the mean square displacement of Li was determined. Regarding the element substitution structure, element substitution was performed using the above method based on this structure. As calculation conditions, the density functional PBE was used, the nPT ensemble was used, the time step width was 1 fs, the simulation time was 300 ps, and the simulation temperature was 700K. Occupancy/occupancy of non-integer occupied number sites of trivalent atoms was selected according to the occupancy rate so as to be thermodynamically most stable.
 Liイオンの平均二乗変位に関しては、下記の式(nn)により求めた。
 
Liイオン平均二乗変位=(Σ(r(n,t)-r(n,0)))/N…(nn)
 ここで、r(n,t)は時刻tにおけるn番目のLi原子の座標であり、Nは計算セルに含まれるLiの総数である。
The mean square displacement of Li ions was determined using the following formula (nn).

Li ion mean square displacement = (Σ n (r(n, t) - r(n, 0)) 2 )/N...(nn)
Here, r(n, t) is the coordinate of the n-th Li atom at time t, and N is the total number of Li included in the calculation cell.
〔実施例1〕
 実施例1のγ-LiScClについて、分子動力学シミュレーションに基づいて、当該化合物のLiの平均二乗変位を計算して求めた。結果を以下の表3に記載する。
[Example 1]
Regarding γ-Li 3 ScCl 6 of Example 1, the mean square displacement of Li in the compound was calculated based on molecular dynamics simulation. The results are listed in Table 3 below.
〔実施例6~11〕
 γ-LiScClと同様の結晶構造を持ち、Sc元素が、3価元素で置換された化合物について、分子動力学シミュレーションに基づいて、当該化合物のLi平均二乗変位を計算して求めた。結果を以下の表3に記載する。
[Examples 6 to 11]
For a compound having a crystal structure similar to γ-Li 3 ScCl 6 and in which the Sc element was replaced with a trivalent element, the Li mean square displacement of the compound was calculated based on molecular dynamics simulation. The results are listed in Table 3 below.
〔実施例12〕
 γ-LiScClと同様の結晶構造を持ち、Sc元素のサイトが2種の3価元素で占められた化合物について、分子動力学シミュレーションに基づいて、当該化合物のLi平均二乗変位を計算して求めた。なお参考としてGaとScが50モル%ずつサイトを占有した際の例を示すが、これは他の組成を排除するものではない。結果を以下の表3に記載する。
[Example 12]
For a compound having a crystal structure similar to γ-Li 3 ScCl 6 and in which the Sc element site is occupied by two types of trivalent elements, the Li mean square displacement of the compound was calculated based on molecular dynamics simulation. I asked. For reference, an example in which Ga and Sc occupy 50 mol % of each site is shown, but this does not exclude other compositions. The results are listed in Table 3 below.
〔実施例13~19〕
 γ-LiScClのうちスーパーセル中の1個のScが、4価あるいは5価の元素に置換された化合物について、分子動力学シミュレーションに基づいて、当該化合物のLi平均二乗変位を計算して求めた。本モデルにおいては、Sc原子を4価元素で置換した場合には電荷補償として、置換した原子数と等量のLiを最近接サイトから削除した。また、5価元素で置換した場合には電荷補償として、置換した原子数の倍量のLiを最近接サイトから削除した。なお計算モデルの制約としてScが約8モル%置換された組成を示すが、これは他の組成を排除するものではない。得られた結果を以下の表3に記載する。
[Examples 13 to 19]
For a compound in which one Sc in the supercell of γ-Li 3 ScCl 6 is replaced with a tetravalent or pentavalent element, the Li mean square displacement of the compound is calculated based on molecular dynamics simulation. I asked. In this model, when a Sc atom is replaced with a tetravalent element, Li in an amount equal to the number of replaced atoms is removed from the nearest site as charge compensation. Furthermore, when substitution was made with a pentavalent element, Li in an amount twice the number of substituted atoms was removed from the nearest site as charge compensation. Note that as a limitation of the calculation model, a composition in which approximately 8 mol% of Sc is substituted is shown, but this does not exclude other compositions. The results obtained are listed in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記、表3に示すように、実施例1及び6~19の各化合物は、数Å以上のLiイオンの平均二乗変位を示す。平均二乗変位が数Åを大きく上回るということは、固体中でLiが拡散していることを意味し、Liを伝導可能な固体電解質である。 As shown in Table 3 above, each of the compounds of Examples 1 and 6 to 19 exhibits a mean square displacement of Li ions of several Å 2 or more. The fact that the mean square displacement greatly exceeds several angstroms 2 means that Li is diffused in the solid, and the solid electrolyte is capable of conducting Li.

Claims (10)

  1.  アルカリ金属元素と、
     Mg、Ca、Sr、Ba、Zn、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu、Y、Al、Ga、In、Bi、Sb、Ge、Ti、Zr、Hf、Sn、Nb、Ta、及びWからなる群から選択される少なくとも一種の金属元素Mと、
     ハロゲン元素とを含有し、
     空間群P6mcに帰属される結晶構造を有する、化合物。
    an alkali metal element,
    Mg, Ca, Sr, Ba, Zn, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Y, Al, Ga, In, Bi, At least one metal element M selected from the group consisting of Sb, Ge, Ti, Zr, Hf, Sn, Nb, Ta, and W;
    Contains a halogen element,
    A compound having a crystal structure belonging to space group P6 3 mc.
  2.  前記ハロゲン元素がClを含む、請求項1に記載の化合物。 The compound according to claim 1, wherein the halogen element contains Cl.
  3.  前記金属元素が3価の金属元素を含む、請求項1又は2に記載の化合物。 The compound according to claim 1 or 2, wherein the metal element includes a trivalent metal element.
  4.  下記組成式(1)で表される、請求項1又は2に記載の化合物。
    αβγ・・・(1)
    (式中、Aはアルカリ金属元素であり、Xは、ハロゲン元素であり、1≦α≦4、0.5≦β≦2、4≦γ≦8である。)
    The compound according to claim 1 or 2, which is represented by the following compositional formula (1).
    A α M β X γ ...(1)
    (In the formula, A is an alkali metal element, X is a halogen element, and 1≦α≦4, 0.5≦β≦2, 4≦γ≦8.)
  5.  金属元素MがGa、In、Sc、La、Y、Sb及びBiからなる群から選択される少なくとも一種の元素を含む、請求項1又は2に記載の化合物。 The compound according to claim 1 or 2, wherein the metal element M contains at least one element selected from the group consisting of Ga, In, Sc, La, Y, Sb, and Bi.
  6.  前記金属元素Mが2種以上の金属元素を含む、請求項1又は2に記載の化合物。 The compound according to claim 1 or 2, wherein the metal element M contains two or more types of metal elements.
  7.  前記ハロゲン元素が2種以上のハロゲン元素を含む、請求項1又は2に記載の化合物。 The compound according to claim 1 or 2, wherein the halogen element contains two or more types of halogen elements.
  8.  請求項1又は2に記載の化合物を含む、電解質。 An electrolyte comprising the compound according to claim 1 or 2.
  9.  請求項8に記載の電解質を含む、電池。 A battery comprising the electrolyte according to claim 8.
  10.  原料を1GPa以上の圧力下で加熱する工程を含む、ハロゲン化物固体電解質の製造方法。 A method for producing a halide solid electrolyte, which includes a step of heating raw materials under a pressure of 1 GPa or more.
PCT/JP2023/032725 2022-09-12 2023-09-07 Alkali metal element-containing halide, electrolyte, battery, and method for producing halide solid electrolyte WO2024058053A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022144853 2022-09-12
JP2022-144853 2022-09-12
JP2023026409A JP2024040103A (en) 2022-09-12 2023-02-22 Alkali metal-containing halide, electrolyte, battery, and method for producing halide solid electrolyte
JP2023-026409 2023-02-22

Publications (1)

Publication Number Publication Date
WO2024058053A1 true WO2024058053A1 (en) 2024-03-21

Family

ID=90274897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032725 WO2024058053A1 (en) 2022-09-12 2023-09-07 Alkali metal element-containing halide, electrolyte, battery, and method for producing halide solid electrolyte

Country Status (1)

Country Link
WO (1) WO2024058053A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033887A (en) * 2014-07-31 2016-03-10 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US20170190968A1 (en) * 2016-01-06 2017-07-06 Lextar Electronics Corporation Phosphor, fabricating method thereof, method for regulating crystal phase thereof, and method for changing crystal phase thereof
JP2020105283A (en) * 2018-12-26 2020-07-09 日亜化学工業株式会社 Fluoride fluorescent material, light-emitting device, and production method of fluoride fluorescent material
WO2021193917A1 (en) * 2020-03-27 2021-09-30 国立大学法人京都大学 Hydride ion conductor, manufacturing method therefor, catalyst, battery electrolyte, and battery
WO2021234416A1 (en) * 2020-05-22 2021-11-25 The University Of Liverpool Solid-state conductor materials
US20220045357A1 (en) * 2020-08-07 2022-02-10 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
WO2022100507A1 (en) * 2020-11-10 2022-05-19 宁德新能源科技有限公司 Positive electrode active material and electrochemical device
WO2022180980A1 (en) * 2021-02-26 2022-09-01 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033887A (en) * 2014-07-31 2016-03-10 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US20170190968A1 (en) * 2016-01-06 2017-07-06 Lextar Electronics Corporation Phosphor, fabricating method thereof, method for regulating crystal phase thereof, and method for changing crystal phase thereof
JP2020105283A (en) * 2018-12-26 2020-07-09 日亜化学工業株式会社 Fluoride fluorescent material, light-emitting device, and production method of fluoride fluorescent material
WO2021193917A1 (en) * 2020-03-27 2021-09-30 国立大学法人京都大学 Hydride ion conductor, manufacturing method therefor, catalyst, battery electrolyte, and battery
WO2021234416A1 (en) * 2020-05-22 2021-11-25 The University Of Liverpool Solid-state conductor materials
US20220045357A1 (en) * 2020-08-07 2022-02-10 Saint-Gobain Ceramics & Plastics, Inc. Electrolyte material and methods of forming
WO2022100507A1 (en) * 2020-11-10 2022-05-19 宁德新能源科技有限公司 Positive electrode active material and electrochemical device
WO2022180980A1 (en) * 2021-02-26 2022-09-01 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery using same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAO XUE-LI, HU CHUN-LI, KONG FANG, MAO JIANG-GAO: "Cs(TaO 2 ) 3 (SeO 3 ) 2 and Cs(TiOF) 3 (SeO 3 ) 2 : Structural and Second Harmonic Generation Changes Induced by the Different d 0 -TM Coordination Octahedra", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 54, no. 8, 20 April 2015 (2015-04-20), Easton , US , pages 3875 - 3882, XP093148653, ISSN: 0020-1669, DOI: 10.1021/acs.inorgchem.5b00052 *
LIANG JIANWEN, LI XIAONA, WANG SHUO, ADAIR KEEGAN R., LI WEIHAN, ZHAO YANG, WANG CHANGHONG, HU YONGFENG, ZHANG LI, ZHAO SHANGQIAN,: "Site-Occupation-Tuned Superionic Li x ScCl 3+ x Halide Solid Electrolytes for All-Solid-State Batteries", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 142, no. 15, 15 April 2020 (2020-04-15), pages 7012 - 7022, XP093148655, ISSN: 0002-7863, DOI: 10.1021/jacs.0c00134 *
土居篤典, 元素置換したLi2ZrCl6固体電解質の電気化学特性, 電気化学大会公演要旨集, 15 March 2022, vol. 89TH, ROMBUNNO.2E08, (DOI, Atsunori. Electrochemical properties of doped Li2ZrCl6 solid electrolyte.), non-official translation (Proceedings of the Annual Meeting of the Electrochemical Society of Japan.) *
土居篤典, 元素置換したLi3InCl6固体電解質の電気化学特性, 電池討論会PDF要旨集, 2021, vol. 62nd, page ROMBUNNo.1F13, (DOI, Atsunori. Electrochemical properties of doped Li3InCl6 solid electrolyte.), non-official translation (PDF Proceedings of the Battery Symposium in Japan.) *

Similar Documents

Publication Publication Date Title
KR101665465B1 (en) Sulfide-based solid electrolyte for lithium ion battery
EP3171444B1 (en) Sulfide-based solid electrolyte for lithium ion batteries and method for making the electrolyte
JP7435452B2 (en) Method for producing sulfide solid electrolyte, sulfide solid electrolyte, all-solid-state battery, and method for selecting raw material compounds used for producing sulfide solid electrolyte
US10938064B2 (en) Sulfide-type compound particles, solid electrolyte, and lithium secondary battery
EP2317596A1 (en) Ceramic material and preparation method therefor
KR20170016807A (en) A solid electrolyte, and lithium battery comprising the solid electrolyte
JP6735425B2 (en) Ion-conductive powder, ion-conductive compact, and power storage device
JP7365599B2 (en) Method for producing halides
JP7365600B2 (en) Method for producing halides
WO2014038521A1 (en) Solid electrolyte ceramic material
JP7357299B2 (en) Method for producing halides
WO2024058053A1 (en) Alkali metal element-containing halide, electrolyte, battery, and method for producing halide solid electrolyte
JP2024040103A (en) Alkali metal-containing halide, electrolyte, battery, and method for producing halide solid electrolyte
JP7150650B2 (en) Lithium-ion conductive material, all-solid secondary battery, and method for producing solid electrolyte
JP7378039B2 (en) Method for producing halides
JP2021132019A (en) Solid electrolytic material, production method thereof, and battery
JP7174875B1 (en) Lithium-containing chloride, method for producing same, solid electrolyte and battery
WO2024058052A1 (en) Ion conductive substance, electrolyte, and battery
WO2024096101A1 (en) Ion conductive substance, electrolyte, and battery
WO2023002989A1 (en) Lithium-containing chloride and method for producing same, solid electrolyte, and battery
JP7203200B2 (en) All-solid secondary battery
WO2023170418A1 (en) Solid-state conductor materials
Hao Materials and Interfacial Engineering for High-Performance All-Solid-State Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865408

Country of ref document: EP

Kind code of ref document: A1