WO2024058022A1 - Aerial display device - Google Patents

Aerial display device Download PDF

Info

Publication number
WO2024058022A1
WO2024058022A1 PCT/JP2023/032497 JP2023032497W WO2024058022A1 WO 2024058022 A1 WO2024058022 A1 WO 2024058022A1 JP 2023032497 W JP2023032497 W JP 2023032497W WO 2024058022 A1 WO2024058022 A1 WO 2024058022A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display
aerial
display device
optical element
Prior art date
Application number
PCT/JP2023/032497
Other languages
French (fr)
Japanese (ja)
Inventor
康宏 代工
Original Assignee
Toppanホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppanホールディングス株式会社 filed Critical Toppanホールディングス株式会社
Publication of WO2024058022A1 publication Critical patent/WO2024058022A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images

Definitions

  • the present invention relates to an aerial display device.
  • An aerial display device includes, for example, a dihedral corner reflector array in which dihedral corner reflectors are arranged in an array, and reflects light emitted from a display surface of a display element to form a real image in the air.
  • the display method using a dihedral corner reflector array has no aberration and can display a real image (aerial image) at a plane-symmetrical position.
  • Patent Document 1 discloses an optical element in which a transparent square prism protruding from the surface of a transparent flat plate is used as a dihedral corner reflector, and a plurality of square prisms are arranged in an array on a plane.
  • Patent Document 2 discloses that each of the first and second light control panels is formed by vertically arranging a plurality of plane light reflection parts inside a transparent flat plate, and the first and second light control panels are arranged on each other's planes.
  • An optical element is disclosed in which light reflecting portions are arranged so as to be orthogonal to each other.
  • the optical elements of Patent Documents 1 and 2 reflect the light emitted from the display element twice on orthogonal reflecting surfaces to generate an aerial image.
  • the display devices using the optical elements of Patent Documents 1 and 2 can recognize an aerial image by observing from an oblique direction of the optical element, and can recognize a good aerial image by observing from the normal direction of the optical element. It's difficult to do.
  • the present invention provides an aerial display device that can improve display quality.
  • a display element that displays an image
  • a plurality of first regions and a plurality of second regions arranged alternately to receive light from the display element
  • the plurality of first regions are configured to reflect light from the display element to a side opposite to the display element and form an aerial image in the air
  • the plurality of second regions are configured to reflect light from the display element to a side opposite to the display element, and form an aerial image in the air.
  • an optical element configured to transmit light from the optical element; and an optical element arranged to receive light from the optical element, the optical element shielding the plurality of second regions from light in a first display mode, and in a second display mode.
  • a switching element that shields the plurality of first regions from light.
  • the optical elements are provided on a planar base material and below the base material, each extending in a first direction, and arranged in a second direction orthogonal to the first direction. , a plurality of optical elements respectively provided in the plurality of first regions, each of the plurality of optical elements having an incident surface and a reflection surface that are inclined with respect to the normal direction of the base material and that touch each other.
  • an aerial display device configured with a plurality of planes.
  • the optical element includes a reflective layer that is provided on the reflective surface and reflects light, and an absorption layer that is provided on the reflective layer and absorbs light.
  • An aerial display device according to the present invention is provided.
  • the switching element includes a plurality of first element pixels and a plurality of second element pixels, each extending in a first direction and arranged alternately in a second direction orthogonal to the first direction.
  • each of the plurality of first element pixels is provided in the plurality of first regions
  • each of the plurality of second element pixels is provided in the plurality of second regions
  • the plurality of first element pixels There is provided an aerial display device according to the first aspect, in which each of the pixels and the plurality of second element pixels can be set to a transmissive state and a light-blocking state.
  • the switching element sets the plurality of first element pixels to a transparent state and the plurality of second element pixels to a light blocking state in the first display mode, and sets the plurality of first element pixels to a light-blocking state;
  • an aerial display device wherein in the second display mode, the plurality of first element pixels are set to a light blocking state and the plurality of second element pixels are set to a transmitting state.
  • each of the plurality of first element pixels has a plurality of first pixels arranged in the first direction
  • each of the plurality of second element pixels has a plurality of first elements arranged in the first direction.
  • An aerial display device comprising a plurality of second pixels arranged in a direction, and each of the plurality of first pixels and the plurality of second pixels can be set to a transmitting state and a light blocking state. is provided.
  • the switching element sets the first pixel to a transparent state and the second pixel to a light blocking state in the partial region displaying the aerial image, and sets the first pixel to a light-blocking state
  • an aerial display device in which the first pixel is set to a light blocking state and the second pixel is set to a transmitting state in a partial area that displays a planar image of the screen.
  • the first aspect further includes an alignment control element that is disposed between the display element and the optical element and transmits an oblique light component of the light from the display element.
  • An aerial display device is provided.
  • the alignment control element includes a plurality of transparent members and a plurality of light blocking members arranged alternately, and the plurality of light blocking members are inclined with respect to a normal line of the alignment control element.
  • the light diffusing element further includes a light diffusing element disposed between the alignment control element and the optical element, and the light diffusing element is configured to transmit light in the first display mode.
  • a ninth aspect there is provided an aerial display device according to a ninth aspect, wherein the aerial display device is set to a diffusion state in which light is diffused in the second display mode.
  • the aerial display device in which the display element, the optical element, and the switching element are arranged parallel to each other.
  • the present invention further includes a lighting element that emits light, and the display element is arranged to receive light from the lighting element and is configured of a liquid crystal display element.
  • a lighting element that emits light
  • the display element is arranged to receive light from the lighting element and is configured of a liquid crystal display element.
  • Such an aerial display device is provided.
  • a display element that displays an image
  • a display element that is arranged to receive light emitted from the display element, and that reflects the light emitted from the display element to a side opposite to the display element. and includes an optical element that forms an aerial image in the air, and a rotation mechanism that rotates a unit including the display element and the optical element within a range of 90 degrees to change the position of the aerial image in the depth direction.
  • An aerial display device is provided.
  • the optical elements are provided under a planar base material and the base material, each extending in a first direction, and arranged in a second direction perpendicular to the first direction. and a plurality of optical elements, each of the plurality of optical elements having an incident surface and a reflection surface that are inclined with respect to the normal direction of the base material and touch each other, the aerial display device according to the thirteenth aspect. is provided.
  • the rotation mechanism rotates the unit so that both eyes of the observer become parallel to the second direction in the first display mode;
  • an aerial display device according to a fourteenth aspect, wherein the unit is rotated so that both eyes of the aircraft are parallel to the first direction.
  • an aerial display device that can improve display quality.
  • FIG. 1 is a perspective view of an aerial display device according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the aerial display device shown in FIG. 1.
  • FIG. 3A is a plan view of the alignment control element shown in FIG. 1.
  • FIG. 3B is a cross-sectional view of the alignment control element taken along line AA' in FIG. 3A.
  • FIG. 4 is a partial side view of the optical element shown in FIG.
  • FIG. 5 is a partial plan view of the switching element shown in FIG.
  • FIG. 6 is a block diagram of the aerial display device.
  • FIG. 7 is a perspective view illustrating how light is reflected in the optical element.
  • FIG. 8 is a side view of the XZ plane illustrating how light is reflected in the optical element.
  • FIG. 9 is a side view of the YZ plane illustrating how light is reflected in the optical element.
  • FIG. 10 is a diagram illustrating the angle conditions of the incident surface and the reflective surface of the optical element.
  • FIG. 11 is a partial side view of the aerial display device for explaining the first display mode.
  • FIG. 12 is a partial side view of the aerial display device for explaining the second display mode.
  • FIG. 13 is a flowchart illustrating the display operation of the aerial display device.
  • FIG. 14 is a partial plan view of a switching element according to a second embodiment of the invention.
  • FIG. 15 is a perspective view of an aerial display device according to a third embodiment of the present invention.
  • FIG. 16 is a perspective view of an aerial display device according to a fourth embodiment of the present invention.
  • FIG. 15 is a perspective view of an aerial display device according to a third embodiment of the present invention.
  • FIG. 17 is a partial cross-sectional view of the optical element shown in FIG. 16 along the X direction.
  • FIG. 18 is a side view illustrating the operation of the aerial display device.
  • FIG. 19 is a partial side view illustrating the operation of the optical element.
  • FIG. 20 is a perspective view of an aerial display device according to a fifth embodiment of the present invention.
  • FIG. 21 is a side view of the aerial display device shown in FIG. 20.
  • FIG. 22 is a perspective view of the optical element shown in FIG. 1.
  • FIG. 23 is a block diagram of the aerial display device.
  • FIG. 24 is a perspective view illustrating how light is reflected in the optical element.
  • FIG. 25 is a side view of the XZ plane illustrating how light is reflected in the optical element.
  • FIG. 26 is a perspective view of the aerial display device for explaining the first display mode.
  • FIG. 27 is a perspective view of the aerial display device for explaining the second display mode.
  • FIG. 28 is a flowchart illustrating the display operation of the aerial display device.
  • FIG. 29 is a diagram illustrating the operation of the aerial display device according to the sixth embodiment of the present invention.
  • FIG. 1 is a perspective view of an aerial display device 1 according to a first embodiment of the present invention.
  • the X direction is a direction along one side of the aerial display device 1
  • the Y direction is a direction perpendicular to the X direction in a horizontal plane
  • the Z direction is a direction perpendicular to the XY plane ( (also called the normal direction).
  • FIG. 2 is a side view of the aerial display device 1 shown in FIG.
  • the aerial display device 1 is a device that displays images (including videos).
  • the aerial display device 1 displays an aerial image in the air above its own light exit surface. "Displaying an aerial image” has the same meaning as "forming an aerial image.”
  • the light exit surface of the aerial display device 1 means the upper surface of the member disposed in the uppermost layer among the plurality of members constituting the aerial display device 1.
  • An aerial image is a real image formed in the air.
  • the aerial display device 1 includes a lighting element (also referred to as a backlight) 10, a display element 20, an orientation control element 30, an optical element 40, and a switching element 50.
  • the lighting element 10, the display element 20, the orientation control element 30, the optical element 40, and the switching element 50 are arranged in this order along the Z direction and parallel to each other.
  • the lighting element 10, the display element 20, the orientation control element 30, the optical element 40, and the switching element 50 are fixed at a desired position with a fixing member (not shown) with a desired distance from each other.
  • the lighting element 10 emits illumination light and emits this illumination light toward the display element 20.
  • the lighting element 10 includes a light source section 11, a light guide plate 12, and a reflective sheet 13.
  • the lighting element 10 is, for example, a side light type lighting element.
  • the lighting element 10 constitutes a surface light source.
  • the lighting element 10 may be configured so that the light intensity peaks in an oblique direction at an angle ⁇ 1 , which will be described later.
  • the light source section 11 is arranged so as to face the side surface of the light guide plate 12.
  • the light source section 11 emits light toward the side surface of the light guide plate 12.
  • the light source section 11 includes a plurality of light emitting elements made of, for example, white LEDs (Light Emitting Diodes).
  • the light guide plate 12 guides the illumination light from the light source section 11 and emits the illumination light from its upper surface.
  • the reflective sheet 13 reflects the illumination light emitted from the bottom surface of the light guide plate 12 toward the light guide plate 12 again.
  • the lighting element 10 may include a member (including a prism sheet and a diffusion sheet) that improves optical characteristics on the upper surface of the light guide plate 12.
  • the display element 20 is a transmissive display element.
  • the display element 20 is composed of, for example, a liquid crystal display element.
  • the drive mode of the display element 20 is not particularly limited, and a TN (Twisted Nematic) mode, a VA (Vertical Alignment) mode, a homogeneous mode, or the like can be used.
  • the display element 20 receives illumination light emitted from the illumination element 10.
  • the display element 20 transmits the illumination light from the illumination element 10 and performs light modulation.
  • the display element 20 then displays a desired image on its screen.
  • the alignment control element 30 has a function of reducing unnecessary light. Unnecessary light is a light component that does not contribute to generating an aerial image, and includes a light component that passes through the optical element 40 in the normal direction.
  • the orientation control element 30 is configured to transmit light components within a predetermined angular range centering on an oblique direction at an angle ⁇ 1 with respect to the normal direction, and to block light components outside the above angular range.
  • the area of the alignment control element 30 is set to be approximately the same as the area of the display element 20. The detailed configuration of the alignment control element 30 will be described later.
  • the optical element 40 reflects light incident from the bottom side toward the top side. Further, the optical element 40 reflects incident light obliquely incident from the bottom side, for example, in the front direction (normal direction).
  • the area of the optical element 40 is set to be larger than the area of the display element 20.
  • the detailed configuration of the optical element 40 will be described later.
  • the optical element 40 forms an aerial image 2 in the air.
  • the aerial image 2 is parallel to the element surface of the optical element 40 and is a two-dimensional image.
  • the element surface refers to a virtual plane in which the optical element 40 extends in the in-plane direction. Element plane has the same meaning as in-plane. The same meaning applies to the element surfaces of other elements.
  • the observer 3 who is in front of the optical element 40 can visually recognize the aerial image 2 formed by the optical element 40.
  • the switching element 50 has a function of switching between a first display mode in which an aerial image is displayed in the air above the aerial display device 1 and a second display mode in which an image displayed on the screen of the display element 20 is displayed.
  • the switching element 50 includes a plurality of element pixels, each extending in the Y direction and arranged in the X direction.
  • the switching element 50 can be set to a transmitting state in which light is transmitted and a light blocking state in which light is blocked for each of the plurality of element pixels.
  • the area of the switching element 50 is set to be approximately the same as the area of the optical element 40. The detailed configuration of the switching element 50 will be described later.
  • FIG. 3A is a plan view of the alignment control element 30 shown in FIG. 1.
  • FIG. 3B is a cross-sectional view of the alignment control element 30 taken along line AA' in FIG. 3A.
  • the base material 31 is configured to be planar in the XY plane and has a rectangular parallelepiped shape.
  • the base material 31 transmits light.
  • a plurality of transparent members 33 are provided on the base material 31, each extending in the Y direction and aligned in the X direction. Furthermore, a plurality of light shielding members 34 are provided on the base material 31, each extending in the Y direction and lined up in the X direction. The plurality of transparent members 33 and the plurality of light shielding members 34 are arranged alternately so that adjacent ones are in contact with each other.
  • a base material 32 is provided on the plurality of transparent members 33 and the plurality of light shielding members 34.
  • the base material 32 is configured to be planar in the XY plane and has a rectangular parallelepiped shape.
  • the base material 32 transmits light.
  • the transparent member 33 extends in an oblique direction at an angle ⁇ 1 with respect to the normal direction of the base material 31 in the XZ plane.
  • the transparent member 33 is a parallelogram whose side surfaces are inclined by an angle ⁇ 1 in the XZ plane.
  • the transparent member 33 transmits light.
  • the light shielding member 34 extends in an oblique direction at an angle ⁇ 1 with respect to the normal direction of the base material 31 in the XZ plane.
  • the light shielding member 34 is a parallelogram whose side surfaces are inclined by an angle ⁇ 1 in the XZ plane.
  • the light blocking member 34 blocks light.
  • the thickness of the light shielding member 34 is set to be thinner than the thickness of the transparent member 33.
  • Two adjacent light shielding members 34 are arranged so that their ends slightly overlap in the Z direction.
  • the base materials 31, 32 and the transparent member 33 glass or transparent resin (including acrylic resin) is used.
  • the light shielding member 34 for example, resin mixed with black dye or pigment is used.
  • the alignment control element 30 may be configured by omitting one or both of the base materials 31 and 32. If the plurality of transparent members 33 and the plurality of light shielding members 34 are arranged alternately, the function of the alignment control element 30 can be realized.
  • the alignment control element 30 configured in this manner can transmit display light such that the light intensity in an oblique direction at an angle ⁇ 1 with respect to the normal direction reaches a peak.
  • the angle ⁇ 1 is set to, for example, 10 degrees or more and 60 degrees or less.
  • the alignment control element 30 is configured to block light components outside the range of 30° ⁇ 30° with respect to the normal direction.
  • the alignment control element 30 is configured to block light components outside the range of 30° ⁇ 20° with respect to the normal direction.
  • the orientation control element 30 may be arranged between the lighting element 10 and the display element 20.
  • the aerial display device 1 may be configured without the orientation control element 30.
  • FIG. 4 is a partial side view of the optical element 40 shown in FIG. 1.
  • FIG. 4 also shows a partial side view of the switching element 50 so that the correspondence between the optical element 40 and the switching element 50 can be understood.
  • the optical element 40 includes a base material 41 and a plurality of optical elements 42.
  • the base material 41 is configured to be planar in the XY plane and has a rectangular parallelepiped shape.
  • a plurality of optical elements 42 are provided on the bottom surface of the base material 41.
  • Each of the plurality of optical elements 42 is composed of a triangular prism.
  • the optical element 42 is arranged so that three side surfaces of a triangular prism are parallel to the XY plane, and one side surface is in contact with the base material 41.
  • the plurality of optical elements 42 each extend in the Y direction and are arranged side by side in the X direction. Further, adjacent optical elements 42 are arranged at a constant interval.
  • the area where the optical element 42 is placed is called a first area Sa
  • the area where the optical element 42 is not placed is called a second area Sb.
  • the plurality of first regions Sa and the plurality of second regions Sb are arranged alternately.
  • the length of the first region Sa in the X direction is the same as the length of the second region Sb in the X direction.
  • the configuration is not limited to this, and the length of the first region Sa in the X direction may be different from the length of the second region Sb in the X direction.
  • the first region Sa and the second region Sb are defined over the entire aerial display device 1 (illumination element 10, display element 20, orientation control element 30, optical element 40, and switching element 50).
  • Each of the plurality of optical elements 42 has an incident surface 43 and a reflective surface 44.
  • the left side surface is the incident surface 43
  • the right side surface is the reflective surface 44.
  • the incident surface 43 is a surface onto which light from the display element 20 is incident.
  • the reflective surface 44 is a surface that reflects light that has entered the entrance surface 43 from the outside inside the optical element 42 .
  • the second region Sb of the optical element 40 corresponds to the space between adjacent optical elements 42.
  • the bottom surface of the optical element 40 in the second region Sb is constituted by a flat surface 45.
  • the plane 45 is a plane parallel to the XY plane.
  • the plane 45 is configured to extend in the Y direction.
  • the base material 41 and the optical element 42 are made of transparent material.
  • the optical element 42 is formed integrally with the base material 41, for example, from the same transparent material as the base material 41.
  • the base material 41 and the optical element 42 may be formed separately, and the optical element 42 may be adhered to the base material 41 using a transparent adhesive.
  • glass or transparent resin including acrylic resin
  • the first region Sa of the optical element 40 internally reflects the light incident from the lower side of the optical element 40 to form a real image in the air. Further, the first region Sa of the optical element 40 forms an aerial image at a position in front of the element surface.
  • the second region Sb of the optical element 40 transmits the light incident from the lower side of the optical element 40 without reflecting it.
  • the plane image displayed on the screen of the display element 20 is directly viewed by the viewer without forming an aerial image.
  • a planar image means an image displayed on the screen of the display element 20.
  • FIG. 5 is a partial plan view of the switching element 50 shown in FIG. 1.
  • FIG. 5 also shows a partial side view of the optical element 40 so that the correspondence between the optical element 40 and the switching element 50 can be understood.
  • FIG. 4 described above also shows a partial side view of the switching element 50.
  • the switching element 50 is in contact with the upper surface of the optical element 40.
  • the switching element 50 includes a plurality of element pixels 51a and 51b, each extending in the Y direction and arranged in the X direction.
  • the plurality of element pixels 51a and the plurality of element pixels 51b are arranged alternately.
  • Each of the plurality of element pixels 51a and 51b is composed of, for example, a plurality of pixels.
  • the plurality of element pixels 51a are arranged above the plurality of first regions Sa of the optical element 40, respectively.
  • the length of the element pixel 51a in the X direction and the length in the Y direction are respectively the same as the length in the X direction and the length in the Y direction of the first area Sa.
  • the plurality of element pixels 51b are respectively arranged above the plurality of second regions Sb of the optical element 40.
  • the length of the element pixel 51b in the X direction and the length in the Y direction are respectively the same as the length in the X direction and the length in the Y direction of the second region Sb.
  • the switching element 50 can be set for each of the plurality of element pixels 51a and 51b to a transmitting state in which light is transmitted therethrough and a light blocking state in which light is blocked.
  • the switching element 50 can be composed of a liquid crystal element.
  • the liquid crystal element includes a polarizing plate, and can be set for each pixel to a transmitting state in which light is transmitted and a light blocking state in which light is blocked.
  • the switching element 50 may be configured with an electrochromic element or a polymer dispersed liquid crystal (PDLC) element.
  • PDLC polymer dispersed liquid crystal
  • the switching element 50 has a plurality of light shielding plates arranged every other one in the region of a plurality of element pixels. Then, the positions of the transmission region and the light-shielding region may be mechanically switched by shifting the plurality of light-shielding plates by one element pixel at the same time.
  • FIG. 6 is a block diagram of the aerial display device 1.
  • the aerial display device 1 includes a control section 60, a storage section 61, an input/output interface (input/output IF) 62, a display section 63, and an input section 64.
  • the control section 60, the storage section 61, and the input/output interface 62 are connected to each other via a bus 65.
  • the input/output interface 62 is connected to a display section 63 and an input section 64.
  • the input/output interface 62 performs interface processing on each of the display section 63 and the input section 64 in accordance with a predetermined standard.
  • the display section 63 includes a lighting element 10, a display element 20, and a switching element 50.
  • the display unit 63 displays images.
  • the control unit 60 is composed of one or more processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit).
  • the control unit 60 implements various functions by executing programs stored in the storage unit 61.
  • the control section 60 includes a display processing section 60A and an information processing section 60B.
  • the display processing unit 60A controls the operation of the display unit 63 (specifically, the lighting element 10, the display element 20, and the switching element 50).
  • the display processing unit 60A controls turning on and off of the lighting element 10.
  • the display processing unit 60A transmits an image signal to the display element 20 and causes the display element 20 to display an image.
  • the display processing unit 60A sets the element pixels 51a and 51b of the switching element 50 to a transparent state or a light-blocking state depending on the display mode.
  • the information processing unit 60B generates an image to be displayed by the aerial display device 1.
  • the information processing section 60B can use image data stored in the storage section 61.
  • the information processing unit 60B may acquire image data from outside using a communication function (not shown).
  • the storage unit 61 includes nonvolatile storage devices such as ROM (Read Only Memory), HDD (Hard Disk Drive), and SSD (Solid State Drive), and volatile storage devices such as RAM (Random Access Memory) and registers. including.
  • the storage unit 61 stores programs executed by the control unit 60.
  • the storage unit 61 stores various data necessary for control of the control unit 60.
  • the storage unit 61 stores data of images displayed by the aerial display device 1.
  • the input unit 64 includes, for example, a touch panel and buttons, and receives information input by the user.
  • the information processing section 60B can select an image to be displayed on the display section 63 based on the information received by the input section 64.
  • FIG. 2 shows the display operation of aerial image 2
  • the arrows in FIG. 2 indicate optical paths.
  • light emitted from an arbitrary point "o" on the display element 20 enters the alignment control element 30.
  • a light component at an angle ⁇ 1 is transmitted through the alignment control element 30 .
  • the light transmitted through the alignment control element 30 enters the optical element 40.
  • the optical element 40 forms an image of the incident light in the air on the opposite side of the orientation control element 30, and displays an aerial image 2 in the air.
  • FIG. 7 is a perspective view illustrating how light is reflected in the optical element 40.
  • FIG. 8 is a side view of the XZ plane illustrating how light is reflected in the optical element 40.
  • FIG. 8 is a view of the optical element 40 in a state where both eyes of the observer 3 (that is, a line connecting both eyes) are parallel to the X direction.
  • FIG. 9 is a side view of the YZ plane illustrating how light is reflected in the optical element 40.
  • FIG. 9 is a diagram of the optical element 40 viewed with both eyes of the observer 3 parallel to the Y direction.
  • the light that reaches the reflective surface 44 at an angle larger than the critical angle with respect to the normal direction of the reflective surface 44 is totally reflected on the reflective surface 44 and is reflected on the opposite side of the optical element 40 from the side where the optical element 42 is formed.
  • the critical angle is the minimum angle of incidence beyond which total internal reflection occurs.
  • the critical angle is the angle of the plane of incidence with respect to the normal.
  • the light emitted from point "o" is totally reflected by the reflective surface 44 of the optical element 42, and the light is imaged in the air to generate an aerial image.
  • the light emitted from point "o" is not reflected by the reflective surface 44 of the optical element 42, and the light does not form an image in the air, so it does not contribute to the generation of an aerial image.
  • the condition under which the observer 3 can visually recognize the aerial image is that both eyes of the observer 3 are parallel to the X direction or close to it (for example, ⁇ 10 degrees with respect to the X direction). Further, when the observer 3 moves his/her viewpoint along the Y direction with both eyes parallel to the X direction or in a state close to it, the aerial image can always be recognized.
  • FIG. 10 is a diagram illustrating the angle conditions of the incident surface 43 and the reflective surface 44 in the optical element 40.
  • the refractive index of the material of the optical element 40 be n p and the refractive index of air be 1.
  • Let the incident angle on the reflecting surface 44 be ⁇ 6 and the reflection angle be ⁇ 7 ( ⁇ 6 ).
  • the refraction angle ⁇ 9 is the exit angle.
  • the output angle ⁇ 9 is expressed by the following equation (2).
  • ⁇ 9 sin -1 (n p *sin (sin -1 ((1/n p ) * sin (90° - ( ⁇ 1 + ⁇ 2 ))) + ⁇ 2 +2 ⁇ 3 -90°)) ... (2 )
  • the critical angle at the reflective surface 44 is expressed by the following equation (3).
  • Critical angle ⁇ 6 ( ⁇ 7 )
  • Critical angle sin -1 (1/n p )...(3)
  • the incident angle ⁇ 6 on the reflective surface 44 is set to be larger than the critical angle on the reflective surface 44 .
  • the angle ⁇ 3 of the reflective surface 44 is set such that the angle of incidence of light incident on the reflective surface 44 is greater than the critical angle.
  • the light incident on the entrance surface 43 is set so as not to be totally reflected on the entrance surface 43. That is, the angle ⁇ 2 of the incident surface 43 is set such that the incident angle of light incident on the incident surface 43 is smaller than the critical angle.
  • the angle between the element surface of the optical element 40 and the surface of the aerial image 2 and the distance between the element surface of the optical element 40 and the surface of the aerial image 2 are determined by the angle ⁇ 1 of the light incident on the optical element 40 and the angle between the element surface of the optical element 40 and the surface of the aerial image 2. Adjustment is possible by optimally setting the refractive index, the angle ⁇ 2 of the incident surface 43 of the optical element 40, and the angle ⁇ 3 of the reflective surface 44 of the optical element 40.
  • the aerial display device 1 is capable of executing two types of display modes: a first display mode in which an aerial image 2 is displayed, and a second display mode in which a plane image of the screen of the display element 20 is displayed. Switching of the display mode is performed using the switching element 50.
  • FIG. 11 is a partial side view of the aerial display device 1 for explaining the first display mode in which the aerial image 2 is displayed.
  • the switching element 50 sets the element pixel 51a corresponding to the first area Sa to a transparent state, and sets the element pixel 51b corresponding to the second area Sb to a light blocking state.
  • element pixels in a light-shielded state are hatched.
  • the display element 20 displays an image on its own screen. Of the light that enters the optical element 40 from the display element 20 via the alignment control element 30, the light component in the first area Sa is reflected by the optical element 42 of the optical element 40, and the light component enters the first area Sa of the switching element 50. To Penetrate. The light component transmitted through the first region Sa of the switching element 50 generates an aerial image 2 at the position of the display surface Ai shown in FIG.
  • the light component in the second area Sb (the light component that has entered the plane 45 of the optical element 40) is transmitted through the optical element 40 and is switched. Light is blocked by the second region Sb of the element 50. Therefore, the light component of the second region Sb of the light incident on the optical element 40 does not contribute to the display of the aerial image 2.
  • FIG. 12 is a partial side view of the aerial display device 1 for explaining the second display mode in which a plane image of the screen of the display element 20 is displayed.
  • the switching element 50 sets the element pixel 51a corresponding to the first area Sa to the light blocking state, and sets the element pixel 51b corresponding to the second area Sb to the transmitting state.
  • element pixels in a light-shielded state are hatched.
  • the display element 20 displays an image on its own screen. Of the light that enters the optical element 40 from the display element 20 via the alignment control element 30, the light component in the first area Sa is reflected by the optical element 42 of the optical element 40, and is blocked by the first area Sa of the switching element 50. be done. Therefore, no aerial image is formed by the optical element 40.
  • the light component in the second area Sb (the light component that has entered the plane 45 of the optical element 40) is transmitted through the optical element 40 and is switched.
  • the light passes through the second region Sb of the element 50.
  • the light component transmitted through the second region Sb of the switching element 50 is visually recognized by the observer 3 as it is. Therefore, the planar image 21 is displayed at the position of the display surface Bi shown in FIG.
  • the aerial display device 1 can display the aerial image 2 at the position of the display surface Ai above the aerial display device 1 in the first display mode. Further, the aerial display device 1 can display the planar image 21 at a position on the display surface Bi corresponding to the screen of the display element 20 in the second display mode.
  • FIG. 13 is a flowchart illustrating the display operation of the aerial display device 1.
  • the information processing unit 60B selects image data to be displayed by the aerial display device 1 (step S100). For example, the information processing unit 60B reads information regarding image data set as an initial value from the storage unit 61, and reads image data from the storage unit 61 based on this read information.
  • the information processing section 60B may read image data from the storage section 61 based on information input by the user using the input section 64.
  • the information processing unit 60B may select image data transmitted from the outside using a communication function.
  • the display processing unit 60A determines whether aerial display (first display mode) has been selected, that is, which of the first display mode and second display mode has been selected (step S101). For example, the display processing unit 60A reads information regarding the display mode set as an initial value from the storage unit 61, and determines the display mode based on this read information. The display processing unit 60A may determine the display mode based on information input by the user using the input unit 64.
  • step S101 Yes)
  • the display processing unit 60A sets the element pixel 51b of the switching element 50 to a light-blocking state, and sets the element pixel 51a of the switching element 50 to a transparent state. settings (step S102).
  • the display processing unit 60A displays the image selected in step S100 on the display element 20 (step S103). Thereby, the light component reflected by the optical element 42 of the optical element 40 forms an image in the air, and the aerial image 2 is displayed.
  • step S101 No)
  • the display processing unit 60A sets the element pixel 51a of the switching element 50 to a light-blocking state, and sets the element pixel 51b of the switching element 50 to a transparent state. (Step S104).
  • the display processing unit 60A displays the image selected in step S100 on the display element 20 (step S103).
  • the light component transmitted through the second region Sb of the optical element 40 is visually recognized by the observer 3
  • the plane image 21 displayed on the screen of the display element 20 is visually recognized by the observer 3.
  • the display processing unit 60A sets the element pixel 51b of the switching element 50 to a light blocking state and sets the element pixel 51a of the switching element 50 to a transparent state in the area where the aerial image is displayed. In addition, the display processing unit 60A sets the element pixel 51a of the switching element 50 to the light blocking state and sets the element pixel 51b of the switching element 50 to the transmitting state in the area where the image of the display element 20 is displayed.
  • some of the images displayed on the display element 20 can be displayed as an aerial image, and the other part of the images can be displayed on the screen of the display element 20.
  • the aerial display device 1 can execute two types of display modes: the first display mode and the second display mode.
  • the aerial display device 1 can display the aerial image 2 at a position on the display surface Ai above the aerial display device 1 in the first display mode.
  • the aerial display device 1 can display the planar image 21 at a position on the display surface Bi corresponding to the screen of the display element 20 in the second display mode. Further, the aerial display device 1 can display two-dimensional images at two different positions in the depth direction.
  • the aerial display device 1 can display an aerial image in the air by reflecting the light emitted from the display element 20 with the optical element 40. Further, the aerial display device 1 can display an aerial image parallel to the element surface of the optical element 40 in the front direction thereof. Furthermore, it is possible to realize an aerial display device 1 that can improve display quality.
  • the observer 3 when the observer 3 views the optical element 40 with both eyes parallel to the X direction (that is, the direction in which the plurality of optical elements 42 are lined up) or in a state close to it, the observer 3 visually recognizes the aerial image. be able to. Further, when the observer 3 moves his/her viewpoint along the Y direction with both eyes parallel to the X direction or in a state close to it, the aerial image can always be visually recognized. Moreover, a wider viewing angle can be achieved when both eyes of the observer 3 are parallel to the X direction or in a state close to it.
  • a plurality of elements constituting the aerial display device 1 can be arranged in parallel. Thereby, it is possible to realize an aerial display device 1 that can be downsized in the Z direction.
  • the switching element 50 is composed of a plurality of pixels arranged in a matrix, and each pixel is switched between a transmitting state and a light blocking state.
  • FIG. 14 is a partial plan view of the switching element 50 according to the second embodiment of the present invention.
  • FIG. 14 also shows a partial side view of the optical element 40 so that the correspondence between the optical element 40 and the switching element 50 can be understood.
  • the switching element 50 includes a plurality of element pixels 51a and 51b, each extending in the Y direction and arranged in the X direction.
  • the plurality of element pixels 51a and the plurality of element pixels 51b are arranged alternately.
  • Each element pixel 51a includes a plurality of pixels 52a arranged in the Y direction.
  • Each element pixel 51b includes a plurality of pixels 52b arranged in the Y direction. That is, the plurality of pixels 52a and 52b are arranged in a matrix.
  • Each of the plurality of pixels 52a, 52b has a square shape, for example.
  • the switching element 50 can be set for each of the plurality of pixels 52a and 52b to a transmitting state in which light is transmitted therethrough and a light blocking state in which light is blocked.
  • the display processing unit 60A sets the pixel 52b of the switching element 50 to the light blocking state and sets the pixel 52a of the switching element 50 to the transmitting state in the area where the aerial image is displayed. Furthermore, the display processing unit 60A sets the pixel 52a of the switching element 50 to a light blocking state and sets the pixel 52b of the switching element 50 to a transparent state in the area where the image of the display element 20 is displayed.
  • the switching element 50 is capable of displaying an aerial image in a part of its own area and displaying a planar image in another part of its own area.
  • the switching element 50 sets a plurality of pixels 52a to a transparent state and sets a plurality of pixels 52b to a light-blocking state in a partial region displaying an aerial image.
  • the switching element 50 sets a plurality of pixels 52a to a light blocking state and sets a plurality of pixels 52b to a transmitting state in a partial region displaying a planar image.
  • the operation of the switching element 50 is controlled by the display processing section 60A.
  • part of the images displayed on the display element 20 can be displayed as an aerial image, and the other part of the images can be displayed on the screen of the display element 20. Furthermore, an aerial image and a planar image (an image displayed on the screen of the display element 20) can be displayed adjacent to each other in the Y direction.
  • the light emitted obliquely from the alignment control element 30 is diffused using the light diffusion element 70 in the second display mode.
  • FIG. 15 is a perspective view of an aerial display device 1 according to a third embodiment of the present invention.
  • the aerial display device 1 further includes a light diffusion element 70.
  • the light diffusing element 70 is arranged between the orientation control element 30 and the optical element 40.
  • the entire surface of the light diffusing element 70 can be set to a transmitting state where light is transmitted and a diffusing state where light is diffused. Note that the entire surface of the light diffusing element 70 means the entire light modulation area, and if there is a peripheral area where a circuit for driving the light diffusing element 70 is arranged, this peripheral area is excluded. The area of the light diffusing element 70 is set to be approximately the same as the area of the alignment control element 30.
  • the light diffusing element 70 is composed of, for example, a polymer dispersed liquid crystal (PDLC) element.
  • PDLC polymer dispersed liquid crystal
  • the entire surface of the light diffusing element 70 is set to a transmitting state in the first display mode, and the entire surface is set to a diffusing state in the second display mode.
  • the display processing unit 60A sets the light diffusing element 70 to a transmitting state in the first display mode, and sets the light diffusing element 70 to a diffusing state in the second display mode.
  • the light emitted obliquely from the alignment control element 30 can be diffused by the light diffusion element 70.
  • the light diffusion element 70 it is possible to suppress the display image from deteriorating depending on the angle at which the aerial display device 1 is viewed.
  • the quality of the displayed image can be improved.
  • the optical element 40 further includes an absorption layer 47 that absorbs light components unnecessary for forming an aerial image.
  • the aerial display device 1 is constructed by omitting the orientation control element 30.
  • FIG. 16 is a perspective view of an aerial display device 1 according to a fourth embodiment of the present invention.
  • the aerial display device 1 includes a lighting element 10, a display element 20, an optical element 40, and a switching element 50.
  • the alignment control element 30 shown in the first embodiment is omitted.
  • the lighting element 10, the display element 20, the optical element 40, and the switching element 50 are arranged in this order along the Z direction and parallel to each other.
  • the lighting element 10, the display element 20, the optical element 40, and the switching element 50 are fixed at desired positions with a fixing member (not shown) with a desired spacing between them.
  • FIG. 17 is a partial cross-sectional view of the optical element 40 shown in FIG. 16 along the X direction.
  • a reflective layer 46 is provided on the reflective surface 44 of the optical element 42 .
  • the reflective layer 46 is configured to cover the entire reflective surface 44.
  • the reflective layer 46 has a function of reflecting light.
  • the reflective layer 46 is made of a material with high reflectance. As the reflective layer 46, for example, aluminum (Al), silver (Ag), or an alloy containing one of these is used.
  • An absorbing layer 47 is provided on the reflective layer 46.
  • the absorbing layer 47 is configured to cover the entire reflective layer 46.
  • the absorption layer 47 has a function of absorbing light.
  • the absorption layer 47 is made of a material with high light absorption rate.
  • a resin mixed with a black dye or pigment is used as the absorption layer 47.
  • FIG. 18 is a side view illustrating the operation of the aerial display device 1.
  • FIG. 19 is a partial side view illustrating the operation of the optical element 40. Arrows in FIGS. 18 and 19 indicate optical paths.
  • Light is emitted radially from point "o" of the display element 20.
  • a light component at an angle ⁇ 1 (including a light component in a predetermined angular range centered on the angle ⁇ 1 ) enters the entrance surface 43 of the optical element 42 .
  • the light that enters the incident surface 43 and reaches the reflective surface 44 is reflected by the reflective surface 44 and the reflective layer 46 . Further, due to the presence of the reflective layer 46, the light reaching the reflective surface 44 is reflected more reliably.
  • the absorption layer 47 On the other hand, light that directly enters the absorption layer 47 from outside the optical element 40 is absorbed by the absorption layer 47. Specifically, of the light incident on the optical element 40, the light component on the side where the incident surface 43 is inclined with respect to the direction perpendicular to the element surface of the optical element 40 (Z direction) is absorbed by the absorption layer 47. Ru. The light directly incident on the absorption layer 47 is not reflected by the optical element 40 and is not visible to the observer 3.
  • the optical element 40 functions to reflect only the light for generating the aerial image 2 and not reflect any other light. That is, the optical element 40 can block unnecessary light that does not contribute to the generation of the aerial image 2.
  • the operation of the switching element 50 is the same as in the first embodiment.
  • the aerial display device 1 can be configured without the orientation control element 30. This makes it possible to realize an aerial display device 1 that can be more compact in the Z direction.
  • FIG. 20 is a perspective view of an aerial display device 1 according to the fifth embodiment of the present invention.
  • FIG. 21 is a side view of the aerial display device 1 shown in FIG. 20.
  • the aerial display device 1 includes a lighting element 10, a display element 20, an orientation control element 30, an optical element 40, and a rotation mechanism 80.
  • the lighting element 10, the display element 20, the orientation control element 30, and the optical element 40 are arranged in this order along the Z direction and parallel to each other.
  • the lighting element 10, the display element 20, the orientation control element 30, and the optical element 40 are fixed at a desired position with a fixing member (not shown) with a desired spacing between them.
  • the orientation control element 30 may be arranged between the lighting element 10 and the display element 20.
  • the aerial display device 1 may be configured without the orientation control element 30.
  • the rotation mechanism 80 has a function of rotating a unit consisting of the lighting element 10, display element 20, orientation control element 30, and optical element 40 by 90 degrees in the XY plane.
  • the rotation mechanism 80 is attached to a fixing member (not shown) that fixes the lighting element 10, display element 20, orientation control element 30, and optical element 40 together, and rotates the fixing member to rotate the unit. Rotate all at once.
  • a unit consisting of the lighting element 10, display element 20, orientation control element 30, and optical element 40 is fixed to each other, and the rotation mechanism 80 is attached to the lighting element 10 in the lowest layer of the unit.
  • the rotation mechanism 80 rotates the lighting element 10, thereby rotating the units all at once.
  • FIG. 22 is a perspective view of the optical element 40 shown in FIG. 20.
  • FIG. 22 also shows an enlarged view of a part of the optical element 40.
  • the enlarged view in FIG. 22 is a side view in the XZ plane.
  • the optical element 40 includes a base material 41 and a plurality of optical elements 42.
  • the base material 41 is configured to be planar in the XY plane and has a rectangular parallelepiped shape.
  • a plurality of optical elements 42 are provided on the bottom surface of the base material 41.
  • the configuration of each of the plurality of optical elements 42 is the same as in the first embodiment.
  • the plurality of optical elements 42 are arranged side by side in the X direction, and adjacent ones are arranged so as to be in contact with each other. In other words, the plurality of optical elements 42 have a sawtooth shape in the XZ plane.
  • the base material 41 and the optical element 42 are made of transparent material.
  • the optical element 42 is formed integrally with the base material 41, for example, from the same transparent material as the base material 41.
  • the base material 41 and the optical element 42 may be formed separately, and the optical element 42 may be adhered to the base material 41 using a transparent adhesive.
  • glass or transparent resin including acrylic resin
  • the optical element 40 configured in this manner reflects the incident light internally to form a real image in the air. Further, the optical element 40 forms an aerial image at a position in front of the element surface.
  • FIG. 23 is a block diagram of the aerial display device 1.
  • the display section 63 includes a lighting element 10 and a display element 20.
  • the display unit 63 displays images.
  • the input/output interface 62 is connected to the rotation mechanism 80.
  • the input/output interface 62 performs interface processing on the rotation mechanism 80 according to a predetermined standard.
  • the display processing unit 60A controls the operation of the display unit 63 (specifically, the lighting element 10 and the display element 20).
  • the display processing unit 60A controls turning on and off of the lighting element 10.
  • the display processing unit 60A transmits an image signal to the display element 20 and causes the display element 20 to display an image.
  • the control unit 60 further includes a rotation drive unit 60C.
  • the rotation drive unit 60C rotates the rotation mechanism 80.
  • the rotation drive unit 60C uses the rotation mechanism 80 to move the units (illumination element 10, display element 20, orientation control element 30, and optical element 40) to the position of the first display mode. (a position where the X direction of the optical element 40 is parallel to both eyes of the observer 3).
  • the rotation drive unit 60C uses the rotation mechanism 80 to move the unit to the second display mode position (a position where the Y direction of the optical element 40 is parallel to both eyes of the observer 3).
  • FIG. 21 Display operation of aerial image 2
  • the arrows in FIG. 21 indicate optical paths.
  • light emitted from an arbitrary point "o" on the display element 20 enters the alignment control element 30.
  • a light component at an angle ⁇ 1 is transmitted through the alignment control element 30 .
  • the light transmitted through the alignment control element 30 enters the optical element 40.
  • the optical element 40 forms an image of the incident light in the air on the opposite side to the orientation control element 30, and displays an aerial image 2 in the air.
  • FIG. 24 is a perspective view illustrating how light is reflected in the optical element 40.
  • FIG. 25 is a side view of the XZ plane illustrating how light is reflected in the optical element 40.
  • FIG. 25 is a view of the optical element 40 in a state where both eyes of the observer 3 (that is, a line connecting both eyes) are parallel to the X direction.
  • Light emitted from an arbitrary point "o" of the display element 20 enters the incident surface 43 of the optical element 40 and reaches the reflective surface 44.
  • the light that reaches the reflective surface 44 at an angle larger than the critical angle with respect to the normal direction of the reflective surface 44 is totally reflected by the reflective surface 44 and is reflected on the opposite side of the optical element 40 from the side where the optical element 42 is formed.
  • FIG. 9 is a diagram of the optical element 40 viewed with both eyes of the observer 3 parallel to the Y direction.
  • the light emitted from point "o" is not reflected by the reflective surface 44 of the optical element 42, and the light does not form an image in the air, so it does not contribute to the generation of an aerial image.
  • the condition under which the observer 3 can recognize an aerial image is that both eyes of the observer 3 are parallel to the X direction or close to it (for example, ⁇ 10 degrees with respect to the X direction). Further, when the observer 3 moves his/her viewpoint along the Y direction with both eyes parallel to the X direction or in a state close to it, the aerial image can always be recognized.
  • the aerial display device 1 is capable of executing two types of display modes: a first display mode in which an aerial image 2 is displayed, and a second display mode in which a plane image is displayed on the screen of the display element 20. Switching of the display mode is performed using the rotation mechanism 80.
  • FIG. 26 is a perspective view of the aerial display device 1 for explaining the first display mode in which the aerial image 2 is displayed.
  • the rotation mechanism 80 is a unit consisting of the illumination element 10, the display element 20, the orientation control element 30, and the optical element 40 so that the X direction of the optical element 40 is parallel to both eyes of the observer 3. Rotate.
  • the display element 20 displays an image on its own screen.
  • a light component that enters the optical element 40 from the display element 20 via the orientation control element 30 is reflected by the optical element 42 of the optical element 40.
  • the aerial display device 1 displays the aerial image 2 at the position of the display surface Ai shown in FIG. 26.
  • FIG. 27 is a perspective view of the aerial display device 1 for explaining the second display mode in which a plane image is displayed on the screen of the display element 20.
  • the rotation mechanism 80 rotates the unit so that the Y direction of the optical element 40 is parallel to both eyes of the observer 3.
  • the display element 20 displays an image on its own screen.
  • a light component that has entered the optical element 40 from the display element 20 via the orientation control element 30 is transmitted through the optical element 40 .
  • no aerial image is formed by the optical element 40.
  • the aerial display device 1 then displays the planar image 21 at the position of the display surface Bi shown in FIG.
  • the aerial display device 1 can display the aerial image 2 at the position of the display surface Ai above the aerial display device 1 in the first display mode. Further, the aerial display device 1 can display the planar image 21 at a position on the display surface Bi corresponding to the screen of the display element 20 in the second display mode.
  • FIG. 28 is a flowchart illustrating the display operation of the aerial display device 1. The operations in steps S100 and S101 are the same as in the first embodiment.
  • the rotation drive unit 60C uses the rotation mechanism 80 to rotate the unit to the first display mode position (step S200). That is, the rotation drive unit 60C rotates the unit so that the X direction of the optical element 40 is parallel to both eyes of the observer 3.
  • the display processing unit 60A displays the image selected in step S100 on the display element 20 (step S103). Thereby, the light component reflected by the optical element 42 of the optical element 40 forms an image in the air, and the aerial image 2 is displayed.
  • step S101 No)
  • the rotation drive unit 60C uses the rotation mechanism 80 to rotate the unit to the second display mode position (step S201). That is, the rotation drive unit 60C rotates the unit so that the Y direction of the optical element 40 is parallel to both eyes of the observer 3.
  • the display processing unit 60A displays the image selected in step S100 on the display element 20 (step S103).
  • the light component transmitted through the optical element 40 is visually recognized by the observer 3
  • the plane image 21 displayed on the screen of the display element 20 is visually recognized by the observer 3.
  • the aerial display device 1 displays two-dimensional images at two different positions in the depth direction. Can be done.
  • the sixth embodiment is a modification of the fifth embodiment.
  • FIG. 29 is a diagram illustrating the operation of the aerial display device 1 according to the sixth embodiment of the present invention.
  • the horizontal axis in FIG. 29 is the rotation angle (degrees) by the rotation mechanism 80, and the vertical axis is the perceived height of the image.
  • the rotation angle is 0 degrees for the display surface Ai in the first display mode, and 90 degrees for the display surface Bi in the second display mode.
  • the basic configuration of the aerial display device 1 is the same as the fifth embodiment.
  • the rotation mechanism 80 is capable of rotating a unit including the illumination element 10, the display element 20, the orientation control element 30, and the optical element 40 within a range of 0 degrees to 90 degrees.
  • the perceived height of the image changes linearly as the rotation angle changes.
  • the illumination element 10 the display element 20
  • the positional relationship of the orientation control element 30 and the optical element 40 in the Z direction is set.
  • the rotation drive unit 60C uses the rotation mechanism 80 to rotate the unit to the position of the third display mode, that is, the rotation angle is 45 degrees.
  • the image displayed on the top surface of the aerial display device 1 is visually recognized by the observer.
  • the direction of the image that is viewed can be adjusted based on the direction of the image displayed on the display element 20.
  • the rotation angle in the third display mode can be set to any angle in the angle range greater than 0 degrees and smaller than 90 degrees. Accordingly, the height of the image in the third display mode is set to a specific position having the relationship shown in FIG. 29.
  • the display element 20 and the optical element 40 are arranged in parallel.
  • the present invention is not limited to this, and the display element 20 may be arranged diagonally with respect to the optical element 40.
  • the angle between the display element 20 and the optical element 40 is set in a range greater than 0 degrees and less than 45 degrees.
  • the orientation control element 30 can be omitted.
  • the left side surface of the optical element 42 is defined as the incident surface 43
  • the right side surface is defined as the reflective surface 44.
  • the present invention is not limited to this, and the incident surface 43 and the reflective surface 44 may be configured in reverse. In this case, the left and right functions of the aerial display device 1 described in the embodiment are also reversed.
  • a liquid crystal display element is used as an example of the display element 20, but the display element 20 is not limited to this.
  • the display element 20 can also be a self-luminous organic EL (electroluminescence) display element, a micro LED (light emitting diode) display element, or the like.
  • a micro LED display element is a display element that uses LEDs to emit light for each of R (red), G (green), and B (blue) that constitute a pixel. When using the self-luminous display element 20, the lighting element 10 is not necessary.
  • the present invention is not limited to the above-described embodiments, and can be variously modified at the implementation stage without departing from the spirit thereof.
  • each embodiment may be implemented in combination as appropriate, and in that case, the combined effect can be obtained.
  • the embodiments described above include various inventions, and various inventions can be extracted by combinations selected from the plurality of constituent features disclosed. For example, if a problem can be solved and an effect can be obtained even if some constituent features are deleted from all the constituent features shown in the embodiment, the configuration from which these constituent features are deleted can be extracted as an invention.
  • SYMBOLS 1 Aerial display device, 2... Aerial image, 3... Observer, 10... Illumination element, 11... Light source part, 12... Light guide plate, 13... Reflection sheet, 20... Display element, 21... Planar image, 30... Orientation control Element, 31, 32... Base material, 33... Transparent member, 34... Light shielding member, 40... Optical element, 41... Base material, 42... Optical element, 43... Incident surface, 44... Reflective surface, 45... Plane, 46... Reflective layer, 47... Absorption layer, 50... Switching element, 51a, 51b... Element pixel, 52a, 52b... Pixel, 60... Control section, 60A... Display processing section, 60B... Information processing section, 60C... Rotation drive section, 61 ...Storage section, 62...Input/output interface, 63...Display section, 64...Input section, 65...Bus, 70...Light diffusion element, 80...Rotation mechanism.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

An aerial display device includes a display element (20), an optical element (40), and a switching element (50). The display element (20) displays an image. The optical element (40) is positioned so as to receive light from the display element (20), and has a plurality of first regions and a plurality of second regions that are alternately arranged. The plurality of first regions is configured so as to reflect the light from the display element (20) in the opposite direction from the display element (20) and form an aerial image in midair, and the plurality of second regions is configured so as to transmit the light from the display element (20). The switching element (50) is positioned so as to receive light from the optical element (40), and shade the plurality of second regions in a first display mode and shade the plurality of first regions in a second display mode.

Description

空中表示装置aerial display device
 本発明は、空中表示装置に関する。 The present invention relates to an aerial display device.
 画像や動画などを空中像として表示可能な空中表示装置が研究され、新しいヒューマン・マシン・インターフェースとして期待されている。空中表示装置は、例えば、2面コーナーリフレクタがアレイ状に配列された2面コーナーリフレクタアレイを備え、表示素子の表示面から出射される光を反射し、空中に実像を結像する。2面コーナーリフレクタアレイによる表示方法は、収差が無く、面対称位置に実像(空中像)を表示することができる。 Aerial display devices that can display images and videos as aerial images are being researched and are expected to serve as a new human-machine interface. An aerial display device includes, for example, a dihedral corner reflector array in which dihedral corner reflectors are arranged in an array, and reflects light emitted from a display surface of a display element to form a real image in the air. The display method using a dihedral corner reflector array has no aberration and can display a real image (aerial image) at a plane-symmetrical position.
 特許文献1は、透明平板の表面から突出した透明な四角柱を2面コーナーリフレクタとして使用し、複数の四角柱を平面上にアレイ状に配置した光学素子を開示している。また、特許文献2は、第1及び第2光制御パネルの各々を、透明平板の内部に垂直に複数の平面光反射部を並べて形成し、第1及び第2光制御パネルを、互いの平面光反射部が直交するように配置した光学素子を開示している。特許文献1、2の光学素子は、表示素子から出射された光を直交する反射面で2回反射させ、空中像を生成している。 Patent Document 1 discloses an optical element in which a transparent square prism protruding from the surface of a transparent flat plate is used as a dihedral corner reflector, and a plurality of square prisms are arranged in an array on a plane. Further, Patent Document 2 discloses that each of the first and second light control panels is formed by vertically arranging a plurality of plane light reflection parts inside a transparent flat plate, and the first and second light control panels are arranged on each other's planes. An optical element is disclosed in which light reflecting portions are arranged so as to be orthogonal to each other. The optical elements of Patent Documents 1 and 2 reflect the light emitted from the display element twice on orthogonal reflecting surfaces to generate an aerial image.
 特許文献1、2の光学素子を利用した表示装置は、光学素子の斜方向から観察することで空中像を認識できるものであり、光学素子の法線方向からの観察では良好な空中像を認識することは難しい。 The display devices using the optical elements of Patent Documents 1 and 2 can recognize an aerial image by observing from an oblique direction of the optical element, and can recognize a good aerial image by observing from the normal direction of the optical element. It's difficult to do.
日本国特開2011-191404号公報Japanese Patent Application Publication No. 2011-191404 日本国特開2011-175297号公報Japanese Patent Application Publication No. 2011-175297
 本発明は、表示品質を向上させることが可能な空中表示装置を提供する。 The present invention provides an aerial display device that can improve display quality.
 本発明の第1態様によると、画像を表示する表示素子と、前記表示素子からの光を受けるように配置され、交互に配置された複数の第1領域及び複数の第2領域を有し、前記複数の第1領域は、前記表示素子からの光を、前記表示素子と反対側に反射し、空中に空中像を結像するように構成され、前記複数の第2領域は、前記表示素子からの光を透過するように構成される、光学素子と、前記光学素子からの光を受けるように配置され、第1表示モードにおいて、前記複数の第2領域を遮光し、第2表示モードにおいて、前記複数の第1領域を遮光する切替素子とを具備する空中表示装置が提供される。 According to a first aspect of the present invention, it has a display element that displays an image, and a plurality of first regions and a plurality of second regions arranged alternately to receive light from the display element, The plurality of first regions are configured to reflect light from the display element to a side opposite to the display element and form an aerial image in the air, and the plurality of second regions are configured to reflect light from the display element to a side opposite to the display element, and form an aerial image in the air. an optical element configured to transmit light from the optical element; and an optical element arranged to receive light from the optical element, the optical element shielding the plurality of second regions from light in a first display mode, and in a second display mode. , and a switching element that shields the plurality of first regions from light.
 本発明の第2態様によると、前記光学素子は、平面状の基材と、前記基材の下に設けられ、それぞれが第1方向に延び、前記第1方向に直交する第2方向に並び、前記複数の第1領域にそれぞれ設けられた複数の光学要素とを含み、前記複数の光学要素の各々は、前記基材の法線方向に対してそれぞれが傾き、互いに接する入射面及び反射面を有し、前記光学素子の前記複数の第2領域はそれぞれ、複数の平面で構成される、第1態様に係る空中表示装置が提供される。 According to a second aspect of the present invention, the optical elements are provided on a planar base material and below the base material, each extending in a first direction, and arranged in a second direction orthogonal to the first direction. , a plurality of optical elements respectively provided in the plurality of first regions, each of the plurality of optical elements having an incident surface and a reflection surface that are inclined with respect to the normal direction of the base material and that touch each other. There is provided an aerial display device according to a first aspect, wherein each of the plurality of second regions of the optical element is configured with a plurality of planes.
 本発明の第3態様によると、前記光学素子は、前記反射面に設けられ、光を反射する反射層と、前記反射層上に設けられ、光を吸収する吸収層とを含む、第2態様に係る空中表示装置が提供される。 According to a third aspect of the present invention, the optical element includes a reflective layer that is provided on the reflective surface and reflects light, and an absorption layer that is provided on the reflective layer and absorbs light. An aerial display device according to the present invention is provided.
 本発明の第4態様によると、前記切替素子は、それぞれが第1方向に延び、前記第1方向に直交する第2方向に交互に並んだ複数の第1要素画素及び複数の第2要素画素を有し、前記複数の第1要素画素はそれぞれ、前記複数の第1領域に設けられ、前記複数の第2要素画素はそれぞれ、前記複数の第2領域に設けられ、前記複数の第1要素画素及び前記複数の第2要素画素の各々は、透過状態と遮光状態とに設定可能である、第1態様に係る空中表示装置が提供される。 According to a fourth aspect of the present invention, the switching element includes a plurality of first element pixels and a plurality of second element pixels, each extending in a first direction and arranged alternately in a second direction orthogonal to the first direction. each of the plurality of first element pixels is provided in the plurality of first regions, each of the plurality of second element pixels is provided in the plurality of second regions, and the plurality of first element pixels There is provided an aerial display device according to the first aspect, in which each of the pixels and the plurality of second element pixels can be set to a transmissive state and a light-blocking state.
 本発明の第5態様によると、前記切替素子は、前記第1表示モードにおいて、前記複数の第1要素画素を透過状態に設定し、前記複数の第2要素画素を遮光状態に設定し、前記第2表示モードにおいて、前記複数の第1要素画素を遮光状態に設定し、前記複数の第2要素画素を透過状態に設定する、第4態様に係る空中表示装置が提供される。 According to the fifth aspect of the present invention, the switching element sets the plurality of first element pixels to a transparent state and the plurality of second element pixels to a light blocking state in the first display mode, and sets the plurality of first element pixels to a light-blocking state; There is provided an aerial display device according to a fourth aspect, wherein in the second display mode, the plurality of first element pixels are set to a light blocking state and the plurality of second element pixels are set to a transmitting state.
 本発明の第6態様によると、前記複数の第1要素画素の各々は、前記第1方向に並んだ複数の第1画素を有し、前記複数の第2要素画素の各々は、前記第1方向に並んだ複数の第2画素を有し、前記複数の第1画素及び前記複数の第2画素の各々は、透過状態と遮光状態とに設定可能である、第4態様に係る空中表示装置が提供される。 According to the sixth aspect of the present invention, each of the plurality of first element pixels has a plurality of first pixels arranged in the first direction, and each of the plurality of second element pixels has a plurality of first elements arranged in the first direction. An aerial display device according to a fourth aspect, comprising a plurality of second pixels arranged in a direction, and each of the plurality of first pixels and the plurality of second pixels can be set to a transmitting state and a light blocking state. is provided.
 本発明の第7態様によると、前記切替素子は、前記空中像を表示する部分領域において、前記第1画素を透過状態に設定し、前記第2画素を遮光状態に設定し、前記表示素子の画面の平面像を表示する部分領域において、前記第1画素を遮光状態に設定し、前記第2画素を透過状態に設定する、第6態様に係る空中表示装置が提供される。 According to the seventh aspect of the present invention, the switching element sets the first pixel to a transparent state and the second pixel to a light blocking state in the partial region displaying the aerial image, and sets the first pixel to a light-blocking state, There is provided an aerial display device according to a sixth aspect, in which the first pixel is set to a light blocking state and the second pixel is set to a transmitting state in a partial area that displays a planar image of the screen.
 本発明の第8態様によると、前記表示素子と前記光学素子との間に配置され、前記表示素子からの光のうち斜め方向の光成分を透過する配向制御素子をさらに具備する、第1態様に係る空中表示装置が提供される。 According to an eighth aspect of the present invention, the first aspect further includes an alignment control element that is disposed between the display element and the optical element and transmits an oblique light component of the light from the display element. An aerial display device according to the present invention is provided.
 本発明の第9態様によると、前記配向制御素子は、交互に配置された複数の透明部材及び複数の遮光部材を含み、前記複数の遮光部材は、前記配向制御素子の法線に対して傾いている、第8態様に係る空中表示装置が提供される。 According to a ninth aspect of the present invention, the alignment control element includes a plurality of transparent members and a plurality of light blocking members arranged alternately, and the plurality of light blocking members are inclined with respect to a normal line of the alignment control element. An aerial display device according to an eighth aspect is provided.
 本発明の第10態様によると、前記配向制御素子と前記光学素子との間に配置された光拡散素子をさらに具備し、前記光拡散素子は、前記第1表示モードにおいて、光を透過する透過状態に設定され、前記第2表示モードにおいて、光を拡散する拡散状態に設定される、第9態様に係る空中表示装置が提供される。 According to the tenth aspect of the present invention, the light diffusing element further includes a light diffusing element disposed between the alignment control element and the optical element, and the light diffusing element is configured to transmit light in the first display mode. According to a ninth aspect, there is provided an aerial display device according to a ninth aspect, wherein the aerial display device is set to a diffusion state in which light is diffused in the second display mode.
 本発明の第11態様によると、前記表示素子、前記光学素子、及び前記切替素子は、互いに平行に配置される、第1態様に係る空中表示装置が提供される。 According to an eleventh aspect of the present invention, there is provided the aerial display device according to the first aspect, in which the display element, the optical element, and the switching element are arranged parallel to each other.
 本発明の第12態様によると、光を発光する照明素子をさらに具備し、前記表示素子は、前記照明素子からの光を受けるように配置され、液晶表示素子で構成される、第1態様に係る空中表示装置が提供される。 According to a twelfth aspect of the present invention, the present invention further includes a lighting element that emits light, and the display element is arranged to receive light from the lighting element and is configured of a liquid crystal display element. Such an aerial display device is provided.
 本発明の第13態様によると、画像を表示する表示素子と、前記表示素子から出射された光を受けるように配置され、前記表示素子から出射された光を、前記表示素子と反対側に反射し、空中に空中像を結像する光学素子と、前記表示素子及び前記光学素子を含むユニットを90度の範囲で回転させ、前記空中像の奥行き方向の位置を変化させる回転機構とを具備する空中表示装置が提供される。 According to a thirteenth aspect of the present invention, there is provided a display element that displays an image, and a display element that is arranged to receive light emitted from the display element, and that reflects the light emitted from the display element to a side opposite to the display element. and includes an optical element that forms an aerial image in the air, and a rotation mechanism that rotates a unit including the display element and the optical element within a range of 90 degrees to change the position of the aerial image in the depth direction. An aerial display device is provided.
 本発明の第14態様によると、前記光学素子は、平面状の基材と、前記基材の下に設けられ、それぞれが第1方向に延び、前記第1方向に直交する第2方向に並んだ複数の光学要素とを含み、前記複数の光学要素の各々は、前記基材の法線方向に対してそれぞれが傾き、互いに接する入射面及び反射面を有する、第13態様に係る空中表示装置が提供される。 According to the fourteenth aspect of the present invention, the optical elements are provided under a planar base material and the base material, each extending in a first direction, and arranged in a second direction perpendicular to the first direction. and a plurality of optical elements, each of the plurality of optical elements having an incident surface and a reflection surface that are inclined with respect to the normal direction of the base material and touch each other, the aerial display device according to the thirteenth aspect. is provided.
 本発明の第15態様によると、前記回転機構は、第1表示モードにおいて、観察者の両目が前記第2方向に平行になるように前記ユニットを回転させ、第2表示モードにおいて、前記観察者の両目が前記第1方向に平行になるように前記ユニットを回転させる、第14態様に係る空中表示装置が提供される。 According to the fifteenth aspect of the present invention, the rotation mechanism rotates the unit so that both eyes of the observer become parallel to the second direction in the first display mode; There is provided an aerial display device according to a fourteenth aspect, wherein the unit is rotated so that both eyes of the aircraft are parallel to the first direction.
 本発明によれば、表示品質を向上させることが可能な空中表示装置を提供することができる。 According to the present invention, it is possible to provide an aerial display device that can improve display quality.
図1は、本発明の第1実施形態に係る空中表示装置の斜視図である。FIG. 1 is a perspective view of an aerial display device according to a first embodiment of the present invention. 図2は、図1に示した空中表示装置の側面図である。FIG. 2 is a side view of the aerial display device shown in FIG. 1. 図3Aは、図1に示した配向制御素子の平面図である。FIG. 3A is a plan view of the alignment control element shown in FIG. 1. 図3Bは、図3AのA-A´線に沿った配向制御素子の断面図である。FIG. 3B is a cross-sectional view of the alignment control element taken along line AA' in FIG. 3A. 図4は、図1に示した光学素子の部分側面図である。FIG. 4 is a partial side view of the optical element shown in FIG. 図5は、図1に示した切替素子の部分平面図である。FIG. 5 is a partial plan view of the switching element shown in FIG. 図6は、空中表示装置のブロック図である。FIG. 6 is a block diagram of the aerial display device. 図7は、光学素子における光の反射の様子を説明する斜視図である。FIG. 7 is a perspective view illustrating how light is reflected in the optical element. 図8は、光学素子における光の反射の様子を説明するXZ面の側面図である。FIG. 8 is a side view of the XZ plane illustrating how light is reflected in the optical element. 図9は、光学素子における光の反射の様子を説明するYZ面の側面図である。FIG. 9 is a side view of the YZ plane illustrating how light is reflected in the optical element. 図10は、光学素子における入射面及び反射面の角度条件を説明する図である。FIG. 10 is a diagram illustrating the angle conditions of the incident surface and the reflective surface of the optical element. 図11は、第1表示モードを説明するための空中表示装置の部分側面図である。FIG. 11 is a partial side view of the aerial display device for explaining the first display mode. 図12は、第2表示モードを説明するための空中表示装置の部分側面図である。FIG. 12 is a partial side view of the aerial display device for explaining the second display mode. 図13は、空中表示装置の表示動作を説明するフローチャートである。FIG. 13 is a flowchart illustrating the display operation of the aerial display device. 図14は、本発明の第2実施形態に係る切替素子の部分平面図である。FIG. 14 is a partial plan view of a switching element according to a second embodiment of the invention. 図15は、本発明の第3実施形態に係る空中表示装置の斜視図である。FIG. 15 is a perspective view of an aerial display device according to a third embodiment of the present invention. 図16は、本発明の第4実施形態に係る空中表示装置の斜視図である。FIG. 16 is a perspective view of an aerial display device according to a fourth embodiment of the present invention. 図17は、図16に示した光学素子のX方向に沿った部分断面図である。FIG. 17 is a partial cross-sectional view of the optical element shown in FIG. 16 along the X direction. 図18は、空中表示装置の動作を説明する側面図である。FIG. 18 is a side view illustrating the operation of the aerial display device. 図19は、光学素子の動作を説明する部分側面図である。FIG. 19 is a partial side view illustrating the operation of the optical element. 図20は、本発明の第5実施形態に係る空中表示装置の斜視図である。FIG. 20 is a perspective view of an aerial display device according to a fifth embodiment of the present invention. 図21は、図20に示した空中表示装置の側面図である。FIG. 21 is a side view of the aerial display device shown in FIG. 20. 図22は、図1に示した光学素子の斜視図である。FIG. 22 is a perspective view of the optical element shown in FIG. 1. 図23は、空中表示装置のブロック図である。FIG. 23 is a block diagram of the aerial display device. 図24は、光学素子における光の反射の様子を説明する斜視図である。FIG. 24 is a perspective view illustrating how light is reflected in the optical element. 図25は、光学素子における光の反射の様子を説明するXZ面の側面図である。FIG. 25 is a side view of the XZ plane illustrating how light is reflected in the optical element. 図26は、第1表示モードを説明するための空中表示装置の斜視図である。FIG. 26 is a perspective view of the aerial display device for explaining the first display mode. 図27は、第2表示モードを説明するための空中表示装置の斜視図である。FIG. 27 is a perspective view of the aerial display device for explaining the second display mode. 図28は、空中表示装置の表示動作を説明するフローチャートである。FIG. 28 is a flowchart illustrating the display operation of the aerial display device. 図29は、本発明の第6実施形態に係る空中表示装置の動作を説明する図である。FIG. 29 is a diagram illustrating the operation of the aerial display device according to the sixth embodiment of the present invention.
 以下、実施形態について図面を参照して説明する。ただし、図面は模式的または概念的なものであり、各図面の寸法および比率等は必ずしも現実のものと同一とは限らない。また、図面の相互間で同じ部分を表す場合においても、互いの寸法の関係や比率が異なって表される場合もある。特に、以下に示す幾つかの実施形態は、本発明の技術思想を具体化するための装置および方法を例示したものであって、構成部品の形状、構造、配置等によって、本発明の技術思想が特定されるものではない。なお、以下の説明において、同一の機能及び構成を有する要素については同一符号を付し、重複する説明は省略する。 Hereinafter, embodiments will be described with reference to the drawings. However, the drawings are schematic or conceptual, and the dimensions, proportions, etc. of each drawing are not necessarily the same as those in reality. Further, even when the same parts are shown in two drawings, the relationships and ratios of the dimensions may be different. In particular, some of the embodiments shown below illustrate devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is is not specified. In the following description, elements having the same functions and configurations are denoted by the same reference numerals, and redundant description will be omitted.
 [1] 第1実施形態
 [1-1] 空中表示装置1の構成
 図1は、本発明の第1実施形態に係る空中表示装置1の斜視図である。図1において、X方向は、空中表示装置1のある1辺に沿った方向であり、Y方向は、水平面内においてX方向に直交する方向であり、Z方向は、XY面に直交する方向(法線方向ともいう)である。図2は、図1に示した空中表示装置1の側面図である。
[1] First Embodiment [1-1] Configuration of Aerial Display Device 1 FIG. 1 is a perspective view of an aerial display device 1 according to a first embodiment of the present invention. In FIG. 1, the X direction is a direction along one side of the aerial display device 1, the Y direction is a direction perpendicular to the X direction in a horizontal plane, and the Z direction is a direction perpendicular to the XY plane ( (also called the normal direction). FIG. 2 is a side view of the aerial display device 1 shown in FIG.
 空中表示装置1は、画像(動画を含む)を表示する装置である。空中表示装置1は、自身の光出射面の上方の空中に、空中像を表示する。「空中像を表示する」とは、「空中像を結像する」と同じ意味である。空中表示装置1の光出射面とは、空中表示装置1を構成する複数の部材のうち最上層に配置された部材の上面を意味する。空中像とは、空中に結像する実像である。 The aerial display device 1 is a device that displays images (including videos). The aerial display device 1 displays an aerial image in the air above its own light exit surface. "Displaying an aerial image" has the same meaning as "forming an aerial image." The light exit surface of the aerial display device 1 means the upper surface of the member disposed in the uppermost layer among the plurality of members constituting the aerial display device 1. An aerial image is a real image formed in the air.
 空中表示装置1は、照明素子(バックライトともいう)10、表示素子20、配向制御素子30、光学素子40、及び切替素子50を備える。照明素子10、表示素子20、配向制御素子30、光学素子40、及び切替素子50は、この順にZ方向に沿って配置され、互いに平行に配置される。照明素子10、表示素子20、配向制御素子30、光学素子40、及び切替素子50は、互いに所望の間隔を空けるようにして、図示せぬ固定部材で所望の位置に固定される。 The aerial display device 1 includes a lighting element (also referred to as a backlight) 10, a display element 20, an orientation control element 30, an optical element 40, and a switching element 50. The lighting element 10, the display element 20, the orientation control element 30, the optical element 40, and the switching element 50 are arranged in this order along the Z direction and parallel to each other. The lighting element 10, the display element 20, the orientation control element 30, the optical element 40, and the switching element 50 are fixed at a desired position with a fixing member (not shown) with a desired distance from each other.
 照明素子10は、照明光を発光し、この照明光を表示素子20に向けて出射する。照明素子10は、光源部11、導光板12、及び反射シート13を備える。照明素子10は、例えばサイドライト型の照明素子である。照明素子10は、面光源を構成する。照明素子10は、後述する角度θの斜め方向に光強度がピークになるように構成してもよい。 The lighting element 10 emits illumination light and emits this illumination light toward the display element 20. The lighting element 10 includes a light source section 11, a light guide plate 12, and a reflective sheet 13. The lighting element 10 is, for example, a side light type lighting element. The lighting element 10 constitutes a surface light source. The lighting element 10 may be configured so that the light intensity peaks in an oblique direction at an angle θ 1 , which will be described later.
 光源部11は、導光板12の側面に向き合うように配置される。光源部11は、導光板12の側面に向けて光を発光する。光源部11は、例えば白色LED(Light Emitting Diode)からなる複数の発光素子を含む。導光板12は、光源部11からの照明光を導光し、照明光を自身の上面から出射する。反射シート13は、導光板12の底面から出射した照明光を、再び導光板12に向けて反射する。照明素子10は、導光板12の上面に、光学特性を向上させる部材(プリズムシート、及び拡散シートを含む)を備えていてもよい。 The light source section 11 is arranged so as to face the side surface of the light guide plate 12. The light source section 11 emits light toward the side surface of the light guide plate 12. The light source section 11 includes a plurality of light emitting elements made of, for example, white LEDs (Light Emitting Diodes). The light guide plate 12 guides the illumination light from the light source section 11 and emits the illumination light from its upper surface. The reflective sheet 13 reflects the illumination light emitted from the bottom surface of the light guide plate 12 toward the light guide plate 12 again. The lighting element 10 may include a member (including a prism sheet and a diffusion sheet) that improves optical characteristics on the upper surface of the light guide plate 12.
 表示素子20は、透過型の表示素子である。表示素子20は、例えば液晶表示素子で構成される。表示素子20の駆動モードについては特に限定されず、TN(Twisted Nematic)モード、VA(Vertical Alignment)モード、又はホモジニアスモードなどを用いることができる。表示素子20は、照明素子10から出射された照明光を受ける。表示素子20は、照明素子10からの照明光を透過して光変調を行う。そして、表示素子20は、その画面に所望の画像を表示する。 The display element 20 is a transmissive display element. The display element 20 is composed of, for example, a liquid crystal display element. The drive mode of the display element 20 is not particularly limited, and a TN (Twisted Nematic) mode, a VA (Vertical Alignment) mode, a homogeneous mode, or the like can be used. The display element 20 receives illumination light emitted from the illumination element 10. The display element 20 transmits the illumination light from the illumination element 10 and performs light modulation. The display element 20 then displays a desired image on its screen.
 配向制御素子30は、不要光を低減する機能を有する。不要光とは、空中像を生成するのに寄与しない光成分であり、法線方向に光学素子40を透過する光成分を含む。配向制御素子30は、法線方向に対して角度θの斜め方向を中心として所定の角度範囲の光成分を透過するとともに、上記角度範囲以外の光成分を遮光するように構成される。配向制御素子30の面積は、表示素子20の面積とほぼ同じに設定される。配向制御素子30の詳細な構成については後述する。 The alignment control element 30 has a function of reducing unnecessary light. Unnecessary light is a light component that does not contribute to generating an aerial image, and includes a light component that passes through the optical element 40 in the normal direction. The orientation control element 30 is configured to transmit light components within a predetermined angular range centering on an oblique direction at an angle θ 1 with respect to the normal direction, and to block light components outside the above angular range. The area of the alignment control element 30 is set to be approximately the same as the area of the display element 20. The detailed configuration of the alignment control element 30 will be described later.
 光学素子40は、底面側から入射した光を上面側に反射する。また、光学素子40は、底面側から斜めに入射した入射光を、例えば正面方向(法線方向)に反射する。光学素子40の面積は、表示素子20の面積以上に設定される。光学素子40の詳細な構成については後述する。光学素子40は、空中に空中像2を結像する。空中像2は、光学素子40の素子面に平行であり、2次元の画像である。素子面とは、光学素子40が面内方向に広がる仮想的な平面を言う。素子面は、面内と同じ意味である。その他の素子の素子面についても同様の意味である。光学素子40の正面にいる観察者3は、光学素子40によって結像された空中像2を視認することができる。 The optical element 40 reflects light incident from the bottom side toward the top side. Further, the optical element 40 reflects incident light obliquely incident from the bottom side, for example, in the front direction (normal direction). The area of the optical element 40 is set to be larger than the area of the display element 20. The detailed configuration of the optical element 40 will be described later. The optical element 40 forms an aerial image 2 in the air. The aerial image 2 is parallel to the element surface of the optical element 40 and is a two-dimensional image. The element surface refers to a virtual plane in which the optical element 40 extends in the in-plane direction. Element plane has the same meaning as in-plane. The same meaning applies to the element surfaces of other elements. The observer 3 who is in front of the optical element 40 can visually recognize the aerial image 2 formed by the optical element 40.
 切替素子50は、空中表示装置1の上方の空中に空中像を表示する第1表示モードと、表示素子20の画面に表示された画像を表示する第2表示モードとを切り替える機能を有する。切替素子50は、それぞれがY方向に延び、X方向に並んだ複数の要素画素を備える。切替素子50は、複数の要素画素の各々に対して、光を透過する透過状態と、光を遮光する遮光状態とに設定可能である。本実施形態では、切替素子50による表示モードの切り替えにより、観察者3に視認される表示像の奥行き位置を切り替えることが可能である。切替素子50の面積は、光学素子40の面積とほぼ同じに設定される。切替素子50の詳細な構成については後述する。 The switching element 50 has a function of switching between a first display mode in which an aerial image is displayed in the air above the aerial display device 1 and a second display mode in which an image displayed on the screen of the display element 20 is displayed. The switching element 50 includes a plurality of element pixels, each extending in the Y direction and arranged in the X direction. The switching element 50 can be set to a transmitting state in which light is transmitted and a light blocking state in which light is blocked for each of the plurality of element pixels. In this embodiment, by switching the display mode using the switching element 50, it is possible to switch the depth position of the displayed image visually recognized by the observer 3. The area of the switching element 50 is set to be approximately the same as the area of the optical element 40. The detailed configuration of the switching element 50 will be described later.
 [1-1-1] 配向制御素子30の構成
 図3Aは、図1に示した配向制御素子30の平面図である。図3Bは、図3AのA-A´線に沿った配向制御素子30の断面図である。
[1-1-1] Configuration of alignment control element 30 FIG. 3A is a plan view of the alignment control element 30 shown in FIG. 1. FIG. 3B is a cross-sectional view of the alignment control element 30 taken along line AA' in FIG. 3A.
 基材31は、XY面において平面状に構成され、直方体を有する。基材31は、光を透過する。 The base material 31 is configured to be planar in the XY plane and has a rectangular parallelepiped shape. The base material 31 transmits light.
 基材31上には、それぞれがY方向に延び、X方向に並んだ複数の透明部材33が設けられる。また、基材31上には、それぞれがY方向に延び、X方向に並んだ複数の遮光部材34が設けられる。複数の透明部材33と複数の遮光部材34とは、隣接するもの同士が接するようにして交互に配置される。 A plurality of transparent members 33 are provided on the base material 31, each extending in the Y direction and aligned in the X direction. Furthermore, a plurality of light shielding members 34 are provided on the base material 31, each extending in the Y direction and lined up in the X direction. The plurality of transparent members 33 and the plurality of light shielding members 34 are arranged alternately so that adjacent ones are in contact with each other.
 複数の透明部材33及び複数の遮光部材34上には、基材32が設けられる。基材32は、XY面において平面状に構成され、直方体を有する。基材32は、光を透過する。 A base material 32 is provided on the plurality of transparent members 33 and the plurality of light shielding members 34. The base material 32 is configured to be planar in the XY plane and has a rectangular parallelepiped shape. The base material 32 transmits light.
 透明部材33は、XZ面において、基材31の法線方向に対して角度θの斜め方向に延びる。透明部材33は、XZ面において、側面が角度θだけ傾いた平行四辺形である。透明部材33は、光を透過する。 The transparent member 33 extends in an oblique direction at an angle θ 1 with respect to the normal direction of the base material 31 in the XZ plane. The transparent member 33 is a parallelogram whose side surfaces are inclined by an angle θ 1 in the XZ plane. The transparent member 33 transmits light.
 遮光部材34は、XZ面において、基材31の法線方向に対して角度θの斜め方向に延びる。遮光部材34は、XZ面において、側面が角度θだけ傾いた平行四辺形である。遮光部材34は、光を遮光する。遮光部材34の厚みは、透明部材33の厚みより薄く設定される。 The light shielding member 34 extends in an oblique direction at an angle θ 1 with respect to the normal direction of the base material 31 in the XZ plane. The light shielding member 34 is a parallelogram whose side surfaces are inclined by an angle θ 1 in the XZ plane. The light blocking member 34 blocks light. The thickness of the light shielding member 34 is set to be thinner than the thickness of the transparent member 33.
 隣接する2個の遮光部材34は、Z方向において互いの端部が若干重なるように配置される。 Two adjacent light shielding members 34 are arranged so that their ends slightly overlap in the Z direction.
 基材31、32、及び透明部材33としては、ガラス、又は透明な樹脂(アクリル樹脂を含む)が用いられる。遮光部材34としては、例えば、黒色の染料又は顔料が混入された樹脂が用いられる。 As the base materials 31, 32 and the transparent member 33, glass or transparent resin (including acrylic resin) is used. As the light shielding member 34, for example, resin mixed with black dye or pigment is used.
 なお、基材31、32の一方又は両方を省略して、配向制御素子30を構成してもよい。複数の透明部材33と複数の遮光部材34とが交互に配置されていれば、配向制御素子30の機能を実現できる。 Note that the alignment control element 30 may be configured by omitting one or both of the base materials 31 and 32. If the plurality of transparent members 33 and the plurality of light shielding members 34 are arranged alternately, the function of the alignment control element 30 can be realized.
 このように構成された配向制御素子30は、法線方向に対して角度θの斜め方向の光強度がピークになるように、表示光を透過することができる。角度θは、例えば10度以上60度以下に設定される。例えば、配向制御素子30は、法線方向に対して30°±30°の範囲以外の光成分を遮光するように構成される。望ましくは、配向制御素子30は、法線方向に対して30°±20°の範囲以外の光成分を遮光するように構成される。 The alignment control element 30 configured in this manner can transmit display light such that the light intensity in an oblique direction at an angle θ 1 with respect to the normal direction reaches a peak. The angle θ 1 is set to, for example, 10 degrees or more and 60 degrees or less. For example, the alignment control element 30 is configured to block light components outside the range of 30°±30° with respect to the normal direction. Preferably, the alignment control element 30 is configured to block light components outside the range of 30°±20° with respect to the normal direction.
 なお、変形例として、配向制御素子30は、照明素子10と表示素子20との間に配置してもよい。また、配向制御素子30を省略して、空中表示装置1を構成してもよい。 Note that, as a modification, the orientation control element 30 may be arranged between the lighting element 10 and the display element 20. Furthermore, the aerial display device 1 may be configured without the orientation control element 30.
 [1-1-2] 光学素子40の構成
 図4は、図1に示した光学素子40の部分側面図である。図4には、光学素子40と切替素子50との対応関係が理解できるように、切替素子50の部分側面図も示している。
[1-1-2] Configuration of optical element 40 FIG. 4 is a partial side view of the optical element 40 shown in FIG. 1. FIG. 4 also shows a partial side view of the switching element 50 so that the correspondence between the optical element 40 and the switching element 50 can be understood.
 光学素子40は、基材41、及び複数の光学要素42を備える。基材41は、XY面において平面状に構成され、直方体を有する。 The optical element 40 includes a base material 41 and a plurality of optical elements 42. The base material 41 is configured to be planar in the XY plane and has a rectangular parallelepiped shape.
 基材41の底面には、複数の光学要素42が設けられる。複数の光学要素42の各々は、三角柱で構成される。光学要素42は、三角柱の3個の側面がXY面と平行になるように配置され、1つの側面が基材41に接する。複数の光学要素42は、それぞれがY方向に延び、X方向に並んで配置される。また、隣接する光学要素42は、一定の間隔を空けて配置される。 A plurality of optical elements 42 are provided on the bottom surface of the base material 41. Each of the plurality of optical elements 42 is composed of a triangular prism. The optical element 42 is arranged so that three side surfaces of a triangular prism are parallel to the XY plane, and one side surface is in contact with the base material 41. The plurality of optical elements 42 each extend in the Y direction and are arranged side by side in the X direction. Further, adjacent optical elements 42 are arranged at a constant interval.
 光学要素42が配置される領域を第1領域Saと呼び、光学要素42が配置されない領域を第2領域Sbと呼ぶ。複数の第1領域Saと複数の第2領域Sbとは交互に配置される。例えば、第1領域SaのX方向の長さは、第2領域SbのX方向の長さと同じである。この構成に限定されず、第1領域SaのX方向の長さは、第2領域SbのX方向の長さと異なっていてもよい。第1領域Sa及び第2領域Sbは、空中表示装置1(照明素子10、表示素子20、配向制御素子30、光学素子40、及び切替素子50)全体にわたって規定される。 The area where the optical element 42 is placed is called a first area Sa, and the area where the optical element 42 is not placed is called a second area Sb. The plurality of first regions Sa and the plurality of second regions Sb are arranged alternately. For example, the length of the first region Sa in the X direction is the same as the length of the second region Sb in the X direction. The configuration is not limited to this, and the length of the first region Sa in the X direction may be different from the length of the second region Sb in the X direction. The first region Sa and the second region Sb are defined over the entire aerial display device 1 (illumination element 10, display element 20, orientation control element 30, optical element 40, and switching element 50).
 複数の光学要素42の各々は、入射面43及び反射面44を有する。Y方向から見て、左側の側面が入射面43であり、右側の側面が反射面44である。入射面43は、表示素子20からの光が入射する面である。反射面44は、入射面43に外部から入射した光を、光学要素42の内部で反射する面である。 Each of the plurality of optical elements 42 has an incident surface 43 and a reflective surface 44. When viewed from the Y direction, the left side surface is the incident surface 43, and the right side surface is the reflective surface 44. The incident surface 43 is a surface onto which light from the display element 20 is incident. The reflective surface 44 is a surface that reflects light that has entered the entrance surface 43 from the outside inside the optical element 42 .
 光学素子40の第2領域Sbは、隣接する光学要素42の間隔の部分に相当する。第2領域Sbにおける光学素子40の底面は、平面45で構成される。平面45は、XY面に水平な面である。平面45は、Y方向に延びるように構成される。 The second region Sb of the optical element 40 corresponds to the space between adjacent optical elements 42. The bottom surface of the optical element 40 in the second region Sb is constituted by a flat surface 45. The plane 45 is a plane parallel to the XY plane. The plane 45 is configured to extend in the Y direction.
 基材41及び光学要素42は、透明材料で構成される。光学要素42は、例えば、基材41と同じ透明材料によって基材41と一体的に形成される。基材41と光学要素42とを個別に形成し、透明な接着材を用いて基材41に光学要素42を接着してもよい。基材41及び光学要素42を構成する透明材料としては、ガラス、又は透明な樹脂(アクリル樹脂を含む)が用いられる。 The base material 41 and the optical element 42 are made of transparent material. The optical element 42 is formed integrally with the base material 41, for example, from the same transparent material as the base material 41. The base material 41 and the optical element 42 may be formed separately, and the optical element 42 may be adhered to the base material 41 using a transparent adhesive. As the transparent material constituting the base material 41 and the optical element 42, glass or transparent resin (including acrylic resin) is used.
 光学素子40の第1領域Saは、光学素子40の下側から入射した光を内部で反射して、空中に実像を結像する。また、光学素子40の第1領域Saは、素子面の正面の位置に、空中像を結像する。 The first region Sa of the optical element 40 internally reflects the light incident from the lower side of the optical element 40 to form a real image in the air. Further, the first region Sa of the optical element 40 forms an aerial image at a position in front of the element surface.
 光学素子40の第2領域Sbは、光学素子40の下側から入射した光を反射せずに透過する。光学素子40の第2領域Sbでは、空中像を結像することなく、表示素子20の画面に表示された平面像がそのまま観察者に視認される。平面像とは、表示素子20の画面に表示された画像を意味する。 The second region Sb of the optical element 40 transmits the light incident from the lower side of the optical element 40 without reflecting it. In the second region Sb of the optical element 40, the plane image displayed on the screen of the display element 20 is directly viewed by the viewer without forming an aerial image. A planar image means an image displayed on the screen of the display element 20.
 [1-1-3] 切替素子50の構成
 図5は、図1に示した切替素子50の部分平面図である。図5には、光学素子40と切替素子50との対応関係が理解できるように、光学素子40の部分側面図も示している。なお、前述した図4には、切替素子50の部分側面図も示している。図4の構成例では、切替素子50は、光学素子40の上面に接している。
[1-1-3] Configuration of switching element 50 FIG. 5 is a partial plan view of the switching element 50 shown in FIG. 1. FIG. 5 also shows a partial side view of the optical element 40 so that the correspondence between the optical element 40 and the switching element 50 can be understood. Note that FIG. 4 described above also shows a partial side view of the switching element 50. In the configuration example of FIG. 4, the switching element 50 is in contact with the upper surface of the optical element 40.
 切替素子50は、それぞれがY方向に延び、X方向に並んだ複数の要素画素51a、51bを備える。複数の要素画素51aと複数の要素画素51bとは交互に配置される。複数の要素画素51a、51bの各々は、例えば複数の画素で構成される。 The switching element 50 includes a plurality of element pixels 51a and 51b, each extending in the Y direction and arranged in the X direction. The plurality of element pixels 51a and the plurality of element pixels 51b are arranged alternately. Each of the plurality of element pixels 51a and 51b is composed of, for example, a plurality of pixels.
 複数の要素画素51aはそれぞれ、光学素子40の複数の第1領域Saの上方に配置される。要素画素51aのX方向の長さ及びY方向の長さはそれぞれ、第1領域SaのX方向の長さ及びY方向の長さと同じである。複数の要素画素51bはそれぞれ、光学素子40の複数の第2領域Sbの上方に配置される。要素画素51bのX方向の長さ及びY方向の長さはそれぞれ、第2領域SbのX方向の長さ及びY方向の長さと同じである。 The plurality of element pixels 51a are arranged above the plurality of first regions Sa of the optical element 40, respectively. The length of the element pixel 51a in the X direction and the length in the Y direction are respectively the same as the length in the X direction and the length in the Y direction of the first area Sa. The plurality of element pixels 51b are respectively arranged above the plurality of second regions Sb of the optical element 40. The length of the element pixel 51b in the X direction and the length in the Y direction are respectively the same as the length in the X direction and the length in the Y direction of the second region Sb.
 切替素子50は、複数の要素画素51a、51bの各々に対して、光を透過する透過状態と、光を遮光する遮光状態とに設定可能である。 The switching element 50 can be set for each of the plurality of element pixels 51a and 51b to a transmitting state in which light is transmitted therethrough and a light blocking state in which light is blocked.
 切替素子50は、液晶素子で構成することが可能である。液晶素子は、偏光板を備え、画素ごとに、光を透過する透過状態と、光を遮光する遮光状態とに設定可能である。 The switching element 50 can be composed of a liquid crystal element. The liquid crystal element includes a polarizing plate, and can be set for each pixel to a transmitting state in which light is transmitted and a light blocking state in which light is blocked.
 また、切替素子50は、エレクトロクロミック素子、又は高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)素子で構成してもよい。 Furthermore, the switching element 50 may be configured with an electrochromic element or a polymer dispersed liquid crystal (PDLC) element.
 また、他の構成例として、切替素子50は、複数の要素画素の領域に1つ置きに配置された複数の遮光板を有する。そして、複数の遮光板を1要素画素分だけ一斉にずらすことで、機械的に透過領域と遮光領域との位置を切り替えてもよい。 In addition, as another configuration example, the switching element 50 has a plurality of light shielding plates arranged every other one in the region of a plurality of element pixels. Then, the positions of the transmission region and the light-shielding region may be mechanically switched by shifting the plurality of light-shielding plates by one element pixel at the same time.
 [1-1-4] 空中表示装置1のブロック構成
 図6は、空中表示装置1のブロック図である。空中表示装置1は、制御部60、記憶部61、入出力インターフェース(入出力IF)62、表示部63、及び入力部64を備える。制御部60、記憶部61、及び入出力インターフェース62は、バス65を介して互いに接続される。
[1-1-4] Block configuration of aerial display device 1 FIG. 6 is a block diagram of the aerial display device 1. The aerial display device 1 includes a control section 60, a storage section 61, an input/output interface (input/output IF) 62, a display section 63, and an input section 64. The control section 60, the storage section 61, and the input/output interface 62 are connected to each other via a bus 65.
 入出力インターフェース62は、表示部63、及び入力部64に接続される。入出力インターフェース62は、表示部63、及び入力部64のそれぞれに対して、所定の規格に応じたインターフェース処理を行う。 The input/output interface 62 is connected to a display section 63 and an input section 64. The input/output interface 62 performs interface processing on each of the display section 63 and the input section 64 in accordance with a predetermined standard.
 表示部63は、照明素子10、表示素子20、及び切替素子50を備える。表示部63は、画像を表示する。 The display section 63 includes a lighting element 10, a display element 20, and a switching element 50. The display unit 63 displays images.
 制御部60は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等の1つ以上のプロセッサにより構成される。制御部60は、記憶部61に格納されたプログラムを実行することで各種機能を実現する。制御部60は、表示処理部60A、及び情報処理部60Bを備える。 The control unit 60 is composed of one or more processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit). The control unit 60 implements various functions by executing programs stored in the storage unit 61. The control section 60 includes a display processing section 60A and an information processing section 60B.
 表示処理部60Aは、表示部63(具体的には、照明素子10、表示素子20、及び切替素子50)の動作を制御する。表示処理部60Aは、照明素子10のオン及びオフを制御する。表示処理部60Aは、表示素子20に画像信号を送信し、表示素子20に画像を表示させる。表示処理部60Aは、表示モードに応じて、切替素子50の要素画素51a、51bを透過状態又は遮光状態に設定する。 The display processing unit 60A controls the operation of the display unit 63 (specifically, the lighting element 10, the display element 20, and the switching element 50). The display processing unit 60A controls turning on and off of the lighting element 10. The display processing unit 60A transmits an image signal to the display element 20 and causes the display element 20 to display an image. The display processing unit 60A sets the element pixels 51a and 51b of the switching element 50 to a transparent state or a light-blocking state depending on the display mode.
 情報処理部60Bは、空中表示装置1が表示する画像を生成する。情報処理部60Bは、記憶部61に格納された画像データを用いることが可能である。情報処理部60Bは、図示せぬ通信機能を用いて外部から画像データを取得してもよい。 The information processing unit 60B generates an image to be displayed by the aerial display device 1. The information processing section 60B can use image data stored in the storage section 61. The information processing unit 60B may acquire image data from outside using a communication function (not shown).
 記憶部61は、ROM(Read Only Memory)、HDD(Hard Disk Drive)、及びSSD(Solid State Drive)等の不揮発性記憶装置と、RAM(Random Access Memory)、及びレジスタ等の揮発性記憶装置とを含む。記憶部61は、制御部60が実行するプログラムを格納する。記憶部61は、制御部60の制御に必要な各種データを格納する。さらに、記憶部61は、空中表示装置1が表示する画像のデータを格納する。 The storage unit 61 includes nonvolatile storage devices such as ROM (Read Only Memory), HDD (Hard Disk Drive), and SSD (Solid State Drive), and volatile storage devices such as RAM (Random Access Memory) and registers. including. The storage unit 61 stores programs executed by the control unit 60. The storage unit 61 stores various data necessary for control of the control unit 60. Furthermore, the storage unit 61 stores data of images displayed by the aerial display device 1.
 入力部64は、例えばタッチパネルやボタンなどを含み、ユーザが入力した情報を受け付ける。情報処理部60Bは、入力部64が受け付けた情報に基づいて、表示部63に表示する画像を選択することが可能である。 The input unit 64 includes, for example, a touch panel and buttons, and receives information input by the user. The information processing section 60B can select an image to be displayed on the display section 63 based on the information received by the input section 64.
 [1-2] 空中表示装置1の動作
 次に、上記のように構成された空中表示装置1の動作について説明する。
[1-2] Operation of the aerial display device 1 Next, the operation of the aerial display device 1 configured as described above will be explained.
 [1-2-1] 空中像2の表示動作
 まず、空中像2の表示動作について説明する。 
 図2の矢印は、光路を示している。図2に示すように、表示素子20の任意の点“o”から出射された光は、配向制御素子30に入射する。表示素子20から出射された光のうち角度θの光成分(角度θを中心とした所定の角度範囲の光成分を含む)は、配向制御素子30を透過する。配向制御素子30を透過した光は、光学素子40に入射する。光学素子40は、入射光を、配向制御素子30と反対側の空中に結像し、空中に空中像2を表示する。
[1-2-1] Display operation of aerial image 2 First, the display operation of aerial image 2 will be explained.
The arrows in FIG. 2 indicate optical paths. As shown in FIG. 2, light emitted from an arbitrary point "o" on the display element 20 enters the alignment control element 30. Of the light emitted from the display element 20 , a light component at an angle θ 1 (including a light component within a predetermined angular range centered on the angle θ 1 ) is transmitted through the alignment control element 30 . The light transmitted through the alignment control element 30 enters the optical element 40. The optical element 40 forms an image of the incident light in the air on the opposite side of the orientation control element 30, and displays an aerial image 2 in the air.
 図7は、光学素子40における光の反射の様子を説明する斜視図である。図8は、光学素子40における光の反射の様子を説明するXZ面の側面図である。図8は、観察者3の両目(すなわち、両目を結ぶ線)がX方向に平行な状態で光学素子40を見た図である。図9は、光学素子40における光の反射の様子を説明するYZ面の側面図である。図9は、観察者3の両目がY方向に平行な状態で光学素子40を見た図である。 FIG. 7 is a perspective view illustrating how light is reflected in the optical element 40. FIG. 8 is a side view of the XZ plane illustrating how light is reflected in the optical element 40. FIG. 8 is a view of the optical element 40 in a state where both eyes of the observer 3 (that is, a line connecting both eyes) are parallel to the X direction. FIG. 9 is a side view of the YZ plane illustrating how light is reflected in the optical element 40. FIG. 9 is a diagram of the optical element 40 viewed with both eyes of the observer 3 parallel to the Y direction.
 表示素子20の任意の点“o”から出射された光は、光学素子40の入射面43に入射し、反射面44に到達する。反射面44の法線方向に対して臨界角よりも大きい角度で反射面44に到達した光は、反射面44で全反射され、光学素子40の光学要素42が形成されている側の反対側の平面から出射される。臨界角とは、その入射角を超えると全反射する最少の入射角である。臨界角は、入射面の垂線に対する角度である。 Light emitted from an arbitrary point "o" of the display element 20 enters the incident surface 43 of the optical element 40 and reaches the reflective surface 44. The light that reaches the reflective surface 44 at an angle larger than the critical angle with respect to the normal direction of the reflective surface 44 is totally reflected on the reflective surface 44 and is reflected on the opposite side of the optical element 40 from the side where the optical element 42 is formed. is emitted from the plane of The critical angle is the minimum angle of incidence beyond which total internal reflection occurs. The critical angle is the angle of the plane of incidence with respect to the normal.
 図8のXZ面では、点“o”から出射された光は、光学要素42の反射面44で全反射され、その光は空中で結像されて空中像を生成する。 In the XZ plane of FIG. 8, the light emitted from point "o" is totally reflected by the reflective surface 44 of the optical element 42, and the light is imaged in the air to generate an aerial image.
 図9のYZ面では、点“o”から出射された光は、光学要素42の反射面44で反射されず、その光は空中で結像することがないため空中像の生成に寄与しない。 In the YZ plane of FIG. 9, the light emitted from point "o" is not reflected by the reflective surface 44 of the optical element 42, and the light does not form an image in the air, so it does not contribute to the generation of an aerial image.
 すなわち、観察者3が空中像を視認できる条件は、観察者3の両眼がX方向に平行、又はそれに近い状態(例えばX方向に対して±10度)である。また、観察者3の両眼がX方向に平行、又はそれに近い状態でY方向に沿って視点を移動した場合、空中像を常に認識することができる。 That is, the condition under which the observer 3 can visually recognize the aerial image is that both eyes of the observer 3 are parallel to the X direction or close to it (for example, ±10 degrees with respect to the X direction). Further, when the observer 3 moves his/her viewpoint along the Y direction with both eyes parallel to the X direction or in a state close to it, the aerial image can always be recognized.
 図10は、光学素子40における入射面43及び反射面44の角度条件を説明する図である。 FIG. 10 is a diagram illustrating the angle conditions of the incident surface 43 and the reflective surface 44 in the optical element 40.
 Z方向(素子面に垂直な方向)に対する入射面43の角度をθ、Z方向に対する反射面44の角度をθ、入射面43と反射面44とのなす角度をθとする。角度をθは、以下の式(1)で表される。 
 θ=θ+θ   ・・・(1)
Let the angle of the incident surface 43 with respect to the Z direction (direction perpendicular to the element surface) be θ 2 , the angle of the reflective surface 44 with respect to the Z direction be θ 3 , and the angle between the incident surface 43 and the reflective surface 44 be θ p . The angle θ p is expressed by the following equation (1).
θ p = θ 2 + θ 3 ...(1)
 配向制御素子30から角度θで出射された光は、入射面43に入射する。光学素子40の材料の屈折率をn、空気の屈折率を1とする。入射面43における入射角をθ、屈折角をθとする。反射面44における入射角をθ、反射角をθ(=θ)とする。光学素子40の上面における入射角をθ、屈折角をθとする。屈折角θが出射角である。出射角θは、以下の式(2)で表される。 
 θ=sin-1(n*sin(sin-1((1/n)*sin(90°-(θ+θ)))+θ+2θ-90°))   ・・・(2)
The light emitted from the orientation control element 30 at an angle θ 1 enters the incident surface 43 . Let the refractive index of the material of the optical element 40 be n p and the refractive index of air be 1. Let the incident angle at the incident surface 43 be θ 4 and the refraction angle be θ 5 . Let the incident angle on the reflecting surface 44 be θ 6 and the reflection angle be θ 7 (=θ 6 ). Let the incident angle at the upper surface of the optical element 40 be θ 8 and the refraction angle be θ 9 . The refraction angle θ 9 is the exit angle. The output angle θ 9 is expressed by the following equation (2).
θ 9 = sin -1 (n p *sin (sin -1 ((1/n p ) * sin (90° - (θ 1 + θ 2 ))) + θ 2 +2θ 3 -90°)) ... (2 )
 反射面44における臨界角は、以下の式(3)で表される。 
 臨界角<θ(=θ
 臨界角=sin-1(1/n)   ・・・(3)
The critical angle at the reflective surface 44 is expressed by the following equation (3).
Critical angle <θ 6 (=θ 7 )
Critical angle = sin -1 (1/n p )...(3)
 すなわち、反射面44における入射角θは、反射面44における臨界角より大きく設定される。換言すると、反射面44の角度θは、反射面44に入射する光の入射角が臨界角より大きくなるように設定される。 That is, the incident angle θ 6 on the reflective surface 44 is set to be larger than the critical angle on the reflective surface 44 . In other words, the angle θ 3 of the reflective surface 44 is set such that the angle of incidence of light incident on the reflective surface 44 is greater than the critical angle.
 また、入射面43に入射した光は、入射面43で全反射されないように設定される。すなわち、入射面43の角度θは、入射面43に入射する光の入射角が臨界角より小さくなるように設定される。 Further, the light incident on the entrance surface 43 is set so as not to be totally reflected on the entrance surface 43. That is, the angle θ 2 of the incident surface 43 is set such that the incident angle of light incident on the incident surface 43 is smaller than the critical angle.
 光学素子40の素子面と空中像2の面との角度、及び光学素子40の素子面と空中像2の面との距離は、光学素子40に入射する光の角度θ、光学素子40の屈折率、光学素子40の入射面43の角度θ、光学素子40の反射面44の角度θを最適に設定することで調整が可能である。 The angle between the element surface of the optical element 40 and the surface of the aerial image 2 and the distance between the element surface of the optical element 40 and the surface of the aerial image 2 are determined by the angle θ 1 of the light incident on the optical element 40 and the angle between the element surface of the optical element 40 and the surface of the aerial image 2. Adjustment is possible by optimally setting the refractive index, the angle θ 2 of the incident surface 43 of the optical element 40, and the angle θ 3 of the reflective surface 44 of the optical element 40.
 [1-2-2] 2種類の表示モード
 次に、2種類の表示モードにおける動作について説明する。空中表示装置1は、空中像2を表示する第1表示モードと、表示素子20の画面の平面像を表示する第2表示モードとの2種類の表示モードを実行することが可能である。表示モードの切り替えは、切替素子50を用いて行われる。
[1-2-2] Two types of display modes Next, operations in two types of display modes will be described. The aerial display device 1 is capable of executing two types of display modes: a first display mode in which an aerial image 2 is displayed, and a second display mode in which a plane image of the screen of the display element 20 is displayed. Switching of the display mode is performed using the switching element 50.
 図11は、空中像2を表示する第1表示モードを説明するための空中表示装置1の部分側面図である。 
 第1表示モードにおいて、切替素子50は、第1領域Saに対応する要素画素51aを透過状態に設定し、第2領域Sbに対応する要素画素51bを遮光状態に設定する。図11において、遮光状態の要素画素に斜線ハッチングを付している。
FIG. 11 is a partial side view of the aerial display device 1 for explaining the first display mode in which the aerial image 2 is displayed.
In the first display mode, the switching element 50 sets the element pixel 51a corresponding to the first area Sa to a transparent state, and sets the element pixel 51b corresponding to the second area Sb to a light blocking state. In FIG. 11, element pixels in a light-shielded state are hatched.
 表示素子20は、自身の画面に画像を表示する。表示素子20から配向制御素子30を介して光学素子40に入射した光のうち第1領域Saの光成分は、光学素子40の光学要素42で反射されて、切替素子50の第1領域Saを透過する。切替素子50の第1領域Saを透過した光成分は、図11に示した表示面Aiの位置に空中像2を生成する。 The display element 20 displays an image on its own screen. Of the light that enters the optical element 40 from the display element 20 via the alignment control element 30, the light component in the first area Sa is reflected by the optical element 42 of the optical element 40, and the light component enters the first area Sa of the switching element 50. To Penetrate. The light component transmitted through the first region Sa of the switching element 50 generates an aerial image 2 at the position of the display surface Ai shown in FIG.
 表示素子20から配向制御素子30を介して光学素子40に入射した光のうち第2領域Sbの光成分(光学素子40の平面45に入射した光成分)は、光学素子40を透過し、切替素子50の第2領域Sbで遮光される。よって、光学素子40に入射した光のうち第2領域Sbの光成分は、空中像2の表示に寄与しない。 Of the light that has entered the optical element 40 from the display element 20 via the orientation control element 30, the light component in the second area Sb (the light component that has entered the plane 45 of the optical element 40) is transmitted through the optical element 40 and is switched. Light is blocked by the second region Sb of the element 50. Therefore, the light component of the second region Sb of the light incident on the optical element 40 does not contribute to the display of the aerial image 2.
 図12は、表示素子20の画面の平面像を表示する第2表示モードを説明するための空中表示装置1の部分側面図である。 
 第2表示モードにおいて、切替素子50は、第1領域Saに対応する要素画素51aを遮光状態に設定し、第2領域Sbに対応する要素画素51bを透過状態に設定する。図12において、遮光状態の要素画素に斜線ハッチングを付している。
FIG. 12 is a partial side view of the aerial display device 1 for explaining the second display mode in which a plane image of the screen of the display element 20 is displayed.
In the second display mode, the switching element 50 sets the element pixel 51a corresponding to the first area Sa to the light blocking state, and sets the element pixel 51b corresponding to the second area Sb to the transmitting state. In FIG. 12, element pixels in a light-shielded state are hatched.
 表示素子20は、自身の画面に画像を表示する。表示素子20から配向制御素子30を介して光学素子40に入射した光のうち第1領域Saの光成分は、光学素子40の光学要素42で反射され、切替素子50の第1領域Saで遮光される。よって、光学素子40により空中像は結像されない。 The display element 20 displays an image on its own screen. Of the light that enters the optical element 40 from the display element 20 via the alignment control element 30, the light component in the first area Sa is reflected by the optical element 42 of the optical element 40, and is blocked by the first area Sa of the switching element 50. be done. Therefore, no aerial image is formed by the optical element 40.
 表示素子20から配向制御素子30を介して光学素子40に入射した光のうち第2領域Sbの光成分(光学素子40の平面45に入射した光成分)は、光学素子40を透過し、切替素子50の第2領域Sbを透過する。切替素子50の第2領域Sbを透過した光成分は、観察者3にそのまま視認される。よって、図12に示した表示面Biの位置に平面像21が表示される。 Of the light that has entered the optical element 40 from the display element 20 via the orientation control element 30, the light component in the second area Sb (the light component that has entered the plane 45 of the optical element 40) is transmitted through the optical element 40 and is switched. The light passes through the second region Sb of the element 50. The light component transmitted through the second region Sb of the switching element 50 is visually recognized by the observer 3 as it is. Therefore, the planar image 21 is displayed at the position of the display surface Bi shown in FIG.
 このように、空中表示装置1は、第1表示モードにおいて、空中表示装置1の上方の表示面Aiの位置に空中像2を表示することができる。また、空中表示装置1は、第2表示モードにおいて、表示素子20の画面に対応する表示面Biの位置に平面像21を表示することができる。 In this way, the aerial display device 1 can display the aerial image 2 at the position of the display surface Ai above the aerial display device 1 in the first display mode. Further, the aerial display device 1 can display the planar image 21 at a position on the display surface Bi corresponding to the screen of the display element 20 in the second display mode.
 図13は、空中表示装置1の表示動作を説明するフローチャートである。
 情報処理部60Bは、空中表示装置1が表示する画像データを選択する(ステップS100)。例えば、情報処理部60Bは、初期値として設定された画像データに関する情報を記憶部61から読み出し、この読み出した情報に基づいて、記憶部61から画像データを読み出す。情報処理部60Bは、入力部64を用いてユーザが入力した情報に基づいて、記憶部61から画像データを読み出してもよい。情報処理部60Bは、通信機能を用いて外部から送信された画像データを選択してもよい。
FIG. 13 is a flowchart illustrating the display operation of the aerial display device 1.
The information processing unit 60B selects image data to be displayed by the aerial display device 1 (step S100). For example, the information processing unit 60B reads information regarding image data set as an initial value from the storage unit 61, and reads image data from the storage unit 61 based on this read information. The information processing section 60B may read image data from the storage section 61 based on information input by the user using the input section 64. The information processing unit 60B may select image data transmitted from the outside using a communication function.
 続いて、表示処理部60Aは、空中表示(第1表示モード)が選択されたか否か、すなわち、第1表示モード及び第2表示モードのどちらが選択されたかを判定する(ステップS101)。例えば、表示処理部60Aは、初期値として設定された表示モードに関する情報を記憶部61から読み出し、この読み出した情報に基づいて、表示モードを判定する。表示処理部60Aは、入力部64を用いてユーザが入力した情報に基づいて、表示モードを判定してもよい。 Subsequently, the display processing unit 60A determines whether aerial display (first display mode) has been selected, that is, which of the first display mode and second display mode has been selected (step S101). For example, the display processing unit 60A reads information regarding the display mode set as an initial value from the storage unit 61, and determines the display mode based on this read information. The display processing unit 60A may determine the display mode based on information input by the user using the input unit 64.
 続いて、第1表示モードが選択された場合(ステップS101=Yes)、表示処理部60Aは、切替素子50の要素画素51bを遮光状態に設定し、切替素子50の要素画素51aを透過状態に設定する(ステップS102)。 Subsequently, when the first display mode is selected (step S101=Yes), the display processing unit 60A sets the element pixel 51b of the switching element 50 to a light-blocking state, and sets the element pixel 51a of the switching element 50 to a transparent state. settings (step S102).
 続いて、表示処理部60Aは、ステップS100で選択した画像を、表示素子20に表示する(ステップS103)。これにより、光学素子40の光学要素42で反射された光成分が空中で結像し、空中像2が表示される。 Subsequently, the display processing unit 60A displays the image selected in step S100 on the display element 20 (step S103). Thereby, the light component reflected by the optical element 42 of the optical element 40 forms an image in the air, and the aerial image 2 is displayed.
 一方、第2表示モードが選択された場合(ステップS101=No)、表示処理部60Aは、切替素子50の要素画素51aを遮光状態に設定し、切替素子50の要素画素51bを透過状態に設定する(ステップS104)。 On the other hand, when the second display mode is selected (step S101=No), the display processing unit 60A sets the element pixel 51a of the switching element 50 to a light-blocking state, and sets the element pixel 51b of the switching element 50 to a transparent state. (Step S104).
 続いて、表示処理部60Aは、ステップS100で選択した画像を、表示素子20に表示する(ステップS103)。これにより、光学素子40の第2領域Sbを透過した光成分が観察者3に視認され、表示素子20の画面に表示された平面像21が観察者3に視認される。 Subsequently, the display processing unit 60A displays the image selected in step S100 on the display element 20 (step S103). Thereby, the light component transmitted through the second region Sb of the optical element 40 is visually recognized by the observer 3, and the plane image 21 displayed on the screen of the display element 20 is visually recognized by the observer 3.
 [1-3] 変形例
 変形例として、表示素子20に表示される画像のうち一部の領域を第1表示モードで表示し、他の一部の領域を第2表示モードで表示するようにしてもよい。
[1-3] Modification Example As a modification example, some areas of the image displayed on the display element 20 are displayed in the first display mode, and some other areas are displayed in the second display mode. You can.
 表示処理部60Aは、空中像を表示する領域において、切替素子50の要素画素51bを遮光状態に設定し、切替素子50の要素画素51aを透過状態に設定する。また、表示処理部60Aは、表示素子20の画像を表示する領域において、切替素子50の要素画素51aを遮光状態に設定し、切替素子50の要素画素51bを透過状態に設定する。 The display processing unit 60A sets the element pixel 51b of the switching element 50 to a light blocking state and sets the element pixel 51a of the switching element 50 to a transparent state in the area where the aerial image is displayed. In addition, the display processing unit 60A sets the element pixel 51a of the switching element 50 to the light blocking state and sets the element pixel 51b of the switching element 50 to the transmitting state in the area where the image of the display element 20 is displayed.
 変形例によれば、表示素子20に表示された画像のうち一部の画像を空中像として表示し、他の一部の画像を表示素子20の画面に表示することができる。 According to the modification, some of the images displayed on the display element 20 can be displayed as an aerial image, and the other part of the images can be displayed on the screen of the display element 20.
 [1-4] 第1実施形態の効果
 第1実施形態によれば、空中表示装置1は、第1表示モードと第2表示モードとの2種類の表示モードを実行することができる。空中表示装置1は、第1表示モードにおいて、空中表示装置1の上方の表示面Aiの位置に空中像2を表示することができる。空中表示装置1は、第2表示モードにおいて、表示素子20の画面に対応する表示面Biの位置に平面像21を表示することができる。また、空中表示装置1は、奥行き方向において異なる2つの位置にそれぞれ2次元の画像を表示することができる。
[1-4] Effects of the first embodiment According to the first embodiment, the aerial display device 1 can execute two types of display modes: the first display mode and the second display mode. The aerial display device 1 can display the aerial image 2 at a position on the display surface Ai above the aerial display device 1 in the first display mode. The aerial display device 1 can display the planar image 21 at a position on the display surface Bi corresponding to the screen of the display element 20 in the second display mode. Further, the aerial display device 1 can display two-dimensional images at two different positions in the depth direction.
 また、空中表示装置1は、表示素子20から出射された光を光学素子40で反射させることで、空中に空中像を表示することができる。また、空中表示装置1は、その正面方向において、光学素子40の素子面に平行に空中像を表示することができる。また、表示品質を向上させることが可能な空中表示装置1を実現できる。 Further, the aerial display device 1 can display an aerial image in the air by reflecting the light emitted from the display element 20 with the optical element 40. Further, the aerial display device 1 can display an aerial image parallel to the element surface of the optical element 40 in the front direction thereof. Furthermore, it is possible to realize an aerial display device 1 that can improve display quality.
 また、観察者3の両眼がX方向(すなわち、複数の光学要素42が並ぶ方向)に平行、又はそれに近い状態で光学素子40を見た場合に、観察者3は、空中像を視認することができる。また、観察者3の両眼がX方向に平行、又はそれに近い状態でY方向に沿って視点を移動した場合、空中像を常に視認することができる。また、観察者3の両眼がX方向に平行、又はそれに近い状態において、より広い視野角を実現できる。 Further, when the observer 3 views the optical element 40 with both eyes parallel to the X direction (that is, the direction in which the plurality of optical elements 42 are lined up) or in a state close to it, the observer 3 visually recognizes the aerial image. be able to. Further, when the observer 3 moves his/her viewpoint along the Y direction with both eyes parallel to the X direction or in a state close to it, the aerial image can always be visually recognized. Moreover, a wider viewing angle can be achieved when both eyes of the observer 3 are parallel to the X direction or in a state close to it.
 また、空中表示装置1を構成する複数の素子を平行に配置することができる。これにより、Z方向に小型化が可能な空中表示装置1を実現できる。 Furthermore, a plurality of elements constituting the aerial display device 1 can be arranged in parallel. Thereby, it is possible to realize an aerial display device 1 that can be downsized in the Z direction.
 [2] 第2実施形態
 第2実施形態は、切替素子50をマトリクス状に配置された複数の画素で構成し、画素ごとに透過状態と遮光状態とを切り替えるようにしている。
[2] Second Embodiment In the second embodiment, the switching element 50 is composed of a plurality of pixels arranged in a matrix, and each pixel is switched between a transmitting state and a light blocking state.
 図14は、本発明の第2実施形態に係る切替素子50の部分平面図である。図14には、光学素子40と切替素子50との対応関係が理解できるように、光学素子40の部分側面図も示している。 FIG. 14 is a partial plan view of the switching element 50 according to the second embodiment of the present invention. FIG. 14 also shows a partial side view of the optical element 40 so that the correspondence between the optical element 40 and the switching element 50 can be understood.
 切替素子50は、それぞれがY方向に延び、X方向に並んだ複数の要素画素51a、51bを備える。複数の要素画素51aと複数の要素画素51bとは交互に配置される。 The switching element 50 includes a plurality of element pixels 51a and 51b, each extending in the Y direction and arranged in the X direction. The plurality of element pixels 51a and the plurality of element pixels 51b are arranged alternately.
 各要素画素51aは、Y方向に並んだ複数の画素52aを備える。各要素画素51bは、Y方向に並んだ複数の画素52bを備える。すなわち、複数の画素52a、52bは、マトリクス状に配置される。複数の画素52a、52bの各々は、例えば正方形を有する。切替素子50は、複数の画素52a、52bの各々に対して、光を透過する透過状態と光を遮光する遮光状態とに設定可能である。 Each element pixel 51a includes a plurality of pixels 52a arranged in the Y direction. Each element pixel 51b includes a plurality of pixels 52b arranged in the Y direction. That is, the plurality of pixels 52a and 52b are arranged in a matrix. Each of the plurality of pixels 52a, 52b has a square shape, for example. The switching element 50 can be set for each of the plurality of pixels 52a and 52b to a transmitting state in which light is transmitted therethrough and a light blocking state in which light is blocked.
 表示処理部60Aは、空中像を表示する領域において、切替素子50の画素52bを遮光状態に設定し、切替素子50の画素52aを透過状態に設定する。また、表示処理部60Aは、表示素子20の画像を表示する領域において、切替素子50の画素52aを遮光状態に設定し、切替素子50の画素52bを透過状態に設定する。 The display processing unit 60A sets the pixel 52b of the switching element 50 to the light blocking state and sets the pixel 52a of the switching element 50 to the transmitting state in the area where the aerial image is displayed. Furthermore, the display processing unit 60A sets the pixel 52a of the switching element 50 to a light blocking state and sets the pixel 52b of the switching element 50 to a transparent state in the area where the image of the display element 20 is displayed.
 切替素子50は、第1表示モードにおいて、自身の一部の領域において空中像を表示させ、自身の他の一部の領域において平面像を表示させることが可能である。切替素子50は、空中像を表示する部分領域において、複数の画素52aを透過状態に設定し、複数の画素52bを遮光状態に設定する。切替素子50は、平面像を表示する部分領域において、複数の画素52aを遮光状態に設定し、複数の画素52bを透過状態に設定する。切替素子50の動作は、表示処理部60Aにより制御される。 In the first display mode, the switching element 50 is capable of displaying an aerial image in a part of its own area and displaying a planar image in another part of its own area. The switching element 50 sets a plurality of pixels 52a to a transparent state and sets a plurality of pixels 52b to a light-blocking state in a partial region displaying an aerial image. The switching element 50 sets a plurality of pixels 52a to a light blocking state and sets a plurality of pixels 52b to a transmitting state in a partial region displaying a planar image. The operation of the switching element 50 is controlled by the display processing section 60A.
 第2実施形態によれば、表示素子20に表示された画像のうち一部の画像を空中像として表示し、他の一部の画像を表示素子20の画面に表示することができる。さらに、Y方向に隣接するようにして、空中像と平面像(表示素子20の画面に表示される画像)とを表示することができる。 According to the second embodiment, part of the images displayed on the display element 20 can be displayed as an aerial image, and the other part of the images can be displayed on the screen of the display element 20. Furthermore, an aerial image and a planar image (an image displayed on the screen of the display element 20) can be displayed adjacent to each other in the Y direction.
 [3] 第3実施形態
 第3実施形態は、第2表示モードにおいて、配向制御素子30から斜めに出射された光を、光拡散素子70を用いて拡散させるようにしている。
[3] Third Embodiment In the third embodiment, the light emitted obliquely from the alignment control element 30 is diffused using the light diffusion element 70 in the second display mode.
 図15は、本発明の第3実施形態に係る空中表示装置1の斜視図である。空中表示装置1は、光拡散素子70をさらに備える。光拡散素子70は、配向制御素子30と光学素子40との間に配置される。 FIG. 15 is a perspective view of an aerial display device 1 according to a third embodiment of the present invention. The aerial display device 1 further includes a light diffusion element 70. The light diffusing element 70 is arranged between the orientation control element 30 and the optical element 40.
 光拡散素子70は、全面において、光を透過する透過状態と、光を拡散する拡散状態とに設定可能である。なお、光拡散素子70の全面とは、光変調領域全体を意味し、光拡散素子70を駆動する回路が配置される周辺領域が存在する場合、この周辺領域は除かれる。光拡散素子70の面積は、配向制御素子30の面積とほぼ同じに設定される。光拡散素子70は、例えば高分子分散型液晶(PDLC)素子で構成される。 The entire surface of the light diffusing element 70 can be set to a transmitting state where light is transmitted and a diffusing state where light is diffused. Note that the entire surface of the light diffusing element 70 means the entire light modulation area, and if there is a peripheral area where a circuit for driving the light diffusing element 70 is arranged, this peripheral area is excluded. The area of the light diffusing element 70 is set to be approximately the same as the area of the alignment control element 30. The light diffusing element 70 is composed of, for example, a polymer dispersed liquid crystal (PDLC) element.
 光拡散素子70は、第1表示モードにおいて、全面が透過状態に設定され、第2表示モードにおいて、全面が拡散状態に設定される。表示処理部60Aは、第1表示モードにおいて、光拡散素子70を透過状態に設定し、第2表示モードにおいて、光拡散素子70を拡散状態に設定する。 The entire surface of the light diffusing element 70 is set to a transmitting state in the first display mode, and the entire surface is set to a diffusing state in the second display mode. The display processing unit 60A sets the light diffusing element 70 to a transmitting state in the first display mode, and sets the light diffusing element 70 to a diffusing state in the second display mode.
 第3実施形態によれば、配向制御素子30から斜めに出射された光を、光拡散素子70で拡散することができる。これにより、空中表示装置1を見る角度に依存して表示像が劣化するのを抑制することができる。また、第2表示モードにおいて、表示像の品質を向上させることができる。 According to the third embodiment, the light emitted obliquely from the alignment control element 30 can be diffused by the light diffusion element 70. Thereby, it is possible to suppress the display image from deteriorating depending on the angle at which the aerial display device 1 is viewed. Furthermore, in the second display mode, the quality of the displayed image can be improved.
 [4] 第4実施形態
 第4実施形態では、光学素子40は、空中像の結像に不要な光成分を吸収する吸収層47をさらに備える。そして、配向制御素子30を省略して空中表示装置1を構成するようにしている。
[4] Fourth Embodiment In the fourth embodiment, the optical element 40 further includes an absorption layer 47 that absorbs light components unnecessary for forming an aerial image. The aerial display device 1 is constructed by omitting the orientation control element 30.
 図16は、本発明の第4実施形態に係る空中表示装置1の斜視図である。空中表示装置1は、照明素子10、表示素子20、光学素子40、及び切替素子50を備える。第4実施形態では、第1実施形態で示した配向制御素子30が省略されている。照明素子10、表示素子20、光学素子40、及び切替素子50は、この順にZ方向に沿って配置され、互いに平行に配置される。照明素子10、表示素子20、光学素子40、及び切替素子50は、互いに所望の間隔を空けるようにして、図示せぬ固定部材で所望の位置に固定される。 FIG. 16 is a perspective view of an aerial display device 1 according to a fourth embodiment of the present invention. The aerial display device 1 includes a lighting element 10, a display element 20, an optical element 40, and a switching element 50. In the fourth embodiment, the alignment control element 30 shown in the first embodiment is omitted. The lighting element 10, the display element 20, the optical element 40, and the switching element 50 are arranged in this order along the Z direction and parallel to each other. The lighting element 10, the display element 20, the optical element 40, and the switching element 50 are fixed at desired positions with a fixing member (not shown) with a desired spacing between them.
 図17は、図16に示した光学素子40のX方向に沿った部分断面図である。 
 光学要素42の反射面44には、反射層46が設けられる。反射層46は、反射面44の全体を覆うように構成される。反射層46は、光を反射する機能を有する。反射層46は、反射率の高い材料で構成される。反射層46としては、例えば、アルミニウム(Al)、銀(Ag)、又はこれらの1つを含む合金が用いられる。
FIG. 17 is a partial cross-sectional view of the optical element 40 shown in FIG. 16 along the X direction.
A reflective layer 46 is provided on the reflective surface 44 of the optical element 42 . The reflective layer 46 is configured to cover the entire reflective surface 44. The reflective layer 46 has a function of reflecting light. The reflective layer 46 is made of a material with high reflectance. As the reflective layer 46, for example, aluminum (Al), silver (Ag), or an alloy containing one of these is used.
 反射層46上には、吸収層47が設けられる。吸収層47は、反射層46の全体を覆うように構成される。吸収層47は、光を吸収する機能を有する。吸収層47は、光吸収率が高い材料で構成される。吸収層47としては、例えば、黒色の染料又は顔料が混入された樹脂が用いられる。 An absorbing layer 47 is provided on the reflective layer 46. The absorbing layer 47 is configured to cover the entire reflective layer 46. The absorption layer 47 has a function of absorbing light. The absorption layer 47 is made of a material with high light absorption rate. As the absorption layer 47, for example, a resin mixed with a black dye or pigment is used.
 次に、上記のように構成された空中表示装置1の動作について説明する。図18は、空中表示装置1の動作を説明する側面図である。図19は、光学素子40の動作を説明する部分側面図である。図18及び図19の矢印は、光路を示している。 Next, the operation of the aerial display device 1 configured as described above will be explained. FIG. 18 is a side view illustrating the operation of the aerial display device 1. FIG. 19 is a partial side view illustrating the operation of the optical element 40. Arrows in FIGS. 18 and 19 indicate optical paths.
 表示素子20の点“o”から放射状に光が出射される。表示素子20から出射された光のうち角度θの光成分(角度θを中心とした所定の角度範囲の光成分を含む)は、光学要素42の入射面43に入射する。入射面43に入射して反射面44に到達した光は、反射面44及び反射層46で反射される。また、反射層46の存在により、反射面44に到達した光は、より確実に反射される。 Light is emitted radially from point "o" of the display element 20. Of the light emitted from the display element 20 , a light component at an angle θ 1 (including a light component in a predetermined angular range centered on the angle θ 1 ) enters the entrance surface 43 of the optical element 42 . The light that enters the incident surface 43 and reaches the reflective surface 44 is reflected by the reflective surface 44 and the reflective layer 46 . Further, due to the presence of the reflective layer 46, the light reaching the reflective surface 44 is reflected more reliably.
 一方、光学素子40の外から吸収層47に直接入射する光は、吸収層47で吸収される。具体的には、光学素子40に入射する光のうち、光学素子40の素子面に垂直な方向(Z方向)を基準にして入射面43が傾く側の光成分は、吸収層47で吸収される。吸収層47に直接入射する光は、光学素子40によって反射されず、観察者3に視認されない。 On the other hand, light that directly enters the absorption layer 47 from outside the optical element 40 is absorbed by the absorption layer 47. Specifically, of the light incident on the optical element 40, the light component on the side where the incident surface 43 is inclined with respect to the direction perpendicular to the element surface of the optical element 40 (Z direction) is absorbed by the absorption layer 47. Ru. The light directly incident on the absorption layer 47 is not reflected by the optical element 40 and is not visible to the observer 3.
 このように、光学素子40は、空中像2を生成するための光のみを反射し、それ以外の光を反射しないように機能する。すなわち、光学素子40は、空中像2の生成に寄与しない不要光を遮光することができる。 In this way, the optical element 40 functions to reflect only the light for generating the aerial image 2 and not reflect any other light. That is, the optical element 40 can block unnecessary light that does not contribute to the generation of the aerial image 2.
 切替素子50の動作は、第1実施形態と同じである。 The operation of the switching element 50 is the same as in the first embodiment.
 第4実施形態によれば、配向制御素子30を省略して空中表示装置1を構成することができる。これにより、Z方向により小型化が可能な空中表示装置1を実現できる。 According to the fourth embodiment, the aerial display device 1 can be configured without the orientation control element 30. This makes it possible to realize an aerial display device 1 that can be more compact in the Z direction.
 [5] 第5実施形態
 第5実施形態は、光学素子40を用いて空中像を表示しつつ、観察者に対して光学素子40の向きを変えることで、第1表示モードと第2表示モードとを実行するようにしている。
[5] Fifth Embodiment In the fifth embodiment, while displaying an aerial image using the optical element 40, by changing the direction of the optical element 40 with respect to the observer, the first display mode and the second display mode are displayed. I am trying to do this.
 [5-1] 空中表示装置1の構成
 図20は、本発明の第5実施形態に係る空中表示装置1の斜視図である。図21は、図20に示した空中表示装置1の側面図である。
[5-1] Configuration of aerial display device 1 FIG. 20 is a perspective view of an aerial display device 1 according to the fifth embodiment of the present invention. FIG. 21 is a side view of the aerial display device 1 shown in FIG. 20.
 空中表示装置1は、照明素子10、表示素子20、配向制御素子30、光学素子40、及び回転機構80を備える。照明素子10、表示素子20、配向制御素子30、及び光学素子40は、この順にZ方向に沿って配置され、互いに平行に配置される。照明素子10、表示素子20、配向制御素子30、及び光学素子40は、互いに所望の間隔を空けるようにして、図示せぬ固定部材で所望の位置に固定される。なお、変形例として、配向制御素子30は、照明素子10と表示素子20との間に配置してもよい。また、配向制御素子30を省略して、空中表示装置1を構成してもよい。 The aerial display device 1 includes a lighting element 10, a display element 20, an orientation control element 30, an optical element 40, and a rotation mechanism 80. The lighting element 10, the display element 20, the orientation control element 30, and the optical element 40 are arranged in this order along the Z direction and parallel to each other. The lighting element 10, the display element 20, the orientation control element 30, and the optical element 40 are fixed at a desired position with a fixing member (not shown) with a desired spacing between them. Note that, as a modification, the orientation control element 30 may be arranged between the lighting element 10 and the display element 20. Furthermore, the aerial display device 1 may be configured without the orientation control element 30.
 回転機構80は、照明素子10、表示素子20、配向制御素子30、及び光学素子40からなるユニットを、XY平面において90度回転させる機能を有する。回転機構80は、照明素子10、表示素子20、配向制御素子30、及び光学素子40を纏めて固定する固定部材(図示せず)に取り付けられ、この固定部材を回転させることで、上記ユニットを一斉に回転させる。又は、照明素子10、表示素子20、配向制御素子30、及び光学素子40からなるユニットが互いに固定され、回転機構80は、上記ユニットの最下層の照明素子10に取り付けられる。そして、回転機構80は、照明素子10を回転させることで、上記ユニットを一斉に回転させる。 The rotation mechanism 80 has a function of rotating a unit consisting of the lighting element 10, display element 20, orientation control element 30, and optical element 40 by 90 degrees in the XY plane. The rotation mechanism 80 is attached to a fixing member (not shown) that fixes the lighting element 10, display element 20, orientation control element 30, and optical element 40 together, and rotates the fixing member to rotate the unit. Rotate all at once. Alternatively, a unit consisting of the lighting element 10, display element 20, orientation control element 30, and optical element 40 is fixed to each other, and the rotation mechanism 80 is attached to the lighting element 10 in the lowest layer of the unit. The rotation mechanism 80 rotates the lighting element 10, thereby rotating the units all at once.
 [5-1-1] 光学素子40の構成
 図22は、図20に示した光学素子40の斜視図である。図22には、光学素子40の一部を拡大した拡大図も図示している。図22の拡大図は、XZ面における側面図である。
[5-1-1] Configuration of optical element 40 FIG. 22 is a perspective view of the optical element 40 shown in FIG. 20. FIG. 22 also shows an enlarged view of a part of the optical element 40. The enlarged view in FIG. 22 is a side view in the XZ plane.
 光学素子40は、基材41、及び複数の光学要素42を備える。基材41は、XY面において平面状に構成され、直方体を有する。 The optical element 40 includes a base material 41 and a plurality of optical elements 42. The base material 41 is configured to be planar in the XY plane and has a rectangular parallelepiped shape.
 基材41の底面には、複数の光学要素42が設けられる。複数の光学要素42の各々の構成は、第1実施形態と同じである。複数の光学要素42は、X方向に並んで配置され、また、隣接するもの同士が接するように配置される。換言すると、複数の光学要素42は、XZ面において鋸歯状を有する。 A plurality of optical elements 42 are provided on the bottom surface of the base material 41. The configuration of each of the plurality of optical elements 42 is the same as in the first embodiment. The plurality of optical elements 42 are arranged side by side in the X direction, and adjacent ones are arranged so as to be in contact with each other. In other words, the plurality of optical elements 42 have a sawtooth shape in the XZ plane.
 基材41及び光学要素42は、透明材料で構成される。光学要素42は、例えば、基材41と同じ透明材料によって基材41と一体的に形成される。基材41と光学要素42とを個別に形成し、透明な接着材を用いて基材41に光学要素42を接着してもよい。基材41及び光学要素42を構成する透明材料としては、ガラス、又は透明な樹脂(アクリル樹脂を含む)が用いられる。 The base material 41 and the optical element 42 are made of transparent material. The optical element 42 is formed integrally with the base material 41, for example, from the same transparent material as the base material 41. The base material 41 and the optical element 42 may be formed separately, and the optical element 42 may be adhered to the base material 41 using a transparent adhesive. As the transparent material constituting the base material 41 and the optical element 42, glass or transparent resin (including acrylic resin) is used.
 このように構成された光学素子40は、入射光を内部で反射して、空中に実像を結像する。また、光学素子40は、素子面の正面の位置に、空中像を結像する。 The optical element 40 configured in this manner reflects the incident light internally to form a real image in the air. Further, the optical element 40 forms an aerial image at a position in front of the element surface.
 [5-1-2] 空中表示装置1のブロック構成
 図23は、空中表示装置1のブロック図である。
[5-1-2] Block configuration of aerial display device 1 FIG. 23 is a block diagram of the aerial display device 1.
 表示部63は、照明素子10、及び表示素子20を備える。表示部63は、画像を表示する。 The display section 63 includes a lighting element 10 and a display element 20. The display unit 63 displays images.
 入出力インターフェース62は、回転機構80に接続される。入出力インターフェース62は、回転機構80に対して、所定の規格に応じたインターフェース処理を行う。 The input/output interface 62 is connected to the rotation mechanism 80. The input/output interface 62 performs interface processing on the rotation mechanism 80 according to a predetermined standard.
 表示処理部60Aは、表示部63(具体的には、照明素子10、及び表示素子20)の動作を制御する。表示処理部60Aは、照明素子10のオン及びオフを制御する。表示処理部60Aは、表示素子20に画像信号を送信し、表示素子20に画像を表示させる。 The display processing unit 60A controls the operation of the display unit 63 (specifically, the lighting element 10 and the display element 20). The display processing unit 60A controls turning on and off of the lighting element 10. The display processing unit 60A transmits an image signal to the display element 20 and causes the display element 20 to display an image.
 制御部60は、回転駆動部60Cをさらに備える。回転駆動部60Cは、回転機構80を回転させる。回転駆動部60Cは、第1表示モードが選択された場合、回転機構80を用いて、ユニット(照明素子10、表示素子20、配向制御素子30、及び光学素子40)を第1表示モードの位置(光学素子40のX方向が観察者3の両目と平行になる位置)に回転させる。回転駆動部60Cは、第2表示モードが選択された場合、回転機構80を用いて、上記ユニットを第2表示モードの位置(光学素子40のY方向が観察者3の両目と平行になる位置)に回転させる。 The control unit 60 further includes a rotation drive unit 60C. The rotation drive unit 60C rotates the rotation mechanism 80. When the first display mode is selected, the rotation drive unit 60C uses the rotation mechanism 80 to move the units (illumination element 10, display element 20, orientation control element 30, and optical element 40) to the position of the first display mode. (a position where the X direction of the optical element 40 is parallel to both eyes of the observer 3). When the second display mode is selected, the rotation drive unit 60C uses the rotation mechanism 80 to move the unit to the second display mode position (a position where the Y direction of the optical element 40 is parallel to both eyes of the observer 3). ).
 その他の構成は、第1実施形態と同じである。 The other configurations are the same as the first embodiment.
 [5-2] 空中表示装置1の動作
 次に、上記のように構成された空中表示装置1の動作について説明する。
[5-2] Operation of the aerial display device 1 Next, the operation of the aerial display device 1 configured as described above will be explained.
 [5-2-1] 空中像2の表示動作
 図21の矢印は、光路を示している。図21に示すように、表示素子20の任意の点“o”から出射された光は、配向制御素子30に入射する。表示素子20から出射された光のうち角度θの光成分(角度θを中心とした所定の角度範囲の光成分を含む)は、配向制御素子30を透過する。配向制御素子30を透過した光は、光学素子40に入射する。光学素子40は、入射光を、配向制御素子30と反対側の空中に結像し、空中に空中像2を表示する。
[5-2-1] Display operation of aerial image 2 The arrows in FIG. 21 indicate optical paths. As shown in FIG. 21, light emitted from an arbitrary point "o" on the display element 20 enters the alignment control element 30. Of the light emitted from the display element 20 , a light component at an angle θ 1 (including a light component within a predetermined angular range centered on the angle θ 1 ) is transmitted through the alignment control element 30 . The light transmitted through the alignment control element 30 enters the optical element 40. The optical element 40 forms an image of the incident light in the air on the opposite side to the orientation control element 30, and displays an aerial image 2 in the air.
 図24は、光学素子40における光の反射の様子を説明する斜視図である。図25は、光学素子40における光の反射の様子を説明するXZ面の側面図である。図25は、観察者3の両目(すなわち、両目を結ぶ線)がX方向に平行な状態で光学素子40を見た図である。 FIG. 24 is a perspective view illustrating how light is reflected in the optical element 40. FIG. 25 is a side view of the XZ plane illustrating how light is reflected in the optical element 40. FIG. 25 is a view of the optical element 40 in a state where both eyes of the observer 3 (that is, a line connecting both eyes) are parallel to the X direction.
 表示素子20の任意の点“o”から出射された光は、光学素子40の入射面43に入射し、反射面44に到達する。反射面44の法線方向に対して臨界角よりも大きい角度で反射面44に到達した光は、反射面44で全反射され、光学素子40の光学要素42が形成されている側の反対側の平面から出射される。図25のXZ面では、点“o”から出射された光は、光学要素42の反射面44で全反射され、その光は空中で結像されて空中像を生成する。 Light emitted from an arbitrary point "o" of the display element 20 enters the incident surface 43 of the optical element 40 and reaches the reflective surface 44. The light that reaches the reflective surface 44 at an angle larger than the critical angle with respect to the normal direction of the reflective surface 44 is totally reflected by the reflective surface 44 and is reflected on the opposite side of the optical element 40 from the side where the optical element 42 is formed. is emitted from the plane of In the XZ plane of FIG. 25, the light emitted from point "o" is totally reflected by the reflective surface 44 of the optical element 42, and the light is imaged in the air to generate an aerial image.
 光学素子40における光の反射の様子を説明するYZ面の側面図は、第1実施形態で説明した図9と同じである。図9は、観察者3の両目がY方向に平行な状態で光学素子40を見た図である。図9のYZ面では、点“o”から出射された光は、光学要素42の反射面44で反射されず、その光は空中で結像することがないため空中像の生成に寄与しない。 A side view of the YZ plane explaining how light is reflected in the optical element 40 is the same as FIG. 9 explained in the first embodiment. FIG. 9 is a diagram of the optical element 40 viewed with both eyes of the observer 3 parallel to the Y direction. In the YZ plane of FIG. 9, the light emitted from point "o" is not reflected by the reflective surface 44 of the optical element 42, and the light does not form an image in the air, so it does not contribute to the generation of an aerial image.
 すなわち、観察者3が空中像を認識できる条件は、観察者3の両眼がX方向に平行、又はそれに近い状態(例えばX方向に対して±10度)である。また、観察者3の両眼がX方向に平行、又はそれに近い状態でY方向に沿って視点を移動した場合、空中像を常に認識することができる。 That is, the condition under which the observer 3 can recognize an aerial image is that both eyes of the observer 3 are parallel to the X direction or close to it (for example, ±10 degrees with respect to the X direction). Further, when the observer 3 moves his/her viewpoint along the Y direction with both eyes parallel to the X direction or in a state close to it, the aerial image can always be recognized.
 [5-2-2] 2種類の表示モード
 次に、2種類の表示モードにおける動作について説明する。空中表示装置1は、空中像2を表示する第1表示モードと、表示素子20の画面に平面像を表示する第2表示モードとの2種類の表示モードを実行することが可能である。表示モードの切り替えは、回転機構80を用いて行われる。
[5-2-2] Two types of display modes Next, operations in two types of display modes will be described. The aerial display device 1 is capable of executing two types of display modes: a first display mode in which an aerial image 2 is displayed, and a second display mode in which a plane image is displayed on the screen of the display element 20. Switching of the display mode is performed using the rotation mechanism 80.
 図26は、空中像2を表示する第1表示モードを説明するための空中表示装置1の斜視図である。 
 第1表示モードにおいて、回転機構80は、光学素子40のX方向が観察者3の両目と平行になるように、照明素子10、表示素子20、配向制御素子30、及び光学素子40からなるユニットを回転させる。
FIG. 26 is a perspective view of the aerial display device 1 for explaining the first display mode in which the aerial image 2 is displayed.
In the first display mode, the rotation mechanism 80 is a unit consisting of the illumination element 10, the display element 20, the orientation control element 30, and the optical element 40 so that the X direction of the optical element 40 is parallel to both eyes of the observer 3. Rotate.
 表示素子20は、自身の画面に画像を表示する。第1表示モードにおいて、表示素子20から配向制御素子30を介して光学素子40に入射した光成分は、光学素子40の光学要素42で反射される。そして、空中表示装置1は、図26に示した表示面Aiの位置に空中像2を表示する。 The display element 20 displays an image on its own screen. In the first display mode, a light component that enters the optical element 40 from the display element 20 via the orientation control element 30 is reflected by the optical element 42 of the optical element 40. Then, the aerial display device 1 displays the aerial image 2 at the position of the display surface Ai shown in FIG. 26.
 図27は、表示素子20の画面に平面像を表示する第2表示モードを説明するための空中表示装置1の斜視図である。 
 第2表示モードにおいて、回転機構80は、光学素子40のY方向が観察者3の両目と平行になるように、上記ユニットを回転させる。
FIG. 27 is a perspective view of the aerial display device 1 for explaining the second display mode in which a plane image is displayed on the screen of the display element 20.
In the second display mode, the rotation mechanism 80 rotates the unit so that the Y direction of the optical element 40 is parallel to both eyes of the observer 3.
 表示素子20は、自身の画面に画像を表示する。第2表示モードにおいて、表示素子20から配向制御素子30を介して光学素子40に入射した光成分は、光学素子40を透過する。第2表示モードでは、光学素子40により空中像は結像されない。そして、空中表示装置1は、図27に示した表示面Biの位置に平面像21を表示する。 The display element 20 displays an image on its own screen. In the second display mode, a light component that has entered the optical element 40 from the display element 20 via the orientation control element 30 is transmitted through the optical element 40 . In the second display mode, no aerial image is formed by the optical element 40. The aerial display device 1 then displays the planar image 21 at the position of the display surface Bi shown in FIG.
 このように、空中表示装置1は、第1表示モードにおいて、空中表示装置1の上方の表示面Aiの位置に空中像2を表示することができる。また、空中表示装置1は、第2表示モードにおいて、表示素子20の画面に対応する表示面Biの位置に平面像21を表示することができる。 In this way, the aerial display device 1 can display the aerial image 2 at the position of the display surface Ai above the aerial display device 1 in the first display mode. Further, the aerial display device 1 can display the planar image 21 at a position on the display surface Bi corresponding to the screen of the display element 20 in the second display mode.
 図28は、空中表示装置1の表示動作を説明するフローチャートである。ステップS100及びS101の動作は、第1実施形態と同じである。 FIG. 28 is a flowchart illustrating the display operation of the aerial display device 1. The operations in steps S100 and S101 are the same as in the first embodiment.
 続いて、第1表示モードが選択された場合(ステップS101=Yes)、回転駆動部60Cは、回転機構80を用いて、上記ユニットを第1表示モードの位置に回転させる(ステップS200)。すなわち、回転駆動部60Cは、光学素子40のX方向が観察者3の両目と平行になるように、上記ユニットを回転させる。 Subsequently, if the first display mode is selected (step S101=Yes), the rotation drive unit 60C uses the rotation mechanism 80 to rotate the unit to the first display mode position (step S200). That is, the rotation drive unit 60C rotates the unit so that the X direction of the optical element 40 is parallel to both eyes of the observer 3.
 続いて、表示処理部60Aは、ステップS100で選択した画像を、表示素子20に表示する(ステップS103)。これにより、光学素子40の光学要素42で反射された光成分が空中で結像し、空中像2が表示される。 Subsequently, the display processing unit 60A displays the image selected in step S100 on the display element 20 (step S103). Thereby, the light component reflected by the optical element 42 of the optical element 40 forms an image in the air, and the aerial image 2 is displayed.
 一方、第2表示モードが選択された場合(ステップS101=No)、回転駆動部60Cは、回転機構80を用いて、上記ユニットを第2表示モードの位置に回転させる(ステップS201)。すなわち、回転駆動部60Cは、光学素子40のY方向が観察者3の両目と平行になるように、上記ユニットを回転させる。 On the other hand, if the second display mode is selected (step S101=No), the rotation drive unit 60C uses the rotation mechanism 80 to rotate the unit to the second display mode position (step S201). That is, the rotation drive unit 60C rotates the unit so that the Y direction of the optical element 40 is parallel to both eyes of the observer 3.
 続いて、表示処理部60Aは、ステップS100で選択した画像を、表示素子20に表示する(ステップS103)。これにより、光学素子40を透過した光成分が観察者3に視認され、表示素子20の画面に表示された平面像21が観察者3に視認される。 Subsequently, the display processing unit 60A displays the image selected in step S100 on the display element 20 (step S103). Thereby, the light component transmitted through the optical element 40 is visually recognized by the observer 3, and the plane image 21 displayed on the screen of the display element 20 is visually recognized by the observer 3.
 [5-3] 第5実施形態の効果
 第5実施形態によれば、第1実施形態と同様に、空中表示装置1は、奥行き方向において異なる2つの位置にそれぞれ2次元の画像を表示することができる。
[5-3] Effects of the fifth embodiment According to the fifth embodiment, similarly to the first embodiment, the aerial display device 1 displays two-dimensional images at two different positions in the depth direction. Can be done.
 なお、第5実施形態に、第3実施形態及び第4実施形態を適用することも可能である。 Note that it is also possible to apply the third embodiment and the fourth embodiment to the fifth embodiment.
 [6] 第6実施形態
 第6実施形態は、第5実施形態の変形例である。
[6] Sixth Embodiment The sixth embodiment is a modification of the fifth embodiment.
 図29は、本発明の第6実施形態に係る空中表示装置1の動作を説明する図である。図29の横軸は、回転機構80による回転角度(度)であり、縦軸は、知覚される像の高さである。回転角度は、第1表示モードにおける表示面Aiを0度、第2表示モードにおける表示面Biを90度とする。 FIG. 29 is a diagram illustrating the operation of the aerial display device 1 according to the sixth embodiment of the present invention. The horizontal axis in FIG. 29 is the rotation angle (degrees) by the rotation mechanism 80, and the vertical axis is the perceived height of the image. The rotation angle is 0 degrees for the display surface Ai in the first display mode, and 90 degrees for the display surface Bi in the second display mode.
 空中表示装置1の基本的な構成は、第5実施形態と同じである。回転機構80は、照明素子10、表示素子20、配向制御素子30、及び光学素子40からなるユニットを0度から90度の範囲で回転可能である。 The basic configuration of the aerial display device 1 is the same as the fifth embodiment. The rotation mechanism 80 is capable of rotating a unit including the illumination element 10, the display element 20, the orientation control element 30, and the optical element 40 within a range of 0 degrees to 90 degrees.
 図29に示すように、知覚される像の高さは、回転角度の変化に応じて線形で変化する。本実施形態では、一例として、回転角度が45度の場合に、光学素子40の上面(すなわち、空中表示装置1の最上面)に像が表示されるように、照明素子10、表示素子20、配向制御素子30、及び光学素子40のZ方向の位置関係が設定される。 As shown in FIG. 29, the perceived height of the image changes linearly as the rotation angle changes. In this embodiment, as an example, the illumination element 10, the display element 20, The positional relationship of the orientation control element 30 and the optical element 40 in the Z direction is set.
 第3表示モードが選択された場合、回転駆動部60Cは、回転機構80を用いて、上記ユニットを第3表示モードの位置、すなわち、回転角度が45度の位置に回転させる。これにより、空中表示装置1の最上面に表示された像が観察者に視認される。視認される画像の向きは、表示素子20に表示する画像の向きに基づいて調整可能である。 When the third display mode is selected, the rotation drive unit 60C uses the rotation mechanism 80 to rotate the unit to the position of the third display mode, that is, the rotation angle is 45 degrees. Thereby, the image displayed on the top surface of the aerial display device 1 is visually recognized by the observer. The direction of the image that is viewed can be adjusted based on the direction of the image displayed on the display element 20.
 なお、第3表示モードにおける回転角度は、0度より大きく90度より小さい角度範囲の任意の角度に設定することが可能である。これに応じて、第3表示モードにおける像の高さは、図29の関係を有する特定の位置に設定される。 Note that the rotation angle in the third display mode can be set to any angle in the angle range greater than 0 degrees and smaller than 90 degrees. Accordingly, the height of the image in the third display mode is set to a specific position having the relationship shown in FIG. 29.
 [7] 変形例
 上記実施形態では、表示素子20と光学素子40とを平行に配置している。しかし、これに限定されず、光学素子40に対して表示素子20を斜めに配置してもよい。表示素子20と光学素子40との角度は、0度より大きく45度より小さい範囲に設定される。この変形例では、配向制御素子30を省略できる。
[7] Modification In the embodiment described above, the display element 20 and the optical element 40 are arranged in parallel. However, the present invention is not limited to this, and the display element 20 may be arranged diagonally with respect to the optical element 40. The angle between the display element 20 and the optical element 40 is set in a range greater than 0 degrees and less than 45 degrees. In this modification, the orientation control element 30 can be omitted.
 上記実施形態では、光学要素42の左側の側面が入射面43、右側の側面が反射面44として定義している。しかし、これに限定されず、入射面43と反射面44とを逆に構成してもよい。この場合、実施形態で説明した空中表示装置1の作用も左右が逆になる。 In the above embodiment, the left side surface of the optical element 42 is defined as the incident surface 43, and the right side surface is defined as the reflective surface 44. However, the present invention is not limited to this, and the incident surface 43 and the reflective surface 44 may be configured in reverse. In this case, the left and right functions of the aerial display device 1 described in the embodiment are also reversed.
 上記実施形態では、表示素子20として液晶表示素子を例に挙げて説明しているが、これに限定されるものではない。表示素子20は、自発光型である有機EL(electroluminescence)表示素子、又はマイクロLED(Light Emitting Diode)表示素子などを用いることも可能である。マイクロLED表示素子は、画素を構成するR(赤)、G(緑)、B(青)をそれぞれLEDで発光させる表示素子である。自発光型の表示素子20を用いる場合、照明素子10は不要である。 In the above embodiment, a liquid crystal display element is used as an example of the display element 20, but the display element 20 is not limited to this. The display element 20 can also be a self-luminous organic EL (electroluminescence) display element, a micro LED (light emitting diode) display element, or the like. A micro LED display element is a display element that uses LEDs to emit light for each of R (red), G (green), and B (blue) that constitute a pixel. When using the self-luminous display element 20, the lighting element 10 is not necessary.
 本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 The present invention is not limited to the above-described embodiments, and can be variously modified at the implementation stage without departing from the spirit thereof. Moreover, each embodiment may be implemented in combination as appropriate, and in that case, the combined effect can be obtained. Furthermore, the embodiments described above include various inventions, and various inventions can be extracted by combinations selected from the plurality of constituent features disclosed. For example, if a problem can be solved and an effect can be obtained even if some constituent features are deleted from all the constituent features shown in the embodiment, the configuration from which these constituent features are deleted can be extracted as an invention.
 1…空中表示装置、2…空中像、3…観察者、10…照明素子、11…光源部、12…導光板、13…反射シート、20…表示素子、21…平面像、30…配向制御素子、31,32…基材、33…透明部材、34…遮光部材、40…光学素子、41…基材、42…光学要素、43…入射面、44…反射面、45…平面、46…反射層、47…吸収層、50…切替素子、51a,51b…要素画素、52a,52b…画素、60…制御部、60A…表示処理部、60B…情報処理部、60C…回転駆動部、61…記憶部、62…入出力インターフェース、63…表示部、64…入力部、65…バス、70…光拡散素子、80…回転機構。
 
DESCRIPTION OF SYMBOLS 1... Aerial display device, 2... Aerial image, 3... Observer, 10... Illumination element, 11... Light source part, 12... Light guide plate, 13... Reflection sheet, 20... Display element, 21... Planar image, 30... Orientation control Element, 31, 32... Base material, 33... Transparent member, 34... Light shielding member, 40... Optical element, 41... Base material, 42... Optical element, 43... Incident surface, 44... Reflective surface, 45... Plane, 46... Reflective layer, 47... Absorption layer, 50... Switching element, 51a, 51b... Element pixel, 52a, 52b... Pixel, 60... Control section, 60A... Display processing section, 60B... Information processing section, 60C... Rotation drive section, 61 ...Storage section, 62...Input/output interface, 63...Display section, 64...Input section, 65...Bus, 70...Light diffusion element, 80...Rotation mechanism.

Claims (15)

  1.  画像を表示する表示素子と、
     前記表示素子からの光を受けるように配置され、交互に配置された複数の第1領域及び複数の第2領域を有し、前記複数の第1領域は、前記表示素子からの光を、前記表示素子と反対側に反射し、空中に空中像を結像するように構成され、前記複数の第2領域は、前記表示素子からの光を透過するように構成される、光学素子と、
     前記光学素子からの光を受けるように配置され、第1表示モードにおいて、前記複数の第2領域を遮光し、第2表示モードにおいて、前記複数の第1領域を遮光する切替素子と、
     を具備する空中表示装置。
    a display element that displays an image;
    A plurality of first regions and a plurality of second regions are arranged to receive light from the display element and are arranged alternately, and the plurality of first regions receive light from the display element. an optical element configured to reflect light to a side opposite to the display element and form an aerial image in the air, and the plurality of second regions configured to transmit light from the display element;
    a switching element arranged to receive light from the optical element, shielding the plurality of second regions from light in a first display mode, and shielding the plurality of first regions from light in a second display mode;
    An aerial display device comprising:
  2.  前記光学素子は、平面状の基材と、前記基材の下に設けられ、それぞれが第1方向に延び、前記第1方向に直交する第2方向に並び、前記複数の第1領域にそれぞれ設けられた複数の光学要素とを含み、
     前記複数の光学要素の各々は、前記基材の法線方向に対してそれぞれが傾き、互いに接する入射面及び反射面を有し、
     前記光学素子の前記複数の第2領域はそれぞれ、複数の平面で構成される
     請求項1に記載の空中表示装置。
    The optical elements are provided under a planar base material and the base material, each extending in a first direction, arranged in a second direction perpendicular to the first direction, and each having a shape in each of the plurality of first regions. a plurality of optical elements provided;
    Each of the plurality of optical elements has an incident surface and a reflective surface that are inclined with respect to the normal direction of the base material and are in contact with each other,
    The aerial display device according to claim 1, wherein each of the plurality of second regions of the optical element is configured with a plurality of planes.
  3.  前記光学素子は、前記反射面に設けられ、光を反射する反射層と、前記反射層上に設けられ、光を吸収する吸収層とを含む
     請求項2に記載の空中表示装置。
    The aerial display device according to claim 2, wherein the optical element includes a reflective layer that is provided on the reflective surface and reflects light, and an absorption layer that is provided on the reflective layer and absorbs light.
  4.  前記切替素子は、それぞれが第1方向に延び、前記第1方向に直交する第2方向に交互に並んだ複数の第1要素画素及び複数の第2要素画素を有し、
     前記複数の第1要素画素はそれぞれ、前記複数の第1領域に設けられ、
     前記複数の第2要素画素はそれぞれ、前記複数の第2領域に設けられ、
     前記複数の第1要素画素及び前記複数の第2要素画素の各々は、透過状態と遮光状態とに設定可能である
     請求項1に記載の空中表示装置。
    The switching element has a plurality of first element pixels and a plurality of second element pixels, each extending in a first direction and arranged alternately in a second direction orthogonal to the first direction,
    Each of the plurality of first element pixels is provided in the plurality of first regions,
    Each of the plurality of second element pixels is provided in the plurality of second regions,
    The aerial display device according to claim 1, wherein each of the plurality of first element pixels and the plurality of second element pixels can be set to a transmitting state and a light blocking state.
  5.  前記切替素子は、前記第1表示モードにおいて、前記複数の第1要素画素を透過状態に設定し、前記複数の第2要素画素を遮光状態に設定し、前記第2表示モードにおいて、前記複数の第1要素画素を遮光状態に設定し、前記複数の第2要素画素を透過状態に設定する
     請求項4に記載の空中表示装置。
    In the first display mode, the switching element sets the plurality of first element pixels to a transparent state and sets the plurality of second element pixels to a light-blocking state, and in the second display mode, sets the plurality of first element pixels to a light-blocking state. The aerial display device according to claim 4, wherein the first element pixel is set to a light blocking state, and the plurality of second element pixels are set to a transmitting state.
  6.  前記複数の第1要素画素の各々は、前記第1方向に並んだ複数の第1画素を有し、
     前記複数の第2要素画素の各々は、前記第1方向に並んだ複数の第2画素を有し、
     前記複数の第1画素及び前記複数の第2画素の各々は、透過状態と遮光状態とに設定可能である
     請求項4に記載の空中表示装置。
    Each of the plurality of first element pixels has a plurality of first pixels arranged in the first direction,
    Each of the plurality of second element pixels has a plurality of second pixels arranged in the first direction,
    The aerial display device according to claim 4, wherein each of the plurality of first pixels and the plurality of second pixels can be set to a transmitting state and a light blocking state.
  7.  前記切替素子は、前記空中像を表示する部分領域において、前記第1画素を透過状態に設定し、前記第2画素を遮光状態に設定し、前記表示素子の画面の平面像を表示する部分領域において、前記第1画素を遮光状態に設定し、前記第2画素を透過状態に設定する
     請求項6に記載の空中表示装置。
    The switching element is configured to set the first pixel to a transmitting state and set the second pixel to a light blocking state in the partial region displaying the aerial image, and displaying a planar image of the screen of the display element. The aerial display device according to claim 6, wherein the first pixel is set to a light blocking state and the second pixel is set to a transmitting state.
  8.  前記表示素子と前記光学素子との間に配置され、前記表示素子からの光のうち斜め方向の光成分を透過する配向制御素子をさらに具備する
     請求項1に記載の空中表示装置。
    The aerial display device according to claim 1, further comprising an orientation control element that is disposed between the display element and the optical element and transmits an oblique light component of the light from the display element.
  9.  前記配向制御素子は、交互に配置された複数の透明部材及び複数の遮光部材を含み、
     前記複数の遮光部材は、前記配向制御素子の法線に対して傾いている
     請求項8に記載の空中表示装置。
    The alignment control element includes a plurality of transparent members and a plurality of light shielding members arranged alternately,
    The aerial display device according to claim 8, wherein the plurality of light shielding members are inclined with respect to a normal line of the orientation control element.
  10.  前記配向制御素子と前記光学素子との間に配置された光拡散素子をさらに具備し、
     前記光拡散素子は、前記第1表示モードにおいて、光を透過する透過状態に設定され、前記第2表示モードにおいて、光を拡散する拡散状態に設定される
     請求項9に記載の空中表示装置。
    further comprising a light diffusing element disposed between the orientation control element and the optical element,
    The aerial display device according to claim 9, wherein the light diffusion element is set to a transmission state in which light is transmitted in the first display mode, and set to a diffusion state in which light is diffused in the second display mode.
  11.  前記表示素子、前記光学素子、及び前記切替素子は、互いに平行に配置される
     請求項1に記載の空中表示装置。
    The aerial display device according to claim 1, wherein the display element, the optical element, and the switching element are arranged parallel to each other.
  12.  光を発光する照明素子をさらに具備し、
     前記表示素子は、前記照明素子からの光を受けるように配置され、液晶表示素子で構成される
     請求項1に記載の空中表示装置。
    further comprising a lighting element that emits light;
    The aerial display device according to claim 1, wherein the display element is arranged to receive light from the illumination element and is composed of a liquid crystal display element.
  13.  画像を表示する表示素子と、
     前記表示素子から出射された光を受けるように配置され、前記表示素子から出射された光を、前記表示素子と反対側に反射し、空中に空中像を結像する光学素子と、
     前記表示素子及び前記光学素子を含むユニットを90度の範囲で回転させ、前記空中像の奥行き方向の位置を変化させる回転機構と、
     を具備する空中表示装置。
    a display element that displays an image;
    an optical element that is arranged to receive light emitted from the display element, reflects the light emitted from the display element to a side opposite to the display element, and forms an aerial image in the air;
    a rotation mechanism that rotates a unit including the display element and the optical element within a range of 90 degrees to change the position of the aerial image in the depth direction;
    An aerial display device comprising:
  14.  前記光学素子は、平面状の基材と、前記基材の下に設けられ、それぞれが第1方向に延び、前記第1方向に直交する第2方向に並んだ複数の光学要素とを含み、
     前記複数の光学要素の各々は、前記基材の法線方向に対してそれぞれが傾き、互いに接する入射面及び反射面を有する
     請求項13に記載の空中表示装置。
    The optical element includes a planar base material and a plurality of optical elements provided under the base material, each extending in a first direction and arranged in a second direction orthogonal to the first direction,
    The aerial display device according to claim 13, wherein each of the plurality of optical elements has an incident surface and a reflective surface that are inclined with respect to the normal direction of the base material and that touch each other.
  15.  前記回転機構は、第1表示モードにおいて、観察者の両目が前記第2方向に平行になるように前記ユニットを回転させ、第2表示モードにおいて、前記観察者の両目が前記第1方向に平行になるように前記ユニットを回転させる
     請求項14に記載の空中表示装置。
     
    The rotation mechanism rotates the unit so that both eyes of the viewer are parallel to the second direction in a first display mode, and the rotation mechanism is configured to rotate the unit so that both eyes of the viewer are parallel to the first direction in a second display mode. The aerial display device according to claim 14, wherein the unit is rotated so that the unit becomes .
PCT/JP2023/032497 2022-09-12 2023-09-06 Aerial display device WO2024058022A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144552 2022-09-12
JP2022144552A JP2024039862A (en) 2022-09-12 2022-09-12 aerial display device

Publications (1)

Publication Number Publication Date
WO2024058022A1 true WO2024058022A1 (en) 2024-03-21

Family

ID=90274789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032497 WO2024058022A1 (en) 2022-09-12 2023-09-06 Aerial display device

Country Status (2)

Country Link
JP (1) JP2024039862A (en)
WO (1) WO2024058022A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171042A (en) * 2004-12-13 2006-06-29 Pioneer Electronic Corp Image display device
JP2017142279A (en) * 2016-02-08 2017-08-17 三菱電機株式会社 Aerial video display device
JP2021139932A (en) * 2020-03-02 2021-09-16 凸版印刷株式会社 Aerial display device
JP2022146114A (en) * 2021-03-22 2022-10-05 カシオ計算機株式会社 Projection device and projecting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171042A (en) * 2004-12-13 2006-06-29 Pioneer Electronic Corp Image display device
JP2017142279A (en) * 2016-02-08 2017-08-17 三菱電機株式会社 Aerial video display device
JP2021139932A (en) * 2020-03-02 2021-09-16 凸版印刷株式会社 Aerial display device
JP2022146114A (en) * 2021-03-22 2022-10-05 カシオ計算機株式会社 Projection device and projecting method

Also Published As

Publication number Publication date
JP2024039862A (en) 2024-03-25

Similar Documents

Publication Publication Date Title
US6469755B1 (en) Illuminating arrangement with reflector having inclined irregularities or corrugations
JP3457591B2 (en) Liquid crystal display
US8149495B2 (en) Reflective display having improved brightness and contrast
US10073207B2 (en) Display device having liquid crystal layer sealed between sealing member, first substrate, and second substrate
JP2002107519A (en) Reflection type display unit, retroreflector
TW200424679A (en) Display and device including the same
JP2015118272A (en) Liquid crystal display device for head-up display device, and head-up display device
CN109932839B (en) Display panel and display device
WO2024058022A1 (en) Aerial display device
WO2023171327A1 (en) Aerial display device
WO2024070702A1 (en) Aerial display device
WO2021056323A1 (en) Display panel and drive method therefor, and display apparatus
WO2023233981A1 (en) Aerial display device
WO2023181743A1 (en) Optical element for aerial display device, and aerial display device
WO2024090130A1 (en) Aerial display device
WO2024053340A1 (en) Aerial display device
WO2024018929A1 (en) Aerial display device
WO2024135732A1 (en) Aerial display device
JP7184220B1 (en) aerial display
JP4103357B2 (en) Reflective liquid crystal display device and information equipment using the same
WO2024101245A1 (en) Aerial display device
US20230131661A1 (en) Display device
JP2009210725A (en) Liquid crystal display and electronic equipment
JPH04265962A (en) Projection type liquid crystal display device
JP2000284267A (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865377

Country of ref document: EP

Kind code of ref document: A1