WO2024057730A1 - Organic el display device - Google Patents

Organic el display device Download PDF

Info

Publication number
WO2024057730A1
WO2024057730A1 PCT/JP2023/027144 JP2023027144W WO2024057730A1 WO 2024057730 A1 WO2024057730 A1 WO 2024057730A1 JP 2023027144 W JP2023027144 W JP 2023027144W WO 2024057730 A1 WO2024057730 A1 WO 2024057730A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
organic
layer
display device
Prior art date
Application number
PCT/JP2023/027144
Other languages
French (fr)
Japanese (ja)
Inventor
将 福原
早葵 原田
進 田中
航 福島
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024057730A1 publication Critical patent/WO2024057730A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers

Definitions

  • the present invention relates to an organic EL display device.
  • Positive photosensitive resin compositions containing polyimide, polybenzoxazole, etc. are widely used for surface protection layers, interlayer insulating films, planarization layers, etc. of semiconductor devices, and recently, for example, pixel division layers of organic EL devices. It is used as a flattening layer for thin film transistor (hereinafter referred to as "TFT") substrates.
  • TFT thin film transistor
  • JP 2022-34533 Publication Japanese Unexamined Patent Publication No. 7-198928
  • an insulating layer called a pixel dividing layer is formed between a first electrode and a second electrode in order to divide pixels, and a flat layer is formed on a TFT.
  • a thickening layer is formed.
  • an object of the present invention is to provide an organic EL display device with high sensitivity and excellent reliability.
  • the present invention employs the following configuration.
  • An organic EL display device comprising at least a substrate, a first electrode, a second electrode, a light emitting layer, a flattening layer, and a pixel dividing layer,
  • the planarization layer or the pixel division layer is [Resin composition A] A resin composition containing (A-1) a resin having an alkali-soluble group protected with a protecting group that can be removed by an acid and (B) a photoacid generator, or [Resin composition B] A resin composition containing a resin having an alkali-soluble group, (A-2) a compound having an alkali-soluble group protected with a protecting group that can be removed by an acid, and (B) a photoacid generator.
  • the total content of metal elements and halogen elements measured by time-of-flight secondary ion mass spectrometry of the cured product is 1.0 ⁇ 10 16 atoms/cm 3 or more and 1.0 ⁇ 10 23 atoms/cm 3 or less is, Organic EL display device.
  • FIG. 1 A process diagram showing an example of the manufacturing process of the organic EL display device of the present invention Schematic explanatory diagram of the manufacturing procedure of the organic EL display device manufactured in the example
  • the present invention provides an organic EL display device having at least a substrate, a first electrode, a second electrode, a light emitting layer, a planarizing layer, and a pixel dividing layer, wherein the planarizing layer or the pixel dividing layer [Resin composition A] (A-1) A resin having an alkali-soluble group protected with a protecting group that can be removed by an acid (hereinafter sometimes referred to as "resin (A-1)”) and (B) A resin composition containing a photoacid generator, or [Resin composition B] Resin having an alkali-soluble group, (A-2) A compound having an alkali-soluble group protected with a protecting group that can be removed by an acid (hereinafter referred to as "compound (A-2)”) ) and (B) a resin composition containing a photoacid generator, has a cured product that has been exposed, developed and cured, The total content of metal elements and halogen elements measured by time-of-flight secondary ion mass
  • the organic EL display device of the present invention includes at least a substrate, a first electrode, a second electrode, a light emitting layer, a planarization layer, and a pixel division layer.
  • the organic EL display device of the present invention is preferably an active matrix type organic EL display device having a plurality of pixels formed in a matrix.
  • wiring and a thin film transistor for driving are arranged on a substrate such as glass, the thin film transistor and a first electrode are electrically connected, and a light emitting layer is formed on the first electrode. and a second electrode are laminated.
  • the laminated structure of the first electrode/light emitting layer/second electrode is arranged in a matrix on the substrate to form a screen.
  • FIG. 1 shows a cross-sectional view of an example of a TFT substrate having a planarization layer and a pixel division layer.
  • Bottom-gate or top-gate TFTs 1 are provided in a matrix on a substrate 6, and a TFT insulating layer 3 is formed to cover the TFTs 1.
  • a wiring 2 connected to the TFT 1 is provided below this TFT insulating layer 3.
  • a planarization layer 4 having a contact hole 7 opening at the wiring 2 is provided on the TFT insulating layer 3.
  • An ITO 5 transparent electrode
  • ITO5 becomes the first electrode of the organic EL display device.
  • a pixel dividing layer 8 is formed to cover the periphery of the ITO 5.
  • the organic EL display device of the present invention may be of a top emission type in which light is emitted from the opposite side of the substrate 6, or may be of a bottom emission type in which light is extracted from the side of the substrate 6.
  • An organic EL display device may be one in which a light emitting layer and a second electrode corresponding to red, green, and blue are provided on the first electrode of such a TFT substrate, or a white light emitting layer and a second electrode are provided on the first electrode.
  • Color display is possible by providing two electrodes and a color filter.
  • the peak wavelength of light in the red region to be displayed is usually 560 to 700 nm
  • the peak wavelength of light in the green region to be displayed is 500 to 560 nm
  • the peak wavelength of light in the blue region to be displayed is in the range of 420 to 500 nm. It is.
  • FIG. 2 shows an example (note that a TFT substrate different from that shown in FIG. 1 is used).
  • a TFT 10 is formed on a substrate 9, and then a planarization layer 11 is formed.
  • a first electrode 12 is formed on the planarization layer 11.
  • a photosensitive resin composition is applied and prebaked to form a prebaked film 13.
  • actinic radiation 15 is irradiated through a mask 14 having a desired pattern.
  • the pixel dividing layer 16 and the light-emitting layer 17 are formed by developing, patterning, and curing, and the second electrode 18 is further formed on the light-emitting layer.
  • the planarization layer 11 and the pixel division layer 16 can be formed, for example, by applying a photosensitive resin composition described below, patterning it by photolithography, and curing it. It is preferable to perform sealing after forming the second electrode.
  • organic EL display devices are considered to be sensitive to oxygen and moisture, and in order to obtain a highly reliable display device, it is preferable to perform sealing in an atmosphere with as little oxygen and moisture as possible.
  • a glass substrate such as soda glass or alkali-free glass, or a flexible substrate such as polyethylene terephthalate film or polyimide film is suitably used.
  • the thickness of the glass substrate is preferably 0.5 mm or more.
  • the material of the glass substrate is preferably alkali-free glass or soda lime glass coated with a barrier coating of silicon oxide (SiO 2 ) or the like, since there are few ions eluted from the glass.
  • the first electrode is preferably transparent or translucent so that holes can be efficiently injected into the organic layer and light can be extracted.
  • materials constituting the first electrode include conductive metal oxides such as zinc oxide, tin oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO), metals such as gold, silver, and chromium.
  • examples include inorganic conductive substances such as copper iodide and copper sulfide, conductive polymers such as polythiophene, polypyrrole, and polyaniline, carbon nanotubes, and graphene. Two or more types of these may be used, and a laminated structure made of different materials may be used.
  • the form is not particularly limited, and may have a fine structure such as a metal mesh or silver nanowire, for example.
  • the first electrode preferably has low resistance from the viewpoint of power consumption of the organic EL display device.
  • the electrical resistance value is 300 ⁇ / ⁇ or less (this unit is also expressed as ⁇ /sq. or ohm per square), it functions as an element electrode, but currently it is 10 ⁇ Since substrates with a resistance of approximately 20 ⁇ / ⁇ are now available, it is more preferable to use a substrate with a low resistance of 20 ⁇ / ⁇ or less.
  • the thickness of the first electrode can be arbitrarily selected depending on the electrical resistance value, and is generally about 45 to 300 nm.
  • the second electrode can efficiently inject electrons into the light emitting layer.
  • materials constituting the second electrode include metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, and these metals and low work function metals such as lithium, sodium, potassium, calcium, and magnesium. Examples include alloys with Two or more types of these may be used, and a laminated structure made of different materials may be used.
  • aluminum, silver, and magnesium as main components from the viewpoints of electrical resistance, ease of film formation, film stability, luminous efficiency, and the like. It is more preferable to contain magnesium and silver, which facilitates injection of electrons into the light emitting layer and enables further reduction of driving voltage.
  • Examples of methods for forming the first electrode and the second electrode include resistance heating, electron beam, sputtering, ion plating, and coating.
  • the electrode used as a cathode preferably has a protective layer on the electrode.
  • the material constituting the protective layer include inorganic substances such as silica, titania, and silicon nitride, and organic polymer compounds such as polyvinyl alcohol, polyvinyl chloride, and hydrocarbon polymer compounds.
  • the material constituting the protective layer is preferably one that has light transparency in the visible light region.
  • the light-emitting layer is provided at a portion where the first electrode and the second electrode arranged opposite to each other intersect and overlap, and when a pixel dividing layer is formed on the first electrode, the area further regulated by the pixel dividing layer. established in That is, the light emitting layers are separated by the pixel dividing layer.
  • the shape of the light-emitting layer that is, the shape seen from the viewer side, is not particularly limited. For example, it may be rectangular or circular, and may be formed into any shape depending on the shape of the pixel division layer. can do. In active matrix displays, the part where the switching means is formed may be arranged so as to occupy part of the substrate, and the shape of the light emitting layer may be rectangular or circular with a part missing. You can.
  • a layer other than the light emitting layer may be provided between the first electrode and the second electrode, and examples of such a structure include an electron transport layer, a hole transport layer, an electron injection layer, a hole transport layer, and a hole transport layer.
  • examples include structures used in organic EL elements such as injection layers.
  • An example of this is a laminated structure.
  • the above laminated structure may be of a tandem type in which a plurality of layers are laminated with an intermediate layer interposed therebetween.
  • the intermediate layer is also commonly referred to as an intermediate electrode, intermediate conductive layer, charge generation layer, electron extraction layer, connection layer, or intermediate insulating layer.
  • the tandem structure includes, for example, 7) hole transport layer/light emitting layer/electron transport layer/charge generation layer/hole transport layer/light emitting layer/electron transport layer, 8) hole injection layer/hole transport layer.
  • a laminated structure including a charge generation layer as an intermediate layer such as / light emitting layer / electron transport layer / electron injection layer / charge generation layer / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer, etc. Can be mentioned.
  • a charge generation layer such as / light emitting layer / electron transport layer / electron injection layer / charge generation layer / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer, etc.
  • pyridine derivatives and phenanthroline derivatives are preferred.
  • each of the above layers may be made of multiple types of materials, for example, the electron transport layer may be made of two layers using different materials.
  • the hole injection layer is a layer that is inserted between the anode and the hole transport layer and facilitates the transfer of holes from the anode to the hole transport layer.
  • a hole injection layer exists between the hole transport layer and the anode, it is possible to drive at a lower voltage, improve the durability life, and further improve the carrier balance of the organic EL display device. , luminous efficiency can be improved.
  • Examples of the material constituting the hole injection layer include 4,4'-bis(N-(3-methylphenyl)-N-phenylamino)biphenyl (TPD), 4,4'-bis(N-(1 Examples include biscarbazole derivatives such as -naphthyl)-N-phenylamino)biphenyl (NPD), bis(N-arylcarbazole), and bis(N-alkylcarbazole).
  • TPD 4,4'-bis(N-(3-methylphenyl)-N-phenylamino)biphenyl
  • PPD 4,4'-bis(N-(1
  • biscarbazole derivatives such as -naphthyl)-N-phenylamino)biphenyl
  • NPD bis(N-arylcarbazole)
  • bis(N-alkylcarbazole) bis(N-alkylcarbazole).
  • the hole injection layer may use two or more of
  • the hole injection layer is preferably further doped with an acceptor compound.
  • the acceptor compound is a material that forms a charge transfer complex with the material constituting the hole injection layer.
  • acceptor compounds include metal oxides, organic compounds having a nitro group, a cyano group, a halogen or a trifluoromethyl group in the molecule, quinone compounds, acid anhydride compounds, fullerenes, etc.
  • metal oxides and organic compounds containing a cyano group are preferred because they are easy to handle and vapor-deposit.
  • the hole transport layer is a layer that transports holes injected from the anode to the light emitting layer.
  • the hole transport layer may be a single layer or may be configured by laminating a plurality of layers.
  • the hole transport layer must have an ionization potential of 5.1 to 6.0 eV (measured value of AC-2 (Riken Keiki) of the deposited film), a high triplet energy level, high hole transport properties, and thin film stability. is preferred.
  • the hole transport layer may be used as a hole transport material in an organic EL display device using a triplet luminescent material. Examples of the material constituting the hole transport layer include those exemplified as the material constituting the hole injection layer.
  • the light-emitting layer is a layer in which a light-emitting material is excited by recombination energy due to collisions of holes and electrons and emits light.
  • the light-emitting layer may be a single layer or may be configured by laminating a plurality of layers.
  • the light-emitting layer contains a light-emitting material (host material, dopant material), and when the light-emitting layer is composed of multiple layers, each layer may be composed only of either the host material or the dopant material. , may be composed of a combination of one or more host materials and one or more dopant materials.
  • the light-emitting layer contains a host material and a dopant material
  • either the host material or the dopant material may emit light, or both the host material and the dopant material may emit light.
  • the light-emitting layer is composed of a combination of a host material and a dopant material.
  • the content of the dopant material in the light-emitting layer is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, based on 100 parts by weight of the host material, from the viewpoint of suppressing the concentration quenching phenomenon.
  • the light-emitting layer can be formed by a method of co-evaporating a host material and a doping material, a method of mixing a host material and a doping material in advance, and then depositing the mixture.
  • dopant materials include fused ring derivatives such as anthracene and pyrene, metal complex compounds such as tris(8-quinolinolato)aluminum, bisstyryl derivatives such as bisstyrylanthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, and dibenzofuran derivatives. , carbazole derivatives, indolocarbazole derivatives, polyphenylene vinylene derivatives, and the like.
  • Dopant materials used when the light-emitting layer emits triplet light include iridium (Ir), ruthenium (Ru), palladium (Pd), platinum (Pt), osmium (Os), and rhenium (Re).
  • aromatic heterocycle it is preferable to have an aromatic heterocycle, and specific examples include tris(2-phenylpyridyl)iridium complex, bis(2-phenylpyridyl)(acetylacetonato)iridium complex, and tetraethylporphyrin platinum complex.
  • a metal complex compound may be constructed using two or more of these.
  • Examples of the host material include compounds having a fused aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, and indene.
  • a light-emitting material may be composed of two or more of these.
  • Host materials used when the light emitting layer emits triplet light (phosphorescence) include metal chelated oxinoid compounds, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, triphenylene derivatives, etc. Suitably used. Among these, compounds having an anthracene skeleton or a pyrene skeleton are more preferable because they can easily provide highly efficient light emission.
  • the electron transport layer is a layer that transports electrons injected from the cathode to the light emitting layer. It is desired that the electron transport layer has high electron injection efficiency and efficiently transports the injected electrons. Therefore, the electron transport layer is preferably made of a material that has high electron affinity and electron mobility, is excellent in stability, and does not easily generate trapping impurities during manufacture and use. In particular, when the electron transport layer is thick, a compound with a molecular weight of 400 or more is preferable because a low molecular weight compound tends to crystallize and deteriorate the film quality.
  • the electron transport layer in the present invention also includes a hole blocking layer that can efficiently block the movement of holes.
  • the electron transport layer may be a single layer or may be configured by laminating a plurality of layers.
  • Examples of the electron transport material constituting the electron transport layer include fused polycyclic aromatic derivatives such as naphthalene and anthracene. Two or more types of these may be used. Among these, compounds having a heteroaryl ring structure containing electron-accepting nitrogen are preferred because they can further reduce the driving voltage and provide highly efficient light emission.
  • the electron-accepting nitrogen herein refers to a nitrogen atom that forms multiple bonds with adjacent atoms. Since nitrogen atoms have high electronegativity, such multiple bonds have electron-accepting properties. Therefore, an aromatic heterocycle containing electron-accepting nitrogen has high electron affinity. An electron transport material having electron-accepting nitrogen can easily receive electrons from a cathode having a high electron affinity, so that the driving voltage can be further reduced. Further, an electron transport material having electron-accepting nitrogen supplies more electrons to the light-emitting layer, increasing the probability of recombination, and thus improving luminous efficiency.
  • heteroaryl ring containing electron-accepting nitrogen examples include a triazine ring and a pyridine ring.
  • Compounds having these heteroaryl ring structures include triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, 2,5-bis(6'-(2',2"- Bipyridine derivatives such as bipyridyl))-1,1-dimethyl-3,4-diphenylsilole, terpyridine derivatives such as 1,3-bis(4'-(2,2':6'2''-terpyridinyl))benzene, or Two or more of these are preferably used from the viewpoint of electron transport ability.
  • the electron transport layer may contain a donor compound.
  • the donor compound is a compound that improves the electron injection barrier, facilitates electron injection from the cathode or electron injection layer to the electron transport layer, and further improves the electrical conductivity of the electron transport layer.
  • donor compounds include alkali metals, inorganic salts of alkali metals, complexes of alkali metals and organic substances, alkaline earth metals, inorganic salts of alkaline earth metals, or complexes of alkaline earth metals and organic substances. It will be done.
  • Donor compounds are preferably complexes with inorganic salts or organic substances rather than single metals because they are easy to vapor deposit in vacuum and are easy to handle.
  • a complex with is more preferred.
  • the ionization potential of the electron transport layer is preferably 5.6 eV or more, more preferably 6.6 eV or more. On the other hand, it is preferably 8.0 eV or less, more preferably 7.0 eV or less.
  • Examples of methods for forming the above-mentioned layers constituting the organic EL display device include resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination, coating, and the like. Among these, resistance heating evaporation method and electron beam evaporation method are preferred from the viewpoint of organic EL display device characteristics.
  • the total thickness of the organic layer including the hole injection layer, hole transport layer, light emitting layer, and electron transport layer can be appropriately selected depending on the resistance value of the light emitting substance, and is preferably 1 to 1000 nm.
  • the thickness of each of the hole injection layer, hole transport layer, light emitting layer, and electron transport layer is preferably 1 nm or more, more preferably 5 nm or more.
  • the thickness of the hole injection layer, hole transport layer, light emitting layer, and electron transport layer is preferably 200 nm or less, more preferably 100 nm or less.
  • the flattening layer or the pixel dividing layer has a cured product obtained by exposing, developing, and hardening the resin composition described below, preferably consists of the cured product, and is preferably composed of a time-of-flight secondary layer of the cured product. It is characterized in that the total content of metal elements and halogen elements measured by ion mass spectrometry is 1.0 ⁇ 10 16 atoms/cm 3 or more and 1.0 ⁇ 10 23 atoms/cm 3 or less. Of course, both the planarization layer and the pixel division layer may have such characteristics.
  • the trace amount of metal element or halogen element that adheres to the substrate during the formation of the flattening layer or pixel division layer using the resin composition can form a pattern opening. Since the conductivity of the organic EL display device is improved, the driving voltage of the organic EL display device can be reduced and the reliability can be improved.
  • these elements can be protected with (A-1) a resin having an alkali-soluble group protected with a protecting group that can be removed with an acid, or (A-2) with a protecting group that can be removed with an acid, as described below.
  • the element trapping effect of forming salts with compounds having alkali-soluble groups it suppresses electrode corrosion such as alkali migration derived from excess metal elements and halogen elements, and the resulting reduction in luminance brightness and pixel shrinkage, and improves organic EL display devices. reliability can be improved. If the total content of metal elements and halogen elements in the cured product is less than 1.0 ⁇ 10 16 atoms/cm 3 , the conductivity of the ITO electrodes forming the pattern openings will be low, and the organic EL display device may not be used for a long time. When driven, the voltage tends to increase, which reduces reliability.
  • cured product that has been exposed, developed, and cured means that the resin composition used in the present invention becomes a cured product through the steps of exposure, development, and curing, and does not necessarily mean that This does not mean that the exposed portion becomes a cured product. That is, an unexposed area remains as a result of development, and the unexposed area contains a cured product.
  • an example of a method for bringing the metal elements and halogen elements into the above ranges is a method using a resin composition described below.
  • the term "metallic element” refers to an element that exhibits metallic properties in its simple form, and also includes the case where it is an ion.
  • the metal element is an alkali metal element or an alkaline earth metal element, particularly when it is sodium or potassium, in the resin composition described below, the combination with resin (A-1) or compound (A-2) Easily trapped by salt formation and interactions.
  • the halogen element refers to an element belonging to Group 17 in the periodic table, and also includes an ion.
  • the halogen element is chlorine, it forms a salt with resin (A-1) or compound (A-2) in the resin composition described below, and is likely to be trapped, which may reduce the reliability of the organic EL display device. It can be further improved.
  • the total content of metal elements and halogen elements measured by time-of-flight secondary ion mass spectrometry in a cured product obtained by exposing, developing, and curing the resin composition described below is 1.0 ⁇ 10 16 atoms/cm 3 or more and 1.0 ⁇ 10 23 atoms/cm 3 or less.
  • the total content of metal elements and halogen elements in the cured product is 1.0 ⁇ 10 16 atoms/cm 3 or more, which further reduces the driving voltage of the organic EL display device and improves its reliability. can be improved. Furthermore, by setting the density to be 1.0 ⁇ 10 23 atoms/cm 3 or less, the reliability of the organic EL display device can be further improved.
  • the lower limit of the total content of metal elements and halogen elements in the cured product is preferably 1.0 ⁇ 10 17 atoms/cm 3 or more, and the upper limit is preferably 1.0 ⁇ 10 22 atoms/cm 3 or more. cm 3 or less.
  • the total content of sodium and potassium is 1.0 ⁇ 10 17 atom/cm 3 or more and 1.0 ⁇ 10 22 atom/cm 3 or less
  • the total content of elemental fluorine and elemental chlorine is 1.0 ⁇ 10 17 atom/cm 3 or more and 1.0 ⁇ 10 22 atom/cm 3 or less.
  • the metal elements and halogen elements in the cured resin composition can be determined by the following method. First, a specific amount of a target element is injected into the cured film using IMX-3500RS (manufactured by ULVAC), and the relative sensitivity factor (RSF) is calculated using the following formula. In order to improve the sensitivity (atoms/cm 3 ) of TOF-SIMS, which will be described later, the ion implantation amount was set between 1.0 ⁇ 10 13 atoms/cm 2 and 5.0 ⁇ 10 15 atoms/cm 2 . It is preferable to do so.
  • the measurement conditions are: for positive ion detection, the etching ion species is O 2 + , the etching ion acceleration energy is 2 keV, the primary ion species is Bi + , the primary ion energy is 25 keV, and the charge compensation is Metal-coat and e-gun. went.
  • the etching ion species was C s +
  • the etching ion acceleration energy was 2 keV
  • the primary ion species was Bi +
  • the primary ion energy was 25 keV
  • charge compensation was performed using e-gun.
  • TOF-SIMS analysis was performed using TOF. SIMS5 was used.
  • the metal element and halogen element (target element) concentrations in the cured film can be determined from TOF-SIMS analysis using the following formula.
  • Target element concentration RSF (atoms/cm 3 ) ⁇ target element ion strength (counts)/cured film ion strength (counts).
  • the aperture ratio of the pixel dividing layer is preferably 20% or less.
  • the aperture ratio of the pixel dividing layer refers to the ratio of the area of the opening of the pixel dividing layer to the area of the entire organic EL display device.
  • the organic EL display device of the present invention can suppress reduction in luminance brightness and pixel shrinkage, and improve the reliability of the organic EL display device. Therefore, the aperture ratio of the pixel division layer, which is significantly affected by pixel shrinkage, is 20% or less. In this case, the effect is particularly remarkable.
  • the "area of the entire organic EL display device” refers to the area of the entire display of a smartphone, tablet PC, etc.
  • the "opening of the pixel division layer” refers to the area of the pixels in the display.
  • the area can be determined by direct observation using a microscope or the like.
  • the flattening layer or pixel dividing layer is formed of a cured product obtained by exposing, developing, and curing resin composition A or resin composition B described below.
  • Resin composition A Resin composition containing (A-1) a resin having an alkali-soluble group protected with a protecting group that can be removed by acid and (B) a photoacid generator
  • Resin composition B Alkali Resin composition containing a resin having a soluble group, (A-2) a compound having an alkali-soluble group protected with a protecting group that can be removed by an acid, and (B) a photoacid generator
  • the above resin composition A and Resin composition B may further contain other components.
  • alkali solubility refers to the property of having solubility in an aqueous solution of tetramethylammonium hydroxide having a concentration of 25% by mass, and by having such a property, it is possible to realize development using a general-purpose developer.
  • the functional group (alkali-soluble group) for imparting alkali solubility to the resin it is preferable to use a carboxyl group or a hydroxyl group, and these functional groups tend to improve solubility in an alkaline developer and provide higher resolution. Easy to achieve resolution.
  • the term "resin having an alkali-soluble group” refers to a resin that does not have an alkali-soluble group protected with a protective group that can be removed by an acid.
  • a resin having an alkali-soluble group protected with an acid-removable protecting group is referred to as a "resin having an alkali-soluble group protected with an acid-removable protecting group.”
  • a resin having an alkali-soluble group protected with a protecting group that can be removed by an acid does not necessarily have alkali solubility in a state where the alkali-soluble group is protected with the protecting group. However, when the protecting group has been removed and the resin has become a resin, it has alkali solubility.
  • the resin having an alkali-soluble group is one or more resins selected from the group consisting of polyimide, polybenzoxazole, polyimide precursor, polybenzoxazole precursor, and copolymers thereof, and the resin has an alkali-soluble group in its structure. It is preferable that the resin has an alkali-soluble group, and two or more types of these may be contained.
  • Polyimide and polybenzoxazole are resins having a cyclic structure of an imide ring or an oxazole ring in the main chain. The number of repeating units is preferably 10 to 100,000.
  • Polyimide can be obtained by reacting tetracarboxylic acid, the corresponding tetracarboxylic dianhydride, tetracarboxylic acid diester dichloride, etc. with diamine, the corresponding diisocyanate compound, or trimethylsilylated diamine. Contains diamine residues.
  • it can be obtained by dehydrating and ring-closing polyamic acid, which is one of the polyimide precursors obtained by reacting tetracarboxylic dianhydride and diamine, by heat treatment or chemical treatment. During the heat treatment, a solvent that is azeotropic with water, such as m-xylene, may be added.
  • a weakly acidic carboxylic acid compound may be added and heat treated at a low temperature of 100° C. or lower.
  • the ring-closing catalyst used in the chemical treatment include dehydration condensation agents such as carboxylic acid anhydrides and dicyclohexylcarbodiimide, and bases such as triethylamine.
  • dehydration condensation agents such as carboxylic acid anhydrides and dicyclohexylcarbodiimide
  • bases such as triethylamine.
  • Polybenzoxazole can be obtained by reacting a bisaminophenol compound with a dicarboxylic acid, a corresponding dicarboxylic acid chloride, a dicarboxylic acid active ester, etc., and has a dicarboxylic acid residue and a bisaminophenol residue.
  • it can be obtained by dehydrating and ring-closing polyhydroxyamide, which is one of the polybenzoxazole precursors obtained by reacting a bisaminophenol compound and a dicarboxylic acid, by heat treatment or chemical treatment. During the heat treatment, a solvent that is azeotropic with water, such as m-xylene, may be added.
  • an acidic compound may be added and heat treated at a low temperature of 200° C. or lower.
  • ring-closing catalysts used in chemical treatments include phosphoric anhydride, bases, carbodiimide compounds, and the like. The polybenzoxazole precursor will be described later.
  • the polyimide has tetracarboxylic acid residues or diamine residues such as OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 , etc. It is preferable to have an acidic group or an acidic group derivative, and more preferably to have a hydroxyl group.
  • polybenzoxazole has a dicarboxylic acid residue or a bisaminophenol residue derived from an acidic group or an acidic group such as OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 , etc.
  • R 7 and R 8 represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • an acidic group refers to a group in which R 7 or R 8 is a hydrogen atom
  • a group derived from an acidic group refers to a group in which R 7 or R 8 is a monovalent organic group having 1 to 20 carbon atoms. Point.
  • preferred structures of the tetracarboxylic acid residue of the polyimide and the dicarboxylic acid residue of the polybenzoxazole include the following structures, or structures in which 1 to 4 of these hydrogen atoms are substituted with an alkyl group having 1 to 20 carbon atoms, a fluoroalkyl group, an alkoxyl group, an ester group, a nitro group, a cyano group, a fluorine atom, or a chlorine atom. Two or more of these may be used.
  • J is a direct bond, -COO-, -CONH-, -CH 2 -, -C 2 H 4 -, -O-, -C 3 H 6 -, -SO 2 -, -S-, -Si( CH 3 ) 2 -, -O-Si(CH 3 ) 2 -O-, -C 6 H 4 -, -C 6 H 4 -O-C 6 H 4 -, -C 6 H 4 -C 3 H 6 -C 6 H 4 - or -C 6 H 4 -C 3 F 6 -C 6 H 4 -.
  • preferred structures of the diamine residue of polyimide and the bis-aminophenol residue of polybenzoxazole include the following structures, or hydrogen atoms of these. Examples include an alkyl group having 1 to 20 carbon atoms, a fluoroalkyl group, an alkoxyl group, an ester group, a nitro group, a cyano group, and a structure in which 1 to 4 atoms are substituted with a fluorine atom or a chlorine atom. Two or more types of these may be used.
  • J is a direct bond, -COO-, -CONH-, -CH 2 -, -C 2 H 4 -, -O-, -C 3 H 6 -, -SO 2 -, -S-, -Si( CH 3 ) 2 -, -O-Si(CH 3 ) 2 -O-, -C 6 H 4 -, -C 6 H 4 -O-C 6 H 4 -, -C 6 H 4 -C 3 H 6 -C 6 H 4 - or -C 6 H 4 -C 3 F 6 -C 6 H 4 -.
  • R 7 represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • the polyimide precursor and polybenzoxazole precursor have an amide bond in the main chain, and become polyimide and polybenzoxazole by dehydration and ring closure through heat treatment or chemical treatment.
  • the number of repeating units is preferably 10 to 100,000.
  • the polyimide precursor include polyamic acid, polyamic acid ester, polyamic acid amide, polyisoimide, and the like, with polyamic acid and polyamic acid ester being preferred.
  • Examples of the polybenzoxazole precursor include polyhydroxyamide, polyaminoamide, polyamide, and polyamideimide, with polyhydroxyamide being preferred.
  • Polyimide precursors and polybenzoxazole precursors have OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 in acid residues or amine residues from the viewpoint of solubility in aqueous alkaline solutions. It is preferable to have an acidic group such as or a group derived from an acidic group, and it is more preferable to have a hydroxyl group. R 7 and R 8 represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. Note that the meanings of the acidic group and the group derived from the acidic group are the same as those used in the explanation regarding the polyimide and polybenzoxazole described above (the same applies below).
  • dicarboxylic acids examples include terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, bis(carboxyphenyl)hexafluoropropane, biphenyl dicarboxylic acid, Examples include benzophenone dicarboxylic acid and triphenyl dicarboxylic acid.
  • tricarboxylic acids examples include trimellitic acid, trimesic acid, diphenyl ethertricarboxylic acid, biphenyltricarboxylic acid, and the like.
  • tetracarboxylic acids include pyromellitic acid, 3,3',4,4'-biphenyltetracarboxylic acid, 2,3,3',4'-biphenyltetracarboxylic acid, 2,2',3,3' -Biphenyltetracarboxylic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, 2,2',3,3'-benzophenonetetracarboxylic acid, 2,2-bis(3,4-dicarboxyphenyl) Hexafluoropropane, 2,2-bis(2,3-dicarboxyphenyl)hexafluoropropane, 1,1-bis(3,4-dicarboxyphenyl)ethane, 1,1-bis(2,3-dicarboxy phenyl)ethane, bis(3,4-dicarboxyphenyphenyphenyl)methane, bis(2,3-dicarboxyphenyl)methan
  • Hyeptanetetracarboxylic acid bicyclo[3.3.1. ] Tetracarboxylic acid, bicyclo [3.1.1. ]Hept-2-entetracarboxylic acid, bicyclo[2.2.2. ]
  • Examples include aliphatic tetracarboxylic acids such as octanetetracarboxylic acid and adamatanetetracarboxylic acid. Two or more types of these may be used.
  • hydrogen atoms of the dicarboxylic acids, tricarboxylic acids, or tetracarboxylic acids exemplified above can be converted from acidic groups or acidic groups such as OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 , etc. More preferred are those substituted with 1 to 4 derived groups, preferably hydroxyl groups, sulfonic acid groups, sulfonic acid amide groups, sulfonic acid ester groups, etc.
  • R 7 and R 8 represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • acids can be used as they are, or as acid anhydrides or active esters.
  • silicon-containing tetracarboxylic acids such as dimethylsilane diphthalic acid and 1,3-bis(phthalic acid)tetramethyldisiloxane
  • silicon atom-containing tetracarboxylic acids are preferably used in an amount of 1 to 30 mol% of the total acid components.
  • diamine components constituting amine residues of polyimide precursors and polybenzoxazole precursors include bis(3-amino-4-hydroxyphenyl)hexafluoropropane and bis(3-amino-4-hydroxyphenyl)sulfone.
  • these diamines can be substituted with an alkyl group having 1 to 10 carbon atoms such as a methyl group or an ethyl group, a fluoroalkyl group having 1 to 10 carbon atoms such as a trifluoromethyl group, or a group such as F, Cl, Br, or I. may have been done. Two or more types of these may be used. In applications where heat resistance is required, it is preferable to use aromatic diamine in an amount of 50 mol% or more of the total diamine.
  • the diamines exemplified above preferably have an acidic group or a group derived from an acidic group such as OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 , and a hydroxyl group. It is more preferable to have the following.
  • R 7 and R 8 represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • diamines can be used as they are or as corresponding diisocyanate compounds or trimethylsilylated diamines.
  • silicon atom-containing diamines such as 1,3-bis(3-aminopropyl)tetramethyldisiloxane and 1,3-bis(4-anilino)tetramethyldisiloxane as the diamine component
  • adhesiveness to the substrate can be improved. It is possible to improve the durability and resistance to oxygen plasma used for cleaning, UV ozone treatment, etc.
  • These silicon atom-containing diamines are preferably used in an amount of 1 to 30 mol% of the total diamine components.
  • the terminals of polyimide, polybenzoxazole, polyimide precursor, and polybenzoxazole precursor are capped with a monoamine, acid anhydride, acid chloride, or monocarboxylic acid having a hydroxyl group, carboxyl group, sulfonic acid group, or thiol group. It is preferable. Two or more types of these may be used.
  • a group that blocks the end of the resin is referred to as an "end-capping group
  • the dissolution rate of the resin in an alkaline aqueous solution can be easily adjusted to a preferable range. can.
  • Preferred examples of monoamines include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-amino Naphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy -5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid , 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-a
  • acid anhydrides examples include acid anhydrides such as phthalic anhydride, maleic anhydride, nadic acid, cyclohexanedicarboxylic anhydride, and 3-hydroxyphthalic anhydride.
  • the content of the above-mentioned terminal capping agent such as monoamine, acid anhydride, acid chloride, monocarboxylic acid, etc. is equal to or less than the number of moles charged of the acid component monomer constituting the acid residue or the diamine component monomer constituting the amine residue.
  • the range is preferably from .1 to 60 mol%, more preferably from 5 to 50 mol%. By setting it as such a range, the viscosity of the solution at the time of applying a resin composition is suitable, and the resin composition which has excellent film
  • the resin may have a polymerizable functional group at the end.
  • the polymerizable functional group include an ethylenically unsaturated bond group, an acetylene group, a methylol group, and an alkoxymethyl group.
  • the terminal capping group introduced into the resin can be easily detected by the following method.
  • a resin into which a terminal capping group has been introduced is dissolved in an acidic solution, decomposed into an amine component and an acid component, which are the constituent units of the resin, and then subjected to gas chromatography (GC) or NMR measurement.
  • Terminal capping agent can be easily detected.
  • PLC pyrolysis gas chromatography
  • infrared spectroscopy infrared spectroscopy
  • 13 C NMR spectroscopy 13 C NMR spectroscopy.
  • the resin having an alkali-soluble group is preferably a polyimide precursor or a polybenzoxazole precursor, and more preferably a polyimide precursor.
  • the polyimide precursor undergoes an imidization reaction in which the amic acid site is ring-closed by curing and baking at about 200°C
  • the polybenzoxazole precursor undergoes an oxazolization reaction in which the hydroxyamide site is ring-closed by curing and baking at about 300°C.
  • a highly reliable display device can be obtained. Therefore, a polyimide precursor can provide a highly reliable display device at a lower firing temperature.
  • photosensitive resin compositions using these precursor resins which have the property of shrinking in volume during curing and baking, can be used to obtain fine patterns through exposure and development steps, and then baked to obtain forward-tapered patterns.
  • This forward tapered pattern has excellent coverage of the upper electrode when used as an insulating film of an organic EL element, and can prevent disconnection and improve the reliability of the element.
  • resin composition A and resin composition B may contain a compound having an alkali-soluble group.
  • the meaning of alkali-soluble is the meaning given to the above-mentioned resin having an alkali-soluble group, and the explanation of the functional group for making the compound alkali-soluble is also the same as given to the above-mentioned resin having an alkali-soluble group.
  • the compound having an alkali-soluble group refers to a compound having a molecular weight of 1000 or less, in order to distinguish it from the resin having an alkali-soluble group described above, and the resin having an alkali-soluble group refers to a compound having a molecular weight exceeding 1000. say.
  • the molecular weight of the compound having an alkali-soluble group is preferably 100 or more from the viewpoint of development adhesion. Furthermore, when it is 250 or more, development adhesion is further improved. On the other hand, from the viewpoint of improving sensitivity, it is preferably 600 or less, more preferably 450 or less.
  • the compound having an alkali-soluble group is preferably a compound having a phenolic hydroxyl group, and specifically, for example, Bis-Z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP- Z, BisOCHP-Z, BisOCR-CP, BisP-PZ, BisCRIPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP-4HBPA (Tetrakis P-DO-BPA), Tris PHAP, TrisP-PA, TrisP-PHBA, TrisOCR-PA, BisOFP-Z, Bis25X-OCHP, BisOCHP-OC, Methylene Tris-FR-CR, BisRS-26X, BisRS-OCHP, (product name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR- OC, BIP-PC, BIR-PC, BIR-PCHP, BIP-BIOC-F, 4PC, BIR-BIPC
  • the content in the resin composition is 1 part by weight or more from the viewpoint of improving sensitivity when the total weight of the resin is 100 parts by weight. It is preferable to do so. Furthermore, when the amount is 5 parts by weight or more, the sensitivity is further improved. On the other hand, from the viewpoint of development adhesion, the content is preferably 30 parts by weight or less, more preferably 20 parts by weight or less.
  • resin composition A and resin composition B contain resin (A-1) or compound (A-2).
  • resin composition A may contain compound (A-2).
  • the alkali-soluble group of the resin having the alkali-soluble group described above is protected with a protecting group that can be removed by an acid
  • the alkali-soluble group is All or part of the alkali-soluble group of the compound having an alkali-soluble group is protected with a protecting group that can be removed by an acid.
  • the resin composition can be used as a flattening layer or a pixel dividing layer of an organic EL display device.
  • the protecting group is removed using the acid generated from the photoacid generator (B) described later as a catalyst, and the alkali solubility of the exposed area is improved, thereby improving the sensitivity.
  • protecting groups include, for example, acetal groups, ketal groups, silyl groups, silyl ether groups, and tetrahydropyranyloxy groups.
  • Examples of protective groups that can be removed by acid include t-butoxycarbonyl group, isopropoxycarbonyl group, tetrahydropyranyl group, ethoxyethyl group, methoxyethyl group, ethoxymethyl group, trimethylsilyl group, t-butoxycarbonylmethyl group. , ethyl vinyl ether group, methyl vinyl ether group, trimethylsilyl ether group, etc. Two or more types of these may be contained. From the viewpoint of improving sensitivity, one or more groups selected from the group consisting of an acetal group and a ketal group are particularly preferred.
  • protecting groups can be easily introduced, for example, by reacting a vinyl ether compound with a compound having a phenolic hydroxyl group or carboxyl group under acid catalysis.
  • it can also be easily introduced by reacting the chloride of the protecting group to be introduced in the presence of an alkali catalyst such as an amine.
  • a protective group introduced into an alkali-soluble group that can be removed by an acid can be easily detected by the following method.
  • a cured film is thermally decomposed using a multi-shot pyrolyzer PY-3030D (manufactured by Frontier Lab) at a heating temperature of 600°C, and a gas chromatograph mass spectrometer JMS-Q1050GC (JEOL
  • the GC column used was a stainless steel capillary column (0.25 mm inner diameter x 30 m, stationary phase: 5% phenylpolydimethylsiloxane), and the GC temperature was changed from 40°C (held for 3 minutes) to a speed of 20°C/min.
  • the temperature was raised to 320°C, the inlet temperature was 300°C, the column flow rate was 1.5 mL/min, the ionization method was EI (electron ionization), the mass number range was m/z 10 to 800, and the scan speed was 0. Detection is possible by analyzing at .5sec/scan.
  • the content of compound (A-2) may be 1 part by weight or more and 30 parts by weight or less when the weight of all resin components is 100 parts by weight. , is preferable because it can further improve the reliability of the organic EL display device.
  • resin composition A and resin composition B contain (B) a photoacid generator (hereinafter sometimes simply referred to as "component (B)").
  • component (B) a photoacid generator
  • component (B) the protecting group of resin (A-1) or compound (A-2) is removed during exposure, improving sensitivity.
  • component (B) does not contain a naphthoquinonediazide compound.
  • Photoacid generators include, for example, SI-100, SI-101, SI-105, SI-106, SI-109, SI-200, SI-210, PI-105, PI-106, PI- 109, NAI-100, NAI-1002, NAI-1003, NAI-1004, NAI-101, NAI-105, NAI-106, NAI-109, NDI-101, NDI-105, NDI-106, NDI-109, PAI-01, PAI-101, PAI-106 or PAI-1001 (manufactured by Midori Kagaku Co., Ltd.), SP-077, SP-082, SP-601, SP-606, SP-607 or SP-612 (manufactured by Midori Kagaku Co., Ltd.) ) ADEKA), TPS-PFBS (Toyo Gosei Kogyo Co., Ltd.), CGI-MDT or CGI-NIT (Ciba Japan Co., Ltd.) WPAG-281,
  • photoacid generators selected from the group consisting of oxime sulfonate photoacid generators, onium salt photoacid generators, and naphthalimide photoacid generators are used. It is preferable to use Among these, it is preferable to use an oxime sulfonate photoacid generator.
  • the content of the photoacid generator (B) is 0.1 part by weight or more from the viewpoint of improving sensitivity, when the weight of all resin components is 100 parts by weight. is preferred. Furthermore, if the amount is 2 parts by weight or more, the sensitivity will be further improved. On the other hand, from the viewpoint of storage stability, the amount is preferably 30 parts by weight or less, more preferably 20 parts by weight or less.
  • the resin composition A and the resin composition B further contain a sensitizer.
  • a sensitizer By containing a sensitizer, the acid generation efficiency of component (B) is improved and the sensitivity is improved.
  • (C) thioxanthone-based or anthracene-based compounds are preferred, such as 2,4-dichlorothioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2, Examples include 4-dimethylthioxanthone, 2,4-diethylthioxanthone, 1-chloro-4-propylthioxanthone, thioxanthone, 2-ethylthioxanthone, diethoxyanthracene, dipropoxyanthracene, and dibutoxyanthracene. Two or more types of these may be contained. From the viewpoint of improving sensitivity, anthracene compounds are more preferred.
  • the content of the sensitizer is such that the sensitivity is improved when the total resin components contained in the resin composition are 100 parts by weight. From this point of view, it is preferably 0.1 part by weight or more. Furthermore, if the amount is 1 part by weight or more, the sensitivity will be further improved. On the other hand, from the viewpoint of storage stability, the amount is preferably 10 parts by weight or less, more preferably 5 parts by weight or less.
  • the resin composition A and the resin composition B may further contain a quinonediazide compound.
  • Quinonediazide compounds include those in which the sulfonic acid of quinonediazide is bonded to a polyhydroxy compound through an ester bond, those in which the sulfonic acid of quinonediazide is bonded to a polyamino compound through a sulfonamide bond, and those in which the sulfonic acid of quinonediazide is bonded to a polyhydroxy polyamino compound through an ester bond and/or a sulfonate bond. Examples include those with an amide bond. As such a compound, naphthoquinone diazide is commonly used.
  • quinonediazide a positive photosensitive resin composition that is sensitive to I-line (365 nm), H-line (405 nm), and G-line (436 nm) of a mercury lamp, which are common ultraviolet rays. can.
  • polyhydroxy compounds include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylene Tris-FR-CR, BisRS-26X, DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML-PC , DML-PTBP, DML-34X, DML-EP, DML-POP, Dimethylol-BisOC-P, DMLPFP, DML-PSBP, DML-MTrisPC, TriML-P, TriML-35XL, TML-BP, TML-HQ, TML -pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, HML-TPHAP (
  • polyamino compounds examples include 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4'-diamino Examples include, but are not limited to, diphenyl sulfide.
  • polyhydroxypolyamino compound examples include, but are not limited to, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, 3,3'-dihydroxybenzidine, and the like.
  • quinonediazide either a 5-naphthoquinonediazide sulfonyl group or a 4-naphthoquinonediazide sulfonyl group is preferably used.
  • a naphthoquinonediazide sulfonyl ester compound having a 4-naphthoquinonediazide sulfonyl group and a 5-naphthoquinonediazide sulfonyl group in the same molecule can be used, or a 4-naphthoquinonediazide sulfonyl ester compound and a 5-naphthoquinonediazide sulfonyl ester compound can be used in combination. You can also.
  • Examples of methods for synthesizing the naphthoquinonediazide compound used in the present invention include a method in which 5-naphthoquinonediazide sulfonyl chloride and a polyhydroxy compound are reacted in the presence of triethylamine.
  • the content of the naphthoquinone diazide compound is preferably 2 parts by weight or more, based on the weight of the total resin component being 100 parts by weight, from the viewpoint of improving sensitivity. Furthermore, when the amount is 5 parts by weight or more, the sensitivity is further improved. On the other hand, from the viewpoint of storage stability, it is preferably 40 parts by weight or less, more preferably 35 parts by weight or less.
  • the resin composition A and the resin composition B may further contain a thermal crosslinking agent.
  • thermal crosslinking agent refers to a compound having at least two heat-reactive functional groups in its molecule, such as an alkoxymethyl group, a methylol group, an epoxy group, or an oxetanyl group.
  • the thermal crosslinking agent can increase the heat resistance, chemical resistance, and hardness of the film after thermosetting.
  • Preferred examples of compounds having at least two alkoxymethyl groups or methylol groups include DML-PC, DML-PEP, DMOM-PC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML- pp-BPF, TML-BPE, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (product name, Honshu (manufactured by Kagaku Kogyo Co., Ltd.), NIKALAC (registered trademark) MX-290, NIKALAC MX-280, NIKALAC MX-270, NIKALAC MW-100LM, NIKALAC MX-750LM (product names, manufactured by Sanwa Chemical Co., Ltd.) These can be obtained from each of the above-mentioned companies.
  • Examples of compounds having epoxy groups or oxetanyl groups include “Epicote” (registered trademark) 807, “Epicote” 828, “Epicote” 1002, “Epicote” 1750, and “Epicote” having two epoxy groups in one molecule.
  • VG3101L (trade name, manufactured by Printec Co., Ltd.), "Tepic” (registered trademark) S, “Tepic” G, “Tepic” P (trade name, Nissan Chemical Kogyo Co., Ltd.), “Epiclon” N660, “Epiclon” N695, HP7200 (trade names, manufactured by Dainippon Ink & Chemicals Co., Ltd.), “Denacol” EX-321L (trade name, Nagase ChemteX Co., Ltd.) ), NC6000, EPPN502H, NC3000 (all product names, manufactured by Nippon Kayaku Co., Ltd.), "Epotote” (registered trademark) YH-434L (trade name, manufactured by Toto Kasei Co., Ltd.), EHPE-3150 (trade name) (manufactured by Daicel Corporation), compounds having two or more oxetanyl groups include OXT-121,
  • the weight of all resin components when the weight of all resin components is 100 parts by weight, when the content of the thermal crosslinking agent is 5 parts by weight or more, the crosslinking density of the cured product becomes high, This is preferred because it improves chemical resistance. Further, if the amount is 10 parts by weight or more, higher mechanical properties can be obtained. On the other hand, from the viewpoint of storage stability and mechanical strength, it is preferably 50 parts by weight or less, more preferably 40 parts by weight or less, and even more preferably 30 parts by weight or less.
  • the resin composition A and the resin composition B may further contain an adhesion improver, which can assist in adhesion after development and improve adhesion after curing.
  • adhesion improvers include vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, Silane coupling agents such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, titanium chelating agents, aluminum chelating agents, aromatic amine compounds and alkoxy group containing Examples include compounds obtained by reacting silicon compounds. Two or more types of these may be used.
  • the resin composition A and the resin composition B may contain a surfactant, and can improve the wettability with the substrate.
  • surfactants examples include Florado (trade name, manufactured by Sumitomo 3M Co., Ltd.), "Megafac” (registered trademark) (trade name, manufactured by DIC Corporation), and "Surflon” (registered trademark) (trade name, AGC).
  • Fluorinated surfactants such as Seimi Chemical Co., Ltd.), KP341 (product name, Shin-Etsu Chemical Co., Ltd.), DBE (product name, Chisso Co., Ltd.), Granol (product name, Kyoeisha Chemical Co., Ltd.)
  • organic siloxane surfactants such as BYK (manufactured by BYK Chemie Co., Ltd.), and acrylic polymer surfactants such as Polyflow (trade name, manufactured by Kyoeisha Chemical Co., Ltd.).
  • ⁇ Method for producing resin composition A and resin composition B> A typical manufacturing method for the resin composition A and resin composition B will be explained.
  • the components selected from the alkali-soluble resin, resin (A-1), compound (A-2) and component (B), as well as other additives and solvents as necessary, are mixed and stirred for 20 minutes to 3 hours.
  • the desired resin composition can be obtained by stirring the mixture to obtain a homogeneous solution, and filtering the obtained solution after stirring.
  • ⁇ Method for manufacturing organic EL display device> A method for manufacturing an organic EL display device of the present invention will be explained.
  • TFTs thin film transistors
  • wiring are formed on a substrate
  • a flattening layer is formed to cover the unevenness on the substrate caused by these, and on the flattening layer, This can be obtained by forming a first electrode, a pixel dividing layer, and a light emitting layer, and then forming a second electrode.
  • the flattening layer and the pixel dividing layer can be formed, for example, by applying the resin composition A or resin composition B described above, patterning it by photolithography, and curing it.
  • the second electrode is generally formed over the entire light emitting region. It is preferable to perform sealing after forming the second electrode.
  • organic EL display devices are considered to be sensitive to oxygen and moisture, and in order to obtain a highly reliable display device, it is preferable to perform sealing in an atmosphere with as little oxygen and moisture as possible.
  • ⁇ Step of patterning the first electrode or second electrode> An example of a method for patterning the first electrode or the second electrode is an etching method. Below, a method of patterning the first electrode by etching will be described as an example.
  • the material constituting the first electrode on the substrate After applying the material constituting the first electrode on the substrate, it is preferable to apply a photoresist on the first electrode and prebaking. Thereafter, it is preferable to expose and develop the photoresist to form a photoresist pattern on the first electrode by photolithography. After development, the resulting pattern is preferably heat-treated.
  • the heat treatment improves chemical resistance and dry etching resistance due to thermal curing of the photoresist, so the photoresist pattern can be suitably used as an etching mask.
  • the heat treatment device include an oven, a hot plate, an infrared ray, a flash annealing device, a laser annealing device, and the like.
  • the heat treatment temperature is preferably 70 to 200°C
  • the heat treatment time is preferably 30 seconds to several hours.
  • the first electrode by etching using the photoresist pattern as an etching mask.
  • the etching method include wet etching using an etching solution and dry etching using an etching gas.
  • etching solution examples include acidic or alkaline etching solutions and organic solvents. Two or more types of these may be used.
  • the pattern of the first electrode is obtained by removing the photoresist remaining on the first electrode.
  • Examples of methods for applying resin composition A or resin composition B include microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, and slit coating.
  • Examples of methods for applying the resin composition in a pattern include letterpress printing, intaglio printing, stencil printing, planographic printing, screen printing, inkjet printing, offset printing, and laser printing.
  • the thickness of the coating film varies depending on the coating method, solid concentration and viscosity of the resin composition, but it is preferable to apply the coating so that the film thickness after coating and prebaking is 0.1 to 30 ⁇ m.
  • Prebaking is preferably performed after applying the resin composition.
  • the heat treatment device used for prebaking include ovens, hot plates, infrared rays, flash annealing devices, laser annealing devices, and the like.
  • the prebake temperature is preferably 50 to 150°C, and the prebake time is preferably 30 seconds to several hours. Prebaking may be performed in two or more stages, such as prebaking at 80°C for 2 minutes and then prebaking at 120°C for 2 minutes.
  • Step of patterning the resin composition film As a method for patterning the flattening layer or the pixel division layer, photolithography is employed from the viewpoint of improving productivity by reducing the number of steps and shortening process time.
  • an exposure machine such as a stepper, mirror projection mask aligner (MPA), or parallel light mask aligner (PLA).
  • an exposure machine such as a stepper, mirror projection mask aligner (MPA), or parallel light mask aligner (PLA).
  • actinic rays irradiated during exposure include ultraviolet rays, visible rays, electron beams, X-rays, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like. It is preferable to use J-line (wavelength 313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) of a mercury lamp.
  • the exposure amount is usually about 100 to 40,000 J/m 2 (10 to 4,000 mJ/cm 2 ) (value of i-line illuminance meter), and if necessary, exposure is performed through a mask having a desired pattern. be able to.
  • the resin composition After exposure, it is preferable to develop using an automatic developing device or the like.
  • the resin composition has positive photosensitivity, after development, the exposed areas are removed with a developer to obtain a relief pattern.
  • an alkaline developer or an organic solvent is generally used.
  • an organic alkaline solution or an aqueous solution of an alkaline compound is preferable, and from an environmental point of view, an aqueous solution of an alkaline compound, that is, an alkaline aqueous solution is more preferable.
  • organic alkaline solutions or alkaline compounds examples include tetramethylammonium hydroxide and tetraethylammonium hydroxide.
  • Examples of the developing method include a method of applying a developer to the exposed film.
  • the exposed film is preferably brought into contact with a developer for 5 seconds to 10 minutes.
  • a rinsing liquid water is preferable when an alkaline aqueous solution is used as the developer.
  • Bleaching exposure may be applied to the patterned resin film. By performing bleaching exposure, the pattern shape after curing can be adjusted as desired. Moreover, the transparency of the cured film can be improved.
  • ⁇ Step of obtaining cured product of resin composition By curing the film of the resin composition after exposure and development, a flattening layer or a pixel dividing layer can be formed. It is convenient to use thermosetting for curing, and examples of the heat treatment equipment used include those exemplified as the heat treatment equipment used for pre-baking. By heating and thermosetting a pattern of the resin composition, the heat resistance of the cured film can be improved, and a pattern with a low taper shape can be formed. It should be noted that curing does not require a chemical change to occur, and treatments that apply heat, such as evaporating volatile matter or promoting molecular movement to achieve densification, are also within the scope of "curing" in the present invention. included.
  • the thermosetting temperature is preferably 150°C or higher, more preferably 250°C or higher.
  • the thermosetting temperature is preferably 500°C or lower, more preferably 400°C or lower.
  • the heat curing time is preferably 1 minute or more, particularly preferably 30 minutes or more. When the heat curing time is within the above range, the pattern shape after heat curing can be made less tapered.
  • the light emitting layer can be formed by, for example, a mask vapor deposition method or an inkjet method.
  • a typical mask evaporation method is a method in which an evaporation mask is used to evaporate and pattern an organic compound, and a evaporation mask with a desired pattern as an opening is placed on the evaporation source side of the substrate and evaporation is performed. It will be done.
  • Synthesis Example 1 Synthesis of polyimide precursor (PI-1) In a three-necked flask under a stream of dry nitrogen, 31.02 g (0.10 mol; 100 mol% based on the structural units derived from all carboxylic acids and their derivatives) of ODPA, 150g of NMP was weighed and dissolved. Here, in 50 g of NMP, 25.64 g (0.070 mol; 56.0 mol% based on the structural unit derived from all amines and their derivatives) of BAHF and 1.24 g (0.0050 mol; based on the total amines and their derivatives) of SiDA were added.
  • a solution containing 4.0 mol% (based on the derived structural unit) was added, stirred at 20°C for 1 hour, and then stirred at 50°C for 2 hours.
  • a solution of 5.46 g (0.050 mol; 40.0 mol% based on the structural units derived from all amines and their derivatives) of MAP dissolved in 15 g of NMP was added, and the mixture was heated at 50°C for 2 hours. Stir for hours. Thereafter, a solution of 23.83 g (0.20 mol) of DFA dissolved in 15 g of NMP was added dropwise over 10 minutes. After the dropwise addition was completed, the mixture was stirred at 50°C for 3 hours.
  • the reaction solution was cooled to room temperature, and then poured into 3 L of water, and the precipitated solid precipitate was filtered.
  • the obtained solid was washed three times with water and then dried in a vacuum dryer at 80° C. for 24 hours to obtain a polyimide precursor (PI-1).
  • the weight average molecular weight (Mw) of the obtained polyimide precursor (PI-1) was 20,000.
  • Synthesis Example 2 Synthesis of polybenzoxazole precursor (PBO-1) 34.79 g (0.095 mol; total amines and their Weighed 1.24 g of SiDA (0.0050 mol; 5.0 mol% relative to the structural units derived from all amines and their derivatives), and 70.00 g of NMP. and dissolved. A solution of 19.06 g (0.080 mol; 66.7 mol% based on the structural units derived from all carboxylic acids and derivatives thereof) of BFE dissolved in 20.00 g of NMP was added thereto, and the mixture was stirred at 20° C. for 1 hour. , and then stirred at 50°C for 2 hours.
  • PBO-1 polybenzoxazole precursor
  • the protection rate of the alkali-soluble groups of the protected polyimide precursor (PIP-1) recovered as a PGMEA solution was 33%, and the solid content concentration of the PGMEA solution of the protected polyimide precursor (PIP-1) was 24% by mass. there were. Note that the protection rate is the ratio of the number of alkali-soluble groups protected with a protecting group to the total number of alkali-soluble groups before protection with a protecting group.
  • Synthesis Example 5 Synthesis of polybenzoxazole precursor (PBOP-1) whose alkali-soluble group is protected with a protecting group
  • PBOP-1 polybenzoxazole precursor
  • PBO-1 polybenzoxazole precursor obtained in Synthesis Example 2
  • PGMEA18 polybenzoxazole precursor obtained in Synthesis Example 2
  • PGMEA18 polybenzoxazole precursor obtained in Synthesis Example 2
  • PGMEA18 .2 g was weighed and dissolved.
  • 30 mL of ultrapure water was added, and purification by liquid separation operation was performed three times.
  • the protection rate of the alkali-soluble group of the protected polybenzoxazole precursor (PBOP-1) recovered as a PGMEA solution was 33%, and the solid content concentration of the PGMEA solution of the protected polybenzoxazole precursor (PBOP-1) was It was 24% by mass.
  • the protection rate of the alkali-soluble groups of the protected acrylic resin (ACP-1) recovered as a PGMEA solution was 33%, and the solid content concentration of the PGMEA solution of the protected acrylic resin (ACP-1) was 24% by mass. .
  • Synthesis Example 7 Synthesis of polyimide precursor (PIP-2) in which alkali-soluble groups are protected with protecting groups
  • PIP-2 polyimide precursor
  • PI-1 polyimide precursor obtained in Synthesis Example 1
  • 18.2 g of pyridine were added.
  • 1.28 g (5.9 mmol) of di-t-butyl dicarbonate was added thereto, and the mixture was stirred at room temperature for 3 hours.
  • it was poured into a solution of 1 L of ultrapure water and 20 g of concentrated hydrochloric acid.
  • the precipitated powder was filtered and washed with water.
  • the protection rate of alkali-soluble groups in the recovered protected polyimide precursor (PIP-2) was 33%.
  • Synthesis Example 8 Synthesis of a compound (TPPA-1) whose alkali-soluble group has a phenolic hydroxyl group protected with a protecting group
  • TPPA-1 whose alkali-soluble group has a phenolic hydroxyl group protected with a protecting group
  • TrisP-PA trade name, Honshu Chemical Industry Co., Ltd.
  • PGMEA PGMEA
  • 3.88 g (53.8 mmol) of ethyl vinyl ether and 1.35 g (5.38 mmol) of pyridinium p-toluenesulfonate was stirred at room temperature for 24 hours.
  • 30 mL of ultrapure water was added, and purification by liquid separation operation was performed three times.
  • the protection rate of the alkali-soluble groups of the protected phenolic low molecule (TPPA-1) recovered as a PGMEA solution was 33%, and the solid content concentration of the PGMEA solution of the protected phenolic low molecule (TPPA-1) was 24% by mass. %Met.
  • Synthesis Example 8 Synthesis of protected phenolic low molecular weight compound (TEKP-1)
  • 10 g of TekP-4HBPA trade name, Honshu Chemical Industry Co., Ltd.
  • 28.3 g of PGMEA were weighed and dissolved.
  • 3.88 g (53.8 mmol) of ethyl vinyl ether and 1.35 g (5.38 mmol) of pyridinium p-toluenesulfonate was stirred at room temperature for 24 hours.
  • 30 mL of ultrapure water was added, and purification by liquid separation operation was performed three times. Thereafter, molecular sieves were added and the mixture was dried for 12 hours.
  • the protection rate of the alkali-soluble group of the protected phenolic low molecule (TEKP-1) recovered as a PGMEA solution was 33%, and the solid content concentration of the PGMEA solution of the protected phenolic low molecule (TEKP-1) was 24% by mass. %Met.
  • Synthesis Example 9 Synthesis of a compound (CATE-1) in which the alkali-soluble group has a phenolic hydroxyl group protected with a protecting group
  • 10 g of catechol and 28.3 g of PGMEA were weighed and dissolved.
  • 10.17 g (141.0 mmol) of ethyl vinyl ether and 3.54 g (14.10 mmol) of pyridinium p-toluenesulfonate was stirred at room temperature for 24 hours.
  • 30 mL of ultrapure water was added, and purification by liquid separation operation was performed three times. Thereafter, molecular sieves were added and the mixture was dried for 12 hours.
  • the protection rate of the alkali-soluble group of the protected phenolic low molecule (CATE-1) recovered as a PGMEA solution was 33%, and the solid content concentration of the PGMEA solution of the protected phenolic low molecule (CATE-1) was 24% by mass. %Met.
  • the resin composition was applied by spin coating onto an 8-inch silicon wafer using a coating and developing device ACT-8 (manufactured by Tokyo Electron Ltd.), and baked on a hot plate at 120°C for 3 minutes. A pre-baked film with a thickness of 3.0 ⁇ m was prepared by doing this. The film thickness was measured using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. under the condition of a refractive index of 1.63.
  • TMAH tetramethylammonium
  • the pattern of the obtained developed film was observed at 20x magnification using an FDP microscope MX61 (manufactured by Olympus Corporation), and the minimum required exposure amount at which the opening diameter of the contact hole reached 10 ⁇ m was determined, and this was determined as the exposure sensitivity. A value of 200 mJ/cm 2 or less was considered to be a pass. The smaller the sensitivity value is, the higher the sensitivity is, which is preferable.
  • the resin composition was applied onto a polyimide film substrate by spin coating, and as a drying step, it was prebaked on a hot plate at 120° C. for 2 minutes to obtain a resin film.
  • an automatic developing device AD-2000 manufactured by Takizawa Sangyo Co., Ltd.
  • shower development was performed for 90 seconds with a 2.38% by mass tetramethylammonium hydroxide aqueous solution, and then rinsed with pure water for 30 seconds.
  • the developed substrate with a positive photosensitive resin film was cured (heated) in a nitrogen atmosphere at 250° C. for 60 minutes to obtain a cured product with a film thickness of 2.0 ⁇ m.
  • the polyimide film substrate provided with the cured product was cut out into 10 pieces measuring 50 mm in length and 10 mm in width.
  • the cut polyimide film substrate was stored in an air atmosphere at 100° C. for 500 hours. Then, hold the bent substrates at the center vertically with the side with the cured product on the outside so that they are spaced at the predetermined intervals and the shape of the bent portion is semicircular. Then, it was bent 180° and held in the bent state for 30 seconds. After 30 seconds, the bent polyimide film substrate was opened, and the surface of the cured product near the folded part was observed using an FPD inspection microscope (MX-61L; manufactured by Olympus Corporation), and changes in the appearance of the surface of the cured product were evaluated. .
  • the bending test was conducted in the range of curvature radius of 0.1 to 2.0 mm, and the minimum curvature radius (mm) at which no appearance change such as cracks occurred on the surface of the cured product was recorded.
  • thermogravimetric measurements were performed. The temperature at which the weight decreased by 5% from the weight at 200°C was determined. Those whose temperature was 320°C or higher were considered to be passed. The higher the temperature at which the weight is reduced by 5% from the weight at 200°C, the higher the heat resistance is, which is preferable.
  • the resin composition was coated on an 8-inch silicon wafer by spin coating using a coating and developing device ACT-8 (manufactured by Tokyo Electron Ltd.), and placed on a hot plate at 120°C for 3 minutes. A pre-baked film having a thickness of 3.0 ⁇ m was prepared by baking. The film thickness was measured using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. under the condition of a refractive index of 1.63.
  • the exposure amount was set at the exposure sensitivity determined in (1) through a mask having many light-shielding parts with a square pattern of 3 to 100 ⁇ m on a side. exposed. Note that a test mask was used in which the lengths between adjacent light-shielding portions and between adjacent openings were the same, and the lengths were 3 to 100 ⁇ m.
  • the film was developed using the ACT-8 developing device with a 2.38% by mass TMAH aqueous solution for a time such that the film loss during development was 0.5 ⁇ m, rinsed with distilled water, and then shaken off to dry. , got the pattern.
  • the pattern of the obtained developed film was observed using an FDP microscope MX61 (manufactured by Olympus Corporation) at a magnification of 20 times, and 100 spots per size were observed. A shading pattern was determined. If a pattern of 10 ⁇ m or less remained without peeling off, it was considered to be a pass.
  • the metal element and halogen element (target element) concentrations in the pixel dividing layer near 0.5 ⁇ m from the layer surface were determined by TOF-SIMS analysis using the following formula.
  • TOF-SIMS analysis was performed using TOF.
  • SIMS5 was used.
  • the concentration of chlorine was calculated based on the sensitivity in the pixel division layer.
  • Other elements whose secondary ion polarity is anion were quantified using the relative sensitivity coefficient with respect to chlorine in the pixel dividing layer.
  • the relative sensitivity coefficient determined for lithium in the pixel dividing layer is the ratio of the relative sensitivity coefficient of each element to the separately determined lithium implanted in the silicon wafer. It was corrected and quantified using Regarding relative sensitivity coefficients, see Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis (Robert G. Wilson. App. by Fred A. Stevie.Charles W. Magee). The values described in E17-18 were used.
  • Target element concentration RSF (atoms/cm 3 ) ⁇ target element ion strength (counts)/cured film ion strength (counts).
  • the organic EL display device shown in FIG. 3 was manufactured by the following method. First, after forming wiring from a TFT and a power supply on a 38 mm x 46 mm alkali-free glass substrate 47, photosensitive resin composition ⁇ -1 was coated by spin coating using a spin coater (MS-A100; manufactured by Mikasa Co., Ltd.) After coating, prebaking was performed at 100° C. for 120 seconds using a hot plate (SCW-636; manufactured by Dainippon Screen Mfg. Co., Ltd.) to produce a prebaked film with a thickness of 2.0 ⁇ m.
  • a spin coater MS-A100; manufactured by Mikasa Co., Ltd.
  • the prepared prebaked film is exposed to i-line, h-line, and g-line through a photomask having a predetermined pattern using a double-sided alignment single-sided exposure device (mask aligner PEM-6M; manufactured by Union Optical Co., Ltd.). After patterning exposure with an ultra-high-pressure mercury lamp that includes all the spectra of I rinsed it.
  • This substrate was thermally cured at 250° C. for 1 hour using a high-temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.) to produce a flattened film with a thickness of about 1.0 ⁇ m.
  • a 100 nm thick ITO transparent conductive film was formed by sputtering and etched as the first electrode 48 to form a transparent electrode. Further, an auxiliary electrode 49 was also formed at the same time in order to take out the second electrode.
  • the obtained substrate was ultrasonically cleaned for 10 minutes using Semico Clean 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.), and then washed with ultrapure water.
  • photosensitive resin composition ⁇ -1 was applied to the entire surface of the substrate by spin coating using a spin coater (MS-A100; manufactured by Mikasa Co., Ltd.), and then a hot plate (SCW-636; Dainippon Screen A prebaked film having a thickness of about 2.0 ⁇ m was prepared by prebaking at 100° C. for 120 seconds using a prebaked film (manufactured by Seizo Co., Ltd.).
  • the prepared prebaked film is exposed to i-line, h-line, and g-line through a photomask having a predetermined pattern using a double-sided alignment single-sided exposure device (mask aligner PEM-6M; manufactured by Union Optical Co., Ltd.). After patterning exposure with an ultra-high-pressure mercury lamp that includes all the spectra of I rinsed it.
  • a double-sided alignment single-sided exposure device mask aligner PEM-6M; manufactured by Union Optical Co., Ltd.
  • openings each having a width of 50 ⁇ m and a length of 260 ⁇ m are arranged at a pitch of 155 ⁇ m in the width direction and a pitch of 465 ⁇ m in the length direction, and each opening has a pixel dividing layer 50 in a shape in which the first electrode is exposed. , was formed only in the effective area of the substrate.
  • the effective area of the substrate was 16 mm square, an insulating layer with an aperture ratio of 18% was provided, and the thickness of the insulating layer 50 was approximately 1.0 ⁇ m.
  • an organic EL layer 51 including a light emitting layer was formed by vacuum evaporation. Note that the degree of vacuum during vapor deposition was 1 ⁇ 10 ⁇ 3 Pa or less, and the substrate was rotated with respect to the vapor deposition source during vapor deposition.
  • compound (HT-1) was deposited to a thickness of 10 nm as a hole injection layer, and compound (HT-2) was deposited to a thickness of 50 nm as a hole transport layer.
  • a compound (GH-1) as a host material and a compound (GD-1) as a dopant material were deposited on the light emitting layer to a thickness of 40 nm at a doping concentration of 10%.
  • compound (ET-1) and compound (LiQ) were stacked as electron transport materials at a volume ratio of 1:1 to a thickness of 40 nm. The structure of the compound used in the organic EL layer is shown below.
  • a compound (LiQ) was deposited to a thickness of 2 nm, and then Mg and Ag were deposited to a thickness of 100 nm at a volume ratio of 10:1 to form the second electrode 52.
  • the cap-shaped glass plate is sealed using an epoxy resin adhesive in a low-humidity nitrogen atmosphere, and an organic EL display device with a square shape of 5 mm on a side is mounted on one substrate. I made four.
  • the film thickness referred to here is a value displayed on a crystal oscillation type film thickness monitor.
  • Examples 2 to 14, 18 Compositions ⁇ -2 to ⁇ -14 and ⁇ -20 were obtained in the same manner as in Example 1, with the types and amounts of compounds listed in Tables 1 and 2. Organic EL display devices were produced in the same manner as in Example 1 using each of the obtained compositions.
  • Photosensitive resin composition ⁇ -15 was prepared in the same manner as in Example 1, except that the 5% sodium chloride aqueous solution in photosensitive resin composition ⁇ -1 was changed to 5% potassium chloride aqueous solution.
  • An organic EL display device was produced in the same manner as in Example 1 using the obtained photosensitive resin composition.
  • Example 16-17 An organic EL display device was produced in the same manner as in Example 1 except that the aperture ratio of the pixel dividing layer was changed.
  • Photosensitive resin composition ⁇ -21 was prepared in the same manner as in Example 1, except that the 5% aqueous sodium chloride solution in photosensitive resin composition ⁇ -1 was not added.
  • An organic EL display device was produced in the same manner as in Example 1 using the obtained photosensitive resin composition.
  • Photosensitive resin composition ⁇ -19 was prepared in the same manner as in Example 1, except that the amount of the 5% aqueous sodium chloride solution in photosensitive resin composition ⁇ -1 was changed to 0.1 g.
  • An organic EL display device was produced in the same manner as in Example 1 using the obtained photosensitive resin composition.
  • Tables 1 and 2 show the results of evaluating each Example and Comparative Example using the method described above. Note that the driving voltage was the voltage when DC driving was performed at 10 mA/cm 2 .

Abstract

The present invention addresses the problem of providing an organic EL display device exhibiting high sensitivity and excellent reliability. Proposed as a solution is an organic EL display device comprising at least a substrate, a first electrode, a second electrode, a light-emitting layer, a planarization layer, and a pixel dividing layer, wherein: the planarization layer or the pixel dividing layer has a cured product obtained by exposure/developing/curing of either a resin composition A containing a resin (A-1) that has an alkali-soluble group which is protected by a protective group separable by acid and a photoacid generator (B), or a resin composition B containing a resin that contains an alkali-soluble group, a compound (A-2) that has an alkali-soluble group which is protected by a protective group separable by acid, and a photoacid generator (B); and the combined content of metal elements and elemental halogen in the cured product, as measured by time-of-flight secondary ion mass spectrometry, is 1.0×1016 atoms/cm3 to 1.0×1023 atoms/cm3.

Description

有機EL表示装置Organic EL display device
 本発明は、有機EL表示装置に関する。 The present invention relates to an organic EL display device.
 ポリイミドやポリベンゾオキサゾールなどを含むポジ型感光性樹脂組成物は、半導体素子の表面保護層や層間絶縁膜、平坦化層などに広く使用されており、最近では、例えば有機EL素子の画素分割層や薄膜トランジスタ(以下、「TFT」)基板の平坦化層などに使用されている。 Positive photosensitive resin compositions containing polyimide, polybenzoxazole, etc. are widely used for surface protection layers, interlayer insulating films, planarization layers, etc. of semiconductor devices, and recently, for example, pixel division layers of organic EL devices. It is used as a flattening layer for thin film transistor (hereinafter referred to as "TFT") substrates.
 ポリイミドやポリベンゾオキサゾールを含むポジ型感光性樹脂組成物を有機EL素子の画素分割層用途として用いた場合、感光性樹脂組成物の塗布はスリットコーターによる塗布によって行われることが多い。近年は増産のため基板の大型化・配線の複雑化が進んでおり、生産タクトに大きな影響を与える露光工程における露光時間の短縮化、つまり感光性樹脂組成物の高感度化が求められる。そのため、高感度なポジ型感光性樹脂組成物を用いた表示装置が提案されている(例えば、特許文献1)。 When a positive photosensitive resin composition containing polyimide or polybenzoxazole is used as a pixel dividing layer of an organic EL device, the photosensitive resin composition is often applied by a slit coater. In recent years, to increase production, substrates have become larger and wiring has become more complex, and there is a need to shorten the exposure time in the exposure process, which has a major impact on production takt time, in other words to increase the sensitivity of photosensitive resin compositions. Therefore, a display device using a highly sensitive positive photosensitive resin composition has been proposed (for example, Patent Document 1).
 一方、有機顔料分散型カラーフィルターにおいて、画素に含有されるナトリウム量またはナトリウムとカリウムの合計量を低レベルに抑えることにより、液晶表示素子の電圧降下を抑制することが知られている(例えば、特許文献2)。 On the other hand, in organic pigment-dispersed color filters, it is known that voltage drop in liquid crystal display elements can be suppressed by suppressing the amount of sodium contained in pixels or the total amount of sodium and potassium to a low level (for example, Patent Document 2).
特開2022-34533号公報JP 2022-34533 Publication 特開平7-198928号公報Japanese Unexamined Patent Publication No. 7-198928
 一般に、有機EL(electro-luminescence)表示装置は、画素を分画するために、第一電極と第二電極との間に画素分割層と呼ばれる絶縁層が形成され、また、TFT上には平坦化層が形成される。有機EL表示装置において生産タクトを短縮するためには、高感度樹脂組成物を用いることが有効であり、高感度樹脂組成物が開発されている。 Generally, in an organic EL (electro-luminescence) display device, an insulating layer called a pixel dividing layer is formed between a first electrode and a second electrode in order to divide pixels, and a flat layer is formed on a TFT. A thickening layer is formed. In order to shorten the production tact time in organic EL display devices, it is effective to use highly sensitive resin compositions, and highly sensitive resin compositions have been developed.
 一方、近年、有機EL表示装置において、画素の端部から発光輝度が低下する、または、点灯画素の一部が非点灯化する、画素シュリンクと呼ばれる現象が発生しており、画素シュリンクを抑制する、より高い信頼性が求められている。 On the other hand, in recent years, in organic EL display devices, a phenomenon called pixel shrink has occurred, in which the luminance of light emitted from the edge of the pixel decreases or some of the lit pixels turn off. , higher reliability is required.
 特許文献1ないし2に記載された樹脂組成物を有機EL表示装置の画素分割層や平坦化層に適用しても、なお信頼性および感度が不十分である課題があった。そこで、本発明は、感度が高く、信頼性に優れた有機EL表示装置を提供することを目的とする。 Even when the resin compositions described in Patent Documents 1 and 2 were applied to the pixel dividing layer and flattening layer of an organic EL display device, there was still a problem that the reliability and sensitivity were insufficient. Therefore, an object of the present invention is to provide an organic EL display device with high sensitivity and excellent reliability.
 本発明は、上記の目的を達成するため、以下の構成を採用する。 In order to achieve the above object, the present invention employs the following configuration.
 少なくとも基板、第一電極、第二電極、発光層、平坦化層及び画素分割層を有する有機EL表示装置であって、
該平坦化層または該画素分割層が、
[樹脂組成物A](A-1)酸により脱離可能な保護基で保護されたアルカリ可溶性基を有する樹脂および(B)光酸発生剤を含有する樹脂組成物、または、
[樹脂組成物B]アルカリ可溶性基を有する樹脂、(A-2)酸により脱離可能な保護基で保護されたアルカリ可溶性基を有する化合物および(B)光酸発生剤を含有する樹脂組成物、
が露光・現像・硬化された硬化物を有し、
該硬化物の、飛行時間型二次イオン質量分析により測定される金属元素およびハロゲン元素の含有量の総和が1.0×1016atom/cm以上1.0×1023atom/cm以下である、
有機EL表示装置。
An organic EL display device comprising at least a substrate, a first electrode, a second electrode, a light emitting layer, a flattening layer, and a pixel dividing layer,
The planarization layer or the pixel division layer is
[Resin composition A] A resin composition containing (A-1) a resin having an alkali-soluble group protected with a protecting group that can be removed by an acid and (B) a photoacid generator, or
[Resin composition B] A resin composition containing a resin having an alkali-soluble group, (A-2) a compound having an alkali-soluble group protected with a protecting group that can be removed by an acid, and (B) a photoacid generator. ,
has a cured product that has been exposed, developed and cured,
The total content of metal elements and halogen elements measured by time-of-flight secondary ion mass spectrometry of the cured product is 1.0×10 16 atoms/cm 3 or more and 1.0×10 23 atoms/cm 3 or less is,
Organic EL display device.
 本発明によれば、生産タクトを短縮でき、信頼性の高い有機EL表示装置を提供することができる。 According to the present invention, it is possible to shorten the production tact time and provide a highly reliable organic EL display device.
平坦化層と画素分割層を有するTFT基板の断面図Cross-sectional view of a TFT substrate with a flattening layer and a pixel dividing layer 本発明の有機EL表示装置の製造プロセスの例を示す工程図A process diagram showing an example of the manufacturing process of the organic EL display device of the present invention 実施例で作製した有機EL表示装置の作製手順の概略説明図Schematic explanatory diagram of the manufacturing procedure of the organic EL display device manufactured in the example
 本発明は、少なくとも基板、第一電極、第二電極、発光層、平坦化層及び画素分割層を有する有機EL表示装置であって、前記平坦化層または前記画素分割層が、
[樹脂組成物A](A-1)酸により脱離可能な保護基で保護されたアルカリ可溶性基を有する樹脂(以下、「樹脂(A-1)」と称することがある)および(B)光酸発生剤を含有する樹脂組成物、または、
[樹脂組成物B]アルカリ可溶性基を有する樹脂、(A-2)酸により脱離可能な保護基で保護されたアルカリ可溶性基を有する化合物(以下、「化合物(A-2)」と称することがある)および(B)光酸発生剤を含有する樹脂組成物、
が露光・現像・硬化された硬化物を有し、
該硬化物の、飛行時間型二次イオン質量分析により測定される金属元素およびハロゲン元素の含有量の総和が1.0×1016atom/cm以上1.0×1023atom/cm以下である、
有機EL表示装置、である。
The present invention provides an organic EL display device having at least a substrate, a first electrode, a second electrode, a light emitting layer, a planarizing layer, and a pixel dividing layer, wherein the planarizing layer or the pixel dividing layer
[Resin composition A] (A-1) A resin having an alkali-soluble group protected with a protecting group that can be removed by an acid (hereinafter sometimes referred to as "resin (A-1)") and (B) A resin composition containing a photoacid generator, or
[Resin composition B] Resin having an alkali-soluble group, (A-2) A compound having an alkali-soluble group protected with a protecting group that can be removed by an acid (hereinafter referred to as "compound (A-2)") ) and (B) a resin composition containing a photoacid generator,
has a cured product that has been exposed, developed and cured,
The total content of metal elements and halogen elements measured by time-of-flight secondary ion mass spectrometry of the cured product is 1.0×10 16 atoms/cm 3 or more and 1.0×10 23 atoms/cm 3 or less is,
It is an organic EL display device.
 <有機EL表示装置の基本構成>
 本発明の有機EL表示装置は、少なくとも基板、第一電極、第二電極、発光層、平坦化層および画素分割層を有する。本発明の有機EL表示装置は、マトリックス状に形成された複数の画素を有するアクティブマトリックス型の有機EL表示装置であることが好ましい。アクティブマトリックス型の有機EL表示装置は、ガラスなどの基板上に、配線と駆動用の薄膜型トランジスタが配置され、該薄膜トランジスタと第一電極が電気的に接合され、該第一電極上に発光層と第二電極が積層されている。係る第一電極/発光層/第二電極の積層構造はマトリクス状に基板上に配置されて画面を構成する。
<Basic configuration of organic EL display device>
The organic EL display device of the present invention includes at least a substrate, a first electrode, a second electrode, a light emitting layer, a planarization layer, and a pixel division layer. The organic EL display device of the present invention is preferably an active matrix type organic EL display device having a plurality of pixels formed in a matrix. In an active matrix type organic EL display device, wiring and a thin film transistor for driving are arranged on a substrate such as glass, the thin film transistor and a first electrode are electrically connected, and a light emitting layer is formed on the first electrode. and a second electrode are laminated. The laminated structure of the first electrode/light emitting layer/second electrode is arranged in a matrix on the substrate to form a screen.
 図1に、平坦化層と画素分割層を有するTFT基板の例の断面図を示す。基板6上に、ボトムゲート型またはトップゲート型のTFT1が行列状に設けられており、このTFT1を覆う状態でTFT絶縁層3が形成されている。また、このTFT絶縁層3の下にTFT1に接続された配線2が設けられている。さらにTFT絶縁層3上には、配線2の部分で開口するコンタクトホール7を有する平坦化層4が設けられている。そして、このコンタクトホール7を介して、配線2に電気的に接続された状態で、平坦化層4上にITO5(透明電極)が形成されている。ここで、ITO5は、有機EL表示装置の第一電極となる。そしてITO5の周縁を覆うように画素分割層8が形成される。 FIG. 1 shows a cross-sectional view of an example of a TFT substrate having a planarization layer and a pixel division layer. Bottom-gate or top-gate TFTs 1 are provided in a matrix on a substrate 6, and a TFT insulating layer 3 is formed to cover the TFTs 1. Furthermore, a wiring 2 connected to the TFT 1 is provided below this TFT insulating layer 3. Further, on the TFT insulating layer 3, a planarization layer 4 having a contact hole 7 opening at the wiring 2 is provided. An ITO 5 (transparent electrode) is formed on the planarization layer 4 while being electrically connected to the wiring 2 through the contact hole 7 . Here, ITO5 becomes the first electrode of the organic EL display device. Then, a pixel dividing layer 8 is formed to cover the periphery of the ITO 5.
 本発明の有機EL表示装置は、基板6の反対側から発光光を放出するトップエミッション型でもよいし、基板6側から光を取り出すボトムエミッション型でもよい。 The organic EL display device of the present invention may be of a top emission type in which light is emitted from the opposite side of the substrate 6, or may be of a bottom emission type in which light is extracted from the side of the substrate 6.
 有機EL表示装置は、こうしたTFT基板の第一電極上に赤、緑、青色に対応する発光層と第二電極が設けられたものとすることや、第一電極上に白色の発光層と第二電極とカラーフィルターとが設けられたものとすることによって、カラー表示が可能となる。カラー表示が可能なディスプレイにおいて、通常、表示される赤色領域の光のピーク波長は560~700nm、緑色領域の光のピーク波長は500~560nm、青色領域の光のピーク波長は420~500nmの範囲である。 An organic EL display device may be one in which a light emitting layer and a second electrode corresponding to red, green, and blue are provided on the first electrode of such a TFT substrate, or a white light emitting layer and a second electrode are provided on the first electrode. Color display is possible by providing two electrodes and a color filter. In a display capable of color display, the peak wavelength of light in the red region to be displayed is usually 560 to 700 nm, the peak wavelength of light in the green region to be displayed is 500 to 560 nm, and the peak wavelength of light in the blue region to be displayed is in the range of 420 to 500 nm. It is.
 <有機EL表示装置の製造方法>
 本発明の実施の形態に係る有機EL表示装置を製造する方法の概要について、例を挙げて説明する。図2はその一例を示すものである(なお、TFT基板は図1に記載のものとは異なるものを用いている)。本発明の有機EL表示装置は、基板9上に、TFT10を形成し、その後平坦化層11を形成する。平坦化層11上に、第一電極12を形成する。その後、感光性樹脂組成物を塗布、およびプリベークしてプリベーク膜13を形成する。次いで、所望のパターンを有するマスク14を介して、活性化学線15を照射する。次に現像してパターン加工し、硬化させることで画素分割層16および発光層17を形成し、さらにその発光層の上に第二電極18を形成することにより得ることができる。平坦化層11および画素分割層16は、例えば、後述の感光性樹脂組成物を塗布し、フォトリソグラフィーによりパターン加工し、硬化させることにより形成することができる。第二電極を形成後、封止を行うことが好ましい。一般的に、有機EL表示装置は酸素や水分に弱いとされ、信頼性の高い表示装置を得るためにはできるだけ酸素と水分の少ない雰囲気下で封止を行うことが好ましい。
<Method for manufacturing organic EL display device>
An overview of a method for manufacturing an organic EL display device according to an embodiment of the present invention will be described using an example. FIG. 2 shows an example (note that a TFT substrate different from that shown in FIG. 1 is used). In the organic EL display device of the present invention, a TFT 10 is formed on a substrate 9, and then a planarization layer 11 is formed. A first electrode 12 is formed on the planarization layer 11. Thereafter, a photosensitive resin composition is applied and prebaked to form a prebaked film 13. Next, actinic radiation 15 is irradiated through a mask 14 having a desired pattern. Next, the pixel dividing layer 16 and the light-emitting layer 17 are formed by developing, patterning, and curing, and the second electrode 18 is further formed on the light-emitting layer. The planarization layer 11 and the pixel division layer 16 can be formed, for example, by applying a photosensitive resin composition described below, patterning it by photolithography, and curing it. It is preferable to perform sealing after forming the second electrode. Generally, organic EL display devices are considered to be sensitive to oxygen and moisture, and in order to obtain a highly reliable display device, it is preferable to perform sealing in an atmosphere with as little oxygen and moisture as possible.
 <基板>
 基板としては、ソーダガラスや無アルカリガラスなどのガラス基板、ポリエチレンテレフタレートフィルム、ポリイミドフィルムなどのフレキシブル基板が好適に用いられる。ガラス基板の厚みは、0.5mm以上が好ましい。ガラス基板の材質は、ガラスからの溶出イオンが少ないことから、無アルカリガラスや、酸化ケイ素(SiO)などによるバリアコートが施されたソーダライムガラスなどが好ましい。
<Substrate>
As the substrate, a glass substrate such as soda glass or alkali-free glass, or a flexible substrate such as polyethylene terephthalate film or polyimide film is suitably used. The thickness of the glass substrate is preferably 0.5 mm or more. The material of the glass substrate is preferably alkali-free glass or soda lime glass coated with a barrier coating of silicon oxide (SiO 2 ) or the like, since there are few ions eluted from the glass.
 <第一電極>
 第一電極は、正孔を有機層に効率よく注入でき、光を取り出すために透明または半透明であることが好ましい。第一電極を構成する材料としては、例えば、酸化亜鉛、酸化錫、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物、金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマー、カーボンナノチューブ、グラフェンなどが挙げられる。これらを2種以上用いてもよく、異なる材料による積層構造を有してもよい。また、その形態も特に限定されず、例えば、メタルメッシュや銀ナノワイヤーなどの微細な構造を有してもよい。
<First electrode>
The first electrode is preferably transparent or translucent so that holes can be efficiently injected into the organic layer and light can be extracted. Examples of materials constituting the first electrode include conductive metal oxides such as zinc oxide, tin oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO), metals such as gold, silver, and chromium. Examples include inorganic conductive substances such as copper iodide and copper sulfide, conductive polymers such as polythiophene, polypyrrole, and polyaniline, carbon nanotubes, and graphene. Two or more types of these may be used, and a laminated structure made of different materials may be used. Moreover, the form is not particularly limited, and may have a fine structure such as a metal mesh or silver nanowire, for example.
 第一電極は、有機EL表示装置の消費電力の観点から低抵抗であることが好ましい。例えば、ITO基板の場合、電気抵抗値が300Ω/□(この単位は、Ω/sq.、または、オーム・パー・スクエアとも表される)以下であれば素子電極として機能するが、現在では10Ω/□程度の基板が入手可能になっていることから、20Ω/□以下の低抵抗の基板を使用することがより好ましい。第一電極の厚みは、電気抵抗値に合わせて任意に選択することができ、45~300nm程度が一般的である。 The first electrode preferably has low resistance from the viewpoint of power consumption of the organic EL display device. For example, in the case of an ITO substrate, if the electrical resistance value is 300Ω/□ or less (this unit is also expressed as Ω/sq. or ohm per square), it functions as an element electrode, but currently it is 10Ω Since substrates with a resistance of approximately 20Ω/□ are now available, it is more preferable to use a substrate with a low resistance of 20Ω/□ or less. The thickness of the first electrode can be arbitrarily selected depending on the electrical resistance value, and is generally about 45 to 300 nm.
 <第二電極>
 第二電極は、電子を効率よく発光層に注入できることが好ましい。第二電極を構成する材料としては、例えば、白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、これらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金などが挙げられる。これらを2種以上用いてもよく、異なる材料による積層構造を有してもよい。これらの中でも、アルミニウム、銀、マグネシウムを主成分とすることが、電気抵抗値や製膜しやすさ、膜の安定性、発光効率などの面から好ましい。マグネシウムおよび銀を含有することがより好ましく、発光層への電子注入が容易になり、駆動電圧をより低減することができる。
<Second electrode>
It is preferable that the second electrode can efficiently inject electrons into the light emitting layer. Examples of materials constituting the second electrode include metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, and these metals and low work function metals such as lithium, sodium, potassium, calcium, and magnesium. Examples include alloys with Two or more types of these may be used, and a laminated structure made of different materials may be used. Among these, it is preferable to use aluminum, silver, and magnesium as main components from the viewpoints of electrical resistance, ease of film formation, film stability, luminous efficiency, and the like. It is more preferable to contain magnesium and silver, which facilitates injection of electrons into the light emitting layer and enables further reduction of driving voltage.
 第一電極および第二電極の形成方法としては、例えば、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティング、コーティングなどが挙げられる。 Examples of methods for forming the first electrode and the second electrode include resistance heating, electron beam, sputtering, ion plating, and coating.
 第一電極および第二電極のうち、陰極として用いられる電極は、電極上に保護層を有することが好ましい。保護層を構成する材料としては、例えば、シリカ、チタニア、窒化ケイ素などの無機物、ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物などが挙げられる。陰極側から光を取り出すトップエミッション構造の場合は、保護層を構成する材料は、可視光領域で光透過性を有するものが好ましい。 Of the first electrode and the second electrode, the electrode used as a cathode preferably has a protective layer on the electrode. Examples of the material constituting the protective layer include inorganic substances such as silica, titania, and silicon nitride, and organic polymer compounds such as polyvinyl alcohol, polyvinyl chloride, and hydrocarbon polymer compounds. In the case of a top emission structure in which light is extracted from the cathode side, the material constituting the protective layer is preferably one that has light transparency in the visible light region.
 <画素を構成する層>
 発光層は、対向配置された第一電極と第二電極とが交差し重なる部分に設けられ、第一電極上に画素分割層が形成される場合には、さらに画素分割層により規制される範囲に設けられる。すなわち、画素分割層によって発光層は隔てられている。発光層の形状、つまり視認者側からみた形状、は特に限定されず、例えば、矩形状であってもよいし、円形状であってもよく、画素分割層の形状により、任意の形状に形成することができる。アクティブマトリックス型ディスプレイにおいては、スイッチング手段が形成される部分が基板の一部を占有するように配置されることがあり、発光層の形状は、矩形や円形の一部分が欠落したような形であってもよい。
<Layers that make up pixels>
The light-emitting layer is provided at a portion where the first electrode and the second electrode arranged opposite to each other intersect and overlap, and when a pixel dividing layer is formed on the first electrode, the area further regulated by the pixel dividing layer. established in That is, the light emitting layers are separated by the pixel dividing layer. The shape of the light-emitting layer, that is, the shape seen from the viewer side, is not particularly limited. For example, it may be rectangular or circular, and may be formed into any shape depending on the shape of the pixel division layer. can do. In active matrix displays, the part where the switching means is formed may be arranged so as to occupy part of the substrate, and the shape of the light emitting layer may be rectangular or circular with a part missing. You can.
 また、第一電極と第二電極の間には発光層以外の層が設けられていても良く、そのような構成としては、例えば、電子輸送層、正孔輸送層、電子注入層、正孔注入層などの有機EL素子において用いられている構成が挙げられる。具体的には、例えば、1)発光層/電子輸送層、2)正孔輸送層/発光層、3)正孔輸送層/発光層/電子輸送層、4)正孔注入層/正孔輸送層/発光層/電子輸送層、5)正孔輸送層/発光層/電子輸送層/電子注入層、6)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層などの積層構成が挙げられる。 Further, a layer other than the light emitting layer may be provided between the first electrode and the second electrode, and examples of such a structure include an electron transport layer, a hole transport layer, an electron injection layer, a hole transport layer, and a hole transport layer. Examples include structures used in organic EL elements such as injection layers. Specifically, for example, 1) light emitting layer/electron transport layer, 2) hole transport layer/light emitting layer, 3) hole transport layer/light emitting layer/electron transport layer, 4) hole injection layer/hole transport layer/emissive layer/electron transport layer, 5) hole transport layer/emissive layer/electron transport layer/electron injection layer, 6) hole injection layer/hole transport layer/emissive layer/electron transport layer/electron injection layer, etc. An example of this is a laminated structure.
 本発明にあっては、さらに、上記の積層構成を、中間層を介して複数積層したタンデム型であってもよい。中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれる。タンデム型の構成としては、例えば、7)正孔輸送層/発光層/電子輸送層/電荷発生層/正孔輸送層/発光層/電子輸送層、8)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/電荷発生層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層などの、中間層として電荷発生層を含む積層構成が挙げられる。中間層を構成する材料としては、ピリジン誘導体、フェナントロリン誘導体が好ましい。 In the present invention, the above laminated structure may be of a tandem type in which a plurality of layers are laminated with an intermediate layer interposed therebetween. The intermediate layer is also commonly referred to as an intermediate electrode, intermediate conductive layer, charge generation layer, electron extraction layer, connection layer, or intermediate insulating layer. The tandem structure includes, for example, 7) hole transport layer/light emitting layer/electron transport layer/charge generation layer/hole transport layer/light emitting layer/electron transport layer, 8) hole injection layer/hole transport layer. A laminated structure including a charge generation layer as an intermediate layer, such as / light emitting layer / electron transport layer / electron injection layer / charge generation layer / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer, etc. Can be mentioned. As the material constituting the intermediate layer, pyridine derivatives and phenanthroline derivatives are preferred.
 また、上記各層は、例えば電子輸送層を異なる材料を用いて二層にするなど、複数種の材料による層としても構わない。 Furthermore, each of the above layers may be made of multiple types of materials, for example, the electron transport layer may be made of two layers using different materials.
 <正孔注入層>
 正孔注入層は、陽極と正孔輸送層の間に挿入され、陽極から正孔輸送層への正孔の授受を容易にする層である。正孔輸送層と陽極の間に正孔注入層が存在すると、より低電圧で駆動することができ、耐久寿命を向上させることができ、さらに、有機EL表示装置のキャリアバランスが向上することから、発光効率を向上させることができる。
<Hole injection layer>
The hole injection layer is a layer that is inserted between the anode and the hole transport layer and facilitates the transfer of holes from the anode to the hole transport layer. When a hole injection layer exists between the hole transport layer and the anode, it is possible to drive at a lower voltage, improve the durability life, and further improve the carrier balance of the organic EL display device. , luminous efficiency can be improved.
 正孔注入層を構成する材料としては、例えば、4,4’-ビス(N-(3-メチルフェニル)-N-フェニルアミノ)ビフェニル(TPD)、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(NPD)、ビス(N-アリールカルバゾール)、ビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体などが挙げられる。正孔注入層は、これらの材料を2種以上用いてもよいし、異なる材料による積層構造を有してもよい。 Examples of the material constituting the hole injection layer include 4,4'-bis(N-(3-methylphenyl)-N-phenylamino)biphenyl (TPD), 4,4'-bis(N-(1 Examples include biscarbazole derivatives such as -naphthyl)-N-phenylamino)biphenyl (NPD), bis(N-arylcarbazole), and bis(N-alkylcarbazole). The hole injection layer may use two or more of these materials, or may have a stacked structure of different materials.
 正孔注入層は、さらにアクセプター性化合物をドープすることが好ましい。アクセプター性化合物とは、正孔注入層を構成する材料と電荷移動錯体を形成する材料である。このようなアクセプター性化合物を用いることにより、正孔注入層の導電性が向上し、有機EL表示装置の駆動電圧をより低減し、発光効率および耐久寿命をより向上させることができる。 The hole injection layer is preferably further doped with an acceptor compound. The acceptor compound is a material that forms a charge transfer complex with the material constituting the hole injection layer. By using such an acceptor compound, the conductivity of the hole injection layer can be improved, the driving voltage of the organic EL display device can be further reduced, and the luminous efficiency and durability can be further improved.
 アクセプター性化合物としては、例えば、金属酸化物、分子内にニトロ基、シアノ基、ハロゲンまたはトリフルオロメチル基を有する有機化合物、キノン系化合物、酸無水物系化合物、フラーレンなどが挙げられる。これらの中でも、取り扱いやすく、蒸着しやすいことから、金属酸化物やシアノ基含有有機化合物が好ましい。 Examples of acceptor compounds include metal oxides, organic compounds having a nitro group, a cyano group, a halogen or a trifluoromethyl group in the molecule, quinone compounds, acid anhydride compounds, fullerenes, etc. Among these, metal oxides and organic compounds containing a cyano group are preferred because they are easy to handle and vapor-deposit.
 <正孔輸送層>
 正孔輸送層は、陽極から注入された正孔を発光層まで輸送する層である。正孔輸送層は、単層であっても複数の層が積層されて構成されていてもよい。正孔輸送層は、5.1~6.0eVのイオン化ポテンシャル(蒸着膜のAC-2(理研計器)測定値)、高い三重項エネルギー準位、高い正孔輸送性および薄膜安定性を有することが好ましい。正孔輸送層は、三重項発光材料を使用した有機EL表示装置の正孔輸送材料として用いてもよい。正孔輸送層を構成する材料としては、例えば、正孔注入層を構成する材料として例示したものが挙げられる。
<Hole transport layer>
The hole transport layer is a layer that transports holes injected from the anode to the light emitting layer. The hole transport layer may be a single layer or may be configured by laminating a plurality of layers. The hole transport layer must have an ionization potential of 5.1 to 6.0 eV (measured value of AC-2 (Riken Keiki) of the deposited film), a high triplet energy level, high hole transport properties, and thin film stability. is preferred. The hole transport layer may be used as a hole transport material in an organic EL display device using a triplet luminescent material. Examples of the material constituting the hole transport layer include those exemplified as the material constituting the hole injection layer.
 <発光層>
 発光層は、正孔および電子の衝突による再結合エネルギーにより発光材料が励起され、発光する層である。発光層は単層であっても、複数の層が積層されて構成されていてもよい。発光層には発光材料(ホスト材料、ドーパント材料)が含まれており、発光層が複数の層で構成される場合、各層は、ホスト材料またはドーパント材料のいずれか一方のみから構成されていても、1種以上のホスト材料と1種以上のドーパント材料との組み合わせにより構成されていてもよい。発光層がホスト材料とドーパント材料とを含む場合において、ホスト材料およびドーパント材料の何れかのみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。電気エネルギーを効率よく利用し、高色純度の発光を得るという観点からは、発光層は、ホスト材料とドーパント材料の組み合わせにより構成されることが好ましい。発光層中のドーパント材料の含有量は、濃度消光現象を抑制する観点から、ホスト材料100重量部に対して30重量部以下が好ましく、20重量部以下がより好ましい。発光層は、ホスト材料とドーピング材料とを共蒸着する方法や、ホスト材料とドーピング材料とを予め混合してから蒸着する方法などにより形成することができる。
<Light-emitting layer>
The light-emitting layer is a layer in which a light-emitting material is excited by recombination energy due to collisions of holes and electrons and emits light. The light-emitting layer may be a single layer or may be configured by laminating a plurality of layers. The light-emitting layer contains a light-emitting material (host material, dopant material), and when the light-emitting layer is composed of multiple layers, each layer may be composed only of either the host material or the dopant material. , may be composed of a combination of one or more host materials and one or more dopant materials. When the light-emitting layer contains a host material and a dopant material, either the host material or the dopant material may emit light, or both the host material and the dopant material may emit light. From the viewpoint of efficiently utilizing electric energy and obtaining light with high color purity, it is preferable that the light-emitting layer is composed of a combination of a host material and a dopant material. The content of the dopant material in the light-emitting layer is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, based on 100 parts by weight of the host material, from the viewpoint of suppressing the concentration quenching phenomenon. The light-emitting layer can be formed by a method of co-evaporating a host material and a doping material, a method of mixing a host material and a doping material in advance, and then depositing the mixture.
 ドーパント材料としては、例えば、アントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラート)アルミニウムなどの金属錯体化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリフェニレンビニレン誘導体などが挙げられる。 Examples of dopant materials include fused ring derivatives such as anthracene and pyrene, metal complex compounds such as tris(8-quinolinolato)aluminum, bisstyryl derivatives such as bisstyrylanthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, and dibenzofuran derivatives. , carbazole derivatives, indolocarbazole derivatives, polyphenylene vinylene derivatives, and the like.
 発光層が三重項発光(りん光発光)を行う際に用いられるドーパント材料としては、イリジウム(Ir)、ルテニウム(Ru)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)およびレニウム(Re)からなる群から選択される少なくとも一種の金属を含む金属錯体化合物が好ましい。金属錯体化合物を構成する配位子は、要求される発光色、有機EL表示装置性能、ホスト化合物との関係から適宜選択することができ、フェニルピリジン骨格、フェニルキノリン骨格、カルベン骨格などの含窒素芳香族複素環を有することが好ましく、具体的には、トリス(2-フェニルピリジル)イリジウム錯体、ビス(2-フェニルピリジル)(アセチルアセトナート)イリジウム錯体、テトラエチルポルフィリン白金錯体などが挙げられる。これらを2種以上用いて金属錯体化合物を構成してもよい。 Dopant materials used when the light-emitting layer emits triplet light (phosphorescence) include iridium (Ir), ruthenium (Ru), palladium (Pd), platinum (Pt), osmium (Os), and rhenium (Re). ) A metal complex compound containing at least one metal selected from the group consisting of: The ligands constituting the metal complex compound can be appropriately selected depending on the required emission color, organic EL display device performance, and relationship with the host compound. It is preferable to have an aromatic heterocycle, and specific examples include tris(2-phenylpyridyl)iridium complex, bis(2-phenylpyridyl)(acetylacetonato)iridium complex, and tetraethylporphyrin platinum complex. A metal complex compound may be constructed using two or more of these.
 ホスト材料としては、例えば、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物などが挙げられる。これらを2種以上用いて発光材料を構成してもよい。 Examples of the host material include compounds having a fused aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, and indene. A light-emitting material may be composed of two or more of these.
 発光層が三重項発光(りん光発光)を行う際に用いられるホスト材料としては、金属キレート化オキシノイド化合物、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、トリフェニレン誘導体などが好適に用いられる。その中でも、アントラセン骨格やピレン骨格を有する化合物が、高効率発光が得られやすいため、より好ましい。 Host materials used when the light emitting layer emits triplet light (phosphorescence) include metal chelated oxinoid compounds, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, triphenylene derivatives, etc. Suitably used. Among these, compounds having an anthracene skeleton or a pyrene skeleton are more preferable because they can easily provide highly efficient light emission.
 <電子輸送層>
 電子輸送層は、陰極から注入された電子を発光層まで輸送する層である。電子輸送層には、電子注入効率が高く、注入された電子を効率良く輸送することが望まれる。そのため、電子輸送層は、電子親和力および電子移動度が大きく、安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。特に、電子輸送層の膜厚が厚い場合には、低分子量の化合物は結晶化するなどして膜質が劣化しやすいため、分子量400以上の化合物が好ましい。なお、正孔と電子の輸送バランスを考えた場合に、電子輸送層が陽極からの正孔が再結合せずに陰極側へ流れることを効率よく阻止できる役割を主に果たすならば、電子輸送能力がそれ程高くない材料で構成されていても、発光効率を向上させる効果は電子輸送能力が高い材料で構成されている場合と同等となる。このため、本発明における電子輸送層には、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。電子輸送層は、単層であっても複数の層が積層されて構成されていてもよい。
<Electron transport layer>
The electron transport layer is a layer that transports electrons injected from the cathode to the light emitting layer. It is desired that the electron transport layer has high electron injection efficiency and efficiently transports the injected electrons. Therefore, the electron transport layer is preferably made of a material that has high electron affinity and electron mobility, is excellent in stability, and does not easily generate trapping impurities during manufacture and use. In particular, when the electron transport layer is thick, a compound with a molecular weight of 400 or more is preferable because a low molecular weight compound tends to crystallize and deteriorate the film quality. In addition, when considering the transport balance of holes and electrons, if the electron transport layer mainly plays the role of efficiently preventing holes from flowing from the anode to the cathode side without recombining, then the electron transport Even if it is made of a material whose ability is not so high, the effect of improving luminous efficiency will be the same as when it is made of a material whose electron transport ability is high. Therefore, the electron transport layer in the present invention also includes a hole blocking layer that can efficiently block the movement of holes. The electron transport layer may be a single layer or may be configured by laminating a plurality of layers.
 電子輸送層を構成する電子輸送材料としては、例えば、ナフタレン、アントラセンなどの縮合多環芳香族誘導体などが挙げられる。これらを2種以上用いてもよい。これらの中でも、駆動電圧をより低減し、高効率発光が得られることから、電子受容性窒素を含むヘテロアリール環構造を有する化合物が好ましい。 Examples of the electron transport material constituting the electron transport layer include fused polycyclic aromatic derivatives such as naphthalene and anthracene. Two or more types of these may be used. Among these, compounds having a heteroaryl ring structure containing electron-accepting nitrogen are preferred because they can further reduce the driving voltage and provide highly efficient light emission.
 ここでいう電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電子陰性度を有することから、かかる多重結合は電子受容的な性質を有する。そのため、電子受容性窒素を含む芳香族複素環は、高い電子親和性を有する。電子受容性窒素を有する電子輸送材料は、高い電子親和力を有する陰極からの電子を受け取りやすいことから、駆動電圧をより低減することができる。また、電子受容性窒素を有する電子輸送材料は、発光層への電子の供給が多くなり、再結合確率が高くなるため、発光効率が向上する。 The electron-accepting nitrogen herein refers to a nitrogen atom that forms multiple bonds with adjacent atoms. Since nitrogen atoms have high electronegativity, such multiple bonds have electron-accepting properties. Therefore, an aromatic heterocycle containing electron-accepting nitrogen has high electron affinity. An electron transport material having electron-accepting nitrogen can easily receive electrons from a cathode having a high electron affinity, so that the driving voltage can be further reduced. Further, an electron transport material having electron-accepting nitrogen supplies more electrons to the light-emitting layer, increasing the probability of recombination, and thus improving luminous efficiency.
 電子受容性窒素を含むヘテロアリール環としては、例えば、トリアジン環、ピリジン環などが挙げられる。これらのヘテロアリール環構造を有する化合物としては、N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなどのトリアゾール誘導体、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロールなどのビピリジン誘導体、1,3-ビス(4’-(2,2’:6’2”-ターピリジニル))ベンゼンなどのターピリジン誘導体またはこれらの2種以上が、電子輸送能の観点から好ましく用いられる。 Examples of the heteroaryl ring containing electron-accepting nitrogen include a triazine ring and a pyridine ring. Compounds having these heteroaryl ring structures include triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, 2,5-bis(6'-(2',2"- Bipyridine derivatives such as bipyridyl))-1,1-dimethyl-3,4-diphenylsilole, terpyridine derivatives such as 1,3-bis(4'-(2,2':6'2''-terpyridinyl))benzene, or Two or more of these are preferably used from the viewpoint of electron transport ability.
 電子輸送層には、ドナー性化合物を含有してもよい。ここで、ドナー性化合物とは電子注入障壁の改善により、陰極または電子注入層からの電子輸送層への電子注入を容易にし、さらに電子輸送層の電気伝導性を向上させる化合物である。 The electron transport layer may contain a donor compound. Here, the donor compound is a compound that improves the electron injection barrier, facilitates electron injection from the cathode or electron injection layer to the electron transport layer, and further improves the electrical conductivity of the electron transport layer.
 ドナー性化合物としては、例えば、アルカリ金属、アルカリ金属の無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属の無機塩またはアルカリ土類金属と有機物との錯体などが挙げられる。 Examples of donor compounds include alkali metals, inorganic salts of alkali metals, complexes of alkali metals and organic substances, alkaline earth metals, inorganic salts of alkaline earth metals, or complexes of alkaline earth metals and organic substances. It will be done.
 ドナー性化合物は、真空中における蒸着が容易で取り扱いに優れることから、金属単体よりも無機塩または有機物との錯体が好ましく、大気中での取扱が容易で添加濃度を調整しやすいことから、有機物との錯体がより好ましい。 Donor compounds are preferably complexes with inorganic salts or organic substances rather than single metals because they are easy to vapor deposit in vacuum and are easy to handle. A complex with is more preferred.
 電子輸送層のイオン化ポテンシャルは、5.6eV以上が好ましく、6.6eV以上がより好ましい。一方、8.0eV以下が好ましく、7.0eV以下がより好ましい。 The ionization potential of the electron transport layer is preferably 5.6 eV or more, more preferably 6.6 eV or more. On the other hand, it is preferably 8.0 eV or less, more preferably 7.0 eV or less.
 有機EL表示装置を構成する上記各層の形成方法としては、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、分子積層法、コーティング法などが挙げられる。これらの中でも、有機EL表示装置特性の観点から、抵抗加熱蒸着法、電子ビーム蒸着法が好ましい。 Examples of methods for forming the above-mentioned layers constituting the organic EL display device include resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination, coating, and the like. Among these, resistance heating evaporation method and electron beam evaporation method are preferred from the viewpoint of organic EL display device characteristics.
 正孔注入層、正孔輸送層、発光層、電子輸送層を含む有機層の合計の厚みは、発光物質の抵抗値により適宜選択することができ、1~1000nmが好ましい。正孔注入層、正孔輸送層、発光層、電子輸送層の厚みは、それぞれ、1nm以上が好ましく、5nm以上がより好ましい。一方、正孔注入層、正孔輸送層、発光層、電子輸送層の厚みは、それぞれ、200nm以下が好ましく、100nm以下がより好ましい。 The total thickness of the organic layer including the hole injection layer, hole transport layer, light emitting layer, and electron transport layer can be appropriately selected depending on the resistance value of the light emitting substance, and is preferably 1 to 1000 nm. The thickness of each of the hole injection layer, hole transport layer, light emitting layer, and electron transport layer is preferably 1 nm or more, more preferably 5 nm or more. On the other hand, the thickness of the hole injection layer, hole transport layer, light emitting layer, and electron transport layer is preferably 200 nm or less, more preferably 100 nm or less.
 <平坦化層および画素分割層>
 本発明において、平坦化層または画素分割層は、後述する樹脂組成物が露光・現像・硬化された硬化物を有し、好ましくは該硬化物からなり、該硬化物の、飛行時間型二次イオン質量分析により測定される金属元素およびハロゲン元素の含有量の総和が1.0×1016atom/cm以上1.0×1023atom/cm以下であることを特徴とする。もちろん、平坦化層および画素分割層の両方がかかる特徴を備えていても構わない。硬化物中に金属元素やハロゲン元素を微量含有することにより、前記樹脂組成物が用いられた平坦化層または画素分割層の形成に際して基板上に付着する微量の金属元素やハロゲン元素により、パターン開口部の導電性が向上するため、有機EL表示装置の駆動電圧を低減し、信頼性を向上させることができる。また、これらの元素は、後述する(A-1)酸により脱離可能な保護基で保護されたアルカリ可溶性基を有する樹脂、または、(A-2)酸により脱離可能な保護基で保護されたアルカリ可溶性基を有する化合物と塩形成する元素トラップ効果により、過剰の金属元素やハロゲン元素に由来するアルカリマイグレーションなどの電極腐食やそれによる発光輝度低下や画素シュリンクを抑制し、有機EL表示装置の信頼性を向上させることができる。硬化物中の金属元素およびハロゲン元素の含有量の総和が1.0×1016atom/cm未満であると、パターン開口部となるITO電極の導電性が低く、有機EL表示装置を長時間駆動した場合に高電圧化しやすいことから、信頼性が低下する。一方、金属元素およびハロゲン元素の含有量の総和が1.0×1023atom/cmを超えると、元素トラップ効果により捕捉できない過剰の金属元素やハロゲン元素が、パターン開口部において電極腐食を発生させやすいことから、有機EL表示装置を長時間駆動した場合に発光輝度低下や画素シュリンクにより、信頼性が低下する。
<Planarization layer and pixel division layer>
In the present invention, the flattening layer or the pixel dividing layer has a cured product obtained by exposing, developing, and hardening the resin composition described below, preferably consists of the cured product, and is preferably composed of a time-of-flight secondary layer of the cured product. It is characterized in that the total content of metal elements and halogen elements measured by ion mass spectrometry is 1.0×10 16 atoms/cm 3 or more and 1.0×10 23 atoms/cm 3 or less. Of course, both the planarization layer and the pixel division layer may have such characteristics. By containing a trace amount of metal element or halogen element in the cured product, the trace amount of metal element or halogen element that adheres to the substrate during the formation of the flattening layer or pixel division layer using the resin composition can form a pattern opening. Since the conductivity of the organic EL display device is improved, the driving voltage of the organic EL display device can be reduced and the reliability can be improved. In addition, these elements can be protected with (A-1) a resin having an alkali-soluble group protected with a protecting group that can be removed with an acid, or (A-2) with a protecting group that can be removed with an acid, as described below. Due to the element trapping effect of forming salts with compounds having alkali-soluble groups, it suppresses electrode corrosion such as alkali migration derived from excess metal elements and halogen elements, and the resulting reduction in luminance brightness and pixel shrinkage, and improves organic EL display devices. reliability can be improved. If the total content of metal elements and halogen elements in the cured product is less than 1.0×10 16 atoms/cm 3 , the conductivity of the ITO electrodes forming the pattern openings will be low, and the organic EL display device may not be used for a long time. When driven, the voltage tends to increase, which reduces reliability. On the other hand, when the total content of metal elements and halogen elements exceeds 1.0×10 23 atoms/cm 3 , excess metal elements and halogen elements that cannot be captured due to the element trapping effect cause electrode corrosion at the pattern openings. Therefore, when an organic EL display device is driven for a long period of time, reliability decreases due to reduction in luminance and pixel shrinkage.
 なお、「露光・現像・硬化された硬化物」の意味は、本発明に用いる樹脂組成物が、露光の工程、現像の工程および硬化の工程を経て硬化物となることを意味し、必ずしも、露光された部分が硬化物となることを意味するものではない。すなわち、未露光部が現像の結果で残り、該未露光部が硬化された硬化物を含む。 In addition, the meaning of "cured product that has been exposed, developed, and cured" means that the resin composition used in the present invention becomes a cured product through the steps of exposure, development, and curing, and does not necessarily mean that This does not mean that the exposed portion becomes a cured product. That is, an unexposed area remains as a result of development, and the unexposed area contains a cured product.
 本発明において、金属元素およびハロゲン元素を上記の範囲にする方法としては、例えば、後述する樹脂組成物を用いる方法が挙げられる。 In the present invention, an example of a method for bringing the metal elements and halogen elements into the above ranges is a method using a resin composition described below.
 なおここで、金属元素とは、単体の状態で金属の性質を示す元素を指し、イオンである場合も含まれる。また金属元素がアルカリ金属元素またはアルカリ土類金属元素である場合、特にはナトリウムまたはカリウムである場合、後述する樹脂組成物において、樹脂(A-1)、または、化合物(A-2)との塩形成および相互作用によりトラップされやすい。また、ハロゲン元素とは、周期表において第17族に属する元素を指し、イオンである場合も含まれる。また、ハロゲン元素が塩素である場合、後述する樹脂組成物において、樹脂(A-1)、または、化合物(A-2)と塩形成し、トラップされやすいので、有機EL表示装置の信頼性をより向上させることができる。 Here, the term "metallic element" refers to an element that exhibits metallic properties in its simple form, and also includes the case where it is an ion. In addition, when the metal element is an alkali metal element or an alkaline earth metal element, particularly when it is sodium or potassium, in the resin composition described below, the combination with resin (A-1) or compound (A-2) Easily trapped by salt formation and interactions. Further, the halogen element refers to an element belonging to Group 17 in the periodic table, and also includes an ion. In addition, when the halogen element is chlorine, it forms a salt with resin (A-1) or compound (A-2) in the resin composition described below, and is likely to be trapped, which may reduce the reliability of the organic EL display device. It can be further improved.
 本発明においては、後述する樹脂組成物が露光・現像・硬化された硬化物において、飛行時間型二次イオン質量分析により測定される金属元素およびハロゲン元素の含有量の総和が1.0×1016atom/cm以上1.0×1023atom/cm以下である。 In the present invention, the total content of metal elements and halogen elements measured by time-of-flight secondary ion mass spectrometry in a cured product obtained by exposing, developing, and curing the resin composition described below is 1.0 × 10 16 atoms/cm 3 or more and 1.0×10 23 atoms/cm 3 or less.
 硬化物中の金属元素およびハロゲン元素の含有量は、その総和が、1.0×1016atom/cm以上であることで、有機EL表示装置の駆動電圧をより低減し、信頼性をより向上させることができる。また、1.0×1023atom/cm以下であることで、有機EL表示装置の信頼性をより向上させることができる。硬化物中の金属元素およびハロゲン元素の含有量の総和の下限として好ましくは、1.0×1017atom/cm以上とすることであり、上限として好ましくは、1.0×1022atom/cm以下とすることである。 The total content of metal elements and halogen elements in the cured product is 1.0×10 16 atoms/cm 3 or more, which further reduces the driving voltage of the organic EL display device and improves its reliability. can be improved. Furthermore, by setting the density to be 1.0×10 23 atoms/cm 3 or less, the reliability of the organic EL display device can be further improved. The lower limit of the total content of metal elements and halogen elements in the cured product is preferably 1.0×10 17 atoms/cm 3 or more, and the upper limit is preferably 1.0×10 22 atoms/cm 3 or more. cm 3 or less.
 また、金属元素のうち、ナトリウムおよびカリウムの含有量の総和が1.0×1017atom/cm以上1.0×1022atom/cm以下であることが好ましく、また、ハロゲンのうち、フッ素元素および塩素元素の含有量の総和が1.0×1017atom/cm以上1.0×1022atom/cm以下であることが好ましい。この範囲で含まれることで、有機EL表示装置の駆動電圧をより低減し、信頼性をより向上させることができる。 Further, among the metal elements, it is preferable that the total content of sodium and potassium is 1.0×10 17 atom/cm 3 or more and 1.0×10 22 atom/cm 3 or less, and among the halogens, It is preferable that the total content of elemental fluorine and elemental chlorine is 1.0×10 17 atom/cm 3 or more and 1.0×10 22 atom/cm 3 or less. By being included in this range, the driving voltage of the organic EL display device can be further reduced and the reliability can be further improved.
 <金属元素およびハロゲン元素の定量方法>
 樹脂組成物の硬化物中の金属元素およびハロゲン元素は、以下の方法により定量することができる。まず、硬化膜中に、IMX-3500RS(アルバック社製)を用いて、目的とする元素を特定量注入し、下記式により相対感度係数(RSF)を算出する。後述するTOF-SIMSの感度(atom/cm)を良好にするために、イオン注入量は、1.0×1013atom/cm~5.0×1015atom/cmの間で設定することが好ましい。測定条件は陽イオン検出の場合、エッチングイオン種はO 、エッチングイオン加速エネルギーは2keV、1次イオン種はBi、1次イオンエネルギーは25keV、帯電補償はMetal-coat、e-gunで行った。陰イオン検出の場合、エッチングイオン種はC 、エッチングイオン加速エネルギーは2keV、1次イオン種はBi、1次イオンエネルギーは25keV、帯電補償はe-gunで行った。TOF-SIMS分析はION-TOF社製TOF.SIMS5を用いた。
<Method for quantifying metal elements and halogen elements>
The metal elements and halogen elements in the cured resin composition can be determined by the following method. First, a specific amount of a target element is injected into the cured film using IMX-3500RS (manufactured by ULVAC), and the relative sensitivity factor (RSF) is calculated using the following formula. In order to improve the sensitivity (atoms/cm 3 ) of TOF-SIMS, which will be described later, the ion implantation amount was set between 1.0×10 13 atoms/cm 2 and 5.0×10 15 atoms/cm 2 . It is preferable to do so. The measurement conditions are: for positive ion detection, the etching ion species is O 2 + , the etching ion acceleration energy is 2 keV, the primary ion species is Bi + , the primary ion energy is 25 keV, and the charge compensation is Metal-coat and e-gun. went. In the case of negative ion detection, the etching ion species was C s + , the etching ion acceleration energy was 2 keV, the primary ion species was Bi + , the primary ion energy was 25 keV, and charge compensation was performed using e-gun. TOF-SIMS analysis was performed using TOF. SIMS5 was used.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Φ:イオン注入量(atom/cm
Δd:1測定サイクルあたりの深さ(cm)
:不純物イオン強度(counts)
BG:バックグラウンド強度(counts)
ref:硬化膜のイオン強度(counts)
 得られた相対感度係数を基に、下記式により、TOF-SIMS分析から、硬化膜中における金属元素およびハロゲン元素(対象元素)濃度をそれぞれ定量することができる。
対象元素濃度=RSF(atom/cm)×対象元素イオン強度(counts)/硬化膜のイオン強度(counts)。
Φ 0 : Ion implantation amount (atom/cm 2 )
Δd 0 : Depth per measurement cycle (cm)
I i : Impurity ion strength (counts)
IBG : Background intensity (counts)
I ref : Ionic strength of cured film (counts)
Based on the obtained relative sensitivity coefficient, the metal element and halogen element (target element) concentrations in the cured film can be determined from TOF-SIMS analysis using the following formula.
Target element concentration = RSF (atoms/cm 3 )×target element ion strength (counts)/cured film ion strength (counts).
 なお、定量に用いた箇所は、硬化膜の表層から0.5μmの位置で算出した。 Note that the location used for quantitative determination was calculated at a position 0.5 μm from the surface layer of the cured film.
 <画素分割層の開口率>
 本発明において画素分割層の開口率は、20%以下が好ましい。ここで、画素分割層の開口率とは、有機EL表示装置全体の面積に対する画素分割層の開口部の面積の割合を指す。画素の高精細化が進むと画素分割層の開口率が低くなり、画素シュリンクの影響が大きくなる。本発明の有機EL表示装置は、発光輝度低下や画素シュリンクを抑制し、有機EL表示装置の信頼性を向上させることができることから、画素シュリンクによる影響の大きい、画素分割層の開口率20%以下の場合に、特に顕著な効果を奏する。
<Aperture ratio of pixel division layer>
In the present invention, the aperture ratio of the pixel dividing layer is preferably 20% or less. Here, the aperture ratio of the pixel dividing layer refers to the ratio of the area of the opening of the pixel dividing layer to the area of the entire organic EL display device. As the definition of pixels increases, the aperture ratio of the pixel division layer decreases, and the influence of pixel shrink increases. The organic EL display device of the present invention can suppress reduction in luminance brightness and pixel shrinkage, and improve the reliability of the organic EL display device. Therefore, the aperture ratio of the pixel division layer, which is significantly affected by pixel shrinkage, is 20% or less. In this case, the effect is particularly remarkable.
 なおここで、「有機EL表示装置全体の面積」とは、スマートフォンやタブレットPCなどのディスプレイ全体の面積をいい、「画素分割層の開口部」はディスプレイ中の画素の面積をいう。その具体的な測定法は、顕微鏡などで直接に観察して面積を求めることができる。 Here, the "area of the entire organic EL display device" refers to the area of the entire display of a smartphone, tablet PC, etc., and the "opening of the pixel division layer" refers to the area of the pixels in the display. As for the specific measurement method, the area can be determined by direct observation using a microscope or the like.
 <樹脂組成物>
 本発明において、平坦化層または画素分割層は、下記する樹脂組成物Aまたは樹脂組成物Bが露光・現像・硬化された硬化物によって形成されている。
<Resin composition>
In the present invention, the flattening layer or pixel dividing layer is formed of a cured product obtained by exposing, developing, and curing resin composition A or resin composition B described below.
 [樹脂組成物A](A-1)酸により脱離可能な保護基で保護されたアルカリ可溶性基を有する樹脂および(B)光酸発生剤を含有する樹脂組成物
 [樹脂組成物B]アルカリ可溶性基を有する樹脂、(A-2)酸により脱離可能な保護基で保護されたアルカリ可溶性基を有する化合物および(B)光酸発生剤を含有する樹脂組成物
 上記の樹脂組成物Aおよび樹脂組成物Bは、さらに他の成分を含有してもよい。
[Resin composition A] Resin composition containing (A-1) a resin having an alkali-soluble group protected with a protecting group that can be removed by acid and (B) a photoacid generator [Resin composition B] Alkali Resin composition containing a resin having a soluble group, (A-2) a compound having an alkali-soluble group protected with a protecting group that can be removed by an acid, and (B) a photoacid generator The above resin composition A and Resin composition B may further contain other components.
 <アルカリ可溶性基を有する樹脂>
 本発明においてアルカリ可溶性とは、濃度25質量%の水酸化テトラメチルアンモニウム水溶液に対する溶解性を有する性質をいい、このような性質を持つことで、汎用的な現像液による現像を実現できる。樹脂にアルカリ可溶性を具備せしめるための官能基(アルカリ可溶性基)としてはカルボキシル基または水酸基を用いることが好ましく、これらの官能基はアルカリ現像液への溶解性を向上させ易く、解像度としてもより高い解像度を実現しやすい。
<Resin having alkali-soluble group>
In the present invention, alkali solubility refers to the property of having solubility in an aqueous solution of tetramethylammonium hydroxide having a concentration of 25% by mass, and by having such a property, it is possible to realize development using a general-purpose developer. As the functional group (alkali-soluble group) for imparting alkali solubility to the resin, it is preferable to use a carboxyl group or a hydroxyl group, and these functional groups tend to improve solubility in an alkaline developer and provide higher resolution. Easy to achieve resolution.
 なお、混同を避けるため、本発明において単に「アルカリ可溶性基を有する樹脂」というときは、酸により脱離可能な保護基で保護されたアルカリ可溶性基を有さないものをいい、その一部にでも酸により脱離可能な保護基で保護されたアルカリ可溶性基を有するものは「酸により脱離可能な保護基で保護されたアルカリ可溶性基を有する樹脂」という。また、酸により脱離可能な保護基で保護されたアルカリ可溶性基を有する樹脂は、アルカリ可溶性基が保護基で保護された状態ではアルカリ可溶性を有するとは限らない。しかし、保護基が脱離された樹脂となった状態ではアルカリ可溶性を有する。 In order to avoid confusion, in the present invention, the term "resin having an alkali-soluble group" refers to a resin that does not have an alkali-soluble group protected with a protective group that can be removed by an acid. However, a resin having an alkali-soluble group protected with an acid-removable protecting group is referred to as a "resin having an alkali-soluble group protected with an acid-removable protecting group." Further, a resin having an alkali-soluble group protected with a protecting group that can be removed by an acid does not necessarily have alkali solubility in a state where the alkali-soluble group is protected with the protecting group. However, when the protecting group has been removed and the resin has become a resin, it has alkali solubility.
 アルカリ可溶性基を有する樹脂としては、ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体、ポリベンゾオキサゾール前駆体およびそれらの共重合体からなる群より選択される1種以上の樹脂であって、その構造中にアルカリ可溶性基を有する樹脂であることが好ましく、これらを2種以上含有してもよい。ポリイミドおよびポリベンゾオキサゾールは、主鎖にイミド環またはオキサゾール環の環状構造を有する樹脂である。繰り返し単位の繰り返し数は10~100000が好ましい。 The resin having an alkali-soluble group is one or more resins selected from the group consisting of polyimide, polybenzoxazole, polyimide precursor, polybenzoxazole precursor, and copolymers thereof, and the resin has an alkali-soluble group in its structure. It is preferable that the resin has an alkali-soluble group, and two or more types of these may be contained. Polyimide and polybenzoxazole are resins having a cyclic structure of an imide ring or an oxazole ring in the main chain. The number of repeating units is preferably 10 to 100,000.
 ポリイミドは、テトラカルボン酸や対応するテトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリドなどと、ジアミンや対応するジイソシアネート化合物、トリメチルシリル化ジアミンを反応させることにより得ることができ、テトラカルボン酸残基とジアミン残基を有する。例えば、テトラカルボン酸二無水物とジアミンを反応させて得られるポリイミド前駆体の1つであるポリアミド酸を、加熱処理や化学処理により脱水閉環することにより得ることができる。加熱処理時、m-キシレンなどの水と共沸する溶媒を加えてもよい。また、弱酸性のカルボン酸化合物を加えて100℃以下の低温で加熱処理してもよい。化学処理に用いられる閉環触媒としては、カルボン酸無水物やジシクロヘキシルカルボジイミド等の脱水縮合剤や、トリエチルアミン等の塩基などを挙げることができる。ポリイミド前駆体については後述する。 Polyimide can be obtained by reacting tetracarboxylic acid, the corresponding tetracarboxylic dianhydride, tetracarboxylic acid diester dichloride, etc. with diamine, the corresponding diisocyanate compound, or trimethylsilylated diamine. Contains diamine residues. For example, it can be obtained by dehydrating and ring-closing polyamic acid, which is one of the polyimide precursors obtained by reacting tetracarboxylic dianhydride and diamine, by heat treatment or chemical treatment. During the heat treatment, a solvent that is azeotropic with water, such as m-xylene, may be added. Alternatively, a weakly acidic carboxylic acid compound may be added and heat treated at a low temperature of 100° C. or lower. Examples of the ring-closing catalyst used in the chemical treatment include dehydration condensation agents such as carboxylic acid anhydrides and dicyclohexylcarbodiimide, and bases such as triethylamine. The polyimide precursor will be described later.
 ポリベンゾオキサゾールは、ビスアミノフェノール化合物と、ジカルボン酸や対応するジカルボン酸クロリド、ジカルボン酸活性エステルなどを反応させることにより得ることができ、ジカルボン酸残基とビスアミノフェノール残基を有する。例えば、ビスアミノフェノール化合物とジカルボン酸を反応させて得られるポリベンゾオキサゾール前駆体の1つであるポリヒドロキシアミドを、加熱処理や化学処理により脱水閉環することにより得ることができる。加熱処理時、m-キシレンなどの水と共沸する溶媒を加えてもよい。また、酸性化合物を加えて200℃以下の低温で加熱処理してもよい。化学処理に用いられる閉環触媒としては、無水リン酸、塩基、カルボジイミド化合物などを挙げることができる。ポリベンゾオキサゾール前駆体については後述する。 Polybenzoxazole can be obtained by reacting a bisaminophenol compound with a dicarboxylic acid, a corresponding dicarboxylic acid chloride, a dicarboxylic acid active ester, etc., and has a dicarboxylic acid residue and a bisaminophenol residue. For example, it can be obtained by dehydrating and ring-closing polyhydroxyamide, which is one of the polybenzoxazole precursors obtained by reacting a bisaminophenol compound and a dicarboxylic acid, by heat treatment or chemical treatment. During the heat treatment, a solvent that is azeotropic with water, such as m-xylene, may be added. Alternatively, an acidic compound may be added and heat treated at a low temperature of 200° C. or lower. Examples of ring-closing catalysts used in chemical treatments include phosphoric anhydride, bases, carbodiimide compounds, and the like. The polybenzoxazole precursor will be described later.
 本発明において、アルカリ水溶液に対する溶解性の観点から、ポリイミドは、テトラカルボン酸残基またはジアミン残基にOR、SO、CONR、COOR、SONRなどの酸性基または酸性基誘導体を有することが好ましく、水酸基を有することがより好ましい。また、ポリベンゾオキサゾールは、ジカルボン酸残基またはビスアミノフェノール残基にOR、SO、CONR、COOR、SONRなどの酸性基または酸性基から誘導される基を有することが好ましく、水酸基を有することがより好ましい。RおよびRは水素原子または炭素数1~20の1価の有機基を示す。なお、酸性基とはRまたはRが水素原子である基を指し、酸性基から誘導される基とはRまたはRに炭素数1~20の1価の有機基である場合を指す。 In the present invention, from the viewpoint of solubility in an alkaline aqueous solution, the polyimide has tetracarboxylic acid residues or diamine residues such as OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 , etc. It is preferable to have an acidic group or an acidic group derivative, and more preferably to have a hydroxyl group. In addition, polybenzoxazole has a dicarboxylic acid residue or a bisaminophenol residue derived from an acidic group or an acidic group such as OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 , etc. It is preferable to have a group, and it is more preferable to have a hydroxyl group. R 7 and R 8 represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. Note that an acidic group refers to a group in which R 7 or R 8 is a hydrogen atom, and a group derived from an acidic group refers to a group in which R 7 or R 8 is a monovalent organic group having 1 to 20 carbon atoms. Point.
 本発明において、ポリイミドのテトラカルボン酸残基およびポリベンゾオキサゾールのジカルボン酸残基(以下、これらをあわせて「酸残基」という)の好ましい構造として、次のような構造、またはこれらの水素原子を炭素数1~20のアルキル基、フルオロアルキル基、アルコキシル基、エステル基、ニトロ基、シアノ基、フッ素原子、塩素原子により1~4個置換した構造などが挙げられる。これらを2種以上用いてもよい。 In the present invention, preferred structures of the tetracarboxylic acid residue of the polyimide and the dicarboxylic acid residue of the polybenzoxazole (hereinafter collectively referred to as "acid residue") include the following structures, or structures in which 1 to 4 of these hydrogen atoms are substituted with an alkyl group having 1 to 20 carbon atoms, a fluoroalkyl group, an alkoxyl group, an ester group, a nitro group, a cyano group, a fluorine atom, or a chlorine atom. Two or more of these may be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ただし、Jは直接結合、-COO-、-CONH-、-CH-、-C-、-O-、-C-、-SO-、-S-、-Si(CH-、-O-Si(CH-O-、-C-、-C-O-C-、-C-C-C-または-C-C-C-を示す。 However, J is a direct bond, -COO-, -CONH-, -CH 2 -, -C 2 H 4 -, -O-, -C 3 H 6 -, -SO 2 -, -S-, -Si( CH 3 ) 2 -, -O-Si(CH 3 ) 2 -O-, -C 6 H 4 -, -C 6 H 4 -O-C 6 H 4 -, -C 6 H 4 -C 3 H 6 -C 6 H 4 - or -C 6 H 4 -C 3 F 6 -C 6 H 4 -.
 本発明において、ポリイミドのジアミン残基およびポリベンゾオキサゾールのビスアミノフェノール残基(以下、これらをあわせて「アミン残基」という)の好ましい構造として、次のような構造、またはこれらの水素原子を炭素数1~20のアルキル基、フルオロアルキル基、アルコキシル基、エステル基、ニトロ基、シアノ基、フッ素原子、塩素原子により1~4個置換した構造などが挙げられる。これらを2種以上用いてもよい。 In the present invention, preferred structures of the diamine residue of polyimide and the bis-aminophenol residue of polybenzoxazole (hereinafter collectively referred to as "amine residue") include the following structures, or hydrogen atoms of these. Examples include an alkyl group having 1 to 20 carbon atoms, a fluoroalkyl group, an alkoxyl group, an ester group, a nitro group, a cyano group, and a structure in which 1 to 4 atoms are substituted with a fluorine atom or a chlorine atom. Two or more types of these may be used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 ただし、Jは直接結合、-COO-、-CONH-、-CH-、-C-、-O-、-C-、-SO-、-S-、-Si(CH-、-O-Si(CH-O-、-C-、-C-O-C-、-C-C-C-または-C-C-C-を示す。Rは水素原子または炭素数1~20の1価の有機基を示す。 However, J is a direct bond, -COO-, -CONH-, -CH 2 -, -C 2 H 4 -, -O-, -C 3 H 6 -, -SO 2 -, -S-, -Si( CH 3 ) 2 -, -O-Si(CH 3 ) 2 -O-, -C 6 H 4 -, -C 6 H 4 -O-C 6 H 4 -, -C 6 H 4 -C 3 H 6 -C 6 H 4 - or -C 6 H 4 -C 3 F 6 -C 6 H 4 -. R 7 represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
 ポリイミド前駆体、ポリベンゾオキサゾール前駆体は、主鎖にアミド結合を有しており、加熱処理や化学処理で脱水閉環することにより、ポリイミド、ポリベンゾオキサゾールとなる。繰り返し単位の繰り返し数は10~100000が好ましい。ポリイミド前駆体としては、ポリアミド酸、ポリアミド酸エステル、ポリアミド酸アミド、ポリイソイミドなどを挙げることができ、ポリアミド酸、ポリアミド酸エステルが好ましい。ポリベンゾオキサゾール前駆体としては、ポリヒドロキシアミド、ポリアミノアミド、ポリアミド、ポリアミドイミドなどを挙げることができ、ポリヒドロキシアミドが好ましい。ポリイミド前駆体およびポリベンゾオキサゾール前駆体は、アルカリ水溶液に対する溶解性の観点から、酸残基またはアミン残基にOR、SO、CONR、COOR、SONRなどの酸性基または酸性基から誘導される基を有することが好ましく、水酸基を有することがより好ましい。RおよびRは水素原子または炭素数1~20の1価の有機基を示す。なお、酸性基および酸性基から誘導される基の意味は、先述のポリイミドとポリベンゾオキサゾールについてした説明において用いたのと同じ意味である(以下においても同じ)。 The polyimide precursor and polybenzoxazole precursor have an amide bond in the main chain, and become polyimide and polybenzoxazole by dehydration and ring closure through heat treatment or chemical treatment. The number of repeating units is preferably 10 to 100,000. Examples of the polyimide precursor include polyamic acid, polyamic acid ester, polyamic acid amide, polyisoimide, and the like, with polyamic acid and polyamic acid ester being preferred. Examples of the polybenzoxazole precursor include polyhydroxyamide, polyaminoamide, polyamide, and polyamideimide, with polyhydroxyamide being preferred. Polyimide precursors and polybenzoxazole precursors have OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 in acid residues or amine residues from the viewpoint of solubility in aqueous alkaline solutions. It is preferable to have an acidic group such as or a group derived from an acidic group, and it is more preferable to have a hydroxyl group. R 7 and R 8 represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. Note that the meanings of the acidic group and the group derived from the acidic group are the same as those used in the explanation regarding the polyimide and polybenzoxazole described above (the same applies below).
 ポリイミド前駆体およびポリベンゾオキサゾール前駆体の酸残基を構成する酸成分としては、ジカルボン酸の例として、テレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ビス(カルボキシフェニル)ヘキサフルオロプロパン、ビフェニルジカルボン酸、ベンゾフェノンジカルボン酸、トリフェニルジカルボン酸などを挙げることができる。トリカルボン酸の例として、トリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、ビフェニルトリカルボン酸などを挙げることができる。テトラカルボン酸の例として、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパン、1,1-ビス(3,4-ジカルボキシフェニル)エタン、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(3,4-ジカルボキシフェニル)メタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、1,2,5,6-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,3,5,6-ピリジンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸などの芳香族テトラカルボン酸や、ブタンテトラカルボン酸、シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1.]ヘプタンテトラカルボン酸、ビシクロ[3.3.1.]テトラカルボン酸、ビシクロ[3.1.1.]ヘプト-2-エンテトラカルボン酸、ビシクロ[2.2.2.]オクタンテトラカルボン酸、アダマタンテトラカルボン酸などの脂肪族テトラカルボン酸などを挙げることができる。これらを2種以上用いてもよい。また、上に例示したジカルボン酸、トリカルボン酸またはテトラカルボン酸の水素原子を、OR、SO、CONR、COOR、SONRなどの酸性基または酸性基から誘導される基、好ましくは水酸基やスルホン酸基、スルホン酸アミド基、スルホン酸エステル基などで1~4個置換したものがより好ましい。RおよびRは水素原子または炭素数1~20の1価の有機基を示す。 Examples of dicarboxylic acids include terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, bis(carboxyphenyl)hexafluoropropane, biphenyl dicarboxylic acid, Examples include benzophenone dicarboxylic acid and triphenyl dicarboxylic acid. Examples of tricarboxylic acids include trimellitic acid, trimesic acid, diphenyl ethertricarboxylic acid, biphenyltricarboxylic acid, and the like. Examples of tetracarboxylic acids include pyromellitic acid, 3,3',4,4'-biphenyltetracarboxylic acid, 2,3,3',4'-biphenyltetracarboxylic acid, 2,2',3,3' -Biphenyltetracarboxylic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, 2,2',3,3'-benzophenonetetracarboxylic acid, 2,2-bis(3,4-dicarboxyphenyl) Hexafluoropropane, 2,2-bis(2,3-dicarboxyphenyl)hexafluoropropane, 1,1-bis(3,4-dicarboxyphenyl)ethane, 1,1-bis(2,3-dicarboxy phenyl)ethane, bis(3,4-dicarboxyphenyl)methane, bis(2,3-dicarboxyphenyl)methane, bis(3,4-dicarboxyphenyl)sulfone, bis(3,4-dicarboxyphenyl) Ether, 1,2,5,6-naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 2,3,5,6-pyridinetetracarboxylic acid, 3,4,9,10-perylene Aromatic tetracarboxylic acids such as tetracarboxylic acid, butanetetracarboxylic acid, cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo [2.2.1. ]Heptanetetracarboxylic acid, bicyclo[3.3.1. ] Tetracarboxylic acid, bicyclo [3.1.1. ]Hept-2-entetracarboxylic acid, bicyclo[2.2.2. ] Examples include aliphatic tetracarboxylic acids such as octanetetracarboxylic acid and adamatanetetracarboxylic acid. Two or more types of these may be used. Furthermore, hydrogen atoms of the dicarboxylic acids, tricarboxylic acids, or tetracarboxylic acids exemplified above can be converted from acidic groups or acidic groups such as OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 , etc. More preferred are those substituted with 1 to 4 derived groups, preferably hydroxyl groups, sulfonic acid groups, sulfonic acid amide groups, sulfonic acid ester groups, etc. R 7 and R 8 represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
 これらの酸は、そのまま、あるいは酸無水物や活性エステルとして使用できる。 These acids can be used as they are, or as acid anhydrides or active esters.
 また、ジメチルシランジフタル酸、1,3-ビス(フタル酸)テトラメチルジシロキサンなどのケイ素原子含有テトラカルボン酸を用いることにより、基板に対する接着性や、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。これらケイ素原子含有テトラカルボン酸は、全酸成分の1~30モル%用いることが好ましい。 In addition, by using silicon-containing tetracarboxylic acids such as dimethylsilane diphthalic acid and 1,3-bis(phthalic acid)tetramethyldisiloxane, we can improve adhesion to substrates, oxygen plasma used for cleaning, UV ozone, etc. Resistance to treatment can be increased. These silicon atom-containing tetracarboxylic acids are preferably used in an amount of 1 to 30 mol% of the total acid components.
 ポリイミド前駆体およびポリベンゾオキサゾール前駆体のアミン残基を構成するジアミン成分の例としては、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなどのヒドロキシル基含有ジアミン、3,5-ジアミノ安息香酸、3-カルボキシ-4,4’-ジアミノジフェニルエーテルなどのカルボキシル基含有ジアミン、3-スルホン酸-4,4’-ジアミノジフェニルエーテルなどのスルホン酸含有ジアミン、ジチオヒドロキシフェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルヒド、4,4’-ジアミノジフェニルスルヒド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ジ(トリフルオロメチル)-4,4’-ジアミノビフェニル、あるいはこれらの芳香族環の水素原子の一部をアルキル基やハロゲン原子で置換した化合物や、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどの脂肪族ジアミンなどを挙げることができる。さらにこれらのジアミンは、メチル基、エチル基などの炭素数1~10のアルキル基、トリフルオロメチル基などの炭素数1~10のフルオロアルキル基、F、Cl、Br、Iなどの基で置換されていてもよい。これらを2種以上用いてもよい。耐熱性が要求される用途では、芳香族ジアミンをジアミン全体の50モル%以上使用することが好ましい。また、上に例示したジアミンは、OR、SO、CONR、COOR、SONRなどの酸性基または酸性基から誘導される基を有することが好ましく、水酸基を有することがより好ましい。なお、RおよびRは水素原子または炭素数1~20の1価の有機基を示す。 Examples of diamine components constituting amine residues of polyimide precursors and polybenzoxazole precursors include bis(3-amino-4-hydroxyphenyl)hexafluoropropane and bis(3-amino-4-hydroxyphenyl)sulfone. , bis(3-amino-4-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)methylene, bis(3-amino-4-hydroxyphenyl)ether, bis(3-amino-4-hydroxy) Hydroxyl group-containing diamines such as biphenyl, bis(3-amino-4-hydroxyphenyl)fluorene, carboxyl group-containing diamines such as 3,5-diaminobenzoic acid, 3-carboxy-4,4'-diaminodiphenyl ether, 3-sulfone Sulfonic acid-containing diamines such as acid-4,4'-diaminodiphenyl ether, dithiohydroxyphenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'- Diaminodiphenylmethane, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 1,4-bis(4-amino phenoxy)benzene, benzine, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis(4-aminophenoxyphenyl)sulfone, bis(3-aminophenoxyphenyl)sulfone, Bis(4-aminophenoxy)biphenyl, bis{4-(4-aminophenoxy)phenyl}ether, 1,4-bis(4-aminophenoxy)benzene, 2,2'-dimethyl-4,4'-diaminobiphenyl , 2,2'-diethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-diethyl-4,4'-diaminobiphenyl, 2,2' , 3,3'-tetramethyl-4,4'-diaminobiphenyl, 3,3',4,4'-tetramethyl-4,4'-diaminobiphenyl, 2,2'-di(trifluoromethyl)- Examples include 4,4'-diaminobiphenyl, or compounds in which some of the hydrogen atoms of these aromatic rings are replaced with alkyl groups or halogen atoms, and aliphatic diamines such as cyclohexyldiamine and methylenebiscyclohexylamine. . Furthermore, these diamines can be substituted with an alkyl group having 1 to 10 carbon atoms such as a methyl group or an ethyl group, a fluoroalkyl group having 1 to 10 carbon atoms such as a trifluoromethyl group, or a group such as F, Cl, Br, or I. may have been done. Two or more types of these may be used. In applications where heat resistance is required, it is preferable to use aromatic diamine in an amount of 50 mol% or more of the total diamine. Further, the diamines exemplified above preferably have an acidic group or a group derived from an acidic group such as OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 , and a hydroxyl group. It is more preferable to have the following. Note that R 7 and R 8 represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
 これらのジアミンは、そのまま、あるいは対応するジイソシアネート化合物やトリメチルシリル化ジアミンとして使用できる。 These diamines can be used as they are or as corresponding diisocyanate compounds or trimethylsilylated diamines.
 また、ジアミン成分として、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アニリノ)テトラメチルジシロキサンなどのケイ素原子含有ジアミンを用いることにより、基板に対する接着性や、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。これらケイ素原子含有ジアミンは、全ジアミン成分の1~30モル%用いることが好ましい。 In addition, by using silicon atom-containing diamines such as 1,3-bis(3-aminopropyl)tetramethyldisiloxane and 1,3-bis(4-anilino)tetramethyldisiloxane as the diamine component, adhesiveness to the substrate can be improved. It is possible to improve the durability and resistance to oxygen plasma used for cleaning, UV ozone treatment, etc. These silicon atom-containing diamines are preferably used in an amount of 1 to 30 mol% of the total diamine components.
 また、ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体、ポリベンゾオキサゾール前駆体の末端を、水酸基、カルボキシル基、スルホン酸基またはチオール基を有するモノアミン、酸無水物、酸クロリドまたはモノカルボン酸により封止することが好ましい。これらを2種以上用いてもよい。樹脂末端に前述の基(便宜的に、樹脂末端を封止する基を「末端封止基」と称する)を有することにより、樹脂のアルカリ水溶液に対する溶解速度を好ましい範囲に容易に調整することができる。 Furthermore, the terminals of polyimide, polybenzoxazole, polyimide precursor, and polybenzoxazole precursor are capped with a monoamine, acid anhydride, acid chloride, or monocarboxylic acid having a hydroxyl group, carboxyl group, sulfonic acid group, or thiol group. It is preferable. Two or more types of these may be used. By having the above-mentioned group at the end of the resin (for convenience, a group that blocks the end of the resin is referred to as an "end-capping group"), the dissolution rate of the resin in an alkaline aqueous solution can be easily adjusted to a preferable range. can.
 モノアミンの好ましい例としては、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどを挙げることができる。 Preferred examples of monoamines include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-amino Naphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy -5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid , 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, 4-aminobenzenesulfonic acid, 3-amino-4,6-dihydroxypyrimidine, 2- Examples include aminophenol, 3-aminophenol, 4-aminophenol, 2-aminothiophenol, 3-aminothiophenol, and 4-aminothiophenol.
 酸無水物、モノ酸クロリド、モノカルボン酸、モノ活性エステル化合物の好ましい例としては、無水フタル酸、無水マレイン酸、ナジック酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物などの酸無水物、3-カルボキシフェノール、4-カルボキシフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸などのモノカルボン酸類およびこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、2,6-ジカルボキシナフタレンなどのジカルボン酸類の1つのカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやN-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られるモノ活性エステル化合物などを挙げることができる。 Preferred examples of acid anhydrides, monoacid chlorides, monocarboxylic acids, and monoactive ester compounds include acid anhydrides such as phthalic anhydride, maleic anhydride, nadic acid, cyclohexanedicarboxylic anhydride, and 3-hydroxyphthalic anhydride. 3-carboxyphenol, 4-carboxyphenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene , 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene, 3-carboxybenzenesulfonic acid, 4-carboxybenzenesulfonic acid, and other monocarboxylic acids and their carboxyls. Monoacid chloride compounds in which the group is acid chlorinated, terephthalic acid, phthalic acid, maleic acid, cyclohexanedicarboxylic acid, 1,5-dicarboxynaphthalene, 1,6-dicarboxynaphthalene, 1,7-dicarboxynaphthalene, 2, Mono-acid chloride compounds in which only one carboxyl group of dicarboxylic acids such as 6-dicarboxynaphthalene is acid chloridized, mono-acid chloride compounds and N-hydroxybenzotriazole and N-hydroxy-5-norbornene-2,3-dicarboxy Examples include monoactive ester compounds obtained by reaction with imides.
 上記したモノアミン、酸無水物、酸クロリド、モノカルボン酸などの末端封止剤の含有量は、酸残基を構成する酸成分モノマーまたはアミン残基を構成するジアミン成分モノマーの仕込みモル数の0.1~60モル%の範囲が好ましく、5~50モル%がより好ましい。このような範囲とすることで、樹脂組成物を塗布する際の溶液の粘性が適度で、かつ優れた膜物性を有した樹脂組成物を得ることができる。 The content of the above-mentioned terminal capping agent such as monoamine, acid anhydride, acid chloride, monocarboxylic acid, etc. is equal to or less than the number of moles charged of the acid component monomer constituting the acid residue or the diamine component monomer constituting the amine residue. The range is preferably from .1 to 60 mol%, more preferably from 5 to 50 mol%. By setting it as such a range, the viscosity of the solution at the time of applying a resin composition is suitable, and the resin composition which has excellent film|membrane physical properties can be obtained.
 また、樹脂の末端に重合性官能基を有してもよい。重合性官能基の例としては、エチレン性不飽和結合基、アセチレン基、メチロール基、アルコキシメチル基などが挙げられる。 Additionally, the resin may have a polymerizable functional group at the end. Examples of the polymerizable functional group include an ethylenically unsaturated bond group, an acetylene group, a methylol group, and an alkoxymethyl group.
 樹脂中に導入された末端封止基は、以下の方法で容易に検出できる。例えば、末端封止基が導入された樹脂を、酸性溶液に溶解し、樹脂の構成単位であるアミン成分と酸成分に分解し、これをガスクロマトグラフィー(GC)や、NMR測定することにより、末端封止剤を容易に検出できる。これとは別に、末端封止剤が導入された樹脂を直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび13CNMRスペクトル測定で検出することが可能である。 The terminal capping group introduced into the resin can be easily detected by the following method. For example, a resin into which a terminal capping group has been introduced is dissolved in an acidic solution, decomposed into an amine component and an acid component, which are the constituent units of the resin, and then subjected to gas chromatography (GC) or NMR measurement. Terminal capping agent can be easily detected. Separately, it is possible to directly detect the resin into which the terminal capping agent has been introduced by pyrolysis gas chromatography (PGC), infrared spectroscopy, and 13 C NMR spectroscopy.
 本発明において、アルカリ可溶性基を有する樹脂としてはポリイミド前駆体またはポリベンゾオキサゾール前駆体が好ましく、より好ましくはポリイミド前駆体である。ポリイミド前駆体は約200℃における硬化焼成によりアミド酸部位が閉環するイミド化反応を進行し、ポリベンゾオキサゾール前駆体は約300℃における硬化焼成によりヒドロキシアミド部位が閉環するオキサゾール化反応を進行し、信頼性の高い表示装置を得ることができる。これよりポリイミド前駆体の方がより低温の焼成温度で信頼性の高い表示装置を得ることができる。また硬化焼成時に体積収縮する性質を有するこれら前駆体樹脂を用いた感光性樹脂組成物は、露光・現像工程により微細パターンを得た後、焼成することにより、順テーパー形状のパターンを得ることができる。この順テーパー形状パターンは、有機EL素子の絶縁膜として用いる際に上部電極の被覆性に優れ、断線を防止し素子の信頼性を高めることができる。 In the present invention, the resin having an alkali-soluble group is preferably a polyimide precursor or a polybenzoxazole precursor, and more preferably a polyimide precursor. The polyimide precursor undergoes an imidization reaction in which the amic acid site is ring-closed by curing and baking at about 200°C, and the polybenzoxazole precursor undergoes an oxazolization reaction in which the hydroxyamide site is ring-closed by curing and baking at about 300°C. A highly reliable display device can be obtained. Therefore, a polyimide precursor can provide a highly reliable display device at a lower firing temperature. In addition, photosensitive resin compositions using these precursor resins, which have the property of shrinking in volume during curing and baking, can be used to obtain fine patterns through exposure and development steps, and then baked to obtain forward-tapered patterns. can. This forward tapered pattern has excellent coverage of the upper electrode when used as an insulating film of an organic EL element, and can prevent disconnection and improve the reliability of the element.
 <アルカリ可溶性基を有する化合物>
 本発明において、樹脂組成物Aおよび樹脂組成物Bは、アルカリ可溶性基を有する化合物を含有しうる。ここで、アルカリ可溶性の意味は、先述のアルカリ可溶性基を有する樹脂においてした意味であり、また、化合物にアルカリ可溶性を具備せしめるための官能基についての説明も先述のアルカリ可溶性基を有する樹脂においてした説明を援用する。なおここで、アルカリ可溶性基を有する化合物は、前記のアルカリ可溶性基を有する樹脂と区別する意味で、分子量が1000以下であるものをいい、アルカリ可溶性基を有する樹脂は分子量が1000を超えるものをいう。アルカリ可溶性基を有する化合物の分子量としては、現像密着性の観点から100以上であることが好ましい。さらに250以上であるとより現像密着性が向上する。一方、感度を向上させる観点から600以下であることが好ましく、450以下がより好ましい。
<Compound having an alkali-soluble group>
In the present invention, resin composition A and resin composition B may contain a compound having an alkali-soluble group. Here, the meaning of alkali-soluble is the meaning given to the above-mentioned resin having an alkali-soluble group, and the explanation of the functional group for making the compound alkali-soluble is also the same as given to the above-mentioned resin having an alkali-soluble group. Use explanation. Here, the compound having an alkali-soluble group refers to a compound having a molecular weight of 1000 or less, in order to distinguish it from the resin having an alkali-soluble group described above, and the resin having an alkali-soluble group refers to a compound having a molecular weight exceeding 1000. say. The molecular weight of the compound having an alkali-soluble group is preferably 100 or more from the viewpoint of development adhesion. Furthermore, when it is 250 or more, development adhesion is further improved. On the other hand, from the viewpoint of improving sensitivity, it is preferably 600 or less, more preferably 450 or less.
 アルカリ可溶性基を有する化合物としては、フェノール性水酸基を有する化合物であることが好ましく、具体的には、例えば、Bis-Z、BisOC-Z、BisOPP-Z、BisP-CP、Bis26X-Z、BisOTBP-Z、BisOCHP-Z、BisOCR-CP、BisP-PZ、BisCRIPZ、BisOCP-IPZ、BisOIPP-CP、Bis26X-IPZ、BisOTBP-CP、TekP-4HBPA(テトラキスP-DO-BPA)、TrisPHAP、TrisP-PA、TrisP-PHBA、TrisOCR-PA、BisOFP-Z、Bis25X-OCHP、BisOCHP-OC、メチレントリス-FR-CR、BisRS-26X、BisRS-OCHP、(商品名、本州化学工業(株)製)、BIR-OC、BIP-PC、BIR-PC、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A(商品名、旭有機材工業(株)製)、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、2,4-ジヒドロキシキノリン、2,6-ジヒドロキシキノリン、2,3-ジヒドロキシキノキサリン、アントラセン-1,2,10-トリオール、アントラセン-1,8,9-トリオール、8-キノリノール、カテコールなどが挙げられる。 The compound having an alkali-soluble group is preferably a compound having a phenolic hydroxyl group, and specifically, for example, Bis-Z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP- Z, BisOCHP-Z, BisOCR-CP, BisP-PZ, BisCRIPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP-4HBPA (Tetrakis P-DO-BPA), Tris PHAP, TrisP-PA, TrisP-PHBA, TrisOCR-PA, BisOFP-Z, Bis25X-OCHP, BisOCHP-OC, Methylene Tris-FR-CR, BisRS-26X, BisRS-OCHP, (product name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR- OC, BIP-PC, BIR-PC, BIR-PCHP, BIP-BIOC-F, 4PC, BIR-BIPC-F, TEP-BIP-A (trade name, manufactured by Asahi Yokuzai Kogyo Co., Ltd.), 1,4 -dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 2,4-dihydroxyquinoline, 2,6-dihydroxyquinoline, 2,3-dihydroxyquinoxaline, anthracene-1,2,10-triol, anthracene-1,8,9- Examples include triol, 8-quinolinol, and catechol.
 アルカリ可溶性基を有する化合物としてフェノール性水酸基を有する化合物を用いる場合の樹脂組成物中における含有量は、前記樹脂の総重量を100重量部としたとき、感度を向上させる観点から1重量部以上とすることが好ましい。さらに5重量部以上であるとより感度が向上する。一方、現像密着性の観点から30重量部以下が好ましく、20重量部以下がより好ましい。 When a compound having a phenolic hydroxyl group is used as a compound having an alkali-soluble group, the content in the resin composition is 1 part by weight or more from the viewpoint of improving sensitivity when the total weight of the resin is 100 parts by weight. It is preferable to do so. Furthermore, when the amount is 5 parts by weight or more, the sensitivity is further improved. On the other hand, from the viewpoint of development adhesion, the content is preferably 30 parts by weight or less, more preferably 20 parts by weight or less.
 <酸により脱離可能な保護基>
 本発明において、樹脂組成物Aおよび樹脂組成物Bは、樹脂(A-1)、または、化合物(A-2)を含有する。なお、樹脂組成物Aは化合物(A-2)を含有していても構わない。
<Protecting group that can be removed by acid>
In the present invention, resin composition A and resin composition B contain resin (A-1) or compound (A-2). Note that resin composition A may contain compound (A-2).
 樹脂(A-1)は、先述のアルカリ可溶性基を有する樹脂のアルカリ可溶性基の全部または一部が酸により脱離可能な保護基で保護されており、化合物(A-2)は、先述のアルカリ可溶性基を有する化合物のアルカリ可溶性基の全部または一部が酸により脱離可能な保護基で保護されている。 In the resin (A-1), all or part of the alkali-soluble group of the resin having the alkali-soluble group described above is protected with a protecting group that can be removed by an acid, and in the compound (A-2), the alkali-soluble group is All or part of the alkali-soluble group of the compound having an alkali-soluble group is protected with a protecting group that can be removed by an acid.
 本発明にあっては、樹脂(A-1)または化合物(A-2)を含む樹脂組成物が用いられることで、有機EL表示装置の平坦化層または画素分割層とするための当該樹脂組成物の露光時に後述する(B)光酸発生剤より発生する酸を触媒として保護基が脱離し、露光部のアルカリ溶解性が向上し、感度を向上できる。そのような保護基としては、例えば、アセタール基、ケタール基、シリル基、シリルエーテル基およびテトラヒドロピラニルオキシ基が挙げられる。 In the present invention, by using a resin composition containing the resin (A-1) or the compound (A-2), the resin composition can be used as a flattening layer or a pixel dividing layer of an organic EL display device. When the object is exposed to light, the protecting group is removed using the acid generated from the photoacid generator (B) described later as a catalyst, and the alkali solubility of the exposed area is improved, thereby improving the sensitivity. Such protecting groups include, for example, acetal groups, ketal groups, silyl groups, silyl ether groups, and tetrahydropyranyloxy groups.
 酸により脱離可能な保護基としては、例えば、t-ブトキシカルボニル基、イソプロポキシカルボニル基、テトラヒドロピラニル基、エトキシエチル基、メトキシエチル基、エトキシメチル基、トリメチルシリル基、t-ブトキシカルボニルメチル基、エチルビニルエーテル基、メチルビニルエーテル基、トリメチルシリルエーテル基などが挙げられる。これらを2種以上含有してもよい。感度を向上させる観点から、中でもアセタール基およびケタール基からなる群から選択される一種以上の基であることが好ましい。 Examples of protective groups that can be removed by acid include t-butoxycarbonyl group, isopropoxycarbonyl group, tetrahydropyranyl group, ethoxyethyl group, methoxyethyl group, ethoxymethyl group, trimethylsilyl group, t-butoxycarbonylmethyl group. , ethyl vinyl ether group, methyl vinyl ether group, trimethylsilyl ether group, etc. Two or more types of these may be contained. From the viewpoint of improving sensitivity, one or more groups selected from the group consisting of an acetal group and a ketal group are particularly preferred.
 これらの保護基は、例えば、フェノール性水酸基またはカルボキシル基を有する化合物に酸触媒化でビニルエーテル化合物を反応させることにより容易に導入することができる。また、導入したい保護基の塩化物をアミンなどのアルカリ触媒下で反応させることによっても容易に導入することができる。 These protecting groups can be easily introduced, for example, by reacting a vinyl ether compound with a compound having a phenolic hydroxyl group or carboxyl group under acid catalysis. In addition, it can also be easily introduced by reacting the chloride of the protecting group to be introduced in the presence of an alkali catalyst such as an amine.
 アルカリ可溶性基に導入された酸により脱離可能な保護基は、以下の方法で容易に検出できる。例えば、硬化膜に対して、マルチショット・パイロライザー PY-3030D(フロンティアラボ製)を使用して、加熱温度600℃の条件で、熱分解を行い、ガスクロマトグラフ質量分析計JMS-Q1050GC(日本電子製)を使用して、GCカラムはステンレスキャピラリーカラム(0.25mm内径×30m、固定相;5%フェニルポリジメチルシロキサン)を用い、GC温度は40℃(3分保持)から20℃/分の速度で320℃まで昇温し、注入口温度は300℃、カラム流量は1.5mL/分、イオン化法はEI(電子イオン化)法、質量数範囲はm/zとして10~800とし、スキャン速度0.5sec/scanとして分析することで検出が可能である。 A protective group introduced into an alkali-soluble group that can be removed by an acid can be easily detected by the following method. For example, a cured film is thermally decomposed using a multi-shot pyrolyzer PY-3030D (manufactured by Frontier Lab) at a heating temperature of 600°C, and a gas chromatograph mass spectrometer JMS-Q1050GC (JEOL The GC column used was a stainless steel capillary column (0.25 mm inner diameter x 30 m, stationary phase: 5% phenylpolydimethylsiloxane), and the GC temperature was changed from 40°C (held for 3 minutes) to a speed of 20°C/min. The temperature was raised to 320°C, the inlet temperature was 300°C, the column flow rate was 1.5 mL/min, the ionization method was EI (electron ionization), the mass number range was m/z 10 to 800, and the scan speed was 0. Detection is possible by analyzing at .5sec/scan.
 また、前記樹脂組成物Aおよび樹脂組成物Bにおいて、全樹脂成分の重量を100重量部としたとき、化合物(A-2)の含有量が、1重量部以上30重量部以下であることが、有機EL表示装置の信頼性をいっそう向上できるので好ましい。 Furthermore, in the resin composition A and the resin composition B, the content of compound (A-2) may be 1 part by weight or more and 30 parts by weight or less when the weight of all resin components is 100 parts by weight. , is preferable because it can further improve the reliability of the organic EL display device.
 <(B)光酸発生剤>
 本発明において、樹脂組成物Aおよび樹脂組成物Bは、(B)光酸発生剤(以下、単に「成分(B)」称することがある)を含有している。成分(B)が樹脂組成物Aや樹脂組成物Bに含有されることで、露光時に樹脂(A-1)または化合物(A-2)の保護基が脱離し、感度が向上する。なお、成分(B)にはナフトキノンジアジド化合物は含まれない。
<(B) Photoacid generator>
In the present invention, resin composition A and resin composition B contain (B) a photoacid generator (hereinafter sometimes simply referred to as "component (B)"). When component (B) is contained in resin composition A or resin composition B, the protecting group of resin (A-1) or compound (A-2) is removed during exposure, improving sensitivity. Note that component (B) does not contain a naphthoquinonediazide compound.
 (B)光酸発生剤としては、例えば、SI-100、SI-101、SI-105、SI-106、SI-109、SI-200、SI-210、PI-105、PI-106、PI-109、NAI-100、NAI-1002、NAI-1003、NAI-1004、NAI-101、NAI-105、NAI-106、NAI-109、NDI-101、NDI-105、NDI-106、NDI-109、PAI-01、PAI-101、PAI-106若しくはPAI-1001(みどり化学(株)製)、SP-077、SP-082、SP-601、SP-606、SP-607若しくはSP-612((株)ADEKA製)、TPS-PFBS(東洋合成工業(株)製)、CGI-MDT若しくはCGI-NIT(チバジャパン(株)製)WPAG-281、WPAG-336、WPAG-339、WPAG-342、WPAG-344、WPAG-350、WPAG-370、WPAG-372、WPAG-449、WPAG-469、WPAG-505若しくはWPAG-506(和光純薬工業(株)製)、PAG-103、PAG-121若しくはPAG-203(BASF(株)製)、MDT、NIT、MIN、ILP-110、ILP-110N、ILP-113、ILP-118、PA-223、PA298、PA-411、PA-480若しくはPA-528(Heraeus(株)製)などが挙げられる。これらを2種以上用いてもよい。これらの中でも、感度を向上させる観点から、オキシムスルホネート系光酸発生剤、オニウム塩系光酸発生剤およびナフタルイミド系光酸発生剤からなる群より選択される1種以上の光酸発生剤を用いることが好ましい。中でもオキシムスルホネート系光酸発生剤を用いることが好ましい。 (B) Photoacid generators include, for example, SI-100, SI-101, SI-105, SI-106, SI-109, SI-200, SI-210, PI-105, PI-106, PI- 109, NAI-100, NAI-1002, NAI-1003, NAI-1004, NAI-101, NAI-105, NAI-106, NAI-109, NDI-101, NDI-105, NDI-106, NDI-109, PAI-01, PAI-101, PAI-106 or PAI-1001 (manufactured by Midori Kagaku Co., Ltd.), SP-077, SP-082, SP-601, SP-606, SP-607 or SP-612 (manufactured by Midori Kagaku Co., Ltd.) ) ADEKA), TPS-PFBS (Toyo Gosei Kogyo Co., Ltd.), CGI-MDT or CGI-NIT (Ciba Japan Co., Ltd.) WPAG-281, WPAG-336, WPAG-339, WPAG-342, WPAG -344, WPAG-350, WPAG-370, WPAG-372, WPAG-449, WPAG-469, WPAG-505 or WPAG-506 (manufactured by Wako Pure Chemical Industries, Ltd.), PAG-103, PAG-121 or PAG -203 (manufactured by BASF Corporation), MDT, NIT, MIN, ILP-110, ILP-110N, ILP-113, ILP-118, PA-223, PA298, PA-411, PA-480 or PA-528 ( (manufactured by Heraeus Co., Ltd.). Two or more types of these may be used. Among these, from the viewpoint of improving sensitivity, one or more photoacid generators selected from the group consisting of oxime sulfonate photoacid generators, onium salt photoacid generators, and naphthalimide photoacid generators are used. It is preferable to use Among these, it is preferable to use an oxime sulfonate photoacid generator.
 前記樹脂組成物Aおよび樹脂組成物Bにおいて、(B)光酸発生剤の含有量は、全樹脂成分の重量を100重量部としたとき、感度を向上させる観点から、0.1重量部以上が好ましい。さらに2重量部以上であるとより感度が向上する。一方、保存安定性の観点から30重量部以下であることが好ましく、20重量部以下がより好ましい。 In the resin composition A and the resin composition B, the content of the photoacid generator (B) is 0.1 part by weight or more from the viewpoint of improving sensitivity, when the weight of all resin components is 100 parts by weight. is preferred. Furthermore, if the amount is 2 parts by weight or more, the sensitivity will be further improved. On the other hand, from the viewpoint of storage stability, the amount is preferably 30 parts by weight or less, more preferably 20 parts by weight or less.
 <増感剤>
 前記樹脂組成物Aおよび樹脂組成物Bは、さらに、増感剤を含有したものであることが好ましい。増感剤が含有されたものとすることで、成分(B)の酸発生効率が向上し、感度が向上する。
<Sensitizer>
It is preferable that the resin composition A and the resin composition B further contain a sensitizer. By containing a sensitizer, the acid generation efficiency of component (B) is improved and the sensitivity is improved.
 増感剤としては、(C)チオキサントン系またはアントラセン系の化合物が好ましく、例えば、2,4-ジクロロチオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、1-クロロ-4-プロピルチオキサントン、チオキサントン、2-エチルチオキサントン、ジエトキシアントラセン、ジプロポキシアントラセン、ジブトキシアントラセンなどが挙げられる。これらを2種以上含有してもよい。感度を向上させる観点から、アントラセン系化合物がより好ましい。 As the sensitizer, (C) thioxanthone-based or anthracene-based compounds are preferred, such as 2,4-dichlorothioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2, Examples include 4-dimethylthioxanthone, 2,4-diethylthioxanthone, 1-chloro-4-propylthioxanthone, thioxanthone, 2-ethylthioxanthone, diethoxyanthracene, dipropoxyanthracene, and dibutoxyanthracene. Two or more types of these may be contained. From the viewpoint of improving sensitivity, anthracene compounds are more preferred.
 平坦化層または画素分割層を構成する硬化膜の原料となる樹脂組成物において、増感剤の含有量は、樹脂組成物に含まれる全樹脂成分を100重量部としたとき、感度を向上させる観点から0.1重量部以上が好ましい。さらに1重量部以上であるとより感度が向上する。一方、保存安定性の観点から10重量部以下であることが好ましく、5重量部以下がより好ましい。 In the resin composition that is the raw material for the cured film constituting the flattening layer or the pixel dividing layer, the content of the sensitizer is such that the sensitivity is improved when the total resin components contained in the resin composition are 100 parts by weight. From this point of view, it is preferably 0.1 part by weight or more. Furthermore, if the amount is 1 part by weight or more, the sensitivity will be further improved. On the other hand, from the viewpoint of storage stability, the amount is preferably 10 parts by weight or less, more preferably 5 parts by weight or less.
 <キノンジアジド化合物>
 前記樹脂組成物Aおよび樹脂組成物Bは、キノンジアジド化合物をさらに含有してもよい。キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。そのような化合物としては、ナフトキノンジアジドが汎用的に用いられている。露光部と未露光部のコントラストの観点から、これらポリヒドロキシ化合物やポリアミノ化合物の官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。このようなキノンジアジド化合物を用いることで、一般的な紫外線である水銀灯のi線(365nm)、h線(405nm)、g線(436nm)に感光するポジ型の感光性樹脂組成物を得ることができる。
<Quinonediazide compound>
The resin composition A and the resin composition B may further contain a quinonediazide compound. Quinonediazide compounds include those in which the sulfonic acid of quinonediazide is bonded to a polyhydroxy compound through an ester bond, those in which the sulfonic acid of quinonediazide is bonded to a polyamino compound through a sulfonamide bond, and those in which the sulfonic acid of quinonediazide is bonded to a polyhydroxy polyamino compound through an ester bond and/or a sulfonate bond. Examples include those with an amide bond. As such a compound, naphthoquinone diazide is commonly used. From the viewpoint of contrast between exposed and unexposed areas, it is preferable that 50 mol% or more of the total functional groups of these polyhydroxy compounds and polyamino compounds are substituted with quinonediazide. By using such a quinonediazide compound, it is possible to obtain a positive photosensitive resin composition that is sensitive to I-line (365 nm), H-line (405 nm), and G-line (436 nm) of a mercury lamp, which are common ultraviolet rays. can.
 ポリヒドロキシ化合物としては、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、TrisP-SA、TrisOCR-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X、DML-MBPC、DML-MBOC、DML-OCHP、DML-PCHP、DML-PC、DML-PTBP、DML-34X、DML-EP、DML-POP、ジメチロール-BisOC-P、DMLPFP、DML-PSBP、DML-MTrisPC、TriML-P、TriML-35XL、TML-BP、TML-HQ、TML-pp-BPF、TML-BPA、TMOM-BP、HML-TPPHBA、HML-TPHAP(以上、商品名、本州化学工業(株)製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A、46DMOC、46DMOEP、TM-BIP-A(以上、商品名、旭有機材工業(株)製)、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾール、ナフトール、テトラヒドロキシベンゾフェノン、没食子酸メチルエステル、ビスフェノールA、ビスフェノールE、メチレンビスフェノール、BisP-AP(商品名、本州化学工業(株)製)などが挙げられるが、これらに限定されない。 Examples of polyhydroxy compounds include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylene Tris-FR-CR, BisRS-26X, DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML-PC , DML-PTBP, DML-34X, DML-EP, DML-POP, Dimethylol-BisOC-P, DMLPFP, DML-PSBP, DML-MTrisPC, TriML-P, TriML-35XL, TML-BP, TML-HQ, TML -pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, HML-TPHAP (trade names, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-OC, BIP-PC, BIR-PC, BIR-PTBP , BIR-PCHP, BIP-BIOC-F, 4PC, BIR-BIPC-F, TEP-BIP-A, 46DMOC, 46DMOEP, TM-BIP-A (all product names, manufactured by Asahi Yokuzai Kogyo Co., Ltd.), 2,6-dimethoxymethyl-4-t-butylphenol, 2,6-dimethoxymethyl-p-cresol, 2,6-diacetoxymethyl-p-cresol, naphthol, tetrahydroxybenzophenone, gallic acid methyl ester, bisphenol A, Examples include, but are not limited to, bisphenol E, methylene bisphenol, and BisP-AP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.).
 ポリアミノ化合物としては、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィドなどが挙げられるが、これらに限定されない。 Examples of polyamino compounds include 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4'-diamino Examples include, but are not limited to, diphenyl sulfide.
 ポリヒドロキシポリアミノ化合物としては、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、3,3’-ジヒドロキシベンジジンなどが挙げられるが、これらに限定されない。 Examples of the polyhydroxypolyamino compound include, but are not limited to, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, 3,3'-dihydroxybenzidine, and the like.
 本発明において、キノンジアジドは5-ナフトキノンジアジドスルホニル基、4-ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。また、同一分子中に4-ナフトキノンジアジドスルホニル基および5-ナフトキノンジアジドスルホニル基を有するナフトキノンジアジドスルホニルエステル化合物を用いることもできるし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物を併用することもできる。 In the present invention, as the quinonediazide, either a 5-naphthoquinonediazide sulfonyl group or a 4-naphthoquinonediazide sulfonyl group is preferably used. Furthermore, a naphthoquinonediazide sulfonyl ester compound having a 4-naphthoquinonediazide sulfonyl group and a 5-naphthoquinonediazide sulfonyl group in the same molecule can be used, or a 4-naphthoquinonediazide sulfonyl ester compound and a 5-naphthoquinonediazide sulfonyl ester compound can be used in combination. You can also.
 本発明で用いるナフトキノンジアジド化合物の合成方法としては、例えば、5-ナフト
キノンジアジドスルホニルクロライドとポリヒドロキシ化合物をトリエチルアミン存在下
で反応させる方法などがある。
Examples of methods for synthesizing the naphthoquinonediazide compound used in the present invention include a method in which 5-naphthoquinonediazide sulfonyl chloride and a polyhydroxy compound are reacted in the presence of triethylamine.
 前記樹脂組成物Aおよび樹脂組成物Bにおいて、ナフトキノンジアジド化合物の含有量は、全樹脂成分の重量を100重量部としたとき、感度を向上させる観点から、2重量部以上であることが好ましい。さらに5重量部以上であるとより感度が向上する。一方、保存安定性の観点から40重量部以下が好ましく、35重量部以下がより好ましい。 In the resin composition A and the resin composition B, the content of the naphthoquinone diazide compound is preferably 2 parts by weight or more, based on the weight of the total resin component being 100 parts by weight, from the viewpoint of improving sensitivity. Furthermore, when the amount is 5 parts by weight or more, the sensitivity is further improved. On the other hand, from the viewpoint of storage stability, it is preferably 40 parts by weight or less, more preferably 35 parts by weight or less.
 <熱架橋剤>
 前記樹脂組成物Aおよび樹脂組成物Bは、熱架橋剤をさらに含有してもよい。
<Thermal crosslinking agent>
The resin composition A and the resin composition B may further contain a thermal crosslinking agent.
 熱架橋剤とは、アルコキシメチル基、メチロール基、エポキシ基、オキセタニル基をはじめとする熱反応性の官能基を分子内に少なくとも2つ有する化合物を指す。熱架橋剤は、熱硬化後の膜の耐熱性、耐薬品性および硬度を高めることができる。 The term "thermal crosslinking agent" refers to a compound having at least two heat-reactive functional groups in its molecule, such as an alkoxymethyl group, a methylol group, an epoxy group, or an oxetanyl group. The thermal crosslinking agent can increase the heat resistance, chemical resistance, and hardness of the film after thermosetting.
 アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物の好ましい例としては、例えば、DML-PC、DML-PEP、DMOM-PC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、NIKALAC(登録商標) MX-290、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MW-100LM、NIKALAC MX-750LM(以上、商品名、(株)三和ケミカル製)が挙げられ、それぞれ前記各社から入手できる。 Preferred examples of compounds having at least two alkoxymethyl groups or methylol groups include DML-PC, DML-PEP, DMOM-PC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML- pp-BPF, TML-BPE, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (product name, Honshu (manufactured by Kagaku Kogyo Co., Ltd.), NIKALAC (registered trademark) MX-290, NIKALAC MX-280, NIKALAC MX-270, NIKALAC MW-100LM, NIKALAC MX-750LM (product names, manufactured by Sanwa Chemical Co., Ltd.) These can be obtained from each of the above-mentioned companies.
 エポキシ基またはオキセタニル基を有する化合物としては、一分子内にエポキシ基を2つ有するものとして“エピコート”(登録商標)807、“エピコート”828、“エピコート”1002、“エピコート”1750、“エピコート”1007、YX8100-BH30、E1256、E4250、E4275(以上商品名、ジャパンエポキシ(株)製)、“エピクロン”(登録商標)EXA-4880、“エピクロン”EXA-4822、“エピクロン”EXA-9583、HP4032(以上商品名、大日本インキ化学工業(株)製)、“エポライト”(登録商標)40E、“エポライト”100E、“エポライト”200E、“エポライト”400E、“エポライト”70P、“エポライト”200P(以上商品名、共栄社化学(株)製)、“デナコール”(登録商標)EX-212L、“デナコール”EX-214L、“デナコール”EX-216L、(以上商品名、ナガセケムテックス(株)製)、GAN、GOT(以上商品名、日本化薬(株)製)などが挙げられ、それぞれ各社から入手可能である。 Examples of compounds having epoxy groups or oxetanyl groups include "Epicote" (registered trademark) 807, "Epicote" 828, "Epicote" 1002, "Epicote" 1750, and "Epicote" having two epoxy groups in one molecule. 1007, YX8100-BH30, E1256, E4250, E4275 (all product names, manufactured by Japan Epoxy Co., Ltd.), "Epicron" (registered trademark) EXA-4880, "Epicron" EXA-4822, "Epicron" EXA-9583, HP4032 (The above product names are manufactured by Dainippon Ink and Chemicals Co., Ltd.), "Epolite" (registered trademark) 40E, "Epolite" 100E, "Epolite" 200E, "Epolite" 400E, "Epolite" 70P, "Epolite" 200P ( The above product names are manufactured by Kyoeisha Chemical Co., Ltd.), “Denacol” (registered trademark) EX-212L, “Denacol” EX-214L, “Denacol” EX-216L, (the above product names are manufactured by Nagase ChemteX Co., Ltd.) , GAN, and GOT (all trade names, manufactured by Nippon Kayaku Co., Ltd.), which are available from each company.
 また、エポキシ基を3つ以上有するものとして、VG3101L(商品名、(株)プリンテック製)、“テピック”(登録商標)S、“テピック”G、“テピック”P(以上商品名、日産化学工業(株)製)、“エピクロン”N660、“エピクロン”N695、HP7200(以上商品名、大日本インキ化学工業(株)製)、“デナコール”EX-321L(商品名、ナガセケムテックス(株)製)、NC6000、EPPN502H、NC3000(以上商品名、日本化薬(株)製)、“エポトート”(登録商標)YH-434L(商品名、東都化成(株)製)、EHPE-3150(商品名、(株)ダイセル製)、オキセタニル基を2つ以上有する化合物としては、OXT-121、OXT-221、OX-SQ-H、OXT-191、PNOX-1009、RSOX(以上商品名、東亜合成(株)製)、“エタナコール”(登録商標)OXBP、“エタナコール”OXTP(以上商品名、宇部興産(株)製)などが挙げられ、それぞれ各社から入手可能である。 In addition, as those having three or more epoxy groups, VG3101L (trade name, manufactured by Printec Co., Ltd.), "Tepic" (registered trademark) S, "Tepic" G, "Tepic" P (trade name, Nissan Chemical Kogyo Co., Ltd.), “Epiclon” N660, “Epiclon” N695, HP7200 (trade names, manufactured by Dainippon Ink & Chemicals Co., Ltd.), “Denacol” EX-321L (trade name, Nagase ChemteX Co., Ltd.) ), NC6000, EPPN502H, NC3000 (all product names, manufactured by Nippon Kayaku Co., Ltd.), "Epotote" (registered trademark) YH-434L (trade name, manufactured by Toto Kasei Co., Ltd.), EHPE-3150 (trade name) (manufactured by Daicel Corporation), compounds having two or more oxetanyl groups include OXT-121, OXT-221, OX-SQ-H, OXT-191, PNOX-1009, RSOX (trade names, Toagosei ( (manufactured by Ube Industries, Ltd.), "Ethanachol" (registered trademark) OXBP, and "Ethanachol" OXTP (all trade names, manufactured by Ube Industries, Ltd.), which are available from various companies.
 前記樹脂組成物Aおよび樹脂組成物Bにおいて、全樹脂成分の重量を100重量部としたとき、熱架橋剤の含有量は、5重量部以上であると、硬化物の架橋密度が高くなり、耐薬品性が向上するため好ましい。さらに10重量部以上であるとより高い機械特性が得られる。一方、保存安定性、機械強度の観点から、50重量部以下が好ましく、40重量部以下がより好ましく、30重量部以下がさらに好ましい。 In the resin composition A and resin composition B, when the weight of all resin components is 100 parts by weight, when the content of the thermal crosslinking agent is 5 parts by weight or more, the crosslinking density of the cured product becomes high, This is preferred because it improves chemical resistance. Further, if the amount is 10 parts by weight or more, higher mechanical properties can be obtained. On the other hand, from the viewpoint of storage stability and mechanical strength, it is preferably 50 parts by weight or less, more preferably 40 parts by weight or less, and even more preferably 30 parts by weight or less.
 前記樹脂組成物Aおよび樹脂組成物Bは、さらに密着改良剤を含有してもよく、現像後の密着性の補助や、キュア後の密着性を向上させることができる。密着改良剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エポキシシクロヘキシルエチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどのシランカップリング剤、チタンキレート剤、アルミキレート剤、芳香族アミン化合物とアルコキシ基含有ケイ素化合物を反応させて得られる化合物などが挙げられる。これらは2種以上を用いてもよい。 The resin composition A and the resin composition B may further contain an adhesion improver, which can assist in adhesion after development and improve adhesion after curing. Examples of adhesion improvers include vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, Silane coupling agents such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, titanium chelating agents, aluminum chelating agents, aromatic amine compounds and alkoxy group containing Examples include compounds obtained by reacting silicon compounds. Two or more types of these may be used.
 前記樹脂組成物Aおよび樹脂組成物Bは、界面活性剤を含有してもよく、基板との塗れ性を向上させることができる。 The resin composition A and the resin composition B may contain a surfactant, and can improve the wettability with the substrate.
 界面活性剤としては、フロラード(商品名、住友3M(株)製)、“メガファック”(登録商標)(商品名、DIC(株)製)、“サーフロン”(登録商標)(商品名、AGCセイミケイミカル(株)製)などのフッ素系界面活性剤、KP341(商品名、信越化学工業(株)製)、DBE(商品名、チッソ(株)製)、グラノール(商品名、共栄社化学(株)製)、BYK(ビック・ケミー(株)製)などの有機シロキサン界面活性剤、ポリフロー(商品名、共栄社化学(株)製)などのアクリル重合物界面活性剤などが挙げられる。 Examples of surfactants include Florado (trade name, manufactured by Sumitomo 3M Co., Ltd.), "Megafac" (registered trademark) (trade name, manufactured by DIC Corporation), and "Surflon" (registered trademark) (trade name, AGC). Fluorinated surfactants such as Seimi Chemical Co., Ltd.), KP341 (product name, Shin-Etsu Chemical Co., Ltd.), DBE (product name, Chisso Co., Ltd.), Granol (product name, Kyoeisha Chemical Co., Ltd.) Examples include organic siloxane surfactants such as BYK (manufactured by BYK Chemie Co., Ltd.), and acrylic polymer surfactants such as Polyflow (trade name, manufactured by Kyoeisha Chemical Co., Ltd.).
 <樹脂組成物Aおよび樹脂組成物Bの製造方法>
 前記樹脂組成物Aおよび樹脂組成物Bの、代表的な製造方法について説明する。アルカリ可溶性樹脂、樹脂(A-1)、化合物(A-2)および成分(B)から選択した成分、また、必要に応じてその他の添加剤及び溶媒を混合し、20分~3時間撹拌して均一な溶液とし、撹拌後、得られた溶液をろ過することにより、目的とする樹脂組成物を得ることができる。
<Method for producing resin composition A and resin composition B>
A typical manufacturing method for the resin composition A and resin composition B will be explained. The components selected from the alkali-soluble resin, resin (A-1), compound (A-2) and component (B), as well as other additives and solvents as necessary, are mixed and stirred for 20 minutes to 3 hours. The desired resin composition can be obtained by stirring the mixture to obtain a homogeneous solution, and filtering the obtained solution after stirring.
 <有機EL表示装置の製造方法>
 本発明の有機EL表示装置の製造方法について説明する。本発明の有機EL表示装置は、例えば、基板上に、TFT(薄膜トランジスタ)と配線を形成し、それらによって生じた基板上の凹凸を覆うように平坦化層を形成し、平坦化層上に、第一電極、画素分割層および発光層を形成し、さらに第二電極を形成することにより得ることができる。平坦化層および画素分割層は、例えば、前述の樹脂組成物Aまたは樹脂組成物Bを塗布し、フォトリソグラフィーによりパターン加工し、硬化させることにより形成することができる。アクティブマトリックス型の場合、発光領域全体に亘って第二電極を形成することが一般的である。第二電極を形成後、封止を行うことが好ましい。一般的に、有機EL表示装置は酸素や水分に弱いとされ、信頼性の高い表示装置を得るためにはできるだけ酸素と水分の少ない雰囲気下で封止を行うことが好ましい。
<Method for manufacturing organic EL display device>
A method for manufacturing an organic EL display device of the present invention will be explained. In the organic EL display device of the present invention, for example, TFTs (thin film transistors) and wiring are formed on a substrate, a flattening layer is formed to cover the unevenness on the substrate caused by these, and on the flattening layer, This can be obtained by forming a first electrode, a pixel dividing layer, and a light emitting layer, and then forming a second electrode. The flattening layer and the pixel dividing layer can be formed, for example, by applying the resin composition A or resin composition B described above, patterning it by photolithography, and curing it. In the case of an active matrix type, the second electrode is generally formed over the entire light emitting region. It is preferable to perform sealing after forming the second electrode. Generally, organic EL display devices are considered to be sensitive to oxygen and moisture, and in order to obtain a highly reliable display device, it is preferable to perform sealing in an atmosphere with as little oxygen and moisture as possible.
 <第一電極又は第二電極をパターン加工する工程>
 第一電極又は第二電極をパターン加工する方法としては、例えば、エッチング法が挙げられる。以下に、第一電極をエッチングによりパターン加工する方法を例に説明する。
<Step of patterning the first electrode or second electrode>
An example of a method for patterning the first electrode or the second electrode is an etching method. Below, a method of patterning the first electrode by etching will be described as an example.
 基板上に第一電極を構成する材料を塗布した後、第一電極上にフォトレジストを塗布し、プリベークすることが好ましい。その後、フォトレジストを露光及び現像することにより、フォトリソグラフィーにより、第一電極上にフォトレジストのパターンを形成することが好ましい。現像後、得られたパターンを加熱処理することが好ましい。加熱処理することにより、フォトレジストの熱硬化により耐薬品性及びドライエッチング耐性が向上することから、フォトレジストのパターンをエッチングマスクとして好適に用いることができる。加熱処理装置としては、例えば、オーブン、ホットプレート、赤外線、フラッシュアニール装置、レーザーアニール装置などが挙げられる。加熱処理温度は70~200℃が好ましく、加熱処理時間は30秒間~数時間が好ましい。 After applying the material constituting the first electrode on the substrate, it is preferable to apply a photoresist on the first electrode and prebaking. Thereafter, it is preferable to expose and develop the photoresist to form a photoresist pattern on the first electrode by photolithography. After development, the resulting pattern is preferably heat-treated. The heat treatment improves chemical resistance and dry etching resistance due to thermal curing of the photoresist, so the photoresist pattern can be suitably used as an etching mask. Examples of the heat treatment device include an oven, a hot plate, an infrared ray, a flash annealing device, a laser annealing device, and the like. The heat treatment temperature is preferably 70 to 200°C, and the heat treatment time is preferably 30 seconds to several hours.
 次に、フォトレジストのパターンをエッチングマスクとして、第一電極をエッチングによりパターン加工することが好ましい。エッチング方法としては、例えば、エッチング液を用いるウェットエッチングや、エッチングガスを用いるドライエッチングなどが挙げられる。 Next, it is preferable to pattern the first electrode by etching using the photoresist pattern as an etching mask. Examples of the etching method include wet etching using an etching solution and dry etching using an etching gas.
 エッチング液としては、酸性またはアルカリ性のエッチング液や有機溶媒などが挙げられる。これらを2種以上用いてもよい。 Examples of the etching solution include acidic or alkaline etching solutions and organic solvents. Two or more types of these may be used.
 エッチング後、第一電極上に残存するフォトレジストを除去することにより、第一電極のパターンが得られる。 After etching, the pattern of the first electrode is obtained by removing the photoresist remaining on the first electrode.
 <樹脂組成物を塗布する工程>
 樹脂組成物Aまたは樹脂組成物Bを塗布する方法としては、例えば、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどが挙げられる。また、樹脂組成物をパターン状に塗布する方法としては、例えば、凸版印刷、凹版印刷、孔版印刷、平版印刷、スクリーン印刷、インクジェット印刷、オフセット印刷、レーザー印刷などが挙げられる。
<Step of applying resin composition>
Examples of methods for applying resin composition A or resin composition B include microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, and slit coating. Examples of methods for applying the resin composition in a pattern include letterpress printing, intaglio printing, stencil printing, planographic printing, screen printing, inkjet printing, offset printing, and laser printing.
 塗膜の厚さは、塗布方法、樹脂組成物の固形分濃度や粘度などによって異なるが、塗布及びプリベーク後の膜厚が0.1~30μmとなるように塗布することが好ましい。 The thickness of the coating film varies depending on the coating method, solid concentration and viscosity of the resin composition, but it is preferable to apply the coating so that the film thickness after coating and prebaking is 0.1 to 30 μm.
 樹脂組成物を塗布した後、プリベークすることが好ましい。プリベークに用いる加熱処置装置としては、例えば、オーブン、ホットプレート、赤外線、フラッシュアニール装置、レーザーアニール装置などが挙げられる。プリベーク温度は50~150℃が好ましく、プリベーク時間は30秒間~数時間が好ましい。80℃で2分間プリベークした後、120℃で2分間プリベークするなど、二段以上の多段でプリベークしても構わない。 Prebaking is preferably performed after applying the resin composition. Examples of the heat treatment device used for prebaking include ovens, hot plates, infrared rays, flash annealing devices, laser annealing devices, and the like. The prebake temperature is preferably 50 to 150°C, and the prebake time is preferably 30 seconds to several hours. Prebaking may be performed in two or more stages, such as prebaking at 80°C for 2 minutes and then prebaking at 120°C for 2 minutes.
 <樹脂組成物膜をパターン加工する工程>
 平坦化層または画素分割層をパターン加工する方法としては工程数の削減による生産性の向上及びプロセスタイム短縮の観点から、フォトリソグラフィーによる加工が採用される。
<Step of patterning the resin composition film>
As a method for patterning the flattening layer or the pixel division layer, photolithography is employed from the viewpoint of improving productivity by reducing the number of steps and shortening process time.
 例えば、前述の方法により形成した樹脂組成物のプリベーク膜に、ステッパー、ミラープロジェクションマスクアライナー(MPA)又はパラレルライトマスクアライナー(PLA)などの露光機を用いて露光することが好ましい。露光時に照射する活性化学線としては、例えば、紫外線、可視光線、電子線、X線、KrF(波長248nm)レーザー、ArF(波長193nm)レーザーなどが挙げられる。水銀灯のj線(波長313nm)、i線(波長365nm)、h線(波長405nm)、g線(波長436nm)を用いることが好ましい。露光量は、通常100~40,000J/m(10~4,000mJ/cm)程度(i線照度計の値)であり、必要に応じて所望のパターンを有するマスクを介して露光することができる。 For example, it is preferable to expose the prebaked film of the resin composition formed by the method described above using an exposure machine such as a stepper, mirror projection mask aligner (MPA), or parallel light mask aligner (PLA). Examples of actinic rays irradiated during exposure include ultraviolet rays, visible rays, electron beams, X-rays, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like. It is preferable to use J-line (wavelength 313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) of a mercury lamp. The exposure amount is usually about 100 to 40,000 J/m 2 (10 to 4,000 mJ/cm 2 ) (value of i-line illuminance meter), and if necessary, exposure is performed through a mask having a desired pattern. be able to.
 露光後、自動現像装置などを用いて現像することが好ましい。樹脂組成物が、ポジ型の感光性を有する場合、現像後、露光部が現像液で除去され、レリーフ・パターンを得ることができる。 After exposure, it is preferable to develop using an automatic developing device or the like. When the resin composition has positive photosensitivity, after development, the exposed areas are removed with a developer to obtain a relief pattern.
 現像液としては、アルカリ現像液や有機溶媒が一般的に用いられる。アルカリ現像液としては、有機系のアルカリ溶液、アルカリ性を示す化合物の水溶液が好ましく、環境面の観点から、アルカリ性を示す化合物の水溶液すなわちアルカリ水溶液がより好ましい。 As the developer, an alkaline developer or an organic solvent is generally used. As the alkaline developer, an organic alkaline solution or an aqueous solution of an alkaline compound is preferable, and from an environmental point of view, an aqueous solution of an alkaline compound, that is, an alkaline aqueous solution is more preferable.
 有機系のアルカリ溶液又はアルカリ性を示す化合物としては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウムなどが挙げられる。 Examples of organic alkaline solutions or alkaline compounds include tetramethylammonium hydroxide and tetraethylammonium hydroxide.
 現像方法としては、例えば、露光後の膜に現像液を塗布する方法が挙げられる。露光後の膜は、現像液に5秒間~10分間接触させることが好ましい。 Examples of the developing method include a method of applying a developer to the exposed film. The exposed film is preferably brought into contact with a developer for 5 seconds to 10 minutes.
 現像後、得られたレリーフ・パターンを、リンス液で洗浄することが好ましい。リンス液としては、現像液としてアルカリ水溶液を用いた場合、水が好ましい。 After development, it is preferable to wash the obtained relief pattern with a rinsing liquid. As the rinsing liquid, water is preferable when an alkaline aqueous solution is used as the developer.
 パターン形成した樹脂膜に、ブリーチング露光をしても構わない。ブリーチング露光をすることにより、硬化後のパターン形状を任意に調整することができる。また、硬化膜の透明性を向上させることができる。 Bleaching exposure may be applied to the patterned resin film. By performing bleaching exposure, the pattern shape after curing can be adjusted as desired. Moreover, the transparency of the cured film can be improved.
 <樹脂組成物の硬化物を得る工程>
 露光・現像後の樹脂組成物の膜を硬化することにより、平坦化層または画素分割層を形成することができる。硬化には熱硬化が用いられることが簡便であり、用いられる加熱処理装置としては、プリベークに用いられる加熱処理装置として例示したものが挙げられる。樹脂組成物のパターンを加熱して熱硬化させることにより、硬化膜の耐熱性を向上させることができるとともに、低テーパー形状のパターンを形成することができる。なお、硬化によって化学的変化が起きることを要するものではなく、揮発分を飛ばすとか分子運動を促進して緻密化をはかるといった、熱を印加する処理についても本発明にいう「硬化」の範囲に含まれる。
<Step of obtaining cured product of resin composition>
By curing the film of the resin composition after exposure and development, a flattening layer or a pixel dividing layer can be formed. It is convenient to use thermosetting for curing, and examples of the heat treatment equipment used include those exemplified as the heat treatment equipment used for pre-baking. By heating and thermosetting a pattern of the resin composition, the heat resistance of the cured film can be improved, and a pattern with a low taper shape can be formed. It should be noted that curing does not require a chemical change to occur, and treatments that apply heat, such as evaporating volatile matter or promoting molecular movement to achieve densification, are also within the scope of "curing" in the present invention. included.
 熱硬化温度は、150℃以上が好ましく、250℃以上がさらに好ましい。熱硬化温度が上記範囲内であると、硬化膜の耐熱性を向上させることができるとともに、熱硬化後のパターン形状をより低テーパー化させることができる。一方、タクトタイム短縮の観点から、熱硬化温度は、500℃以下が好ましく、400℃以下がさらに好ましい。 The thermosetting temperature is preferably 150°C or higher, more preferably 250°C or higher. When the thermosetting temperature is within the above range, the heat resistance of the cured film can be improved, and the pattern shape after thermosetting can be made less tapered. On the other hand, from the viewpoint of shortening tact time, the thermosetting temperature is preferably 500°C or lower, more preferably 400°C or lower.
 熱硬化時間は、1分間以上が好ましく、30分間以上が特に好ましい。熱硬化時間が上記範囲内であると、熱硬化後のパターン形状をより低テーパー化させることができる。 The heat curing time is preferably 1 minute or more, particularly preferably 30 minutes or more. When the heat curing time is within the above range, the pattern shape after heat curing can be made less tapered.
 <発光層の作製>
 発光層は、例えば、マスク蒸着法やインクジェット法によって形成することができる。代表的なマスク蒸着法として、蒸着マスクを用いて有機化合物を蒸着してパターニングする方法で、所望のパターンを開口部とした蒸着マスクを基板の蒸着源側に配置して蒸着を行う方法が挙げられる。
<Preparation of light-emitting layer>
The light emitting layer can be formed by, for example, a mask vapor deposition method or an inkjet method. A typical mask evaporation method is a method in which an evaporation mask is used to evaporate and pattern an organic compound, and a evaporation mask with a desired pattern as an opening is placed on the evaporation source side of the substrate and evaporation is performed. It will be done.
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明する。しかし、本発明はかかる実施例に限定して解釈されるものではない。なお、用いた化合物のうち略語を使用しているものについて、名称を以下に示す。
4-MOP:4-メトキシフェノール
AIBN:2,2’-アゾビス(イソブチロニトリル)
BAHF:2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン
BFE:1,2-ビス(4-ホルミルフェニル)エタン
DBA:ジベンジルアミン
DFA:N,N-ジメチルホルムアミドジメチルアセタール
GMA:メタクリル酸グリシジル
MAA:メタクリル酸
MAP:3-アミノフェノール;メタアミノフェノール
NMP:N-メチル-2-ピロリドン
ODPA:ビス(3,4-ジカルボキシフェニル)エーテル二無水物;オキシジフタル酸二無水物
NA:ナジック酸無水物
PGMEA:プロピレングリコールモノメチルエーテルアセテート
SiDA:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
STR:スチレン
TCDM:メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル;ジメチロール-トリシクロデカンジメタアクリレート   。
EXAMPLES The present invention will be explained in more detail by giving Examples and Comparative Examples below. However, the present invention is not construed as being limited to such examples. Note that among the compounds used, the names of those using abbreviations are shown below.
4-MOP: 4-methoxyphenol AIBN: 2,2'-azobis(isobutyronitrile)
BAHF: 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane BFE: 1,2-bis(4-formylphenyl)ethane DBA: Dibenzylamine DFA: N,N-dimethylformamide dimethyl acetal GMA : Glycidyl methacrylate MAA: Methacrylic acid MAP: 3-aminophenol; Meta-aminophenol NMP: N-methyl-2-pyrrolidone ODPA: Bis(3,4-dicarboxyphenyl)ether dianhydride; Oxydiphthalic dianhydride NA : Nadic acid anhydride PGMEA: Propylene glycol monomethyl ether acetate SiDA: 1,3-bis(3-aminopropyl)tetramethyldisiloxane STR: Styrene TCDM: Tricyclo[5.2.1.0 2,6 ]decane methacrylate -8-yl; dimethylol-tricyclodecane dimethacrylate.
 合成例1 ポリイミド前駆体(PI-1)の合成
 乾燥窒素気流下、三口フラスコに、ODPAを31.02g(0.10mol;全カルボン酸及びその誘導体に由来する構造単位に対して100mol%)、NMPを150g秤量して溶解させた。ここに、NMP50gにBAHFを25.64g(0.070mol;全アミン及びその誘導体に由来する構造単位に対して56.0mol%)、SiDAを1.24g(0.0050mol;全アミン及びその誘導体に由来する構造単位に対して4.0mol%)溶かした溶液を添加し、20℃で1時間撹拌し、次いで50℃で2時間撹拌した。次に、末端封止剤として、NMP15gにMAPを5.46g(0.050mol;全アミン及びその誘導体に由来する構造単位に対して40.0mol%)溶かした溶液を添加し、50℃で2時間撹拌した。その後、NMP15gにDFAを23.83g(0.20mol)を溶かした溶液を10分間かけて滴下した。滴下終了後、50℃で3時間撹拌した。反応終了後、反応溶液を室温に冷却した後、反応溶液を水3Lに投入し、析出した固体沈殿をろ過して得た。得られた固体を水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリイミド前駆体(PI-1)を得た。得られたポリイミド前駆体(PI-1)の重量平均分子量(Mw)は20000であった。
Synthesis Example 1 Synthesis of polyimide precursor (PI-1) In a three-necked flask under a stream of dry nitrogen, 31.02 g (0.10 mol; 100 mol% based on the structural units derived from all carboxylic acids and their derivatives) of ODPA, 150g of NMP was weighed and dissolved. Here, in 50 g of NMP, 25.64 g (0.070 mol; 56.0 mol% based on the structural unit derived from all amines and their derivatives) of BAHF and 1.24 g (0.0050 mol; based on the total amines and their derivatives) of SiDA were added. A solution containing 4.0 mol% (based on the derived structural unit) was added, stirred at 20°C for 1 hour, and then stirred at 50°C for 2 hours. Next, as an end-capping agent, a solution of 5.46 g (0.050 mol; 40.0 mol% based on the structural units derived from all amines and their derivatives) of MAP dissolved in 15 g of NMP was added, and the mixture was heated at 50°C for 2 hours. Stir for hours. Thereafter, a solution of 23.83 g (0.20 mol) of DFA dissolved in 15 g of NMP was added dropwise over 10 minutes. After the dropwise addition was completed, the mixture was stirred at 50°C for 3 hours. After the reaction was completed, the reaction solution was cooled to room temperature, and then poured into 3 L of water, and the precipitated solid precipitate was filtered. The obtained solid was washed three times with water and then dried in a vacuum dryer at 80° C. for 24 hours to obtain a polyimide precursor (PI-1). The weight average molecular weight (Mw) of the obtained polyimide precursor (PI-1) was 20,000.
 合成例2 ポリベンゾオキサゾール前駆体(PBO-1)の合成
 トルエンを満たしたディーンスターク水分離器及び冷却管を付けた500mL丸底フラスコに、BAHFを34.79g(0.095mol;全アミン及びその誘導体に由来する構造単位に対して95.0mol%)、SiDAを1.24g(0.0050mol;全アミン及びその誘導体に由来する構造単位に対して5.0mol%)、NMPを70.00g秤量して、溶解させた。ここに、NMP20.00gに、BFEを19.06g(0.080mol;全カルボン酸及びその誘導体に由来する構造単位に対し66.7mol%)溶かした溶液を添加し、20℃で1時間撹拌し、次いで50℃で2時間撹拌した。次に、末端封止剤として、NMP10gにNAを6.57g(0.040mol;全カルボン酸及びその誘導体に由来する構造単位に対し33.3mol%)溶かした溶液を添加し、50℃で2時間撹拌した。その後、窒素雰囲気下、100℃で2時間撹拌した。反応終了後、反応溶液を水3Lに投入し、析出した固体沈殿をろ過して得た。得られた固体を水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリベンゾオキサゾール前駆体(PBO-1)を得た。得られたポリベンゾオキサゾール前駆体(PBO-1)のMwは20000であった。
Synthesis Example 2 Synthesis of polybenzoxazole precursor (PBO-1) 34.79 g (0.095 mol; total amines and their Weighed 1.24 g of SiDA (0.0050 mol; 5.0 mol% relative to the structural units derived from all amines and their derivatives), and 70.00 g of NMP. and dissolved. A solution of 19.06 g (0.080 mol; 66.7 mol% based on the structural units derived from all carboxylic acids and derivatives thereof) of BFE dissolved in 20.00 g of NMP was added thereto, and the mixture was stirred at 20° C. for 1 hour. , and then stirred at 50°C for 2 hours. Next, as an end-capping agent, a solution of 6.57 g (0.040 mol; 33.3 mol% based on the structural units derived from all carboxylic acids and derivatives) of NA dissolved in 10 g of NMP was added, and the mixture was heated at 50°C for 2 hours. Stir for hours. Thereafter, the mixture was stirred at 100° C. for 2 hours under a nitrogen atmosphere. After the reaction was completed, the reaction solution was poured into 3 L of water, and the precipitated solid precipitate was filtered. The obtained solid was washed three times with water, then dried in a vacuum dryer at 80°C for 24 hours, washed three times with water, and then dried in a vacuum dryer at 80°C for 24 hours to obtain a polybenzoxazole precursor. (PBO-1) was obtained. The Mw of the obtained polybenzoxazole precursor (PBO-1) was 20,000.
 合成例3 アクリル樹脂(AC-1)の合成
 三口フラスコに、AIBNを0.821g(1mol%)、PGMEAを29.29g仕込んだ。次に、MAAを21.52g(50mol%)、TCDMを22.03g(20mol%)、STRを15.62g(30mol%)仕込み、室温でしばらく撹拌して、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間撹拌した。次に、得られた溶液に、PGMEA59.47gにGMAを14.22g(20mol%)、DBAを0.676g(1mol%)、4-MOPを0.186g(0.3mol%)溶かした溶液を添加し、90℃で4時間撹拌して、アクリル樹脂(AC-1)の溶液を得た。得られたアクリル樹脂(AC-1)のMwは15,000であった。
Synthesis Example 3 Synthesis of Acrylic Resin (AC-1) A three-neck flask was charged with 0.821 g (1 mol %) of AIBN and 29.29 g of PGMEA. Next, 21.52 g (50 mol%) of MAA, 22.03 g (20 mol%) of TCDM, and 15.62 g (30 mol%) of STR were charged, stirred for a while at room temperature, and the inside of the flask was sufficiently purged with nitrogen by bubbling. After that, the mixture was stirred at 70°C for 5 hours. Next, a solution of 14.22 g (20 mol%) of GMA, 0.676 g (1 mol%) of DBA, and 0.186 g (0.3 mol%) of 4-MOP dissolved in 59.47 g of PGMEA was added to the obtained solution. The mixture was added and stirred at 90°C for 4 hours to obtain a solution of acrylic resin (AC-1). The Mw of the obtained acrylic resin (AC-1) was 15,000.
 合成例4 アルカリ可溶性基が保護基で保護されたポリイミド前駆体(PIP-1)の合成
 三口フラスコに、合成例1で得られたポリイミド前駆体(PI-1)を10g、PGMEA18.2gを秤量して溶解させた。ここに、エチルビニルエーテル5.38g(74.6mmol)、p-トルエンスルホン酸ピリジニウム1.88g(7.46mmol)を加え、室温で14時間撹拌した。次に、30mLの超純水を加え、分液操作による精製を3回行った。その後、モレキュラーシーブを加え、12時間乾燥した。PGMEA溶液として回収した保護化ポリイミド前駆体(PIP-1)のアルカリ可溶性基の保護率は33%であり、保護化ポリイミド前駆体(PIP-1)のPGMEA溶液の固形分濃度は24質量%であった。なお、保護率とは、保護基で保護する前の全アルカリ可溶性基の数に対する保護基で保護されたアルカリ可溶性基の個数割合である。
Synthesis Example 4 Synthesis of polyimide precursor (PIP-1) in which the alkali-soluble group is protected with a protecting group In a three-necked flask, weigh 10 g of the polyimide precursor (PI-1) obtained in Synthesis Example 1 and 18.2 g of PGMEA. and dissolved. To this were added 5.38 g (74.6 mmol) of ethyl vinyl ether and 1.88 g (7.46 mmol) of pyridinium p-toluenesulfonate, and the mixture was stirred at room temperature for 14 hours. Next, 30 mL of ultrapure water was added, and purification by liquid separation operation was performed three times. Thereafter, molecular sieves were added and the mixture was dried for 12 hours. The protection rate of the alkali-soluble groups of the protected polyimide precursor (PIP-1) recovered as a PGMEA solution was 33%, and the solid content concentration of the PGMEA solution of the protected polyimide precursor (PIP-1) was 24% by mass. there were. Note that the protection rate is the ratio of the number of alkali-soluble groups protected with a protecting group to the total number of alkali-soluble groups before protection with a protecting group.
 合成例5 アルカリ可溶性基が保護基で保護されたポリベンゾオキサゾール前駆体(PBOP-1)の合成
 三口フラスコに、合成例2で得られたポリベンゾオキサゾール前駆体(PBO-1)を10g、PGMEA18.2gを秤量して溶解させた。ここに、エチルビニルエーテル5.38g(74.6mmol)、p-トルエンスルホン酸ピリジニウム1.88g(7.46mmol)を加え、室温で14時間撹拌した。次に、30mLの超純水を加え、分液操作による精製を3回行った。その後、モレキュラーシーブを加え、12時間乾燥した。PGMEA溶液として回収した保護化ポリベンゾオキサゾール前駆体(PBOP-1)のアルカリ可溶性基の保護率は33%であり、保護化ポリベンゾオキサゾール前駆体(PBOP-1)のPGMEA溶液の固形分濃度は24質量%であった。
Synthesis Example 5 Synthesis of polybenzoxazole precursor (PBOP-1) whose alkali-soluble group is protected with a protecting group In a three-necked flask, add 10 g of the polybenzoxazole precursor (PBO-1) obtained in Synthesis Example 2 and PGMEA18. .2 g was weighed and dissolved. To this were added 5.38 g (74.6 mmol) of ethyl vinyl ether and 1.88 g (7.46 mmol) of pyridinium p-toluenesulfonate, and the mixture was stirred at room temperature for 14 hours. Next, 30 mL of ultrapure water was added, and purification by liquid separation operation was performed three times. Thereafter, molecular sieves were added and the mixture was dried for 12 hours. The protection rate of the alkali-soluble group of the protected polybenzoxazole precursor (PBOP-1) recovered as a PGMEA solution was 33%, and the solid content concentration of the PGMEA solution of the protected polybenzoxazole precursor (PBOP-1) was It was 24% by mass.
 合成例6 アルカリ可溶性基が保護基で保護されたアクリル樹脂(ACP-1)の合成
 三口フラスコに、合成例3で得られたアクリル樹脂(AC-1)を10g、PGMEA18.2gを秤量して溶解させた。ここに、エチルビニルエーテル5.38g(74.6mmol)、p-トルエンスルホン酸ピリジニウム1.88g(7.46mmol)を加え、室温で14時間撹拌した。次に、30mLの超純水を加え、分液操作による精製を3回行った。その後、モレキュラーシーブを加え、12時間乾燥した。PGMEA溶液として回収した保護化アクリル樹脂(ACP-1)のアルカリ可溶性基の保護率は33%であり、保護化アクリル樹脂(ACP-1)のPGMEA溶液の固形分濃度は24質量%であった。
Synthesis Example 6 Synthesis of acrylic resin (ACP-1) in which the alkali-soluble group is protected with a protecting group In a three-necked flask, 10 g of the acrylic resin (AC-1) obtained in Synthesis Example 3 and 18.2 g of PGMEA were weighed. Dissolved. To this were added 5.38 g (74.6 mmol) of ethyl vinyl ether and 1.88 g (7.46 mmol) of pyridinium p-toluenesulfonate, and the mixture was stirred at room temperature for 14 hours. Next, 30 mL of ultrapure water was added, and purification by liquid separation operation was performed three times. Thereafter, molecular sieves were added and the mixture was dried for 12 hours. The protection rate of the alkali-soluble groups of the protected acrylic resin (ACP-1) recovered as a PGMEA solution was 33%, and the solid content concentration of the PGMEA solution of the protected acrylic resin (ACP-1) was 24% by mass. .
 合成例7 アルカリ可溶性基が保護基で保護されたポリイミド前駆体(PIP-2)の合成
 三口フラスコに、合成例1で得られたポリイミド前駆体(PI-1)を10g、ピリジン18.2gを秤量して溶解させた。ここに、二炭酸ジ-t-ブチル1.28g(5.9mmol)を添加し、室温で3時間撹拌した。次に1Lの超純水、濃塩酸20gの溶液に投入した。析出した粉体をろ過、水洗した。回収した保護化ポリイミド前駆体(PIP-2)のアルカリ可溶性基の保護率は33%であった。
Synthesis Example 7 Synthesis of polyimide precursor (PIP-2) in which alkali-soluble groups are protected with protecting groups In a three-necked flask, 10 g of the polyimide precursor (PI-1) obtained in Synthesis Example 1 and 18.2 g of pyridine were added. Weighed and dissolved. 1.28 g (5.9 mmol) of di-t-butyl dicarbonate was added thereto, and the mixture was stirred at room temperature for 3 hours. Next, it was poured into a solution of 1 L of ultrapure water and 20 g of concentrated hydrochloric acid. The precipitated powder was filtered and washed with water. The protection rate of alkali-soluble groups in the recovered protected polyimide precursor (PIP-2) was 33%.
 合成例8 アルカリ可溶性基が保護基で保護されたフェノール性水酸基を有する化合物(TPPA-1)の合成
 三口フラスコに、TrisP-PA(商品名、本州化学工業(株))を10g、PGMEA28.3gを秤量して溶解させた。ここに、エチルビニルエーテル3.88g(53.8mmol)、p-トルエンスルホン酸ピリジニウム1.35g(5.38mmol)を加え、室温で24時間撹拌した。次に、30mLの超純水を加え、分液操作による精製を3回行った。その後、モレキュラーシーブを加え、12時間乾燥した。PGMEA溶液として回収した保護化フェノール性低分子(TPPA-1)のアルカリ可溶性基の保護率は33%であり、保護化フェノール性低分子(TPPA-1)のPGMEA溶液の固形分濃度は24質量%であった。
Synthesis Example 8 Synthesis of a compound (TPPA-1) whose alkali-soluble group has a phenolic hydroxyl group protected with a protecting group In a three-necked flask, 10 g of TrisP-PA (trade name, Honshu Chemical Industry Co., Ltd.) and 28.3 g of PGMEA were added. was weighed and dissolved. To this were added 3.88 g (53.8 mmol) of ethyl vinyl ether and 1.35 g (5.38 mmol) of pyridinium p-toluenesulfonate, and the mixture was stirred at room temperature for 24 hours. Next, 30 mL of ultrapure water was added, and purification by liquid separation operation was performed three times. Thereafter, molecular sieves were added and the mixture was dried for 12 hours. The protection rate of the alkali-soluble groups of the protected phenolic low molecule (TPPA-1) recovered as a PGMEA solution was 33%, and the solid content concentration of the PGMEA solution of the protected phenolic low molecule (TPPA-1) was 24% by mass. %Met.
 合成例8 保護化フェノール性低分子化合物(TEKP-1)の合成
 三口フラスコに、TekP-4HBPA(商品名、本州化学工業(株))を10g、PGMEA28.3gを秤量して溶解させた。ここに、エチルビニルエーテル3.88g(53.8mmol)、p-トルエンスルホン酸ピリジニウム1.35g(5.38mmol)を加え、室温で24時間撹拌した。次に、30mLの超純水を加え、分液操作による精製を3回行った。その後、モレキュラーシーブを加え、12時間乾燥した。PGMEA溶液として回収した保護化フェノール性低分子(TEKP-1)のアルカリ可溶性基の保護率は33%であり、保護化フェノール性低分子(TEKP-1)のPGMEA溶液の固形分濃度は24質量%であった。
Synthesis Example 8 Synthesis of protected phenolic low molecular weight compound (TEKP-1) In a three-necked flask, 10 g of TekP-4HBPA (trade name, Honshu Chemical Industry Co., Ltd.) and 28.3 g of PGMEA were weighed and dissolved. To this were added 3.88 g (53.8 mmol) of ethyl vinyl ether and 1.35 g (5.38 mmol) of pyridinium p-toluenesulfonate, and the mixture was stirred at room temperature for 24 hours. Next, 30 mL of ultrapure water was added, and purification by liquid separation operation was performed three times. Thereafter, molecular sieves were added and the mixture was dried for 12 hours. The protection rate of the alkali-soluble group of the protected phenolic low molecule (TEKP-1) recovered as a PGMEA solution was 33%, and the solid content concentration of the PGMEA solution of the protected phenolic low molecule (TEKP-1) was 24% by mass. %Met.
 合成例9 アルカリ可溶性基が保護基で保護されたフェノール性水酸基を有する化合物(CATE-1)の合成
 三口フラスコに、カテコールを10g、PGMEA28.3gを秤量して溶解させた。ここに、エチルビニルエーテル10.17g(141.0mmol)、p-トルエンスルホン酸ピリジニウム3.54g(14.10mmol)を加え、室温で24時間撹拌した。次に、30mLの超純水を加え、分液操作による精製を3回行った。その後、モレキュラーシーブを加え、12時間乾燥した。PGMEA溶液として回収した保護化フェノール性低分子(CATE-1)のアルカリ可溶性基の保護率は33%であり、保護化フェノール性低分子(CATE-1)のPGMEA溶液の固形分濃度は24質量%であった。
Synthesis Example 9 Synthesis of a compound (CATE-1) in which the alkali-soluble group has a phenolic hydroxyl group protected with a protecting group In a three-necked flask, 10 g of catechol and 28.3 g of PGMEA were weighed and dissolved. To this were added 10.17 g (141.0 mmol) of ethyl vinyl ether and 3.54 g (14.10 mmol) of pyridinium p-toluenesulfonate, and the mixture was stirred at room temperature for 24 hours. Next, 30 mL of ultrapure water was added, and purification by liquid separation operation was performed three times. Thereafter, molecular sieves were added and the mixture was dried for 12 hours. The protection rate of the alkali-soluble group of the protected phenolic low molecule (CATE-1) recovered as a PGMEA solution was 33%, and the solid content concentration of the PGMEA solution of the protected phenolic low molecule (CATE-1) was 24% by mass. %Met.
 各実施例および比較例における特性評価は以下の方法により行った。 Characteristic evaluation in each Example and Comparative Example was performed by the following method.
 (1)感度評価
 樹脂組成物を塗布現像装置ACT-8(東京エレクトロン(株)製)を用いて、8インチシリコンウェハー上にスピンコート法で塗布し、120℃で3分間ホットプレートにてベークをして膜厚3.0μmのプリベーク膜を作製した。なお、膜厚は大日本スクリーン製造(株)製ラムダエースSTM-602を使用し、屈折率1.63の条件で測定した。
(1) Sensitivity evaluation The resin composition was applied by spin coating onto an 8-inch silicon wafer using a coating and developing device ACT-8 (manufactured by Tokyo Electron Ltd.), and baked on a hot plate at 120°C for 3 minutes. A pre-baked film with a thickness of 3.0 μm was prepared by doing this. The film thickness was measured using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. under the condition of a refractive index of 1.63.
 その後、露光機i線ステッパーNSR-2005i9C(ニコン社製)を用い、10μmのコンタクトホールのパターンを有するマスクを介して、50~300mJ/cmの露光量にて10mJ/cmステップで露光した。露光後、前記ACT-8の現像装置を用いて、2.38質量%のテトラメチルアンモニウム(TMAH)水溶液(多摩化学工業(株)製)を用いて現像時の膜減りが0.5μmになる時間で現像した後、蒸留水でリンス後、振り切り乾燥し、パターンを得た。 Thereafter, using an exposure machine i-line stepper NSR-2005i9C (manufactured by Nikon Corporation), exposure was performed in 2 steps of 10 mJ/cm at an exposure dose of 50 to 300 mJ/cm 2 through a mask having a pattern of 10 μm contact holes. . After exposure, using the ACT-8 developing device, a 2.38% by mass tetramethylammonium (TMAH) aqueous solution (manufactured by Tama Chemical Industry Co., Ltd.) was developed so that the film loss was 0.5 μm. After developing for a while, rinsing with distilled water and shaking off to dry, a pattern was obtained.
 得られた現像膜のパターンをFDP顕微鏡MX61(オリンパス(株)社製)を用いて倍率20倍で観察し、コンタクトホールの開口径が10μmに達した最低必要露光量を求め、これを露光感度とし、200mJ/cm以下を合格とした。より感度の数値が小さい方が高感度で好ましい。 The pattern of the obtained developed film was observed at 20x magnification using an FDP microscope MX61 (manufactured by Olympus Corporation), and the minimum required exposure amount at which the opening diameter of the contact hole reached 10 μm was determined, and this was determined as the exposure sensitivity. A value of 200 mJ/cm 2 or less was considered to be a pass. The smaller the sensitivity value is, the higher the sensitivity is, which is preferable.
 (2)折り曲げ耐性評価
 樹脂組成物をポリイミドフィルム基板上に、スピンコート法により塗布し、乾燥工程として120℃のホットプレート上で2分間プリベークし、樹脂膜を得た。次に自動現像装置(滝沢産業(株)製AD-2000)を用いて2.38質量%水酸化テトラメチルアンモニウム水溶液で90秒間シャワー現像し、次いで純水で30秒間リンスした。現像したポジ型感光性樹脂膜付き基板を窒素雰囲気下250℃のオーブン中で60分間キュア(加熱処理)して膜厚2.0μmの硬化物を得た。
(2) Evaluation of bending resistance The resin composition was applied onto a polyimide film substrate by spin coating, and as a drying step, it was prebaked on a hot plate at 120° C. for 2 minutes to obtain a resin film. Next, using an automatic developing device (AD-2000 manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed for 90 seconds with a 2.38% by mass tetramethylammonium hydroxide aqueous solution, and then rinsed with pure water for 30 seconds. The developed substrate with a positive photosensitive resin film was cured (heated) in a nitrogen atmosphere at 250° C. for 60 minutes to obtain a cured product with a film thickness of 2.0 μm.
 次いで硬化物を具備するポリイミドフィルム基板を、縦50mm×横10mmの大きさに10枚切り出した。次に切り出したポリイミドフィルム基板を空気雰囲気下100℃条件で500時間保管した。その後、硬化物が設けられた側の面を外側にして、縦方向の中央部で、折り曲げた基板の間隔が所定の間隔となるよう、また折り曲げ部分の形状が半円状となるよう、保持して、180°折り曲げ、折り曲げた状態で30秒間保持した。30秒後、折り曲げたポリイミドフィルム基板を開き、FPD検査顕微鏡(MX-61L;オリンパス(株)製)を用いて、折り曲げ部付近の硬化物表面を観察し、硬化物表面の外観変化を評価した。折り曲げ試験は曲率半径0.1~2.0mmの範囲で実施し、硬化物表面にクラックなどの外観変化が生じない最小の曲率半径(mm)を記録した。最小の曲率半径(mm)の値が小さい方が折り曲げ耐性が高くて好ましい。 Next, the polyimide film substrate provided with the cured product was cut out into 10 pieces measuring 50 mm in length and 10 mm in width. Next, the cut polyimide film substrate was stored in an air atmosphere at 100° C. for 500 hours. Then, hold the bent substrates at the center vertically with the side with the cured product on the outside so that they are spaced at the predetermined intervals and the shape of the bent portion is semicircular. Then, it was bent 180° and held in the bent state for 30 seconds. After 30 seconds, the bent polyimide film substrate was opened, and the surface of the cured product near the folded part was observed using an FPD inspection microscope (MX-61L; manufactured by Olympus Corporation), and changes in the appearance of the surface of the cured product were evaluated. . The bending test was conducted in the range of curvature radius of 0.1 to 2.0 mm, and the minimum curvature radius (mm) at which no appearance change such as cracks occurred on the surface of the cured product was recorded. The smaller the value of the minimum radius of curvature (mm) is, the higher the bending resistance is, which is preferable.
 (3)耐熱性評価
 樹脂組成物を塗布現像装置ACT-8(東京エレクトロン(株)製)を用いて、8インチシリコンウェハー上にスピンコート法で塗布し、120℃で3分間ホットプレートにてベークをして膜厚3.0μmのプリベーク膜を作製した。その後、前記ACT-8の現像装置を用いて、2.38質量%TMAH水溶液を用いて現像時の膜減りが0.5μmになる時間で現像した後、蒸留水でリンス後、振り切り乾燥した。その後、イナートオーブン(光洋サーモシステム(株)製CLH-21CD-S)を用いて窒素雰囲気下250℃のオーブン中で60分間キュアした。得られた硬化膜をフッ酸によって剥離することで、フィルムを得た。得られた単膜フィルム10mgをアルミ製のクランプセルに詰めてTGAによる測定用のサンプルを作成し、TGA-50(島津製作所製)を用いて、窒素雰囲気下で、1分間に10℃昇温しながら、熱重量測定を行った。200℃における重量から5%重量減少した温度を求めた。この温度が320℃以上であるものを合格とした。200℃における重量から5%重量減少した温度が高い方が、耐熱性が高く、好ましい。
(3) Heat resistance evaluation The resin composition was applied by spin coating onto an 8-inch silicon wafer using a coating and developing device ACT-8 (manufactured by Tokyo Electron Ltd.), and heated on a hot plate at 120°C for 3 minutes. Baking was performed to produce a pre-baked film with a thickness of 3.0 μm. Thereafter, using the ACT-8 developing device, the film was developed using a 2.38% by mass TMAH aqueous solution for a time such that the film loss during development was 0.5 μm, rinsed with distilled water, and then shaken off to dry. Thereafter, it was cured for 60 minutes in an oven at 250° C. under a nitrogen atmosphere using an inert oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.). A film was obtained by peeling off the obtained cured film with hydrofluoric acid. A sample for measurement by TGA was prepared by packing 10 mg of the obtained single film into an aluminum clamp cell, and the temperature was raised by 10°C per minute in a nitrogen atmosphere using TGA-50 (manufactured by Shimadzu Corporation). At the same time, thermogravimetric measurements were performed. The temperature at which the weight decreased by 5% from the weight at 200°C was determined. Those whose temperature was 320°C or higher were considered to be passed. The higher the temperature at which the weight is reduced by 5% from the weight at 200°C, the higher the heat resistance is, which is preferable.
 (4)現像密着性評価
 樹脂組成物を塗布現像装置ACT-8(東京エレクトロン(株)製)を用いて、8インチシリコンウェハー上にスピンコート法で塗布し、120℃で3分間ホットプレートにてベークをして膜厚3.0μmのプリベーク膜を作製した。なお、膜厚は大日本スクリーン製造(株)製ラムダエースSTM-602を使用し、屈折率1.63の条件で測定した。その後、露光機i線ステッパーNSR-2005i9C(ニコン社製)を用い、一辺が3~100μmの正方形パターンによる遮光部を多数有するマスクを介して、(1)で求めた露光感度の露光量にて露光した。なお、隣接する遮光部間および開口部間の長さが同一であり、その長さが3~100μmのテストマスクを用いた。露光後、前記ACT-8の現像装置を用いて、2.38質量%TMAH水溶液を用いて現像時の膜減りが0.5μmになる時間で現像した後、蒸留水でリンス後、振り切り乾燥し、パターンを得た。
(4) Evaluation of development adhesion The resin composition was coated on an 8-inch silicon wafer by spin coating using a coating and developing device ACT-8 (manufactured by Tokyo Electron Ltd.), and placed on a hot plate at 120°C for 3 minutes. A pre-baked film having a thickness of 3.0 μm was prepared by baking. The film thickness was measured using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. under the condition of a refractive index of 1.63. After that, using an exposure machine i-line stepper NSR-2005i9C (manufactured by Nikon Corporation), the exposure amount was set at the exposure sensitivity determined in (1) through a mask having many light-shielding parts with a square pattern of 3 to 100 μm on a side. exposed. Note that a test mask was used in which the lengths between adjacent light-shielding portions and between adjacent openings were the same, and the lengths were 3 to 100 μm. After exposure, the film was developed using the ACT-8 developing device with a 2.38% by mass TMAH aqueous solution for a time such that the film loss during development was 0.5 μm, rinsed with distilled water, and then shaken off to dry. , got the pattern.
 得られた現像膜のパターンをFDP顕微鏡MX61(オリンパス(株)社製)を用いて倍率20倍で観察し、1サイズあたり100箇所観察し、90個以上のパターンが剥がれず残っている最小の遮光パターンを求めた。10μm以下のパターンが剥がれずに残っていれば合格とした。 The pattern of the obtained developed film was observed using an FDP microscope MX61 (manufactured by Olympus Corporation) at a magnification of 20 times, and 100 spots per size were observed. A shading pattern was determined. If a pattern of 10 μm or less remained without peeling off, it was considered to be a pass.
 (5)画素分割層の金属元素およびハロゲン元素量
 有機EL表示装置の画素分割層中に、IMX-3500RS(アルバック社製)を用いて、塩素イオンおよびリチウムイオンをそれぞれ3.5×1014個/cm、1.2×1014個/cm注入し、相対感度係数(RSF)を算出した。
(5) Amount of metal element and halogen element in pixel dividing layer 3.5 x 10 14 chlorine ions and 3.5 14 lithium ions each were added to the pixel dividing layer of an organic EL display device using IMX-3500RS (manufactured by ULVAC). /cm 2 , 1.2×10 14 cells/cm 2 were injected, and the relative sensitivity factor (RSF) was calculated.
 得られた相対感度係数を基に、下記式により、TOF-SIMS分析から、画素分割層中、層表面から0.5μm付近の金属元素およびハロゲン元素(対象元素)濃度をそれぞれ定量した。TOF-SIMS分析はION-TOF社製TOF.SIMS5を用いた。 Based on the obtained relative sensitivity coefficient, the metal element and halogen element (target element) concentrations in the pixel dividing layer near 0.5 μm from the layer surface were determined by TOF-SIMS analysis using the following formula. TOF-SIMS analysis was performed using TOF. SIMS5 was used.
 なお、濃度は塩素については画素分割層中の感度をもとに換算した。2次イオン極性が陰イオンである他の元素については、画素分割層中の塩素に関する相対感度係数を用いて定量した。また、2次イオン極性が陽イオンである他の元素については、画素分割層中のリチウムにおいて求められた相対感度係数を、別途求めたシリコンウェハーに注入されたリチウムと各元素の相対感度係数比を用いて補正して定量した。相対感度係数については、Secondary Ion Mass Spectrometry:A Practical Handbook for Depth Profiling and Bulk Impurity Analysis(Robert G. Wilson. Fred A. Stevie. Charles W. Magee著)のApp.E17~18に記載の値を用いた。
対象元素濃度=RSF(atom/cm)×対象元素イオン強度(counts)/硬化膜のイオン強度(counts)。
Note that the concentration of chlorine was calculated based on the sensitivity in the pixel division layer. Other elements whose secondary ion polarity is anion were quantified using the relative sensitivity coefficient with respect to chlorine in the pixel dividing layer. In addition, for other elements whose secondary ion polarity is cation, the relative sensitivity coefficient determined for lithium in the pixel dividing layer is the ratio of the relative sensitivity coefficient of each element to the separately determined lithium implanted in the silicon wafer. It was corrected and quantified using Regarding relative sensitivity coefficients, see Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis (Robert G. Wilson. App. by Fred A. Stevie.Charles W. Magee). The values described in E17-18 were used.
Target element concentration = RSF (atoms/cm 3 )×target element ion strength (counts)/cured film ion strength (counts).
 (6)表示装置の長期信頼性(発光面積率)
 有機EL表示装置を、表に示す駆動電圧で、10mA/cmで直流駆動にて250時間、500時間、1000時間発光させ、0時間時の発光部の面積を100%として、それぞれの発光時間における発光部の面積率(発光面積率)を測定した。250時間、500時間、1000時間経過後の発光面積率が80%以上であれば長期信頼性が優れていると言え、90%以上であればより好ましい。
(6) Long-term reliability of display device (light emitting area ratio)
The organic EL display device was driven with direct current at 10 mA/cm 2 at the drive voltage shown in the table to emit light for 250 hours, 500 hours, and 1000 hours, and each light emission time was determined by setting the area of the light emitting part at 0 hour as 100%. The area ratio of the light emitting part (light emitting area ratio) was measured. It can be said that long-term reliability is excellent if the luminescent area ratio after 250 hours, 500 hours, or 1000 hours is 80% or more, and more preferably 90% or more.
 [実施例1]
 黄色灯下、合成例4で得られたPIP-1のPGMEA溶液を37.37g(PIP-1の質量として8.97g、PGMEAの質量として28.40g)、PAG-103を0.448g、ジブトキシアントラセンを0.135g、VG-3101を0.448g秤量し、GBLを27.00g、PGMEAを3.10g、PGME(プロピレングリコールモノメチルエーテル)を31.50g添加し、撹拌して溶解させた。さらに、5質量%塩化ナトリウム水溶液0.01g添加し、その後、得られた溶液を0.45μmφのフィルターでろ過し、感光性樹脂組成物α-1を調製した。
[Example 1]
Under a yellow light, 37.37 g of the PGMEA solution of PIP-1 obtained in Synthesis Example 4 (8.97 g as the mass of PIP-1, 28.40 g as the mass of PGMEA), 0.448 g of PAG-103, and 0.135 g of butoxyanthracene and 0.448 g of VG-3101 were weighed out, and 27.00 g of GBL, 3.10 g of PGMEA, and 31.50 g of PGME (propylene glycol monomethyl ether) were added and stirred to dissolve. Further, 0.01 g of a 5% by mass aqueous sodium chloride solution was added, and the resulting solution was then filtered through a 0.45 μmφ filter to prepare photosensitive resin composition α-1.
 図3に示す有機EL表示装置を以下の方法により作製した。まず、38mm×46mmの無アルカリガラス基板47に、TFTと電源からの配線を形成後、スピンコーター(MS-A100;ミカサ(株)製)を用いてスピンコーティングにより感光性樹脂組成物α-1を塗布した後、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて100℃で120秒間プリベークし、膜厚2.0μmのプリベーク膜を作製した。 The organic EL display device shown in FIG. 3 was manufactured by the following method. First, after forming wiring from a TFT and a power supply on a 38 mm x 46 mm alkali-free glass substrate 47, photosensitive resin composition α-1 was coated by spin coating using a spin coater (MS-A100; manufactured by Mikasa Co., Ltd.) After coating, prebaking was performed at 100° C. for 120 seconds using a hot plate (SCW-636; manufactured by Dainippon Screen Mfg. Co., Ltd.) to produce a prebaked film with a thickness of 2.0 μm.
 作製したプリベーク膜を、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学(株)製)を用いて、所定のパターンを有するフォトマスクを介して、i線、h線及びg線に対応するスペクトルを全て含む超高圧水銀灯でパターニング露光した後、フォトリソ用小型現像装置(AC3000;滝沢産業(株)製)を用いて、2.38質量%TMAH水溶液で60秒間現像し、水で30秒間リンスした。この基板を、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム(株)製)を用いて、250℃で1時間熱硬化させ、膜厚約1.0μmの平坦化膜を作製した。 The prepared prebaked film is exposed to i-line, h-line, and g-line through a photomask having a predetermined pattern using a double-sided alignment single-sided exposure device (mask aligner PEM-6M; manufactured by Union Optical Co., Ltd.). After patterning exposure with an ultra-high-pressure mercury lamp that includes all the spectra of I rinsed it. This substrate was thermally cured at 250° C. for 1 hour using a high-temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.) to produce a flattened film with a thickness of about 1.0 μm.
 次に、スパッタ法によりITO透明導電膜100nmを形成し、第一電極48としてエッチングし、透明電極を形成した。また、第二電極を取り出すため補助電極49も同時に形成した。得られた基板をセミコクリーン56(商品名、フルウチ化学(株)製)で10分間超音波洗浄してから、超純水で洗浄した。次に、この基板全面に、感光性樹脂組成物α-1をスピンコーター(MS-A100;ミカサ(株)製)を用いてスピンコーティングにより塗布した後、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて100℃で120秒間プリベークし、膜厚約2.0μmのプリベーク膜を作製した。 Next, a 100 nm thick ITO transparent conductive film was formed by sputtering and etched as the first electrode 48 to form a transparent electrode. Further, an auxiliary electrode 49 was also formed at the same time in order to take out the second electrode. The obtained substrate was ultrasonically cleaned for 10 minutes using Semico Clean 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.), and then washed with ultrapure water. Next, photosensitive resin composition α-1 was applied to the entire surface of the substrate by spin coating using a spin coater (MS-A100; manufactured by Mikasa Co., Ltd.), and then a hot plate (SCW-636; Dainippon Screen A prebaked film having a thickness of about 2.0 μm was prepared by prebaking at 100° C. for 120 seconds using a prebaked film (manufactured by Seizo Co., Ltd.).
 作製したプリベーク膜を、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学(株)製)を用いて、所定のパターンを有するフォトマスクを介して、i線、h線及びg線に対応するスペクトルを全て含む超高圧水銀灯でパターニング露光した後、フォトリソ用小型現像装置(AC3000;滝沢産業(株)製)を用いて、2.38質量%TMAH水溶液で60秒間現像し、水で30秒間リンスした。このようにして、幅50μm、長さ260μmの開口部が幅方向にピッチ155μm、長さ方向にピッチ465μmで配置され、それぞれの開口部が、第一電極が露出した形状の画素分割層50を、基板有効エリアに限定して形成した。なお、この開口部が、最終的に有機EL表示装置の発光層となる。また、基板有効エリアは16mm四方にし、開口率18%の絶縁層を設け、その絶縁層50の厚さは約1.0μmで形成した。 The prepared prebaked film is exposed to i-line, h-line, and g-line through a photomask having a predetermined pattern using a double-sided alignment single-sided exposure device (mask aligner PEM-6M; manufactured by Union Optical Co., Ltd.). After patterning exposure with an ultra-high-pressure mercury lamp that includes all the spectra of I rinsed it. In this way, openings each having a width of 50 μm and a length of 260 μm are arranged at a pitch of 155 μm in the width direction and a pitch of 465 μm in the length direction, and each opening has a pixel dividing layer 50 in a shape in which the first electrode is exposed. , was formed only in the effective area of the substrate. Note that this opening ultimately becomes the light emitting layer of the organic EL display device. Further, the effective area of the substrate was 16 mm square, an insulating layer with an aperture ratio of 18% was provided, and the thickness of the insulating layer 50 was approximately 1.0 μm.
 得られた基板に窒素プラズマ処理を行った後、真空蒸着法により発光層を含む有機EL層51を形成した。なお、蒸着時の真空度は1×10-3Pa以下であり、蒸着中は蒸着源に対して基板を回転させた。まず、正孔注入層として化合物(HT-1)を10nm、正孔輸送層として化合物(HT-2)を50nm蒸着した。次に発光層に、ホスト材料としての化合物(GH-1)とドーパント材料としての化合物(GD-1)を、ドープ濃度が10%になるようにして40nmの厚さに蒸着した。次に、電子輸送材料として化合物(ET-1)と化合物(LiQ)を体積比1:1で40nmの厚さに積層した。有機EL層で用いた化合物の構造を以下に示す。 After nitrogen plasma treatment was performed on the obtained substrate, an organic EL layer 51 including a light emitting layer was formed by vacuum evaporation. Note that the degree of vacuum during vapor deposition was 1×10 −3 Pa or less, and the substrate was rotated with respect to the vapor deposition source during vapor deposition. First, compound (HT-1) was deposited to a thickness of 10 nm as a hole injection layer, and compound (HT-2) was deposited to a thickness of 50 nm as a hole transport layer. Next, a compound (GH-1) as a host material and a compound (GD-1) as a dopant material were deposited on the light emitting layer to a thickness of 40 nm at a doping concentration of 10%. Next, compound (ET-1) and compound (LiQ) were stacked as electron transport materials at a volume ratio of 1:1 to a thickness of 40 nm. The structure of the compound used in the organic EL layer is shown below.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 次に、化合物(LiQ)を2nm蒸着した後、MgおよびAgを体積比10:1で100nm蒸着して第二電極52とした。最後に、低湿窒素雰囲気下でキャップ状ガラス板を、エポキシ樹脂系接着剤を用いて接着することで封止をし、1枚の基板上に1辺が5mmの四角形である有機EL表示装置を4つ作製した。なお、ここで言う膜厚は水晶発振式膜厚モニターにおける表示値である。 Next, a compound (LiQ) was deposited to a thickness of 2 nm, and then Mg and Ag were deposited to a thickness of 100 nm at a volume ratio of 10:1 to form the second electrode 52. Finally, the cap-shaped glass plate is sealed using an epoxy resin adhesive in a low-humidity nitrogen atmosphere, and an organic EL display device with a square shape of 5 mm on a side is mounted on one substrate. I made four. Note that the film thickness referred to here is a value displayed on a crystal oscillation type film thickness monitor.
 [実施例2~14、18]
 実施例1と同様の方法で、化合物の種類と量は表1および2に記載の通りで組成物α-2~α-14、α-20を得た。得られた各組成物を用いて、実施例1と同様に有機EL表示装置を作製した。
[Examples 2 to 14, 18]
Compositions α-2 to α-14 and α-20 were obtained in the same manner as in Example 1, with the types and amounts of compounds listed in Tables 1 and 2. Organic EL display devices were produced in the same manner as in Example 1 using each of the obtained compositions.
 [比較例1~3]
 感光性樹脂組成物α-1にかえて表1に記載の感光性樹脂組成物α-16~α-18を用いたこと以外は、実施例1と同様に有機EL表示装置を作製した。
[Comparative Examples 1 to 3]
An organic EL display device was produced in the same manner as in Example 1, except that photosensitive resin compositions α-16 to α-18 listed in Table 1 were used instead of photosensitive resin composition α-1.
 [実施例15]
 感光性樹脂組成物α-1のうち、5%塩化ナトリウム水溶液を5%塩化カリウム水溶液に変更した以外は、実施例1と同様に感光性樹脂組成物α-15を調製した。得られた感光性樹脂組成物を用いて、実施例1と同様に有機EL表示装置を作製した。
[Example 15]
Photosensitive resin composition α-15 was prepared in the same manner as in Example 1, except that the 5% sodium chloride aqueous solution in photosensitive resin composition α-1 was changed to 5% potassium chloride aqueous solution. An organic EL display device was produced in the same manner as in Example 1 using the obtained photosensitive resin composition.
 [実施例16~17]
 画素分割層の開口率を変更した以外は実施例1と同様に有機EL表示装置を作製した。
[Examples 16-17]
An organic EL display device was produced in the same manner as in Example 1 except that the aperture ratio of the pixel dividing layer was changed.
 [実施例19]
 感光性樹脂組成物α-1のうち、5%塩化ナトリウム水溶液を未添加に変更した以外は、実施例1と同様に感光性樹脂組成物α-21を調製した。得られた感光性樹脂組成物を用いて、実施例1と同様に有機EL表示装置を作製した。
[Example 19]
Photosensitive resin composition α-21 was prepared in the same manner as in Example 1, except that the 5% aqueous sodium chloride solution in photosensitive resin composition α-1 was not added. An organic EL display device was produced in the same manner as in Example 1 using the obtained photosensitive resin composition.
 [比較例4]
 感光性樹脂組成物α-1のうち、5%塩化ナトリウム水溶液の添加量を0.1gに変更した以外は、実施例1と同様に感光性樹脂組成物α-19を調製した。得られた感光性樹脂組成物を用いて、実施例1と同様に有機EL表示装置を作製した。
[Comparative example 4]
Photosensitive resin composition α-19 was prepared in the same manner as in Example 1, except that the amount of the 5% aqueous sodium chloride solution in photosensitive resin composition α-1 was changed to 0.1 g. An organic EL display device was produced in the same manner as in Example 1 using the obtained photosensitive resin composition.
 各実施例および比較例について、前述の方法により評価した結果を表1および表2に示す。なお、駆動電圧は10mA/cmで直流駆動したときの電圧を記録した。 Tables 1 and 2 show the results of evaluating each Example and Comparative Example using the method described above. Note that the driving voltage was the voltage when DC driving was performed at 10 mA/cm 2 .
 実施例および比較例の組成および評価結果を表1および表2に示す。 The compositions and evaluation results of Examples and Comparative Examples are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
1   TFT
2   配線
3   TFT絶縁層
4   平坦化層
5   ITO
6   基板
7   コンタクトホール
8   画素分割層
9   ガラス基板
10  TFT
11  平坦化層
12  第一電極
13  プリベーク膜
14  マスク
15  活性化学線
16  画素分割層
17  発光層
18  第二電極
19  平坦化用の硬化膜
20  カバーガラス
46  平坦化層
47  ガラス基板
48  第一電極
49  補助電極
50  画素分割層
51  有機EL層
52  第二電極
1 TFT
2 Wiring 3 TFT insulating layer 4 Planarization layer 5 ITO
6 Substrate 7 Contact hole 8 Pixel division layer 9 Glass substrate 10 TFT
11 Planarization layer 12 First electrode 13 Prebaked film 14 Mask 15 Actinic radiation 16 Pixel division layer 17 Light emitting layer 18 Second electrode 19 Cured film for planarization 20 Cover glass 46 Planarization layer 47 Glass substrate 48 First electrode 49 Auxiliary electrode 50 Pixel division layer 51 Organic EL layer 52 Second electrode

Claims (11)

  1. 少なくとも基板、第一電極、第二電極、発光層、平坦化層及び画素分割層を有する有機EL表示装置であって、
    該平坦化層または該画素分割層が、
    [樹脂組成物A](A-1)酸により脱離可能な保護基で保護されたアルカリ可溶性基を有する樹脂(以下、「樹脂(A-1)」という)および(B)光酸発生剤を含有する樹脂組成物、または、
    [樹脂組成物B]アルカリ可溶性基を有する樹脂、(A-2)酸により脱離可能な保護基で保護されたアルカリ可溶性基を有する化合物(以下、「化合物(A-2)」という)および(B)光酸発生剤を含有する樹脂組成物、
    が露光・現像・硬化された硬化物を有し、
    該硬化物の、飛行時間型二次イオン質量分析により測定される金属元素およびハロゲン元素の含有量の総和が1.0×1016atom/cm以上1.0×1023atom/cm以下である、
    有機EL表示装置。
    An organic EL display device comprising at least a substrate, a first electrode, a second electrode, a light emitting layer, a flattening layer, and a pixel dividing layer,
    The planarization layer or the pixel division layer is
    [Resin composition A] (A-1) A resin having an alkali-soluble group protected with a protecting group that can be removed by acid (hereinafter referred to as "resin (A-1)") and (B) a photoacid generator A resin composition containing, or
    [Resin composition B] A resin having an alkali-soluble group, (A-2) a compound having an alkali-soluble group protected with a protecting group that can be removed by an acid (hereinafter referred to as "compound (A-2)"), and (B) a resin composition containing a photoacid generator,
    has a cured product that has been exposed, developed and cured,
    The total content of metal elements and halogen elements measured by time-of-flight secondary ion mass spectrometry of the cured product is 1.0×10 16 atoms/cm 3 or more and 1.0×10 23 atoms/cm 3 or less is,
    Organic EL display device.
  2. 前記樹脂組成物Aまたは樹脂組成物Bに用いられるアルカリ可溶性基を有する樹脂(ただし、樹脂組成物Aにあっては保護基で保護される前の樹脂をいう)が、ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体、ポリベンゾオキサゾール前駆体およびそれらの共重合体からなる群より選択される1種以上の樹脂である請求項1に記載の有機EL表示装置。 The resin having an alkali-soluble group used in the resin composition A or resin composition B (in the case of resin composition A, this refers to the resin before being protected with a protective group) is polyimide, polybenzoxazole, The organic EL display device according to claim 1, which is one or more resins selected from the group consisting of polyimide precursors, polybenzoxazole precursors, and copolymers thereof.
  3. 前記樹脂組成物Aが、さらに化合物(A-2)を含有する請求項1または2に記載の有機EL表示装置。 The organic EL display device according to claim 1 or 2, wherein the resin composition A further contains a compound (A-2).
  4. 前記化合物(A-2)は、酸により脱離可能な保護基で保護されたアルカリ可溶性基を有するフェノール化合物であり、かつ、保護基で保護される前の分子量が、100以上600以下である請求項1~3のいずれかに記載の有機EL表示装置。 The compound (A-2) is a phenol compound having an alkali-soluble group protected with an acid-removable protecting group, and has a molecular weight of 100 or more and 600 or less before being protected with the protecting group. The organic EL display device according to any one of claims 1 to 3.
  5. 前記樹脂組成物Aおよび樹脂組成物Bにおいて、全樹脂成分の重量を100重量部としたとき、化合物(A-2)の含有量が、1重量部以上30重量部以下である請求項1~4のいずれかに記載の有機EL表示装置。 In the resin composition A and the resin composition B, the content of the compound (A-2) is 1 part by weight or more and 30 parts by weight or less when the weight of all resin components is 100 parts by weight. 4. The organic EL display device according to any one of 4.
  6. 前記硬化物の、飛行時間型二次イオン質量分析により測定されるナトリウムおよびカリウムの含有量の総和が1.0×1017atom/cm以上1.0×1022atom/cm以下である請求項1~5のいずれかに記載の有機EL表示装置。 The total content of sodium and potassium in the cured product measured by time-of-flight secondary ion mass spectrometry is 1.0×10 17 atom/cm 3 or more and 1.0×10 22 atom/cm 3 or less. The organic EL display device according to any one of claims 1 to 5.
  7. 前記硬化物の、飛行時間型二次イオン質量分析により測定されるフッ素元素および塩素元素の含有量の総和が1.0×1017atom/cm以上1.0×1022atom/cm以下である請求項1~6のいずれかに記載の有機EL表示装置。 The total content of fluorine and chlorine elements in the cured product measured by time-of-flight secondary ion mass spectrometry is 1.0×10 17 atom/cm 3 or more and 1.0×10 22 atom/cm 3 or less The organic EL display device according to any one of claims 1 to 6.
  8. 前記樹脂組成物Aおよび樹脂組成物Bにおいて、全樹脂成分の重量を100重量部としたとき、前記(B)光酸発生剤の含有量が、0.1重量部以上30重量部以下である請求項1~7のいずれかに記載の有機EL表示装置。 In the resin composition A and the resin composition B, when the weight of all resin components is 100 parts by weight, the content of the photoacid generator (B) is 0.1 parts by weight or more and 30 parts by weight or less. The organic EL display device according to any one of claims 1 to 7.
  9. 前記(B)光酸発生剤が、オキシムスルホネート系光酸発生剤、オニウム塩系光酸発生剤およびナフタルイミド系光酸発生剤からなる群より選択される1種以上の光酸発生剤である請求項1~8のいずれかに記載の有機EL表示装置。 The photoacid generator (B) is one or more photoacid generators selected from the group consisting of oxime sulfonate photoacid generators, onium salt photoacid generators, and naphthalimide photoacid generators. The organic EL display device according to any one of claims 1 to 8.
  10. 前記酸により脱離可能な保護基が、アセタール基およびケタール基からなる群より選択される1種以上の基である請求項1~9いずれかに記載の有機EL表示装置。 The organic EL display device according to any one of claims 1 to 9, wherein the acid-removable protecting group is one or more groups selected from the group consisting of an acetal group and a ketal group.
  11. 前記樹脂組成物が、さらに(C)チオキサントン系またはアントラセン系の増感剤を含有する請求項1~10のいずれかに記載の有機EL表示装置。 The organic EL display device according to any one of claims 1 to 10, wherein the resin composition further contains (C) a thioxanthone-based or anthracene-based sensitizer.
PCT/JP2023/027144 2022-09-16 2023-07-25 Organic el display device WO2024057730A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-147614 2022-09-16
JP2022147614 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024057730A1 true WO2024057730A1 (en) 2024-03-21

Family

ID=90274679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027144 WO2024057730A1 (en) 2022-09-16 2023-07-25 Organic el display device

Country Status (1)

Country Link
WO (1) WO2024057730A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035819A1 (en) * 2014-09-04 2016-03-10 富士フイルム株式会社 Photosensitive resin composition, method for manufacturing cured film, cured film, liquid crystal display device, organic electroluminescence display device, and touch panel
WO2016043203A1 (en) * 2014-09-17 2016-03-24 富士フイルム株式会社 Positive photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic electroluminescent display device and touch panel
WO2018123853A1 (en) * 2016-12-26 2018-07-05 東レ株式会社 Organic el display device
JP2020004717A (en) * 2018-06-25 2020-01-09 東レ株式会社 Organic el display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035819A1 (en) * 2014-09-04 2016-03-10 富士フイルム株式会社 Photosensitive resin composition, method for manufacturing cured film, cured film, liquid crystal display device, organic electroluminescence display device, and touch panel
WO2016043203A1 (en) * 2014-09-17 2016-03-24 富士フイルム株式会社 Positive photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device, organic electroluminescent display device and touch panel
WO2018123853A1 (en) * 2016-12-26 2018-07-05 東レ株式会社 Organic el display device
JP2020004717A (en) * 2018-06-25 2020-01-09 東レ株式会社 Organic el display device

Similar Documents

Publication Publication Date Title
TWI752987B (en) resin composition
TWI725250B (en) Resin composition, resin sheet, cured film, organic EL display device, semiconductor electronic part, semiconductor device, and method of manufacturing organic EL display device
JP6841242B2 (en) Organic EL display device
TWI724137B (en) Organic EL display element with hardened film
KR102489060B1 (en) Heat-resistant resin composition, method for producing a heat-resistant resin film, method for producing an interlayer insulating film or surface protective film, and method for producing electronic components or semiconductor components
JP2008039961A (en) Positive photosensitive resin composition and organic electroluminescence device using the same
JP4333219B2 (en) Photosensitive resin composition and method for producing heat-resistant resin film
JP2023153197A (en) Resin composition, resin sheet and cured film
JP2008040324A (en) Resin composition and method for producing patterned resin film using the same
WO2021182499A1 (en) Organic el display device and photosensitive resin composition
WO2020184326A1 (en) Photosensitive resin composition, photosensitive resin sheet, cured film, method for producing cured film, organic el display device and electronic component
JP7310349B2 (en) Organic EL display device
JP6903916B2 (en) Resin composition
WO2024057730A1 (en) Organic el display device
JP2004085622A (en) Positive photosensitive resin precursor composition and electronic part for semiconductor and display apparatus for organic electroluminescent element obtained by using the composition
JP2021039295A (en) Photosensitive resin composition, cured film, element having cured film and organic el display device
WO2023120352A1 (en) Photosensitive resin composition, cured object, cured object manufacturing method, organic el display device, and display device
TWI832989B (en) Photosensitive resin composition, photosensitive resin sheet, cured film, cured film manufacturing method, organic EL display device, and electronic components
WO2023013549A1 (en) Xanthene compound, resin composition, cured object, method for producing cured object, organic el display device, and display device
WO2023182327A1 (en) Positive photosensitive resin composition, cured product, organic el display device, and method for producing cured product
TW202323342A (en) Resin composition, cured product, organic EL display device, and method for producing cured product
CN117480218A (en) Xanthene compound, resin composition, cured product, method for producing cured product, organic EL display device, and display device