WO2024057728A1 - Electric motor control device and electric motor control method - Google Patents

Electric motor control device and electric motor control method Download PDF

Info

Publication number
WO2024057728A1
WO2024057728A1 PCT/JP2023/027092 JP2023027092W WO2024057728A1 WO 2024057728 A1 WO2024057728 A1 WO 2024057728A1 JP 2023027092 W JP2023027092 W JP 2023027092W WO 2024057728 A1 WO2024057728 A1 WO 2024057728A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
control device
electric motor
semiconductor switching
mcu
Prior art date
Application number
PCT/JP2023/027092
Other languages
French (fr)
Japanese (ja)
Inventor
登美夫 坂下
旭 石井
進 金子
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2024057728A1 publication Critical patent/WO2024057728A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to an electric motor control device and an electric motor control method.
  • Patent Document 1 In an electric power steering device for a vehicle, if a failure occurs in the drive system of the electric motor that assists the steering force, the assistance of the steering force by the electric motor will suddenly be lost. For this reason, as described in International Publication No. 2015/129271 pamphlet (Patent Document 1), the drive system of the electric motor is multiplexed. In controlling electric motors such as AC motors, DC current is converted into AC current using an inverter configured by appropriately connecting multiple semiconductor switching elements in order to be able to change the rotational speed and output torque arbitrarily. However, this alternating current is supplied to the electric motor.
  • an inverter in a drive system for example, by selectively operating the upper or lower semiconductor switching elements of the inverter, it is possible to determine whether or not there is a disconnection failure in the semiconductor switching element depending on the voltage upstream of the inverter and the voltage between the terminals of the electric motor. can be diagnosed.
  • diagnostic processing when diagnostic processing is executed by starting each drive system, for example, due to variations in execution time of the microcontrol unit, power may not be applied simultaneously from the inverter of each drive system to the electric motor. Sometimes it happens. In this case, since alternating current is supplied to the electric motor by a normal drive system, the semiconductor switching element in the drive system in which the semiconductor switching element has failed is incorrectly diagnosed as being normal.
  • An electric motor control device that drives and controls an electric motor having multiple phase windings includes a first drive system including a first microcontrol unit and a first inverter configured with a plurality of semiconductor switching elements. , a second microcontrol unit, and a second drive system including a second inverter configured with a plurality of semiconductor switching elements.
  • the first microcontroller controls the semiconductor switching elements of the first inverter to convert direct current to alternating current to drive and control the electric motor, and individually energizes the plurality of semiconductor switching elements of the first inverter.
  • the first inverter is configured to carry out a failure diagnosis of the first inverter.
  • the second inverter is connected to an electric line connecting the first inverter and the electric motor.
  • the second microcontrol unit controls the semiconductor switching element of the second inverter to convert direct current to alternating current to drive and control the electric motor when a failure occurs in the first drive system.
  • the present invention is configured to individually energize a plurality of semiconductor switching elements of the second inverter to perform failure diagnosis of the second inverter.
  • the first microcontrol unit is configured to perform a failure diagnosis of the first inverter when the plurality of semiconductor switching elements of the second inverter are not energized in the second drive system, and
  • the second microcontrol unit is configured to perform fault diagnosis of the second inverter when the plurality of semiconductor switching elements of the first inverter in the first drive system are not energized.
  • FIG. 1 is a schematic diagram showing an example of an electric power steering system.
  • 1 is a schematic diagram showing an example of a control system of an electric power steering system. It is a schematic diagram showing an example of the internal structure of a first motor of an electric motor and a first control device.
  • FIG. 1 is an overall schematic diagram showing an example of an electric motor control system. It is a flow chart which shows an example of the 1st diagnosis processing performed by the 1st control device. It is a flowchart which shows an example of the 1st diagnostic process performed by a 3rd control device.
  • FIG. 6 is an explanatory diagram of execution timing of diagnoses A and B by the first diagnostic process. It is a flowchart which shows an example of the 2nd diagnostic process performed by a 1st control device.
  • FIG. 7 is an explanatory diagram of execution timing of diagnoses A and B by the second diagnostic process. It is a flowchart which shows an example of the 3rd diagnostic process performed by a 1st control device. It is a flowchart which shows an example of the 3rd diagnostic process performed by a 3rd control device.
  • FIG. 1 shows an example of an electric power steering system 100 installed in a vehicle VH such as an automobile or a construction machine.
  • VH such as an automobile or a construction machine.
  • Fr in FIG. 1 represents the front of the vehicle.
  • the electric power steering system 100 includes a steering device 200 that steers front wheels FW, which are steered wheels, and a reaction force device 400 that applies reaction torque to a steering wheel SW operated by a driver of a vehicle VH.
  • a steering wheel SW and the front wheels FW are not mechanically connected, so that the electric power steering system 100 constitutes a steer-by-wire system.
  • the electric power steering system 100 is not limited to a steer-by-wire system, and may be a well-known steering system in which a steering wheel SW and a front wheel FW are mechanically connected.
  • the steering device 200 includes an electric motor 220 that generates a steering force for steering the front wheels FW, a steering control device 240 that drives and controls the electric motor 220, a steering mechanism 260, and an actual steering angle (actual steering angle) of the front wheels FW. and a steering angle sensor 280 that detects the steering angle.
  • the electric motor 220 is an AC motor equipped with multiple phase windings, for example, a three-phase brushless motor equipped with a U-phase coil, a V-phase coil, and a W-phase coil, and has a rotation angle that detects the rotation angle of the output shaft. It has a sensor 222.
  • the rotation angle sensor 222 for example, an encoder, a resolver, or the like can be used.
  • the steering control device 240 includes a microcontrol unit (MCU) that includes a processor, a nonvolatile memory, a volatile memory, an input/output circuit, a communication circuit, etc., and controls the electric motor according to an application program stored in the nonvolatile memory. 220 is driven and controlled.
  • MCU microcontrol unit
  • the steering mechanism 260 is a well-known mechanism that converts the rotational movement of the output shaft of the electric motor 220 into linear movement of the steering rod 262, and in this embodiment, a rack and pinion is used.
  • the rotational driving force of electric motor 220 is transmitted to pinion shaft 266 via reduction gear 264.
  • the steering rod 262 has a rack 270 that constantly engages with a pinion 268 provided on a pinion shaft 266. When the pinion 268 rotates, the steering rod 262 moves horizontally in the left-right direction of the vehicle VH via the rack 270 that meshes with the pinion, thereby changing the steering angle of the front wheels FW.
  • the steering mechanism 260 is not limited to a rack and pinion, and may be a mechanism using a ball screw, for example.
  • the steering device 200 converts the rotational motion of the electric motor 220 into a linear motion of the steering rod 262 via a reducer 264, a pinion shaft 266, a pinion 268, and a rack 270.
  • the front wheels FW are steered left and right through the steering knuckles.
  • the reaction force device 400 includes a steering shaft 420 that rotates integrally with the steering wheel SW, an electric motor 440 that generates reaction torque, a reaction force control device 460 that drives and controls the electric motor 440, and a reaction force control device 460 that rotates the steering wheel SW. It has a steering angle sensor 480 that detects a steering angle that is a manipulation angle.
  • the electric motor 440 is a three-phase brushless motor similar to the electric motor 220 of the steering device 200, and includes a rotation angle sensor 442 that detects the rotation angle of the output shaft.
  • the reaction force control device 460 is configured to include an MCU that includes a processor, a nonvolatile memory, a volatile memory, an input/output circuit, a communication circuit, etc.
  • the electric motor 440 is driven and controlled according to the stored application program.
  • the steering control device 240 of the steering device 200 calculates the actual steering angle of the front wheels FW detected by the steering angle sensor 280 and the steering angle of the steering wheel SW detected by the steering angle sensor 480 of the reaction force device 400. In comparison, the electric motor 220 of the steering device 200 is drive-controlled. Further, the reaction force control device 460 of the reaction force device 400 determines a target reaction force torque based on the steering angle of the steering wheel SW detected by the steering angle sensor 480, the vehicle speed, etc. The motor 440 is driven and controlled.
  • FIG. 2 shows an example of a control system of the electric power steering system 100.
  • the electric motor 220 of the steering device 200 and the electric motor 440 of the reaction force device 400 are duplicated in order to prevent sudden loss of assist due to failure while considering applicability to level 5 automatic driving.
  • These control systems have a redundant configuration, and these control systems have a double or triple redundant configuration.
  • the electric motor 220 of the steering device 200 includes a first motor 224 having a winding including a U-phase coil, a V-phase coil, and a W-phase coil, and a first motor 224 having a winding including a U-phase coil, a V-phase coil, and a W-phase coil.
  • a second motor 226 provided therein is housed in the same casing. In the steering device 200, the first motor 224 and the second motor 226 operate in parallel to steer the front wheels FW of the vehicle VH left and right.
  • the steering control device 240 includes a first control device 242 that can drive and control the first motor 224, a second control device 244 that can drive and control the second motor 226, and a first control device 244 that can drive and control the first motor 224 or the second motor 224. and a third control device 246 that can selectively drive and control the motor 226 of. Therefore, the first controller 242 is connected to the first motor 224, the second controller 244 is connected to the second motor 226, and the third controller 246 is connected to the first motor 224. and a second motor 226, respectively.
  • the third control device 246 controls the first motor 224 or the second motor 226 in their place. Provides drive control and backup functions. Note that the first control device 242 and the second control device 244 are listed as an example of the first drive system, and the third control device 246 is listed as an example of the second drive system.
  • the first control device 242 includes an MCU 242A, a drive circuit 242B, and a motor relay 242C made of a semiconductor switching element.
  • the second control device 244 includes an MCU 244A, a drive circuit 244B, and a motor relay 244C made of a semiconductor switching element.
  • the third control device 246 includes an MCU 246A, a drive circuit 246B, and a first motor relay 246C and a second motor relay 246D made of semiconductor switching elements.
  • the MCUs 242A, 244A, and 246A are electronic control devices that include a processor, nonvolatile memory, volatile memory, input/output circuit, and communication circuit, and are also called microcomputers, microcontrollers, control units, controllers, etc. can.
  • the MCU 242A of the first control device 242 and the MCU 244A of the second control device 244 are listed as an example of the first microcontrol unit, and the MCU 246A of the third control device 246 is an example of the second microcontrol unit. This is given as an example.
  • the MCU 242A of the first control device 242 outputs a control signal for controlling the alternating current supplied to the first motor 224 to the drive circuit 242B.
  • a drive circuit 242B of the first control device 242 includes a pre-driver and an inverter, and supplies alternating current to the first motor 224 via a motor relay 242C.
  • the inverter is a bridge circuit configured by appropriately combining a plurality of semiconductor switching elements, and each semiconductor switching element operates in response to the output signal of the pre-driver, and is supplied from a DC power source such as a battery (not shown). Converts the DC current generated into AC current (the same applies below).
  • the motor relay 242C of the first control device 242 is turned on and off by the MCU 242A, and selectively connects and disconnects the drive circuit 242B and the first motor 224.
  • the MCU 244A of the second control device 244 outputs a control signal for controlling the alternating current supplied to the second motor 226 to the drive circuit 244B.
  • a drive circuit 244B of the second control device 244 includes a pre-driver and an inverter, and supplies alternating current to the second motor 226 via a motor relay 244C.
  • the motor relay 244C of the second control device 244 is turned on and off by the MCU 244A, and selectively connects and disconnects the drive circuit 244B and the second motor 226.
  • the MCU 246A of the third control device 246 outputs a control signal for controlling the alternating current supplied to either the first motor 224 or the second motor 226 to the drive circuit 246B.
  • the drive circuit 246B of the third control device 246 includes a pre-driver and an inverter, and supplies alternating current to the first motor 224 via the first motor relay 246C or via the second motor relay 246D. and supplies alternating current to the second motor 226.
  • the first motor relay 246C of the third control device 246 is turned on and off by the MCU 246A, and selectively connects and disconnects the drive circuit 246B and the first motor 224.
  • the second motor relay 246D of the third control device 246 is turned on and off by the MCU 246A, and selectively connects and disconnects the drive circuit 246B and the second motor 226.
  • the MCU 242A of the first control device 242 When the MCU 242A of the first control device 242, the MCU 244A of the second control device 244, and the MCU 246A of the third control device 246 are started by turning on the power, the drive circuits 242B, 244B, and 246B, and the motor relay 242C , 244C, 246C and 246D.
  • the MCU 242A of the first control device 242 turns off the motor relay 242C to cut off the drive circuit 242B and the first motor 224.
  • the third control device 246 is notified of the occurrence of the failure.
  • the MCU 244A of the second control device 244 When a failure occurs in the drive circuit 244B of the second control device 244, the MCU 244A of the second control device 244 turns off the motor relay 244C to cut off the drive circuit 244B and the second motor 226, and the third control device 246 of the occurrence of the failure.
  • the MCU 246A of the third control device 246, which has been notified of the failure occurrence by the second control device 244, turns on the second motor relay 246D to connect the drive circuit 246B and the second motor 226. Therefore, if a failure occurs in the second control device 244, the third control device 246 can replace the second control device 244 and supply alternating current to the second motor 226 to control its drive.
  • the MCU 246A of the third control device 246 turns off the first motor relay 246C and the second motor relay 246D, and turns off the drive circuit 246B and the second motor relay 246D.
  • the first motor 224 and the second motor 226 are shut off, and the first control device 242 and the second control device 244 are notified of the occurrence of the failure. Therefore, the MCU 242A of the first control device 242 and the MCU 244A of the second control device 244 can recognize that a failure has occurred in the third control device 246.
  • the first motor 224 and The second motor 226 can be drive-controlled, and the steering of the front wheels FW by the steering device 200 can be continued.
  • the third control device 246 drives and controls the first motor 224 or the second motor 226, and the steering device 200 It is possible to continue steering the front wheels FW. Therefore, in the steering device 200, for example, sudden loss of assist can be prevented.
  • the electric motor 440 of the reaction force device 400 includes a first motor 444 having a winding including a U-phase coil, a V-phase coil, and a W-phase coil, and a first motor 444 having a winding including a U-phase coil, a V-phase coil, and a W-phase coil.
  • a second motor 446 with a second motor 446 is housed in the same casing. In the reaction device 400, the first motor 444 and the second motor 446 operate in parallel to apply a reaction torque to the steering wheel SW of the vehicle VH.
  • the reaction force control device 460 has a first control device 462 capable of driving and controlling the first motor 444, and a second control device 464 capable of driving and controlling the second motor 446. Therefore, the first control device 462 is connected to the first motor 444, and the second control device 464 is connected to the second motor 446.
  • the first control device 462 includes an MCU 462A, a drive circuit 462B, and a motor relay 462C made of a semiconductor switching element.
  • the second control device 464 includes an MCU 464A, a drive circuit 464B, and a motor relay 464C made of a semiconductor switching element.
  • the MCU 462A of the first control device 462 outputs a control signal for controlling the alternating current supplied to the first motor 444 to the drive circuit 462B.
  • a drive circuit 462B of the first control device 462 includes a pre-driver and an inverter, and supplies alternating current to the first motor 444 via a motor relay 462C.
  • the motor relay 462C of the first control device 462 is turned on and off by the MCU 462A, and selectively connects and disconnects the drive circuit 462B and the first motor 444.
  • the MCU 464A of the second control device 464 outputs a control signal for controlling the alternating current supplied to the second motor 446 to the drive circuit 464B.
  • a drive circuit 464B of the second control device 464 includes a pre-driver and an inverter, and supplies alternating current to the second motor 446 via a motor relay 464C.
  • Motor relay 464C of second control device 464 is turned on and off by MCU 464A, and selectively connects and disconnects drive circuit 464B and second motor 446.
  • the reaction force device 400 may include a third control device in addition to the first control device 462 and the second control device 464.
  • the third control device controls the supply of alternating current to the first motor 444 when a failure occurs in the first control device 462, and controls the supply of alternating current to the first motor 444 when a failure occurs in the second control device 464.
  • the second motor 446 can be configured to control the supply of alternating current to the second motor 446 .
  • first control device 242 and the second control device 244 are the same, and the configuration of the third control device 246 is different from that of the first control device 242 and the second control device 244 except that two motor relays are provided. Since it is the same as the second control device 244, only the first control device 242 will be described. Therefore, by describing first controller 242, second controller 244 and third controller 246 will be described. Further, the components of the second control device 244 and the third control device 246 are given the same reference numerals as the components of the first control device 242. Note that the reaction force control device 460 that drives and controls the electric motor 440 of the reaction force device 400 is the same as the steering control device 240 of the steering device 200, so a detailed explanation thereof will be omitted.
  • FIG. 3 shows an example of the internal structure of the first motor 224 of the electric motor 220 and the first control device 242.
  • the first motor 224 includes a substantially cylindrical stator 224S in which a U-phase coil 224U, a V-phase coil 224V, and a W-phase coil 224W are wound in a star-connected manner, and the stator 224S is rotatably arranged on the inner periphery of the stator 224S. It has a rotor 224R.
  • a rotational drive shaft (not shown) of the rotor 224R protrudes outward from an axial end of the stator 224S, and the input shaft of the reducer 264 of the steering device 200 is connected to the protrusion.
  • the first control device 242 includes a power relay 242D that selectively connects and disconnects the positive terminal PT of a DC power source such as a battery and the drive circuit 242B. It is configured.
  • the drive circuit 242B includes a predriver 242B1 and an inverter 242B2.
  • the inverter 242B2 is a three-phase bridge circuit configured by appropriately connecting semiconductor switching elements SW1 to SW6, such as a P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor) having a parasitic diode (freewheeling diode).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the semiconductor switching elements SW1 to SW6 are not limited to P-channel MOSFETs, but may also be N-channel MOSFETs, IGPTs (Insulated Gate Bipolar Transistors), etc. (the same applies hereinafter).
  • the inverter 242B2 of the first control device 242 is an example of the first inverter.
  • the inverter 242B2 includes a U-phase arm in which semiconductor switching elements SW1 and SW2 are connected in series, a V-phase arm in which semiconductor switching elements SW3 and SW4 are connected in series, and semiconductor switching elements SW5 and SW6 are connected in series. and a W-phase arm.
  • the source of the upper semiconductor switching element SW1 is connected to the positive terminal PT of the DC power supply via the power relay 242D, and the drain of the upper semiconductor switching element SW1 is connected to the source of the lower semiconductor switching element SW2. , the drain of the lower semiconductor switching element SW2 is connected to the negative terminal MT of the DC power supply.
  • the electric path located between the upper semiconductor switching element SW1 and the lower semiconductor switching element SW2 is connected to the U-phase coil 224U of the first motor 224 via the U-phase drive line 242U.
  • the source of the upper semiconductor switching element SW3 is connected to the positive terminal PT of the DC power supply via the power supply relay 242D, and the drain of the upper semiconductor switching element SW3 is connected to the source of the lower semiconductor switching element SW4. , the drain of the lower semiconductor switching element SW4 is connected to the negative terminal MT of the DC power supply.
  • the electric path located between the upper semiconductor switching element SW3 and the lower semiconductor switching element SW4 is connected to the V-phase coil 224V of the first motor 224 via the V-phase drive line 242V.
  • the source of the upper semiconductor switching element SW5 is connected to the positive terminal PT of the DC power supply via the power supply relay 242D, and the drain of the upper semiconductor switching element SW5 is connected to the source of the lower semiconductor switching element SW6. , the drain of the lower semiconductor switching element SW6 is connected to the negative terminal MT of the DC power supply.
  • the electric path located between the upper semiconductor switching element SW5 and the lower semiconductor switching element SW6 is connected to the W-phase coil 224W of the first motor 224 via the W-phase drive line 242W.
  • a motor relay 242C is arranged in the middle of the U-phase drive line 242U, V-phase drive line 242V, and W-phase drive line 242W that connect the inverter 242B2 and the first motor 224 to selectively connect or disconnect them.
  • the motor relay 242C includes a U-phase relay 242C1 that selectively connects or disconnects the U-phase drive line 242U, and a V-phase relay 242C2 that selectively connects or disconnects the V-phase drive line 242V. , and a W-phase relay 242C3 that selectively connects or disconnects the W-phase drive line 242W.
  • the U-phase relay 242C1, the V-phase relay 242C2, and the W-phase relay 242C3 are composed of P-channel MOSFETs having parasitic diodes, and operate in the same state according to commands from the MCU 242A.
  • a capacitor 242E having a predetermined capacitance is placed in a branch path that branches off from the electrical path connecting the inverter 242B2 and the power supply relay 242D and is connected to the negative terminal MT of the DC power source.
  • This capacitor 242E is charged while the power supply relay 242D is operating, and as will be described in detail later, detects whether or not there is an open (disconnection) failure in the inverter 242B2 and motor relay 242C when the first control device 242 is started. used to diagnose.
  • the first control device 242, second control device 244, and third control device 246 configured in this way are connected to the electric motor 220 and control the drive thereof, as shown in FIG. do. That is, inverter 242B2 of first control device 242 is connected to U-phase coil 224U, V-phase coil 224V, and W-phase coil 224W of first motor 224 of electric motor 220 via motor relay 242C. Inverter 244B2 of second control device 244 is connected to U-phase coil 226U, V-phase coil 226V, and W-phase coil 226W of second motor 226 of electric motor 220 via motor relay 244C.
  • the inverter 246B2 of the third control device 246 connects the first control device 242 and the first motor 224 of the electric motor 220 via the first motor relay 246C to the U-phase drive line 242U, V It is connected to the phase drive line 242V and the W-phase drive line 242W. Furthermore, the inverter 246B2 of the third control device 246 connects the second control device 244 and the second motor 226 of the electric motor 220 via the second motor relay 246D. It is connected to the phase drive line 244V and the W-phase drive line 244W.
  • the third control device 246 controls the first motor 224 or the second motor 226 of the electric motor 220 when a failure occurs in either the first control device 242 or the second control device 244. connected for subsequent drive control.
  • the inverter 244B2 of the second control device 244 is cited as an example of the first inverter
  • the inverter 246B2 of the third control device 246 is cited as an example of the second inverter.
  • diagnosis is performed with the power supply relay 242D cut off in order to prevent the current of the DC power supply from flowing downstream due to a short-circuit failure of the inverter 242B2.
  • the motor relay 242C is activated and the inverter 242B2 and the first motor 224 are connected. Note that the diagnosis of the inverter 242B2 is performed using the charge stored in the capacitor 242E since no current is supplied from the DC power supply.
  • the MCU 242A operates the lower semiconductor switching elements SW2, SW4, and SW6 of the inverter 242B2 for a predetermined time via the predriver 242B1. Then, the MCU 242A compares the voltage V0 between the terminals of the capacitor 242E and the voltage V1 between the terminals of the first motor 224 for each of the U-phase arm, V-phase arm, and W-phase arm, and compares the voltage V0 between the terminals of the capacitor 242E with the voltage V1 between the terminals of the first motor 224, Diagnose the presence or absence of a short-circuit failure in elements SW1, SW3, and SW5.
  • the MCU 242A operates the upper semiconductor switching elements SW1, SW3, and SW5 of the inverter 242B2 for a predetermined time via the predriver 242B1. Then, the MCU 242A compares the voltage V0 between the terminals of the capacitor 242E and the voltage V1 between the terminals of the first motor 224 for each of the U-phase arm, V-phase arm, and W-phase arm, and compares the voltage V0 between the terminals of the capacitor 242E with the voltage V1 between the terminals of the first motor 224, Diagnose the presence or absence of a short-circuit failure in elements SW2, SW4, and SW6.
  • the MCU 242A can control the semiconductor switching elements SW1 to SW6 of the inverter 242B2, as well as the U-phase relay 242C1, V-phase relay 242C2, and W-phase relay 242C3 of the motor relay 242C. It is possible to diagnose the presence or absence of open failures and short-circuit failures. Note that the MCU 242A first operates the upper semiconductor switching elements SW1, SW3, and SW5 of the inverter 242B2 to perform failure diagnosis, and then operates the lower semiconductor switching elements SW2, SW4, and SW6 of the inverter 242B2 to perform failure diagnosis. Diagnosis may also be performed.
  • the upper-stage semiconductor switching elements SW1, SW3, and SW5 open in the first control device 242. Since a failure has occurred, the current supplied from capacitor 242E does not flow. Therefore, in the first control device 242, the voltage V1 between the terminals of the first motor 224 of the electric motor 220 becomes zero. However, in the third control device 246, since no failure has occurred in the inverter 246B2, current flows through the parasitic diodes of the lower stage semiconductor switching elements SW2, SW4 and SW6 and the upper stage semiconductor switching elements SW1, SW3 and SW5. flows, and the voltage across the terminals of the first motor 224 of the electric motor 220 becomes Vf.
  • failure diagnosis of one of the first control device 242 and the third control device 246 is performed when the semiconductor switching elements SW1 to SW6 of the other inverter 242B2 and 246B2 are not energized. I'll do what I do.
  • the MCU 242A of the first control device 242 executes failure diagnosis when the semiconductor switching elements SW1 to SW6 of the inverter 246B2 are not energized in the third control device 246.
  • the MCU 246A of the third control device 246 executes failure diagnosis when the semiconductor switching elements SW1 to SW6 of the inverter 242B2 in the first control device 242 are not energized. Control that implements such features will be described in detail below.
  • first control device 242 and the third control device 246 that drive and control the first motor 224 of the electric motor 220 will be described below, but the processing will be explained by controlling the second motor 226 of the electric motor 220. Needless to say, the present invention is also applicable to the second control device 244 and the third control device 246 that perform drive control.
  • FIG. 5 shows an example of a first diagnostic process executed by the MCU 242A of the first control device 242 when the first control device 242 is activated.
  • the first diagnostic process is executed according to an application program stored in the nonvolatile memory of the MCU 242A (the same applies hereinafter).
  • step 10 abbreviated as "S10" in FIG. 5; the same applies hereinafter
  • the MCU 242A reads, for example, the inter-terminal voltage V0 of the capacitor 242E from a voltage sensor.
  • step 11 the MCU 242A determines whether or not the voltage V0 between the terminals of the capacitor 242E is normal, in other words, whether or not it is possible to diagnose the inverter 242B2 and motor relay 242C using the charge stored in the capacitor 242E. judge. Then, if the MCU 242A determines that the inter-terminal voltage V0 is normal (Yes), the process proceeds to step 12. On the other hand, if the MCU 242A determines that the inter-terminal voltage V0 is not normal, that is, it is not possible to diagnose the inverter 242B2 and motor relay 242C with the electric charge stored in the capacitor 242E (No), the process proceeds to step 21. .
  • step 12 the MCU 242A operates the lower-stage semiconductor switching elements SW2, SW4, and SW6 of the inverter 242B2 via the pre-driver 242B1 for a predetermined period of time, and diagnoses whether or not there is a short-circuit failure in the upper-stage semiconductor switching elements SW1, SW3, and SW5. Execute "Diagnosis A”. Note that the details of this diagnostic processing have already been explained, so the details will not be further explained below. If necessary, please refer to the previous explanation.
  • step 13 the MCU 242A transmits (notifies) the diagnosis result of diagnosis A to the MCU 246A of the third control device 246. Therefore, the MCU 246A of the third control device 246 that has received the diagnosis result of diagnosis A from the first control device 242 can recognize that the diagnosis A in the first control device 242 has been completed.
  • step 14 the MCU 242A determines whether or not the diagnosis result of diagnosis A has been received from the third control device 246, that is, whether or not diagnosis A has been completed in the third control device 246. If the MCU 242A determines that the diagnosis result of diagnosis A has been received (Yes), the process proceeds to step 15. On the other hand, if the MCU 242A determines that the diagnosis result of diagnosis A has not been received (No), the MCU 242A repeats the determination process in step 14 again. In short, in step 14, the MCU 242A waits until diagnosis A is completed in the third control device 246.
  • step 15 the MCU 242A operates the upper semiconductor switching elements SW1, SW3 and SW5 of the inverter 242B2 for a predetermined period of time via the pre-driver 242B1, causing a short circuit failure in the lower semiconductor switching elements SW2, SW4 and SW6 and the motor relay 242C.
  • “Diagnosis B” is executed to diagnose the presence or absence of an open failure in the semiconductor switching elements SW2, SW4, and SW6 in the lower stage. Note that the details of this diagnostic processing have already been explained, so the details will not be further explained below. If necessary, please refer to the previous explanation.
  • step 16 the MCU 242A transmits the diagnosis result of diagnosis B to the MCU 246A of the third control device 246. Therefore, the MCU 246A of the third control device 246 that has received the diagnosis result of diagnosis B from the first control device 242 can recognize that diagnosis B in the first control device 242 has been completed.
  • step 17 the MCU 242A determines whether or not the diagnosis result of diagnosis B has been received from the third control device 246, that is, whether or not diagnosis B has been completed in the third control device 246. If the MCU 242A determines that the diagnosis result of diagnosis B has been received (Yes), the process proceeds to step 18. On the other hand, if the MCU 242A determines that the diagnosis result of diagnosis B has not been received (No), the MCU 242A repeats the determination process in step 17 again. In short, in step 17, the MCU 242A waits until diagnosis B is completed in the third control device 246.
  • step 18 the MCU 242A determines whether or not a failure has occurred in at least one of the inverter 242B2 and motor relay 242C of the first control device 242, depending on the diagnosis results of diagnosis A and diagnosis B in the first control device 242. Determine whether If the MCU 242A determines that a failure has occurred in at least one of the inverter 242B2 and the motor relay 242C (Yes), the process proceeds to step 19. On the other hand, if the MCU 242A determines that there is no failure in either the inverter 242B2 or the motor relay 242C (No), the process proceeds to step 21.
  • step 19 since a failure has occurred in the first control device 242, the MCU 242A turns off the motor relay 242C in preparation for handing over drive control of the first motor 224 to the third control device 246. Therefore, the drive circuit 242B and the first motor 224 are cut off in the first control device 242, and the first control device 242 cannot drive and control the first motor 224.
  • step 20 since the first control device 242 no longer needs to control the drive of the first motor 224, the MCU 242A transitions the operation mode to a low power mode in order to reduce consumption of the DC power supply.
  • the low power mode it is conceivable that only the wake-up function that is activated in response to an external activation signal is operated (same below). Note that instead of transitioning the operation mode to the low power mode, the MCU 242A may stop the first control device 242 (same below).
  • step 21 the diagnosis cannot be executed because the voltage V0 between the terminals of the capacitor 242E is not normal, or the first control device 242 has not failed, so the MCU 242A controls the first motor 224 of the electric motor 220. Shifts to normal control to drive and control. Note that the normal control also includes fail-safe measures assumed by the first control device 242 (the same applies hereinafter).
  • FIG. 6 shows an example of the first diagnostic process executed by the MCU 246A of the third control device 246 when the third control device 246 is activated.
  • the first diagnostic process is executed according to an application program stored in the nonvolatile memory of the MCU 246A.
  • the description of processes similar to the first diagnostic process in the first control device 242 will be simplified in order to avoid redundant explanations (the same applies hereinafter). If necessary, please refer to the previous explanation.
  • step 30 the MCU 246A reads the voltage V0 between the terminals of the capacitor 246E.
  • step 31 the MCU 246A determines whether the voltage V0 between the terminals of the capacitor 246E is normal. Then, if the MCU 246A determines that the inter-terminal voltage V0 is normal (Yes), the process proceeds to step 32. On the other hand, if the MCU 246A determines that the inter-terminal voltage V0 is not normal (No), the process proceeds to step 41.
  • step 32 the MCU 246A determines whether or not the diagnosis result of diagnosis A has been received from the first control device 242, in short, whether or not diagnosis A has been completed in the first control device 242. If the MCU 246A determines that the diagnosis result of diagnosis A has been received (Yes), the process proceeds to step 33. On the other hand, if the MCU 246A determines that the diagnosis result of diagnosis A has not been received (No), the MCU 246A repeats the determination process in step 32 again. In short, in step 32, the MCU 246A waits until diagnosis A is completed in the first control device 242.
  • step 33 the MCU 246A executes diagnosis A.
  • step 34 the MCU 246A transmits the diagnosis result of diagnosis A to the MCU 242A of the first control device 242. Therefore, the MCU 242A of the first control device 242 that has received the diagnosis result of diagnosis A from the third control device 246 can recognize that the diagnosis A in the third control device 246 has been completed.
  • step 35 the MCU 246A determines whether or not the diagnosis result of diagnosis B has been received from the first control device 242, that is, whether or not diagnosis B has been completed in the first control device 242. If the MCU 246A determines that the diagnosis result of diagnosis B has been received (Yes), the process proceeds to step 36. On the other hand, if the MCU 246A determines that the diagnosis result of diagnosis B has not been received (No), the MCU 246A repeats the determination process of step 35 again. In short, in step 35, the MCU 246A waits until diagnosis B is completed in the first control device 242.
  • step 36 the MCU 246A executes diagnosis B.
  • step 37 the MCU 246A transmits the diagnosis result of diagnosis B to the MCU 242A of the first control device 242. Therefore, the MCU 242A of the first control device 242 that has received the diagnosis result of diagnosis B from the third control device 246 can recognize that diagnosis B in the third control device 246 has been completed.
  • step 38 the MCU 246A determines whether a failure has occurred in at least one of the inverter 242B2 and motor relay 242C of the first control device 242, according to the diagnosis results of diagnosis A and diagnosis B received from the first control device 242. Determine whether or not there is. If the MCU 246A determines that a failure has occurred in the first control device 242 (Yes), the process proceeds to step 39. On the other hand, if the MCU 246A determines that a failure has not occurred in the first control device 242 (No), the process proceeds to step 41.
  • step 39 since a failure has occurred in the first control device 242, the MCU 246A controls the first motor relay in order to take over the drive control of the first motor 224 of the electric motor 220 from the first control device 242. Turn on 246C. Therefore, by turning on the first motor relay 246C, the drive circuit 246B of the third control device 246 and the first motor 224 are connected, and the third control device 246 drives the first motor 224. Become in control.
  • step 40 the MCU 246A starts drive control of the first motor 224 of the electric motor 220.
  • the third control device 246 takes over the drive control of the first motor 224 in order to back up the failure.
  • step 41 either the diagnosis cannot be executed because the voltage V0 between the terminals of the capacitor 242E is not normal, or there is no failure in the first control device 242, so in order to suppress consumption of the DC power supply, the MCU 246A Shifts the operating mode to low power mode. Note that the MCU 246A may stop the third control device 246 instead of shifting the operation mode to the low power mode (the same applies below).
  • diagnoses A and B are executed prior to the failure diagnosis by the MCU 246A. That is, when the activation signal is turned on and the diagnosis of hardware and the like is completed, first, diagnosis A is executed in the first control device 242. While diagnosis A is being performed in the first control device 242, the third control device 246 is on standby. Then, when the diagnosis A is completed in the first control device 242, the diagnosis A is executed in the third control device 246. While diagnosis A is being performed in the third control device 246, the first control device 242 is on standby.
  • diagnosis B is executed in the first control device 242. While diagnosis B is being performed in the first control device 242, the third control device 246 is on standby. When diagnosis B is completed in the first control device 242, diagnosis B is executed in the third control device 246. While diagnosis B is being performed in the third control device 246, the first control device 242 is on standby. Thereafter, when diagnosis B in the third control device 246 is completed, if no failure has occurred in the first control device 242, the first control device 242 shifts to normal control in which drive control of the first motor 224 is performed. At the same time, the third control device 246 shifts to the low power mode.
  • the third controller 246 takes over drive control of the first motor 224 .
  • the first control device 242 and the third control device 246 do not execute diagnosis A and diagnosis B at the same time. Therefore, in the first control device 242 and the third control device 246, the semiconductor switching elements SW1 to SW6 of the inverters 242B2 and 246B2 do not operate simultaneously. Therefore, alternating current is not supplied to the first motor 224 from the first control device 242 and the third control device 246 at the same time, and it is possible to erroneously determine whether or not there is a failure in the inverters 242B2 and 246B2 and the motor relays 242C, 246C and 246D. Diagnosis can be avoided.
  • FIG. 8 shows an example of a second diagnostic process executed by the MCU 242A of the first control device 242 when the first control device 242 is activated.
  • the MCU 242A reads the inter-terminal voltage V0 of the capacitor 242E.
  • step 51 the MCU 242A determines whether the voltage V0 between the terminals of the capacitor 242E is normal. Then, if the MCU 242A determines that the inter-terminal voltage V0 is normal (Yes), the process proceeds to step 52. On the other hand, if the MCU 242A determines that the inter-terminal voltage V0 is not normal (No), the process proceeds to step 58.
  • step 52 the MCU 242A determines whether or not the results of diagnosis A and diagnosis B have been received from the third control device 246. If the MCU 242A determines that the results of diagnosis A and diagnosis B have been received (Yes), the process proceeds to step 53. On the other hand, if the MCU 242A determines that the results of diagnosis A and diagnosis B have not been received (No), the MCU 242A executes the determination process of step 52 again. In short, in step 52, the MCU 242A waits until it receives the diagnostic results from the third control device 246.
  • step 53 the MCU 242A executes diagnoses A and B consecutively.
  • step 54 the MCU 242A sends the results of diagnosis A and diagnosis B to the MCU 246A of the third control device 246. Therefore, the MCU 246A of the third control device 246 that has received the diagnosis result can recognize that the diagnoses A and B in the first control device 242 have been completed.
  • step 55 the MCU 242A determines whether a failure has occurred in at least one of the inverter 242B2 and the motor relay 242C of the first control device 242, depending on the diagnosis results of diagnosis A and B in the first control device 242. Determine. If the MCU 242A determines that a failure has occurred in the first control device 242 (Yes), the process proceeds to step 56. On the other hand, if the MCU 242A determines that a failure has not occurred in the first control device 242 (No), the process proceeds to step 58.
  • step 56 since a failure has occurred in the first control device 242, the MCU 242A turns off the motor relay 242C in preparation for handing over drive control of the first motor 224 to the third control device 246.
  • step 57 since the first control device 242 can no longer control the drive of the first motor 224, the MCU 242A shifts the operation mode to a low power mode in order to suppress consumption of the DC power supply.
  • step 58 either diagnosis A and B cannot be performed using the charge of the capacitor 242E, or the first control device 242 is normal, so the MCU 242A shifts to normal control to drive and control the first motor 224. .
  • FIG. 9 shows an example of a second diagnostic process executed by the MCU 246A of the third control device 246 when the third control device 246 is activated.
  • the MCU 246A reads the voltage V0 between the terminals of the capacitor 246E.
  • step 61 the MCU 246A determines whether the voltage V0 between the terminals of the capacitor 246E is normal. Then, if the MCU 246A determines that the inter-terminal voltage V0 is normal (Yes), the process proceeds to step 62. On the other hand, if the MCU 246A determines that the inter-terminal voltage V0 is not normal (No), the process proceeds to step 68.
  • step 62 the MCU 246A executes diagnostics A and B sequentially.
  • step 63 the MCU 246A transmits the results of diagnosis A and diagnosis B to the MCU 242A of the first control device 242. Therefore, the MCU 242A of the first control device 242 that has received the diagnosis results from the third control device 246 can recognize that the diagnoses A and B in the third control device 246 have been completed.
  • step 64 the MCU 246A determines whether or not the results of diagnosis A and diagnosis B have been received from the first control device 242. If the MCU 246A determines that the diagnosis result has been received from the first control device 242 (Yes), the process proceeds to step 65. On the other hand, if the MCU 246A determines that the diagnosis result has not been received from the first control device 242 (No), the MCU 246A executes the determination process in step 64 again. In short, in step 64, the MCU 246A waits until diagnostics A and B in the first controller 242 are completed.
  • step 65 the MCU 246A determines whether a failure has occurred in at least one of the inverter 242B2 and motor relay 242C of the first control device 242, according to the diagnosis results of diagnosis A and diagnosis B received from the first control device 242. Determine whether or not. If the MCU 246A determines that a failure has occurred in the first control device 242 (Yes), the process proceeds to step 66. On the other hand, if the MCU 246A determines that a failure has not occurred in the first control device 242 (No), the process proceeds to step 68.
  • step 66 since a failure has occurred in the first control device 242, the MCU 246A controls the first motor relay in order to take over the drive control of the first motor 224 of the electric motor 220 from the first control device 242. Turn on 246C.
  • step 67 the MCU 246A starts drive control of the first motor 224 of the electric motor 220.
  • step 68 since diagnostics A and B cannot be performed due to the charge stored in the capacitor 246E, or a failure has not occurred in the first control device 242, the MCU 246A operates to suppress consumption of the DC power supply. Shift the mode to low power mode.
  • diagnoses A and B are performed consecutively. That is, in the second diagnostic process, unlike the first diagnostic process, first, diagnoses A and B in the third control device 246 are executed successively, while the first control device 242 is on standby. . Then, when the diagnoses A and B in the third control device 246 are completed, the diagnoses A and B in the first control device 242 are then executed successively, during which the third control device 246 is on standby. Therefore, the number of messages exchanged between the first control device 242 and the third control device 246 is reduced, and the execution time can be shortened accordingly.
  • the first control device 242 and the third control device 246 do not execute diagnosis A and diagnosis B at the same time. Therefore, in the first control device 242 and the third control device 246, the semiconductor switching elements SW1 to SW6 of the inverters 242B2 and 246B2 do not operate simultaneously. Therefore, alternating current is not supplied to the first motor 224 from the first control device 242 and the third control device 246 at the same time, and it is possible to erroneously determine whether or not there is a failure in the inverters 242B2 and 246B2 and the motor relays 242C, 246C and 246D. Diagnosis can be avoided. Note that other operations and effects are the same as those in the first embodiment, so their explanations will be omitted to avoid redundant explanations. If necessary, please refer to the description of the first embodiment.
  • FIG. 11 shows an example of a third diagnostic process executed by the MCU 242A of the first control device 242 when the first control device 242 is activated.
  • the MCU 242A reads the inter-terminal voltage V0 of the capacitor 242E.
  • step 71 the MCU 242A determines whether the voltage V0 between the terminals of the capacitor 242E is normal. Then, if the MCU 242A determines that the inter-terminal voltage V0 is normal (Yes), the process proceeds to step 72. On the other hand, if the MCU 242A determines that the inter-terminal voltage V0 is not normal (No), the process proceeds to step 79.
  • the MCU 242A uses, for example, a timer function to determine whether a predetermined standby time has elapsed since the start of the third diagnostic process.
  • the predetermined waiting time is the maximum time required for the third control device 246 to complete diagnosis A and B, and includes, for example, the processing capacity of the third control device 246, the message sending and receiving ability, etc. It can be set appropriately taking into consideration. If the MCU 242A determines that the predetermined standby time has elapsed (Yes), the process proceeds to step 74. On the other hand, if the MCU 242A determines that the predetermined waiting time has not elapsed (No), the process proceeds to step 73.
  • step 73 the MCU 242A determines whether or not the results of diagnosis A and diagnosis B have been received from the third control device 246. If the MCU 242A determines that the diagnosis result has been received from the third control device 246 (Yes), the process proceeds to step 74. On the other hand, if the MCU 242A determines that the diagnosis result has not been received from the third control device 246 (No), the process returns to step 72.
  • step 74 the MCU 242A executes diagnostics A and B consecutively.
  • step 75 the MCU 242A transmits the results of diagnosis A and diagnosis B to the MCU 246A of the third control device 246.
  • step 76 the MCU 242A determines whether a failure has occurred in at least one of the inverter 242B2 and motor relay 242C of the first control device 242, depending on the diagnosis results of diagnosis A and B in the first control device 242. Determine. If the MCU 242A determines that a failure has occurred in the first control device 242 (Yes), the process proceeds to step 77. On the other hand, if the MCU 242A determines that a failure has not occurred in the first control device 242 (No), the process proceeds to step 79.
  • step 77 since a failure has occurred in the first control device 242, the MCU 242A turns off the motor relay 242C in preparation for handing over drive control of the first motor 224 to the third control device 246.
  • step 78 since the first control device 242 cannot drive and control the first motor 224, the MCU 242A shifts the operating mode to a low power mode in order to suppress consumption of the DC power supply.
  • step 79 the MCU 242A controls the driving of the first motor 224 of the electric motor 220 because the diagnoses A and B cannot be performed due to the charge stored in the capacitor 242E, or because the first control device 242 is normal. Shift to normal control.
  • FIG. 12 shows an example of a third diagnostic process executed by the MCU 246A of the third control device 246 when the third control device 246 is activated.
  • the MCU 246A reads the voltage V0 between the terminals of the capacitor 246E.
  • step 81 the MCU 246A determines whether the voltage V0 between the terminals of the capacitor 246E is normal. Then, if the MCU 246A determines that the inter-terminal voltage V0 is normal (Yes), the process proceeds to step 82. On the other hand, if the MCU 246A determines that the inter-terminal voltage V0 is not normal (No), the process proceeds to step 89.
  • step 82 the MCU 246A executes diagnostics A and B sequentially.
  • step 83 the MCU 246A transmits the results of diagnosis A and diagnosis B to the MCU 242A of the first control device 242.
  • the MCU 246A uses, for example, a timer function to determine whether a predetermined standby time has elapsed since the start of the third diagnostic process.
  • the predetermined waiting time is the maximum time required for the first control device 242 to complete diagnosis A and B, and includes, for example, the processing capacity of the first control device 242, message transmission/reception ability, etc. It can be set appropriately taking into consideration. If the MCU 246A determines that the predetermined standby time has elapsed (Yes), the process proceeds to step 86. On the other hand, if the MCU 242A determines that the predetermined waiting time has not elapsed (No), the process proceeds to step 85.
  • step 85 the MCU 246A determines whether or not the results of diagnosis A and diagnosis B have been received from the first control device 242. If the MCU 246A determines that the diagnosis result has been received from the first control device 242 (Yes), the process proceeds to step 86. On the other hand, if the MCU 246A determines that the diagnosis result has not been received from the first control device 242 (No), the process returns to step 84.
  • step 86 the MCU 246A determines whether a failure has occurred in at least one of the inverter 242B2 and the motor relay 242C of the first control device 242, based on the diagnosis result received from the first control device 242. . If the MCU 246A determines that a failure has occurred in the first control device 242 (Yes), the process proceeds to step 87. On the other hand, if the MCU 246A determines that a failure has not occurred in the first control device 242 (No), the process proceeds to step 89.
  • step 87 since a failure has occurred in the first control device 242, the MCU 246A controls the first motor relay in order to take over the drive control of the first motor 224 of the electric motor 220 from the first control device 242. Turn on 246C.
  • step 88 the MCU 246A starts controlling the drive of the first motor 224.
  • step 89 the MCU 246A lowers the operating mode in order to suppress consumption of the DC power supply, since either diagnostics A and B cannot be executed due to the charge stored in the capacitor 246E, or the first control device 242 is normal. Shift to power mode.
  • the first control device 242 and the third control device 246 are free from the other party even after a predetermined standby time has elapsed since activation. If the diagnosis result is not notified, subsequent processing, for example, inverter failure diagnosis, is started. Therefore, even if diagnosis results cannot be transmitted or received for some reason, diagnosis A and B are executed, or it is determined whether or not a failure has occurred in the first control device 242. Therefore, even in a situation where it is not possible to send or receive diagnostic results, failure diagnosis of the inverter and motor relay can be performed. Note that other operations and effects are the same as those of the second diagnostic process, so their explanations will be omitted to avoid redundant explanations.
  • the object to be controlled by the proposed technology is not limited to the steering device 200, but may be the reaction force device 400 or a well-known vehicle-mounted system.
  • the electric motor 220 is not limited to a three-phase brushless motor, but may be an electric motor having windings of any plurality of phases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

This electric motor control device comprises: a first drive system including a first MCU and a first inverter; and a second drive system including a second MCU and a second inverter. The first MCU performs drive control on an electric motor by the first inverter and also performs a failure diagnosis by energizing the first inverter. When a failure occurs in the first drive system, the second MCU performs drive control on the electric motor by the second inverter connected to an electrical path connecting the first inverter and the electric motor to each other and also performs the failure diagnosis by energizing the second inverter. The first MCU performs the failure diagnosis on the first inverter when the second inverter is not energized in the second drive system, and the second MCU performs the failure diagnosis on the second inverter when the first inverter is not energized in the first drive system.

Description

電動モータの制御装置及び電動モータの制御方法Electric motor control device and electric motor control method
 本発明は、電動モータの制御装置及び電動モータの制御方法に関する。 The present invention relates to an electric motor control device and an electric motor control method.
 車両の電動パワーステアリング装置では、操舵力をアシストする電動モータの駆動系統に故障が発生すると、電動モータによる操舵力のアシストが急に喪失してしまう。このため、国際公開第2015/129271号パンフレット(特許文献1)に記載されるように、電動モータの駆動系統が多重化されている。ここで、交流モータなどの電動モータの制御では、回転速度及び出力トルクを任意に変更できるようにすべく、複数の半導体スイッチング素子を適宜接続して構成されたインバータによって直流電流を交流電流に変換し、この交流電流が電動モータに供給されている。 In an electric power steering device for a vehicle, if a failure occurs in the drive system of the electric motor that assists the steering force, the assistance of the steering force by the electric motor will suddenly be lost. For this reason, as described in International Publication No. 2015/129271 pamphlet (Patent Document 1), the drive system of the electric motor is multiplexed. In controlling electric motors such as AC motors, DC current is converted into AC current using an inverter configured by appropriately connecting multiple semiconductor switching elements in order to be able to change the rotational speed and output torque arbitrarily. However, this alternating current is supplied to the electric motor.
国際公開第2015/129271号パンフレットInternational Publication No. 2015/129271 pamphlet
 駆動系統におけるインバータでは、例えば、インバータの上段又は下段の半導体スイッチング素子を選択的に作動させることで、インバータの上流の電圧及び電動モータの端子間電圧に応じて、半導体スイッチング素子の断線故障の有無を診断することができる。駆動系統が多重化された制御装置では、各駆動系統の起動によって診断処理が実行されるとき、例えば、マイクロコントロールユニットの実行時間のバラツキなどによって、各駆動系統のインバータから電動モータへと同時に通電されてしまうことがある。この場合、正常な駆動系統によって電動モータに交流電流が供給されるため、半導体スイッチング素子に故障が発生している駆動系統において、半導体スイッチング素子が正常であると誤診断されてしまう。 In an inverter in a drive system, for example, by selectively operating the upper or lower semiconductor switching elements of the inverter, it is possible to determine whether or not there is a disconnection failure in the semiconductor switching element depending on the voltage upstream of the inverter and the voltage between the terminals of the electric motor. can be diagnosed. In a control device with multiple drive systems, when diagnostic processing is executed by starting each drive system, for example, due to variations in execution time of the microcontrol unit, power may not be applied simultaneously from the inverter of each drive system to the electric motor. Sometimes it happens. In this case, since alternating current is supplied to the electric motor by a normal drive system, the semiconductor switching element in the drive system in which the semiconductor switching element has failed is incorrectly diagnosed as being normal.
 そこで、本発明は、電動モータの駆動系統が多重化された制御装置であっても、各駆動系統の故障が誤診断され難い、電動モータの制御装置及び電動モータの制御方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an electric motor control device and an electric motor control method in which a failure in each drive system is unlikely to be misdiagnosed even if the drive system of the electric motor is multiplexed. purpose.
 複数相の巻線を備えた電動モータを駆動制御する電動モータの制御装置は、第1のマイクロコントロールユニット、及び複数の半導体スイッチング素子により構成された第1のインバータを含む第1の駆動系統と、第2のマイクロコントロールユニット、及び複数の半導体スイッチング素子により構成された第2のインバータを含む第2の駆動系統と、を備えている。第1のマイクロコントローラは、第1のインバータの半導体スイッチング素子を制御して直流電流を交流電流に変換して電動モータを駆動制御するとともに、第1のインバータの複数の半導体スイッチング素子に個別に通電して第1のインバータの故障診断を実行するように構成されている。第2のインバータは、第1のインバータと電動モータとを接続する電路に接続されている。第2のマイクロコントロールユニットは、第1の駆動系統に故障が発生したときに第2のインバータの半導体スイッチング素子を制御して直流電流を交流電流に変換して電動モータを駆動制御するとともに、第2のインバータの複数の半導体スイッチング素子に個別に通電して第2のインバータの故障診断を実行するように構成されている。そして、第1のマイクロコントロールユニットが、第2の駆動系統において第2のインバータの複数の半導体スイッチング素子に通電されていないとき、第1のインバータの故障診断を実行するように構成され、また、第2のマイクロコントロールユニットが、第1の駆動系統において第1のインバータの複数の半導体スイッチング素子に通電されていないとき、第2のインバータの故障診断を実行するように構成されている。 An electric motor control device that drives and controls an electric motor having multiple phase windings includes a first drive system including a first microcontrol unit and a first inverter configured with a plurality of semiconductor switching elements. , a second microcontrol unit, and a second drive system including a second inverter configured with a plurality of semiconductor switching elements. The first microcontroller controls the semiconductor switching elements of the first inverter to convert direct current to alternating current to drive and control the electric motor, and individually energizes the plurality of semiconductor switching elements of the first inverter. The first inverter is configured to carry out a failure diagnosis of the first inverter. The second inverter is connected to an electric line connecting the first inverter and the electric motor. The second microcontrol unit controls the semiconductor switching element of the second inverter to convert direct current to alternating current to drive and control the electric motor when a failure occurs in the first drive system. The present invention is configured to individually energize a plurality of semiconductor switching elements of the second inverter to perform failure diagnosis of the second inverter. The first microcontrol unit is configured to perform a failure diagnosis of the first inverter when the plurality of semiconductor switching elements of the second inverter are not energized in the second drive system, and The second microcontrol unit is configured to perform fault diagnosis of the second inverter when the plurality of semiconductor switching elements of the first inverter in the first drive system are not energized.
 本発明によれば、電動モータの駆動系統が多重化された制御装置であっても、各駆動系統の故障が誤診断され難くすることができる。 According to the present invention, even in a control device in which electric motor drive systems are multiplexed, it is possible to make it difficult to misdiagnose a failure in each drive system.
電動パワーステアリングシステムの一例を示す概要図である。FIG. 1 is a schematic diagram showing an example of an electric power steering system. 電動パワーステアリングシステムの制御系の一例を示す概要図である。1 is a schematic diagram showing an example of a control system of an electric power steering system. 電動モータの第1のモータ、及び第1の制御装置の内部構造の一例を示す概要図である。It is a schematic diagram showing an example of the internal structure of a first motor of an electric motor and a first control device. 電動モータの制御システムの一例を示す全体の概要図である。FIG. 1 is an overall schematic diagram showing an example of an electric motor control system. 第1の制御装置で実行される第1の診断処理の一例を示すフローチャートである。It is a flow chart which shows an example of the 1st diagnosis processing performed by the 1st control device. 第3の制御装置で実行される第1の診断処理の一例を示すフローチャートである。It is a flowchart which shows an example of the 1st diagnostic process performed by a 3rd control device. 第1の診断処理による診断A及びBの実行タイミングの説明図である。FIG. 6 is an explanatory diagram of execution timing of diagnoses A and B by the first diagnostic process. 第1の制御装置で実行される第2の診断処理の一例を示すフローチャートである。It is a flowchart which shows an example of the 2nd diagnostic process performed by a 1st control device. 第3の制御装置で実行される第2の診断処理の一例を示すフローチャートである。It is a flowchart which shows an example of the 2nd diagnostic process performed by a 3rd control device. 第2の診断処理による診断A及びBの実行タイミングの説明図である。FIG. 7 is an explanatory diagram of execution timing of diagnoses A and B by the second diagnostic process. 第1の制御装置で実行される第3の診断処理の一例を示すフローチャートである。It is a flowchart which shows an example of the 3rd diagnostic process performed by a 1st control device. 第3の制御装置で実行される第3の診断処理の一例を示すフローチャートである。It is a flowchart which shows an example of the 3rd diagnostic process performed by a 3rd control device.
 以下、添付された図面を参照し、本発明を実施するための実施形態について詳述する。
 図1は、自動車や建設機械などの車両VHに搭載された、電動パワーステアリングシステム100の一例を示している。ここで、図1のFrは、車両前方を表している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an example of an electric power steering system 100 installed in a vehicle VH such as an automobile or a construction machine. Here, Fr in FIG. 1 represents the front of the vehicle.
 電動パワーステアリングシステム100は、操舵輪である前輪FWを操舵する操舵装置200と、車両VHのドライバが操作するステアリングホイールSWに反力トルクを付与する反力装置400と、を含んで構成されている。ここで、図1から容易に理解できるように、ステアリングホイールSWと前輪FWとが機械的に連結されておらず、これによって、電動パワーステアリングシステム100は、ステアバイワイヤシステムを構成している。なお、電動パワーステアリングシステム100は、ステアバイワイヤシステムに限らず、ステアリングホイールSWと前輪FWとが機械的に連結された、周知のステアリングシステムであってもよい。 The electric power steering system 100 includes a steering device 200 that steers front wheels FW, which are steered wheels, and a reaction force device 400 that applies reaction torque to a steering wheel SW operated by a driver of a vehicle VH. There is. Here, as can be easily understood from FIG. 1, the steering wheel SW and the front wheels FW are not mechanically connected, so that the electric power steering system 100 constitutes a steer-by-wire system. Note that the electric power steering system 100 is not limited to a steer-by-wire system, and may be a well-known steering system in which a steering wheel SW and a front wheel FW are mechanically connected.
 操舵装置200は、前輪FWを操舵する操舵力を発生させる電動モータ220と、電動モータ220を駆動制御する操舵制御装置240と、転舵機構260と、前輪FWの実際の転舵角(実転舵角)を検出する転舵角センサ280と、を有している。 The steering device 200 includes an electric motor 220 that generates a steering force for steering the front wheels FW, a steering control device 240 that drives and controls the electric motor 220, a steering mechanism 260, and an actual steering angle (actual steering angle) of the front wheels FW. and a steering angle sensor 280 that detects the steering angle.
 電動モータ220は、複数相の巻線を備えた交流モータ、例えば、U相コイル、V相コイル及びW相コイルを備えた3相ブラシレスモータであって、出力軸の回転角を検出する回転角センサ222を有している。ここで、回転角センサ222としては、例えば、エンコーダやレゾルバなどを使用することができる。操舵制御装置240は、プロセッサ、不揮発性メモリ、揮発性メモリ、入出力回路及び通信回路などを内蔵したマイクロコントロールユニット(MCU)を含んで構成され、不揮発性メモリに格納されたアプリケーションプログラムに従って電動モータ220を駆動制御する。 The electric motor 220 is an AC motor equipped with multiple phase windings, for example, a three-phase brushless motor equipped with a U-phase coil, a V-phase coil, and a W-phase coil, and has a rotation angle that detects the rotation angle of the output shaft. It has a sensor 222. Here, as the rotation angle sensor 222, for example, an encoder, a resolver, or the like can be used. The steering control device 240 includes a microcontrol unit (MCU) that includes a processor, a nonvolatile memory, a volatile memory, an input/output circuit, a communication circuit, etc., and controls the electric motor according to an application program stored in the nonvolatile memory. 220 is driven and controlled.
 転舵機構260は、電動モータ220の出力軸の回転運動をステアリングロッド262の直線運動に変換する周知の機構であって、本実施形態では、ラック&ピニオンが使用されている。電動モータ220の回転駆動力は、減速機264を介してピニオン軸266に伝達される。一方、ステアリングロッド262は、ピニオン軸266に設けられたピニオン268と常時噛み合うラック270を有している。ピニオン268が回転すると、これと噛み合うラック270を介してステアリングロッド262が車両VHの左右方向に水平移動し、これによって、前輪FWの舵角が変化する。なお、転舵機構260は、ラック&ピニオンに限らず、例えば、ボールねじを使用した機構であってもよい。 The steering mechanism 260 is a well-known mechanism that converts the rotational movement of the output shaft of the electric motor 220 into linear movement of the steering rod 262, and in this embodiment, a rack and pinion is used. The rotational driving force of electric motor 220 is transmitted to pinion shaft 266 via reduction gear 264. On the other hand, the steering rod 262 has a rack 270 that constantly engages with a pinion 268 provided on a pinion shaft 266. When the pinion 268 rotates, the steering rod 262 moves horizontally in the left-right direction of the vehicle VH via the rack 270 that meshes with the pinion, thereby changing the steering angle of the front wheels FW. Note that the steering mechanism 260 is not limited to a rack and pinion, and may be a mechanism using a ball screw, for example.
 そして、操舵装置200は、電動モータ220の回転運動を、減速機264、ピニオン軸266、ピニオン268及びラック270を介してステアリングロッド262の直線運動に変換し、ステアリングロッド262の先端部に連結されたステアリングナックルを介して前輪FWを左右に操舵する。 Then, the steering device 200 converts the rotational motion of the electric motor 220 into a linear motion of the steering rod 262 via a reducer 264, a pinion shaft 266, a pinion 268, and a rack 270. The front wheels FW are steered left and right through the steering knuckles.
 反力装置400は、ステアリングホイールSWと一体となって回転するステアリングシャフト420と、反力トルクを発生させる電動モータ440と、電動モータ440を駆動制御する反力制御装置460と、ステアリングホイールSWの操作角である操舵角を検出する操舵角センサ480と、を有している。ここで、電動モータ440は、操舵装置200の電動モータ220と同様な3相ブラシレスモータであって、出力軸の回転角を検出する回転角センサ442を備えている。反力制御装置460は、操舵装置200の操舵制御装置240と同様に、プロセッサ、不揮発性メモリ、揮発性メモリ、入出力回路及び通信回路などを内蔵したMCUを含んで構成され、不揮発性メモリに格納されたアプリケーションプログラムに従って電動モータ440を駆動制御する。 The reaction force device 400 includes a steering shaft 420 that rotates integrally with the steering wheel SW, an electric motor 440 that generates reaction torque, a reaction force control device 460 that drives and controls the electric motor 440, and a reaction force control device 460 that rotates the steering wheel SW. It has a steering angle sensor 480 that detects a steering angle that is a manipulation angle. Here, the electric motor 440 is a three-phase brushless motor similar to the electric motor 220 of the steering device 200, and includes a rotation angle sensor 442 that detects the rotation angle of the output shaft. Like the steering control device 240 of the steering device 200, the reaction force control device 460 is configured to include an MCU that includes a processor, a nonvolatile memory, a volatile memory, an input/output circuit, a communication circuit, etc. The electric motor 440 is driven and controlled according to the stored application program.
 そして、操舵装置200の操舵制御装置240は、転舵角センサ280によって検出された前輪FWの実転舵角と反力装置400の操舵角センサ480によって検出されたステアリングホイールSWの操舵角とを比較して、操舵装置200の電動モータ220を駆動制御する。また、反力装置400の反力制御装置460は、操舵角センサ480によって検出されたステアリングホイールSWの操舵角や車速などに基づいて目標反力トルクを求め、この目標反力トルクに応じて電動モータ440を駆動制御する。 The steering control device 240 of the steering device 200 then calculates the actual steering angle of the front wheels FW detected by the steering angle sensor 280 and the steering angle of the steering wheel SW detected by the steering angle sensor 480 of the reaction force device 400. In comparison, the electric motor 220 of the steering device 200 is drive-controlled. Further, the reaction force control device 460 of the reaction force device 400 determines a target reaction force torque based on the steering angle of the steering wheel SW detected by the steering angle sensor 480, the vehicle speed, etc. The motor 440 is driven and controlled.
 図2は、電動パワーステアリングシステム100の制御系の一例を示している。
 本実施形態では、レベル5の自動運転への適用可能性を考慮しつつ、故障による急なアシストの喪失を防ぐべく、操舵装置200の電動モータ220及び反力装置400の電動モータ440が二重の冗長構成になっているとともに、これらの制御系統が二重又は三重の冗長構成になっている。
FIG. 2 shows an example of a control system of the electric power steering system 100.
In this embodiment, the electric motor 220 of the steering device 200 and the electric motor 440 of the reaction force device 400 are duplicated in order to prevent sudden loss of assist due to failure while considering applicability to level 5 automatic driving. These control systems have a redundant configuration, and these control systems have a double or triple redundant configuration.
 操舵装置200の電動モータ220は、U相コイル、V相コイル及びW相コイルからなる巻線を備えた第1のモータ224と、U相コイル、V相コイル及びW相コイルからなる巻線を備えた第2のモータ226と、が同一のケーシングに収容されている。そして、操舵装置200では、第1のモータ224及び第2のモータ226が並列的に動作して、車両VHの前輪FWを左右に操舵する。 The electric motor 220 of the steering device 200 includes a first motor 224 having a winding including a U-phase coil, a V-phase coil, and a W-phase coil, and a first motor 224 having a winding including a U-phase coil, a V-phase coil, and a W-phase coil. A second motor 226 provided therein is housed in the same casing. In the steering device 200, the first motor 224 and the second motor 226 operate in parallel to steer the front wheels FW of the vehicle VH left and right.
 操舵制御装置240は、第1のモータ224を駆動制御可能な第1の制御装置242と、第2のモータ226を駆動制御可能な第2の制御装置244と、第1のモータ224又は第2のモータ226を選択的に駆動制御可能な第3の制御装置246と、を有している。このため、第1の制御装置242は、第1のモータ224に接続され、第2の制御装置244は、第2のモータ226に接続され、第3の制御装置246は、第1のモータ224及び第2のモータ226に夫々接続されている。ここで、第3の制御装置246は、第1の制御装置242又は第2の制御装置244のいずれかに故障が発生したとき、これらに代わって第1のモータ224又は第2のモータ226を駆動制御する、バックアップ機能を提供する。なお、第1の制御装置242及び第2の制御装置244が、第1の駆動系統の一例として挙げられ、第3の制御装置246が、第2の駆動系統の一例として挙げられる。 The steering control device 240 includes a first control device 242 that can drive and control the first motor 224, a second control device 244 that can drive and control the second motor 226, and a first control device 244 that can drive and control the first motor 224 or the second motor 224. and a third control device 246 that can selectively drive and control the motor 226 of. Therefore, the first controller 242 is connected to the first motor 224, the second controller 244 is connected to the second motor 226, and the third controller 246 is connected to the first motor 224. and a second motor 226, respectively. Here, when a failure occurs in either the first control device 242 or the second control device 244, the third control device 246 controls the first motor 224 or the second motor 226 in their place. Provides drive control and backup functions. Note that the first control device 242 and the second control device 244 are listed as an example of the first drive system, and the third control device 246 is listed as an example of the second drive system.
 第1の制御装置242は、MCU242A、駆動回路242B、及び半導体スイッチング素子からなるモータリレー242Cを有している。第2の制御装置244は、MCU244A、駆動回路244B、及び半導体スイッチング素子からなるモータリレー244Cを有している。第3の制御装置246は、MCU246A、駆動回路246B、並びに半導体スイッチング素子からなる第1のモータリレー246C及び第2のモータリレー246Dを有している。ここで、第1の制御装置242のMCU242A、第2の制御装置244のMCU244A及び第3の制御装置246のMCU246Aのうち、少なくともMCU242A及び244Aはマルチコアプロセッサであってもよい。マルチコアプロセッサとしてデュアルコアプロセッサが採用された場合、主システムとしての第1のプロセッサコアに故障が発生しても、予備システムとしての第2のプロセッサコアによって電動モータ220の駆動制御を引き続いて行うことができる。なお、MCU242A,244A及び246Aは、プロセッサ、不揮発性メモリ、揮発性メモリ、入出力回路及び通信回路を内蔵した電子制御デバイスであって、マイクロコンピュータ、マイクロコントローラ、コントロールユニット、コントローラなどと呼ぶこともできる。また、第1の制御装置242のMCU242A及び第2の制御装置244のMCU244Aが、第1のマイクロコントロールユニットの一例として挙げられ、第3の制御装置246のMCU246Aが、第2のマイクロコントロールユニットの一例として挙げられる。 The first control device 242 includes an MCU 242A, a drive circuit 242B, and a motor relay 242C made of a semiconductor switching element. The second control device 244 includes an MCU 244A, a drive circuit 244B, and a motor relay 244C made of a semiconductor switching element. The third control device 246 includes an MCU 246A, a drive circuit 246B, and a first motor relay 246C and a second motor relay 246D made of semiconductor switching elements. Here, among the MCU 242A of the first control device 242, the MCU 244A of the second control device 244, and the MCU 246A of the third control device 246, at least the MCUs 242A and 244A may be multi-core processors. When a dual-core processor is adopted as the multi-core processor, even if a failure occurs in the first processor core as the main system, the drive control of the electric motor 220 can be continued by the second processor core as the backup system. Can be done. Note that the MCUs 242A, 244A, and 246A are electronic control devices that include a processor, nonvolatile memory, volatile memory, input/output circuit, and communication circuit, and are also called microcomputers, microcontrollers, control units, controllers, etc. can. Further, the MCU 242A of the first control device 242 and the MCU 244A of the second control device 244 are listed as an example of the first microcontrol unit, and the MCU 246A of the third control device 246 is an example of the second microcontrol unit. This is given as an example.
 第1の制御装置242のMCU242Aは、第1のモータ224に供給する交流電流を制御するための制御信号を駆動回路242Bへと出力する。第1の制御装置242の駆動回路242Bは、プリドライバ及びインバータを備え、モータリレー242Cを介して第1のモータ224に交流電流を供給する。ここで、インバータは、複数の半導体スイッチング素子を適宜組み合わせて構成されたブリッジ回路であって、プリドライバの出力信号に応答して各半導体スイッチング素子が作動し、図示しないバッテリなどの直流電源から供給される直流電流を交流電流に変換する(以下同様)。第1の制御装置242のモータリレー242Cは、MCU242Aによってオン及びオフが制御され、駆動回路242Bと第1のモータ224との接続及び遮断を選択的に切り替える。 The MCU 242A of the first control device 242 outputs a control signal for controlling the alternating current supplied to the first motor 224 to the drive circuit 242B. A drive circuit 242B of the first control device 242 includes a pre-driver and an inverter, and supplies alternating current to the first motor 224 via a motor relay 242C. Here, the inverter is a bridge circuit configured by appropriately combining a plurality of semiconductor switching elements, and each semiconductor switching element operates in response to the output signal of the pre-driver, and is supplied from a DC power source such as a battery (not shown). Converts the DC current generated into AC current (the same applies below). The motor relay 242C of the first control device 242 is turned on and off by the MCU 242A, and selectively connects and disconnects the drive circuit 242B and the first motor 224.
 第2の制御装置244のMCU244Aは、第2のモータ226に供給する交流電流を制御するための制御信号を駆動回路244Bへと出力する。第2の制御装置244の駆動回路244Bは、プリドライバ及びインバータを備え、モータリレー244Cを介して第2のモータ226に交流電流を供給する。第2の制御装置244のモータリレー244Cは、MCU244Aによってオン及びオフが制御され、駆動回路244Bと第2のモータ226との接続及び遮断を選択的に切り替える。 The MCU 244A of the second control device 244 outputs a control signal for controlling the alternating current supplied to the second motor 226 to the drive circuit 244B. A drive circuit 244B of the second control device 244 includes a pre-driver and an inverter, and supplies alternating current to the second motor 226 via a motor relay 244C. The motor relay 244C of the second control device 244 is turned on and off by the MCU 244A, and selectively connects and disconnects the drive circuit 244B and the second motor 226.
 第3の制御装置246のMCU246Aは、第1のモータ224又は第2のモータ226のいずれかに供給する交流電流を制御するための制御信号を駆動回路246Bへと出力する。第3の制御装置246の駆動回路246Bは、プリドライバ及びインバータを備え、第1のモータリレー246Cを介して第1のモータ224に交流電流を供給するか、又は第2のモータリレー246Dを介して第2のモータ226に交流電流を供給する。第3の制御装置246の第1のモータリレー246Cは、MCU246Aによってオン及びオフが制御され、駆動回路246Bと第1のモータ224との接続及び遮断を選択的に切り替える。第3の制御装置246の第2のモータリレー246Dは、MCU246Aによってオン及びオフが制御され、駆動回路246Bと第2のモータ226との接続及び遮断を選択的に切り替える。 The MCU 246A of the third control device 246 outputs a control signal for controlling the alternating current supplied to either the first motor 224 or the second motor 226 to the drive circuit 246B. The drive circuit 246B of the third control device 246 includes a pre-driver and an inverter, and supplies alternating current to the first motor 224 via the first motor relay 246C or via the second motor relay 246D. and supplies alternating current to the second motor 226. The first motor relay 246C of the third control device 246 is turned on and off by the MCU 246A, and selectively connects and disconnects the drive circuit 246B and the first motor 224. The second motor relay 246D of the third control device 246 is turned on and off by the MCU 246A, and selectively connects and disconnects the drive circuit 246B and the second motor 226.
 第1の制御装置242のMCU242A、第2の制御装置244のMCU244A、及び第3の制御装置246のMCU246Aは、電源投入によって起動されたときに、駆動回路242B,244B及び246B、並びにモータリレー242C,244C,246C及び246Dの故障診断を実行する。 When the MCU 242A of the first control device 242, the MCU 244A of the second control device 244, and the MCU 246A of the third control device 246 are started by turning on the power, the drive circuits 242B, 244B, and 246B, and the motor relay 242C , 244C, 246C and 246D.
 そして、第1の制御装置242の駆動回路242Bに故障が発生すると、第1の制御装置242のMCU242Aは、モータリレー242Cをオフにして駆動回路242Bと第1のモータ224とを遮断するとともに、第3の制御装置246に故障発生を通知する。第1の制御装置242から故障発生が通知された第3の制御装置246のMCU246Aは、第1のモータリレー246Cをオンにして駆動回路246Bと第1のモータ224とを接続する。従って、第1の制御装置242に故障が発生すると、第1の制御装置242に代えて第3の制御装置246が、第1のモータ224に交流電流を供給して駆動制御できるようになる。 When a failure occurs in the drive circuit 242B of the first control device 242, the MCU 242A of the first control device 242 turns off the motor relay 242C to cut off the drive circuit 242B and the first motor 224. The third control device 246 is notified of the occurrence of the failure. The MCU 246A of the third control device 246, which has been notified of the failure occurrence by the first control device 242, turns on the first motor relay 246C to connect the drive circuit 246B and the first motor 224. Therefore, when a failure occurs in the first control device 242, the third control device 246 replaces the first control device 242 and can control the drive by supplying alternating current to the first motor 224.
 第2の制御装置244の駆動回路244Bに故障が発生すると、第2の制御装置244のMCU244Aは、モータリレー244Cをオフにして駆動回路244Bと第2のモータ226とを遮断するとともに、第3の制御装置246に故障発生を通知する。第2の制御装置244から故障発生が通知された第3の制御装置246のMCU246Aは、第2のモータリレー246Dをオンにして駆動回路246Bと第2のモータ226とを接続する。従って、第2の制御装置244に故障が発生すると、第2の制御装置244に代えて第3の制御装置246が、第2のモータ226に交流電流を供給して駆動制御できるようになる。 When a failure occurs in the drive circuit 244B of the second control device 244, the MCU 244A of the second control device 244 turns off the motor relay 244C to cut off the drive circuit 244B and the second motor 226, and the third control device 246 of the occurrence of the failure. The MCU 246A of the third control device 246, which has been notified of the failure occurrence by the second control device 244, turns on the second motor relay 246D to connect the drive circuit 246B and the second motor 226. Therefore, if a failure occurs in the second control device 244, the third control device 246 can replace the second control device 244 and supply alternating current to the second motor 226 to control its drive.
 第3の制御装置246の駆動回路246Bに故障が発生すると、第3の制御装置246のMCU246Aは、第1のモータリレー246C及び第2のモータリレー246Dを夫々オフにして、駆動回路246Bと第1のモータ224及び第2のモータ226とを遮断するとともに、第1の制御装置242及び第2の制御装置244に故障発生を通知する。従って、第1の制御装置242のMCU242A及び第2の制御装置244のMCU244Aは、第3の制御装置246に故障が発生していることを認識することができる。 When a failure occurs in the drive circuit 246B of the third control device 246, the MCU 246A of the third control device 246 turns off the first motor relay 246C and the second motor relay 246D, and turns off the drive circuit 246B and the second motor relay 246D. The first motor 224 and the second motor 226 are shut off, and the first control device 242 and the second control device 244 are notified of the occurrence of the failure. Therefore, the MCU 242A of the first control device 242 and the MCU 244A of the second control device 244 can recognize that a failure has occurred in the third control device 246.
 このようにして、操舵装置200においては、第1の制御装置242、第2の制御装置244及び第3の制御装置246のいずれか1つに故障が発生しても、第1のモータ224及び第2のモータ226を駆動制御することができ、操舵装置200による前輪FWの操舵を継続することができる。また、第1の制御装置242又は第2の制御装置244に故障が発生しても、第3の制御装置246が第1のモータ224又は第2のモータ226を駆動制御して、操舵装置200による前輪FWの操舵を継続することができる。このため、操舵装置200においては、例えば、急なアシストの喪失などを防ぐことができる。 In this way, in the steering device 200, even if a failure occurs in any one of the first control device 242, the second control device 244, and the third control device 246, the first motor 224 and The second motor 226 can be drive-controlled, and the steering of the front wheels FW by the steering device 200 can be continued. Further, even if a failure occurs in the first control device 242 or the second control device 244, the third control device 246 drives and controls the first motor 224 or the second motor 226, and the steering device 200 It is possible to continue steering the front wheels FW. Therefore, in the steering device 200, for example, sudden loss of assist can be prevented.
 反力装置400の電動モータ440は、U相コイル、V相コイル及びW相コイルからなる巻線を備えた第1のモータ444と、U相コイル、V相コイル及びW相コイルからなる巻線を備えた第2のモータ446と、が同一のケーシングに収容されている。そして、反力装置400は、第1のモータ444及び第2のモータ446が並列的に動作して、車両VHのステアリングホイールSWに反力トルクを付与する。 The electric motor 440 of the reaction force device 400 includes a first motor 444 having a winding including a U-phase coil, a V-phase coil, and a W-phase coil, and a first motor 444 having a winding including a U-phase coil, a V-phase coil, and a W-phase coil. A second motor 446 with a second motor 446 is housed in the same casing. In the reaction device 400, the first motor 444 and the second motor 446 operate in parallel to apply a reaction torque to the steering wheel SW of the vehicle VH.
 反力制御装置460は、第1のモータ444を駆動制御可能な第1の制御装置462と、第2のモータ446を駆動制御可能な第2の制御装置464と、を有している。このため、第1の制御装置462は、第1のモータ444に接続され、第2の制御装置464は、第2のモータ446に接続されている。 The reaction force control device 460 has a first control device 462 capable of driving and controlling the first motor 444, and a second control device 464 capable of driving and controlling the second motor 446. Therefore, the first control device 462 is connected to the first motor 444, and the second control device 464 is connected to the second motor 446.
 第1の制御装置462は、MCU462A、駆動回路462B、及び半導体スイッチング素子からなるモータリレー462Cを有している。第2の制御装置464は、MCU464A、駆動回路464B、及び半導体スイッチング素子からなるモータリレー464Cを有している。 The first control device 462 includes an MCU 462A, a drive circuit 462B, and a motor relay 462C made of a semiconductor switching element. The second control device 464 includes an MCU 464A, a drive circuit 464B, and a motor relay 464C made of a semiconductor switching element.
 第1の制御装置462のMCU462Aは、第1のモータ444に供給する交流電流を制御するための制御信号を駆動回路462Bに出力する。第1の制御装置462の駆動回路462Bは、プリドライバ及びインバータを備え、モータリレー462Cを介して第1のモータ444へと交流電流を供給する。第1の制御装置462のモータリレー462Cは、MCU462Aによってオン及びオフが制御され、駆動回路462Bと第1のモータ444との接続及び遮断を選択的に切り替える。 The MCU 462A of the first control device 462 outputs a control signal for controlling the alternating current supplied to the first motor 444 to the drive circuit 462B. A drive circuit 462B of the first control device 462 includes a pre-driver and an inverter, and supplies alternating current to the first motor 444 via a motor relay 462C. The motor relay 462C of the first control device 462 is turned on and off by the MCU 462A, and selectively connects and disconnects the drive circuit 462B and the first motor 444.
 第2の制御装置464のMCU464Aは、第2のモータ446に供給する交流電流を制御するための制御信号を駆動回路464Bに出力する。第2の制御装置464の駆動回路464Bは、プリドライバ及びインバータを備え、モータリレー464Cを介して第2のモータ446へと交流電流を供給する。第2の制御装置464のモータリレー464Cは、MCU464Aによってオン及びオフが制御され、駆動回路464Bと第2のモータ446との接続及び遮断を選択的に切り替える。 The MCU 464A of the second control device 464 outputs a control signal for controlling the alternating current supplied to the second motor 446 to the drive circuit 464B. A drive circuit 464B of the second control device 464 includes a pre-driver and an inverter, and supplies alternating current to the second motor 446 via a motor relay 464C. Motor relay 464C of second control device 464 is turned on and off by MCU 464A, and selectively connects and disconnects drive circuit 464B and second motor 446.
 なお、反力装置400は、操舵制御装置240と同様に、第1の制御装置462及び第2の制御装置464に加えて第3の制御装置を有していてもよい。そして、第3の制御装置は、第1の制御装置462に故障が発生したときに第1のモータ444への交流電流の供給を制御し、第2の制御装置464に故障が発生したときに第2のモータ446への交流電流の供給を制御するように構成することができる。 Note that, similar to the steering control device 240, the reaction force device 400 may include a third control device in addition to the first control device 462 and the second control device 464. The third control device controls the supply of alternating current to the first motor 444 when a failure occurs in the first control device 462, and controls the supply of alternating current to the first motor 444 when a failure occurs in the second control device 464. The second motor 446 can be configured to control the supply of alternating current to the second motor 446 .
 ここで、操舵装置200の電動モータ220を駆動制御する操舵制御装置240の詳細について説明する。第1の制御装置242及び第2の制御装置244の構成は同一であり、第3の制御装置246の構成は、モータリレーが2つ設けられている点を除き第1の制御装置242及び第2の制御装置244と同一であるため、第1の制御装置242についてのみ説明する。従って、第1の制御装置242を説明することによって、第2の制御装置244及び第3の制御装置246を説明したものとする。また、第2の制御装置244及び第3の制御装置246の構成要素については、第1の制御装置242の構成要素と同様な符号を付すものとする。なお、反力装置400の電動モータ440を駆動制御する反力制御装置460は、操舵装置200の操舵制御装置240と同様であるので、その詳細な説明は省略する。 Here, details of the steering control device 240 that drives and controls the electric motor 220 of the steering device 200 will be described. The configurations of the first control device 242 and the second control device 244 are the same, and the configuration of the third control device 246 is different from that of the first control device 242 and the second control device 244 except that two motor relays are provided. Since it is the same as the second control device 244, only the first control device 242 will be described. Therefore, by describing first controller 242, second controller 244 and third controller 246 will be described. Further, the components of the second control device 244 and the third control device 246 are given the same reference numerals as the components of the first control device 242. Note that the reaction force control device 460 that drives and controls the electric motor 440 of the reaction force device 400 is the same as the steering control device 240 of the steering device 200, so a detailed explanation thereof will be omitted.
 図3は、電動モータ220の第1のモータ224、及び第1の制御装置242の内部構造の一例を示している。
 第1のモータ224は、U相コイル224U、V相コイル224V及びW相コイル224Wがスター結線されつつ巻き回された略円筒形状のステータ224Sと、ステータ224Sの内周に回転自由に配置されたロータ224Rと、を有している。ロータ224Rの回転駆動軸(図示せず)は、ステータ224Sの軸方向の端部から外部へと突出し、その突出部に操舵装置200の減速機264の入力軸が連結されている。
FIG. 3 shows an example of the internal structure of the first motor 224 of the electric motor 220 and the first control device 242.
The first motor 224 includes a substantially cylindrical stator 224S in which a U-phase coil 224U, a V-phase coil 224V, and a W-phase coil 224W are wound in a star-connected manner, and the stator 224S is rotatably arranged on the inner periphery of the stator 224S. It has a rotor 224R. A rotational drive shaft (not shown) of the rotor 224R protrudes outward from an axial end of the stator 224S, and the input shaft of the reducer 264 of the steering device 200 is connected to the protrusion.
 第1の制御装置242は、上述したMCU242A、駆動回路242B及びモータリレー242Cに加え、バッテリなどの直流電源のプラス端子PTと駆動回路242Bとを選択的に接続及び遮断する電源リレー242Dを含んで構成されている。駆動回路242Bは、プリドライバ242B1、及びインバータ242B2を有している。インバータ242B2は、寄生ダイオード(還流ダイオード)を有するPチャネル型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)など、半導体スイッチング素子SW1~SW6を適宜接続して構成された3相ブリッジ回路である。ここで、半導体スイッチング素子SW1~SW6としては、Pチャネル型のMOSFETに限らず、Nチャネル型のMOSFET、IGPT(Insulated Gate Bipolar Transistor)などであってもよい(以下同様)。なお、第1の制御装置242のインバータ242B2が、第1のインバータの一例として挙げられる。 In addition to the above-described MCU 242A, drive circuit 242B, and motor relay 242C, the first control device 242 includes a power relay 242D that selectively connects and disconnects the positive terminal PT of a DC power source such as a battery and the drive circuit 242B. It is configured. The drive circuit 242B includes a predriver 242B1 and an inverter 242B2. The inverter 242B2 is a three-phase bridge circuit configured by appropriately connecting semiconductor switching elements SW1 to SW6, such as a P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor) having a parasitic diode (freewheeling diode). Here, the semiconductor switching elements SW1 to SW6 are not limited to P-channel MOSFETs, but may also be N-channel MOSFETs, IGPTs (Insulated Gate Bipolar Transistors), etc. (the same applies hereinafter). Note that the inverter 242B2 of the first control device 242 is an example of the first inverter.
 具体的には、インバータ242B2は、半導体スイッチング素子SW1及びSW2が直列接続されたU相アームと、半導体スイッチング素子SW3及びSW4が直列接続されたV相アームと、半導体スイッチング素子SW5及びSW6が直列接続されたW相アームと、を有している。 Specifically, the inverter 242B2 includes a U-phase arm in which semiconductor switching elements SW1 and SW2 are connected in series, a V-phase arm in which semiconductor switching elements SW3 and SW4 are connected in series, and semiconductor switching elements SW5 and SW6 are connected in series. and a W-phase arm.
 U相アームでは、上段の半導体スイッチング素子SW1のソースが電源リレー242Dを介して直流電源のプラス端子PTに接続され、上段の半導体スイッチング素子SW1のドレインが下段の半導体スイッチング素子SW2のソースに接続され、下段の半導体スイッチング素子SW2のドレインが直流電源のマイナス端子MTに接続されている。そして、上段の半導体スイッチング素子SW1と下段の半導体スイッチング素子SW2との間に位置する電路は、U相駆動ライン242Uを介して第1のモータ224のU相コイル224Uに接続されている。 In the U-phase arm, the source of the upper semiconductor switching element SW1 is connected to the positive terminal PT of the DC power supply via the power relay 242D, and the drain of the upper semiconductor switching element SW1 is connected to the source of the lower semiconductor switching element SW2. , the drain of the lower semiconductor switching element SW2 is connected to the negative terminal MT of the DC power supply. The electric path located between the upper semiconductor switching element SW1 and the lower semiconductor switching element SW2 is connected to the U-phase coil 224U of the first motor 224 via the U-phase drive line 242U.
 V相アームでは、上段の半導体スイッチング素子SW3のソースが電源リレー242Dを介して直流電源のプラス端子PTに接続され、上段の半導体スイッチング素子SW3のドレインが下段の半導体スイッチング素子SW4のソースに接続され、下段の半導体スイッチング素子SW4のドレインが直流電源のマイナス端子MTに接続されている。そして、上段の半導体スイッチング素子SW3と下段の半導体スイッチング素子SW4との間に位置する電路は、V相駆動ライン242Vを介して第1のモータ224のV相コイル224Vに接続されている。 In the V-phase arm, the source of the upper semiconductor switching element SW3 is connected to the positive terminal PT of the DC power supply via the power supply relay 242D, and the drain of the upper semiconductor switching element SW3 is connected to the source of the lower semiconductor switching element SW4. , the drain of the lower semiconductor switching element SW4 is connected to the negative terminal MT of the DC power supply. The electric path located between the upper semiconductor switching element SW3 and the lower semiconductor switching element SW4 is connected to the V-phase coil 224V of the first motor 224 via the V-phase drive line 242V.
 W相アームでは、上段の半導体スイッチング素子SW5のソースが電源リレー242Dを介して直流電源のプラス端子PTに接続され、上段の半導体スイッチング素子SW5のドレインが下段の半導体スイッチング素子SW6のソースに接続され、下段の半導体スイッチング素子SW6のドレインが直流電源のマイナス端子MTに接続されている。そして、上段の半導体スイッチング素子SW5と下段の半導体スイッチング素子SW6との間に位置する電路は、W相駆動ライン242Wを介して第1のモータ224のW相コイル224Wに接続されている。 In the W-phase arm, the source of the upper semiconductor switching element SW5 is connected to the positive terminal PT of the DC power supply via the power supply relay 242D, and the drain of the upper semiconductor switching element SW5 is connected to the source of the lower semiconductor switching element SW6. , the drain of the lower semiconductor switching element SW6 is connected to the negative terminal MT of the DC power supply. The electric path located between the upper semiconductor switching element SW5 and the lower semiconductor switching element SW6 is connected to the W-phase coil 224W of the first motor 224 via the W-phase drive line 242W.
 インバータ242B2と第1のモータ224とを接続するU相駆動ライン242U、V相駆動ライン242V及びW相駆動ライン242Wの途中には、これらを選択的に接続又は遮断するモータリレー242Cが配置されている。モータリレー242Cは、図3から明らかなように、U相駆動ライン242Uを選択的に接続又は遮断するU相リレー242C1と、V相駆動ライン242Vを選択的に接続又は遮断するV相リレー242C2と、W相駆動ライン242Wを選択的に接続又は遮断するW相リレー242C3と、を有している。U相リレー242C1、V相リレー242C2及びW相リレー242C3は、寄生ダイオードを有するPチャネル型のMOSFETからなり、MCU242Aからの指令によって同一状態に作動する。 A motor relay 242C is arranged in the middle of the U-phase drive line 242U, V-phase drive line 242V, and W-phase drive line 242W that connect the inverter 242B2 and the first motor 224 to selectively connect or disconnect them. There is. As is clear from FIG. 3, the motor relay 242C includes a U-phase relay 242C1 that selectively connects or disconnects the U-phase drive line 242U, and a V-phase relay 242C2 that selectively connects or disconnects the V-phase drive line 242V. , and a W-phase relay 242C3 that selectively connects or disconnects the W-phase drive line 242W. The U-phase relay 242C1, the V-phase relay 242C2, and the W-phase relay 242C3 are composed of P-channel MOSFETs having parasitic diodes, and operate in the same state according to commands from the MCU 242A.
 また、インバータ242B2と電源リレー242Dとを接続する電路から分岐して直流電源のマイナス端子MTに接続される分岐路には、所定の電気容量を有するコンデンサ242Eが配置されている。このコンデンサ242Eは、電源リレー242Dが作動している間に充電され、詳細については後述するように、第1の制御装置242の起動時にインバータ242B2及びモータリレー242Cのオープン(断線)故障の有無を診断するために使用される。 Further, a capacitor 242E having a predetermined capacitance is placed in a branch path that branches off from the electrical path connecting the inverter 242B2 and the power supply relay 242D and is connected to the negative terminal MT of the DC power source. This capacitor 242E is charged while the power supply relay 242D is operating, and as will be described in detail later, detects whether or not there is an open (disconnection) failure in the inverter 242B2 and motor relay 242C when the first control device 242 is started. used to diagnose.
 そして、このように構成された第1の制御装置242、第2の制御装置244及び第3の制御装置246は、図4に示すように、電動モータ220に対して接続されてその駆動を制御する。即ち、第1の制御装置242のインバータ242B2は、モータリレー242Cを介して、電動モータ220の第1のモータ224のU相コイル224U、V相コイル224V及びW相コイル224Wに接続されている。第2の制御装置244のインバータ244B2は、モータリレー244Cを介して、電動モータ220の第2のモータ226のU相コイル226U、V相コイル226V及びW相コイル226Wに接続されている。また、第3の制御装置246のインバータ246B2は、第1のモータリレー246Cを介して、第1の制御装置242と電動モータ220の第1のモータ224とを接続するU相駆動ライン242U、V相駆動ライン242V及びW相駆動ライン242Wに接続されている。さらに、第3の制御装置246のインバータ246B2は、第2のモータリレー246Dを介して、第2の制御装置244と電動モータ220の第2のモータ226とを接続するU相駆動ライン244U、V相駆動ライン244V及びW相駆動ライン244Wに接続されている。要するに、第3の制御装置246は、第1の制御装置242又は第2の制御装置244のいずれかに故障が発生したときに、電動モータ220の第1のモータ224又は第2のモータ226を引き続いて駆動制御するように接続されている。なお、第2の制御装置244のインバータ244B2が、第1のインバータの一例として挙げられ、第3の制御装置246のインバータ246B2が、第2のインバータの一例として挙げられる。 The first control device 242, second control device 244, and third control device 246 configured in this way are connected to the electric motor 220 and control the drive thereof, as shown in FIG. do. That is, inverter 242B2 of first control device 242 is connected to U-phase coil 224U, V-phase coil 224V, and W-phase coil 224W of first motor 224 of electric motor 220 via motor relay 242C. Inverter 244B2 of second control device 244 is connected to U-phase coil 226U, V-phase coil 226V, and W-phase coil 226W of second motor 226 of electric motor 220 via motor relay 244C. In addition, the inverter 246B2 of the third control device 246 connects the first control device 242 and the first motor 224 of the electric motor 220 via the first motor relay 246C to the U-phase drive line 242U, V It is connected to the phase drive line 242V and the W-phase drive line 242W. Furthermore, the inverter 246B2 of the third control device 246 connects the second control device 244 and the second motor 226 of the electric motor 220 via the second motor relay 246D. It is connected to the phase drive line 244V and the W-phase drive line 244W. In short, the third control device 246 controls the first motor 224 or the second motor 226 of the electric motor 220 when a failure occurs in either the first control device 242 or the second control device 244. connected for subsequent drive control. Note that the inverter 244B2 of the second control device 244 is cited as an example of the first inverter, and the inverter 246B2 of the third control device 246 is cited as an example of the second inverter.
 ここで、第1の制御装置242において、電源投入により起動したことを契機として実行される、インバータ242B2及びモータリレー242Cの診断方法について説明する。なお、以下においては、第1の制御装置242について診断方法を説明するが、第2の制御装置244及び第3の制御装置246でも同様な原理によって、インバータ244B2及び246B2、並びにモータリレー244C,246C及び246Dを夫々診断することができる。 Here, a method of diagnosing the inverter 242B2 and the motor relay 242C, which is executed in the first control device 242 when the power is turned on and activated, will be described. In the following, a diagnosis method will be explained for the first control device 242, but the second control device 244 and the third control device 246 also use the same principle to diagnose the inverters 244B2 and 246B2 and the motor relays 244C and 246C. and 246D can be diagnosed respectively.
 第1の制御装置242が起動されると、インバータ242B2のショート(短絡)故障により直流電源の電流が下流に流れることを防ぐために、電源リレー242Dが遮断された状態で診断が実行される。このとき、第1のモータ224の端子間電圧を診断パラメータとして使用するため、モータリレー242Cが作動されて、インバータ242B2と第1のモータ224とが接続される。なお、インバータ242B2の診断は、直流電源から電流が供給されないため、コンデンサ242Eに蓄えられた電荷を使用して行われる。 When the first control device 242 is activated, diagnosis is performed with the power supply relay 242D cut off in order to prevent the current of the DC power supply from flowing downstream due to a short-circuit failure of the inverter 242B2. At this time, since the voltage between the terminals of the first motor 224 is used as a diagnostic parameter, the motor relay 242C is activated and the inverter 242B2 and the first motor 224 are connected. Note that the diagnosis of the inverter 242B2 is performed using the charge stored in the capacitor 242E since no current is supplied from the DC power supply.
 最初に、MCU242Aは、プリドライバ242B1を介してインバータ242B2の下段の半導体スイッチング素子SW2,SW4及びSW6を所定時間だけ作動させる。そして、MCU242Aは、U相アーム、V相アーム及びW相アームのそれぞれについて、コンデンサ242Eの端子間電圧V0と第1のモータ224の端子間電圧V1とを比較し、インバータ242B2の上段の半導体スイッチング素子SW1,SW3及びSW5のショート故障の有無を診断する。 First, the MCU 242A operates the lower semiconductor switching elements SW2, SW4, and SW6 of the inverter 242B2 for a predetermined time via the predriver 242B1. Then, the MCU 242A compares the voltage V0 between the terminals of the capacitor 242E and the voltage V1 between the terminals of the first motor 224 for each of the U-phase arm, V-phase arm, and W-phase arm, and compares the voltage V0 between the terminals of the capacitor 242E with the voltage V1 between the terminals of the first motor 224, Diagnose the presence or absence of a short-circuit failure in elements SW1, SW3, and SW5.
 インバータ242B2の上段の半導体スイッチング素子SW1,SW3及びSW5が正常であれば、コンデンサ242Eから供給される電流は、上段の半導体スイッチング素子SW1,SW3及びSW5の寄生ダイオードを介して流れる。このとき、上段の半導体スイッチング素子SW1,SW3及びSW5の寄生ダイオードにより電圧降下が発生し、この電圧降下相当をVfで表すと、V0-V1=2*Vfという相関関係が成立する。従って、MCU242Aは、インバータ242B2の下段の半導体スイッチング素子SW2,SW4及びSW6を作動させたときにV0-V1=2*Vfとなっていれば、上段の半導体スイッチング素子SW1,SW3及びSW5が正常であると診断することができる。 If the upper stage semiconductor switching elements SW1, SW3 and SW5 of the inverter 242B2 are normal, the current supplied from the capacitor 242E flows through the parasitic diodes of the upper stage semiconductor switching elements SW1, SW3 and SW5. At this time, a voltage drop occurs due to the parasitic diodes of the upper stage semiconductor switching elements SW1, SW3, and SW5, and if the voltage drop equivalent is expressed by Vf, a correlation of V0-V1=2*Vf is established. Therefore, the MCU 242A determines that the upper semiconductor switching elements SW1, SW3, and SW5 are normal if V0-V1=2*Vf when the lower semiconductor switching elements SW2, SW4, and SW6 of the inverter 242B2 are activated. It can be diagnosed that there is.
 一方、インバータ242B2の上段の半導体スイッチング素子SW1,SW3及びSW5にショート故障が発生していれば、コンデンサ242Eから供給される電流が上段の半導体スイッチング素子SW1,SW3及びSW5を流れ、V0-V1=Vfとなる。従って、MCU242Aは、インバータ242B2の下段の半導体スイッチング素子SW2,SW4及びSW6を作動させたときにV0-V1=Vfとなっていれば、上段の半導体スイッチング素子SW1,SW3及びSW5にショート故障が発生していると診断することができる。 On the other hand, if a short circuit occurs in the upper semiconductor switching elements SW1, SW3, and SW5 of inverter 242B2, the current supplied from capacitor 242E flows through the upper semiconductor switching elements SW1, SW3, and SW5, and V0-V1=Vf. Therefore, if V0-V1=Vf holds when the lower semiconductor switching elements SW2, SW4, and SW6 of inverter 242B2 are operated, MCU 242A can diagnose that a short circuit has occurred in the upper semiconductor switching elements SW1, SW3, and SW5.
 次に、MCU242Aは、プリドライバ242B1を介してインバータ242B2の上段の半導体スイッチング素子SW1,SW3及びSW5を所定時間だけ作動させる。そして、MCU242Aは、U相アーム、V相アーム及びW相アームのそれぞれについて、コンデンサ242Eの端子間電圧V0と第1のモータ224の端子間電圧V1とを比較し、インバータ242B2の下段の半導体スイッチング素子SW2,SW4及びSW6のショート故障の有無を診断する。 Next, the MCU 242A operates the upper semiconductor switching elements SW1, SW3, and SW5 of the inverter 242B2 for a predetermined time via the predriver 242B1. Then, the MCU 242A compares the voltage V0 between the terminals of the capacitor 242E and the voltage V1 between the terminals of the first motor 224 for each of the U-phase arm, V-phase arm, and W-phase arm, and compares the voltage V0 between the terminals of the capacitor 242E with the voltage V1 between the terminals of the first motor 224, Diagnose the presence or absence of a short-circuit failure in elements SW2, SW4, and SW6.
 インバータ242B2の下段の半導体スイッチング素子SW2,SW4及びSW6が正常であれば、コンデンサ242Eから供給される電流は、モータリレー242Cの寄生ダイオードを介して流れる。この電圧降下相当をVfで表すと、V0-V1=Vfという相関関係が成立する。従って、MCU242Aは、インバータ242B2の上段の半導体スイッチング素子SW1,SW3及びSW5を作動させたときにV0-V1=Vf、即ち、V1=V0-Vfとなっていれば、下段の半導体スイッチング素子SW2,SW4及びSW6が正常であると診断することができる。 If the lower semiconductor switching elements SW2, SW4, and SW6 of the inverter 242B2 are normal, the current supplied from the capacitor 242E flows through the parasitic diode of the motor relay 242C. If this voltage drop equivalent is expressed by Vf, a correlation of V0-V1=Vf is established. Therefore, if V0-V1=Vf, that is, V1=V0-Vf when operating the upper-stage semiconductor switching elements SW1, SW3, and SW5 of the inverter 242B2, the MCU 242A operates the lower-stage semiconductor switching elements SW2, It can be diagnosed that SW4 and SW6 are normal.
 一方、インバータ242B2の下段の半導体スイッチング素子SW2,SW4及びSW6にショート故障が発生していれば、コンデンサ242Eから供給される電流が下段の半導体スイッチング素子SW2,SW4及びSW6を流れ、V0=0となる。従って、MCU242Aは、インバータ242B2の上段の半導体スイッチング素子SW1,SW3及びSW5を作動させたときにV0-V1=Vf、即ち、V1=-Vfとなっていれば、下段の半導体スイッチング素子SW2,SW4及びSW6にショート故障が発生していると診断することができる。 On the other hand, if a short circuit failure occurs in the lower stage semiconductor switching elements SW2, SW4, and SW6 of the inverter 242B2, the current supplied from the capacitor 242E flows through the lower stage semiconductor switching elements SW2, SW4, and SW6, and V0=0. Become. Therefore, if V0-V1=Vf, that is, V1=-Vf when operating the upper-stage semiconductor switching elements SW1, SW3, and SW5 of the inverter 242B2, the MCU 242A operates the lower-stage semiconductor switching elements SW2, SW4. It can be diagnosed that a short circuit failure has occurred in SW6.
 また、MCU242Aは、インバータ242B2の上段の半導体スイッチング素子SW1,SW3及びSW5にオープン故障が発生していると、V1=0となるため、上段の半導体スイッチング素子SW1,SW3及びSW5にオープン故障が発生していると診断することができる。さらに、MCU242Aは、インバータ242B2の上段の半導体スイッチング素子SW1,SW3及びSW5を作動させたときに、モータリレー242Cにオープン故障が発生しているとV1=0となるため、モータリレー242Cにオープン故障が発生しているか否かも同時に診断することができる。 In addition, in the MCU 242A, when an open failure occurs in the upper stage semiconductor switching elements SW1, SW3, and SW5 of the inverter 242B2, V1=0, so an open failure occurs in the upper stage semiconductor switching elements SW1, SW3, and SW5. It can be diagnosed that Furthermore, when the MCU 242A operates the upper stage semiconductor switching elements SW1, SW3, and SW5 of the inverter 242B2, if an open failure occurs in the motor relay 242C, V1=0, so that the motor relay 242C has an open failure. At the same time, it is possible to diagnose whether or not this is occurring.
 従って、上述したような原理を実装したアプリケーションプログラムを実行することで、MCU242Aは、インバータ242B2の半導体スイッチング素子SW1~SW6、並びにモータリレー242CのU相リレー242C1、V相リレー242C2及びW相リレー242C3のオープン故障、ショート故障の有無を診断することができる。なお、MCU242Aは、最初にインバータ242B2の上段の半導体スイッチング素子SW1,SW3及びSW5を作動させて故障診断を実行し、次にインバータ242B2の下段の半導体スイッチング素子SW2,SW4及びSW6を作動させて故障診断を実行するようにしてもよい。 Therefore, by executing the application program that implements the principle described above, the MCU 242A can control the semiconductor switching elements SW1 to SW6 of the inverter 242B2, as well as the U-phase relay 242C1, V-phase relay 242C2, and W-phase relay 242C3 of the motor relay 242C. It is possible to diagnose the presence or absence of open failures and short-circuit failures. Note that the MCU 242A first operates the upper semiconductor switching elements SW1, SW3, and SW5 of the inverter 242B2 to perform failure diagnosis, and then operates the lower semiconductor switching elements SW2, SW4, and SW6 of the inverter 242B2 to perform failure diagnosis. Diagnosis may also be performed.
 ところで、第1の制御装置242及び第3の制御装置246、又は第2の制御装置244及び第3の制御装置246においてインバータ及びモータリレーの故障を同時に診断すると、次のような不具合が発生する可能性がある。以下の説明では、第1の制御装置242及び第3の制御装置246のインバータの故障診断を実行することを前提とし、第1の制御装置242のインバータ242B2の上段の半導体スイッチング素子SW1,SW3及びSW5のいずれかにオープン故障が発生していると仮定する。 By the way, if failures of the inverter and motor relay are simultaneously diagnosed in the first control device 242 and the third control device 246, or the second control device 244 and the third control device 246, the following problems will occur. there is a possibility. In the following description, it is assumed that failure diagnosis of the inverters of the first control device 242 and the third control device 246 is performed, and the semiconductor switching elements SW1, SW3 of the upper stage of the inverter 242B2 of the first control device 242 and Assume that an open failure has occurred in one of SW5.
 第1の制御装置242及び第3の制御装置246において、上段の半導体スイッチング素子SW1,SW3及びSW5を同時にオンにすると、第1の制御装置242では上段の半導体スイッチング素子SW1,SW3及びSW5にオープン故障が発生しているため、コンデンサ242Eから供給される電流が流れない。このため、第1の制御装置242では、電動モータ220の第1のモータ224の端子間電圧V1が0となる。しかしながら、第3の制御装置246ではインバータ246B2に故障が発生していないことから、下段の半導体スイッチング素子SW2,SW4及びSW6の寄生ダイオード、並びに上段の半導体スイッチング素子SW1,SW3及びSW5を通って電流が流れ、電動モータ220の第1のモータ224の端子間電圧がVfとなる。従って、第1の制御装置242の故障診断では、第3の制御装置246によって、電動モータ220の第1のモータ224の端子間電圧がVfとなり、V0-V1=Vfの相関関係が成立して正常であると誤診断されてしまう。 In the first control device 242 and the third control device 246, when the upper-stage semiconductor switching elements SW1, SW3, and SW5 are turned on simultaneously, the upper-stage semiconductor switching elements SW1, SW3, and SW5 open in the first control device 242. Since a failure has occurred, the current supplied from capacitor 242E does not flow. Therefore, in the first control device 242, the voltage V1 between the terminals of the first motor 224 of the electric motor 220 becomes zero. However, in the third control device 246, since no failure has occurred in the inverter 246B2, current flows through the parasitic diodes of the lower stage semiconductor switching elements SW2, SW4 and SW6 and the upper stage semiconductor switching elements SW1, SW3 and SW5. flows, and the voltage across the terminals of the first motor 224 of the electric motor 220 becomes Vf. Therefore, in the failure diagnosis of the first control device 242, the third control device 246 sets the voltage between the terminals of the first motor 224 of the electric motor 220 to Vf, and the correlation of V0-V1=Vf is established. It is misdiagnosed as normal.
 そこで、本実施形態では、第1の制御装置242及び第3の制御装置246の一方の故障診断を、これらの他方のインバータ242B2及び246B2の半導体スイッチング素子SW1~SW6に通電されていないときに実行するようにする。要するに、第1の制御装置242のMCU242Aは、第3の制御装置246においてインバータ246B2の半導体スイッチング素子SW1~SW6に通電されていないときに故障診断を実行する。一方、第3の制御装置246のMCU246Aは、第1の制御装置242においてインバータ242B2の半導体スイッチング素子SW1~SW6に通電されていないときに故障診断を実行する。以下、このような特徴を実装する制御について詳述する。なお、以下では、電動モータ220の第1のモータ224を駆動制御する第1の制御装置242と第3の制御装置246について説明するが、その処理は、電動モータ220の第2のモータ226を駆動制御する第2の制御装置244と第3の制御装置246にも適用可能であることはいうまでもない。 Therefore, in this embodiment, failure diagnosis of one of the first control device 242 and the third control device 246 is performed when the semiconductor switching elements SW1 to SW6 of the other inverter 242B2 and 246B2 are not energized. I'll do what I do. In short, the MCU 242A of the first control device 242 executes failure diagnosis when the semiconductor switching elements SW1 to SW6 of the inverter 246B2 are not energized in the third control device 246. On the other hand, the MCU 246A of the third control device 246 executes failure diagnosis when the semiconductor switching elements SW1 to SW6 of the inverter 242B2 in the first control device 242 are not energized. Control that implements such features will be described in detail below. Note that the first control device 242 and the third control device 246 that drive and control the first motor 224 of the electric motor 220 will be described below, but the processing will be explained by controlling the second motor 226 of the electric motor 220. Needless to say, the present invention is also applicable to the second control device 244 and the third control device 246 that perform drive control.
<<第1実施形態>>
 図5は、第1の制御装置242が起動されたことを契機として、第1の制御装置242のMCU242Aが実行する第1の診断処理の一例を示している。なお、第1の診断処理は、MCU242Aの不揮発性メモリに格納されたアプリケーションプログラムに従って実行される(以下同様)。
 ステップ10(図5では「S10」と略記する。以下同様。)では、MCU242Aが、例えば、電圧センサからコンデンサ242Eの端子間電圧V0を読み込む。
<<First embodiment>>
FIG. 5 shows an example of a first diagnostic process executed by the MCU 242A of the first control device 242 when the first control device 242 is activated. Note that the first diagnostic process is executed according to an application program stored in the nonvolatile memory of the MCU 242A (the same applies hereinafter).
In step 10 (abbreviated as "S10" in FIG. 5; the same applies hereinafter), the MCU 242A reads, for example, the inter-terminal voltage V0 of the capacitor 242E from a voltage sensor.
 ステップ11では、MCU242Aが、コンデンサ242Eの端子間電圧V0が正常であるか否か、要するに、コンデンサ242Eに蓄えられている電荷でインバータ242B2及びモータリレー242Cの診断が実行可能であるか否かを判定する。そして、MCU242Aは、端子間電圧V0が正常であると判定すれば(Yes)、処理をステップ12へと進める。一方、MCU242Aは、端子間電圧V0が正常でない、要するに、コンデンサ242Eに蓄えられている電荷でインバータ242B2及びモータリレー242Cの診断を実行できないと判定すれば(No)、処理をステップ21へと進める。 In step 11, the MCU 242A determines whether or not the voltage V0 between the terminals of the capacitor 242E is normal, in other words, whether or not it is possible to diagnose the inverter 242B2 and motor relay 242C using the charge stored in the capacitor 242E. judge. Then, if the MCU 242A determines that the inter-terminal voltage V0 is normal (Yes), the process proceeds to step 12. On the other hand, if the MCU 242A determines that the inter-terminal voltage V0 is not normal, that is, it is not possible to diagnose the inverter 242B2 and motor relay 242C with the electric charge stored in the capacitor 242E (No), the process proceeds to step 21. .
 ステップ12では、MCU242Aが、プリドライバ242B1を介してインバータ242B2の下段の半導体スイッチング素子SW2,SW4及びSW6を所定時間作動させ、上段の半導体スイッチング素子SW1,SW3及びSW5のショート故障の有無を診断する「診断A」を実行する。なお、この診断処理の詳細については説明済みであるため、以下ではその詳細について更に説明しない。必要であれば、先の説明を参照されたい。 In step 12, the MCU 242A operates the lower-stage semiconductor switching elements SW2, SW4, and SW6 of the inverter 242B2 via the pre-driver 242B1 for a predetermined period of time, and diagnoses whether or not there is a short-circuit failure in the upper-stage semiconductor switching elements SW1, SW3, and SW5. Execute "Diagnosis A". Note that the details of this diagnostic processing have already been explained, so the details will not be further explained below. If necessary, please refer to the previous explanation.
 ステップ13では、MCU242Aが、診断Aの診断結果を第3の制御装置246のMCU246Aに送信(通知)する。従って、第1の制御装置242から診断Aの診断結果を受信した第3の制御装置246のMCU246Aは、第1の制御装置242における診断Aが完了したことを認識することができる。 In step 13, the MCU 242A transmits (notifies) the diagnosis result of diagnosis A to the MCU 246A of the third control device 246. Therefore, the MCU 246A of the third control device 246 that has received the diagnosis result of diagnosis A from the first control device 242 can recognize that the diagnosis A in the first control device 242 has been completed.
 ステップ14では、MCU242Aが、第3の制御装置246から診断Aの診断結果を受信したか否か、要するに、第3の制御装置246において診断Aが完了したか否かを判定する。そして、MCU242Aは、診断Aの診断結果を受信したと判定すれば(Yes)、処理をステップ15へと進める。一方、MCU242Aは、診断Aの診断結果を受信していないと判定すれば(No)、ステップ14の判定処理を再度繰り返し実行する。要するに、ステップ14では、MCU242Aは、第3の制御装置246において診断Aが完了するまで待機する。 In step 14, the MCU 242A determines whether or not the diagnosis result of diagnosis A has been received from the third control device 246, that is, whether or not diagnosis A has been completed in the third control device 246. If the MCU 242A determines that the diagnosis result of diagnosis A has been received (Yes), the process proceeds to step 15. On the other hand, if the MCU 242A determines that the diagnosis result of diagnosis A has not been received (No), the MCU 242A repeats the determination process in step 14 again. In short, in step 14, the MCU 242A waits until diagnosis A is completed in the third control device 246.
 ステップ15では、MCU242Aが、プリドライバ242B1を介してインバータ242B2の上段の半導体スイッチング素子SW1,SW3及びSW5を所定時間作動させ、下段の半導体スイッチング素子SW2,SW4及びSW6、並びにモータリレー242Cのショート故障の有無、下段の半導体スイッチング素子SW2,SW4及びSW6のオープン故障の有無を診断する「診断B」を実行する。なお、この診断処理の詳細については説明済みであるため、以下ではその詳細について更に説明しない。必要であれば、先の説明を参照されたい。 In step 15, the MCU 242A operates the upper semiconductor switching elements SW1, SW3 and SW5 of the inverter 242B2 for a predetermined period of time via the pre-driver 242B1, causing a short circuit failure in the lower semiconductor switching elements SW2, SW4 and SW6 and the motor relay 242C. "Diagnosis B" is executed to diagnose the presence or absence of an open failure in the semiconductor switching elements SW2, SW4, and SW6 in the lower stage. Note that the details of this diagnostic processing have already been explained, so the details will not be further explained below. If necessary, please refer to the previous explanation.
 ステップ16では、MCU242Aが、診断Bの診断結果を第3の制御装置246のMCU246Aに送信する。従って、第1の制御装置242から診断Bの診断結果を受信した第3の制御装置246のMCU246Aは、第1の制御装置242における診断Bが完了したことを認識することができる。 In step 16, the MCU 242A transmits the diagnosis result of diagnosis B to the MCU 246A of the third control device 246. Therefore, the MCU 246A of the third control device 246 that has received the diagnosis result of diagnosis B from the first control device 242 can recognize that diagnosis B in the first control device 242 has been completed.
 ステップ17では、MCU242Aが、第3の制御装置246から診断Bの診断結果を受信したか否か、要するに、第3の制御装置246において診断Bが完了したか否かを判定する。そして、MCU242Aは、診断Bの診断結果を受信したと判定すれば(Yes)、処理をステップ18へと進める。一方、MCU242Aは、診断Bの診断結果を受信していないと判定すれば(No)、ステップ17の判定処理を再度繰り返し実行する。要するに、ステップ17では、MCU242Aは、第3の制御装置246において診断Bが完了するまで待機する。 In step 17, the MCU 242A determines whether or not the diagnosis result of diagnosis B has been received from the third control device 246, that is, whether or not diagnosis B has been completed in the third control device 246. If the MCU 242A determines that the diagnosis result of diagnosis B has been received (Yes), the process proceeds to step 18. On the other hand, if the MCU 242A determines that the diagnosis result of diagnosis B has not been received (No), the MCU 242A repeats the determination process in step 17 again. In short, in step 17, the MCU 242A waits until diagnosis B is completed in the third control device 246.
 ステップ18では、MCU242Aが、第1の制御装置242における診断A及び診断Bの診断結果に応じて、第1の制御装置242のインバータ242B2及びモータリレー242Cの少なくとも一方に故障が発生しているか否かを判定する。そして、MCU242Aは、インバータ242B2及びモータリレー242Cの少なくとも一方に故障が発生していると判定すれば(Yes)、処理をステップ19へと進める。一方、MCU242Aは、インバータ242B2及びモータリレー242Cのいずれにも故障が発生していないと判定すれば(No)、処理をステップ21へと進める。 In step 18, the MCU 242A determines whether or not a failure has occurred in at least one of the inverter 242B2 and motor relay 242C of the first control device 242, depending on the diagnosis results of diagnosis A and diagnosis B in the first control device 242. Determine whether If the MCU 242A determines that a failure has occurred in at least one of the inverter 242B2 and the motor relay 242C (Yes), the process proceeds to step 19. On the other hand, if the MCU 242A determines that there is no failure in either the inverter 242B2 or the motor relay 242C (No), the process proceeds to step 21.
 ステップ19では、第1の制御装置242に故障が発生しているので、第3の制御装置246に第1のモータ224の駆動制御を引き渡す準備として、MCU242Aが、モータリレー242Cをオフにする。従って、第1の制御装置242において駆動回路242Bと第1のモータ224とが遮断され、第1の制御装置242が第1のモータ224を駆動制御できなくなる。 In step 19, since a failure has occurred in the first control device 242, the MCU 242A turns off the motor relay 242C in preparation for handing over drive control of the first motor 224 to the third control device 246. Therefore, the drive circuit 242B and the first motor 224 are cut off in the first control device 242, and the first control device 242 cannot drive and control the first motor 224.
 ステップ20では、第1の制御装置242が第1のモータ224を駆動制御する必要がなくなったので、直流電源の消耗を抑制すべく、MCU242Aが、動作モードを低電力モードに移行させる。ここで、低電力モードでは、外部からの起動信号に応答して起動するウェイクアップ機能のみを作動させることが考えられる(以下同様)。なお、MCU242Aは、動作モードを低電力モードに移行させる代わりに、第1の制御装置242を停止させるようにしてもよい(以下同様)。 In step 20, since the first control device 242 no longer needs to control the drive of the first motor 224, the MCU 242A transitions the operation mode to a low power mode in order to reduce consumption of the DC power supply. Here, in the low power mode, it is conceivable that only the wake-up function that is activated in response to an external activation signal is operated (same below). Note that instead of transitioning the operation mode to the low power mode, the MCU 242A may stop the first control device 242 (same below).
 ステップ21では、コンデンサ242Eの端子間電圧V0が正常でないために診断が実行できないか、又は第1の制御装置242に故障が発生していないので、MCU242Aが、電動モータ220の第1のモータ224を駆動制御する通常制御に移行する。なお、通常制御には、第1の制御装置242で想定されるフェールセーフ処置なども含まれる(以下同様)。 In step 21, the diagnosis cannot be executed because the voltage V0 between the terminals of the capacitor 242E is not normal, or the first control device 242 has not failed, so the MCU 242A controls the first motor 224 of the electric motor 220. Shifts to normal control to drive and control. Note that the normal control also includes fail-safe measures assumed by the first control device 242 (the same applies hereinafter).
 図6は、第3の制御装置246が起動されたことを契機として、第3の制御装置246のMCU246Aが実行する第1の診断処理の一例を示している。なお、第1の診断処理は、MCU246Aの不揮発性メモリに格納されたアプリケーションプログラムに従って実行される。また、第1の制御装置242における第1の診断処理と同様な処理については、重複説明を避ける目的でその説明を簡単にする(以下同様)。必要であれば、先の説明を参照されたい。 FIG. 6 shows an example of the first diagnostic process executed by the MCU 246A of the third control device 246 when the third control device 246 is activated. Note that the first diagnostic process is executed according to an application program stored in the nonvolatile memory of the MCU 246A. In addition, the description of processes similar to the first diagnostic process in the first control device 242 will be simplified in order to avoid redundant explanations (the same applies hereinafter). If necessary, please refer to the previous explanation.
 ステップ30では、MCU246Aが、コンデンサ246Eの端子間電圧V0を読み込む。
 ステップ31では、MCU246Aが、コンデンサ246Eの端子間電圧V0が正常であるか否かを判定する。そして、MCU246Aは、端子間電圧V0が正常であると判定すれば(Yes)、処理をステップ32へと進める。一方、MCU246Aは、端子間電圧V0が正常でないと判定すれば(No)、処理をステップ41へと進める。
In step 30, the MCU 246A reads the voltage V0 between the terminals of the capacitor 246E.
In step 31, the MCU 246A determines whether the voltage V0 between the terminals of the capacitor 246E is normal. Then, if the MCU 246A determines that the inter-terminal voltage V0 is normal (Yes), the process proceeds to step 32. On the other hand, if the MCU 246A determines that the inter-terminal voltage V0 is not normal (No), the process proceeds to step 41.
 ステップ32では、MCU246Aが、第1の制御装置242から診断Aの診断結果を受信したか否か、要するに、第1の制御装置242において診断Aが完了したか否かを判定する。そして、MCU246Aは、診断Aの診断結果を受信したと判定すれば(Yes)、処理をステップ33へと進める。一方、MCU246Aは、診断Aの診断結果を受信していないと判定すれば(No)、ステップ32の判定処理を再度繰り返し実行する。要するに、ステップ32では、MCU246Aは、第1の制御装置242において診断Aが完了するまで待機する。 In step 32, the MCU 246A determines whether or not the diagnosis result of diagnosis A has been received from the first control device 242, in short, whether or not diagnosis A has been completed in the first control device 242. If the MCU 246A determines that the diagnosis result of diagnosis A has been received (Yes), the process proceeds to step 33. On the other hand, if the MCU 246A determines that the diagnosis result of diagnosis A has not been received (No), the MCU 246A repeats the determination process in step 32 again. In short, in step 32, the MCU 246A waits until diagnosis A is completed in the first control device 242.
 ステップ33では、MCU246Aが、診断Aを実行する。
 ステップ34では、MCU246Aが、診断Aの診断結果を第1の制御装置242のMCU242Aに送信する。従って、第3の制御装置246から診断Aの診断結果を受信した第1の制御装置242のMCU242Aは、第3の制御装置246における診断Aが完了したことを認識することができる。
In step 33, the MCU 246A executes diagnosis A.
In step 34, the MCU 246A transmits the diagnosis result of diagnosis A to the MCU 242A of the first control device 242. Therefore, the MCU 242A of the first control device 242 that has received the diagnosis result of diagnosis A from the third control device 246 can recognize that the diagnosis A in the third control device 246 has been completed.
 ステップ35では、MCU246Aが、第1の制御装置242から診断Bの診断結果を受信したか否か、要するに、第1の制御装置242において診断Bが完了したか否かを判定する。そして、MCU246Aは、診断Bの診断結果を受信したと判定すれば(Yes)、処理をステップ36へと進める。一方、MCU246Aは、診断Bの診断結果を受信していないと判定すれば(No)、ステップ35の判定処理を再度繰り返し実行する。要するに、ステップ35では、MCU246Aは、第1の制御装置242において診断Bが完了するまで待機する。 In step 35, the MCU 246A determines whether or not the diagnosis result of diagnosis B has been received from the first control device 242, that is, whether or not diagnosis B has been completed in the first control device 242. If the MCU 246A determines that the diagnosis result of diagnosis B has been received (Yes), the process proceeds to step 36. On the other hand, if the MCU 246A determines that the diagnosis result of diagnosis B has not been received (No), the MCU 246A repeats the determination process of step 35 again. In short, in step 35, the MCU 246A waits until diagnosis B is completed in the first control device 242.
 ステップ36では、MCU246Aが、診断Bを実行する。
 ステップ37では、MCU246Aが、診断Bの診断結果を第1の制御装置242のMCU242Aに送信する。従って、第3の制御装置246から診断Bの診断結果を受信した第1の制御装置242のMCU242Aは、第3の制御装置246における診断Bが完了したことを認識することができる。
In step 36, the MCU 246A executes diagnosis B.
In step 37, the MCU 246A transmits the diagnosis result of diagnosis B to the MCU 242A of the first control device 242. Therefore, the MCU 242A of the first control device 242 that has received the diagnosis result of diagnosis B from the third control device 246 can recognize that diagnosis B in the third control device 246 has been completed.
 ステップ38では、MCU246Aが、第1の制御装置242から受信した診断A及び診断Bの診断結果に応じて、第1の制御装置242のインバータ242B2及びモータリレー242Cの少なくとも一方に故障が発生しているか否かを判定する。そして、MCU246Aは、第1の制御装置242に故障が発生していると判定すれば(Yes)、処理をステップ39へと進める。一方、MCU246Aは、第1の制御装置242に故障が発生していないと判定すれば(No)、処理をステップ41へと進める。 In step 38, the MCU 246A determines whether a failure has occurred in at least one of the inverter 242B2 and motor relay 242C of the first control device 242, according to the diagnosis results of diagnosis A and diagnosis B received from the first control device 242. Determine whether or not there is. If the MCU 246A determines that a failure has occurred in the first control device 242 (Yes), the process proceeds to step 39. On the other hand, if the MCU 246A determines that a failure has not occurred in the first control device 242 (No), the process proceeds to step 41.
 ステップ39では、第1の制御装置242に故障が発生しているので、第1の制御装置242から電動モータ220の第1のモータ224の駆動制御を引き継ぐべく、MCU246Aが、第1のモータリレー246Cをオンにする。従って、第1のモータリレー246Cがオンになることで、第3の制御装置246の駆動回路246Bと第1のモータ224とが接続され、第3の制御装置246が第1のモータ224を駆動制御できるようになる。 In step 39, since a failure has occurred in the first control device 242, the MCU 246A controls the first motor relay in order to take over the drive control of the first motor 224 of the electric motor 220 from the first control device 242. Turn on 246C. Therefore, by turning on the first motor relay 246C, the drive circuit 246B of the third control device 246 and the first motor 224 are connected, and the third control device 246 drives the first motor 224. Become in control.
 ステップ40では、MCU246Aが、電動モータ220の第1のモータ224の駆動制御を開始する。要するに、第1の制御装置242の故障によって第1のモータ224の駆動制御ができないので、これをバックアップすべく、第3の制御装置246が第1のモータ224の駆動制御を引き継ぐ。 In step 40, the MCU 246A starts drive control of the first motor 224 of the electric motor 220. In short, since the first motor 224 cannot be controlled due to a failure of the first control device 242, the third control device 246 takes over the drive control of the first motor 224 in order to back up the failure.
 ステップ41では、コンデンサ242Eの端子間電圧V0が正常でないために診断が実行できないか、又は第1の制御装置242に故障が発生していないので、直流電源の消耗を抑制すべく、MCU246Aが、動作モードを低電力モードに移行させる。なお、MCU246Aは、動作モードを低電力モードに移行させる代わりに、第3の制御装置246を停止させるようにしてもよい(以下同様)。 In step 41, either the diagnosis cannot be executed because the voltage V0 between the terminals of the capacitor 242E is not normal, or there is no failure in the first control device 242, so in order to suppress consumption of the DC power supply, the MCU 246A Shifts the operating mode to low power mode. Note that the MCU 246A may stop the third control device 246 instead of shifting the operation mode to the low power mode (the same applies below).
 かかる第1の診断処理によれば、図7に示すように、起動信号がオンになってハードウエアなどの診断が完了した後に、第1の制御装置242のMCU242Aが、第3の制御装置246のMCU246Aによる故障診断に先だって、診断A及びBを実行する。即ち、起動信号がオンになってハードウエアなどの診断が完了すると、最初に、第1の制御装置242において診断Aが実行される。第1の制御装置242において診断Aが実行されている間、第3の制御装置246は待機している。そして、第1の制御装置242において診断Aが完了すると、第3の制御装置246において診断Aが実行される。第3の制御装置246において診断Aが実行されている間、第1の制御装置242は待機している。 According to the first diagnostic process, as shown in FIG. 7, after the activation signal is turned on and the diagnosis of the hardware, etc. Diagnoses A and B are executed prior to the failure diagnosis by the MCU 246A. That is, when the activation signal is turned on and the diagnosis of hardware and the like is completed, first, diagnosis A is executed in the first control device 242. While diagnosis A is being performed in the first control device 242, the third control device 246 is on standby. Then, when the diagnosis A is completed in the first control device 242, the diagnosis A is executed in the third control device 246. While diagnosis A is being performed in the third control device 246, the first control device 242 is on standby.
 第3の制御装置246において診断Aが完了すると、第1の制御装置242において診断Bが実行される。第1の制御装置242において診断Bが実行されている間、第3の制御装置246は待機している。そして、第1の制御装置242において診断Bが完了すると、第3の制御装置246において診断Bが実行される。第3の制御装置246において診断Bが実行されている間、第1の制御装置242は待機している。その後、第3の制御装置246における診断Bが完了すると、第1の制御装置242に故障が発生していなければ、第1の制御装置242が第1のモータ224を駆動制御する通常制御に移行するとともに、第3の制御装置246が低電力モードに移行する。一方、第1の制御装置242に故障が発生していれば、第1の制御装置242と第1のモータ224とが遮断されるとともに、第3の制御装置246と第1のモータ224とが接続されて、第3の制御装置246が第1のモータ224の駆動制御を引き継ぐ。 When diagnosis A is completed in the third control device 246, diagnosis B is executed in the first control device 242. While diagnosis B is being performed in the first control device 242, the third control device 246 is on standby. When diagnosis B is completed in the first control device 242, diagnosis B is executed in the third control device 246. While diagnosis B is being performed in the third control device 246, the first control device 242 is on standby. Thereafter, when diagnosis B in the third control device 246 is completed, if no failure has occurred in the first control device 242, the first control device 242 shifts to normal control in which drive control of the first motor 224 is performed. At the same time, the third control device 246 shifts to the low power mode. On the other hand, if a failure occurs in the first control device 242, the first control device 242 and the first motor 224 are cut off, and the third control device 246 and the first motor 224 are cut off. Once connected, the third controller 246 takes over drive control of the first motor 224 .
 第1の制御装置242及び第3の制御装置246では、図7から容易に把握できるように、診断A及び診断Bが同時に実行されない。従って、第1の制御装置242及び第3の制御装置246において、インバータ242B2及び246B2の半導体スイッチング素子SW1~SW6が同時に作動することがない。このため、第1の制御装置242及び第3の制御装置246から第1のモータ224に交流電流が同時に供給されず、インバータ242B2及び246B2、並びにモータリレー242C,246C及び246Dの故障の有無を誤診断することが避けられる。 As can be easily understood from FIG. 7, the first control device 242 and the third control device 246 do not execute diagnosis A and diagnosis B at the same time. Therefore, in the first control device 242 and the third control device 246, the semiconductor switching elements SW1 to SW6 of the inverters 242B2 and 246B2 do not operate simultaneously. Therefore, alternating current is not supplied to the first motor 224 from the first control device 242 and the third control device 246 at the same time, and it is possible to erroneously determine whether or not there is a failure in the inverters 242B2 and 246B2 and the motor relays 242C, 246C and 246D. Diagnosis can be avoided.
<<第2の実施形態>>
 図8は、第1の制御装置242が起動されたことを契機として、第1の制御装置242のMCU242Aが実行する第2の診断処理の一例を示している。
 ステップ50では、MCU242Aが、コンデンサ242Eの端子間電圧V0を読み込む。
<<Second embodiment>>
FIG. 8 shows an example of a second diagnostic process executed by the MCU 242A of the first control device 242 when the first control device 242 is activated.
In step 50, the MCU 242A reads the inter-terminal voltage V0 of the capacitor 242E.
 ステップ51では、MCU242Aが、コンデンサ242Eの端子間電圧V0が正常であるか否かを判定する。そして、MCU242Aは、端子間電圧V0が正常であると判定すれば(Yes)、処理をステップ52へと進める。一方、MCU242Aは、端子間電圧V0が正常でないと判定すれば(No)、処理をステップ58へと進める。 In step 51, the MCU 242A determines whether the voltage V0 between the terminals of the capacitor 242E is normal. Then, if the MCU 242A determines that the inter-terminal voltage V0 is normal (Yes), the process proceeds to step 52. On the other hand, if the MCU 242A determines that the inter-terminal voltage V0 is not normal (No), the process proceeds to step 58.
 ステップ52では、MCU242Aが、第3の制御装置246から診断A及びBの診断結果を受信したか否かを判定する。そして、MCU242Aは、診断A及びBの診断結果を受信したと判定すれば(Yes)、処理をステップ53へと進める。一方、MCU242Aは、診断A及びBの診断結果を受信していないと判定すれば(No)、ステップ52の判定処理を再度実行する。要するに、ステップ52では、MCU242Aは、第3の制御装置246から診断結果を受信するまで待機する。 In step 52, the MCU 242A determines whether or not the results of diagnosis A and diagnosis B have been received from the third control device 246. If the MCU 242A determines that the results of diagnosis A and diagnosis B have been received (Yes), the process proceeds to step 53. On the other hand, if the MCU 242A determines that the results of diagnosis A and diagnosis B have not been received (No), the MCU 242A executes the determination process of step 52 again. In short, in step 52, the MCU 242A waits until it receives the diagnostic results from the third control device 246.
 ステップ53では、MCU242Aが、診断A及びBを連続して実行する。
 ステップ54では、MCU242Aが、診断A及びBの診断結果を第3の制御装置246のMCU246Aに送信する。従って、診断結果を受信した第3の制御装置246のMCU246Aは、第1の制御装置242における診断A及びBが完了したことを認識することができる。
In step 53, the MCU 242A executes diagnoses A and B consecutively.
In step 54, the MCU 242A sends the results of diagnosis A and diagnosis B to the MCU 246A of the third control device 246. Therefore, the MCU 246A of the third control device 246 that has received the diagnosis result can recognize that the diagnoses A and B in the first control device 242 have been completed.
 ステップ55では、MCU242Aが、第1の制御装置242における診断A及びBの診断結果に応じて、第1の制御装置242のインバータ242B2及びモータリレー242Cの少なくとも一方に故障が発生しているか否かを判定する。そして、MCU242Aは、第1の制御装置242に故障が発生していると判定すれば(Yes)、処理をステップ56へと進める。一方、MCU242Aは、第1の制御装置242に故障が発生していないと判定すれば(No)、処理をステップ58へと進める。 In step 55, the MCU 242A determines whether a failure has occurred in at least one of the inverter 242B2 and the motor relay 242C of the first control device 242, depending on the diagnosis results of diagnosis A and B in the first control device 242. Determine. If the MCU 242A determines that a failure has occurred in the first control device 242 (Yes), the process proceeds to step 56. On the other hand, if the MCU 242A determines that a failure has not occurred in the first control device 242 (No), the process proceeds to step 58.
 ステップ56では、第1の制御装置242に故障が発生しているので、第3の制御装置246に第1のモータ224の駆動制御を引き渡す準備として、MCU242Aが、モータリレー242Cをオフにする。 In step 56, since a failure has occurred in the first control device 242, the MCU 242A turns off the motor relay 242C in preparation for handing over drive control of the first motor 224 to the third control device 246.
 ステップ57では、第1の制御装置242による第1のモータ224の駆動制御ができなくなったため、直流電源の消耗を抑制すべく、MCU242Aが、動作モードを低電力モードに移行させる。 In step 57, since the first control device 242 can no longer control the drive of the first motor 224, the MCU 242A shifts the operation mode to a low power mode in order to suppress consumption of the DC power supply.
 ステップ58では、コンデンサ242Eの電荷を使用して診断A及びBができないか、又は第1の制御装置242が正常であるので、MCU242Aが、第1のモータ224を駆動制御する通常制御に移行する。 In step 58, either diagnosis A and B cannot be performed using the charge of the capacitor 242E, or the first control device 242 is normal, so the MCU 242A shifts to normal control to drive and control the first motor 224. .
 図9は、第3の制御装置246が起動したことを契機として、第3の制御装置246のMCU246Aが実行する第2の診断処理の一例を示している。
 ステップ60では、MCU246Aが、コンデンサ246Eの端子間電圧V0を読み込む。
FIG. 9 shows an example of a second diagnostic process executed by the MCU 246A of the third control device 246 when the third control device 246 is activated.
In step 60, the MCU 246A reads the voltage V0 between the terminals of the capacitor 246E.
 ステップ61では、MCU246Aが、コンデンサ246Eの端子間電圧V0が正常であるか否かを判定する。そして、MCU246Aは、端子間電圧V0が正常であると判定すれば(Yes)、処理をステップ62へと進める。一方、MCU246Aは、端子間電圧V0が正常でないと判定すれば(No)、処理をステップ68へと進める。 In step 61, the MCU 246A determines whether the voltage V0 between the terminals of the capacitor 246E is normal. Then, if the MCU 246A determines that the inter-terminal voltage V0 is normal (Yes), the process proceeds to step 62. On the other hand, if the MCU 246A determines that the inter-terminal voltage V0 is not normal (No), the process proceeds to step 68.
 ステップ62では、MCU246Aが、診断A及びBを連続して実行する。
 ステップ63では、MCU246Aが、診断A及びBの診断結果を第1の制御装置242のMCU242Aに送信する。従って、第3の制御装置246における診断結果を受信した第1の制御装置242のMCU242Aは、第3の制御装置246における診断A及びBが完了したことを認識することができる。
In step 62, the MCU 246A executes diagnostics A and B sequentially.
In step 63, the MCU 246A transmits the results of diagnosis A and diagnosis B to the MCU 242A of the first control device 242. Therefore, the MCU 242A of the first control device 242 that has received the diagnosis results from the third control device 246 can recognize that the diagnoses A and B in the third control device 246 have been completed.
 ステップ64では、MCU246Aが、第1の制御装置242から診断A及びBの診断結果を受信したか否かを判定する。そして、MCU246Aは、第1の制御装置242から診断結果を受信したと判定すれば(Yes)、処理をステップ65へと進める。一方、MCU246Aは、第1の制御装置242から診断結果を受信していないと判定すれば(No)、ステップ64の判定処理を再度実行する。要するに、ステップ64では、MCU246Aは、第1の制御装置242における診断A及びBが完了するまで待機する。 In step 64, the MCU 246A determines whether or not the results of diagnosis A and diagnosis B have been received from the first control device 242. If the MCU 246A determines that the diagnosis result has been received from the first control device 242 (Yes), the process proceeds to step 65. On the other hand, if the MCU 246A determines that the diagnosis result has not been received from the first control device 242 (No), the MCU 246A executes the determination process in step 64 again. In short, in step 64, the MCU 246A waits until diagnostics A and B in the first controller 242 are completed.
 ステップ65では、MCU246Aが、第1の制御装置242から受信した診断A及びBの診断結果に応じて、第1の制御装置242のインバータ242B2及びモータリレー242Cの少なくとも一方に故障が発生しているか否かを判定する。そして、MCU246Aは、第1の制御装置242に故障が発生していると判定すれば(Yes)、処理をステップ66へと進める。一方、MCU246Aは、第1の制御装置242に故障が発生していないと判定すれば(No)、処理をステップ68へと進める。 In step 65, the MCU 246A determines whether a failure has occurred in at least one of the inverter 242B2 and motor relay 242C of the first control device 242, according to the diagnosis results of diagnosis A and diagnosis B received from the first control device 242. Determine whether or not. If the MCU 246A determines that a failure has occurred in the first control device 242 (Yes), the process proceeds to step 66. On the other hand, if the MCU 246A determines that a failure has not occurred in the first control device 242 (No), the process proceeds to step 68.
 ステップ66では、第1の制御装置242に故障が発生しているので、第1の制御装置242から電動モータ220の第1のモータ224の駆動制御を引き継ぐべく、MCU246Aが、第1のモータリレー246Cをオンにする。 In step 66, since a failure has occurred in the first control device 242, the MCU 246A controls the first motor relay in order to take over the drive control of the first motor 224 of the electric motor 220 from the first control device 242. Turn on 246C.
 ステップ67では、MCU246Aが、電動モータ220の第1のモータ224の駆動制御を開始する。
 ステップ68では、コンデンサ246Eに蓄えられた電荷により診断A及びBが実行できないか、又は第1の制御装置242に故障が発生していないので、直流電源の消耗を抑制すべく、MCU246Aが、動作モードを低電力モードに移行させる。
In step 67, the MCU 246A starts drive control of the first motor 224 of the electric motor 220.
In step 68, since diagnostics A and B cannot be performed due to the charge stored in the capacitor 246E, or a failure has not occurred in the first control device 242, the MCU 246A operates to suppress consumption of the DC power supply. Shift the mode to low power mode.
 かかる第2の診断処理によれば、第1の診断処理とは異なり、図10に示すように、第3の制御装置246のMCU246Aが、第1の制御装置242のMCU242Aによるインバータ242B2の故障診断に先だって、診断A及びBを連続して実行する。即ち、第2の診断処理では、第1の診断処理とは異なり、最初に、第3の制御装置246における診断A及びBが連続して実行され、その間、第1の制御装置242が待機する。そして、第3の制御装置246における診断A及びBが完了すると、次に、第1の制御装置242における診断A及びBが連続して実行され、その間、第3の制御装置246が待機する。従って、第1の制御装置242と第3の制御装置246との間で授受されるメッセージが減り、その分だけ実行時間を短縮することができる。 According to this second diagnostic process, unlike the first diagnostic process, as shown in FIG. Prior to this, diagnoses A and B are performed consecutively. That is, in the second diagnostic process, unlike the first diagnostic process, first, diagnoses A and B in the third control device 246 are executed successively, while the first control device 242 is on standby. . Then, when the diagnoses A and B in the third control device 246 are completed, the diagnoses A and B in the first control device 242 are then executed successively, during which the third control device 246 is on standby. Therefore, the number of messages exchanged between the first control device 242 and the third control device 246 is reduced, and the execution time can be shortened accordingly.
 第1の制御装置242及び第3の制御装置246では、図10から容易に把握できるように、診断A及び診断Bが同時に実行されない。従って、第1の制御装置242及び第3の制御装置246において、インバータ242B2及び246B2の半導体スイッチング素子SW1~SW6が同時に作動することがない。このため、第1の制御装置242及び第3の制御装置246から第1のモータ224に交流電流が同時に供給されず、インバータ242B2及び246B2、並びにモータリレー242C,246C及び246Dの故障の有無を誤診断することが避けられる。なお、他の作用及び効果については、第1実施形態と同様であるので、重複説明を避けるべくその説明を省略する。必要であれば、第1実施形態の説明を参照されたい。 As can be easily understood from FIG. 10, the first control device 242 and the third control device 246 do not execute diagnosis A and diagnosis B at the same time. Therefore, in the first control device 242 and the third control device 246, the semiconductor switching elements SW1 to SW6 of the inverters 242B2 and 246B2 do not operate simultaneously. Therefore, alternating current is not supplied to the first motor 224 from the first control device 242 and the third control device 246 at the same time, and it is possible to erroneously determine whether or not there is a failure in the inverters 242B2 and 246B2 and the motor relays 242C, 246C and 246D. Diagnosis can be avoided. Note that other operations and effects are the same as those in the first embodiment, so their explanations will be omitted to avoid redundant explanations. If necessary, please refer to the description of the first embodiment.
<<第3実施形態>>
 図11は、第1の制御装置242が起動されたことを契機として、第1の制御装置242のMCU242Aが実行する第3の診断処理の一例を示している。
 ステップ70では、MCU242Aが、コンデンサ242Eの端子間電圧V0を読み込む。
<<Third Embodiment>>
FIG. 11 shows an example of a third diagnostic process executed by the MCU 242A of the first control device 242 when the first control device 242 is activated.
In step 70, the MCU 242A reads the inter-terminal voltage V0 of the capacitor 242E.
 ステップ71では、MCU242Aが、コンデンサ242Eの端子間電圧V0が正常であるか否かを判定する。そして、MCU242Aは、端子間電圧V0が正常であると判定すれば(Yes)、処理をステップ72へと進める。一方、MCU242Aは、端子間電圧V0が正常でないと判定すれば(No)、処理をステップ79へと進める。 In step 71, the MCU 242A determines whether the voltage V0 between the terminals of the capacitor 242E is normal. Then, if the MCU 242A determines that the inter-terminal voltage V0 is normal (Yes), the process proceeds to step 72. On the other hand, if the MCU 242A determines that the inter-terminal voltage V0 is not normal (No), the process proceeds to step 79.
 ステップ72では、MCU242Aが、例えば、タイマ機能を利用して、第3の診断処理を開始してから所定の待機時間が経過したか否かを判定する。ここで、所定の待機時間は、第3の制御装置246において診断A及びBが完了するのに必要な最大時間であって、例えば、第3の制御装置246の処理能力、メッセージの送受信能力などを考慮して適宜設定することができる。そして、MCU242Aは、所定の待機時間が経過したと判定すれば(Yes)、処理をステップ74へと進める。一方、MCU242Aは、所定の待機時間が経過していないと判定すれば(No)、処理をステップ73へと進める。 In step 72, the MCU 242A uses, for example, a timer function to determine whether a predetermined standby time has elapsed since the start of the third diagnostic process. Here, the predetermined waiting time is the maximum time required for the third control device 246 to complete diagnosis A and B, and includes, for example, the processing capacity of the third control device 246, the message sending and receiving ability, etc. It can be set appropriately taking into consideration. If the MCU 242A determines that the predetermined standby time has elapsed (Yes), the process proceeds to step 74. On the other hand, if the MCU 242A determines that the predetermined waiting time has not elapsed (No), the process proceeds to step 73.
 ステップ73では、MCU242Aが、第3の制御装置246から診断A及びBの診断結果を受信したか否かを判定する。そして、MCU242Aは、第3の制御装置246から診断結果を受信したと判定すれば(Yes)、処理をステップ74へと進める。一方、MCU242Aは、第3の制御装置246から診断結果を受信していないと判定すれば(No)、処理をステップ72へと戻す。 In step 73, the MCU 242A determines whether or not the results of diagnosis A and diagnosis B have been received from the third control device 246. If the MCU 242A determines that the diagnosis result has been received from the third control device 246 (Yes), the process proceeds to step 74. On the other hand, if the MCU 242A determines that the diagnosis result has not been received from the third control device 246 (No), the process returns to step 72.
 ステップ74では、MCU242Aが、診断A及びBを連続して実行する。
 ステップ75では、MCU242Aが、診断A及びBの診断結果を第3の制御装置246のMCU246Aに送信する。
In step 74, the MCU 242A executes diagnostics A and B consecutively.
In step 75, the MCU 242A transmits the results of diagnosis A and diagnosis B to the MCU 246A of the third control device 246.
 ステップ76では、MCU242Aが、第1の制御装置242における診断A及びBの診断結果に応じて、第1の制御装置242のインバータ242B2及びモータリレー242Cの少なくとも一方に故障が発生しているか否かを判定する。そして、MCU242Aは、第1の制御装置242に故障が発生していると判定すれば(Yes)、処理をステップ77へと進める。一方、MCU242Aは、第1の制御装置242に故障が発生していないと判定すれば(No)、処理をステップ79へと進める。 In step 76, the MCU 242A determines whether a failure has occurred in at least one of the inverter 242B2 and motor relay 242C of the first control device 242, depending on the diagnosis results of diagnosis A and B in the first control device 242. Determine. If the MCU 242A determines that a failure has occurred in the first control device 242 (Yes), the process proceeds to step 77. On the other hand, if the MCU 242A determines that a failure has not occurred in the first control device 242 (No), the process proceeds to step 79.
 ステップ77では、第1の制御装置242に故障が発生しているので、第3の制御装置246に第1のモータ224の駆動制御を引き渡す準備として、MCU242Aが、モータリレー242Cをオフにする。 In step 77, since a failure has occurred in the first control device 242, the MCU 242A turns off the motor relay 242C in preparation for handing over drive control of the first motor 224 to the third control device 246.
 ステップ78では、第1の制御装置242が第1のモータ224を駆動制御できないので、直流電源の消耗を抑制すべく、MCU242Aが、動作モードを低電力モードに移行させる。 In step 78, since the first control device 242 cannot drive and control the first motor 224, the MCU 242A shifts the operating mode to a low power mode in order to suppress consumption of the DC power supply.
 ステップ79では、コンデンサ242Eに蓄えられた電荷により診断A及びBが実行できないか、又は第1の制御装置242が正常であるので、MCU242Aが、電動モータ220の第1のモータ224を駆動制御する通常制御に移行する。 In step 79, the MCU 242A controls the driving of the first motor 224 of the electric motor 220 because the diagnoses A and B cannot be performed due to the charge stored in the capacitor 242E, or because the first control device 242 is normal. Shift to normal control.
 図12は、第3の制御装置246が起動されたことを契機として、第3の制御装置246のMCU246Aが実行する第3の診断処理の一例を示している。
 ステップ80では、MCU246Aが、コンデンサ246Eの端子間電圧V0を読み込む。
FIG. 12 shows an example of a third diagnostic process executed by the MCU 246A of the third control device 246 when the third control device 246 is activated.
In step 80, the MCU 246A reads the voltage V0 between the terminals of the capacitor 246E.
 ステップ81では、MCU246Aが、コンデンサ246Eの端子間電圧V0が正常であるか否かを判定する。そして、MCU246Aは、端子間電圧V0が正常であると判定すれば(Yes)、処理をステップ82へと進める。一方、MCU246Aは、端子間電圧V0が正常でないと判定すれば(No)、処理をステップ89へと進める。 In step 81, the MCU 246A determines whether the voltage V0 between the terminals of the capacitor 246E is normal. Then, if the MCU 246A determines that the inter-terminal voltage V0 is normal (Yes), the process proceeds to step 82. On the other hand, if the MCU 246A determines that the inter-terminal voltage V0 is not normal (No), the process proceeds to step 89.
 ステップ82では、MCU246Aが、診断A及びBを連続して実行する。
 ステップ83では、MCU246Aが、診断A及びBの診断結果を第1の制御装置242のMCU242Aに送信する。
In step 82, the MCU 246A executes diagnostics A and B sequentially.
In step 83, the MCU 246A transmits the results of diagnosis A and diagnosis B to the MCU 242A of the first control device 242.
 ステップ84では、MCU246Aが、例えば、タイマ機能を利用して、第3の診断処理を開始してから所定の待機時間が経過したか否かを判定する。ここで、所定の待機時間は、第1の制御装置242において診断A及びBが完了するのに必要な最大時間であって、例えば、第1の制御装置242の処理能力、メッセージの送受信能力などを考慮して適宜設定することができる。そして、MCU246Aは、所定の待機時間が経過したと判定すれば(Yes)、処理をステップ86へと進める。一方、MCU242Aは、所定の待機時間が経過していないと判定すれば(No)、処理をステップ85へと進める。 In step 84, the MCU 246A uses, for example, a timer function to determine whether a predetermined standby time has elapsed since the start of the third diagnostic process. Here, the predetermined waiting time is the maximum time required for the first control device 242 to complete diagnosis A and B, and includes, for example, the processing capacity of the first control device 242, message transmission/reception ability, etc. It can be set appropriately taking into consideration. If the MCU 246A determines that the predetermined standby time has elapsed (Yes), the process proceeds to step 86. On the other hand, if the MCU 242A determines that the predetermined waiting time has not elapsed (No), the process proceeds to step 85.
 ステップ85では、MCU246Aが、第1の制御装置242から診断A及びBの診断結果を受信したか否かを判定する。そして、MCU246Aは、第1の制御装置242から診断結果を受信したと判定すれば(Yes)、処理をステップ86へと進める。一方、MCU246Aは、第1の制御装置242から診断結果を受信していないと判定すれば(No)、処理をステップ84へと戻す。 In step 85, the MCU 246A determines whether or not the results of diagnosis A and diagnosis B have been received from the first control device 242. If the MCU 246A determines that the diagnosis result has been received from the first control device 242 (Yes), the process proceeds to step 86. On the other hand, if the MCU 246A determines that the diagnosis result has not been received from the first control device 242 (No), the process returns to step 84.
 ステップ86では、MCU246Aが、第1の制御装置242から受信した診断結果に応じて、第1の制御装置242のインバータ242B2及びモータリレー242Cの少なくとも一方に故障が発生しているか否かを判定する。そして、MCU246Aは、第1の制御装置242に故障が発生していると判定すれば(Yes)、処理をステップ87へと進める。一方、MCU246Aは、第1の制御装置242に故障が発生していないと判定すれば(No)、処理をステップ89へと進める。 In step 86, the MCU 246A determines whether a failure has occurred in at least one of the inverter 242B2 and the motor relay 242C of the first control device 242, based on the diagnosis result received from the first control device 242. . If the MCU 246A determines that a failure has occurred in the first control device 242 (Yes), the process proceeds to step 87. On the other hand, if the MCU 246A determines that a failure has not occurred in the first control device 242 (No), the process proceeds to step 89.
 ステップ87では、第1の制御装置242に故障が発生しているので、第1の制御装置242から電動モータ220の第1のモータ224の駆動制御を引き継ぐべく、MCU246Aが、第1のモータリレー246Cをオンにする。 In step 87, since a failure has occurred in the first control device 242, the MCU 246A controls the first motor relay in order to take over the drive control of the first motor 224 of the electric motor 220 from the first control device 242. Turn on 246C.
 ステップ88では、MCU246Aが、第1のモータ224の駆動制御を開始する。
 ステップ89では、コンデンサ246Eに蓄えられた電荷により診断A及びBを実行できないか、又は第1の制御装置242が正常であるので、直流電源の消耗を抑制すべく、MCU246Aが、動作モードを低電力モードに移行させる。
In step 88, the MCU 246A starts controlling the drive of the first motor 224.
In step 89, the MCU 246A lowers the operating mode in order to suppress consumption of the DC power supply, since either diagnostics A and B cannot be executed due to the charge stored in the capacitor 246E, or the first control device 242 is normal. Shift to power mode.
 かかる第3の診断処理によれば、第2の診断処理の作用及び効果に加え、第1の制御装置242及び第3の制御装置246は、起動から所定の待機時間が経過しても相手方から診断結果が通知されないと、それ以降の処理、例えば、インバータの故障診断を開始する。このため、何らかの理由によって診断結果の送受信ができなくても、診断A及びBの実行、又は第1の制御装置242に故障が発生しているか否かの判定などが行われる。従って、診断結果の送受信ができない状況であっても、インバータ及びモータリレーの故障診断を実行することができる。なお、他の作用及び効果については、第2の診断処理による作用及び効果と同一であるので、重複説明を避ける目的でその説明を省略する。 According to the third diagnostic process, in addition to the operation and effect of the second diagnostic process, the first control device 242 and the third control device 246 are free from the other party even after a predetermined standby time has elapsed since activation. If the diagnosis result is not notified, subsequent processing, for example, inverter failure diagnosis, is started. Therefore, even if diagnosis results cannot be transmitted or received for some reason, diagnosis A and B are executed, or it is determined whether or not a failure has occurred in the first control device 242. Therefore, even in a situation where it is not possible to send or receive diagnostic results, failure diagnosis of the inverter and motor relay can be performed. Note that other operations and effects are the same as those of the second diagnostic process, so their explanations will be omitted to avoid redundant explanations.
 なお、当業者であれば、様々な上記実施形態の技術的思想について、その一部を省略したり、その一部を適宜組み合わせたり、その一部を周知技術に置き換えたりすることで、新たな実施形態を生み出せることを容易に理解できるであろう。 It should be noted that those skilled in the art will understand the technical ideas of the various embodiments described above by omitting some of them, combining some of them as appropriate, or replacing some of them with well-known techniques. It will be readily understood that embodiments can be created.
 その一例を挙げると、本提案技術の制御対象は、操舵装置200に限らず、反力装置400や車載の周知のシステムであってもよい。また、電動モータ220は、3相ブラシレスモータに限らず、任意の複数相の巻線を備えた電動モータなどであってもよい。 To give one example, the object to be controlled by the proposed technology is not limited to the steering device 200, but may be the reaction force device 400 or a well-known vehicle-mounted system. Further, the electric motor 220 is not limited to a three-phase brushless motor, but may be an electric motor having windings of any plurality of phases.
  220…電動モータ、224…第1のモータ、226…第2のモータ、242…第1の制御装置(第1の駆動系統)、242A…MCU(第1のマイクロコントロールユニット)、242B2…インバータ(第1のインバータ)、242C…モータリレー(リレー)、244…第2の制御装置(第1の駆動系統)、244A…MCU(第1のマイクロコントロールユニット)、244B2…インバータ(第1のインバータ)、244C…モータリレー(リレー)、246…第3の制御装置(第2の駆動系統)、246A…MCU(第2のマイクロコントロールユニット)、246B2…インバータ(第2のインバータ)、246C…第1のモータリレー(リレー)、246D…第2のモータリレー(リレー)、SW1~SW6…半導体スイッチング素子 220... Electric motor, 224... First motor, 226... Second motor, 242... First control device (first drive system), 242A... MCU (first micro control unit), 242B2... Inverter ( 242C...Motor relay (relay), 244...Second control device (first drive system), 244A...MCU (first micro control unit), 244B2...Inverter (first inverter) , 244C...Motor relay (relay), 246...Third control device (second drive system), 246A...MCU (second micro control unit), 246B2...Inverter (second inverter), 246C...First motor relay (relay), 246D...second motor relay (relay), SW1 to SW6...semiconductor switching element

Claims (14)

  1.  第1のマイクロコントロールユニット、及び複数の半導体スイッチング素子により構成された第1のインバータを含み、前記第1のマイクロコントロールユニットが、前記第1のインバータの半導体スイッチング素子を制御して直流電流を交流電流に変換して複数相の巻線を備えた電動モータを駆動制御するとともに、前記第1のインバータの複数の半導体スイッチング素子に個別に通電して前記第1のインバータの故障診断を実行するように構成された、第1の駆動系統と、
     第2のマイクロコントロールユニット、及び複数の半導体スイッチング素子により構成された第2のインバータを含み、前記第2のインバータが、前記第1のインバータと前記電動モータとを接続する電路に接続され、前記第2のマイクロコントロールユニットが、前記第1の駆動系統に故障が発生したときに前記第2のインバータの半導体スイッチング素子を制御して直流電流を交流電流に変換して前記電動モータを駆動制御するとともに、前記第2のインバータの複数の半導体スイッチング素子に個別に通電して前記第2のインバータの故障診断を実行するように構成された、第2の駆動系統と、
     を備え、
     前記第1のマイクロコントロールユニットが、前記第2の駆動系統において前記第2のインバータの複数の半導体スイッチング素子に通電されていないとき、前記第1のインバータの故障診断を実行するように構成され、
     前記第2のマイクロコントロールユニットが、前記第1の駆動系統において前記第1のインバータの複数の半導体スイッチング素子に通電されていないとき、前記第2のインバータの故障診断を実行するように構成された、
     電動モータの制御装置。
    The first inverter includes a first microcontrol unit and a plurality of semiconductor switching elements, and the first microcontrol unit controls the semiconductor switching elements of the first inverter to convert direct current to alternating current. The current is converted into a current to drive and control an electric motor having a plurality of phase windings, and the plurality of semiconductor switching elements of the first inverter are individually energized to perform a failure diagnosis of the first inverter. a first drive system configured to;
    a second inverter configured with a second microcontrol unit and a plurality of semiconductor switching elements; the second inverter is connected to an electric line connecting the first inverter and the electric motor; A second microcontrol unit controls a semiconductor switching element of the second inverter to convert direct current to alternating current to drive and control the electric motor when a failure occurs in the first drive system. and a second drive system configured to individually energize a plurality of semiconductor switching elements of the second inverter to perform a failure diagnosis of the second inverter;
    Equipped with
    The first microcontrol unit is configured to perform a failure diagnosis of the first inverter when a plurality of semiconductor switching elements of the second inverter are not energized in the second drive system,
    The second microcontrol unit is configured to perform a failure diagnosis of the second inverter when the plurality of semiconductor switching elements of the first inverter in the first drive system are not energized. ,
    Electric motor control device.
  2.  前記第1のマイクロコントロールユニットが、前記第2のマイクロコントロールユニットによる前記第2のインバータの故障診断に先だって、前記第1のインバータの故障診断を実行するように構成された、
     請求項1に記載の電動モータの制御装置。
    The first microcontrol unit is configured to perform a failure diagnosis of the first inverter prior to the failure diagnosis of the second inverter by the second microcontrol unit.
    The electric motor control device according to claim 1.
  3.  前記第2のマイクロコントロールユニットが、前記第1のマイクロコントロールユニットから前記第1のインバータの故障診断結果を通知されたとき、前記第2のインバータの故障診断を実行するように構成された、
     請求項2に記載の電動モータの制御装置。
    The second microcontrol unit is configured to perform a failure diagnosis of the second inverter when notified of the failure diagnosis result of the first inverter from the first microcontrol unit.
    The electric motor control device according to claim 2.
  4.  前記第2のマイクロコントロールユニットが、起動から所定の待機時間が経過しても前記第1のマイクロコントロールユニットから前記第1のインバータの故障診断結果が通知されないとき、前記第2のインバータの故障診断を実行するように構成された、
     請求項3に記載の電動モータの制御装置。
    When the second microcontrol unit is not notified of the failure diagnosis result of the first inverter from the first microcontrol unit even after a predetermined standby time has passed since startup, the second microcontrol unit performs failure diagnosis of the second inverter. configured to run
    The electric motor control device according to claim 3.
  5.  前記第2のマイクロコントロールユニットが、前記第1のマイクロコントロールユニットによる前記第1のインバータの故障診断に先だって、前記第2のインバータの故障診断を実行するように構成された、
     請求項1に記載の電動モータの制御装置。
    The second microcontrol unit is configured to perform a failure diagnosis of the second inverter prior to the failure diagnosis of the first inverter by the first microcontrol unit.
    The electric motor control device according to claim 1.
  6.  前記第1のマイクロコントロールユニットが、前記第2のマイクロコントロールユニットから前記第2のインバータの故障診断結果を通知されたとき、前記第1のインバータの故障診断を実行するように構成された、
     請求項5に記載の電動モータの制御装置。
    The first microcontrol unit is configured to perform a failure diagnosis of the first inverter when notified of the failure diagnosis result of the second inverter from the second microcontrol unit.
    The electric motor control device according to claim 5.
  7.  前記第1のマイクロコントロールユニットが、起動から所定の待機時間が経過しても前記第2のマイクロコントロールユニットから前記第2のインバータの故障診断結果が通知されないとき、前記第1のインバータの故障診断を実行するように構成された、
     請求項6に記載の電動モータの制御装置。
    When the first microcontrol unit is not notified of the failure diagnosis result of the second inverter from the second microcontrol unit even after a predetermined standby time has elapsed since startup, the first microcontrol unit performs failure diagnosis of the first inverter. configured to run
    The electric motor control device according to claim 6.
  8.  前記第1の駆動系統は、前記第1のインバータと前記電動モータとを接続する電路を開閉する半導体スイッチング素子からなるリレーを更に備え、
     前記第1のマイクロコントロールユニットが、前記第1のインバータの上段の半導体スイッチング素子を所定時間作動させて当該第1のインバータの故障診断を実行するときに、前記リレーの故障診断を併せて実行するように構成された、
     請求項1に記載の電動モータの制御装置。
    The first drive system further includes a relay made of a semiconductor switching element that opens and closes an electric path connecting the first inverter and the electric motor,
    When the first microcontrol unit operates an upper semiconductor switching element of the first inverter for a predetermined period of time to perform a failure diagnosis of the first inverter, the first microcontrol unit also performs a failure diagnosis of the relay. configured as,
    The electric motor control device according to claim 1.
  9.  前記第2の駆動系統は、前記第2のインバータと前記電動モータとを接続する電路を開閉する半導体スイッチング素子からなるリレーを更に備え、
     前記第2のマイクロコントロールユニットが、前記第2のインバータの上段の半導体スイッチング素子を所定時間作動させて当該第2のインバータの故障診断を実行するときに、前記リレーの故障診断を併せて実行するように構成された、
     請求項1に記載の電動モータの制御装置。
    The second drive system further includes a relay made of a semiconductor switching element that opens and closes an electric path connecting the second inverter and the electric motor,
    When the second microcontrol unit activates an upper stage semiconductor switching element of the second inverter for a predetermined period of time to perform a failure diagnosis of the second inverter, the second microcontrol unit also performs a failure diagnosis of the relay. configured as,
    The electric motor control device according to claim 1.
  10.  前記第1の駆動系統は、前記第1のインバータと直流電源のプラス端子とを接続する電路を開閉する電源リレーと、前記電源リレーと前記直流電源のプラス端子とを接続する電路から分岐して当該直流電源のマイナス端子に接続される分岐路に配置されたコンデンサと、を更に有し、
     前記第1のマイクロコントロールユニットが、前記電源リレーをオフにして、前記コンデンサの端子間電圧と前記電動モータの端子間電圧とに応じて前記第1のインバータの故障診断を実行するように構成された、
     請求項1に記載の電動モータの制御装置。
    The first drive system includes a power relay that opens and closes an electrical path connecting the first inverter and a positive terminal of the DC power source, and a power relay that branches from an electrical path that connects the power relay and the positive terminal of the DC power source. further comprising a capacitor disposed in a branch path connected to the negative terminal of the DC power supply,
    The first microcontrol unit is configured to turn off the power relay and perform a fault diagnosis of the first inverter depending on the voltage across the terminals of the capacitor and the voltage across the terminals of the electric motor. Ta,
    The electric motor control device according to claim 1.
  11.  前記第2の駆動系統は、前記第2のインバータと直流電源のプラス端子とを接続する電路を開閉する電源リレーと、前記電源リレーと前記直流電源のプラス端子とを接続する電路から分岐して当該直流電源のマイナス端子に接続される分岐路に配置されたコンデンサと、を更に有し、
     前記第2のマイクロコントロールユニットが、前記電源リレーをオフにして、前記コンデンサの端子間電圧と前記電動モータの端子間電圧とに応じて前記第2のインバータの故障診断を実行するように構成された、
     請求項1に記載の電動モータの制御装置。
    The second drive system includes a power relay that opens and closes an electric path connecting the second inverter and a positive terminal of the DC power source, and a power relay that branches from an electric path that connects the power relay and the positive terminal of the DC power source. further comprising a capacitor disposed in a branch path connected to the negative terminal of the DC power supply,
    The second microcontrol unit is configured to turn off the power relay and perform a fault diagnosis of the second inverter depending on the voltage across the terminals of the capacitor and the voltage across the terminals of the electric motor. Ta,
    The electric motor control device according to claim 1.
  12.  前記第2のマイクロコントロールユニットが、前記第1のマイクロコントロールユニットから通知された前記第1のインバータの故障診断結果が正常であるとき、動作モードを低電力モードに移行させるように構成された、
     請求項1に記載の電動モータの制御装置。
    The second microcontrol unit is configured to shift the operating mode to a low power mode when a failure diagnosis result of the first inverter notified from the first microcontrol unit is normal.
    The electric motor control device according to claim 1.
  13.  前記第1のマイクロコントロールユニット及び前記第2のマイクロコントロールユニットが、前記第1の駆動系統及び前記第2の駆動系統の起動を契機として、前記第1のインバータ及び前記第2のインバータの故障診断を夫々実行するように構成された、
     請求項1に記載の電動モータの制御装置。
    The first microcontrol unit and the second microcontrol unit perform failure diagnosis of the first inverter and the second inverter, triggered by the activation of the first drive system and the second drive system. configured to execute respectively,
    The electric motor control device according to claim 1.
  14.  第1のマイクロコントロールユニット、及び複数の半導体スイッチング素子により構成された第1のインバータを含み、前記第1のマイクロコントロールユニットが、前記第1のインバータの半導体スイッチング素子を制御して直流電流を交流電流に変換して複数相の巻線を備えた電動モータを駆動制御するとともに、前記第1のインバータの複数の半導体スイッチング素子に個別に通電して前記第1のインバータの故障診断を実行するように構成された、第1の駆動系統と、
     第2のマイクロコントロールユニット、及び複数の半導体スイッチング素子により構成された第2のインバータを含み、前記第2のインバータが、前記第1のインバータと前記電動モータとを接続する電路に接続され、前記第2のマイクロコントロールユニットが、前記第1の駆動系統に故障が発生したときに前記第2のインバータの半導体スイッチング素子を制御して直流電流を交流電流に変換して前記電動モータを駆動制御するとともに、前記第2のインバータの複数の半導体スイッチング素子に個別に通電して前記第2のインバータの故障診断を実行するように構成された、第2の駆動系統と、
     を備えた電動モータの制御装置によって前記電動モータを制御する電動モータの制御方法であって、
     前記第1のマイクロコントロールユニットが、前記第2の駆動系統において前記第2のインバータの複数の半導体スイッチング素子に通電されていないとき、前記第1のインバータの故障診断を実行し、
     前記第2のマイクロコントロールユニットが、前記第1の駆動系統において前記第1のインバータの複数の半導体スイッチング素子に通電されていないとき、前記第2のインバータの故障診断を実行する、
     電動モータの制御方法。
    The first inverter includes a first microcontrol unit and a plurality of semiconductor switching elements, and the first microcontrol unit controls the semiconductor switching elements of the first inverter to convert direct current to alternating current. The current is converted into a current to drive and control an electric motor having a plurality of phase windings, and the plurality of semiconductor switching elements of the first inverter are individually energized to perform a failure diagnosis of the first inverter. a first drive system configured to;
    a second inverter configured with a second microcontrol unit and a plurality of semiconductor switching elements; the second inverter is connected to an electric line connecting the first inverter and the electric motor; A second microcontrol unit controls a semiconductor switching element of the second inverter to convert direct current to alternating current to drive and control the electric motor when a failure occurs in the first drive system. and a second drive system configured to individually energize a plurality of semiconductor switching elements of the second inverter to perform a failure diagnosis of the second inverter;
    An electric motor control method comprising controlling the electric motor by an electric motor control device comprising:
    the first microcontrol unit executes a failure diagnosis of the first inverter when the plurality of semiconductor switching elements of the second inverter in the second drive system are not energized;
    The second microcontrol unit executes a failure diagnosis of the second inverter when the plurality of semiconductor switching elements of the first inverter in the first drive system are not energized.
    How to control an electric motor.
PCT/JP2023/027092 2022-09-15 2023-07-25 Electric motor control device and electric motor control method WO2024057728A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-146759 2022-09-15
JP2022146759 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024057728A1 true WO2024057728A1 (en) 2024-03-21

Family

ID=90274690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027092 WO2024057728A1 (en) 2022-09-15 2023-07-25 Electric motor control device and electric motor control method

Country Status (1)

Country Link
WO (1) WO2024057728A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091455A (en) * 2012-11-05 2014-05-19 Toyota Motor Corp Electric power steering system
JP2015202019A (en) * 2014-04-10 2015-11-12 日立オートモティブシステムズ株式会社 Controller of electric motor
WO2017159160A1 (en) * 2016-03-14 2017-09-21 日立オートモティブシステムズ株式会社 Motor actuator, and power steering device using same
WO2019049731A1 (en) * 2017-09-11 2019-03-14 日立オートモティブシステムズ株式会社 Control device for power steering device
WO2019053992A1 (en) * 2017-09-13 2019-03-21 日本電産株式会社 Power conversion device, motor module, and electric power steering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091455A (en) * 2012-11-05 2014-05-19 Toyota Motor Corp Electric power steering system
JP2015202019A (en) * 2014-04-10 2015-11-12 日立オートモティブシステムズ株式会社 Controller of electric motor
WO2017159160A1 (en) * 2016-03-14 2017-09-21 日立オートモティブシステムズ株式会社 Motor actuator, and power steering device using same
WO2019049731A1 (en) * 2017-09-11 2019-03-14 日立オートモティブシステムズ株式会社 Control device for power steering device
WO2019053992A1 (en) * 2017-09-13 2019-03-21 日本電産株式会社 Power conversion device, motor module, and electric power steering device

Similar Documents

Publication Publication Date Title
JP6182385B2 (en) Electric motor control device
JP5158527B2 (en) Electric motor drive device, electric power steering device using the same, and program
CN110268622B (en) Electric machine system
JPWO2017122329A1 (en) Electric power steering device
US10800449B2 (en) Computer architecture and functional architecture for increasing the fail-safety of auxiliary power steering
JP7346993B2 (en) Control device
US20220258794A1 (en) Motor drive system
US11973453B2 (en) Motor drive system
WO2021029407A1 (en) Dynamo-electric machine control device
JP5991264B2 (en) Electric power steering device
KR102077409B1 (en) Motor-drive unit
US20220169304A1 (en) Power supply system
WO2024057728A1 (en) Electric motor control device and electric motor control method
JP7314804B2 (en) steering controller
CN113665666A (en) Steering control device, steering assist device, and steering system
CN110871839B (en) Vehicle control device
JP6252461B2 (en) Electric power steering device
US11949360B2 (en) Control device
CN115973260A (en) Control device for vehicle
EP4309973A1 (en) Steering control system
JP7420079B2 (en) motor control device
US20230131995A1 (en) Steering control device
JP2021054304A (en) Electric power steering control device
JP2004276834A (en) Steering device for vehicle
WO2022259828A1 (en) Power supply apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865088

Country of ref document: EP

Kind code of ref document: A1