WO2024057665A1 - Metallized film for secondary battery positive electrodes and method for producing same - Google Patents

Metallized film for secondary battery positive electrodes and method for producing same Download PDF

Info

Publication number
WO2024057665A1
WO2024057665A1 PCT/JP2023/023770 JP2023023770W WO2024057665A1 WO 2024057665 A1 WO2024057665 A1 WO 2024057665A1 JP 2023023770 W JP2023023770 W JP 2023023770W WO 2024057665 A1 WO2024057665 A1 WO 2024057665A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
aluminum
metal film
secondary battery
resin film
Prior art date
Application number
PCT/JP2023/023770
Other languages
French (fr)
Japanese (ja)
Inventor
信男 藤
輝明 都地
Original Assignee
東レKpフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レKpフィルム株式会社 filed Critical 東レKpフィルム株式会社
Publication of WO2024057665A1 publication Critical patent/WO2024057665A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials

Definitions

  • the present invention relates to a metallized film for a secondary battery positive electrode and a method for manufacturing the same.
  • a sheet-like electrode plate has a structure in which a mixture layer containing an active material is formed on the surface of a metal foil that serves as a current collector.
  • one method for obtaining high output density is to reduce the resistance of the various materials that make up the storage battery (internal resistance of the storage battery).
  • internal resistance of the storage battery In storage batteries, aluminum foil is often used for the current collector, but the current collector made of normal aluminum foil has an oxide film, and the oxide film formed on the surface of the aluminum reduces the internal resistance. is said to increase.
  • An increase in internal resistance causes a voltage drop when charging and discharging with a large current, resulting in a decrease in the output of the storage battery.
  • a natural oxide film of an insulator with a thickness of 5 to 10 nm is formed on aluminum, but the aluminum surface has a characteristic of maintaining good conductivity.
  • Patent Document 1 As a method of reducing the contact resistance between an electrode and an active substance that suppresses internal resistance improvement due to an oxide film, there is a method of making the surface of a metal foil used for an electrode uneven (for example, Patent Document 1). It is not clear whether roughening the aluminum surface increases the number of defects, or forming more protrusions makes it easier for the tunnel effect to occur, but it is an effective method to reduce contact resistance. .
  • the total electrical resistance value increases because the metal thickness is thinner than that of conventionally used metal foil. It ends up.
  • the metal surface is roughened for the purpose of lowering the contact resistance of the aluminum metal surface
  • the conductive thin film layer of metal etc. provided on the surface of the resin film is usually a vapor-deposited metal film formed by vacuum evaporation method etc. Since it is a thin metal film, it is difficult to roughen it by etching or the like. If the surface of the polyester thin film itself is roughened, it becomes easy to break and transportation during the manufacturing process becomes difficult.
  • the present inventors have succeeded in obtaining a metallized film with low contact resistance and a method for producing the same by controlling the surface shape of the deposited film using a vacuum deposition method. .
  • an aluminum metal film is formed on at least one surface of the resin film, and the peak intensity I[111] of the X-ray diffraction of the 111 plane and the peak of the X-ray diffraction of the 200 plane of aluminum of the metal film are A metallized film for a secondary battery positive electrode having a ratio of I[200]/I[111] to strength I[200] of 1.0 or more, The metallized film for a secondary battery positive electrode, wherein the metal film has a surface resistance of 0.15 ⁇ / ⁇ or less, The metallized film for a secondary battery positive electrode, wherein the resin film has a surface roughness Ra of 0.6 nm or more and 2.0 nm or less, The present invention relates to the metallized film for a secondary battery positive electrode, wherein the metal film has a surface roughness Ra of 2.3 nm or more and 10.0 nm or less.
  • the present invention also provides a method for producing the metallized film for a secondary battery positive electrode, in which aluminum as a vapor deposition source is heated by at least one selected from the group consisting of resistance heating, induction heating, and electron beam.
  • a method for producing a metallized film for a secondary battery positive electrode comprising the step of depositing the vaporized aluminum on a resin film by a vacuum evaporation method that introduces argon gas to form vaporized aluminum.
  • the method for producing the metallized film for a secondary battery positive electrode which includes the step of forming a film on the resin film by sputtering aluminum, and then vapor-depositing the vaporized aluminum without exposing it to the atmosphere. .
  • the present invention it is possible to obtain a metallized film that does not increase contact resistance and can be transported without breaking even when a conductive thin film layer is formed on the resin surface, and a method for producing the same.
  • FIG. 1 is a schematic cross-sectional view of a metallized film of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a metallized film of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a metallized film of the present invention.
  • This is an electron microscope (SEM) photograph of the surface of an aluminum metal film (film thickness: 1.48 ⁇ m) when large and dense crystal grains were grown using an induction heating vapor deposition source using a carbon crucible.
  • This is an SEM photograph of the surface of an aluminum metal film (thickness: 0.53 ⁇ m) when large and dense crystal grains were grown using an induction heating vapor deposition source using a carbon crucible.
  • the metallized film 4 of the present invention has an aluminum metal film 3 on one or both surfaces of the resin film 1 (FIGS. 1, 2, and 3).
  • the aluminum metal film 3 in the present invention is an aluminum metal aggregate formed by laminating one or more layers containing aluminum as a main component.
  • the main component refers to more than 80 atomic % when the entire layer is 100 atomic %.
  • the thickness of the aluminum metal film 3 in the present invention is preferably 0.7 ⁇ m or more and 3.0 ⁇ m or less, more preferably 1.0 ⁇ m or more and 2.5 ⁇ m or less.
  • the thickness of the aluminum metal film is preferably 0.7 ⁇ m or more, and if it is 1.0 ⁇ m or more, the resistance will be lower and the increase in internal resistance can be reduced.
  • the thickness is preferably 3.0 ⁇ m or less, and more preferably 2.5 ⁇ m or less.
  • the aluminum metal film 3 in the present invention has a feature that the contact resistance can be lowered by controlling the crystal growth of the metal film so that the surface unevenness increases during film formation using the vacuum evaporation method.
  • the contact resistance value is preferably 15 m ⁇ or less in order to reduce the increase in internal resistance, and 10 m ⁇ or less. It is even more preferable that there be.
  • the contact resistance value here is a value that includes the contact resistance of the area of two electrodes of 25 mm x 25 mm and the membrane resistance (surface resistance) between the two electrodes.
  • the ratio of contact resistance value to surface resistance value [contact resistance value]/[surface resistance value] can indicate a value that is less affected by surface resistance, and the ratio of surface resistance value [contact resistance value]/[surface resistance value]
  • the resistance value] is preferably 0.35 or less, more preferably 0.25 or less.
  • the surface roughness Ra of the surface of the aluminum metal film 3 that is not in contact with the resin film 1 is preferably 2.3 nm or more and 10.0 nm or less, and more preferably 5.0 nm or more and 10.0 nm or less.
  • the contact resistance tends to be low, and the larger the surface roughness Ra, the more preferable it tends to be.
  • the surface roughness Ra is too large, the thin aluminum metal film 3 can cause the metal film to break when transported or bent, so it is preferable that it be 10.0 nm or less.
  • the surface characteristics of the aluminum metal film 3 that control the crystal growth of the metal film and lower the contact resistance are the X-ray diffraction peak intensity I[111] of the 111 plane of aluminum and the X-ray X-ray of the 200 plane of the aluminum metal film 3.
  • the ratio I[200]/I[111] to the diffraction peak intensity I[200] is preferably 1.0 or more and 10 or less. It is more preferable that I[200]/I[111] be 2.0 or more. As the intensity ratio I[200]/I[111] increases, the crystal orientation of the aluminum metal film 3 becomes more closely aligned, so that the film resistance (surface resistance) becomes smaller and the contact resistance of the contact surface also decreases.
  • Aluminum has a cubic crystal system, so when aluminum is a powder, the crystal orientation is random, so the X-ray diffraction peak intensity of the 111 plane is the largest, and the intensity ratio I[200]/I[111] is 1. It will be less than .0.
  • the metal particles of the aluminum metalized film produced by the normal vacuum evaporation method are columnar crystal films with large gaps, and the peak intensity of X-ray diffraction of the 111 plane is the largest, with an intensity ratio of I[200]/I[ 111] is less than 1.0.
  • rolled aluminum foil becomes dense and has a uniform crystal orientation due to the rolling process, so the peak intensity I[111] of the X-ray diffraction of the 111 plane in the diagonal direction becomes weaker, and the intensity ratio I[200]/I[111] becomes Becomes greater than 1.0.
  • the base material resin film
  • the columnar crystals become larger and denser, and the crystals align in the 200-plane direction.
  • the intensity ratio I[200]/I[111] is greater than 1.0.
  • the base material is a resin film, it will melt and break if the base material temperature is increased.
  • the metal particles of the formed film become a columnar crystal film with large gaps, and the intensity ratio I[200]/I[111] becomes less than 1.0.
  • the base material is a resin film
  • the columnar crystals of the aluminum metal film grow large and dense, and by enlarging the crystal grains, aluminum
  • the calorific value of the evaporation source while forcibly cooling the resin film from the back side, the temperature only near the surface of the resin film where the evaporation source is exposed is increased, making the columnar crystals large and dense. It became possible.
  • a boat heating method in which an aluminum metal wire is continuously supplied to a resistance heating boat, but when an aluminum metal film is formed using this method, the strength ratio I[200]/I[ 111] is less than 1.0. Therefore, it is preferable to increase the amount of heat generated by the evaporation source as much as possible to form a film in a short time so that the surface temperature of the substrate can easily rise.
  • a deposition source that generates a large amount of heat such as an induction heating method using a carbon crucible or a heating method using an electron beam, the amount of heat generated by the deposition source can be increased, and crystal grains can be grown large and dense.
  • the resin film will melt due to heat if left as is, it is preferable to forcibly cool the resin film from the back side to a temperature just before melting, thereby growing large and dense columnar crystals of the aluminum metal film. Furthermore, by introducing argon gas during vapor deposition, it becomes possible to further form irregularities on the surface of the aluminum metal film.
  • FIGS. 4 and 5 show an induction heating type vapor deposition source using a carbon crucible with a large calorific value on the surface of a resin film (here, a polyethylene terephthalate (PET) film) with a surface roughness Ra of 1.6 nm.
  • a resin film here, a polyethylene terephthalate (PET) film
  • FIG. 4 is a SEM photograph of the surface of an aluminum metal film with a thickness of 1.48 ⁇ m
  • FIG. 5 is a SEM photograph of the surface of an aluminum metal film with a thickness of 0.53 ⁇ m. It can be seen from FIGS. 4 and 5 that by increasing the size of the crystal grains, appropriate irregularities can be formed on the surface of the aluminum metal film.
  • the surface roughness Ra at this time was 8.3 nm in FIG. 4 and 2.7 nm in FIG. 5.
  • FIG. 7 is a cross-sectional SEM photograph of the aluminum metal film in FIG. 4, and it can be seen that the aluminum metal film is a columnar crystal, and that the convex and convex portions of the surface of the aluminum metal film correspond to one columnar crystal. From this, it is inferred that the larger the size of the convex portions of the irregularities on the surface of the aluminum metal film, the larger and denser the columnar crystals are.
  • FIG. 4 and FIG. 5 it is presumed that the growth of columnar crystals is greater in FIG. 4, in which the deposition time is longer and the amount of heat is greater in order to increase the film thickness.
  • FIG. 6 is an SEM photograph of the surface of an aluminum metal film grown by a boat heating method in which an aluminum metal wire is continuously supplied to a general resistance heating boat.
  • FIG. 6 is a SEM photograph of the surface of an aluminum metal film with a thickness of 1.12 ⁇ m, and the surface roughness Ra at this time was 2.2 nm. Since no clear unevenness can be observed on the surface of the aluminum metal film in FIG. 6, it is inferred that the columnar crystals have not grown large or densely.
  • the thickness of the aluminum metal film increases.
  • the thickness is preferably 0.7 ⁇ m or more, and more preferably 1.0 ⁇ m or more.
  • a vacuum evaporation method is preferable, which allows a metal film to be formed on a thin resin film without using an adhesive, for the purpose of producing a thin electrode.
  • Vacuum evaporation methods include induction heating evaporation, resistance heating evaporation, laser beam evaporation, and electron beam evaporation.
  • electron beam evaporation, laser beam evaporation, and induction heating have a large amount of heat from the evaporation source.
  • a vapor deposition method is preferably used.
  • the calorific value of the vapor deposition source needs to be increased until the crystal grains of the aluminum metal film 3 are formed large and dense, and the base material surface temperature needs to be sufficiently high, but it is difficult to actually measure it. Therefore, it is determined whether the amount of heat is sufficient by confirming that the aluminum metal film 3 after vapor deposition has the necessary physical properties.
  • the temperature of the resin film may rise and melt under normal vacuum evaporation cooling function management, so the temperature does not rise too much during evaporation. Therefore, it is necessary to control the cooling function during vapor deposition so that the film can be cooled uniformly. Specifically, it is necessary to uniformly cool the back surface of the deposition surface using a cooling mechanism consisting of a metal plate or metal roll sufficiently cooled with a refrigerant. In order to cool uniformly, it is essential that the resin film and the cooling mechanism be brought into close contact with each other without creating any gaps.
  • the scratch will form a gap, and the resin film will not be able to be cooled at the scratch and will melt.
  • the resin film cannot be cooled due to the foreign matter and ends up melting.
  • the resin film 1 used in the present invention is preferably a thin film formed from a polymer such as a synthetic resin.
  • resin films suitably used in the present invention include polyester films, polyethylene terephthalate films and polyethylene naphthalate films among polyester films, polyimide films, polyphenylene sulfide films, and polypropylene films. Among these, polyethylene terephthalate film is more preferably used. These resin films may be used alone or in combination. Alternatively, a resin film whose surface is coated with a resin, an adhesive, etc. may also be used.
  • the thickness of the resin film 1 is preferably 1 ⁇ m or more and 20 ⁇ m or less, and more preferably 3 ⁇ m or more and 10 ⁇ m or less. Since it is preferable for the resin film to be thin in order to make the electrode base material thinner, the thickness is more preferably 10 ⁇ m or less. However, the thickness is more preferably 3 ⁇ m or more because if it is too thin, it may break during the manufacturing process and reduce the yield.
  • the surface roughness Ra of the resin film is 0.6 nm or more and 2.0 nm or less. If the surface roughness of the resin film is less than 0.6 nm, when the resin film is wound up into a roll, it may stick to the resin film, making transportation difficult.
  • the surface roughness of the resin film is preferably 0.6 nm or more, more preferably 1.0 nm or more.
  • the surface roughness of the aluminum metal film be large, increasing the surface roughness Ra of the resin film is not preferable because the resin film is likely to break during transportation.
  • the surface roughness Ra is preferably 2.0 nm or less, and 1.5 nm or less. is even more preferable.
  • An anchor layer 2 may be provided between the resin film and the aluminum metal film 3 of the metallized film 4 of the present invention. By providing the anchor layer 2, it is expected that the adhesion between the resin film and the aluminum metal film will be improved. As the anchor layer 2, it is preferable to form a metal layer on a resin film by a sputtering method. The sputtering method makes it possible to reduce the thickness of the anchor layer, making it ideal for storage battery applications that require a thinner film.
  • the anchor layer 2 is preferably a metal layer containing one or more selected from the group consisting of aluminum, nickel, titanium, nichrome, and chromium, but the anchor layer 2 is an aluminum metal layer formed by a sputtering method. It is more preferable that At this time, it is important to keep the surface of the metal selected as the anchor layer 2, such as aluminum, nickel, titanium, chromium, or nichrome, from oxidizing while forming the copper layer thereon. Specifically, after forming a metal layer as the anchor layer 2 by sputtering, it is important to form the aluminum metal film 3 while maintaining a vacuum without exposing it to the atmosphere.
  • the surface of the metal selected as the anchor layer 2 such as aluminum, nickel, titanium, chromium, or nichrome
  • a stable metal oxide film is formed, and the interface with the aluminum metal film 3 formed on it forms. Metallic bonding becomes difficult, adhesion cannot be ensured, and the aluminum metal film 3 may peel off from the anchor layer 2. Therefore, it is important that aluminum, nickel, titanium, chromium, nichrome, etc. selected for the anchor layer 2 are not oxidized.
  • the anchor layer 2 is an aluminum metal layer formed by sputtering, when the aluminum metal film 3 is vacuum-deposited on top of it, the contact resistance of the aluminum metal film is further increased in order to grow the columnar crystals even larger and more densely. This is preferable because it suppresses this.
  • the thickness of the anchor layer 2 is preferably 3 nm or more and 40 nm or less, more preferably 5 nm or more and 20 nm or less. If the thickness is less than 3 nm, sufficient adhesion may not be obtained. On the other hand, even if the anchor layer is larger than 40 nm, the effect of improving adhesion will not be large, so the thickness is preferably 40 nm or less. It is more preferable that the thickness of the layer is 20 nm or less to improve productivity.
  • a resin film was placed in a batch vacuum evaporation apparatus (EBH-800 manufactured by ULVAC), and using a target of 50 mm x 550 mm in size, the vacuum level was adjusted to 5 x 10 -1 Pa or less in an argon gas atmosphere, and DC Power was applied continuously for a period of time to reach a predetermined metal film thickness.
  • EH-800 batch vacuum evaporation apparatus manufactured by ULVAC
  • vacuum deposition After installing a resin film in a batch type vacuum evaporation device (EBH-800 manufactured by ULVAC) and placing an amount of aluminum to the desired thickness on a evaporation boat, the vacuum attainment level was reduced to 9.0 ⁇ 10 -3 Pa or less. After evacuation was carried out until the vacuum was reached, the vapor deposition boat was heated and vacuum vapor deposition was performed to form an aluminum metal film.
  • EH-800 batch type vacuum evaporation device manufactured by ULVAC
  • a resin film is placed in a roll vacuum evaporation device (EWC-060 manufactured by ULVAC), and an aluminum ingot is produced using an induction heating evaporation method using a carbon crucible under the conveyance speed and output conditions that give the aluminum film thickness a predetermined value. Vacuum deposition was performed by heating to form an aluminum metal film.
  • EWC-060 manufactured by ULVAC
  • the resin film can be placed in a roll-type vacuum evaporation device (EWC-060 manufactured by ULVAC), and the aluminum wire can be fed into a evaporation boat heated by resistance heating at a conveying speed that brings the aluminum film thickness to a predetermined value. Vacuum deposition was performed to form an aluminum metal film.
  • EWC-060 manufactured by ULVAC
  • the argon gas introduced during magnetron sputtering is used to introduce argon gas. Sputtering and vacuum deposition were not performed simultaneously in the batch vacuum deposition apparatus (EBH-800 manufactured by ULVAC), so argon gas was not introduced during vacuum deposition.
  • Sputtering and vacuum evaporation are performed continuously in a roll-type vacuum evaporation device (EWC-060 manufactured by ULVAC), so sputtering and vacuum evaporation are performed simultaneously in the same evaporation chamber, and the evaporation source for vacuum evaporation is always connected. Argon gas was introduced.
  • EWC-060 roll-type vacuum evaporation device manufactured by ULVAC
  • XRD X-ray diffraction
  • Measurement was performed using X-ray diffraction (RIGAKU SmartLab 9kW).
  • the measurement conditions were: X-ray tube voltage and current: 45 kV-200 mA, scanning speed: 2°/min, entrance slit: 1.0 mm, and light receiving slit: 1.0 mm.
  • the peak intensity I[111] of the X-ray diffraction of the 111 plane and the peak intensity I[200] of the X-ray diffraction of the 200 plane from the measurement results were determined, and the ratio I[200]/I[111] was calculated and compared. .
  • a metallized film was placed on a 10 mm thick NR sponge rubber (NRS-06 manufactured by Wake Sangyo Co., Ltd.) with the metal film facing upward, and two gold-plated copper plates of 25 mm x 25 mm were placed on top. A 500 g weight was placed on each copper plate at 1 mm intervals. The resistance value between the two copper plates was measured with a resistance meter RM3544 manufactured by Hioki Electric Co., Ltd., and was defined as contact resistance.
  • the metallized film was cut into a size of about 300 mm x about 80 mm, and measured using a 4-terminal method using a simple low resistivity meter (“Loresta (registered trademark)” EP MCP-T360 manufactured by Mitsubishi Chemical Analytic Tech Co., Ltd.). The surface resistance was measured at three locations, and the average value was adopted as the surface resistance value.
  • Al metal film thickness Cut the metalized film into a size of about 30 mm x about 30 mm, stack 10 sheets, measure the thickness with a micrometer, calculate the thickness of each metalized film, and then stack 10 sheets in the same way.
  • the aluminum metal film thickness was calculated from the difference from the metallized film thickness calculated from the undeposited resin film thickness measured with a micrometer.
  • a paper adhesive tape (manufactured by NITTO, No. 720) with a width of 18 mm is attached to the surface of the aluminum metal film, and then when the paper adhesive tape (manufactured by NITTO, No. 720) is peeled off, judgment is made by whether the deposited film is peeled off from the resin film. did.
  • the deposited film peeled off from the resin film, it was marked as ⁇ (fail), and when it did not peel off, it was marked as ⁇ (pass), and this was used as a guideline for whether it could be used as a metallized film for secondary battery positive electrodes.
  • Example 1 A biaxially oriented polyethylene terephthalate film (manufactured by SKC Corporation, type: SC42) with a thickness of 11.5 ⁇ m was used as the resin film. The surface roughness of this resin film was 1.6 nm.
  • the resin film was placed in a roll-type vacuum deposition apparatus (EWC-060 manufactured by ULVAC), and a pulsed power supply was applied to deposit aluminum to a thickness of 5 nm by sputtering. As a condition, a sputtering output of 2.0 kW was adopted using a pulse power source. Thereafter, an aluminum metal film was vacuum-deposited to a thickness of 1.48 ⁇ m by vacuum evaporation by heating the aluminum ingot by induction heating evaporation using a carbon crucible.
  • the ratio of the peak intensity I[111] of the X-ray diffraction of the 111 plane of aluminum to the peak intensity I[200] of the X-ray diffraction of the 200 plane is I[200]/I[111 ] was 4.3, and the surface roughness was 8.3 nm.
  • the surface resistance of the aluminum metal film surface that is not in contact with the resin film of this metal film is 0.037 ⁇ / ⁇
  • the contact resistance value is 8.63m ⁇
  • the ratio of the contact resistance value to the surface resistance value [contact resistance/surface resistance] is It was 0.24.
  • the contact resistance value was 15 m ⁇ or less, and the contact resistance was sufficiently small and the judgment was ⁇ .
  • Example 5 A metallized film was produced and evaluated in the same manner as in Example 1, except that the thickness of the aluminum metal film was as shown in Table 1. The results are shown in Table 1.
  • Example 6 A biaxially oriented polyethylene terephthalate film (manufactured by SKC Corporation, type: SC42) with a thickness of 11.5 ⁇ m was used as the resin film. The surface roughness of this resin film was 1.6 nm.
  • the resin film was placed in a roll-type vacuum evaporator (EWC-060 manufactured by ULVAC), and the vacuum level was adjusted to 1 ⁇ 10 -2 Pa or less while introducing argon gas, and then the resistance was measured. Vacuum deposition was carried out by putting an aluminum wire into a heated deposition boat, and an aluminum metal film was vacuum deposited to a thickness of 1.04 ⁇ m and evaluated. The results are shown in Table 1.
  • Example 7 A biaxially oriented polyethylene terephthalate film (manufactured by SKC Corporation, type: SC42) with a thickness of 11.5 ⁇ m was used as the resin film. The surface roughness of this resin film was 1.6 nm.
  • the resin film was placed in a roll-type vacuum deposition apparatus (EWC-060 manufactured by ULVAC), and a pulsed power supply was applied to deposit aluminum to a thickness of 5 nm by sputtering. As a condition, a sputtering output of 2.0 kW was adopted using a pulse power source. Thereafter, vacuum evaporation was performed by putting an aluminum wire into a evaporation boat heated by resistance heating, and an aluminum metal film was vacuum evaporated to a thickness of 1.00 ⁇ m, and evaluated. The results are shown in Table 1.
  • a biaxially oriented polyethylene terephthalate film (manufactured by SKC Corporation, type: SC42) with a thickness of 11.5 ⁇ m was used as the resin film.
  • the surface roughness of this resin film was 1.6 nm.
  • This resin film was placed in a batch vacuum deposition apparatus (EBH-800 manufactured by ULVAC), and pulsed power was applied to deposit aluminum to a thickness of 5 nm by sputtering. As a condition, a sputtering output of 2.0 kW was adopted using a pulse power source. Thereafter, an aluminum metal film was vacuum-deposited to a thickness of 1.44 ⁇ m using a resistance heating deposition method in which a deposition boat was heated.
  • the ratio of the peak intensity I[111] of the X-ray diffraction of the 111 plane of aluminum to the peak intensity I[200] of the X-ray diffraction of the 200 plane is I[200]/I[111 ] was 0.3, and the surface roughness was 1.6 nm.
  • the surface resistance of the aluminum metal film surface not in contact with the resin film of this metal film was 0.038 ⁇ / ⁇ , the contact resistance was 15.38 m ⁇ , and the ratio of the contact resistance to the surface resistance [contact resistance/surface resistance] was 0.41.
  • the contact resistance value was greater than 15 m ⁇ , and the contact resistance was high compared to the surface resistance, so the judgment was “pass” and “ ⁇ ”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention addresses the problem of providing: a metallized film that, even when a conductive thin film layer is formed on a resin surface, can be conveyed without breakage, without increasing contact resistance; and a method for producing the same. This problem is solved by a metallized film for secondary battery positive electrodes, wherein: an aluminum metal layer is formed one at least one surface of a resin film; and the ratio I [200]/I [111] between the X-ray diffraction peak intensity I [111] of a 111 plane of the aluminum of the metal layer and the X-ray diffraction peak intensity I [200] of a 200 plane thereof is not less than 1.0.

Description

二次電池正極用金属化フィルム、および、その製造方法Metallized film for secondary battery positive electrode and method for manufacturing the same
 本発明は二次電池正極用金属化フィルム、および、その製造方法に関する。 The present invention relates to a metallized film for a secondary battery positive electrode and a method for manufacturing the same.
 近年、電気電子機器の小型化や、環境問題から、脱ガソリン車(ハイブリッド自動車、電気自動車)の二次電池や、キャパシタなどの蓄電池に、小型化、軽量化と同時に、瞬時に大電流を充放電できる高出力密度であることが求められている。 In recent years, due to the miniaturization of electrical and electronic equipment and environmental issues, secondary batteries for gasoline-free vehicles (hybrid vehicles, electric vehicles) and storage batteries such as capacitors have become smaller and lighter, and at the same time, they can be instantly charged with large currents. It is required to have a high power density that allows for discharge.
 一般に、車両に搭載される蓄電池は、重量エネルギー密度を向上させるために、正極および負極がシート状に形成され、同じくシート状に形成されたセパレータを介して、シート状の正極および負極が巻回あるいは積層された状態で、ケース内に納められた構成を有している。シート状の電極板は、集電体となる金属箔の表面に、活物質を含む合剤層を形成した構造をしている。 In general, storage batteries installed in vehicles have positive and negative electrodes formed into sheets in order to improve weight energy density, and the sheet positive and negative electrodes are wound through a separator that is also formed into a sheet. Alternatively, they are stacked and housed in a case. A sheet-like electrode plate has a structure in which a mixture layer containing an active material is formed on the surface of a metal foil that serves as a current collector.
 また、高出力密度を得る方法のひとつに、蓄電池を構成する各種の材質の抵抗(蓄電池の内部抵抗)を低減する方法がある。蓄電池において、集電体にはアルミニウム箔が用いられていることが多いが、通常のアルミニウム箔による集電体は酸化皮膜を有しており、アルミニウムの表面に形成される酸化皮膜により、内部抵抗が増加するといわれている。内部抵抗が増加すると、大電流で充放電を行ったときに電圧降下を招き、この結果として、蓄電池の出力の低下を招いていた。一般的にアルミニウムには通常厚み5~10nmの絶縁体の自然酸化膜が形成されるが、アルミニウム表面としては良好な導電性を保持する特徴がある。その理由として酸化膜の欠陥部分から電流が流れる説と、量子力学の分野で、エネルギー的に通常は超えることのできない領域を電子が一定の確率で通り抜けてしまうトンネル現象から、電気的絶縁体を挟んで電子伝導体が、10nm程度以下に接近すると良好な電子伝導が生じるトンネル効果の説などがあり、あまり明確にはなっていないが、アルミニウム酸化膜自体が内部抵抗に強く影響していると考えられている。 Additionally, one method for obtaining high output density is to reduce the resistance of the various materials that make up the storage battery (internal resistance of the storage battery). In storage batteries, aluminum foil is often used for the current collector, but the current collector made of normal aluminum foil has an oxide film, and the oxide film formed on the surface of the aluminum reduces the internal resistance. is said to increase. An increase in internal resistance causes a voltage drop when charging and discharging with a large current, resulting in a decrease in the output of the storage battery. Generally, a natural oxide film of an insulator with a thickness of 5 to 10 nm is formed on aluminum, but the aluminum surface has a characteristic of maintaining good conductivity. The reason for this is that electric current flows from defective parts of the oxide film, and in the field of quantum mechanics, there is a tunneling phenomenon in which electrons pass through a region that cannot normally be exceeded in terms of energy. There is a theory that good electron conduction occurs when the sandwiched electron conductor approaches less than 10 nm, such as the tunnel effect, and although it is not clear, it is believed that the aluminum oxide film itself has a strong influence on internal resistance. It is considered.
 酸化皮膜による内部抵抗向上を抑制する電極と活性物質との接触抵抗を下げる方法として、電極に使用される金属箔の表面を凹凸させる方法がある(例えば、特許文献1)。アルミニウム表面を粗化することで、欠陥数を増大させるのか、突起部を多く形成することで、トンネル効果が発現しやすくなっているかは明らかではないが、接触抵抗を低下させる手法として有効である。 As a method of reducing the contact resistance between an electrode and an active substance that suppresses internal resistance improvement due to an oxide film, there is a method of making the surface of a metal foil used for an electrode uneven (for example, Patent Document 1). It is not clear whether roughening the aluminum surface increases the number of defects, or forming more protrusions makes it easier for the tunnel effect to occur, but it is an effective method to reduce contact resistance. .
 小型化および軽量化しながら高出力密度を向上させる方法としては、体積エネルギー密度の向上や、重量エネルギー密度の向上を目的として、電極基材の薄膜化が進められている。しかしながら対応すべく電極に使用されている金属箔を単純に薄膜化すると、強度の不足という問題が発生する。また、接触抵抗を低下させる目的で薄膜化した金属箔の表面凹凸を大きくすると、更に金属箔の強度低下の原因となり好ましくない。そこで金属に代わる新たな素材として、機械特性や耐熱寸法安定性に優れる二軸延伸ポリエステル薄膜フィルムの表面に、金属などの導電性薄膜層を設けた構成を有する素材を、集電体機能を持たせて電極基材として用いることが提案されている(例えば、特許文献2)。 As a method of improving high output density while reducing size and weight, thinning of electrode base materials is being promoted with the aim of improving volumetric energy density and gravimetric energy density. However, if the metal foil used for the electrode is simply made thinner, a problem arises in that the strength is insufficient. Furthermore, increasing the surface irregularities of the thinned metal foil for the purpose of lowering the contact resistance is undesirable because it further causes a decrease in the strength of the metal foil. Therefore, as a new material to replace metal, we have developed a material that has a structure in which a conductive thin film layer such as metal is provided on the surface of a biaxially oriented polyester thin film that has excellent mechanical properties and heat-resistant dimensional stability. It has also been proposed to use it as an electrode base material (for example, Patent Document 2).
特開2008-160053号公報Japanese Patent Application Publication No. 2008-160053 特開平10-40919号公報Japanese Patent Application Publication No. 10-40919
 しかしながら、ポリエステル薄膜フィルム等の樹脂フィルムの表面に金属などの導電性薄膜層を設けた構成の場合、従来使用していた金属箔よりも金属厚は薄くなる分、トータルの電気抵抗値は上昇してしまう。そして、アルミニウム金属表面の接触抵抗を低くする目的で金属表面を粗化するにしても、通常、樹脂フィルムの表面に設ける金属などの導電性薄膜層は、真空蒸着法等により形成する蒸着金属膜であり、薄膜金属であるため、エッチング等で粗化することは難しい。ポリエステル薄膜フィルムの表面自体を粗化すると、破断しやすくなり、製造工程の搬送が困難になる。 However, in the case of a structure in which a conductive thin film layer of metal or the like is provided on the surface of a resin film such as a polyester thin film, the total electrical resistance value increases because the metal thickness is thinner than that of conventionally used metal foil. It ends up. Even if the metal surface is roughened for the purpose of lowering the contact resistance of the aluminum metal surface, the conductive thin film layer of metal etc. provided on the surface of the resin film is usually a vapor-deposited metal film formed by vacuum evaporation method etc. Since it is a thin metal film, it is difficult to roughen it by etching or the like. If the surface of the polyester thin film itself is roughened, it becomes easy to break and transportation during the manufacturing process becomes difficult.
 本発明は上述の事情に鑑み、樹脂表面に導電性薄膜層を形成しても、接触抵抗が上昇しないで、破断せず搬送できる金属化フィルムを提供することを課題とする。 In view of the above-mentioned circumstances, it is an object of the present invention to provide a metallized film that does not increase contact resistance and can be transported without breaking even when a conductive thin film layer is formed on the resin surface.
 本発明者らは、上記の課題に鑑み鋭意検討した結果、真空蒸着法を用いて蒸着膜の表面形状をコントロールすることで接触抵抗が小さい金属化フィルム、および、その製造方法を得るに至った。 As a result of intensive studies in view of the above problems, the present inventors have succeeded in obtaining a metallized film with low contact resistance and a method for producing the same by controlling the surface shape of the deposited film using a vacuum deposition method. .
 すなわち、本発明は、樹脂フィルムの少なくとも一方の表面にアルミニウム金属膜が形成され、前記金属膜のアルミニウムの、111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]が1.0以上である二次電池正極用金属化フィルム、
 前記金属膜の表面抵抗が0.15Ω/□以下である上記二次電池正極用金属化フィルム、
 前記樹脂フィルムの表面粗さRaが0.6nm以上2.0nm以下である上記二次電池正極用金属化フィルム、
 前記金属膜の表面粗さRaが2.3nm以上10.0nm以下である上記二次電池正極用金属化フィルム、に関する。
That is, in the present invention, an aluminum metal film is formed on at least one surface of the resin film, and the peak intensity I[111] of the X-ray diffraction of the 111 plane and the peak of the X-ray diffraction of the 200 plane of aluminum of the metal film are A metallized film for a secondary battery positive electrode having a ratio of I[200]/I[111] to strength I[200] of 1.0 or more,
The metallized film for a secondary battery positive electrode, wherein the metal film has a surface resistance of 0.15Ω/□ or less,
The metallized film for a secondary battery positive electrode, wherein the resin film has a surface roughness Ra of 0.6 nm or more and 2.0 nm or less,
The present invention relates to the metallized film for a secondary battery positive electrode, wherein the metal film has a surface roughness Ra of 2.3 nm or more and 10.0 nm or less.
 また、本発明は、上記二次電池正極用金属化フィルムの製造方法であって、蒸着源のアルミニウムを、抵抗加熱、誘導加熱、および、電子ビームからなる群から選択される少なくとも一つにより加熱して気化したアルミニウムとする際に、アルゴンガスを導入する真空蒸着法により、樹脂フィルムに前記気化したアルミニウムを蒸着させて成膜する工程を含む、二次電池正極用金属化フィルムの製造方法、
 アルミニウムをスパッタリング法にて前記樹脂フィルムに成膜した後に、大気開放することなしに前記気化したアルミニウムを蒸着させて成膜する工程を含む、上記二次電池正極用金属化フィルムの製造方法、に関する。
The present invention also provides a method for producing the metallized film for a secondary battery positive electrode, in which aluminum as a vapor deposition source is heated by at least one selected from the group consisting of resistance heating, induction heating, and electron beam. A method for producing a metallized film for a secondary battery positive electrode, comprising the step of depositing the vaporized aluminum on a resin film by a vacuum evaporation method that introduces argon gas to form vaporized aluminum.
The method for producing the metallized film for a secondary battery positive electrode, which includes the step of forming a film on the resin film by sputtering aluminum, and then vapor-depositing the vaporized aluminum without exposing it to the atmosphere. .
 本発明によると、樹脂表面に導電性薄膜層を形成しても、接触抵抗が上昇しないで、破断せず搬送できる金属化フィルム、および、その製造方法を得ることが可能となる。 According to the present invention, it is possible to obtain a metallized film that does not increase contact resistance and can be transported without breaking even when a conductive thin film layer is formed on the resin surface, and a method for producing the same.
本発明の金属化フィルムの断面概略図である。FIG. 1 is a schematic cross-sectional view of a metallized film of the present invention. 本発明の金属化フィルムの断面概略図である。FIG. 1 is a schematic cross-sectional view of a metallized film of the present invention. 本発明の金属化フィルムの断面概略図である。FIG. 1 is a schematic cross-sectional view of a metallized film of the present invention. カーボンルツボを用いた誘導加熱方式の蒸着源を用いて結晶粒を大きく緻密に成長させたときのアルミニウム金属膜(膜厚1.48μm)表面の電子顕微鏡(SEM)写真である。This is an electron microscope (SEM) photograph of the surface of an aluminum metal film (film thickness: 1.48 μm) when large and dense crystal grains were grown using an induction heating vapor deposition source using a carbon crucible. カーボンルツボを用いた誘導加熱方式の蒸着源を用いて結晶粒を大きく緻密に成長させたときのアルミニウム金属膜(膜厚0.53μm)表面のSEM写真である。This is an SEM photograph of the surface of an aluminum metal film (thickness: 0.53 μm) when large and dense crystal grains were grown using an induction heating vapor deposition source using a carbon crucible. 抵抗加熱のボートにアルミニウム金属ワイヤーを連続的に供給するボート加熱方式で成長させたときのアルミニウム金属膜(膜厚1.12μm)表面のSEM写真である。This is an SEM photograph of the surface of an aluminum metal film (thickness: 1.12 μm) grown by a boat heating method in which an aluminum metal wire is continuously supplied to a resistance heating boat. カーボンルツボを用いた誘導加熱方式の蒸着源を用いて結晶粒を大きく緻密に成長させたときのアルミニウム金属膜(膜厚1.48μm)の断面のSEM写真である。(図3に同じだが見る方向が異なる。)This is an SEM photograph of the cross section of an aluminum metal film (thickness 1.48 μm) grown with large and dense crystal grains using an induction heating type deposition source with a carbon crucible (same as Figure 3 but viewed from a different angle).
 本発明について以下詳細に説明する。 The present invention will be explained in detail below.
 <金属化フィルム> 
 本発明の金属化フィルム4は、樹脂フィルム1の一方、もしくは両方の面にアルミニウム金属膜3を有する(図1、図2、図3)。
<Metalized film>
The metallized film 4 of the present invention has an aluminum metal film 3 on one or both surfaces of the resin film 1 (FIGS. 1, 2, and 3).
 <アルミニウム金属膜>
 本発明におけるアルミニウム金属膜3は、アルミニウムを主成分とする層を1層または2層以上積層したアルミニウム金属の集合体である。主成分とは層全体を100原子%としたとき、80原子%を超えることをさす。
<Aluminum metal film>
The aluminum metal film 3 in the present invention is an aluminum metal aggregate formed by laminating one or more layers containing aluminum as a main component. The main component refers to more than 80 atomic % when the entire layer is 100 atomic %.
 本発明におけるアルミニウム金属膜3の厚みは0.7μm以上3.0μm以下が好ましく、1.0μm以上2.5μm以下であることがより好ましい。 The thickness of the aluminum metal film 3 in the present invention is preferably 0.7 μm or more and 3.0 μm or less, more preferably 1.0 μm or more and 2.5 μm or less.
 電極用途では、電気抵抗は低いほど好ましく、表面抵抗では金属膜表面抵抗が0.15Ω/□以下であることが好ましく、0.05Ω/□以下であることがさらに好ましい。一方、エネルギー密度向上のためには薄膜化する必要があるため、金属膜を単純に厚くすることは好ましくない。電極の電気抵抗を考慮すれば、アルミニウム金属膜の厚みは 0.7μm以上が好ましく、1.0μm以上であればより低抵抗となり、内部抵抗の上昇を低減できる。一方、体積エネルギー密度の向上の目的から電極基材の薄膜化を進める必要があり、3.0μm以下が好ましく、2.5μm以下であることが更に好ましい。 For electrode applications, the lower the electrical resistance, the more preferable it is, and the surface resistance of the metal film is preferably 0.15Ω/□ or less, more preferably 0.05Ω/□ or less. On the other hand, since it is necessary to make the metal film thinner in order to improve the energy density, it is not preferable to simply make the metal film thicker. Considering the electrical resistance of the electrode, the thickness of the aluminum metal film is preferably 0.7 μm or more, and if it is 1.0 μm or more, the resistance will be lower and the increase in internal resistance can be reduced. On the other hand, for the purpose of improving the volumetric energy density, it is necessary to make the electrode base material thinner, and the thickness is preferably 3.0 μm or less, and more preferably 2.5 μm or less.
 本発明におけるアルミニウム金属膜3は、真空蒸着法での成膜時に表面凹凸が大きくなるように金属膜の結晶成長を制御することにより、接触抵抗を低くできる特徴をもつ。 The aluminum metal film 3 in the present invention has a feature that the contact resistance can be lowered by controlling the crystal growth of the metal film so that the surface unevenness increases during film formation using the vacuum evaporation method.
 10mm厚のNRスポンジゴムの上に、金属化フィルム4のアルミニウム金属膜3が上向きになるようにのせ、25mm×25mmの大きさの金メッキを施した銅板2枚を1mmの間隔をあけてそれぞれの銅板に500gのおもりを乗せ、その2枚の銅板間の抵抗値を接触抵抗の値としたとき、内部抵抗上昇を低減するためには接触抵抗値は15mΩ以下であることが好ましく、10mΩ以下であることが更に好ましい。ここでの接触抵抗値は25mm×25mmの2枚の電極面積の接触抵抗と2枚の電極間の膜抵抗(表面抵抗)を含んだ値である。よって、接触抵抗値と表面抵抗値の比[接触抵抗値]/[表面抵抗値]は、表面抵抗の影響が少ない値を示すことができ、表面抵抗値の比[接触抵抗値]/[表面抵抗値]は0.35以下が好ましく、0.25以下であることが更に好ましい。 Place the aluminum metal film 3 of the metallized film 4 on top of a 10 mm thick NR sponge rubber with the aluminum metal film 3 facing upward, and place two gold-plated copper plates of 25 mm x 25 mm in size, each with a 1 mm gap between them. When a 500 g weight is placed on a copper plate and the resistance value between the two copper plates is taken as the contact resistance value, the contact resistance value is preferably 15 mΩ or less in order to reduce the increase in internal resistance, and 10 mΩ or less. It is even more preferable that there be. The contact resistance value here is a value that includes the contact resistance of the area of two electrodes of 25 mm x 25 mm and the membrane resistance (surface resistance) between the two electrodes. Therefore, the ratio of contact resistance value to surface resistance value [contact resistance value]/[surface resistance value] can indicate a value that is less affected by surface resistance, and the ratio of surface resistance value [contact resistance value]/[surface resistance value] The resistance value] is preferably 0.35 or less, more preferably 0.25 or less.
 金属膜の結晶成長を制御して接触抵抗を低くするアルミニウム金属膜3の表面の特徴として、アルミニウム金属膜3の樹脂フィルム1と接していない表面の表面粗さRaが2.3nm以上10.0nm以下であることが好ましく、5.0nm以上10.0nm以下であることが更に好ましい。アルミニウム表面が十分粗化され、凸部と凹部の高さにある程度の大きさが確保された時に接触抵抗が低くなる傾向があり、表面粗さRaは大きい程好ましい傾向になる。ただし、表面粗さRaが大きすぎると薄いアルミニウム金属膜3が、搬送時や折り曲げ時に金属膜の破断する原因になるため、10.0nm以下であることが好ましい。 As a feature of the surface of the aluminum metal film 3 that controls the crystal growth of the metal film and reduces the contact resistance, the surface roughness Ra of the surface of the aluminum metal film 3 that is not in contact with the resin film 1 is preferably 2.3 nm or more and 10.0 nm or less, and more preferably 5.0 nm or more and 10.0 nm or less. When the aluminum surface is sufficiently roughened and a certain degree of size is ensured for the height of the convex and concave portions, the contact resistance tends to be low, and the larger the surface roughness Ra, the more preferable it tends to be. However, if the surface roughness Ra is too large, the thin aluminum metal film 3 can cause the metal film to break when transported or bent, so it is preferable that it be 10.0 nm or less.
 金属膜の結晶成長を制御して接触抵抗を低くするアルミニウム金属膜3の表面の特徴として、アルミニウム金属膜3のアルミニウムの111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]が1.0以上10以下であることが好ましい。I[200]/I[111]は2.0以上であることが更に好ましい。強度比I[200]/I[111]が大きい程、アルミニウム金属膜3の結晶方位は緻密に揃うため、膜抵抗(表面抵抗)は小さくなり、接触面の接触抵抗も低下する。 The surface characteristics of the aluminum metal film 3 that control the crystal growth of the metal film and lower the contact resistance are the X-ray diffraction peak intensity I[111] of the 111 plane of aluminum and the X-ray X-ray of the 200 plane of the aluminum metal film 3. The ratio I[200]/I[111] to the diffraction peak intensity I[200] is preferably 1.0 or more and 10 or less. It is more preferable that I[200]/I[111] be 2.0 or more. As the intensity ratio I[200]/I[111] increases, the crystal orientation of the aluminum metal film 3 becomes more closely aligned, so that the film resistance (surface resistance) becomes smaller and the contact resistance of the contact surface also decreases.
 アルミニウムは立方晶系であるため、アルミニウムがパウダーの場合、結晶方位がランダムであるため、111面のX線回折のピーク強度が一番大きく、強度比I[200]/I[111]は1.0未満となる。通常の真空蒸着法で作製したアルミニウム金属膜化フィルムの金属粒子は、隙間が大きい柱状結晶膜であり、111面のX線回折のピーク強度が一番大きく、強度比I[200]/I[111]は1.0未満となる。 Aluminum has a cubic crystal system, so when aluminum is a powder, the crystal orientation is random, so the X-ray diffraction peak intensity of the 111 plane is the largest, and the intensity ratio I[200]/I[111] is 1. It will be less than .0. The metal particles of the aluminum metalized film produced by the normal vacuum evaporation method are columnar crystal films with large gaps, and the peak intensity of X-ray diffraction of the 111 plane is the largest, with an intensity ratio of I[200]/I[ 111] is less than 1.0.
 一方、圧延アルミニウム箔は圧延工程により緻密となり、結晶配向が揃うため、斜め方向の111面のX線回折のピーク強度I[111]は弱くなり、強度比I[200]/I[111]は1.0より大きくなる。蒸着時の基材(樹脂フィルムのこと。以下、樹脂フィルムを基材と記すことがある。)の表面温度を上げることで、柱状結晶は大きく緻密になることで、結晶は200面方向に揃い、強度比I[200]/I[111]は1.0より大きくなる。ただし、基材が樹脂フィルムの場合、基材温度を上昇させると溶融して破断してしまうため、工夫せず作製すると、基材温度を上げることができず、真空蒸着法で作製したアルミニウム金属膜化フィルムの金属粒子は隙間が大きい柱状結晶膜になってしまい、強度比I[200]/I[111]は1.0未満となる。 On the other hand, rolled aluminum foil becomes dense and has a uniform crystal orientation due to the rolling process, so the peak intensity I[111] of the X-ray diffraction of the 111 plane in the diagonal direction becomes weaker, and the intensity ratio I[200]/I[111] becomes Becomes greater than 1.0. By increasing the surface temperature of the base material (resin film. Hereinafter, the resin film may be referred to as the base material) during vapor deposition, the columnar crystals become larger and denser, and the crystals align in the 200-plane direction. , the intensity ratio I[200]/I[111] is greater than 1.0. However, if the base material is a resin film, it will melt and break if the base material temperature is increased. The metal particles of the formed film become a columnar crystal film with large gaps, and the intensity ratio I[200]/I[111] becomes less than 1.0.
 本発明では基材が樹脂フィルムであっても、基材の表面温度を上げながらアルゴンガスを導入することでアルミニウム金属膜の柱状結晶を大きく緻密に成長させ、結晶粒を大きくすることで、アルミニウム金属膜表面に適度な凹凸を形成させることに成功した。樹脂フィルムを裏面から強制的に冷却しながら、蒸着源の発熱量を大きくすることで、蒸着源の露出している樹脂フィルムの表面近傍のみの温度を上昇させて、柱状結晶は大きく緻密にすることが可能となった。 In the present invention, even if the base material is a resin film, by introducing argon gas while increasing the surface temperature of the base material, the columnar crystals of the aluminum metal film grow large and dense, and by enlarging the crystal grains, aluminum We succeeded in forming appropriate irregularities on the surface of the metal film. By increasing the calorific value of the evaporation source while forcibly cooling the resin film from the back side, the temperature only near the surface of the resin film where the evaporation source is exposed is increased, making the columnar crystals large and dense. It became possible.
 一般的なアルミニウムの真空蒸着法の場合、抵抗加熱のボートにアルミニウム金属ワイヤーを連続的に供給するボート加熱方式であるが、この方式でアルミニウム金属膜を形成すると強度比I[200]/I[111]は1.0未満となる。従って、基材表面温度が上昇しやすいように蒸着源の発熱量を出来るだけ大きくし短時間で成膜することが好ましい。発熱量の大きい、カーボンルツボを用いた誘導加熱方式や、電子ビームにより加熱する方式の蒸着源を用いることで蒸着源の発熱量を大きくし、結晶粒を大きく緻密に成長させることができる。ただし、そのままでは樹脂フィルムは熱により溶融してしまうので、溶融しない直前の温度まで樹脂フィルムを裏面から強制的に冷却することでアルミニウム金属膜の柱状結晶を大きく緻密に成長させることが好ましい。さらにアルゴンガスを蒸着中に導入することでアルミニウム金属膜表面に更に凹凸を形成させることが可能となる。 In the case of the general vacuum evaporation method of aluminum, a boat heating method is used in which an aluminum metal wire is continuously supplied to a resistance heating boat, but when an aluminum metal film is formed using this method, the strength ratio I[200]/I[ 111] is less than 1.0. Therefore, it is preferable to increase the amount of heat generated by the evaporation source as much as possible to form a film in a short time so that the surface temperature of the substrate can easily rise. By using a deposition source that generates a large amount of heat, such as an induction heating method using a carbon crucible or a heating method using an electron beam, the amount of heat generated by the deposition source can be increased, and crystal grains can be grown large and dense. However, since the resin film will melt due to heat if left as is, it is preferable to forcibly cool the resin film from the back side to a temperature just before melting, thereby growing large and dense columnar crystals of the aluminum metal film. Furthermore, by introducing argon gas during vapor deposition, it becomes possible to further form irregularities on the surface of the aluminum metal film.
 図4および図5は、表面粗さRaが1.6nmである樹脂フィルム(ここでは、ポリエチレンテレフタレート(PET)フィルム)の表面上に、発熱量の大きいカーボンルツボを用いた誘導加熱方式の蒸着源を用いて、結晶粒を大きく緻密に成長させたときのアルミニウム金属膜表面のSEM写真である。図4は1.48μmの厚さのアルミニウム金属膜の表面SEM写真、図5は0.53μmの厚さのアルミニウム金属膜の表面SEM写真である。図4および図5から結晶粒を大きくすることで、アルミニウム金属膜表面に適度な凹凸を形成できていることが判別できる。このときの表面粗さRaは図4で8.3nm 図5で2.7nmであった。 Figures 4 and 5 show an induction heating type vapor deposition source using a carbon crucible with a large calorific value on the surface of a resin film (here, a polyethylene terephthalate (PET) film) with a surface roughness Ra of 1.6 nm. This is an SEM photograph of the surface of an aluminum metal film when large and dense crystal grains are grown using the method. FIG. 4 is a SEM photograph of the surface of an aluminum metal film with a thickness of 1.48 μm, and FIG. 5 is a SEM photograph of the surface of an aluminum metal film with a thickness of 0.53 μm. It can be seen from FIGS. 4 and 5 that by increasing the size of the crystal grains, appropriate irregularities can be formed on the surface of the aluminum metal film. The surface roughness Ra at this time was 8.3 nm in FIG. 4 and 2.7 nm in FIG. 5.
 図7は図4のアルミニウム金属膜の断面SEM写真であり、アルミニウム金属膜が柱状結晶であり、アルミニウム金属膜表面の凹凸の凸部が一つの柱状結晶に相当することが判別できる。これより、アルミニウム金属膜表面の凹凸の凸部の大きさが大きいほど柱状結晶が大きく緻密であることが推測される。図4と図5を比較した場合、膜厚を厚くするために蒸着時間が長く熱量がより大きい図4の方が、より柱状結晶の成長が大きいと推測される。 FIG. 7 is a cross-sectional SEM photograph of the aluminum metal film in FIG. 4, and it can be seen that the aluminum metal film is a columnar crystal, and that the convex and convex portions of the surface of the aluminum metal film correspond to one columnar crystal. From this, it is inferred that the larger the size of the convex portions of the irregularities on the surface of the aluminum metal film, the larger and denser the columnar crystals are. When comparing FIG. 4 and FIG. 5, it is presumed that the growth of columnar crystals is greater in FIG. 4, in which the deposition time is longer and the amount of heat is greater in order to increase the film thickness.
 一方、図6は、一般的な抵抗加熱のボートにアルミニウム金属ワイヤーを連続的に供給する、ボート加熱方式で成長させたときのアルミニウム金属膜表面のSEM写真である。図6は1.12μmの厚さのアルミニウム金属膜の表面SEM写真であり、このときの表面粗さRaは2.2nmであった。図6のアルミニウム金属膜表面にははっきりとした凹凸は確認することが出来ないことから、柱状結晶が大きく成長しておらず、緻密に成長していないと推察される。 On the other hand, FIG. 6 is an SEM photograph of the surface of an aluminum metal film grown by a boat heating method in which an aluminum metal wire is continuously supplied to a general resistance heating boat. FIG. 6 is a SEM photograph of the surface of an aluminum metal film with a thickness of 1.12 μm, and the surface roughness Ra at this time was 2.2 nm. Since no clear unevenness can be observed on the surface of the aluminum metal film in FIG. 6, it is inferred that the columnar crystals have not grown large or densely.
 また、結晶粒を大きく、緻密な金属膜にするためには、熱源である蒸着源にある程度の時間露出させる必要があり、結果的に蒸着時間を長くすることが必要であり、アルミニウム金属膜厚は0.7μm以上の厚みであることが好ましく、1.0μm以上であればさらに好ましい。 In addition, in order to create a dense metal film with large crystal grains, it is necessary to expose it to the vapor deposition source, which is a heat source, for a certain amount of time.As a result, it is necessary to lengthen the vapor deposition time, and the thickness of the aluminum metal film increases. The thickness is preferably 0.7 μm or more, and more preferably 1.0 μm or more.
 <アルミニウム金属膜の作製方法>
 アルミニウム金属膜3の成膜方法としては、薄い電極を作製する目的で、接着剤を用いず、薄い樹脂フィルムに金属膜を形成できる真空蒸着法が好ましい。真空蒸着法には誘導加熱蒸着法、抵抗加熱蒸着法、レーザービーム蒸着法、電子ビーム蒸着法などがあるが、その中でも蒸着源の発熱量の大きい電子ビーム蒸着法、レーザービーム蒸着法、誘導加熱蒸着法が好適に用いられる。蒸着源の発熱量は、アルミニウム金属膜3の結晶粒を大きくかつ緻密に形成するまで、大きくする必要があり、基材表面温度が十分高いことが必要であるが、実測することが困難であるため、蒸着後のアルミニウム金属膜3が必要な物性であることを確認して十分な熱量であるかどうかを判断する。
<Method for producing aluminum metal film>
As a method for forming the aluminum metal film 3, a vacuum evaporation method is preferable, which allows a metal film to be formed on a thin resin film without using an adhesive, for the purpose of producing a thin electrode. Vacuum evaporation methods include induction heating evaporation, resistance heating evaporation, laser beam evaporation, and electron beam evaporation.Among these, electron beam evaporation, laser beam evaporation, and induction heating have a large amount of heat from the evaporation source. A vapor deposition method is preferably used. The calorific value of the vapor deposition source needs to be increased until the crystal grains of the aluminum metal film 3 are formed large and dense, and the base material surface temperature needs to be sufficiently high, but it is difficult to actually measure it. Therefore, it is determined whether the amount of heat is sufficient by confirming that the aluminum metal film 3 after vapor deposition has the necessary physical properties.
 蒸着源の発熱量を必要な熱量まで上昇させると、通常の真空蒸着法の冷却機能の管理では樹脂フィルムの温度が上昇して溶解しまう可能性があるため、蒸着中は温度が上昇しすぎないように、フィルムを均一に冷却出来るように冷却機能を管理しながら蒸着する必要がある。具体的には、冷媒で十分冷やされた金属製の板もしくは金属ロールからなる冷却機構で蒸着面の裏面から均一に冷却する必要がある。均一に冷却するためには樹脂フィルムと冷却機構の間に隙間を作らずに密着させることが必須となる。 If the heating value of the evaporation source is increased to the required amount of heat, the temperature of the resin film may rise and melt under normal vacuum evaporation cooling function management, so the temperature does not rise too much during evaporation. Therefore, it is necessary to control the cooling function during vapor deposition so that the film can be cooled uniformly. Specifically, it is necessary to uniformly cool the back surface of the deposition surface using a cooling mechanism consisting of a metal plate or metal roll sufficiently cooled with a refrigerant. In order to cool uniformly, it is essential that the resin film and the cooling mechanism be brought into close contact with each other without creating any gaps.
 例えば、冷却機構の金属ロールにキズがあるとキズの部分が隙間となり、キズ部分で樹脂フィルムが冷却できず、溶解してしまう。例えば、異物が樹脂フィルムと冷却機構の金属ロールに入り込むと、異物で樹脂フィルムが冷却できず溶解してしまう。蒸着源の発熱量を必要な熱量まで上昇させると、通常の真空蒸着法では許容される金属ロールのキズや異物混入が問題となるため、金属ロールのキズや異物混入の管理は更に厳しくする必要がある。これらの蒸着源の発熱量の増加および冷却機能の管理の強化により、アルミニウム金属膜3の結晶粒を大きく成長させかつ緻密に形成させ、接触抵抗を含む内部抵抗の低下につなげることが可能となる。特に電子ビーム蒸着法、レーザービーム蒸着法の場合は、蒸着ルツボにカーボンルツボよりも保温性に優れたアルミナルツボを採用することで、より蒸着源の発熱量を大きくすることが出来るため、更に好ましい。 For example, if there is a scratch on the metal roll of the cooling mechanism, the scratch will form a gap, and the resin film will not be able to be cooled at the scratch and will melt. For example, if foreign matter gets into the resin film and the metal roll of the cooling mechanism, the resin film cannot be cooled due to the foreign matter and ends up melting. When the calorific value of the evaporation source is increased to the required amount of heat, scratches and foreign matter contamination of the metal roll become a problem, which is permissible with normal vacuum evaporation methods, so management of scratches and foreign matter contamination of the metal roll must be made even more stringent. There is. By increasing the calorific value of these vapor deposition sources and strengthening the management of the cooling function, it becomes possible to grow the crystal grains of the aluminum metal film 3 to a large size and form them densely, which leads to a reduction in internal resistance including contact resistance. . In particular, in the case of electron beam evaporation method and laser beam evaporation method, it is more preferable to use an alumina crucible as the evaporation crucible, which has better heat retention than a carbon crucible, because it is possible to increase the amount of heat generated from the evaporation source. .
 <樹脂フィルム>
 本発明で用いられる樹脂フィルム1は、合成樹脂などの高分子を薄い膜状に成型したものが好ましい。本発明で好適に用いられる樹脂フィルムとして、例えば、ポリエステルフィルム、ポリエステルフィルムの中でもポリエチレンテレフタレートフィルムやポリエチレンナフタレートフィルム、または、ポリイミドフィルム、ポリフェニレンサルファイドフィルム、ポリプロピレンフィルムが例示される。このうちポリエチレンテレフタレートフィルムがより好ましく用いられる。これらの樹脂フィルムは単独で用いても構わないし、複合されたものを用いても構わない。また樹脂フィルム表面に樹脂や粘着剤等をコーティングしたものを用いても構わない。
<Resin film>
The resin film 1 used in the present invention is preferably a thin film formed from a polymer such as a synthetic resin. Examples of resin films suitably used in the present invention include polyester films, polyethylene terephthalate films and polyethylene naphthalate films among polyester films, polyimide films, polyphenylene sulfide films, and polypropylene films. Among these, polyethylene terephthalate film is more preferably used. These resin films may be used alone or in combination. Alternatively, a resin film whose surface is coated with a resin, an adhesive, etc. may also be used.
 かかる樹脂フィルム1の厚さは1μm以上20μm以下であることが好ましく、3μm以上10μm以下であることが更に好ましい。電極基材の薄膜化のために樹脂フィルムの厚さが薄い方が好ましいという理由で、10μm以下であることが更に好ましい。ただし、あまりに薄いと製造工程中での破断等で収率を低下させる可能性があるという理由から、3μm以上であることが更に好ましい。 The thickness of the resin film 1 is preferably 1 μm or more and 20 μm or less, and more preferably 3 μm or more and 10 μm or less. Since it is preferable for the resin film to be thin in order to make the electrode base material thinner, the thickness is more preferably 10 μm or less. However, the thickness is more preferably 3 μm or more because if it is too thin, it may break during the manufacturing process and reduce the yield.
 前記樹脂フィルムの表面粗さRaが0.6nm以上2.0nm以下であることが好ましい。樹脂フィルム表面粗さが0.6nm未満の場合、樹脂フィルムをロール状に巻き取ったとき、貼り付いてしまい搬送が難しくなることがある。樹脂フィルムの表面粗さは0.6nm以上が好ましく、1.0nm以上であることが更に好ましい。一方、アルミニウム金属膜表面の凹凸は大きい方が好ましいため、樹脂フィルムの表面粗さRaを大きくしてしまうと、樹脂フィルム搬送時に破断しやすくなるため好ましくない。樹脂フィルムとしては搬送するために必要な最小限の凹凸を形成し、出来るだけ平滑であることが好ましいため、表面粗さRaは2.0nm以下であることが好ましく、1.5nm以下であることがさらに好ましい。 It is preferable that the surface roughness Ra of the resin film is 0.6 nm or more and 2.0 nm or less. If the surface roughness of the resin film is less than 0.6 nm, when the resin film is wound up into a roll, it may stick to the resin film, making transportation difficult. The surface roughness of the resin film is preferably 0.6 nm or more, more preferably 1.0 nm or more. On the other hand, since it is preferable that the surface roughness of the aluminum metal film be large, increasing the surface roughness Ra of the resin film is not preferable because the resin film is likely to break during transportation. As a resin film, it is preferable to form the minimum unevenness necessary for conveyance and to be as smooth as possible, so the surface roughness Ra is preferably 2.0 nm or less, and 1.5 nm or less. is even more preferable.
 <アンカー層>
 本発明の金属化フィルム4の樹脂フィルムとアルミニウム金属膜3との間には、アンカー層2を有していても構わない。アンカー層2を設けることにより、樹脂フィルムとアルミニウム金属膜の密着力向上が期待できる。アンカー層2としては樹脂フィルム上にスパッタリング法により金属層を形成することが好ましい。スパッタリング法ではアンカー層厚みを薄くすることが可能で、より薄膜化が要求される蓄電池用途では最適である。
<Anchor layer>
An anchor layer 2 may be provided between the resin film and the aluminum metal film 3 of the metallized film 4 of the present invention. By providing the anchor layer 2, it is expected that the adhesion between the resin film and the aluminum metal film will be improved. As the anchor layer 2, it is preferable to form a metal layer on a resin film by a sputtering method. The sputtering method makes it possible to reduce the thickness of the anchor layer, making it ideal for storage battery applications that require a thinner film.
 アンカー層2としてはアルミニウム、ニッケル、チタン、ニクロム、及びクロムからなる群より選ばれるいずれか1つ以上を含む金属層であることが好ましいが、アンカー層2がスパッタリング法で形成されるアルミニウム金属層であることが更に好ましい。このとき注意すべきとして、アンカー層2として選択されたアルミニウム、ニッケル、チタン、クロム、ニクロムなどの金属表面を酸化させない状態を維持しながら、その上に銅層を形成することが重要となる。具体的にはスパッタリングにてアンカー層2として金属層を形成したあと、大気開放せず、真空を維持したままアルミニウム金属膜3を形成することが重要となる。アンカー層2として選択されたアルミニウム、ニッケル、チタン、クロム、ニクロムなどの金属表面が酸化されると、安定した金属酸化膜が形成され、その上に形成されるアルミニウム金属膜3との界面との金属結合が困難となり、密着力が確保できず、アルミニウム金属膜3がアンカー層2から剥離してしまうことがある。そのため、アンカー層2として選択されたアルミニウム、ニッケル、チタン、クロム、ニクロムなどは酸化させないことが重要となる。アンカー層2がスパッタリング法で形成されるアルミニウム金属層である場合、その上にアルミニウム金属膜3が真空蒸着されると、柱状結晶をさらに大きく緻密に成長させるため、アルミ金属膜の接触抵抗を更に抑制することになり、好ましい。 The anchor layer 2 is preferably a metal layer containing one or more selected from the group consisting of aluminum, nickel, titanium, nichrome, and chromium, but the anchor layer 2 is an aluminum metal layer formed by a sputtering method. It is more preferable that At this time, it is important to keep the surface of the metal selected as the anchor layer 2, such as aluminum, nickel, titanium, chromium, or nichrome, from oxidizing while forming the copper layer thereon. Specifically, after forming a metal layer as the anchor layer 2 by sputtering, it is important to form the aluminum metal film 3 while maintaining a vacuum without exposing it to the atmosphere. When the surface of the metal selected as the anchor layer 2, such as aluminum, nickel, titanium, chromium, or nichrome, is oxidized, a stable metal oxide film is formed, and the interface with the aluminum metal film 3 formed on it forms. Metallic bonding becomes difficult, adhesion cannot be ensured, and the aluminum metal film 3 may peel off from the anchor layer 2. Therefore, it is important that aluminum, nickel, titanium, chromium, nichrome, etc. selected for the anchor layer 2 are not oxidized. When the anchor layer 2 is an aluminum metal layer formed by sputtering, when the aluminum metal film 3 is vacuum-deposited on top of it, the contact resistance of the aluminum metal film is further increased in order to grow the columnar crystals even larger and more densely. This is preferable because it suppresses this.
 アンカー層2の厚みは3nm以上40nm以下であることが好ましく、5nm以上20nm以下であることがより好ましい。厚みが3nm未満であると十分な密着力が得られないことがある。一方で、アンカー層を40nmより大きくしても、密着力向上の効果は大きくならないため、40nm以下であることが好ましく、成膜速度が遅いスパッタリング法にてアンカー層を作製している場合、アンカー層は20nm以下にして生産性向上させた方が更に好ましい。 The thickness of the anchor layer 2 is preferably 3 nm or more and 40 nm or less, more preferably 5 nm or more and 20 nm or less. If the thickness is less than 3 nm, sufficient adhesion may not be obtained. On the other hand, even if the anchor layer is larger than 40 nm, the effect of improving adhesion will not be large, so the thickness is preferably 40 nm or less. It is more preferable that the thickness of the layer is 20 nm or less to improve productivity.
 以下に、本発明を実施例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを発明の範囲から除外するものではない。 The present invention will be explained below based on examples. The present invention is not limited to these examples, and these examples can be modified and changed based on the spirit of the present invention, and these are not excluded from the scope of the invention. do not have.
 (マグネトロンスパッタリング)
 バッチ式真空蒸着装置(アルバック製EBH-800)内に樹脂フィルムを設置し、50mm×550mmサイズのターゲットを用い、アルゴンガス雰囲気中で真空到達度5×10-1Pa以下に調整して、DC電源を所定の金属膜厚になる時間連続して印加した。
(Magnetron sputtering)
A resin film was placed in a batch vacuum evaporation apparatus (EBH-800 manufactured by ULVAC), and using a target of 50 mm x 550 mm in size, the vacuum level was adjusted to 5 x 10 -1 Pa or less in an argon gas atmosphere, and DC Power was applied continuously for a period of time to reach a predetermined metal film thickness.
 もしくは、ロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、70mm×550mmサイズのターゲットを用い、アルゴンガス雰囲気中で真空到達度1×10-2Pa以下に調整して、パルス電源を印加して金属層を形成した。 Alternatively, place the resin film in a roll-type vacuum evaporation device (EWC-060 manufactured by ULVAC), use a target size of 70 mm x 550 mm, and adjust the vacuum attainment to 1 x 10 -2 Pa or less in an argon gas atmosphere. , a pulsed power source was applied to form a metal layer.
 なお、特に記載のない限り、スパッタリングと真空蒸着については連続して処理を行い、アンカー層とアルミニウム金属膜間で大気と触れさせないようにした。 Note that unless otherwise specified, sputtering and vacuum evaporation were performed consecutively to avoid contact with the atmosphere between the anchor layer and the aluminum metal film.
 (真空蒸着)
 バッチ式真空蒸着装置(アルバック製EBH-800)内に樹脂フィルムを設置し、蒸着ボート上にアルミニウムを目的厚みになる量を載置した後に、真空到達度9.0×10-3Pa以下になるまで真空引きをしてから、蒸着ボートを加熱して真空蒸着を実施し、アルミニウム金属膜を形成した。
(vacuum deposition)
After installing a resin film in a batch type vacuum evaporation device (EBH-800 manufactured by ULVAC) and placing an amount of aluminum to the desired thickness on a evaporation boat, the vacuum attainment level was reduced to 9.0×10 -3 Pa or less. After evacuation was carried out until the vacuum was reached, the vapor deposition boat was heated and vacuum vapor deposition was performed to form an aluminum metal film.
 もしくは、ロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、アルミニウム膜厚が所定の値になる搬送速度、出力条件でカーボンルツボを採用した誘導加熱蒸着法にてアルミニウムインゴットを加熱することで真空蒸着を実施し、アルミニウム金属膜を形成した。 Alternatively, a resin film is placed in a roll vacuum evaporation device (EWC-060 manufactured by ULVAC), and an aluminum ingot is produced using an induction heating evaporation method using a carbon crucible under the conveyance speed and output conditions that give the aluminum film thickness a predetermined value. Vacuum deposition was performed by heating to form an aluminum metal film.
 もしくは、ロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、アルミニウム膜厚が所定の値になる搬送速度、抵抗加熱にて加熱した蒸着ボートにアルミニウムワイヤーを投入することで真空蒸着を実施し、アルミニウム金属膜を形成した。 Alternatively, the resin film can be placed in a roll-type vacuum evaporation device (EWC-060 manufactured by ULVAC), and the aluminum wire can be fed into a evaporation boat heated by resistance heating at a conveying speed that brings the aluminum film thickness to a predetermined value. Vacuum deposition was performed to form an aluminum metal film.
 (アルゴンガスの導入について)
 アルゴンガスの導入はマグネトロンスパッタリング時に導入するアルゴンガスを使用する。バッチ式真空蒸着装置(アルバック製EBH-800)内ではスパッタリングと真空蒸着は同時に行わなかったため、真空蒸着時にアルゴンガスは導入しなかった。
(About introducing argon gas)
The argon gas introduced during magnetron sputtering is used to introduce argon gas. Sputtering and vacuum deposition were not performed simultaneously in the batch vacuum deposition apparatus (EBH-800 manufactured by ULVAC), so argon gas was not introduced during vacuum deposition.
 ロール式真空蒸着装置(アルバック製EWC-060)内ではスパッタリングと真空蒸着は連続して処理を行うため、同じ蒸着チャンバー内で同時にスパッタリングと真空蒸着を行うことになり、真空蒸着の蒸着源に常にアルゴンガスが導入された。 Sputtering and vacuum evaporation are performed continuously in a roll-type vacuum evaporation device (EWC-060 manufactured by ULVAC), so sputtering and vacuum evaporation are performed simultaneously in the same evaporation chamber, and the evaporation source for vacuum evaporation is always connected. Argon gas was introduced.
 (XRD(X線回折)測定方法)
 X線回折(RIGAKU SmartLab9kW)を用いて測定した。測定条件は、X線管球の電圧と電流:45kV-200mA、走査速度:2°/min、入射スリット:1.0mm、受光スリット:1.0mmで測定した。測定結果で出た111面のX線回折のピーク強度I[111]、200面のX線回折のピーク強度I[200]求め、比率I[200]/I[111]を算出して比較した。
(XRD (X-ray diffraction) measurement method)
Measurement was performed using X-ray diffraction (RIGAKU SmartLab 9kW). The measurement conditions were: X-ray tube voltage and current: 45 kV-200 mA, scanning speed: 2°/min, entrance slit: 1.0 mm, and light receiving slit: 1.0 mm. The peak intensity I[111] of the X-ray diffraction of the 111 plane and the peak intensity I[200] of the X-ray diffraction of the 200 plane from the measurement results were determined, and the ratio I[200]/I[111] was calculated and compared. .
 (接触抵抗測定)
 10mm厚のNRスポンジゴム(和気産業株式会社製NRS-06)の上に金属化フィルムを金属膜が上向きになるようにのせ、25mm×25mmの大きさの、金メッキを施した銅板2枚を1mmの間隔をあけてそれぞれの銅板に500gのおもりを乗せた。その2枚の銅板間の抵抗値を、日置電機株式会社製抵抗計RM3544で測定し、接触抵抗とした。
(Contact resistance measurement)
A metallized film was placed on a 10 mm thick NR sponge rubber (NRS-06 manufactured by Wake Sangyo Co., Ltd.) with the metal film facing upward, and two gold-plated copper plates of 25 mm x 25 mm were placed on top. A 500 g weight was placed on each copper plate at 1 mm intervals. The resistance value between the two copper plates was measured with a resistance meter RM3544 manufactured by Hioki Electric Co., Ltd., and was defined as contact resistance.
 (表面抵抗測定)
 金属化フィルムを約300mm×約80mmの大きさにカットして、簡易型低抵抗率計(株式会社三菱ケミカルアナリテック製“ロレスタ(登録商標)”EP MCP-T360)を使って、4端子法にて3カ所の表面抵抗を測定し、平均値を表面抵抗値として採用した。
(Surface resistance measurement)
The metallized film was cut into a size of about 300 mm x about 80 mm, and measured using a 4-terminal method using a simple low resistivity meter (“Loresta (registered trademark)” EP MCP-T360 manufactured by Mitsubishi Chemical Analytic Tech Co., Ltd.). The surface resistance was measured at three locations, and the average value was adopted as the surface resistance value.
 (アルミニウム金属膜厚さ)
 金属化フィルムを約30mm×約30mmの大きさにカットして、10枚重ねてマイクロメータにて厚みを測定し、1枚当たりの金属化フィルムの厚み算出し、そこから同様に10枚重ねてマイクロメータにて測定した未蒸着の樹脂フィルムの厚みから算出した金属化フィルム厚との差異から、アルミニウム金属膜厚を算出した。
(Aluminum metal film thickness)
Cut the metalized film into a size of about 30 mm x about 30 mm, stack 10 sheets, measure the thickness with a micrometer, calculate the thickness of each metalized film, and then stack 10 sheets in the same way. The aluminum metal film thickness was calculated from the difference from the metallized film thickness calculated from the undeposited resin film thickness measured with a micrometer.
 (表面粗さ)
 株式会社日立ハイテクサイエンス製 走査型白色干渉顕微鏡にて表面粗さRaを測定した。測定条件は測定モード「wave」、光源は530White、対物レンズは50倍で行い、付属の解析ソフトを用いて面補正は4次、補完は「完全」、ガウシングガウシアンフィルタは「カットオフ2μm」の条件で算出した数値を用いた。
(Surface roughness)
Surface roughness Ra was measured using a scanning white interference microscope manufactured by Hitachi High-Tech Science Co., Ltd. The measurement conditions were measurement mode "wave", light source 530 White, objective lens 50x, surface correction using the included analysis software, 4th order, interpolation "Complete", and Gaussian Gaussian filter "2 μm cutoff". The values calculated under the following conditions were used.
 (密着評価)
 幅18mm紙粘着テープ(NITTO製、No.720)をアルミニウム金属膜表面に貼り合わせ、その後紙粘着テープ(NITTO製、No.720)を剥離する際に蒸着膜が樹脂フィルムから剥がれるかどうかで判断した。蒸着膜が樹脂フィルムから剥離した場合は×(不合格)、剥離しなかった場合は〇(合格)とし、二次電池正極用金属化フィルムとして使用できるかどうかの目安とした。
(Adhesion evaluation)
A paper adhesive tape (manufactured by NITTO, No. 720) with a width of 18 mm is attached to the surface of the aluminum metal film, and then when the paper adhesive tape (manufactured by NITTO, No. 720) is peeled off, judgment is made by whether the deposited film is peeled off from the resin film. did. When the deposited film peeled off from the resin film, it was marked as × (fail), and when it did not peel off, it was marked as ○ (pass), and this was used as a guideline for whether it could be used as a metallized film for secondary battery positive electrodes.
 (実施例1)
 樹脂フィルムとして厚さ11.5μmの2軸配向ポリエチレンテレフタレートフィルム(SKC(株)製、タイプ:SC42)を使用した。この樹脂フィルムの表面粗さは1.6nmであった。この樹脂フィルムのロール原反をロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、パルス電源を印加してアルミニウムを5nmの厚さにスパッタリングにて蒸着した。条件として、スパッタリング出力はパルス電源を用いて2.0kWを採用した。その後、カーボンルツボを採用した誘導加熱蒸着法にてアルミニウムインゴットを加熱することで真空蒸着法によってアルミニウム金属膜を1.48μmの厚さに真空蒸着した。
(Example 1)
A biaxially oriented polyethylene terephthalate film (manufactured by SKC Corporation, type: SC42) with a thickness of 11.5 μm was used as the resin film. The surface roughness of this resin film was 1.6 nm. The resin film was placed in a roll-type vacuum deposition apparatus (EWC-060 manufactured by ULVAC), and a pulsed power supply was applied to deposit aluminum to a thickness of 5 nm by sputtering. As a condition, a sputtering output of 2.0 kW was adopted using a pulse power source. Thereafter, an aluminum metal film was vacuum-deposited to a thickness of 1.48 μm by vacuum evaporation by heating the aluminum ingot by induction heating evaporation using a carbon crucible.
 このように作製した金属化フィルムについて、アルミニウムの111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]は4.3、表面粗さ8.3nmであった。 For the metallized film produced in this way, the ratio of the peak intensity I[111] of the X-ray diffraction of the 111 plane of aluminum to the peak intensity I[200] of the X-ray diffraction of the 200 plane is I[200]/I[111 ] was 4.3, and the surface roughness was 8.3 nm.
 この金属フィルムの樹脂フィルムと接していないアルミニウム金属膜表面の表面抵抗値は0.037Ω/□、接触抵抗値は8.63mΩ、接触抵抗値と表面抵抗値の比[接触抵抗/表面抵抗]は0.24であった。 The surface resistance of the aluminum metal film surface that is not in contact with the resin film of this metal film is 0.037Ω/□, the contact resistance value is 8.63mΩ, and the ratio of the contact resistance value to the surface resistance value [contact resistance/surface resistance] is It was 0.24.
 接触抵抗値は15mΩ以下であり、接触抵抗が十分小さく判定は合格で〇であった。 The contact resistance value was 15 mΩ or less, and the contact resistance was sufficiently small and the judgment was ○.
 (実施例2~5)
 アルミニウム金属膜の厚みを表1に記載の通りとした以外は、実施例1と同様に金属化フィルムを作製し、評価した。結果を表1に示す。
(Examples 2 to 5)
A metallized film was produced and evaluated in the same manner as in Example 1, except that the thickness of the aluminum metal film was as shown in Table 1. The results are shown in Table 1.
 (実施例6)
 樹脂フィルムとして厚さ11.5μmの2軸配向ポリエチレンテレフタレートフィルム(SKC(株)製、タイプ:SC42)を使用した。この樹脂フィルムの表面粗さは1.6nmであった。この樹脂フィルムのロール原反をロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、アルゴンガス導入しながらで真空到達度1×10-2Pa以下に調整してから抵抗加熱にて加熱した蒸着ボートにアルミニウムワイヤーを投入することで真空蒸着を実施し、アルミニウム金属膜を1.04μmの厚さに真空蒸着し、評価した。結果を表1に示す。
(Example 6)
A biaxially oriented polyethylene terephthalate film (manufactured by SKC Corporation, type: SC42) with a thickness of 11.5 μm was used as the resin film. The surface roughness of this resin film was 1.6 nm. The resin film was placed in a roll-type vacuum evaporator (EWC-060 manufactured by ULVAC), and the vacuum level was adjusted to 1×10 -2 Pa or less while introducing argon gas, and then the resistance was measured. Vacuum deposition was carried out by putting an aluminum wire into a heated deposition boat, and an aluminum metal film was vacuum deposited to a thickness of 1.04 μm and evaluated. The results are shown in Table 1.
 (実施例7)
 樹脂フィルムとして厚さ11.5μmの2軸配向ポリエチレンテレフタレートフィルム(SKC(株)製、タイプ:SC42)を使用した。この樹脂フィルムの表面粗さは1.6nmであった。この樹脂フィルムのロール原反をロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、パルス電源を印加してアルミニウムを5nmの厚さにスパッタリングにて蒸着した。条件として、スパッタリング出力はパルス電源を用いて2.0kWを採用した。その後、抵抗加熱にて加熱した蒸着ボートにアルミニウムワイヤーを投入することで真空蒸着を実施し、アルミニウム金属膜を1.00μmの厚さに真空蒸着し、評価した。結果を表1に示す。
(Example 7)
A biaxially oriented polyethylene terephthalate film (manufactured by SKC Corporation, type: SC42) with a thickness of 11.5 μm was used as the resin film. The surface roughness of this resin film was 1.6 nm. The resin film was placed in a roll-type vacuum deposition apparatus (EWC-060 manufactured by ULVAC), and a pulsed power supply was applied to deposit aluminum to a thickness of 5 nm by sputtering. As a condition, a sputtering output of 2.0 kW was adopted using a pulse power source. Thereafter, vacuum evaporation was performed by putting an aluminum wire into a evaporation boat heated by resistance heating, and an aluminum metal film was vacuum evaporated to a thickness of 1.00 μm, and evaluated. The results are shown in Table 1.
 (比較例1)
 樹脂フィルムとして厚さ11.5μmの2軸配向ポリエチレンテレフタレートフィルム(SKC(株)製、タイプ:SC42)を使用した。この樹脂フィルムの表面粗さは1.6nmであった。この樹脂フィルムをバッチ式真空蒸着装置(アルバック製EBH-800)内に樹脂フィルムを設置し、パルス電源を印加してアルミニウムを5nmの厚さにスパッタリングにて蒸着した。条件として、スパッタリング出力はパルス電源を用いて2.0kWを採用した。その後、蒸着ボートを加熱する抵抗加熱蒸着法によってアルミニウム金属膜を1.44μmの厚さに真空蒸着した。
(Comparative example 1)
A biaxially oriented polyethylene terephthalate film (manufactured by SKC Corporation, type: SC42) with a thickness of 11.5 μm was used as the resin film. The surface roughness of this resin film was 1.6 nm. This resin film was placed in a batch vacuum deposition apparatus (EBH-800 manufactured by ULVAC), and pulsed power was applied to deposit aluminum to a thickness of 5 nm by sputtering. As a condition, a sputtering output of 2.0 kW was adopted using a pulse power source. Thereafter, an aluminum metal film was vacuum-deposited to a thickness of 1.44 μm using a resistance heating deposition method in which a deposition boat was heated.
 このように作製した金属化フィルムについて、アルミニウムの111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]は0.3、表面粗さ1.6nmであった。 For the metallized film produced in this way, the ratio of the peak intensity I[111] of the X-ray diffraction of the 111 plane of aluminum to the peak intensity I[200] of the X-ray diffraction of the 200 plane is I[200]/I[111 ] was 0.3, and the surface roughness was 1.6 nm.
 この金属フィルムの樹脂フィルムと接していないアルミニウム金属膜表面の表面抵抗値は0.038Ω/□、接触抵抗値は15.38mΩ、接触抵抗値と表面抵抗値の比[接触抵抗/表面抵抗]は0.41であった。 The surface resistance of the aluminum metal film surface not in contact with the resin film of this metal film was 0.038 Ω/□, the contact resistance was 15.38 mΩ, and the ratio of the contact resistance to the surface resistance [contact resistance/surface resistance] was 0.41.
 接触抵抗値は15mΩより大きく、表面抵抗に対して接触抵抗が高く判定は合格で×であった。 The contact resistance value was greater than 15 mΩ, and the contact resistance was high compared to the surface resistance, so the judgment was “pass” and “×”.
 (比較例2~5)
 アルミニウム金属膜の厚みを表1に記載の通りとした以外は、比較例1と同様に金属化フィルムを作製し、評価した。結果を表1に示す。
(Comparative Examples 2 to 5)
A metallized film was produced and evaluated in the same manner as in Comparative Example 1, except that the thickness of the aluminum metal film was as shown in Table 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
1 樹脂フィルム
2 アンカー層
3 アルミニウム金属膜
4 金属化フィルム
1 Resin film 2 Anchor layer 3 Aluminum metal film 4 Metallized film

Claims (6)

  1. 樹脂フィルムの少なくとも一方の表面にアルミニウム金属膜が形成され、
    前記金属膜のアルミニウムの、111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]が1.0以上である二次電池正極用金属化フィルム。
    An aluminum metal film is formed on at least one surface of the resin film,
    The ratio of the X-ray diffraction peak intensity I[111] of the 111 plane to the X-ray diffraction peak intensity I[200] of the 200 plane of aluminum of the metal film is 1.0. The above metallized film for secondary battery positive electrode.
  2. 前記金属膜の表面抵抗が0.15Ω/□以下である、請求項1記載の二次電池正極用金属化フィルム。 The metallized film for a secondary battery positive electrode according to claim 1, wherein the surface resistance of the metal film is 0.15 Ω/□ or less.
  3. 前記樹脂フィルムの表面粗さRaが0.6nm以上2.0nm以下である、請求項1または2に記載の二次電池正極用金属化フィルム。 The metallized film for a secondary battery positive electrode according to claim 1 or 2, wherein the resin film has a surface roughness Ra of 0.6 nm or more and 2.0 nm or less.
  4. 前記金属膜の表面粗さRaが2.3nm以上10.0nm以下である、請求項1または2に記載の二次電池正極用金属化フィルム。 The metallized film for a secondary battery positive electrode according to claim 1 or 2, wherein the metal film has a surface roughness Ra of 2.3 nm or more and 10.0 nm or less.
  5. 請求項1または2に記載の二次電池正極用金属化フィルムの製造方法であって、蒸着源のアルミニウムを、抵抗加熱、誘導加熱、および、電子ビームからなる群から選択される少なくとも一つにより加熱して気化したアルミニウムとする際に、アルゴンガスを導入する真空蒸着法により、樹脂フィルムに前記気化したアルミニウムを蒸着させて成膜する工程を含む、二次電池正極用金属化フィルムの製造方法。 3. The method for producing a metallized film for a secondary battery positive electrode according to claim 1, wherein aluminum as a vapor deposition source is heated by at least one selected from the group consisting of resistance heating, induction heating, and electron beam. A method for producing a metallized film for a secondary battery positive electrode, comprising the step of depositing the vaporized aluminum onto a resin film by a vacuum evaporation method that introduces argon gas when heating to form vaporized aluminum. .
  6. アルミニウムをスパッタリング法にて前記樹脂フィルムに成膜した後に、大気開放することなしに前記気化したアルミニウムを蒸着させて成膜する工程を含む、請求項5に記載の二次電池正極用金属化フィルムの製造方法。 The metallized film for a secondary battery positive electrode according to claim 5, comprising the step of forming aluminum on the resin film by sputtering, and then vapor depositing the vaporized aluminum to form a film without exposing it to the atmosphere. manufacturing method.
PCT/JP2023/023770 2022-09-12 2023-06-27 Metallized film for secondary battery positive electrodes and method for producing same WO2024057665A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144297 2022-09-12
JP2022144297 2022-09-12

Publications (1)

Publication Number Publication Date
WO2024057665A1 true WO2024057665A1 (en) 2024-03-21

Family

ID=90274534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023770 WO2024057665A1 (en) 2022-09-12 2023-06-27 Metallized film for secondary battery positive electrodes and method for producing same

Country Status (1)

Country Link
WO (1) WO2024057665A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320868A (en) * 1992-05-25 1993-12-07 Nissin Electric Co Ltd Method for controlling crystal orientation of aluminum film
JP2004273304A (en) * 2003-03-10 2004-09-30 Matsushita Electric Ind Co Ltd Electrode and battery using the same
JP2013253278A (en) * 2012-06-06 2013-12-19 Geomatec Co Ltd Aluminum alloy film and method for producing the same
JP2019102427A (en) * 2017-12-05 2019-06-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet thereof, and battery
WO2021145344A1 (en) * 2020-01-17 2021-07-22 富士フイルム株式会社 Nonaqueous electrolyte secondary battery, current collector, and method for manufacturing nonaqueous electrolyte secondary battery
WO2022244326A1 (en) * 2021-05-20 2022-11-24 東レKpフィルム株式会社 Metallized film for secondary battery positive electrodes and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320868A (en) * 1992-05-25 1993-12-07 Nissin Electric Co Ltd Method for controlling crystal orientation of aluminum film
JP2004273304A (en) * 2003-03-10 2004-09-30 Matsushita Electric Ind Co Ltd Electrode and battery using the same
JP2013253278A (en) * 2012-06-06 2013-12-19 Geomatec Co Ltd Aluminum alloy film and method for producing the same
JP2019102427A (en) * 2017-12-05 2019-06-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet thereof, and battery
WO2021145344A1 (en) * 2020-01-17 2021-07-22 富士フイルム株式会社 Nonaqueous electrolyte secondary battery, current collector, and method for manufacturing nonaqueous electrolyte secondary battery
WO2022244326A1 (en) * 2021-05-20 2022-11-24 東レKpフィルム株式会社 Metallized film for secondary battery positive electrodes and method for producing same

Similar Documents

Publication Publication Date Title
JP7188675B1 (en) Metallized film for secondary battery positive electrode and method for producing the same
US6632563B1 (en) Thin film battery and method of manufacture
EP1825545B1 (en) Deposition of licoo2
US7824801B2 (en) Negative electrode for lithium ion secondary battery, production method thereof and lithium ion secondary battery comprising the same
KR100855842B1 (en) Negative electrode for lithium ion secondary battery, producing method therefor, and lithium ion secondary battery using the negative electrode
KR20080009654A (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US20090029251A1 (en) Secondary battery, manufacturing method thereof and system thereof
WO2007067526A2 (en) DEPOSTION OF LiCoO2
JP5129530B2 (en) LiCoO2 deposition
KR102586703B1 (en) Ceramic coating on separator for batteries
US20230170580A1 (en) Ultra-thin ceramic coating on separator for batteries
WO2024057665A1 (en) Metallized film for secondary battery positive electrodes and method for producing same
EP1900845B1 (en) Deposition of LiCoO2
WO2024106163A1 (en) Metallized film for secondary battery positive electrodes
US6954350B2 (en) Ceramic layered product and method for manufacturing the same
KR20230096616A (en) A Current Collector for Lithium Metal Battery for Inhibiting Growth of Dendritic Lithium and Manufacturing Method Thereof
WO2024101196A1 (en) Metallized film for secondary battery positive electrode and method for producing same
US4089990A (en) Battery plate and method of making
CN113690448A (en) Preparation method of current collector for lithium battery and composite current collector
WO2021123733A1 (en) Current collector
CN116884671A (en) Polymer conductive film, preparation method and lithium ion battery core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865027

Country of ref document: EP

Kind code of ref document: A1