WO2024057551A1 - Terminal et procédé de communication - Google Patents

Terminal et procédé de communication Download PDF

Info

Publication number
WO2024057551A1
WO2024057551A1 PCT/JP2022/034847 JP2022034847W WO2024057551A1 WO 2024057551 A1 WO2024057551 A1 WO 2024057551A1 JP 2022034847 W JP2022034847 W JP 2022034847W WO 2024057551 A1 WO2024057551 A1 WO 2024057551A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
base station
resource
communication
Prior art date
Application number
PCT/JP2022/034847
Other languages
English (en)
Japanese (ja)
Inventor
太一 七條
翔平 吉岡
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/034847 priority Critical patent/WO2024057551A1/fr
Publication of WO2024057551A1 publication Critical patent/WO2024057551A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a terminal and a communication method in a wireless communication system.
  • D2D is a system in which terminals communicate directly with each other without going through a base station.
  • LTE-A Long Term Evolution Advanced
  • NR New Radio
  • 5G 5th Generation
  • Non-Patent Document 1 Non-Patent Document 1
  • D2D reduces traffic between terminals and base stations, and enables communication between terminals even if the base station becomes unable to communicate during a disaster or the like.
  • D2D is referred to as "sidelink,” but in this specification, the more general term D2D is used. However, in the description of the embodiments to be described later, side links will also be used as necessary.
  • D2D communication consists of D2D discovery (also called D2D discovery) for discovering other terminals that can communicate with each other, and D2D communication (D2D direct communication, direct communication between terminals) for direct communication between terminals. (also referred to as communications, etc.).
  • D2D discovery also called D2D discovery
  • D2D communication D2D direct communication, direct communication between terminals
  • communications also referred to as communications, etc.
  • Non-Patent Document 3 the use of a higher frequency band than in conventional releases is being considered.
  • the frequency band from 52.6 GHz to 71 GHz applicable numerology including subcarrier spacing, channel bandwidth, etc., physical layer design, failures expected in actual wireless communication, etc. are being considered.
  • 3GPP TS 38.211 V17.2.0 (2022-06) 3GPP TR 22.886 V15.1.0 (2017-03) 3GPP TS 38.306 V17.1.0 (2022-06)
  • functions related to beam management were not supported.
  • the present invention has been made in view of the above points, and aims to support beam management in direct communication between terminals.
  • the receiving unit includes a receiving unit that receives scheduling information from a base station, and a transmitting unit that executes transmission to another terminal based on the scheduling information, and the receiving unit receives instructions for beam sweeping. is received from the base station, and the transmitting unit performs multiple transmissions applying beamforming to the other terminal while changing beam-related information based on the beam sweeping instruction. be done.
  • beam management can be supported in direct communication between terminals.
  • FIG. 3 is a diagram showing an example of sensing operation. 3 is a flowchart for explaining an example of preemption operation. FIG. 3 is a diagram illustrating an example of preemption operation.
  • FIG. 6 is a diagram illustrating an example of partial sensing operation.
  • FIG. 3 is a diagram for explaining an example of periodic partial sensing.
  • FIG. 3 is a diagram for explaining an example of continuous partial sensing.
  • FIG. 2 is a diagram for explaining an example (1) of communication in the embodiment of the present invention.
  • FIG. 7 is a diagram for explaining an example (2) of communication in the embodiment of the present invention.
  • FIG. 7 is a diagram for explaining an example (3) of communication in the embodiment of the present invention.
  • 1 is a diagram showing an example of a functional configuration of a base station 10 in an embodiment of the present invention. It is a diagram showing an example of a functional configuration of a terminal 20 in an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the hardware configuration of a base station 10 or a terminal 20 in an embodiment of the present invention. It is a figure showing an example of composition of vehicle 2001 in an embodiment of the present invention.
  • LTE Long Term Evolution
  • NR Universal Terrestrial Radio Access
  • LAN Local Area Network
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
  • configure the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may be set.
  • FIG. 1 is a diagram for explaining V2X.
  • V2X Vehicle to Everything
  • eV2X enhanced V2X
  • FIG. 1 is a diagram for explaining V2X.
  • V2X is a part of ITS (Intelligent Transport Systems), and refers to V2V (Vehicle-to-Vehicle), which refers to a form of communication between vehicles.
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to Network
  • V2P Vehicle to Pedestrian
  • V2X using LTE or NR cellular communication and terminal-to-terminal communication is being considered.
  • V2X using cellular communication is also called cellular V2X.
  • studies are underway to realize large capacity, low latency, high reliability, and QoS (Quality of Service) control.
  • the communication device may be a terminal held by a person, the communication device may be a device mounted on a drone or an aircraft, the communication device may be a base station, RSU, relay station (relay node), It may also be a terminal or the like that has scheduling capability.
  • SL may be distinguished from UL (Uplink) or DL (Downlink) based on any one or a combination of 1) to 4) below. Moreover, SL may have another name. 1) Time domain resource allocation 2) Frequency domain resource allocation 3) Reference synchronization signal (including SLSS (Sidelink Synchronization Signal)) 4) Reference signal used for path loss measurement for transmission power control
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic-Prefix OFDM
  • DFT-S-OFDM Discrete Fourier Transform - Spread - OFDM
  • Mode 3 and Mode 4 are defined regarding SL resource allocation to the terminal 20.
  • transmission resources are dynamically allocated by DCI (Downlink Control Information) transmitted from the base station 10 to the terminal 20.
  • DCI Downlink Control Information
  • SPS Semi Persistent Scheduling
  • the terminal 20 autonomously selects transmission resources from the resource pool.
  • the slot in the embodiment of the present invention may be read as a symbol, minislot, subframe, radio frame, or TTI (Transmission Time Interval).
  • a cell in an embodiment of the present invention may be read as a cell group, a carrier component, a BWP, a resource pool, a resource, a RAT (Radio Access Technology), a system (including a wireless LAN), or the like.
  • the terminal 20 is not limited to a V2X terminal, but may be any type of terminal that performs D2D communication.
  • the terminal 20 may be a terminal owned by a user such as a smartphone, or may be an IoT (Internet of Things) device such as a smart meter.
  • IoT Internet of Things
  • HARQ Hybrid automatic repeat request
  • SFCI Segmentlink Feedback Control Information
  • PSFCH Physical Sidelink Feedback Channel
  • PSFCH is used in transmitting HARQ-ACK on the side link, but this is just an example.
  • PSCCH may be used to transmit HARQ-ACK on the side link
  • PSSCH may be used to transmit HARQ-ACK on the side link
  • other channels may be used to transmit HARQ-ACK on the side link.
  • HARQ-ACK may be transmitted on the side link using the HARQ-ACK.
  • HARQ-ACK all information reported by the terminal 20 in HARQ will be referred to as HARQ-ACK.
  • This HARQ-ACK may be referred to as HARQ-ACK information.
  • a codebook applied to HARQ-ACK information reported from the terminal 20 to the base station 10 etc. is called a HARQ-ACK codebook.
  • the HARQ-ACK codebook defines a bit string of HARQ-ACK information. Note that with "HARQ-ACK", in addition to ACK, NACK is also transmitted.
  • FIG. 2 is a sequence diagram showing an example of V2X operation (1).
  • the wireless communication system may include a terminal 20A and a terminal 20B.
  • FIG. 2 shows a terminal 20A and a terminal 20B as an example.
  • terminal 20 or "user device.”
  • FIG. 2 shows, as an example, a case where both the terminal 20A and the terminal 20B are within the coverage of the cell, the operation in the embodiment of the present invention can also be applied when the terminal 20B is outside the coverage.
  • the terminal 20 is a device mounted on a vehicle such as a car, and has a cellular communication function as a UE in LTE or NR, and a side link function. There is.
  • the terminal 20 may be a general mobile terminal (such as a smartphone). Further, the terminal 20 may be an RSU.
  • the RSU may be a UE type RSU having UE functionality, or a gNB type RSU having base station device functionality.
  • the terminal 20 does not need to be a device in one housing, and for example, even if various sensors are distributed and arranged within the vehicle, the terminal 20 may be a device including the various sensors.
  • the processing content of the side link transmission data of the terminal 20 is basically the same as the processing content of UL transmission in LTE or NR.
  • the terminal 20 scrambles and modulates the codeword of the transmission data to generate complex-valued symbols, maps the complex-valued symbols (transmission signal) to one or two layers, and performs precoding.
  • the precoded complex-valued symbols are then mapped to resource elements to generate transmission signals (e.g., complex-valued time-domain SC-FDMA signals) and transmitted from each antenna port.
  • the base station 10 has a cellular communication function as a base station in LTE or NR, and a function to enable communication of the terminal 20 in this embodiment (e.g., resource pool setting, resource allocation, etc.). have. Further, the base station 10 may be an RSU (gNB type RSU).
  • RSU gNB type RSU
  • the signal waveform used by the terminal 20 for SL or UL may be OFDMA, SC-FDMA, or other signal waveform. It may be.
  • S-SSB may include S-PSS (Sidelink Primary Synchronization Signal), S-SSS (Sidelink Secondary Synchronization Signal), and PSBCH (Physical Sidelink Broadcast Channel).
  • S-PSS Sidelink Primary Synchronization Signal
  • S-SSS Sidelink Secondary Synchronization Signal
  • PSBCH Physical Sidelink Broadcast Channel
  • the terminal 20 transmits the S-SSB to another terminal 20 based on a signal received from the base station device 10, a GNSS (Global Navigation Satellite System) signal, or a signal received from another terminal 20. Note that if the terminal 20 cannot transmit S-SSB based on any signal from the base station device 10, GNSS, or another terminal 20, the terminal 20 transmits the autonomously determined S-SSB to the other terminal 20. You can also send it to
  • the resources available for S-SSB may be periodic slots and may be referred to as S-SSB opportunities.
  • step S101 the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period.
  • a resource selection window may be set from the base station 10 to the terminal 20.
  • the period may be defined by terminal implementation conditions such as processing time or maximum allowable packet delay time, or the period may be defined in advance by specifications,
  • the predetermined period may be called an interval in the time domain.
  • the terminal 20A uses the resources autonomously selected in step S101 to transmit SCI (Sidelink Control Information) on the PSCCH and/or PSSCH, and transmits SL data on the PSSCH.
  • SCI Segment Control Information
  • the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH, and using a frequency resource that is adjacent to or not adjacent to the frequency resource of the PSSCH.
  • the terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A.
  • the received SCI may include information on PSFCH resources for the terminal 20B to transmit HARQ-ACK in response to reception of the data.
  • the terminal 20A may include information on the autonomously selected resource in the SCI and transmit it. Note that the resources available for the PSFCH may be periodic slots and symbols at the end (excluding the final symbol) within the slot, and may be referred to as PSFCH opportunities.
  • step S104 the terminal 20B uses the PSFCH resource determined from the received SCI to transmit HARQ-ACK for the received data to the terminal 20A.
  • step S105 if the HARQ-ACK received in step S104 indicates a request for retransmission, i.e., if it is a NACK (negative response), the terminal 20A retransmits the PSCCH and PSSCH to the terminal 20B.
  • the terminal 20A may retransmit the PSCCH and PSSCH using autonomously selected resources.
  • step S104 and step S105 may not be performed.
  • FIG. 3 is a sequence diagram showing an example (2) of V2X operation. Blind retransmission without HARQ control may be performed to improve transmission success rate or reach.
  • step S201 the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period.
  • a resource selection window may be set from the base station 10 to the terminal 20.
  • the terminal 20A uses the resources autonomously selected in step S201 to transmit SCI on the PSCCH and/or PSSCH, and also transmits SL data on the PSSCH.
  • the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH and using a frequency resource adjacent to the frequency resource of the PSSCH.
  • step S204 the terminal 20A uses the resources autonomously selected in step S201 to retransmit the SCI on the PSCCH and/or PSSCH and the SL data on the PSSCH to the terminal 20B.
  • the retransmission in step S204 may be performed multiple times.
  • step S204 may not be performed.
  • FIG. 4 is a sequence diagram showing an example (3) of V2X operation.
  • the base station 10 may perform sidelink scheduling. That is, the base station 10 may determine the side link resource used by the terminal 20 and transmit information indicating the resource to the terminal 20. Furthermore, when HARQ control with HARQ feedback is applied, the base station 10 may transmit information indicating PSFCH resources to the terminal 20.
  • step S301 the base station 10 performs SL scheduling by sending DCI (Downlink Control Information) to the terminal 20A via PDCCH.
  • DCI Downlink Control Information
  • the DCI for SL scheduling will be referred to as SL scheduling DCI.
  • step S301 it is assumed that the base station 10 also transmits DCI for DL scheduling (also referred to as DL allocation) to the terminal 20A via PDCCH.
  • DCI for DL scheduling also referred to as DL allocation
  • the DCI for DL scheduling will be referred to as DL scheduling DCI.
  • the terminal 20A that has received the DL scheduling DCI receives DL data on the PDSCH using the resources specified by the DL scheduling DCI.
  • the terminal 20A uses the resources specified by the SL scheduling DCI to transmit SCI (Sidelink Control Information) on the PSCCH and/or PSSCH, and transmits SL data on the PSSCH.
  • SCI Segment Control Information
  • PSSCH Physical Downlink Control Information
  • the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH and using a frequency resource adjacent to the frequency resource of the PSSCH.
  • the terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A.
  • the SCI received on the PSCCH and/or PSSCH includes information on PSFCH resources for the terminal 20B to transmit HARQ-ACK in response to reception of the data.
  • Information on the resource is included in the DL scheduling DCI or SL scheduling DCI transmitted from the base station 10 in step S301, and the terminal 20A acquires the information on the resource from the DL scheduling DCI or SL scheduling DCI and uses the SCI. Include in. Alternatively, the DCI transmitted from the base station 10 may not include information on the resource, and the terminal 20A may autonomously include the information on the resource in the SCI and transmit it.
  • step S304 the terminal 20B uses the PSFCH resource determined from the received SCI to transmit HARQ-ACK for the received data to the terminal 20A.
  • the terminal 20A transmits, for example, the PUCCH ( The HARQ-ACK is transmitted using the physical uplink control channel) resource, and the base station 10 receives the HARQ-ACK.
  • the HARQ-ACK codebook may include a HARQ-ACK generated based on the HARQ-ACK received from the terminal 20B or a PSFCH not received, and a HARQ-ACK for DL data. However, if DL data is not allocated, HARQ-ACK for DL data is not included. NR Rel. In No. 16, the HARQ-ACK codebook does not include HARQ-ACK for DL data.
  • step S304 and/or step S305 may not be performed.
  • FIG. 5 is a sequence diagram showing operation example (4) of V2X.
  • the HARQ response is transmitted on the PSFCH.
  • a format similar to PUCCH (Physical Uplink Control Channel) format 0 can be used as the format of PSFCH, for example. That is, the format of the PSFCH may be a sequence-based format in which the PRB (Physical Resource Block) size is 1, and ACKs and NACKs are identified by differences in sequence and/or cyclic shift.
  • the format of PSFCH is not limited to this.
  • the PSFCH resource may be allocated to the last symbol or the last plural symbols of the slot. Furthermore, it is defined in advance whether a period N is set in the PSFCH resource. The period N may be set in units of slots or may be predefined.
  • the vertical axis corresponds to the frequency domain
  • the horizontal axis corresponds to the time domain.
  • the PSCCH may be placed in one symbol at the beginning of the slot, in multiple symbols from the beginning, or in multiple symbols starting from a symbol other than the beginning.
  • the PSFCH may be placed in one symbol at the end of the slot, or may be placed in multiple symbols at the end of the slot. Note that the above-mentioned "head of slot” and "end of slot” may omit consideration of symbols for AGC (Automatic Gain Control) and symbols for transmission/reception switching.
  • AGC Automatic Gain Control
  • the terminal 20A which is the transmitting terminal 20
  • the terminal 20B uses PSFCH #B
  • the terminal 20C uses PSFCH #C
  • the terminal 20D uses PSFCH #D to transmit the HARQ response to the terminal 20A.
  • the terminal 20B uses PSFCH #B
  • the terminal 20C uses PSFCH #C
  • the terminal 20D uses PSFCH #D to transmit the HARQ response to the terminal 20A.
  • the transmitting terminal 20 may know the number of receiving terminals 20 in the group cast. Note that in group cast option 1, only NACK is transmitted as the HARQ response, and ACK is not transmitted.
  • FIG. 6 is a diagram showing an example of sensing operation in NR.
  • the terminal 20 selects a resource and performs transmission. As shown in FIG. 6, the terminal 20 performs sensing using a sensing window within the resource pool. Through sensing, the terminal 20 receives a resource reservation field or a resource assignment field included in the SCI transmitted from another terminal 20, and selects a resource in the resource pool based on the field. Identify available resource candidates within a resource selection window. Subsequently, the terminal 20 randomly selects a resource from available resource candidates.
  • the resource pool setting may have a periodicity.
  • the period may be a period of 10240 milliseconds.
  • FIG. 6 is an example in which slot t 0 SL to slot t Tmax-1 SL are set as a resource pool. Areas of the resource pool within each period may be set using, for example, a bitmap.
  • the transmission trigger in the terminal 20 occurs in slot n, and the priority of the transmission is pTX .
  • the terminal 20 can detect, for example, that another terminal 20 is transmitting priority p RX in the sensing window from slot nT 0 to the slot immediately before slot nT proc,0. . If an SCI is detected within the sensing window and RSRP (Reference Signal Received Power) exceeds a threshold, the resource within the resource selection window corresponding to the SCI is excluded. Further, if an SCI is detected within the sensing window and the RSRP is less than the threshold, the resource within the resource selection window corresponding to the SCI is not excluded.
  • the thresholds may be, for example, thresholds Th pTX, pRX that are set or defined for each resource within the sensing window based on the priority p TX and the priority p RX.
  • resources in the resource selection window that are candidates for resource reservation information corresponding to resources in the sensing window that are not monitored, for example, for transmission, are excluded.
  • the lower layer of the terminal 20 may report SA to the upper layer.
  • the upper layer of the terminal 20 may perform random selection on the SA to determine the resources to be used.
  • the terminal 20 may perform sidelink transmission using the determined resources.
  • the upper layer may be a MAC layer
  • the lower layer may be a PHY layer or a physical layer.
  • the receiving terminal 20 detects data transmission from another terminal 20 based on the result of sensing or partial sensing, and transmits data to the other terminal 20. Data may be received from 20.
  • FIG. 7 is a flowchart illustrating an example of preemption in NR.
  • FIG. 8 is a diagram showing an example of preemption in NR.
  • the terminal 20 performs sensing using the sensing window. When the terminal 20 performs power saving operation, sensing may be performed in a predefined limited period.
  • the terminal 20 identifies each resource within the resource selection window based on the sensing results, determines a resource candidate set SA , and selects a resource to be used for transmission (S502). Subsequently, the terminal 20 selects a resource set (r_0, r_1, . . . ) for determining preemption from the resource candidate set SA (S503).
  • the resource set may be notified from the upper layer to the PHY layer as a resource for determining whether or not it has been preempted.
  • step S504 the terminal 20 re-identifies each resource within the resource selection window based on the sensing result and determines a resource candidate set S A at timing T(r_0) -T3 shown in FIG. , further determines whether to preempt the resource set (r_0, r_1, . . . ) based on the priority. For example, in r_1 shown in FIG. 8, the SCI transmitted from another terminal 20 has been detected by re-sensing and is not included in SA .
  • the terminal 20 uses the resource r_1. It is determined that it has been preempted. Note that the lower the value indicating the priority, the higher the priority. That is, if the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is higher than the value prio_TX indicating the priority of the transport block transmitted from the own terminal, the terminal 20 does not exclude resource r_1 from SA . .
  • preemption is valid only for a specific priority (for example, sl-PreemptionEnable is one of pl1, pl2, ..., pl8)
  • this priority is set as prio_pre.
  • prio_RX indicating the priority of the SCI transmitted from the other terminal 20
  • prio_RX is lower than the value prio_TX indicating the priority of the transport block transmitted from the own terminal
  • step S505 if preemption is determined in step S504, the terminal 20 notifies the upper layer of the preemption, reselects resources in the upper layer, and ends the preemption check.
  • step S504 when performing re-evaluation instead of checking preemption, in step S504 described above, after determining the set of resource candidates SA , the resource set (r_0, r_1,...) is assigned to SA . If the resource is not included, the resource is not used and the resource is reselected in the upper layer.
  • FIG. 9 is a diagram illustrating an example of partial sensing operation in LTE.
  • the terminal 20 selects a resource and performs transmission, as shown in FIG.
  • the terminal 20 performs partial sensing for a portion of the sensing window in the resource pool, that is, the sensing target.
  • the terminal 20 receives the resource reservation field included in the SCI transmitted from other terminals 20 and identifies available resource candidates within the resource selection window within the resource pool based on the field. . Subsequently, the terminal 20 randomly selects a resource from available resource candidates.
  • FIG. 9 is an example in which subframe t 0 SL to subframe t Tmax-1 SL is set as a resource pool.
  • the target area of the resource pool may be set using, for example, a bitmap.
  • a transmission trigger in terminal 20 occurs in subframe n.
  • Y subframes from subframe ty1 SL to subframe tyY SL among subframe n+T 1 to subframe n+T 2 may be set as the resource selection window.
  • the terminal 20 is, for example, another terminal 20 transmitting at one or more sensing targets from subframe t y1-k ⁇ Pstep SL to subframe t yY-k ⁇ Pstep SL , which has a subframe length of Y. can be detected.
  • k may be determined by a 10-bit bitmap, for example.
  • FIG. 9 shows an example in which the third and sixth bits of the bitmap are set to "1" indicating that partial sensing is performed. That is, in FIG. 9, from subframe ty1-6 ⁇ Pstep SL to subframe tyY-6 ⁇ Pstep SL , and from subframe ty1-3 ⁇ Pstep SL to subframe tyY-3 ⁇ Pstep SL. Set as a sensing target.
  • the kth bit of the bitmap may correspond to a sensing window from subframe t y1-k ⁇ Pstep SL to subframe t yY-k ⁇ Pstep SL .
  • y i corresponds to the index (1...Y) within the Y subframe.
  • k may be set or predefined in a 10-bit bitmap, and P step may be 100 ms.
  • P step may be (U/(D+S+U))*100ms.
  • U corresponds to the number of UL subframes
  • D corresponds to the number of DL subframes
  • S corresponds to the number of special subframes.
  • the thresholds may be, for example, thresholds Th pTX, pRX that are set or defined for each resource within the sensing target based on the transmitting side priority p TX and the receiving side priority p RX .
  • the terminal 20 identifies the resources occupied by other UEs, and identifies the resources excluding the resources. are available resource candidates. Note that the Y subframes do not have to be consecutive. Assuming that the set of available resource candidates is S A , if S A is less than 20% of the resources in the resource selection window, the thresholds Th pTX and pRX set for each sensing target resource are increased by 3 dB and the process is performed again. Resource identification may also be performed.
  • the number of resources that are not excluded because the RSRP is less than the threshold may be increased. Furthermore, the RSSI of each resource in SA may be measured, and the resource with the minimum RSSI may be added to the set SB . The operation of adding the resource with the smallest RSSI included in SA to SB may be repeated until the resource candidate set SB becomes 20% or more of the resource selection window.
  • the lower layer of the terminal 20 may report the SB to the upper layer.
  • the upper layer of the terminal 20 may perform random selection on the SB to determine the resources to be used.
  • the terminal 20 may perform sidelink transmission using the determined resources. Note that, once the terminal 20 secures the resource, it may periodically use the resource without performing sensing for a predetermined number of times (for example, Cresel times).
  • the terminal 20 to which partial sensing is applied performs reception and sensing only in specific slots within the sensing window. That is, the terminal 20 may perform partial sensing in which resources are identified by sensing only limited resources compared to full sensing, and resources are selected from the identified resource set. In addition, the terminal 20 sets the resources in the resource selection window as an identified resource set, without excluding resources from the resources in the resource selection window, and performs random selection to select resources from the identified resource set. You may.
  • a method of performing random selection at the time of resource selection and using sensing information at the time of re-evaluation or preemption check may be treated as partial sensing or random selection.
  • sensing and monitoring may be interchanged with each other, and the operation may include at least one of measurement of received RSRP, acquisition of reserved resource information, and acquisition of priority information.
  • Periodic-based partial sensing In a system where only some slots are sensed, the operation of determining the sensing slot based on the reservation periodicity.
  • the reservation period is a value related to a resource reservation period field. Note that the period may be replaced with periodicity.
  • Contiguous partial sensing An operation in which sensing slots are determined based on aperiodic reservation in a system where only some slots are sensed. Note that the aperiodic reservation is a value related to a time resource assignment field.
  • SL-DRX Discontinuous reception
  • SL-DRX discontinuous reception
  • partial sensing is supported as one of the power saving functions.
  • the terminal 20 may perform the periodic partial sensing described above.
  • the terminal 20 may receive from the base station 10 information for configuring a resource pool in which partial sensing is configured and periodic reservation is enabled.
  • FIG. 10 is a diagram for explaining an example of periodic partial sensing. As shown in FIG. 10, Y candidate slots for resource selection are selected from the resource selection window [n+T 1 , n+T 2 ].
  • Sensing may be performed using t y SL as one slot included in the Y candidate slots and t y ⁇ k ⁇ Preserve SL as a target slot for periodic partial sensing.
  • P reserve may correspond to all values included in the configured or predefined set sl-ResourceReservePeriodList.
  • the value of P reserve limited to a subset of sl-ResourceReservePeriodList may be set or predefined.
  • P reserve and sl-ResourceReservePeriodList may be set for each transmission resource pool in resource allocation mode 2.
  • the periods included in the sl-ResourceReservePeriodList other than the limited subset may be monitored.
  • the terminal 20 may additionally monitor opportunities to support P_RSVP_Tx.
  • the terminal 20 may monitor the newest sensing opportunity in a certain reservation period before slot n of the resource selection trigger or before the first slot of Y candidate slots subject to processing time limitations. Additionally, the terminal 20 may additionally monitor periodic sensing opportunities corresponding to a set of one or more k values. For example, as the k value, a value corresponding to the newest sensing opportunity in a certain reservation cycle before slot n of the resource selection trigger or before the first slot of Y candidate slots subject to processing time restrictions, and a value corresponding to the latest sensing opportunity in a certain reservation cycle, and The value corresponding to the sensing opportunity immediately before the most recent sensing opportunity may be set.
  • partial sensing is supported as one of the power saving functions.
  • the terminal 20 may perform the continuous partial sensing described above.
  • the terminal 20 may receive from the base station 10 information for configuring a resource pool in which partial sensing is configured and aperiodic reservation is enabled.
  • FIG. 11 is a diagram for explaining an example of continuous partial sensing.
  • the terminal 20 selects Y candidate slots for resource selection from the resource selection window [n+T 1 , n+T 2 ].
  • the beginning of the Y candidate slots is expressed as slot ty1
  • the next slot is expressed as ty2
  • . . . the end of the Y candidate slots is expressed as slot tyY .
  • the terminal 20 performs sensing in the interval [n+T A , n+T B ], and executes resource selection in n+T B or after n+T B (referred to as n+T C ).
  • n+T C resource selection in n+T B or after n+T B
  • T A and T B in the interval [n+T A , n+T B ] may have any value.
  • n may be replaced with the index of any slot among the Y candidate slots.
  • the section [a, b] is a section from slot a to slot b, and includes slot a and slot b.
  • the section (a, b) is a section from slot a to slot b, and does not include slot a and slot b.
  • the candidate resource that is the target of resource selection is described as Y candidate slot, but all the slots in the interval [n+T 1 , n+T 2 ] may be candidate slots, or some slots may be candidate slots. There may be.
  • inter-terminal cooperation has been specified as a method to improve reliability and delay performance.
  • an inter-terminal cooperation method 1 and an inter-terminal cooperation method 2 shown below are specified.
  • the terminal 20 that transmits coordination information will be referred to as UE-A
  • the terminal 20 that receives coordination information will be referred to as UE-B.
  • Inter-terminal cooperation method 1 For the transmission of UE-B, a preferred resource set and/or a non-preferred resource set is transmitted from UE-A to UE-B.
  • the inter-terminal coordination method 1 will also be referred to as IUC scheme 1 (Inter-UE coordination scheme 1).
  • Inter-terminal cooperation method 2 UE-A transmits information indicating that a collision with another transmission or reception is expected and/or a resource in which a collision has been detected in the resources indicated by the SCI received from UE-B. is sent to UE-B. This information may be sent via the PSFCH.
  • the inter-terminal coordination method 2 will also be referred to as IUC scheme 2 (Inter-UE coordination scheme 2).
  • 3GPP Release 16 or Release 17 sidelinks are specified for 1) and 2) shown below.
  • unlicensed bands such as the 5GHz-7GHz band and the 60GHz band.
  • FIG. 12 is a diagram showing an example of frequency bands used in a wireless communication system.
  • FR Frequency range
  • SCS Sub carrier spacing
  • FR2-1 is a frequency band from 24.25 GHz to 52.6 GHz, SCS uses 60, 120 or 240 kHz, and the bandwidth is 50 MHz to 400 MHz.
  • FR2-2 may assume a frequency range of 52.6 GHz to 71 GHz. Furthermore, it may be envisaged to support frequency bands above 71 GHz.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform-Spread
  • SCS Sub-Carrier Spacing
  • ⁇ Periodic transmission and/or periodic transmission ⁇ Unicast, group cast ⁇ HARQ feedback ⁇ 256QAM (Quadrature amplitude modulation), MIMO (multiple input multiple output), CSI (Channel state information) reporting ⁇ Single carrier ⁇ Mainly Use FR1 (FR2 can also be used)
  • NR-SL in 3GPP Release 17 extends NR-SL in Release 16 to cover public safety and commercial use cases. Partial sensing, random selection, and DRX may be supported for power reduction purposes. Additionally, inter-terminal coordination may be supported for the purpose of improving reliability and delay performance.
  • NR-SL in 3GPP Release 18 may further extend Release 16/17 to add functions such as data rate improvement, new frequency support, and V2X expansion.
  • SL-CA, SL in unlicensed bands, FR2 support with beam management, coexistence of LTE-SL and NR-SL on the same channel may be supported.
  • FR2 Frequency Range 2
  • S-SSB transmission opportunity in FR2 can be set or pre-configured multiple times in each cycle, for example up to 64 times when the SCS is 120kHz, the details of how to use it are not defined. Ta. Also, beam management related to data transmission was not defined.
  • sidelink resource allocation mode 1 (Resource allocation mode 1) in which the base station 10 schedules resources to the sidelink terminals 20, the base station 10 controls beam management or It is necessary to stipulate information regarding beams between the side link terminal 20 and the side link terminal 20.
  • beam or “beam forming” may be replaced with a predetermined parameter related to the beam.
  • Predetermined parameters related to the beam include the beam, antenna port, codebook, TCI (Transmission Configuration Indicator) state (see Non-Patent Document 3), QCL assumption (Quasi Co Location assumption), reference signal, antenna panel, and spatial domain transmission filter. (Spatial domain transmission filter) or spatial domain reception filter.
  • One or more of the predetermined parameters related to the beam may be "predetermined information related to the beam” described below. Further, the "predetermined information regarding the beam” may be other parameters that specify or determine the beam.
  • the embodiments of the present invention may be applied not only to FR2, but may also be applied to any frequency band that uses a beam, that is, a function of performing transmission and reception in a specific direction.
  • sidelink resource allocation mode 1 when the sidelink terminal 20 receives scheduling information from the base station 10, it transmits an instruction while changing predetermined information related to a beam (for example, an instruction for beam sweeping). may be received from the base station 10 and operate based on the instruction.
  • a beam for example, an instruction for beam sweeping
  • the beam sweeping instruction may be notified by DCI, MAC-CE, or RRC signaling.
  • the above beam sweep instruction may be executed simultaneously with scheduling, or may be executed independently as a single beam sweep instruction.
  • the configurable granularity or method of scheduling and beam sweeping instructions may be different.
  • the scheduling is dynamic
  • the beam sweeping instructions may be semi-persistent.
  • the predetermined information related to the beam applied during beam sweeping may be set or preset, may be set using layer 1 signaling, may be set using layer 2 signaling, or may be set based on the terminal implementation. May be set.
  • the terminal 20 that executed the beam sweep may receive the beam sweep result from the receiving terminal 20 and report the result to the base station 10.
  • the terminal 20 may receive predetermined information regarding the beam determined based on the result from the base station 10, and perform transmission by applying the predetermined information regarding the beam.
  • the terminal 20 may determine predetermined information regarding the determined beam based on the result, and perform transmission by applying the predetermined information regarding the beam.
  • FIG. 13 is a diagram for explaining communication example (1) in the embodiment of the present invention.
  • the sidelink terminal 20 may determine a transmission beam using predetermined information regarding a specific beam notified from the base station 10.
  • the base station 10 transmits a beam instruction to the terminal 20A, which is the transmitting UE.
  • the terminal 20A performs SL transmission applying the beam instructed by the base station 10 to the receiving UE, the terminal 20B.
  • the terminal 20A may transmit n information regarding the transmitting side position, angle, and/or antenna to the base station 10.
  • Terminal 20B may transmit information regarding the position, angle, and/or antenna of the receiving side to base station 10.
  • the beam instruction may be notified by DCI, MAC-CE, or RRC signaling.
  • the predetermined information related to the above-mentioned specific beam may be set or preset, may be set by layer 1 signaling, may be set by layer 2 signaling, or may be set or set in advance. may be selected by layer 1 or layer 2 signaling.
  • predetermined information regarding the beam may be determined from those locations.
  • the information regarding the position may be the zone ID of the side link, or may be information obtained by other positioning techniques.
  • the side link terminal may report the facing angle of the terminal and/or the antenna panel to the base station 10 by signaling, and the base station 10 may determine predetermined information regarding the beam by taking this information into consideration.
  • the above operation enables beamforming without exchanging reference signals or signals between sidelink terminals.
  • FIG. 14 is a diagram for explaining communication example (2) in the embodiment of the present invention.
  • the base station 10 may instruct the terminal 20A to transmit an SL CSI-RS and/or report an SL CSI report to the base station 10.
  • the terminal 20A may transmit the CSI-RS to the terminal 20B based on the instruction.
  • the terminal 20B may transmit a CSI report based on the result of measuring the CSI-RS to the terminal 20A.
  • the terminal 20A may relay the received CSI report to the base station 10.
  • the instruction to transmit the SL CSI-RS and/or the instruction to report the SL CSI report to the base station 10 may be notified by any of DCI, MAC-CE, and RRC signaling.
  • the above-mentioned SL CSI-RS transmission instruction and/or SL CSI report instruction to the base station 10 may include an identifier of the target terminal (L2 layer ID, etc.) or may include CSI-RS resources. Alternatively, it may include predetermined information regarding the beam applied to the CSI-RS.
  • SL CSI reporting may be expanded to include part or all of PMI (Precoding Matrix Indicator), CRI (CSI-RS resource indicator), and L1RSRP.
  • the CSI report relayed to the base station 10 may include all or only a part of the SL CSI report reported from the terminal 20B, or may include CSI determined based on the information reported from the terminal 20B. There may be.
  • the CSI report relayed to the base station 10 may be set by setting or presetting the content to include. Additionally, the SL CSI report may include information regarding the location of the receiving UE and/or information regarding the location of the transmitting UE.
  • the base station 10 may use the results of the CSI report to determine certain information related to the beam.
  • the base station 10 may also determine the resource pool and/or carrier to be scheduled based on the results of the CSI report.
  • the base station 10 may use a band other than FR2 if the channel quality is poor or does not meet the required level regardless of which transmission beam is used.
  • the base station 10 may consider the information regarding the location when scheduling. For example, if terminal 20A, terminal 20B, terminal 20C, and terminal 20D are lined up in a straight line, and in the case of LOS (Line of Sight), transmission from terminal 20A to terminal 20C and transmission from terminal 20B to terminal 20D are performed. Scheduling may be performed using TDM (Time division multiplexing).
  • TDM Time division multiplexing
  • FIG. 15 is a diagram for explaining communication example (3) in the embodiment of the present invention.
  • the sidelink terminal 20 When the sidelink terminal 20 receives scheduling information from the base station 10, the sidelink terminal 20, which is a transmitting terminal, may determine predetermined information regarding the beam based on the notified position of the receiving terminal.
  • the terminal 20A which is the transmitting UE, may receive information regarding the location of the receiving terminal from the base station 10, or may receive information regarding the location of the receiving terminal from the terminal 20B, which is the receiving terminal. You may receive it.
  • the terminal 20A may determine predetermined information regarding the beam to be applied to sidelink transmission based on the acquired information regarding the position of the receiving terminal.
  • the information related to the above location may be notified by DCI, MAC-CE, or RRC signaling.
  • the information related to the above position may be a side link zone ID, or may be information obtained by other positioning techniques.
  • the base station 10 may convert information obtained by other positioning techniques into zone IDs.
  • the side link terminal 20 may report the zone ID to the base station 10.
  • the sidelink terminal 20 outside the coverage of the base station 10 may report the zone ID to the base station 10 via the terminal 20 within the coverage.
  • the transmitting terminal may use the zone ID signaled from the receiving terminal (for example, according to SCI format 2-B, etc.) in other procedures. Furthermore, in the resource pool, signaling the zone ID may be made mandatory. As zone ID signaling, existing multicast SCI format 2-B, S-SSB may be used, or novel signaling in unicast may be defined.
  • the above embodiment may be applied only when predetermined conditions are met. For example, it may be applied in connection with a given SL channel or SL signal. For example, this embodiment may be applied to any one of PSCCH/PSSCH, PSFCH, S-SSB, and SL positioning RS. For example, it may be applied based on predetermined settings or pre-settings. For example, in a resource pool, this embodiment may be applied when "validation" of this embodiment is given by setting or pre-setting.
  • the UE capabilities related to the applicability and operation of this embodiment may be defined, may be reported to the base station 10 and/or the terminal 20, or may not be reported.
  • the UE's SL transmission may be any of PSCCH, PSSCH, PSFCH, S-SSB, and SL-PRS, and different channels or signals may be applied to each operation of this embodiment.
  • This embodiment may be applied to any of resource selection, resource reselection, re-evaluation, and preemption check.
  • the above embodiments are not limited to V2X terminals, but may be applied to terminals that perform D2D communication.
  • the sidelink terminal in direct communication between terminals in a frequency band that requires beamforming, can change predetermined information regarding the beam to enhance the coverage of sidelink resource allocation mode 1.
  • beam management can be supported in direct communication between terminals.
  • Base station 10 and terminal 20 include functionality to implement the embodiments described above. However, the base station 10 and the terminal 20 may each have only some of the functions in the embodiment.
  • FIG. 16 is a diagram showing an example of the functional configuration of the base station 10.
  • base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 16 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals. Further, the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signal, DL reference signal, etc. to the terminal 20.
  • the setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device, and reads them from the storage device as necessary.
  • the content of the setting information is, for example, information related to the setting of D2D communication.
  • control unit 140 performs processing related to settings for the terminal 20 to perform D2D communication. Further, the control unit 140 transmits the scheduling of D2D communication and DL communication to the terminal 20 via the transmitting unit 110. Further, the control unit 140 receives information related to HARQ responses for D2D communication and DL communication from the terminal 20 via the reception unit 120.
  • a functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120.
  • FIG. 17 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 17 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, reference signals, etc. transmitted from the base station 10.
  • the transmitter 210 transmits a PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) to another terminal 20 as D2D communication.
  • the receiving unit 220 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from other terminals 20 .
  • the setting unit 230 stores various setting information received from the base station 10 or the terminal 20 by the receiving unit 220 in a storage device, and reads it from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the content of the setting information is, for example, information related to the setting of D2D communication.
  • the control unit 240 controls D2D communication to establish an RRC connection with another terminal 20. Further, the control unit 240 performs processing related to power saving operation. Further, the control unit 240 performs processing related to HARQ for D2D communication and DL communication. Further, the control unit 240 transmits to the base station 10 information related to HARQ responses for D2D communication and DL communication scheduled from the base station 10 to other terminals 20. Further, the control unit 240 may schedule D2D communication for other terminals 20. Further, the control unit 240 may autonomously select a resource to be used for D2D communication from the resource selection window based on the result of side link sensing, or may perform re-evaluation or preemption.
  • control unit 240 performs processing related to power saving in transmission and reception of D2D communication. Further, the control unit 240 performs processing related to cooperation between terminals in D2D communication. Further, the control unit 240 performs processing related to LBT in D2D communication.
  • a functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
  • the functional block may be realized by combining the one device or the multiple devices with software.
  • Functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 18 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
  • programs program codes
  • the control unit 140 of the base station 10 shown in FIG. 16 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 17 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may be called a register, cache, main memory, or the like.
  • the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • FIG. 19 shows an example of the configuration of the vehicle 2001.
  • a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 receives signals from the various sensors 2021 to 2028 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 2010, various sensors 2021-2028, information service unit 2012, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 2013 may include information based on the above input.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
  • Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • the embodiment of the present invention includes a receiving unit that receives scheduling information from a base station, and a transmitting unit that executes transmission to another terminal based on the scheduling information. , the receiving unit receives a beam sweeping instruction from the base station, and the transmitting unit applies beamforming to the other terminal while changing beam-related information based on the beam sweeping instruction.
  • a terminal is provided that performs multiple transmissions.
  • the sidelink terminal in direct communication between terminals in a frequency band that requires beamforming, can change predetermined beam-related information to strengthen the coverage of sidelink resource allocation mode 1. That is, beam management can be supported in direct communication between terminals.
  • the receiving unit may receive beam-related information from the base station, and the transmitting unit may perform transmission applying beamforming to the other terminal based on the received beam-related information.
  • the sidelink terminal in direct communication between terminals in a frequency band that requires beamforming, the sidelink terminal can change predetermined beam-related information to strengthen the coverage of sidelink resource allocation mode 1.
  • the transmitter may report at least one of position information, angle information, and antenna information to the base station.
  • the sidelink terminal in direct communication between terminals in a frequency band that requires beamforming, the sidelink terminal can change predetermined beam-related information to strengthen the coverage of sidelink resource allocation mode 1.
  • the receiving unit receives a CSI (Channel State Information) reporting instruction from the base station, and the transmitting unit transmits a CSI-RS (Reference Signal) to the other terminal based on the instruction.
  • the receiving unit may receive the CSI-RS measurement result from the other terminal, and the transmitting unit may transmit the CSI-RS measurement result to the base station.
  • the receiving unit receives information regarding the location of the other terminal from the base station or the other terminal, and the transmitting unit performs beamforming on the other terminal based on the information regarding the location.
  • the applied transmission may also be executed.
  • a procedure for receiving scheduling information from a base station a procedure for executing transmission to another terminal based on the scheduling information, and a procedure for receiving a beam sweeping instruction from the base station.
  • a communication method is provided in which a terminal performs a procedure of receiving data, and a procedure of performing multiple transmissions applying beamforming to the other terminal while changing beam-related information based on the beam sweeping instruction. be done.
  • the sidelink terminal in direct communication between terminals in a frequency band that requires beamforming, can change predetermined beam-related information to strengthen the coverage of sidelink resource allocation mode 1. That is, beam management can be supported in direct communication between terminals.
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these.
  • the present invention may be
  • the base station 10 may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
  • MME Mobility Management Entity
  • S-GW Packet Control Function
  • the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
  • the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • Base Station BS
  • wireless base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
  • RRHs small indoor base stations
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft.
  • the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
  • the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • the terminal 20 may have the functions that the base station 10 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the user terminal in the present disclosure may be replaced by a base station.
  • the base station may have the functions that the user terminals described above have.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for the terminal 20 within one carrier.
  • At least one of the configured BWPs may be active, and the terminal 20 does not need to assume that it transmits or receives a given signal/channel outside the active BWP.
  • Note that "cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive section 2003 Steering section 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control section 2012 Information service section 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention concerne un terminal comprenant une unité de réception qui reçoit une information d'ordonnancement en provenance d'une station de base, et une unité de transmission qui exécute une transmission vers d'autres terminaux sur la base de l'information d'ordonnancement. L'unité de réception reçoit une indication de balayage de faisceau provenant de la station de base. Sur la base de l'indication de balayage de faisceau, l'unité de transmission exécute une pluralité de cycles de transmission dans lesquels une formation de faisceau est appliquée aux autres terminaux tout en modifiant une information concernant un faisceau.
PCT/JP2022/034847 2022-09-16 2022-09-16 Terminal et procédé de communication WO2024057551A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034847 WO2024057551A1 (fr) 2022-09-16 2022-09-16 Terminal et procédé de communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034847 WO2024057551A1 (fr) 2022-09-16 2022-09-16 Terminal et procédé de communication

Publications (1)

Publication Number Publication Date
WO2024057551A1 true WO2024057551A1 (fr) 2024-03-21

Family

ID=90274768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034847 WO2024057551A1 (fr) 2022-09-16 2022-09-16 Terminal et procédé de communication

Country Status (1)

Country Link
WO (1) WO2024057551A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250325A1 (fr) * 2019-06-11 2020-12-17 株式会社Nttドコモ Équipement utilisateur
WO2021044819A1 (fr) * 2019-09-04 2021-03-11 ソニー株式会社 Dispositif de commande de communication, procédé de commande de communication et programme de commande de communication
WO2021205921A1 (fr) * 2020-04-09 2021-10-14 ソニーグループ株式会社 Dispositif de communication, procédé de commande de communication, et système de communication
JP2022527915A (ja) * 2019-03-29 2022-06-07 トヨタ自動車株式会社 方向性v2xネットワークのための位置ベースのビーム掃引

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022527915A (ja) * 2019-03-29 2022-06-07 トヨタ自動車株式会社 方向性v2xネットワークのための位置ベースのビーム掃引
WO2020250325A1 (fr) * 2019-06-11 2020-12-17 株式会社Nttドコモ Équipement utilisateur
WO2021044819A1 (fr) * 2019-09-04 2021-03-11 ソニー株式会社 Dispositif de commande de communication, procédé de commande de communication et programme de commande de communication
WO2021205921A1 (fr) * 2020-04-09 2021-10-14 ソニーグループ株式会社 Dispositif de communication, procédé de commande de communication, et système de communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on potential solutions for sidelink positioning", 3GPP DRAFT; R1-2206046, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052273979 *

Similar Documents

Publication Publication Date Title
WO2023058206A1 (fr) Terminal et procédé de communication
WO2024057551A1 (fr) Terminal et procédé de communication
WO2024062579A1 (fr) Terminal et procédé de communication
WO2024057552A1 (fr) Terminal et procédé de communication
WO2024062578A1 (fr) Terminal et procédé de communication
WO2023218879A1 (fr) Terminal, et procédé de communication
WO2024034104A1 (fr) Terminal et procédé de communication
WO2023203658A1 (fr) Terminal et procédé de communication
WO2024062581A1 (fr) Terminal et procédé de communication
WO2024029053A1 (fr) Terminal et procédé de communication
WO2024034103A1 (fr) Terminal et procédé de communication
WO2024029051A1 (fr) Terminal et procédé de communication
WO2024062580A1 (fr) Terminal et procédé de communication
WO2024029052A1 (fr) Terminal et procédé de communication
WO2024004056A1 (fr) Terminal et procédé de communication
WO2024034106A1 (fr) Terminal, et procédé de communication
WO2024034105A1 (fr) Terminal, et procédé de communication
WO2023175692A1 (fr) Terminal et procédé de communication
WO2024004055A1 (fr) Terminal et procédé de communication
WO2023170802A1 (fr) Terminal et procédé de communication
WO2023145038A1 (fr) Terminal et procédé de communication
WO2023170801A1 (fr) Terminal et procédé de communication
WO2024033992A1 (fr) Terminal, et procédé de communication
WO2023248400A1 (fr) Terminal et procédé de communication
WO2023145037A1 (fr) Terminal et procédé de communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958870

Country of ref document: EP

Kind code of ref document: A1