WO2024057547A1 - Wireless base station and wireless communication method - Google Patents

Wireless base station and wireless communication method Download PDF

Info

Publication number
WO2024057547A1
WO2024057547A1 PCT/JP2022/034830 JP2022034830W WO2024057547A1 WO 2024057547 A1 WO2024057547 A1 WO 2024057547A1 JP 2022034830 W JP2022034830 W JP 2022034830W WO 2024057547 A1 WO2024057547 A1 WO 2024057547A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
sky
unit
base station
specific message
Prior art date
Application number
PCT/JP2022/034830
Other languages
French (fr)
Japanese (ja)
Inventor
天楊 閔
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/034830 priority Critical patent/WO2024057547A1/en
Publication of WO2024057547A1 publication Critical patent/WO2024057547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present disclosure relates to a wireless base station and a wireless communication method that can perform appropriate control according to the movement state of a UAV UE in the sky.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project, registered trademark
  • 5G New Radio (NR) or Next Generation (NG)
  • NG Next Generation
  • 5G New Radio
  • NG Next Generation
  • 6G 6th Generation
  • UAVs Uncrewed Aerial Vehicles or Unmanned Aerial Vehicles
  • Non-Patent Document 1 Non-Patent Document 1
  • Examples of services using UAVs include a means of transportation for people based on unmanned aerial vehicles that can operate without a pilot.
  • UE user equipment
  • the UAV UE can receive uplink (UL) signals from cells formed by many radio base stations. For this reason, in the UAV UE, the interference of the received UL signal increases, and the throughput performance may decrease compared to the UE existing on the ground. In order to avoid such a situation, it is effective for the wireless base station to appropriately implement UL power control for the UAV UE.
  • UL uplink
  • Non-Patent Document 1 proposes a method of notifying a base station of the flying status of a UAV UE via a core network.
  • the flying status may be interpreted as the state of movement of the UAV UE in the sky.
  • the secondary node monitors the movement state of the UAV UE in the sky.
  • the conventional technology there is a problem that it is difficult to perform appropriate control according to the movement state of the UAV UE in the sky.
  • the following disclosure has been made in view of this situation, and aims to provide a wireless base station and a wireless communication method that can perform appropriate control according to the movement state of the UAV UE in the sky. do.
  • One aspect of the present disclosure is a transmission unit (control signal/reference signal processing unit 240 ), and a control unit (control unit 270) that supports dual connectivity in which a plurality of wireless base stations connect to the terminal at the same time, and the specific message indicates whether the terminal is located in the sky or not.
  • the wireless base station (gNB 100) includes movement state information indicating at least one of the movement states of the terminal.
  • One aspect of the present disclosure is to execute communication between a first unit (CU 60) connected to a network (core network 40) and a terminal connected to the first unit and existing in a mobile body that can move in the sky.
  • a second unit (DU61) that receives a specific message transmitted from the first unit, and the specific message indicates whether the terminal is located in the sky or the movement state of the terminal in the sky.
  • the wireless base station (gNB 100) includes movement state information indicating at least one of the following.
  • One aspect of the present disclosure is to perform communication with a terminal (UE 200) existing in a mobile body that can move in the sky, and send a specific message to a radio base station (gNB 100) forming a cell to which the terminal transitions, or , a transmitting unit (control signal/reference signal processing unit 240) that transmits to the wireless communication node (AMF50) that manages the wireless base station, and a message indicating whether the terminal is located in the sky or not in the sky.
  • the wireless base station (gNB 100) includes a control unit (control unit 270) that includes movement state information indicating at least one of the movement states of the terminal.
  • One aspect of the present disclosure is a transmission unit (control signal/reference signal processing unit 240 ), and when a wireless link failure occurs between the terminal and a wireless base station, the specific message includes at least one of whether the terminal is located in the sky or the movement state of the terminal in the sky.
  • the wireless base station (gNB 100) includes a control unit (control unit 270) that includes movement state information shown in FIG.
  • One aspect of the present disclosure includes a step in which a wireless base station performs communication with a terminal (UE 200) existing in a mobile body that can move in the sky, and transmits a specific message to another wireless base station;
  • the specific message includes a movement state indicating at least one of whether the terminal is located in the sky or the movement state of the terminal in the sky.
  • a method of wireless communication includes: including information.
  • One aspect of the present disclosure includes a first unit (CU60) connected to a network (core network 40), and a terminal (UE200) connected to the first unit and existing in a mobile object (UAV30) that can move in the sky.
  • a radio base station (gNB100) includes a second unit (DU61) that performs communication with the first unit and receives a specific message transmitted from the first unit. including movement state information indicating at least one of whether the terminal is located in the sky or the movement state of the terminal in the sky; and carrying out communication with the terminal by the second unit; This is a wireless communication method including.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10.
  • FIG. 2 is a diagram showing a configuration example of a radio frame, subframe, and slot used in the radio communication system 10.
  • FIG. 3 is a functional block configuration diagram of the gNB 100 and the UE 200.
  • FIG. 4 is a functional block configuration diagram of the AMF 50.
  • FIG. 5 is a diagram for explaining operation example 1.
  • FIG. 6 is a diagram for explaining options of operation example 1.
  • FIG. 7 is a diagram for explaining operation example 2.
  • FIG. 8 is a diagram for explaining operation example 3.
  • FIG. 9 is a diagram for explaining operation example 4.
  • FIG. 10 is a diagram for explaining options of operation examples 3 and 4.
  • FIG. 11 is a diagram for explaining operation example 6.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the gNB 100 and the UE 200.
  • FIG. 13 is a diagram showing an example of the configuration of vehicle 2001.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10 according to an embodiment.
  • the wireless communication system 10 is a wireless communication system that complies with 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200 (hereinafter referred to as UE 200).
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network
  • UE 200 terminal 200
  • the wireless communication system 10 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G.
  • the NG-RAN 20 includes a radio base station 100A (hereinafter referred to as gNB 100A) to a radio base station 100D (hereinafter referred to as gNB 100D).
  • gNB100A to gNB100D have cells C1 to C4, respectively.
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG. 1.
  • the NG-RAN 20 actually includes a plurality of NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network 40 (5GC). Note that the NG-RAN 20 and 5GC may be simply expressed as a "network.”
  • gNB100A to gNB100D are 5G-compliant wireless base stations, and perform 5G-compliant wireless communication with the UE 200.
  • gNB100A to gNB100D and UE200 control radio signals transmitted from multiple antenna elements to generate a beam BM with higher directivity, Massive MIMO (Multiple-Input Multiple-Output), and multiple component carriers (CC). ), and dual connectivity (DC), which simultaneously communicates with two or more transport blocks between the UE and each of two NG-RAN nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC multiple component carriers
  • DC dual connectivity
  • the UE 200 may be a UE mounted on a UAV 30, such as a small unmanned aircraft.
  • UE 200 mounted on UAV 30 may be referred to as a UAV UE.
  • UE200 or UAV30 mounted on UAV30 may be called NR drone.
  • UE200 mounted on UAV30 may be simply called UE200.
  • the UE 200 is a normal UE, a vehicle UE, an IAB (Integrated Access and Backhaul) UE (including an airborne IAB UE), and a HAPS (High Altitude Platform S). tation) UE, NTN (Non Terrestrial Network) UE, etc.
  • the gNB 100A to gNB 100D can spatially and time-divisionally transmit multiple beams with different transmission directions (which may also be referred to simply as directions, radiation directions, coverage, etc.). Note that the gNB 100 may transmit multiple beams simultaneously.
  • the wireless communication system 10 may support a plurality of frequency ranges (FR) shown below.
  • FR1 410 MHz to 7.125 GHz
  • FR2-1 24.25 GHz to 52.6 GHz
  • SCS sub-carrier spacing
  • BW bandwidth
  • FR2-1 is higher frequency than FR1, with subcarrier spacing (SCS) of 60 or 120 kHz (may include 240 kHz) and a bandwidth (BW) of 50 to 400 MHz. good.
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports a frequency band higher than the frequency band of FR2-1. Specifically, the wireless communication system 10 supports frequency bands exceeding 52.6 GHz and up to 71 GHz. Such a high frequency band may be referred to as FR2-2.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/D with larger Sub-Carrier Spacing (SCS) Apply iscrete Fourier Transform - Spread (DFT-S-OFDM) Good too.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • SCS Sub-Carrier Spacing
  • DFT-S-OFDM iscrete Fourier Transform - Spread
  • FIG. 2 shows an example of the configuration of radio frames, subframes, and slots used in the radio communication system 10.
  • the symbol period may also be referred to as symbol length, time direction, time domain, or the like.
  • the frequency direction may be referred to as a frequency domain, resource block, subcarrier, BWP (Bandwidth part), or the like.
  • Frequency resources may include component carriers (CCs), subcarriers, resource blocks (RBs), resource block groups (RBGs), BWPs (Bandwidth parts), and the like.
  • the time resources may include symbols, slots, minislots, subframes, radio frames, DRX (Discontinuous Reception) periods, and the like.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Also, the number of slots per subframe may vary depending on the SCS.
  • an SSB (SS/PBCH Block) composed of a synchronization signal (SS) and a physical downlink broadcast channel (PBCH) may be used.
  • SS synchronization signal
  • PBCH physical downlink broadcast channel
  • the SSB is periodically transmitted from the network mainly for the UE 200 to detect the cell ID and reception timing when starting communication.
  • SSB is also used to measure the reception quality of each cell.
  • the SSB transmission period may be defined as 5, 10, 20, 40, 80, 160 milliseconds, or the like. Note that the UE 200 for initial access may assume a transmission cycle of 20 milliseconds.
  • the UE 200 transmits a measurement report (hereinafter referred to as a measurement report) including reception quality regarding cells including the serving cell and neighboring cells to the network.
  • a measurement report including reception quality regarding cells including the serving cell and neighboring cells to the network.
  • the procedure in which the UE 200 transmits a measurement report may be referred to as measurement reporting.
  • the reception quality regarding a cell may include the reception quality of a beam from the cell, or may include the reception quality of the cell based on the beam from the cell.
  • the gNB 100 may include a central unit (CU) that is a first unit connected to the network, and distributed units (DU) that are a plurality of second units connected to the CU.
  • CU central unit
  • DU distributed units
  • the network may be a wireless communication system including a plurality of wireless base stations that can communicate with the UAV UE, that is, a configuration in which a secondary node is involved in communication with the UAV UE.
  • the network may be configured such that the secondary node obtains the movement state of the UAV UE in the sky, thereby realizing appropriate control according to the movement state of the UAV UE in the sky.
  • the gNB 100 may function as a secondary node (SN), and the secondary node may be interpreted as a wireless communication node exemplified below.
  • Target RAN Node that forms the handover destination (transition destination) cell (see FIG. 5).
  • a secondary node may also be interpreted as a secondary cell (SCell) or any cell included in a secondary cell group (SCG).
  • SCell secondary cell
  • SCG secondary cell group
  • FIG. 3 is a functional block configuration diagram of the gNB 100 and the UE 200.
  • FIG. 4 is a functional block configuration diagram of the AMF 50. Note that in FIGS. 3 and 4, only the main functional blocks related to the description of the embodiments are shown, and the gNB 100, UE 200, and AMF 50 have other functional blocks (for example, a power supply unit, etc.). I want to be Further, FIGS. 3 and 4 show functional block configurations of the gNB 100, UE 200, and AMF 50, and please refer to FIG. 12 for the hardware configuration of these devices.
  • the gNB 100 includes a radio signal transmission/reception section 210, an amplifier section 220, a modulation/demodulation section 230, a control signal/reference signal processing section 240, an encoding/decoding section 250, a data transmission/reception section 260, and a control section 270. .
  • the wireless signal transmitting/receiving unit 210 transmits and receives wireless signals according to NR.
  • the wireless signal transmitting/receiving unit 210 uses Massive MIMO, which generates a highly directional beam by controlling radio (RF) signals transmitted from multiple antenna elements, and a carrier that uses multiple component carriers (CC) in a bundle. It is possible to support aggregation (CA) and dual connectivity (DC) in which communication is performed simultaneously between the UE and each of two NG-RAN nodes.
  • Massive MIMO which generates a highly directional beam by controlling radio (RF) signals transmitted from multiple antenna elements, and a carrier that uses multiple component carriers (CC) in a bundle. It is possible to support aggregation (CA) and dual connectivity (DC) in which communication is performed simultaneously between the UE and each of two NG-RAN nodes.
  • CA aggregation
  • DC dual connectivity
  • the amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier), etc.
  • Amplifier section 220 amplifies the signal output from modulation/demodulation section 230 to a predetermined power level. Furthermore, the amplifier section 220 amplifies the RF signal output from the radio signal transmitting/receiving section 210.
  • the modulation/demodulation unit 230 performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100, etc.).
  • the modulation/demodulation section 230 performs Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-S pread (DFT-S-OFDM) may be applied.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform-S pread
  • DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the gNB 100 and processing related to various reference signals transmitted and received by the gNB 100.
  • control signal/reference signal processing unit 240 may configure a transmitting unit that performs communication with the UE 200 present in the UAV 30 that can move in the sky, and transmits a specific message to another wireless base station. .
  • the specific message may be interpreted as SN addition request, SN modification request, and/or SN change confirm.
  • AerialUEsubscriptionInformation may be included in the specific message.
  • AerialUEsubscriptionInformation may be interpreted as UE contract information managed by the AMF 50, for example. By the AMF 50 transmitting AerialUEsubscriptionInformation to the MN, the MN can take over the AerialUEsubscriptionInformation to the SN.
  • the control signal/reference signal processing unit 240 executes communication with the UE 200 present in the UAV 30 that can move in the sky, and transmits a specific message to a wireless base station (gNB 100) that forms the cell to which the UE 200 transitions. ), or a transmitter that transmits to a wireless communication node (AMF 50) that manages the wireless base station.
  • the control signal/reference signal processing unit 240 includes, in the specific message, movement state information indicating at least either whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky, It may be transmitted to the TN forming the target cell or the wireless communication node (AMF 50 and/or MME).
  • the specific message may be interpreted as a Handover request message.
  • the movement status information indicating whether the UE 200 is located in the sky may be interpreted as flying status (flying or not flying). Specifically, if the distance from the UE 200 mounted on the UAV 30 to the ground exceeds a specific threshold, the movement state information may include flight status or takeoff status (flying), and the distance from the UE to the ground exceeds a specific threshold. If not, it may be interpreted as a non-flying state or a not flying state.
  • the movement state information indicating the movement state of the UE 200 in the sky may include the altitude, horizontal movement speed, vertical movement speed, etc. of the UE mounted on the UAV 30.
  • the altitude of the UE 200 may be a distance based on ground level, or may be a distance from a reference point other than the ground (sea level, etc.).
  • the flying status may be combined with the altitude of the UE.
  • the gNB 100 when the UAV 30 is flying near the ground, the gNB 100 does not perform UL power control for the UE (does not adjust the transmission power of the gNB 100 beam), and when the UAV 30 is flying at a high altitude, the gNB 100 uses UL power control to It becomes possible to adjust the beam transmission power according to the altitude of the UAV 30.
  • the gNB 100 can detect the state of the UE mounted on the UAV 30 by using the movement state information, it can appropriately control UL power control for the UE according to the state of the UE 200.
  • the control signal/reference signal processing unit 240 may configure a transmitting unit that performs communication with the UE 200 present in the UAV 30 that can move in the sky, and transmits a specific message to other gNBs 100.
  • a radio link failure (RLF) occurs between the UE 200 and the gNB 100
  • the control signal/reference signal processing unit 240 of the gNB 100 (Old RAN node) to which the UE 200 has failed to reconnect , a specific message may be sent to the wireless base station (New RAN node) to which the connection is to be made.
  • the control signal/reference signal processing unit 240 may include movement state information in the specific message.
  • the specific message may be interpreted as a RETRIEVE UE CONTEXT RESPONSE sent by the old RAN node to the new RAN node.
  • the Old RAN node When the UE 200 transitions from the Old RAN node to the New RAN node while the UE 200 is in the RRC inactive state, the Old RAN node sends RRCResumeRequest to the New RAN node. Resume may be performed by sending a message.
  • the New RAN node sends a RETRIEVE UE CONTEXT REQUEST to the Old RAN node, but the RETRIEVE sent from the Old RAN node to the New RAN node
  • the UE CONTEXT RESPONSE may include movement state information. That is, the Old RAN node may include movement state information in the RETRIEVE UE CONTEXT RESPONSE and transmit the RETRIEVE UE CONTEXT RESPONSE to the New RAN node.
  • the control signal/reference signal processing unit 240 controls communication between the first unit and the second unit. You can go.
  • the control signal/reference signal processing unit 240 of the CU may include movement state information in a specific message with the DU, and transmit the message to the DU.
  • the DU receives specific messages sent from the CU.
  • the specific message may be interpreted as UE CONTEXT SETUP REQUEST, UE CONTEXT MODIFICATION REQUEST, and/or UE CONTEXT MODIFICATION CONFIRM. Note that if the CU has AerialUEsubscriptionInformation for the UE, AerialUEsubscriptionInformation may be included in the specific message.
  • the encoding/decoding unit 250 performs data division/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmitting/receiving unit 260 into predetermined sizes, and performs channel coding on the divided data. Furthermore, the encoding/decoding section 250 decodes the data output from the modulation/demodulation section 230 and concatenates the decoded data.
  • the data transmitting and receiving unit 260 transmits and receives Protocol Data Units (PDUs) and Service Data Units (SDUs). Specifically, the data transmitting/receiving unit 260 transmits PDUs/SDUs in multiple layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble/disassemble etc. Further, the data transmitter/receiver 260 performs data error correction and retransmission control based on hybrid ARQ (Hybrid automatic repeat request).
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • the data transmitting/receiving unit 260 transmits PDUs/SDUs in multiple layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble/disassemble etc. Further, the data transmitter/receiver 260 performs data error correction and retransmission
  • the control unit 270 controls each functional block that configures the gNB 100.
  • control unit 270 may configure a control unit that supports dual connectivity in which a plurality of wireless base stations connect to the UE 200 at the same time.
  • the UE 200 can perform simultaneous transmission or simultaneous reception with the master node and the secondary nodes by simultaneously using multiple component carriers provided by the multiple gNBs 100 that are the master node and the secondary nodes. be.
  • control unit 270 may configure the control unit to include movement state information indicating at least one of whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky in the specific message. . Specifically, the control unit 270 determines information (moving state information) to be included in a specific message for the control signal/reference signal processing unit 240, and transmits the determined information to the control signal/reference signal processing unit 240. Instruct.
  • the control signal/reference signal processing unit 240 includes movement state information in the specific message based on instructions from the control unit 270.
  • the control unit 270 when a wireless link failure occurs between the UE 200 and the gNB 100, the control unit 270 includes at least one of whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky in the specific message.
  • the control unit may be configured to include movement state information indicating the movement state information. Specifically, if no radio link failure has occurred between the UE 200 and the gNB 100, the control unit 270 transmits the specific message to another radio base station without including movement state information in the specific message. Send to.
  • the control unit 270 includes the movement status information in a specific message and transmits the specific message to the radio base station (New RAN node) to which the UE 200 is reconnected. do.
  • control signal/reference signal processing unit 240 of the UE 200 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, a radio resource control layer (RRC) control signal. Further, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • RRC radio resource control layer
  • control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signals
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the control signal/reference signal processing unit 240 may transmit movement state information indicating at least either whether the terminal is located in the sky or the movement state of the terminal in the sky.
  • DMRS is a reference signal (pilot signal) known between a terminal-specific base station and the terminal for estimating a fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • reference signals include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Posit for location information.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Posit for location information
  • the channels include a control channel and a data channel.
  • the control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), and RACH (Random Access Channel).
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PBCH Physical Broadcast Channel
  • data channels include PDSCH, PUSCH (Physical Uplink Shared Channel), and the like.
  • Data may refer to data transmitted over a data channel.
  • the AMF 50 includes a communication section 51, a transmission section 52, a control section 53, and a reception section 54.
  • the communication unit 51 transmits a specific message to the gNB 100 and receives a signal transmitted from the gNB 100.
  • the control unit 53 controls each functional block configuring the AMF 50.
  • the control unit 53 controls the first radio base station (gNB 100) that forms the cell to which the UE 200 transitions, which is present in the UAV 30 that can move in the sky, or the second radio base station (gNB 100) which forms the cell to which the UE 200 transitions.
  • a control unit that manages the radio base station (gNB 100) may be configured.
  • the transmitter 52 may constitute a transmitter that transmits a response message to the specific message to the gNB 100 forming the transition source cell. Specifically, the transmitter 52 may transmit INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info) to the master node and/or the secondary node.
  • INITIAL CONTEXT SETUP REQUEST Aerial UE subscription info
  • the transmitter 52 may transmit INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info) to the CU and/or DU.
  • INITIAL CONTEXT SETUP REQUEST Aerial UE subscription info
  • the receiving unit 54 may constitute a receiving unit that receives a specific message transmitted from the first wireless base station. Specifically, the receiving unit 54 receives a specific message transmitted from the master node and/or the secondary node in response to INITIAL CONTEXT SETUP REQUEST. The specific message may be interpreted as INITIAL CONTEXT SETUP RESPONSE.
  • the receiving unit 54 may constitute a receiving unit that receives a specific message transmitted from the CU and/or DU. Specifically, the receiving unit 54 receives a specific message transmitted from the CU and/or DU in response to INITIAL CONTEXT SETUP REQUEST. The specific message may be interpreted as INITIAL CONTEXT SETUP RESPONSE.
  • Non-Patent Document 1 problems with UEs mounted on UAVs (UAV UEs) are being discussed (Non-Patent Document 1). Specifically, when a UAV is located in the sky, there are many cases where visibility is good in the sky, so the UAV UE receives uplink (UL) signals from cells formed by many wireless base stations. It is possible. For this reason, in the UAV UE, the interference of the received UL signal increases, and the throughput performance may decrease compared to the UE existing on the ground.
  • UL uplink
  • the function of the mobile IAB may be interpreted as a function of transmitting a measurement report indicating the flight status of the UAV UE, mapping information that associates the ID of the UAV UE with the flight status, etc. to the wireless base station.
  • the network may not be able to properly implement solutions suitable for legacy devices, such as UL power control for UAV UEs.
  • legacy device may include a mobile IAB-MT.
  • Non-Patent Document 1 proposes a method of notifying a base station of the flying status of a UAV UE via a core network.
  • Non-Patent Document 1 describes a wireless base station that uses mobile IAB to communicate with a UE mounted on a UAV.
  • the radio base station includes either an eNB or a gNB.
  • the mobile IAB has a function of transmitting a measurement report indicating the flight state of the UAV UE and mapping information that associates the ID of the UAV UE with the flight state to the wireless base station. This function allows a network including a wireless base station to recognize the UAV UE even if the UE does not have this function.
  • the UE may include a legacy device that does not support Rel-15/16/17.
  • Non-Patent Document 1 discloses a wireless base station that communicates with a UAV UE using an application server.
  • the radio base station includes either an eNB or a gNB.
  • measurement reports indicating the flight status of the UAV UE are sent via the wireless base station, AF (Application Function), and then to the UDR (Unified Data Repository)/PCF (Policy Coordinator).
  • AF Application Function
  • UDR Unified Data Repository
  • PCF Policy Coordinator
  • ntrol Function ntrol Function
  • AMF Access Management Function
  • MME Mobility Management Entity
  • the measurement report may include the UAV, UE ID, UAV information, etc.
  • the secondary node monitors the movement state of the UAV UE in the sky.
  • appropriate information is assigned to the transition destination cell at the time of handover, the New RAN node when RLF occurs, the secondary node in the DC, the DU in the CU-DU function separation configuration, etc. according to the movement state in the sky of the UAV UE.
  • the problem is that it is difficult to carry out appropriate control. Further, even if the device is compatible with Rel-18, a similar problem may occur if the device does not support the above-mentioned UAV function.
  • the conventional technology does not specify a method for the target node to obtain the movement state of the UE 200 when the UAV UE is handed over from the source node to the target node. Therefore, there is a problem in that it is difficult for the target node to appropriately control (UL power control for the UE, etc.) according to the movement state of the UAV UE in the sky.
  • CU-DU functional split When using a configuration in which multiple distributed units (DU) extend from a central unit (CU) as a radio access network architecture, CU-DU functional split (CU-DU functional split) will be done.
  • the CU has the function of a layer above PDCP
  • the DU has the function of a layer below RLC.
  • UL power control for the UAV UE is performed in the DU, so the DU needs to know the movement state of the UE 200.
  • the conventional technology there is a problem in that it is difficult to appropriately control the DU according to the movement state in the sky of the UAV UE, because the method for the DU to acquire the movement state of the UE 200 is not specified.
  • Operation example 1 An example of operation that can solve the first problem will be described below.
  • operation example 1 a communication operation using a specific message between the handover source SN and the handover destination TN, and between the SN and the AMF will be described.
  • FIG. 5 is a diagram for explaining operation example 1.
  • the SN includes movement state information in a specific message (Handover request message) and transmits it to the TN.
  • the SN sends the flying status (flying status) of the UE in the Handover request message. or not flying), altitude information, horizontal velocity, vertical velocity, etc., may be transmitted to the TN.
  • the TN that has received the specific message including the movement state information transmits a handover request reception response (Handover request Ack) to the SN in step S2.
  • a handover request reception response (Handover request Ack)
  • FIG. 6 is a diagram for explaining options of operation example 1.
  • the SN may include the movement state information in a specific message (handover required message) and transmit it to the AMF. Specifically, in the case of NG Handover (NG-RAN inter-node handover), the SN sends the UE's flying status (flying or not flying), altitude information, AMF including horizontal speed, vertical speed, etc. You may send it to NG Handover (NG-RAN inter-node handover), the SN sends the UE's flying status (flying or not flying), altitude information, AMF including horizontal speed, vertical speed, etc. You may send it to
  • the AMF that has received the specific message including the movement status information transmits a handover command to the SN in step S2.
  • Operation example 2 An example of operation that can solve the second problem will be described below.
  • operation example 2 a communication operation using a specific message between base stations when RLF occurs will be described.
  • FIG. 7 is a diagram for explaining operation example 2.
  • the radio base station (New RAN node) to which the UE 200 has successfully reconnected sends a UE context acquisition request (RETRIEVE UE CONTEXT RESQUEST) to the radio base station to which the UE 200 has failed to reconnect. (Old RAN node).
  • RETRIEVE UE CONTEXT RESQUEST UE context acquisition request
  • the radio base station that has received the UE context acquisition request includes the UE's flying status (flying or not flying), altitude information, horizontal speed, vertical speed, etc. in the UE context acquisition response (RETRIEVE UE CONTEXT RESPONSE). may be sent to the New RAN node.
  • Operation example 3 An example of operation that can solve the third problem will be described below. In operation example 3, a communication operation using a specific message between the MN and SN will be described.
  • FIG. 8 is a diagram for explaining operation example 3.
  • the MN includes movement state information in a specific message and transmits it to the SN. Specifically, the MN sends the flying status (flying or (not flying), altitude information, horizontal speed, vertical speed, etc. May be sent to SN. Note that instead of the SN addition request, the MN may send the SN modification request and/or SN change confirm including the flying status of the UE.
  • the SN that has received the SN addition request and the like transmits a response to the SN addition request (SN addition request ack) to the MN in step S2.
  • Operation example 4 An example of operation that can solve the fourth problem will be described below.
  • operation example 4 a communication operation using a specific message between a CU and a DU in the gNB 100 having a CU-DU function separation configuration will be described.
  • FIG. 9 is a diagram for explaining operation example 4.
  • the CU includes movement state information in a specific message and transmits it to the SN.
  • the CU may include the flying status (flying or not flying), altitude information, horizontal speed, vertical speed, etc. of the UE in the UE CONTEXT SETUP REQUEST, and transmit it to the DU.
  • CU instead of UE CONTEXT SETUP REQUEST, CU sends the relevant message to UE CONTEXT MODIFICATION REQUEST and/or UE CONTEXT MODIFICATION CONFIRM. It may also be transmitted including the flying status of the UE.
  • the DU which has received the UE CONTEXT SETUP REQUEST, transmits a response to the UE CONTEXT SETUP REQUEST (UE CONTEXT SETUP RESPONSE) to the CU in step S2.
  • FIG. 10 is a diagram for explaining operation example 5.
  • the AMF 50 may transmit an INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info) to the gNB 100. Specifically, the AMF 50 may transmit INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info) to the master node and/or secondary node shown in FIG. 8 . Further, the AMF 50 may transmit INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info) to the DU and/or CU shown in FIG. 9 .
  • INITIAL CONTEXT SETUP REQUEST Aerial UE subscription info
  • the gNB 100 that received the INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info) sends the INITIAL CONTEXT SETUP R which is a response message to the message. Send ESPONSE to AMF50.
  • Operation example 6 In operation example 6, options of operation example 3 will be explained. In operation example 6, a communication operation using messages between the Target gNB forming the handover destination (transition destination) cell of the UE 200 and the AMF 50 will be described.
  • the Target gNB may transmit a PATH SWITCH REQUEST to the AMF 50.
  • the AMF 50 that has received the PATH SWITCH REQUEST may include the movement status information in a specific message and transmit it to the Target gNB.
  • the PATH SWITCH REQUEST Ack which is a reception response message for the PATH SWITCH REQUEST, includes the UE's flying status (flying or not flying), altitude information, horizontal speed, vertical speed, etc.
  • PATH SWITCH REQUEST Ack Target gNB Send to.
  • the radio base station includes a control signal/reference signal processing unit 240 that executes communication with the UE 200 present in the UAV 30 that can move in the sky, and transmits a specific message to other gNBs 100, and a plurality of A control unit 270 that supports dual connectivity in which the gNB 100 connects to the UE 200 at the same time, and the specific message indicates a movement state indicating at least one of whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky. Contains information.
  • the secondary node (specifically, the SN) that communicates with the legacy device with dual connectivity can fly above the UAV UE. You can obtain the movement status of. Thereby, the target RAN node can implement appropriate control according to the movement state of the UAV UE in the sky.
  • the calculation time of the UL power control by the SN can be shortened, and the accuracy of the UL power control by the SN can be improved.
  • the radio base station executes communication between the CU connected to the core network 40 and the UE 200 connected to the CU and present in the UAV 30 that can move in the sky, and specifies information transmitted from the CU. DU for receiving a message, and the specific message includes movement state information indicating at least either whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky.
  • the secondary node (specifically, the DU ) can obtain the movement status of the UAV UE in the sky.
  • the DU can realize appropriate control according to the movement state of the UAV UE in the sky.
  • the radio base station executes communication with the UE 200 present in the UAV 30 that can move in the sky, and manages specific messages to the gNB 100 forming the cell to which the UE 200 transitions or to the gNB 100.
  • a control signal/reference signal processing unit 240 that transmits to the AMF 50 and a control unit 270 that includes movement state information indicating at least either whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky in the specific message. and.
  • the transition destination cell can obtain the movement state of the UAV UE in the sky.
  • the transition destination cell can implement appropriate control according to the movement state of the UAV UE in the sky.
  • the transition destination cell by configuring the transition destination cell to take over the UL power control control content for the UE by the transition source cell together with the movement state information, the calculation time for the UL power control by the transition destination cell can be shortened, and the UL power control by the transition destination cell can be transferred to the transition destination cell. The accuracy of power control can be improved.
  • the radio base station includes a control signal/reference signal processing unit 240 that performs communication with the UE 200 present in the UAV 30 that can move in the sky, and transmits a specific message to other gNBs 100;
  • the control unit 270 includes, in the specific message, movement state information indicating at least one of whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky. , is provided.
  • the secondary node (specifically, the New RAN node) that becomes the reconnection destination when RLF occurs can obtain the movement state of the UAV UE in the sky.
  • the New RAN node can realize appropriate control according to the movement state of the UAV UE in the sky.
  • the New RAN node by configuring the New RAN node to take over the control content of the UL power control for the UE by the Old RAN node along with the movement state information, the computation time for the UL power control by the New RAN node can be shortened. Furthermore, the accuracy of UL power control by the New RAN node can be improved.
  • the words “configure”, “activate”, “update”, “indicate”, “enable”, “specify”, and “select” can be read interchangeably. good.
  • the words “link”, “associate”, “correspond” and “map” may be used interchangeably, and “allocate”, “assign”, and “monitor” may be used interchangeably.
  • map may also be read interchangeably.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, allocation gning), but these are limited to I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the gNB 100 and the UE 200.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the device may include one or more of the devices shown in the figure, or may not include some of the devices.
  • Each functional block of the device (see FIGS. 3 and 4) is realized by any hardware element of the computer device or a combination of hardware elements.
  • each function in the device is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations, controls communication by the communication device 1004, and controls the memory This is realized by controlling at least one of reading and writing data in the storage 1002 and the storage 1003.
  • predetermined software programs
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the memory 1002 is a computer-readable recording medium, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable RO. Consisting of at least one of M (EEPROM), Random Access Memory (RAM), etc. may be done. Memory 1002 may be called a register, cache, main memory (main memory), or the like.
  • the memory 1002 can store programs (program codes), software modules, etc. that can execute a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • Storage 1003 may also be called an auxiliary storage device.
  • the above-mentioned recording medium may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplexing (Frequency Division Duplex: FDD) and time division duplexing (Time Division Duplex: TDD). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the device includes a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic Consists of hardware such as Device (PLD), Field Programmable Gate Array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic Consists of hardware
  • PLD Device
  • FPGA Field Programmable Gate Array
  • processor 1001 may be implemented using at least one of these hardwares.
  • information notification is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • information notification may be performed using physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block) (MIB), System Information Block (SIB)), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block) (MIB), System Information Block (SIB)
  • RRC signaling may also be called an RRC message, for example, RRC Connection Setup (RRC Connection Setup). ) message, RRC Connection Reconfiguration message, etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication 4G
  • 5th generation mobile communication system 5G
  • Future Radio Access (FRA) New Radio
  • NR New Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate systems and systems that are extended based on these.
  • It may be applied to at least one next generation system.
  • a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the gNB 100 may be performed by its upper node in some cases.
  • various operations performed for communication with the UE 200 are performed by the gNB 100 and other network nodes other than the gNB 100 (for example, MME or S-GW). It is clear that this can be carried out by at least one of the following methods (conceivable, but not limited to).
  • there is one network node other than the gNB 100 but it may be a combination of multiple other network nodes (for example, MME and S-GW).
  • Information, signals can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information that is input and output can be overwritten, updated, or added. The output information may be deleted. The input information may be sent to other devices.
  • the determination may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • BS Base Station
  • eNB wireless base station
  • gNodeB gNodeB
  • Access Points "Transmission Point”, “Receive Point”, “Sending Points (Transmission / Reception Point)", "Sel”, “Sel” “Sector”, “Cell Group”, "
  • carrier “component carrier”, etc.
  • the gNB 100 may also be called a macro cell, a small cell, a femto cell, a pico cell, or the like.
  • the gNB 100 can accommodate one or more (for example, three) cells (also called sectors). When the gNB 100 accommodates multiple cells, the entire coverage area of the gNB 100 can be divided into multiple smaller areas, and each smaller area is divided into a base station subsystem (e.g., an indoor small base station (Remote Radio Head: Communication services can also be provided by RRH).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Head: Communication services can also be provided by RRH).
  • cell refers to part or the entire coverage area of at least one of the gNB 100 and the base station subsystem that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the gNB 100 and the mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • at least one of the gNB 100 and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • at least one of the gNB 100 and the mobile station also includes devices that do not necessarily move during communication operations.
  • at least one of the gNB 100 and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the gNB 100 in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • a configuration in which communication between the gNB 100 and the mobile station is replaced with communication between multiple mobile stations for example, may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • the mobile station may have the functions that the gNB 100 has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the mobile station in the present disclosure may be read as gNB 100.
  • the gNB 100 may have the functions that the mobile station has.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe.
  • a subframe may further be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • the numerology may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot is one or more symbols in the time domain (Orthogonal Frequency Division Multiplexing (OFDM)) symbol, Single Carrier Frequency Division Mult iple Access (SC-FDMA) symbol, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Mult iple Access
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • the gNB 100 performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, etc. May be called.
  • PRB Physical resource block
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB pair, etc. May be called.
  • a resource block may be configured by one or more resource elements (RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • BWP Bandwidth Part
  • RBs common resource blocks
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include uplink BWP (UL BWP) and DL BWP (DL BWP).
  • UL BWP uplink BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient way of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring. iry) (e.g., a search in a table, database, or other data structure), and assuming that an assertion has been made is a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include regarding the act as a "judgment” or “decision.”
  • judgment and “decision” mean that things such as resolving, selecting, choosing, establishing, and comparing are considered to be “judgment” and “decision.” may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting”, “considering”, etc.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • FIG. 13 is a diagram showing a configuration example of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, It includes various sensors 2021 to 2029, an information service section 2012, and a communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • a steering wheel also referred to as a steering wheel
  • the electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals from various sensors 2021 to 2027 provided in the vehicle are input to the electronic control unit 2010.
  • the electronic control unit 2010 may be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028.
  • the information service department 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 1 using information acquired from an external device via the communication module 2013 and the like.
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (for example, IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors to prevent accidents. or reduce the driver's driving load.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • the communication module 2013 can communicate with the microprocessor 2031 and the components of the vehicle 1 via the communication port.
  • the communication module 2013 communicates via the communication port 2033 with a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, which are included in the vehicle 2001.
  • Data is transmitted and received between the axle 2009, the microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and the sensors 2021 to 2028.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, the gNB 100, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also receives the front wheel and rear wheel rotational speed signals inputted to the electronic control unit 2010 and acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by acceleration sensor 2025, an accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by brake pedal sensor 2026, and a shift lever.
  • a shift lever operation signal acquired by the sensor 2027 and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service section 2012 provided in the vehicle. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, and left and right rear wheels provided in the vehicle 2001. 2008, axle 2009, sensors 2021 to 2028, etc. may also be controlled.
  • various information traffic information, signal information, inter-vehicle information, etc.
  • the first feature is a transmitting unit (control signal/reference signal processing unit 240) that performs communication with a terminal (UE 200) located in a mobile body that can move in the sky and transmits a specific message to other radio base stations. and a control unit (control unit 270) that supports dual connectivity in which a plurality of wireless base stations connect to the terminal at the same time, and the specific message indicates whether the terminal is located in the sky or not.
  • the wireless base station (gNB 100) includes movement state information indicating at least one of the movement states of the terminal.
  • a second feature is to execute communication between a first unit (CU 60) connected to a network (core network 40) and a terminal connected to the first unit and existing in a mobile body that can move in the sky, a second unit (DU61) that receives a specific message transmitted from the first unit, and the specific message indicates whether or not the terminal is located in the sky, or whether the terminal is in a state of movement in the sky.
  • a radio base station (gNB 100) that includes movement state information indicating at least one of the following.
  • the third feature is that a wireless base station (gNB 100) that performs communication with a terminal (UE 200) existing in a mobile body that can move in the sky and sends a specific message to a radio base station (gNB 100) that forms a cell to which the terminal transitions;
  • a transmitting unit (control signal/reference signal processing unit 240) that transmits to a wireless communication node (AMF50) that manages the wireless base station, and a message indicating whether the terminal is located in the sky or not, in the specific message.
  • the wireless base station (gNB 100) includes a control unit (control unit 270) that includes movement state information indicating at least one of the movement states of the terminal.
  • the fourth feature is a transmission unit (control signal/reference signal processing unit 240) that executes communication with a terminal (UE 200) existing in a mobile body that can move in the sky and transmits a specific message to other radio base stations. and when a wireless link failure occurs between the terminal and a wireless base station, the specific message indicates at least one of whether the terminal is located in the sky or the movement state of the terminal in the sky.
  • the wireless base station (gNB 100) includes a control unit (control unit 270) that includes movement state information.
  • the fifth feature is a step in which the radio base station performs communication with a terminal (UE 200) existing in a mobile body that can move in the sky, and transmits a specific message to other radio base stations;
  • the specific message includes movement status information indicating at least one of whether the terminal is located in the sky or the movement status of the terminal in the sky.
  • a sixth feature is to execute communication between a first unit (CU 60) connected to a network (core network 40) and a terminal connected to the first unit and existing in a mobile body that can move in the sky, a second unit (DU61) that receives a specific message transmitted from the first unit;
  • a wireless communication method comprising the steps of: including movement state information indicating at least one of whether or not the terminal is moving in the sky or a movement state of the terminal in the sky; and a step of performing communication with the terminal by the second unit.
  • the seventh feature is a receiving unit (control signal/reference signal processing unit 240) that performs communication with a terminal (UE 200) existing in a mobile body that can move in the sky and receives specific messages from other radio base stations. and, a control unit (control unit 270) that supports dual connectivity in which a plurality of wireless base stations simultaneously connect to the terminal; Equipped with The specific message is a radio base station (gNB 100) including movement status information indicating at least either whether the terminal is located in the sky or the movement status of the terminal in the sky.
  • gNB 100 radio base station
  • An eighth feature is a first unit connected to a network (core network 40); a second unit that is connected to the first unit, performs communication with a terminal (UE 200) present in a mobile body that can move in the sky, and receives a specific message transmitted from the first unit; Equipped with The specific message is a radio base station (gNB 100) including movement status information indicating at least either whether the terminal is located in the sky or the movement status of the terminal in the sky.
  • gNB 100 radio base station
  • the ninth feature is a receiving unit (UE 200) that executes communication with a terminal (UE 200) existing in a mobile body that can move in the sky, and receives a specific message from a radio base station forming a cell from which the terminal transitions.
  • control signal/reference signal processing section 240 ); a transmitting unit (control signal/reference signal processing unit 240) that transmits a reception response to the specific message to a wireless base station forming the transition source cell; Equipped with The specific message is a radio base station (gNB 100) including movement status information indicating at least either whether the terminal is located in the sky or the movement status of the terminal in the sky.
  • the tenth feature is that the first radio base station (gNB100) forms the transition source cell of a terminal (UE200) existing in a mobile body that can move in the sky, or the first radio base station (gNB100) forms the transition destination cell of the terminal.
  • a control unit control unit 53 that manages two wireless base stations (gNB100); a receiving unit (receiving unit 54) that receives a specific message from the first wireless base station; a transmitting unit (transmitting unit 52) that transmits a response message to the specific message to a wireless base station forming the transition source cell; Equipped with The specific message is a wireless communication node including movement status information indicating at least one of whether the terminal is located in the sky or the movement status of the terminal in the sky (AMF 50).
  • the eleventh feature is a transmitting unit (control signal/reference signal processing part 240) and a receiving unit (control signal/reference signal processing unit 240) that receives the specific message transmitted from the radio base station forming the transition source cell;
  • the specific message sent from the wireless base station forming the transition source cell determines whether the terminal is located in the sky or not.
  • the gNB 100 is a radio base station (gNB 100) that includes movement state information indicating at least one of the movement states of the terminal.
  • Wireless communication system 20 NG-RAN 30 UAVs 40 Core network 50 AMF 100, 100A ⁇ 100D gNB 200 U.E. 210 Radio signal transmission/reception unit 220 Amplifier unit 230 Modulation/demodulation unit 240 Control signal/reference signal processing unit 250 Encoding/decoding unit 260 Data transmission/reception unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 Axle 2010 Electronic control unit 2012 Information service department 2013 Communication module 2021 Current sensor 2022 Rotation speed sensor 2023 Air pressure sensor 2024 Vehicle speed Sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless base station according to the present invention comprises: a transmission unit that communicates with a terminal, which is present on a moving body capable of moving in the sky, and that transmits a specific message to another wireless base station; and a control unit that supports dual connectivity in which a plurality of wireless base stations simultaneously connect to the terminal. The specific message includes movement state information indicating whether the terminal is positioned in the sky and/or the movement state of the terminal in the sky.

Description

無線基地局及び無線通信方法Wireless base station and wireless communication method
 本開示は、UAV UEの上空での移動状態に応じた適切な制御を実行し得る無線基地局及び無線通信方法に関する。 The present disclosure relates to a wireless base station and a wireless communication method that can perform appropriate control according to the movement state of a UAV UE in the sky.
 3rd Generation Partnership Project(3GPP、登録商標)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 3rd Generation Partnership Project (3GPP, registered trademark) is a 5th generation mobile communication system (5G, New Radio (NR) or Next Generation (NG)), and furthermore, the Next Generation (NG), called Beyond 5G, 5G Evolution, or 6G. Generation specifications are also being developed.
 3GPP Release 18では、無人航空機(UAV: Uncrewed Aerial VehicleまたはUnmanned Aerial Vehicle)に搭載されるUEの問題点について議論されている(非特許文献1)。UAVを利用したサービスとしては、例えばパイロット不在で運行可能な無人航空機をベースにした人の移動手段などが想定される。ユーザ端末(UE:User Equipment)のユーザがUAVに搭乗することで、UEを利用するユーザを目的まで短時間に移動し得る。 In 3GPP Release 18, problems with UEs mounted on unmanned aerial vehicles (UAVs: Uncrewed Aerial Vehicles or Unmanned Aerial Vehicles) are discussed (Non-Patent Document 1). Examples of services using UAVs include a means of transportation for people based on unmanned aerial vehicles that can operate without a pilot. By having a user of a user equipment (UE) board a UAV, the user using the UE can be transported to a destination in a short time.
 UAVが上空に位置する場合、上空において見通しが良好となるケースが多く発生するため、UAV UEは、多くの無線基地局が形成するセルからの上りリンク(UL)信号を受信し得る。このためUAV UEでは、受信するUL信号の干渉が大きくなり、地上に存在するUEと比較してスループット性能が低下し得る。このようなことを回避するには、無線基地局がUAV UEに対するUL power controlを適切に実施することが有効である。 When a UAV is located in the sky, there are many cases where visibility is good in the sky, so the UAV UE can receive uplink (UL) signals from cells formed by many radio base stations. For this reason, in the UAV UE, the interference of the received UL signal increases, and the throughput performance may decrease compared to the UE existing on the ground. In order to avoid such a situation, it is effective for the wireless base station to appropriately implement UL power control for the UAV UE.
 ここで、非特許文献1には、コアネットワークを介して、UAV UEの飛行状態(flying status)を基地局に通知する方法について提案されている。flying statusは、UAV UEの上空での移動状態と解釈してよい。 Here, Non-Patent Document 1 proposes a method of notifying a base station of the flying status of a UAV UE via a core network. The flying status may be interpreted as the state of movement of the UAV UE in the sky.
 しかしながら、従来技術では、UAV UEと通信可能な複数の無線基地局を含む無線通信システム、すなわちUAV UEとの通信にセカンダリーノードが関与する構成において、セカンダリーノードがUAV UEの上空での移動状態を取得する方法について規定されていない。このため、従来技術では、UAV UEの上空での移動状態に応じた適切な制御を行うことが難しいという課題がある。 However, in the conventional technology, in a wireless communication system including a plurality of wireless base stations capable of communicating with a UAV UE, that is, in a configuration in which a secondary node is involved in communication with the UAV UE, the secondary node monitors the movement state of the UAV UE in the sky. There is no stipulation as to how to obtain it. Therefore, in the conventional technology, there is a problem that it is difficult to perform appropriate control according to the movement state of the UAV UE in the sky.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、UAV UEの上空での移動状態に応じた適切な制御を実行し得る無線基地局及び無線通信方法の提供を目的とする。 Therefore, the following disclosure has been made in view of this situation, and aims to provide a wireless base station and a wireless communication method that can perform appropriate control according to the movement state of the UAV UE in the sky. do.
 本開示の一態様は、上空を移動し得る移動体に存在する端末(UE200)との通信を実行し、特定メッセージを他の無線基地局に送信する送信部(制御信号・参照信号処理部240)と、複数の無線基地局が同時に前記端末と接続するデュアルコネクティビティをサポートする制御部(制御部270)と、を備え、前記特定メッセージは、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含む、無線基地局(gNB100)である。 One aspect of the present disclosure is a transmission unit (control signal/reference signal processing unit 240 ), and a control unit (control unit 270) that supports dual connectivity in which a plurality of wireless base stations connect to the terminal at the same time, and the specific message indicates whether the terminal is located in the sky or not. The wireless base station (gNB 100) includes movement state information indicating at least one of the movement states of the terminal.
 本開示の一態様は、ネットワーク(コアネットワーク40)に接続される第1ユニット(CU60)と、前記第1ユニットに接続され、上空を移動し得る移動体に存在する端末との通信を実行し、前記第1ユニットから送信される特定メッセージを受信する第2ユニット(DU61)と、を備え、前記特定メッセージは、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含む、無線基地局(gNB100)である。 One aspect of the present disclosure is to execute communication between a first unit (CU 60) connected to a network (core network 40) and a terminal connected to the first unit and existing in a mobile body that can move in the sky. , a second unit (DU61) that receives a specific message transmitted from the first unit, and the specific message indicates whether the terminal is located in the sky or the movement state of the terminal in the sky. The wireless base station (gNB 100) includes movement state information indicating at least one of the following.
 本開示の一態様は、上空を移動し得る移動体に存在する端末(UE200)との通信を実行し、特定メッセージを、前記端末の遷移先のセルを形成する無線基地局(gNB100)、又は、前記無線基地局を管理する無線通信ノード(AMF50)に送信する送信部(制御信号・参照信号処理部240)と、前記特定メッセージに、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含める制御部(制御部270)と、を備える無線基地局(gNB100)である。 One aspect of the present disclosure is to perform communication with a terminal (UE 200) existing in a mobile body that can move in the sky, and send a specific message to a radio base station (gNB 100) forming a cell to which the terminal transitions, or , a transmitting unit (control signal/reference signal processing unit 240) that transmits to the wireless communication node (AMF50) that manages the wireless base station, and a message indicating whether the terminal is located in the sky or not in the sky. The wireless base station (gNB 100) includes a control unit (control unit 270) that includes movement state information indicating at least one of the movement states of the terminal.
 本開示の一態様は、上空を移動し得る移動体に存在する端末(UE200)との通信を実行し、特定メッセージを他の無線基地局に送信する送信部(制御信号・参照信号処理部240)と、前記端末と無線基地局の間で無線リンク障害が生じた場合、前記特定メッセージに、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含める制御部(制御部270)と、を備える無線基地局(gNB100)である。 One aspect of the present disclosure is a transmission unit (control signal/reference signal processing unit 240 ), and when a wireless link failure occurs between the terminal and a wireless base station, the specific message includes at least one of whether the terminal is located in the sky or the movement state of the terminal in the sky. The wireless base station (gNB 100) includes a control unit (control unit 270) that includes movement state information shown in FIG.
 本開示の一態様は、無線基地局が、上空を移動し得る移動体に存在する端末(UE200)との通信を実行し、特定メッセージを他の無線基地局に送信するステップと、複数の無線基地局が同時に前記端末と接続するデュアルコネクティビティをサポートする場合において、前記特定メッセージに、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含めるステップと、を含む無線通信方法である。 One aspect of the present disclosure includes a step in which a wireless base station performs communication with a terminal (UE 200) existing in a mobile body that can move in the sky, and transmits a specific message to another wireless base station; In the case where the base station supports dual connectivity in which the base station connects with the terminal at the same time, the specific message includes a movement state indicating at least one of whether the terminal is located in the sky or the movement state of the terminal in the sky. A method of wireless communication includes: including information.
 本開示の一態様は、ネットワーク(コアネットワーク40)に接続される第1ユニット(CU60)と、前記第1ユニットに接続され、上空を移動し得る移動体(UAV30)に存在する端末(UE200)との通信を実行し、前記第1ユニットから送信される特定メッセージを受信する第2ユニット(DU61)と、を備える無線基地局(gNB100)が、前記第1ユニットにより、前記特定メッセージに、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含めるステップと、前記第2ユニットにより、前記端末との通信を実行するステップと、を含む無線通信方法である。 One aspect of the present disclosure includes a first unit (CU60) connected to a network (core network 40), and a terminal (UE200) connected to the first unit and existing in a mobile object (UAV30) that can move in the sky. A radio base station (gNB100) includes a second unit (DU61) that performs communication with the first unit and receives a specific message transmitted from the first unit. including movement state information indicating at least one of whether the terminal is located in the sky or the movement state of the terminal in the sky; and carrying out communication with the terminal by the second unit; This is a wireless communication method including.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10. 図2は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 2 is a diagram showing a configuration example of a radio frame, subframe, and slot used in the radio communication system 10. 図3は、gNB100及びUE200の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of the gNB 100 and the UE 200. 図4は、AMF50の機能ブロック構成図である。FIG. 4 is a functional block configuration diagram of the AMF 50. 図5は、動作例1を説明するための図である。FIG. 5 is a diagram for explaining operation example 1. 図6は、動作例1のオプションを説明するための図である。FIG. 6 is a diagram for explaining options of operation example 1. 図7は、動作例2を説明するための図である。FIG. 7 is a diagram for explaining operation example 2. 図8は、動作例3を説明するための図である。FIG. 8 is a diagram for explaining operation example 3. 図9は、動作例4を説明するための図である。FIG. 9 is a diagram for explaining operation example 4. 図10は、動作例3及び4のオプションを説明するための図である。FIG. 10 is a diagram for explaining options of operation examples 3 and 4. 図11は、動作例6を説明するための図である。FIG. 11 is a diagram for explaining operation example 6. 図12は、gNB100及びUE200のハードウェア構成の一例を示す図である。FIG. 12 is a diagram showing an example of the hardware configuration of the gNB 100 and the UE 200. 図13は、車両2001の構成例を示す図である。FIG. 13 is a diagram showing an example of the configuration of vehicle 2001.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. Note that the same functions and configurations are given the same or similar symbols, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
(1) Overall schematic configuration of wireless communication system FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10 according to an embodiment. The wireless communication system 10 is a wireless communication system that complies with 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200 (hereinafter referred to as UE 200).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 Note that the wireless communication system 10 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)~無線基地局100D(以下、gNB100D)を含む。gNB100A~gNB100Dは、それぞれ、セルC1~セルC4を有する。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 The NG-RAN 20 includes a radio base station 100A (hereinafter referred to as gNB 100A) to a radio base station 100D (hereinafter referred to as gNB 100D). gNB100A to gNB100D have cells C1 to C4, respectively. Note that the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG. 1.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク40(5GC)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 The NG-RAN 20 actually includes a plurality of NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network 40 (5GC). Note that the NG-RAN 20 and 5GC may be simply expressed as a "network."
 gNB100A~gNB100Dは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A~gNB100D及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。 gNB100A to gNB100D are 5G-compliant wireless base stations, and perform 5G-compliant wireless communication with the UE 200. gNB100A to gNB100D and UE200 control radio signals transmitted from multiple antenna elements to generate a beam BM with higher directivity, Massive MIMO (Multiple-Input Multiple-Output), and multiple component carriers (CC). ), and dual connectivity (DC), which simultaneously communicates with two or more transport blocks between the UE and each of two NG-RAN nodes.
 UE200は、小型の無人航空機などであるUAV30に搭載されたUEであってもよい。UAV30に搭載されるUE200は、UAV UEと称されてよい。UAV30に搭載されるUE200またはUAV30は、NR droneと称されてもよい。また以下では、UAV30に搭載されるUE200は、単にUE200と称されてもよい。UE200は、通常UE、vehicle UE、IAB(Integrated Access and Backhaul) UE(空中のIAB UEを含む)、HAPS (High Altitude Platform Station) UE、NTN(Non Terrestrial Network) UEなどと称されてもよい。 The UE 200 may be a UE mounted on a UAV 30, such as a small unmanned aircraft. UE 200 mounted on UAV 30 may be referred to as a UAV UE. UE200 or UAV30 mounted on UAV30 may be called NR drone. Moreover, below, UE200 mounted on UAV30 may be simply called UE200. The UE 200 is a normal UE, a vehicle UE, an IAB (Integrated Access and Backhaul) UE (including an airborne IAB UE), and a HAPS (High Altitude Platform S). tation) UE, NTN (Non Terrestrial Network) UE, etc.
 gNB100A~gNB100D(以下、gNB100と適宜省略する)は、送信方向(単に方向、或いは放射方向またはカバレッジなどと呼んでもよい)が異なる複数のビームを空間及び時分割して送信できる。なお、gNB100は、複数のビームを同時に送信してもよい。 The gNB 100A to gNB 100D (hereinafter appropriately abbreviated as gNB 100) can spatially and time-divisionally transmit multiple beams with different transmission directions (which may also be referred to simply as directions, radiation directions, coverage, etc.). Note that the gNB 100 may transmit multiple beams simultaneously.
 また、無線通信システム10は、次に示す複数の周波数レンジ(FR)に対応してよい。 Furthermore, the wireless communication system 10 may support a plurality of frequency ranges (FR) shown below.
  ・FR1:410 MHz~7.125 GHz
  ・FR2-1:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2-1は、FR1よりも高周波数であり、60または120kHz(240kHzが含まれてもよい)のサブキャリア間隔(SCS)が用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・FR1: 410 MHz to 7.125 GHz
・FR2-1: 24.25 GHz to 52.6 GHz
In FR1, sub-carrier spacing (SCS) of 15, 30 or 60 kHz is used, and a bandwidth (BW) of 5-100 MHz may be used. FR2-1 is higher frequency than FR1, with subcarrier spacing (SCS) of 60 or 120 kHz (may include 240 kHz) and a bandwidth (BW) of 50 to 400 MHz. good.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。 Note that SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2-1の周波数帯域よりも高周波数帯域にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまでの周波数帯域に対応する。このような高周波数帯域は、FR2-2と呼ばれてもよい。 Furthermore, the wireless communication system 10 also supports a frequency band higher than the frequency band of FR2-1. Specifically, the wireless communication system 10 supports frequency bands exceeding 52.6 GHz and up to 71 GHz. Such a high frequency band may be referred to as FR2-2.
 52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 When using a band exceeding 52.6 GHz, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/D with larger Sub-Carrier Spacing (SCS) Apply iscrete Fourier Transform - Spread (DFT-S-OFDM) Good too.
 また、FR2-2のような高周波数帯域では、上述したように、キャリア間の位相雑音の増大が問題となる。このため、より大きな(広い)SCS、またはシングルキャリア波形の適用が必要となり得る。 Furthermore, in a high frequency band such as FR2-2, as described above, an increase in phase noise between carriers becomes a problem. This may require the application of a larger (wider) SCS or a single carrier waveform.
 SCSが大きい程、シンボル/CP(Cyclic Prefix)期間及びスロット期間が短くなる(14シンボル/スロットの構成が維持される場合)。図2は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 The larger the SCS, the shorter the symbol/CP (Cyclic Prefix) period and slot period (if the 14 symbol/slot configuration is maintained). FIG. 2 shows an example of the configuration of radio frames, subframes, and slots used in the radio communication system 10.
 14シンボル/スロットの構成が維持される場合、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。なお、シンボル期間は、シンボル長、時間方向或いは時間領域などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、BWP (Bandwidth part)などと呼ばれてもよい。 If the 14 symbol/slot configuration is maintained, the larger (wider) the SCS, the shorter the symbol period (and slot period). Note that the symbol period may also be referred to as symbol length, time direction, time domain, or the like. Further, the frequency direction may be referred to as a frequency domain, resource block, subcarrier, BWP (Bandwidth part), or the like.
 周波数リソースには、コンポーネントキャリア(CC)、サブキャリア、リソースブロック(RB)、リソースブロックグループ(RBG)、BWP(Bandwidth part)などが含まれてよい。時間リソースには、シンボル、スロット、ミニスロット、サブフレーム、無線フレーム、DRX(Discontinuous Reception)周期などが含まれてよい。 Frequency resources may include component carriers (CCs), subcarriers, resource blocks (RBs), resource block groups (RBGs), BWPs (Bandwidth parts), and the like. The time resources may include symbols, slots, minislots, subframes, radio frames, DRX (Discontinuous Reception) periods, and the like.
 なお、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。また、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Note that the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Also, the number of slots per subframe may vary depending on the SCS.
 無線通信システム10では、同期信号(SS:Synchronization Signal)、及び下り物理報知チャネル(PBCH:Physical Broadcast CHannel)から構成されるSSB(SS/PBCH Block)が用いられてよい。 In the wireless communication system 10, an SSB (SS/PBCH Block) composed of a synchronization signal (SS) and a physical downlink broadcast channel (PBCH) may be used.
 SSBは、主に、UE200が通信開始時にセルIDや受信タイミング検出を実行するために周期的にネットワークから送信される。NRでは、SSBは、各セルの受信品質測定にも流用される。SSBの送信周期(periodicity)としては、5、10、20、40、80、160ミリ秒などが規定されてよい。なお、初期アクセスのUE200は、20ミリ秒の送信周期と仮定してもよい。 The SSB is periodically transmitted from the network mainly for the UE 200 to detect the cell ID and reception timing when starting communication. In NR, SSB is also used to measure the reception quality of each cell. The SSB transmission period may be defined as 5, 10, 20, 40, 80, 160 milliseconds, or the like. Note that the UE 200 for initial access may assume a transmission cycle of 20 milliseconds.
 UE200は、サービングセル及び近隣セルを含むセルに関する受信品質を含む測定報告(以下、Measurement report)をネットワークに送信する。UE200がMeasurement reportを送信する手順は、Measurement reporting)と呼ばれてもよい。セルに関する受信品質は、セルからのビームの受信品質を含んでもよく、セルからのビームに基づいたセルの受信品質を含んでもよい。 The UE 200 transmits a measurement report (hereinafter referred to as a measurement report) including reception quality regarding cells including the serving cell and neighboring cells to the network. The procedure in which the UE 200 transmits a measurement report may be referred to as measurement reporting. The reception quality regarding a cell may include the reception quality of a beam from the cell, or may include the reception quality of the cell based on the beam from the cell.
 gNB100は、ネットワークに接続される第1ユニットである中央ユニット(Central Unit:CU)と、CUに接続される複数の第2ユニットである分散ユニット(Distributed Unit:DU)とを備えてもよい。 The gNB 100 may include a central unit (CU) that is a first unit connected to the network, and distributed units (DU) that are a plurality of second units connected to the CU.
 ネットワークは、UAV UEと通信可能な複数の無線基地局を含む無線通信システム、すなわちUAV UEとの通信にセカンダリーノードが関与する構成としてよい。具体的には、ネットワークは、セカンダリーノードがUAV UEの上空での移動状態を取得することで、UAV UEの上空での移動状態に応じた適切な制御を実現し得る構成としてよい。 The network may be a wireless communication system including a plurality of wireless base stations that can communicate with the UAV UE, that is, a configuration in which a secondary node is involved in communication with the UAV UE. Specifically, the network may be configured such that the secondary node obtains the movement state of the UAV UE in the sky, thereby realizing appropriate control according to the movement state of the UAV UE in the sky.
 gNB100(gNB100A~gNB100D)は、セカンダリーノード(SN)として機能してよく、セカンダリーノードは、以下に例示する無線通信ノードと解釈されてよい。 The gNB 100 (gNB 100A to gNB 100D) may function as a secondary node (SN), and the secondary node may be interpreted as a wireless communication node exemplified below.
 (1)ハンドオーバ先(遷移先)のセルを形成するTarget RAN Node(図5参照)。 (1) Target RAN Node that forms the handover destination (transition destination) cell (see FIG. 5).
 (2)UE200と無線基地局の間で無線リンク障害が生じた場合に、UE200が再接続に成功したNew RAN node(図7参照)。 (2) New RAN node to which the UE 200 has successfully reconnected when a radio link failure occurs between the UE 200 and the radio base station (see FIG. 7).
 (3)UE200とデュアルコネクティビティで接続するSN(Secondary Node)(図8参照)。 (3) SN (Secondary Node) that connects to the UE 200 with dual connectivity (see FIG. 8).
 (4)分散ユニット(DU:Distributed Unit)(図9参照)。
 また、セカンダリーノードは、セカンダリーセル(SCell)、或いはセカンダリセルグループ(SCG)に含まれる何れかのセルと解釈されてもよい。
(4) Distributed Unit (DU) (see FIG. 9).
A secondary node may also be interpreted as a secondary cell (SCell) or any cell included in a secondary cell group (SCG).
 なお、これらの無線通信ノードの構成の詳細については後述する。 Note that the details of the configuration of these wireless communication nodes will be described later.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。図3は、gNB100及びUE200の機能ブロック構成図である。図4は、AMF50の機能ブロック構成図である。なお、図3及び図4では、実施形態の説明に関連する主な機能ブロックのみが示されており、gNB100、UE200及びAMF50は、他の機能ブロック(例えば、電源部など)を有することに留意されたい。また、図3及び図4は、gNB100、UE200及びAMF50の機能的なブロック構成について示しており、これらの装置のハードウェア構成については、図12を参照されたい。
(2) Functional block configuration of wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of the UE 200 will be described. FIG. 3 is a functional block configuration diagram of the gNB 100 and the UE 200. FIG. 4 is a functional block configuration diagram of the AMF 50. Note that in FIGS. 3 and 4, only the main functional blocks related to the description of the embodiments are shown, and the gNB 100, UE 200, and AMF 50 have other functional blocks (for example, a power supply unit, etc.). I want to be Further, FIGS. 3 and 4 show functional block configurations of the gNB 100, UE 200, and AMF 50, and please refer to FIG. 12 for the hardware configuration of these devices.
 図3に示すように、gNB100は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 As shown in FIG. 3, the gNB 100 includes a radio signal transmission/reception section 210, an amplifier section 220, a modulation/demodulation section 230, a control signal/reference signal processing section 240, an encoding/decoding section 250, a data transmission/reception section 260, and a control section 270. .
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、複数のアンテナ素子から送信される無線(RF)信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 The wireless signal transmitting/receiving unit 210 transmits and receives wireless signals according to NR. The wireless signal transmitting/receiving unit 210 uses Massive MIMO, which generates a highly directional beam by controlling radio (RF) signals transmitted from multiple antenna elements, and a carrier that uses multiple component carriers (CC) in a bundle. It is possible to support aggregation (CA) and dual connectivity (DC) in which communication is performed simultaneously between the UE and each of two NG-RAN nodes.
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier), etc. Amplifier section 220 amplifies the signal output from modulation/demodulation section 230 to a predetermined power level. Furthermore, the amplifier section 220 amplifies the RF signal output from the radio signal transmitting/receiving section 210.
 変復調部230は、所定の通信先(gNB100など)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modulation/demodulation unit 230 performs data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100, etc.). The modulation/demodulation section 230 performs Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-S pread (DFT-S-OFDM) may be applied. Furthermore, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
 制御信号・参照信号処理部240は、gNB100が送受信する各種の制御信号に関する処理、及びgNB100が送受信する各種の参照信号に関する処理を実行する。 The control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the gNB 100 and processing related to various reference signals transmitted and received by the gNB 100.
 本実施形態では、制御信号・参照信号処理部240は、上空を移動し得るUAV30に存在するUE200との通信を実行し、特定メッセージを他の無線基地局に送信する送信部を構成してよい。特定メッセージは、SN addition request、SN modification request、及び/又は、SN change confirmと解釈してよい。なお、MN(Master Node)が当該UEのAerialUEsubscriptionInformationを有する場合、AerialUEsubscriptionInformationを特定メッセージに含めてよい。AerialUEsubscriptionInformationは、例えばAMF50が管理しているUEの契約情報と解釈してよい。AMF50がMNにAerialUEsubscriptionInformationを送信することで、MNは、SNにAerialUEsubscriptionInformationを引き継ぐことができる。 In this embodiment, the control signal/reference signal processing unit 240 may configure a transmitting unit that performs communication with the UE 200 present in the UAV 30 that can move in the sky, and transmits a specific message to another wireless base station. . The specific message may be interpreted as SN addition request, SN modification request, and/or SN change confirm. Note that if the MN (Master Node) has AerialUEsubscriptionInformation of the UE, AerialUEsubscriptionInformation may be included in the specific message. AerialUEsubscriptionInformation may be interpreted as UE contract information managed by the AMF 50, for example. By the AMF 50 transmitting AerialUEsubscriptionInformation to the MN, the MN can take over the AerialUEsubscriptionInformation to the SN.
 本実施形態では、制御信号・参照信号処理部240は、上空を移動し得るUAV30に存在するUE200との通信を実行し、特定メッセージを、UE200の遷移先のセルを形成する無線基地局(gNB100)、又は、無線基地局を管理する無線通信ノード(AMF50)に送信する送信部を構成してよい。具体的には、制御信号・参照信号処理部240は、特定メッセージに、UE200が上空に位置するか否か、又は上空でのUE200の移動状態の少なくとも何れかを示す移動状態情報を含めて、Target cellを形成するTN、又は、無線通信ノード(AMF50及び/又はMME)に送信してよい。特定メッセージは、Handover request messageと解釈してよい。 In this embodiment, the control signal/reference signal processing unit 240 executes communication with the UE 200 present in the UAV 30 that can move in the sky, and transmits a specific message to a wireless base station (gNB 100) that forms the cell to which the UE 200 transitions. ), or a transmitter that transmits to a wireless communication node (AMF 50) that manages the wireless base station. Specifically, the control signal/reference signal processing unit 240 includes, in the specific message, movement state information indicating at least either whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky, It may be transmitted to the TN forming the target cell or the wireless communication node (AMF 50 and/or MME). The specific message may be interpreted as a Handover request message.
 UE200が上空に位置するか否か示す移動状態情報は、flying status(flying or not flying)と解釈してよい。具体的には、UAV30に搭載されるUE200から地上までの距離が特定閾値を超えている場合、移動状態情報は、飛行状態又は離陸状態(flying)、UEから地上までの距離が特定閾値を超えていない場合、非飛行状態又は着陸状態(not flying)と解釈してよい。 The movement status information indicating whether the UE 200 is located in the sky may be interpreted as flying status (flying or not flying). Specifically, if the distance from the UE 200 mounted on the UAV 30 to the ground exceeds a specific threshold, the movement state information may include flight status or takeoff status (flying), and the distance from the UE to the ground exceeds a specific threshold. If not, it may be interpreted as a non-flying state or a not flying state.
 上空でのUE200の移動状態を示す移動状態情報は、UAV30に搭載されるUEの高度、水平移動速度、垂直移動速度などを含めてよい。UE200の高度は、地上レベルを基準にした距離でもよいし、地上以外の基準点(海面など)からの距離でもよい。例えば、flying statusにUEの高度の組み合わせてもよい。例えば、gNB100は、UAV30が地表近くを飛行する場合、UEに対するUL power controlを行わず(gNB100ビームの送信電力を調整せず)、UAV30が高高度で飛行している場合、UL power controlにより、UAV30の高度に応じてビームの送信電力を調整することが可能になる。 The movement state information indicating the movement state of the UE 200 in the sky may include the altitude, horizontal movement speed, vertical movement speed, etc. of the UE mounted on the UAV 30. The altitude of the UE 200 may be a distance based on ground level, or may be a distance from a reference point other than the ground (sea level, etc.). For example, the flying status may be combined with the altitude of the UE. For example, when the UAV 30 is flying near the ground, the gNB 100 does not perform UL power control for the UE (does not adjust the transmission power of the gNB 100 beam), and when the UAV 30 is flying at a high altitude, the gNB 100 uses UL power control to It becomes possible to adjust the beam transmission power according to the altitude of the UAV 30.
 gNB100は、移動状態情報を利用することによって、UAV30に搭載されるUEの状態を検知できるため、UE200の状態に応じて、UEに対するUL power controlを適切に制御することができる。 Since the gNB 100 can detect the state of the UE mounted on the UAV 30 by using the movement state information, it can appropriately control UL power control for the UE according to the state of the UE 200.
 本実施形態では、制御信号・参照信号処理部240は、上空を移動し得るUAV30に存在するUE200との通信を実行し、特定メッセージを他のgNB100に送信する送信部を構成してよい。具体的には、UE200とgNB100との間に無線リンク障害(RLF:Radio Link Failure)が発生した場合、UE200が再接続に失敗したgNB100(Old RAN node)の制御信号・参照信号処理部240は、再接続先の無線基地局(New RAN node)に特定メッセージを送信してよい。この場合、制御信号・参照信号処理部240は、特定メッセージに移動状態情報を含めてよい。特定メッセージは、Old RAN nodeがnew RAN nodeに送信する、RETRIEVE UE CONTEXT RESPONSEと解釈してよい。 In this embodiment, the control signal/reference signal processing unit 240 may configure a transmitting unit that performs communication with the UE 200 present in the UAV 30 that can move in the sky, and transmits a specific message to other gNBs 100. Specifically, when a radio link failure (RLF) occurs between the UE 200 and the gNB 100, the control signal/reference signal processing unit 240 of the gNB 100 (Old RAN node) to which the UE 200 has failed to reconnect , a specific message may be sent to the wireless base station (New RAN node) to which the connection is to be made. In this case, the control signal/reference signal processing unit 240 may include movement state information in the specific message. The specific message may be interpreted as a RETRIEVE UE CONTEXT RESPONSE sent by the old RAN node to the new RAN node.
 UE200がRRC inactive状態時に、UE200がOld RAN nodeからNew RAN nodeに遷移すると、Old RAN nodeは、New RAN nodeにRRCResumeRequest messageを送信することで、Resumeする場合がある。その際、New RAN nodeは、Old RAN nodeに、RETRIEVE UE CONTEXT REQUESTを送信するが、Old RAN nodeからNew RAN nodeに送信するRETRIEVE UE CONTEXT RESPONSEに、移動状態情報を含めてよい。すなわちOld RAN nodeは、RETRIEVE UE CONTEXT RESPONSEに移動状態情報を含めて、RETRIEVE UE CONTEXT RESPONSEを、New RAN nodeに送信してよい。 When the UE 200 transitions from the Old RAN node to the New RAN node while the UE 200 is in the RRC inactive state, the Old RAN node sends RRCResumeRequest to the New RAN node. Resume may be performed by sending a message. At that time, the New RAN node sends a RETRIEVE UE CONTEXT REQUEST to the Old RAN node, but the RETRIEVE sent from the Old RAN node to the New RAN node The UE CONTEXT RESPONSE may include movement state information. That is, the Old RAN node may include movement state information in the RETRIEVE UE CONTEXT RESPONSE and transmit the RETRIEVE UE CONTEXT RESPONSE to the New RAN node.
 なお、gNB100がCU及びDUを備え、CU-DU機能分離(CU-DU functional split)構成を有する場合、制御信号・参照信号処理部240は、第1ユニット及び第2ユニットとの間の通信を行ってよい。CUの制御信号・参照信号処理部240は、DUとの特定メッセージに移動状態情報を含めて、DUに送信してよい。DUは、CUから送信される特定メッセージを受信する。特定メッセージは、UE CONTEXT SETUP REQUEST、UE CONTEXT MODIFICATION REQUEST、及び/又は、UE CONTEXT MODIFICATION CONFIRMと解釈してよい。なお、CUが当該UEのAerialUEsubscriptionInformationを有する場合、AerialUEsubscriptionInformationを特定メッセージに含めてよい。 Note that when the gNB 100 includes a CU and a DU and has a CU-DU functional split configuration, the control signal/reference signal processing unit 240 controls communication between the first unit and the second unit. You can go. The control signal/reference signal processing unit 240 of the CU may include movement state information in a specific message with the DU, and transmit the message to the DU. The DU receives specific messages sent from the CU. The specific message may be interpreted as UE CONTEXT SETUP REQUEST, UE CONTEXT MODIFICATION REQUEST, and/or UE CONTEXT MODIFICATION CONFIRM. Note that if the CU has AerialUEsubscriptionInformation for the UE, AerialUEsubscriptionInformation may be included in the specific message.
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The encoding/decoding unit 250 performs data division/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the encoding/decoding unit 250 divides the data output from the data transmitting/receiving unit 260 into predetermined sizes, and performs channel coding on the divided data. Furthermore, the encoding/decoding section 250 decodes the data output from the modulation/demodulation section 230 and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmitting and receiving unit 260 transmits and receives Protocol Data Units (PDUs) and Service Data Units (SDUs). Specifically, the data transmitting/receiving unit 260 transmits PDUs/SDUs in multiple layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble/disassemble etc. Further, the data transmitter/receiver 260 performs data error correction and retransmission control based on hybrid ARQ (Hybrid automatic repeat request).
 制御部270は、gNB100を構成する各機能ブロックを制御する。 The control unit 270 controls each functional block that configures the gNB 100.
 本実施形態では、制御部270は、複数の無線基地局が同時にUE200と接続するデュアルコネクティビティをサポートする制御部を構成してよい。具体的には、UE200は、マスターノード及びセカンダリーノードである複数のgNB100により提供される複数のコンポーネントキャリアを同時に利用して、マスターノード及びセカンダリーノードと同時送信又は同時受信を実行することが可能である。 In the present embodiment, the control unit 270 may configure a control unit that supports dual connectivity in which a plurality of wireless base stations connect to the UE 200 at the same time. Specifically, the UE 200 can perform simultaneous transmission or simultaneous reception with the master node and the secondary nodes by simultaneously using multiple component carriers provided by the multiple gNBs 100 that are the master node and the secondary nodes. be.
 本実施形態では、制御部270は、UE200が上空に位置するか否か、又は上空でのUE200の移動状態の少なくとも何れかを示す移動状態情報を当該特定メッセージに含める制御部を構成してよい。具体的には、制御部270は、制御信号・参照信号処理部240に対して、特定メッセージに含められる情報(移動状態情報)を決定し、決定した情報を制御信号・参照信号処理部240に指示する。制御信号・参照信号処理部240は、制御部270からの指示に基づき、移動状態情報を特定メッセージに含める。 In the present embodiment, the control unit 270 may configure the control unit to include movement state information indicating at least one of whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky in the specific message. . Specifically, the control unit 270 determines information (moving state information) to be included in a specific message for the control signal/reference signal processing unit 240, and transmits the determined information to the control signal/reference signal processing unit 240. Instruct. The control signal/reference signal processing unit 240 includes movement state information in the specific message based on instructions from the control unit 270.
 本実施形態では、制御部270は、UE200とgNB100の間で無線リンク障害が生じた場合、特定メッセージに、UE200が上空に位置するか否か、又は上空でのUE200の移動状態の少なくとも何れかを示す移動状態情報を含める制御部を構成してよい。具体的には、制御部270は、UE200とgNB100との間に無線リンク障害が発生していない場合には、特定メッセージに移動状態情報を含めることなく、当該特定メッセージを他の無線基地局に対して送信する。また制御部270は、無線リンク障害が発生していない場合には、特定メッセージに移動状態情報を含めて、当該特定メッセージを、UE200が再接続した先の無線基地局(New RAN node)に送信する。 In the present embodiment, when a wireless link failure occurs between the UE 200 and the gNB 100, the control unit 270 includes at least one of whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky in the specific message. The control unit may be configured to include movement state information indicating the movement state information. Specifically, if no radio link failure has occurred between the UE 200 and the gNB 100, the control unit 270 transmits the specific message to another radio base station without including movement state information in the specific message. Send to. In addition, if no radio link failure has occurred, the control unit 270 includes the movement status information in a specific message and transmits the specific message to the radio base station (New RAN node) to which the UE 200 is reconnected. do.
 また、UE200の制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Further, the control signal/reference signal processing unit 240 of the UE 200 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, a radio resource control layer (RRC) control signal. Further, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
 具体的には、制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。本実施形態では、制御信号・参照信号処理部240は、端末が上空に位置するか否か、又は上空での端末の移動状態の少なくとも何れかを示す移動状態情報を送信してよい。 Specifically, the control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS). In this embodiment, the control signal/reference signal processing unit 240 may transmit movement state information indicating at least either whether the terminal is located in the sky or the movement state of the terminal in the sky.
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 DMRS is a reference signal (pilot signal) known between a terminal-specific base station and the terminal for estimating a fading channel used for data demodulation. PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。 In addition to DMRS and PTRS, reference signals include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Posit for location information. ioning Reference Signal (PRS) may be included.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれてよい。 Additionally, the channels include a control channel and a data channel. The control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), and RACH (Random Access Channel). nel, Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH), etc. may be included.
 また、データチャネルには、PDSCH及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味してよい。 Further, data channels include PDSCH, PUSCH (Physical Uplink Shared Channel), and the like. Data may refer to data transmitted over a data channel.
 図4において、AMF50は、通信部51、送信部52、制御部53、及び受信部54を備える。通信部51は、gNB100に対して特定メッセージを送信し、またgNB100から送信された信号を受信する。制御部53は、AMF50を構成する各機能ブロックを制御する。 In FIG. 4, the AMF 50 includes a communication section 51, a transmission section 52, a control section 53, and a reception section 54. The communication unit 51 transmits a specific message to the gNB 100 and receives a signal transmitted from the gNB 100. The control unit 53 controls each functional block configuring the AMF 50.
 本実施形態では、制御部53は、上空を移動し得るUAV30に存在するUE200の遷移元のセルを形成する第1無線基地局(gNB100)、又は、UE200の遷移先のセルを形成する第2無線基地局(gNB100)を管理する制御部を構成してよい。 In the present embodiment, the control unit 53 controls the first radio base station (gNB 100) that forms the cell to which the UE 200 transitions, which is present in the UAV 30 that can move in the sky, or the second radio base station (gNB 100) which forms the cell to which the UE 200 transitions. A control unit that manages the radio base station (gNB 100) may be configured.
 本実施形態では、送信部52は、特定メッセージに対する応答メッセージを遷移元のセルを形成するgNB100に送信する送信部を構成してよい。具体的には、送信部52は、マスターノード及び/又はセカンダリーノードに対して、INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info)を送信してよい。 In the present embodiment, the transmitter 52 may constitute a transmitter that transmits a response message to the specific message to the gNB 100 forming the transition source cell. Specifically, the transmitter 52 may transmit INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info) to the master node and/or the secondary node.
 本実施形態では、送信部52は、CU及び/又はDUに対して、INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info)を送信してよい。 In the present embodiment, the transmitter 52 may transmit INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info) to the CU and/or DU.
 本実施形態では、受信部54は、第1無線基地局から送信される特定メッセージを受信する受信部を構成してよい。具体的には、受信部54は、INITIAL CONTEXT SETUP REQUESTに対して、マスターノード及び/又はセカンダリーノードから送信される特定メッセージを受信する。特定メッセージは、INITIAL CONTEXT SETUP RESPONSEを解釈してよい。 In this embodiment, the receiving unit 54 may constitute a receiving unit that receives a specific message transmitted from the first wireless base station. Specifically, the receiving unit 54 receives a specific message transmitted from the master node and/or the secondary node in response to INITIAL CONTEXT SETUP REQUEST. The specific message may be interpreted as INITIAL CONTEXT SETUP RESPONSE.
 本実施形態では、受信部54は、CU及び/又はDUから送信される特定メッセージを受信する受信部を構成してよい。具体的には、受信部54は、INITIAL CONTEXT SETUP REQUESTに対して、CU及び/又はDUから送信される特定メッセージを受信する。特定メッセージは、INITIAL CONTEXT SETUP RESPONSEを解釈してよい。 In this embodiment, the receiving unit 54 may constitute a receiving unit that receives a specific message transmitted from the CU and/or DU. Specifically, the receiving unit 54 receives a specific message transmitted from the CU and/or DU in response to INITIAL CONTEXT SETUP REQUEST. The specific message may be interpreted as INITIAL CONTEXT SETUP RESPONSE.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、UAV UEの上空での移動状態に応じた適切な制御を実行し得るgNB100を含む、無線通信システム10の動作例について説明する。
(3) Operation of the wireless communication system Next, the operation of the wireless communication system 10 will be explained. Specifically, an example of the operation of the wireless communication system 10 including the gNB 100 that can perform appropriate control according to the movement state of the UAV UE in the sky will be described.
 (3.1)前提及び課題
 UAV UEの上空での移動状態に応じた適切な制御を実行する上での課題について説明する。
(3.1) Assumptions and Issues Issues in executing appropriate control according to the movement state of the UAV UE in the sky will be explained.
 3GPP Release 18では、UAVに搭載されるUE(UAV UE)の問題点が議論されている(非特許文献1)。具体的には、UAVが上空に位置する場合、上空において見通しが良好となるケースが多く発生するため、UAV UEは、多くの無線基地局が形成するセルからの上りリンク(UL)信号を受信し得る。このためUAV UEでは、受信するUL信号の干渉が大きくなり、地上に存在するUEと比較してスループット性能が低下し得る。 In 3GPP Release 18, problems with UEs mounted on UAVs (UAV UEs) are being discussed (Non-Patent Document 1). Specifically, when a UAV is located in the sky, there are many cases where visibility is good in the sky, so the UAV UE receives uplink (UL) signals from cells formed by many wireless base stations. It is possible. For this reason, in the UAV UE, the interference of the received UL signal increases, and the throughput performance may decrease compared to the UE existing on the ground.
 Rel-15/16/17に対応しているデバイス(所謂レガシーデバイス)が、UAV機能(高度測定など)をサポートしていない場合、ネットワークに対して測定レポートを送信することができない。mobile IABの機能は、UAV UEの飛行状態を示す測定レポート、UAV UEのIDと飛行状態とを対応付けたマッピング情報などを、無線基地局に送信する機能と解釈してよい。 If a device compatible with Rel-15/16/17 (so-called legacy device) does not support UAV functions (altitude measurement, etc.), it will not be able to send measurement reports to the network. The function of the mobile IAB may be interpreted as a function of transmitting a measurement report indicating the flight status of the UAV UE, mapping information that associates the ID of the UAV UE with the flight status, etc. to the wireless base station.
 このため、ネットワークはレガシーデバイスに適切なソリューション、例えばUAV UEに対するUL power controlを適切に実行することができない場合がある。なお、レガシーデバイスは、mobile IAB-MTを含む場合もある。 Therefore, the network may not be able to properly implement solutions suitable for legacy devices, such as UL power control for UAV UEs. Note that the legacy device may include a mobile IAB-MT.
 ここで、非特許文献1には、コアネットワークを介して、UAV UEの飛行状態(flying status)を基地局に通知する方法について提案されている。 Here, Non-Patent Document 1 proposes a method of notifying a base station of the flying status of a UAV UE via a core network.
 非特許文献1には、mobile IABを利用して、UAVに搭載されるUEと通信を行う無線基地局が示されている。無線基地局はeNB及びgNBの何れかを含む。mobile IABは、UAV UEの飛行状態を示す測定レポートと、UAV UEのIDと飛行状態とを対応付けたマッピング情報とを、無線基地局に送信する機能を有する。当該機能により、UEが当該機能を有していなくとも、無線基地局を含むネットワークは、UAV UEを認識することができる。当該UEは、Rel-15/16/17に対応していないレガシーデバイスを含み得る。 Non-Patent Document 1 describes a wireless base station that uses mobile IAB to communicate with a UE mounted on a UAV. The radio base station includes either an eNB or a gNB. The mobile IAB has a function of transmitting a measurement report indicating the flight state of the UAV UE and mapping information that associates the ID of the UAV UE with the flight state to the wireless base station. This function allows a network including a wireless base station to recognize the UAV UE even if the UE does not have this function. The UE may include a legacy device that does not support Rel-15/16/17.
 また非特許文献1には、アプリケーションサーバを利用して、UAV UEと通信を行う無線基地局が示されている。無線基地局はeNB及びgNBの何れかを含む。UAV UEにインストールされるアプリケーションによって、UAV UEの飛行状態を示す測定レポートは、無線基地局、AF (Application Function)を経由し、さらにUDR(Unified Data Repository) /PCF (Policy Control Function)を介して、AMF及び/又はMMEに送信される。測定レポートは、UAV UEのID、UAV情報などが含まれ得る。 Additionally, Non-Patent Document 1 discloses a wireless base station that communicates with a UAV UE using an application server. The radio base station includes either an eNB or a gNB. Depending on the application installed on the UAV UE, measurement reports indicating the flight status of the UAV UE are sent via the wireless base station, AF (Application Function), and then to the UDR (Unified Data Repository)/PCF (Policy Coordinator). ntrol Function) , AMF and/or MME. The measurement report may include the UAV, UE ID, UAV information, etc.
 しかしながら、従来技術では、UAV UEと通信可能な複数の無線基地局を含む無線通信システム、すなわちUAV UEとの通信にセカンダリーノードが関与する構成において、セカンダリーノードがUAV UEの上空での移動状態を取得する方法について規定されていない。このため、従来技術では、ハンドオーバ時における遷移先セル、RLF発生時のNew RAN node、DCにおけるセカンダリーノード、CU-DU機能分離構成におけるDUなどにおいて、UAV UEの上空での移動状態に応じた適切な制御を行うことが難しいという課題がある。また、Rel-18に対応しているデバイスであっても、前述したUAV機能をサポートしていない場合も同様の課題が生じ得る。 However, in the conventional technology, in a wireless communication system including a plurality of wireless base stations capable of communicating with a UAV UE, that is, in a configuration in which a secondary node is involved in communication with the UAV UE, the secondary node monitors the movement state of the UAV UE in the sky. There is no stipulation as to how to obtain it. For this reason, in the conventional technology, appropriate information is assigned to the transition destination cell at the time of handover, the New RAN node when RLF occurs, the secondary node in the DC, the DU in the CU-DU function separation configuration, etc. according to the movement state in the sky of the UAV UE. The problem is that it is difficult to carry out appropriate control. Further, even if the device is compatible with Rel-18, a similar problem may occur if the device does not support the above-mentioned UAV function.
 具体的には、以下に示す複数の課題が想定される。 Specifically, the following multiple issues are envisaged.
 第1の課題:従来技術では、UAV UEがソースノードからターゲットノードにハンドオーバした際、ターゲットノードがUE200の移動状態を取得する方法について規定されていない。このため、ターゲットノードは、UAV UEの上空での移動状態に応じた適切な制御(UEに対するUL power controlなど)を適切に制御することが難しいという課題がある。 First problem: The conventional technology does not specify a method for the target node to obtain the movement state of the UE 200 when the UAV UE is handed over from the source node to the target node. Therefore, there is a problem in that it is difficult for the target node to appropriately control (UL power control for the UE, etc.) according to the movement state of the UAV UE in the sky.
 第2の課題:UAV UEと無線基地局との間に無線リンク障害(RLF:Radio Link Failure)が生じた場合、UAV UEは、RLFが生じる前に接続していた無線基地局(Old RAN node)から異なる無線基地局(New RAN node)に再接続し得る。しかしながら、従来技術では、RLFが生じた場合、New RAN nodeがUE200の移動状態を取得する方法について規定されていないため、New RAN nodeは、UAV UEの上空での移動状態に応じた適切な制御することが難しいという課題がある。 Second issue: If a radio link failure (RLF) occurs between the UAV UE and the radio base station, the UAV UE will ) to a different radio base station (New RAN node). However, in the conventional technology, when RLF occurs, the method by which the New RAN node obtains the movement state of the UE 200 is not specified, so the New RAN node performs appropriate control according to the movement state in the sky of the UAV UE. The problem is that it is difficult to do so.
 第3の課題:従来技術では、UAV UEが複数の無線基地局とdual connectivityを実行するためにdual connectivityのsetupを行う場合、セカンダリーノードがUE200の移動状態を取得する方法について規定されていない。このため、セカンダリーノードは、UAV UEの上空での移動状態に応じた適切な制御することが難しいという課題がある。 Third issue: In the conventional technology, when a UAV UE performs dual connectivity setup to perform dual connectivity with multiple radio base stations, a method for the secondary node to obtain the movement state of the UE 200 is not specified. Therefore, there is a problem in that it is difficult for the secondary node to appropriately control the UAV UE according to its movement state in the sky.
 第4の課題:無線アクセスネットワークのアーキテクチャとして中央ユニット(Central Unit:CU)から複数の分散ユニット(Distributed Unit:DU)を張り出す構成を用いる場合、CU-DU機能分離(CU-DU functional split)がなされる。例えばCUがPDCP以上のレイヤの機能を持ち、DUがRLC以下のレイヤの機能を持つ。CU-DU functional splitがなされたgNBでは、UAV UEに対するUL power controlがDUにおいて行われるため、DUがUEのUE200の移動状態を知る必要がある。しかしながら、従来技術では、DUがUE200の移動状態を取得する方法について規定されていないため、DUは、UAV UEの上空での移動状態に応じた適切な制御することが難しいという課題がある。 Fourth issue: When using a configuration in which multiple distributed units (DU) extend from a central unit (CU) as a radio access network architecture, CU-DU functional split (CU-DU functional split) will be done. For example, the CU has the function of a layer above PDCP, and the DU has the function of a layer below RLC. In the gNB where CU-DU functional split has been performed, UL power control for the UAV UE is performed in the DU, so the DU needs to know the movement state of the UE 200. However, in the conventional technology, there is a problem in that it is difficult to appropriately control the DU according to the movement state in the sky of the UAV UE, because the method for the DU to acquire the movement state of the UE 200 is not specified.
 このような課題の解決策として、以下に示す複数の動作例が考えられる。なお、後述される複数の動作例は、それぞれ単独で用いられてもよいし、これらの2つ以上の組み合わせにより利用されてもよい。 As a solution to such problems, several operation examples shown below can be considered. Note that the plurality of operation examples described below may be used alone, or may be used in combination of two or more thereof.
 (3.2)動作例
 以下では、上記の課題を解決し得る動作例について説明する。
(3.2) Operation example Below, an operation example that can solve the above problem will be explained.
 (3.2.1)動作例1
 以下では第1の課題を解決し得る動作例について説明する。動作例1では、ハンドオーバ元のSNとハンドオーバ先のTNとの間、及び、SNとAMFとの間における特定メッセージによる通信動作を説明する。
(3.2.1) Operation example 1
An example of operation that can solve the first problem will be described below. In operation example 1, a communication operation using a specific message between the handover source SN and the handover destination TN, and between the SN and the AMF will be described.
 図5は動作例1を説明するための図である。ステップS1において、SNは、移動状態情報を特定メッセージ(Handover request message)に含めてTNに送信する。具体的には、Xn Handoverの場合、すなわちUEがUPFを再配置せずに1つのgNBのセルから別のgNBのセルに遷移する場合、SNは、Handover request messageに当該UEのflying status(flying or not flying)、高度情報、水平速度、垂直速度などを含めてTNに送信してよい。 FIG. 5 is a diagram for explaining operation example 1. In step S1, the SN includes movement state information in a specific message (Handover request message) and transmits it to the TN. Specifically, in the case of Xn Handover, that is, when the UE transitions from the cell of one gNB to the cell of another gNB without relocating the UPF, the SN sends the flying status (flying status) of the UE in the Handover request message. or not flying), altitude information, horizontal velocity, vertical velocity, etc., may be transmitted to the TN.
 移動状態情報を含む特定メッセージを受信したTNは、ステップS2において、ハンドオーバリクエストの受信応答(Handover request Ack)をSNに送信する。 The TN that has received the specific message including the movement state information transmits a handover request reception response (Handover request Ack) to the SN in step S2.
 図6は動作例1のオプションを説明するための図である。SNは、移動状態情報を特定メッセージ(handover required message)に含めてAMFに送信してもよい。具体的には、NG Handover(NG-RANノード間ハンドオーバ)の場合、SNは、handover required messageに当該UEのflying status (flying or not flying),高度情報、水平速度、垂直速度などを含めてAMFに送信してよい。 FIG. 6 is a diagram for explaining options of operation example 1. The SN may include the movement state information in a specific message (handover required message) and transmit it to the AMF. Specifically, in the case of NG Handover (NG-RAN inter-node handover), the SN sends the UE's flying status (flying or not flying), altitude information, AMF including horizontal speed, vertical speed, etc. You may send it to
 移動状態情報を含む特定メッセージを受信したAMFは、ステップS2において、ハンドオーバコマンドをSNに送信する。 The AMF that has received the specific message including the movement status information transmits a handover command to the SN in step S2.
 (3.2.2)動作例2
 以下では第2の課題を解決し得る動作例について説明する。動作例2では、RLF発生時の基地局間における特定メッセージによる通信動作を説明する。
(3.2.2) Operation example 2
An example of operation that can solve the second problem will be described below. In operation example 2, a communication operation using a specific message between base stations when RLF occurs will be described.
 図7は動作例2を説明するための図である。ステップS1において、RLFが生じた際、UE200が再接続に成功した無線基地局(New RAN node)は、UEコンテキストの取得要求(RETRIEVE UE CONTEXT RESQUEST)を、UE200の再接続に失敗した無線基地局(Old RAN node)に送信する。 FIG. 7 is a diagram for explaining operation example 2. In step S1, when RLF occurs, the radio base station (New RAN node) to which the UE 200 has successfully reconnected sends a UE context acquisition request (RETRIEVE UE CONTEXT RESQUEST) to the radio base station to which the UE 200 has failed to reconnect. (Old RAN node).
 UEコンテキストの取得要求を受信した無線基地局は、ステップS2において、UEコンテキスト取得応答(RETRIEVE UE CONTEXT RESPONSE)に、当該UEのflying status(flying or not flying)、高度情報、水平速度、垂直速度などを含めて、New RAN nodeに送信してよい。 In step S2, the radio base station that has received the UE context acquisition request includes the UE's flying status (flying or not flying), altitude information, horizontal speed, vertical speed, etc. in the UE context acquisition response (RETRIEVE UE CONTEXT RESPONSE). may be sent to the New RAN node.
 (3.2.3)動作例3
 以下では第3の課題を解決し得る動作例について説明する。動作例3では、MN及びSN間における特定メッセージによる通信動作を説明する。
(3.2.3) Operation example 3
An example of operation that can solve the third problem will be described below. In operation example 3, a communication operation using a specific message between the MN and SN will be described.
 図8は動作例3を説明するための図である。ステップS1において、MNは、移動状態情報を特定メッセージに含めてSNに送信する。具体的には、MNは、SN addition request、SN modification request、及び/又は、SN change confirmに、当該UEのflying status(flying or not flying)、高度情報、水平速度、垂直速度などを含めて、SNに送信してよい。なお、MNは、SN addition requestに代えて、SN modification request、及び/又は、SN change confirmに、当該UEのflying statusなどを含めて送信してもよい。 FIG. 8 is a diagram for explaining operation example 3. In step S1, the MN includes movement state information in a specific message and transmits it to the SN. Specifically, the MN sends the flying status (flying or (not flying), altitude information, horizontal speed, vertical speed, etc. May be sent to SN. Note that instead of the SN addition request, the MN may send the SN modification request and/or SN change confirm including the flying status of the UE.
 SN addition requestなどを受信したSNは、ステップS2において、SN addition requestに対する応答(SN addition request ack)をMNに送信する。 The SN that has received the SN addition request and the like transmits a response to the SN addition request (SN addition request ack) to the MN in step S2.
 (3.2.4)動作例4
 以下では第4の課題を解決し得る動作例について説明する。動作例4では、CU-DU機能分離構成のgNB100におけるCU及びDU間の特定メッセージによる通信動作を説明する。
(3.2.4) Operation example 4
An example of operation that can solve the fourth problem will be described below. In operation example 4, a communication operation using a specific message between a CU and a DU in the gNB 100 having a CU-DU function separation configuration will be described.
 図9は動作例4を説明するための図である。ステップS1において、CUは、移動状態情報を特定メッセージに含めてSNに送信する。具体的には、CUは、UE CONTEXT SETUP REQUESTに、当該UEのflying status(flying or not flying)、高度情報、水平速度、垂直速度などを含めて、DUに送信してよい。なお、CUは、UE CONTEXT SETUP REQUESTに代えて、UE CONTEXT MODIFICATION REQUEST、及び/又は、UE CONTEXT MODIFICATION CONFIRMに、当該UEのflying statusなどを含めて送信してもよい。 FIG. 9 is a diagram for explaining operation example 4. In step S1, the CU includes movement state information in a specific message and transmits it to the SN. Specifically, the CU may include the flying status (flying or not flying), altitude information, horizontal speed, vertical speed, etc. of the UE in the UE CONTEXT SETUP REQUEST, and transmit it to the DU. In addition, instead of UE CONTEXT SETUP REQUEST, CU sends the relevant message to UE CONTEXT MODIFICATION REQUEST and/or UE CONTEXT MODIFICATION CONFIRM. It may also be transmitted including the flying status of the UE.
 UE CONTEXT SETUP REQUESTなどを受信したDUは、ステップS2において、UE CONTEXT SETUP REQUESTに対する応答(UE CONTEXT SETUP RESPONSE)をCUに送信する。 The DU, which has received the UE CONTEXT SETUP REQUEST, transmits a response to the UE CONTEXT SETUP REQUEST (UE CONTEXT SETUP RESPONSE) to the CU in step S2.
 (3.2.5)動作例5
 動作例5では、動作例3及び4におけるオプションについて説明する。図10は動作例5を説明するための図である。
(3.2.5) Operation example 5
In operation example 5, options in operation examples 3 and 4 will be explained. FIG. 10 is a diagram for explaining operation example 5.
 ステップS1において、AMF50はgNB100に対して、INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info)を送信してよい。具体的にはAMF50は、図8に示すマスターノード及び/又はセカンダリーノードに対して、INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info)を送信してよい。またAMF50は、図9に示すDU及び/又はCUに対して、INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info)を送信してよい。 In step S1, the AMF 50 may transmit an INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info) to the gNB 100. Specifically, the AMF 50 may transmit INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info) to the master node and/or secondary node shown in FIG. 8 . Further, the AMF 50 may transmit INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info) to the DU and/or CU shown in FIG. 9 .
 INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info)を受信したgNB100は、当該メッセージの応答メッセージであるINITIAL CONTEXT SETUP RESPONSEをAMF50に送信する。 The gNB 100 that received the INITIAL CONTEXT SETUP REQUEST (Aerial UE subscription info) sends the INITIAL CONTEXT SETUP R which is a response message to the message. Send ESPONSE to AMF50.
 (3.2.6)動作例6
 動作例6では、動作例3のオプションについて説明する。動作例6では、UE200のハンドオーバ先(遷移先)のセルを形成するTarget gNBとAMF50との間におけるメッセージによる通信動作を説明する。
(3.2.6) Operation example 6
In operation example 6, options of operation example 3 will be explained. In operation example 6, a communication operation using messages between the Target gNB forming the handover destination (transition destination) cell of the UE 200 and the AMF 50 will be described.
 ステップS1において、Target gNBは、AMF50に対して、PATH SWITCH REQUESTを送信してよい。 In step S1, the Target gNB may transmit a PATH SWITCH REQUEST to the AMF 50.
 PATH SWITCH REQUESTを受信したAMF50は、移動状態情報を特定メッセージに含めてTarget gNBに送信してよい。具体的には、PATH SWITCH REQUESTの受信応答メッセージであるPATH SWITCH REQUEST Ackに、UEのflying status(flying or not flying)、高度情報、水平速度、垂直速度などを含め、PATH SWITCH REQUEST AckをTarget gNBに送信する。 The AMF 50 that has received the PATH SWITCH REQUEST may include the movement status information in a specific message and transmit it to the Target gNB. Specifically, the PATH SWITCH REQUEST Ack, which is a reception response message for the PATH SWITCH REQUEST, includes the UE's flying status (flying or not flying), altitude information, horizontal speed, vertical speed, etc. PATH SWITCH REQUEST Ack Target gNB Send to.
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。
(4) Actions and Effects According to the embodiment described above, the following effects can be obtained.
 本開示の実施形態に係る無線基地局は、上空を移動し得るUAV30に存在するUE200との通信を実行し、特定メッセージを他のgNB100に送信する制御信号・参照信号処理部240と、複数のgNB100が同時にUE200と接続するデュアルコネクティビティをサポートする制御部270と、を備え、特定メッセージは、UE200が上空に位置するか否か、又は上空でのUE200の移動状態の少なくとも何れかを示す移動状態情報を含む。 The radio base station according to the embodiment of the present disclosure includes a control signal/reference signal processing unit 240 that executes communication with the UE 200 present in the UAV 30 that can move in the sky, and transmits a specific message to other gNBs 100, and a plurality of A control unit 270 that supports dual connectivity in which the gNB 100 connects to the UE 200 at the same time, and the specific message indicates a movement state indicating at least one of whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky. Contains information.
 この構成により、UAV UEが前述したmobile IABが有する機能を備えていないレガシーデバイスの場合でも、当該レガシーデバイスとデュアルコネクティビティで通信を行うセカンダリーノード(具体的にはSN)が、UAV UEの上空での移動状態を取得できる。これにより、target RAN nodeは、UAV UEの上空での移動状態に応じた適切な制御を実現し得る。 With this configuration, even if the UAV UE is a legacy device that does not have the functions of the mobile IAB described above, the secondary node (specifically, the SN) that communicates with the legacy device with dual connectivity can fly above the UAV UE. You can obtain the movement status of. Thereby, the target RAN node can implement appropriate control according to the movement state of the UAV UE in the sky.
 また移動状態情報と共に、MNによるUEに対するUL power controlの制御内容をSNに引き継ぐように構成すれば、SNによるUL power controlの演算時間を短縮でき、またSNによるUL power controlの精度が向上し得る。 In addition, by configuring the SN to take over the control content of the UL power control for the UE by the MN along with the movement state information, the calculation time of the UL power control by the SN can be shortened, and the accuracy of the UL power control by the SN can be improved. .
 本開示の実施形態に係る無線基地局は、コアネットワーク40に接続されるCUと、CUに接続され、上空を移動し得るUAV30に存在するUE200との通信を実行し、CUから送信される特定メッセージを受信するDUと、を備え、特定メッセージは、UE200が上空に位置するか否か、又は上空でのUE200の移動状態の少なくとも何れかを示す移動状態情報を含む。 The radio base station according to the embodiment of the present disclosure executes communication between the CU connected to the core network 40 and the UE 200 connected to the CU and present in the UAV 30 that can move in the sky, and specifies information transmitted from the CU. DU for receiving a message, and the specific message includes movement state information indicating at least either whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky.
 この構成により、UAV UEが前述したmobile IABが有する機能を備えていないレガシーデバイスの場合でも、CU-DU機能分離構成におけるDUと当該レガシーデバイスが通信を行う際、セカンダリーノード(具体的にはDU)が、UAV UEの上空での移動状態を取得できる。これにより、DUは、UAV UEの上空での移動状態に応じた適切な制御を実現し得る。 With this configuration, even if the UAV UE is a legacy device that does not have the functions of the mobile IAB described above, when the DU and the legacy device in the CU-DU function separation configuration communicate, the secondary node (specifically, the DU ) can obtain the movement status of the UAV UE in the sky. Thereby, the DU can realize appropriate control according to the movement state of the UAV UE in the sky.
 本開示の実施形態に係る無線基地局は、上空を移動し得るUAV30に存在するUE200との通信を実行し、特定メッセージを、UE200の遷移先のセルを形成するgNB100、又は、gNB100を管理するAMF50に送信する制御信号・参照信号処理部240と、特定メッセージに、UE200が上空に位置するか否か、又は上空でのUE200の移動状態の少なくとも何れかを示す移動状態情報を含める制御部270と、を備える。 The radio base station according to the embodiment of the present disclosure executes communication with the UE 200 present in the UAV 30 that can move in the sky, and manages specific messages to the gNB 100 forming the cell to which the UE 200 transitions or to the gNB 100. A control signal/reference signal processing unit 240 that transmits to the AMF 50 and a control unit 270 that includes movement state information indicating at least either whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky in the specific message. and.
 この構成により、UAV UEがレガシーデバイスの場合でも、UAV UEが前述したmobile IABが有する機能を備えていないレガシーデバイスの場合でも、遷移先セルと当該レガシーデバイスが通信を行う際、セカンダリーノード(具体的には遷移先セル)が、UAV UEの上空での移動状態を取得できる。これにより、遷移先セルは、UAV UEの上空での移動状態に応じた適切な制御を実現し得る。 With this configuration, even if the UAV UE is a legacy device, or even if the UAV UE is a legacy device that does not have the functions of the mobile IAB described above, when the transition destination cell and the legacy device communicate, the secondary node (specifically In particular, the transition destination cell) can obtain the movement state of the UAV UE in the sky. Thereby, the transition destination cell can implement appropriate control according to the movement state of the UAV UE in the sky.
 また移動状態情報と共に、遷移元セルによるUEに対するUL power controlの制御内容を遷移先セルに引き継ぐように構成すれば、遷移先セルによるUL power controlの演算時間を短縮でき、また遷移先セルによるUL power controlの精度が向上し得る。 In addition, by configuring the transition destination cell to take over the UL power control control content for the UE by the transition source cell together with the movement state information, the calculation time for the UL power control by the transition destination cell can be shortened, and the UL power control by the transition destination cell can be transferred to the transition destination cell. The accuracy of power control can be improved.
 本開示の実施形態に係る無線基地局は、上空を移動し得るUAV30に存在するUE200との通信を実行し、特定メッセージを他のgNB100に送信する制御信号・参照信号処理部240と、UE200とgNB100との間で無線リンク障害が生じた場合、特定メッセージに、UE200が上空に位置するか否か、又は上空でのUE200の移動状態の少なくとも何れかを示す移動状態情報を含める制御部270と、を備える。 The radio base station according to the embodiment of the present disclosure includes a control signal/reference signal processing unit 240 that performs communication with the UE 200 present in the UAV 30 that can move in the sky, and transmits a specific message to other gNBs 100; When a wireless link failure occurs with the gNB 100, the control unit 270 includes, in the specific message, movement state information indicating at least one of whether the UE 200 is located in the sky or the movement state of the UE 200 in the sky. , is provided.
 この構成により、UAV UEがレガシーデバイスの場合でも、RLF発生時に再接続先となるセカンダリーノード(具体的にはNew RAN node)が、UAV UEの上空での移動状態を取得できる。これにより、New RAN nodeは、UAV UEの上空での移動状態に応じた適切な制御を実現し得る。 With this configuration, even if the UAV UE is a legacy device, the secondary node (specifically, the New RAN node) that becomes the reconnection destination when RLF occurs can obtain the movement state of the UAV UE in the sky. Thereby, the New RAN node can realize appropriate control according to the movement state of the UAV UE in the sky.
 また移動状態情報と共に、Old RAN nodeによるUEに対するUL power controlの制御内容をNew RAN nodeに引き継ぐように構成すれば、New RAN nodeによるUL power controlの演算時間を短縮し得る。またNew RAN nodeによるUL power controlの精度が向上し得る。 Furthermore, by configuring the New RAN node to take over the control content of the UL power control for the UE by the Old RAN node along with the movement state information, the computation time for the UL power control by the New RAN node can be shortened. Furthermore, the accuracy of UL power control by the New RAN node can be improved.
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that the embodiments are not limited to the description of the embodiments, and that various modifications and improvements can be made.
 また、上述した記載において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。 In addition, in the above description, the words "configure", "activate", "update", "indicate", "enable", "specify", and "select" can be read interchangeably. good. Similarly, the words "link", "associate", "correspond" and "map" may be used interchangeably, and "allocate", "assign", and "monitor" may be used interchangeably. , map may also be read interchangeably.
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 Furthermore, "specific", "dedicated", "UE specific", and "UE individual" may be read interchangeably. Similarly, common, shared, group-common, UE-common, and UE-shared may be interchanged.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, "precoding", "precoder", "weight (precoding weight)", "quasi-co-location (QCL)", "Transmission Configuration Indication state (TCI state)", "space "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", and "panel" are interchangeable. can be used.
 また、上述した実施形態の説明に用いたブロック構成図(図3、図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Furthermore, the block configuration diagrams (FIGS. 3 and 4) used to explain the embodiments described above show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, allocation gning), but these are limited to I can't do it. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 さらに、上述したgNB100(当該装置)、UE200(当該装置)及びAMFは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、gNB100及びUE200のハードウェア構成の一例を示す図である。図12に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the gNB 100 (the device), the UE 200 (the device), and the AMF described above may function as a computer that processes the wireless communication method of the present disclosure. FIG. 12 is a diagram showing an example of the hardware configuration of the gNB 100 and the UE 200. As shown in FIG. 12, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configuration of the device may include one or more of the devices shown in the figure, or may not include some of the devices.
 当該装置の各機能ブロック(図3、図4を参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIGS. 3 and 4) is realized by any hardware element of the computer device or a combination of hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the device is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations, controls communication by the communication device 1004, and controls the memory This is realized by controlling at least one of reading and writing data in the storage 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) that includes an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Further, the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable RO. Consisting of at least one of M (EEPROM), Random Access Memory (RAM), etc. may be done. Memory 1002 may be called a register, cache, main memory (main memory), or the like. The memory 1002 can store programs (program codes), software modules, etc. that can execute a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, such as an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. Storage 1003 may also be called an auxiliary storage device. The above-mentioned recording medium may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplexing (Frequency Division Duplex: FDD) and time division duplexing (Time Division Duplex: TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device includes a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic Consists of hardware such as Device (PLD), Field Programmable Gate Array (FPGA), etc. A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, information notification may be performed using physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block) (MIB), System Information Block (SIB)), other signals, or a combination thereof. RRC signaling may also be called an RRC message, for example, RRC Connection Setup (RRC Connection Setup). ) message, RRC Connection Reconfiguration message, etc.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure is applicable to Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication. ion system (4G), 5th generation mobile communication system ( 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 ( Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate systems and systems that are extended based on these. It may be applied to at least one next generation system. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示においてgNB100によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。gNB100を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、UE200との通信のために行われる様々な動作は、gNB100及びgNB100以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記においてgNB100以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this disclosure, the specific operation performed by the gNB 100 may be performed by its upper node in some cases. In a network consisting of one or more network nodes having the gNB 100, various operations performed for communication with the UE 200 are performed by the gNB 100 and other network nodes other than the gNB 100 (for example, MME or S-GW). It is clear that this can be carried out by at least one of the following methods (conceivable, but not limited to). In the above example, there is one network node other than the gNB 100, but it may be a combination of multiple other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information that is input and output can be overwritten, updated, or added. The output information may be deleted. The input information may be sent to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。gNB100は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)," "wireless base station," "fixed station," "NodeB," "eNodeB (eNB)," "gNodeB (gNB)," " Access Points, "Transmission Point", "Receive Point", "Sending Points (Transmission / Reception Point)", "Sel", "Sel" "Sector", "Cell Group", " The terms "carrier", "component carrier", etc. may be used interchangeably. The gNB 100 may also be called a macro cell, a small cell, a femto cell, a pico cell, or the like.
 gNB100は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。gNB100が複数のセルを収容する場合、gNB100のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The gNB 100 can accommodate one or more (for example, three) cells (also called sectors). When the gNB 100 accommodates multiple cells, the entire coverage area of the gNB 100 can be divided into multiple smaller areas, and each smaller area is divided into a base station subsystem (e.g., an indoor small base station (Remote Radio Head: Communication services can also be provided by RRH).
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行うgNB100、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to part or the entire coverage area of at least one of the gNB 100 and the base station subsystem that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)," "user terminal," "user equipment (UE)," and "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 gNB100及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、gNB100及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、gNB100及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、gNB100及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the gNB 100 and the mobile station may be called a transmitting device, a receiving device, a communication device, etc. Note that at least one of the gNB 100 and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the gNB 100 and the mobile station also includes devices that do not necessarily move during communication operations. For example, at least one of the gNB 100 and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示におけるgNB100は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、gNB100及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、gNB100が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the gNB 100 in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, a configuration in which communication between the gNB 100 and the mobile station is replaced with communication between multiple mobile stations (for example, may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the gNB 100 has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示における移動局は、gNB100として読み替えてもよい。この場合、移動局が有する機能をgNB100が有する構成としてもよい。無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 Similarly, the mobile station in the present disclosure may be read as gNB 100. In this case, the gNB 100 may have the functions that the mobile station has. A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot is one or more symbols in the time domain (Orthogonal Frequency Division Multiplexing (OFDM)) symbol, Single Carrier Frequency Division Mult iple Access (SC-FDMA) symbol, etc.). A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、gNB100が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, the gNB 100 performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. good. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、上りリンク用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include uplink BWP (UL BWP) and DL BWP (DL BWP). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, refer to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient way of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein or that the first element must precede the second element in some way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where the terms "include", "including", and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising". It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring. iry) (e.g., a search in a table, database, or other data structure), and assuming that an assertion has been made is a "judgment" or "decision." Also, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (for example, accessing data in memory) may include regarding the act as a "judgment" or "decision." In addition, "judgment" and "decision" mean that things such as resolving, selecting, choosing, establishing, and comparing are considered to be "judgment" and "decision." may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Moreover, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 図13は、車両2001の構成例を示す図である。図13に示すように、車両2001は、駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。 FIG. 13 is a diagram showing a configuration example of the vehicle 2001. As shown in FIG. 13, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, It includes various sensors 2021 to 2029, an information service section 2012, and a communication module 2013.
 駆動部2002は、例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
 操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両に備えられた各種センサ2021~2027からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでもよい。 The electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals from various sensors 2021 to 2027 provided in the vehicle are input to the electronic control unit 2010. The electronic control unit 2010 may be called an ECU (Electronic Control Unit).
 各種センサ2021~2028からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 Signals from various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service department 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 1 using information acquired from an external device via the communication module 2013 and the like.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (for example, IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors to prevent accidents. or reduce the driver's driving load. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031及び車両1の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2028との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and the components of the vehicle 1 via the communication port. For example, the communication module 2013 communicates via the communication port 2033 with a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, which are included in the vehicle 2001. Data is transmitted and received between the axle 2009, the microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and the sensors 2021 to 2028.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、gNB100、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, the gNB 100, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などについても無線通信を介して外部装置へ送信する。 The communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication. In addition, the communication module 2013 also receives the front wheel and rear wheel rotational speed signals inputted to the electronic control unit 2010 and acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by acceleration sensor 2025, an accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by brake pedal sensor 2026, and a shift lever. A shift lever operation signal acquired by the sensor 2027 and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、センサ2021~2028などの制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service section 2012 provided in the vehicle. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, and left and right rear wheels provided in the vehicle 2001. 2008, axle 2009, sensors 2021 to 2028, etc. may also be controlled.
 (付記)
 上述した開示は、以下のように表現されてもよい。
(Additional note)
The above disclosure may be expressed as follows.
 第1の特徴は、上空を移動し得る移動体に存在する端末(UE200)との通信を実行し、特定メッセージを他の無線基地局に送信する送信部(制御信号・参照信号処理部240)と、複数の無線基地局が同時に前記端末と接続するデュアルコネクティビティをサポートする制御部(制御部270)と、を備え、前記特定メッセージは、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含む、無線基地局(gNB100)である。 The first feature is a transmitting unit (control signal/reference signal processing unit 240) that performs communication with a terminal (UE 200) located in a mobile body that can move in the sky and transmits a specific message to other radio base stations. and a control unit (control unit 270) that supports dual connectivity in which a plurality of wireless base stations connect to the terminal at the same time, and the specific message indicates whether the terminal is located in the sky or not. The wireless base station (gNB 100) includes movement state information indicating at least one of the movement states of the terminal.
 第2の特徴は、ネットワーク(コアネットワーク40)に接続される第1ユニット(CU60)と、前記第1ユニットに接続され、上空を移動し得る移動体に存在する端末との通信を実行し、前記第1ユニットから送信される特定メッセージを受信する第2ユニット(DU61)と、を備え、前記特定メッセージは、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含む、無線基地局(gNB100)である。 A second feature is to execute communication between a first unit (CU 60) connected to a network (core network 40) and a terminal connected to the first unit and existing in a mobile body that can move in the sky, a second unit (DU61) that receives a specific message transmitted from the first unit, and the specific message indicates whether or not the terminal is located in the sky, or whether the terminal is in a state of movement in the sky. A radio base station (gNB 100) that includes movement state information indicating at least one of the following.
 第3の特徴は、上空を移動し得る移動体に存在する端末(UE200)との通信を実行し、特定メッセージを、前記端末の遷移先のセルを形成する無線基地局(gNB100)、又は、前記無線基地局を管理する無線通信ノード(AMF50)に送信する送信部(制御信号・参照信号処理部240)と、前記特定メッセージに、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含める制御部(制御部270)と、を備える無線基地局(gNB100)である。 The third feature is that a wireless base station (gNB 100) that performs communication with a terminal (UE 200) existing in a mobile body that can move in the sky and sends a specific message to a radio base station (gNB 100) that forms a cell to which the terminal transitions; A transmitting unit (control signal/reference signal processing unit 240) that transmits to a wireless communication node (AMF50) that manages the wireless base station, and a message indicating whether the terminal is located in the sky or not, in the specific message. The wireless base station (gNB 100) includes a control unit (control unit 270) that includes movement state information indicating at least one of the movement states of the terminal.
 第4の特徴は、上空を移動し得る移動体に存在する端末(UE200)との通信を実行し、特定メッセージを他の無線基地局に送信する送信部(制御信号・参照信号処理部240)と、前記端末と無線基地局の間で無線リンク障害が生じた場合、前記特定メッセージに、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含める制御部(制御部270)と、を備える無線基地局(gNB100)である。 The fourth feature is a transmission unit (control signal/reference signal processing unit 240) that executes communication with a terminal (UE 200) existing in a mobile body that can move in the sky and transmits a specific message to other radio base stations. and when a wireless link failure occurs between the terminal and a wireless base station, the specific message indicates at least one of whether the terminal is located in the sky or the movement state of the terminal in the sky. The wireless base station (gNB 100) includes a control unit (control unit 270) that includes movement state information.
 第5の特徴は、無線基地局が、上空を移動し得る移動体に存在する端末(UE200)との通信を実行し、特定メッセージを他の無線基地局に送信するステップと、複数の無線基地局が同時に前記端末と接続するデュアルコネクティビティをサポートする場合において、前記特定メッセージに、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含めるステップと、を含む無線通信方法である。 The fifth feature is a step in which the radio base station performs communication with a terminal (UE 200) existing in a mobile body that can move in the sky, and transmits a specific message to other radio base stations; In the case where the station supports dual connectivity in which the station connects with the terminal at the same time, the specific message includes movement status information indicating at least one of whether the terminal is located in the sky or the movement status of the terminal in the sky. A wireless communication method comprising the steps of:
 第6の特徴は、ネットワーク(コアネットワーク40)に接続される第1ユニット(CU60)と、前記第1ユニットに接続され、上空を移動し得る移動体に存在する端末との通信を実行し、前記第1ユニットから送信される特定メッセージを受信する第2ユニット(DU61)と、を備える無線基地局(gNB100)が、前記第1ユニットにより、前記特定メッセージに、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含めるステップと、前記第2ユニットにより、前記端末との通信を実行するステップと、を含む無線通信方法である。 A sixth feature is to execute communication between a first unit (CU 60) connected to a network (core network 40) and a terminal connected to the first unit and existing in a mobile body that can move in the sky, a second unit (DU61) that receives a specific message transmitted from the first unit; A wireless communication method comprising the steps of: including movement state information indicating at least one of whether or not the terminal is moving in the sky or a movement state of the terminal in the sky; and a step of performing communication with the terminal by the second unit. .
 第7の特徴は、上空を移動し得る移動体に存在する端末(UE200)との通信を実行し、特定メッセージを他の無線基地局から受信する受信部(制御信号・参照信号処理部240)と、
 複数の無線基地局が同時に前記端末と接続するデュアルコネクティビティをサポートする制御部(制御部270)と、
 を備え、
 前記特定メッセージは、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含む、無線基地局である(gNB100)。
The seventh feature is a receiving unit (control signal/reference signal processing unit 240) that performs communication with a terminal (UE 200) existing in a mobile body that can move in the sky and receives specific messages from other radio base stations. and,
a control unit (control unit 270) that supports dual connectivity in which a plurality of wireless base stations simultaneously connect to the terminal;
Equipped with
The specific message is a radio base station (gNB 100) including movement status information indicating at least either whether the terminal is located in the sky or the movement status of the terminal in the sky.
 第8の特徴は、ネットワーク(コアネットワーク40)に接続される第1ユニットと、
 前記第1ユニットに接続され、上空を移動し得る移動体に存在する端末(UE200)との通信を実行し、前記第1ユニットから送信される特定メッセージを受信する第2ユニットと、
 を備え、
 前記特定メッセージは、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含む、無線基地局である(gNB100)。
An eighth feature is a first unit connected to a network (core network 40);
a second unit that is connected to the first unit, performs communication with a terminal (UE 200) present in a mobile body that can move in the sky, and receives a specific message transmitted from the first unit;
Equipped with
The specific message is a radio base station (gNB 100) including movement status information indicating at least either whether the terminal is located in the sky or the movement status of the terminal in the sky.
 第9の特徴は、上空を移動し得る移動体に存在する端末(UE200)との通信を実行し、特定メッセージを、前記端末の遷移元のセルを形成する無線基地局から受信する受信部(制御信号・参照信号処理部240)と、
 前記特定メッセージの受信応答を前記遷移元のセルを形成する無線基地局に送信する送信部(制御信号・参照信号処理部240)と、
 を備え、
 前記特定メッセージは、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含む、無線基地局である(gNB100)。
The ninth feature is a receiving unit (UE 200) that executes communication with a terminal (UE 200) existing in a mobile body that can move in the sky, and receives a specific message from a radio base station forming a cell from which the terminal transitions. control signal/reference signal processing section 240);
a transmitting unit (control signal/reference signal processing unit 240) that transmits a reception response to the specific message to a wireless base station forming the transition source cell;
Equipped with
The specific message is a radio base station (gNB 100) including movement status information indicating at least either whether the terminal is located in the sky or the movement status of the terminal in the sky.
 第10の特徴は、上空を移動し得る移動体に存在する端末(UE200)の遷移元のセルを形成する第1無線基地局(gNB100)、又は、前記端末の遷移先のセルを形成する第2無線基地局(gNB100)を管理する制御部(制御部53)と、
 前記第1無線基地局から特定メッセージを受信する受信部(受信部54)と、
 前記特定メッセージに対する応答メッセージを前記遷移元のセルを形成する無線基地局に送信する送信部(送信部52)と、
 を備え、
 前記特定メッセージは、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含む、無線通信ノードである(AMF50)。
The tenth feature is that the first radio base station (gNB100) forms the transition source cell of a terminal (UE200) existing in a mobile body that can move in the sky, or the first radio base station (gNB100) forms the transition destination cell of the terminal. a control unit (control unit 53) that manages two wireless base stations (gNB100);
a receiving unit (receiving unit 54) that receives a specific message from the first wireless base station;
a transmitting unit (transmitting unit 52) that transmits a response message to the specific message to a wireless base station forming the transition source cell;
Equipped with
The specific message is a wireless communication node including movement status information indicating at least one of whether the terminal is located in the sky or the movement status of the terminal in the sky (AMF 50).
 第11の特徴は、上空を移動し得る移動体に存在する端末(UE200)との通信を実行し、特定メッセージの取得要求を他の無線基地局に送信する送信部(制御信号・参照信号処理部240)と、
 前記遷移元のセルを形成する無線基地局から送信される前記特定メッセージを受信する受信部(制御信号・参照信号処理部240)と、
 前記端末と無線基地局の間で無線リンク障害が生じた場合、前記遷移元のセルを形成する無線基地局から送信される前記特定メッセージは、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含む、無線基地局である(gNB100)。
The eleventh feature is a transmitting unit (control signal/reference signal processing part 240) and
a receiving unit (control signal/reference signal processing unit 240) that receives the specific message transmitted from the radio base station forming the transition source cell;
When a wireless link failure occurs between the terminal and a wireless base station, the specific message sent from the wireless base station forming the transition source cell determines whether the terminal is located in the sky or not. The gNB 100 is a radio base station (gNB 100) that includes movement state information indicating at least one of the movement states of the terminal.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
 10 無線通信システム
 20 NG-RAN
 30 UAV
 40 コアネットワーク
 50 AMF
 100, 100A~100D gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 2001 車両
 2002 駆動部
 2003 操舵部
 2004 アクセルペダル
 2005 ブレーキペダル
 2006 シフトレバー
 2007 左右の前輪
 2008 左右の後輪
 2009 車軸
 2010 電子制御部
 2012 情報サービス部
 2013 通信モジュール
 2021 電流センサ
 2022 回転数センサ
 2023 空気圧センサ
 2024 車速センサ
 2025 加速度センサ
 2026 ブレーキペダルセンサ
 2027 シフトレバーセンサ
 2028 物体検出センサ
 2029 アクセルペダルセンサ
 2030 運転支援システム部
 2031 マイクロプロセッサ
 2032 メモリ(ROM, RAM)
 2033 通信ポート
10 Wireless communication system 20 NG-RAN
30 UAVs
40 Core network 50 AMF
100, 100A~100D gNB
200 U.E.
210 Radio signal transmission/reception unit 220 Amplifier unit 230 Modulation/demodulation unit 240 Control signal/reference signal processing unit 250 Encoding/decoding unit 260 Data transmission/reception unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 Axle 2010 Electronic control unit 2012 Information service department 2013 Communication module 2021 Current sensor 2022 Rotation speed sensor 2023 Air pressure sensor 2024 Vehicle speed Sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 Communication port

Claims (6)

  1.  上空を移動し得る移動体に存在する端末との通信を実行し、特定メッセージを他の無線基地局に送信する送信部と、
     複数の無線基地局が同時に前記端末と接続するデュアルコネクティビティをサポートする制御部と、
     を備え、
     前記特定メッセージは、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含む、無線基地局。
    a transmitting unit that performs communication with a terminal located in a mobile body that can move in the sky and transmits a specific message to another wireless base station;
    a control unit that supports dual connectivity in which multiple wireless base stations simultaneously connect to the terminal;
    Equipped with
    The specific message includes movement status information indicating at least one of whether the terminal is located in the sky or a movement status of the terminal in the sky.
  2.  ネットワークに接続される第1ユニットと、
     前記第1ユニットに接続され、上空を移動し得る移動体に存在する端末との通信を実行し、前記第1ユニットから送信される特定メッセージを受信する第2ユニットと、
     を備え、
     前記特定メッセージは、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含む、無線基地局。
    a first unit connected to the network;
    a second unit that is connected to the first unit, performs communication with a terminal located in a mobile body that can move in the sky, and receives a specific message transmitted from the first unit;
    Equipped with
    The specific message includes movement status information indicating at least one of whether the terminal is located in the sky or a movement status of the terminal in the sky.
  3.  上空を移動し得る移動体に存在する端末との通信を実行し、特定メッセージを、前記端末の遷移先のセルを形成する無線基地局、又は、前記無線基地局を管理する無線通信ノードに送信する送信部と、
     前記特定メッセージに、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含める制御部と、
     を備える無線基地局。
    Executes communication with a terminal existing in a mobile body that can move in the sky, and sends a specific message to a wireless base station that forms a cell to which the terminal transitions or a wireless communication node that manages the wireless base station. a transmitter,
    a control unit including, in the specific message, movement state information indicating at least one of whether the terminal is located in the sky or a movement state of the terminal in the sky;
    A wireless base station equipped with
  4.  上空を移動し得る移動体に存在する端末との通信を実行し、特定メッセージを他の無線基地局に送信する送信部と、
     前記端末と無線基地局の間で無線リンク障害が生じた場合、前記特定メッセージに、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含める制御部と、
     を備える無線基地局。
    a transmitting unit that performs communication with a terminal located in a mobile body that can move in the sky and transmits a specific message to another wireless base station;
    When a wireless link failure occurs between the terminal and a wireless base station, the specific message includes a movement state indicating at least one of whether the terminal is located in the sky or the movement state of the terminal in the sky. a control section containing information;
    A wireless base station equipped with
  5.  無線基地局が、上空を移動し得る移動体に存在する端末との通信を実行し、特定メッセージを他の無線基地局に送信するステップと、
     複数の無線基地局が同時に前記端末と接続するデュアルコネクティビティをサポートする場合において、前記特定メッセージに、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含めるステップと、
     を含む無線通信方法。
    a step in which the wireless base station communicates with a terminal located in a mobile body that can move in the sky, and transmits a specific message to another wireless base station;
    In the case where a plurality of wireless base stations support dual connectivity in which multiple wireless base stations connect to the terminal at the same time, the specific message includes at least one of whether the terminal is located in the sky or the movement state of the terminal in the sky. including movement status information indicating;
    wireless communication methods including;
  6.  ネットワークに接続される第1ユニットと、前記第1ユニットに接続され、上空を移動し得る移動体に存在する端末との通信を実行し、前記第1ユニットから送信される特定メッセージを受信する第2ユニットと、を備える無線基地局が、前記第1ユニットにより、前記特定メッセージに、前記端末が上空に位置するか否か、又は上空での前記端末の移動状態の少なくとも何れかを示す移動状態情報を含めるステップと、
     前記第2ユニットにより、前記端末との通信を実行するステップと、
     を含む無線通信方法。
    A first unit connected to a network and a terminal connected to the first unit and located in a mobile body that can move in the sky, and receiving a specific message transmitted from the first unit. 2 units, the mobile state in which the first unit includes, in the specific message, at least one of whether or not the terminal is located in the sky or a state of movement of the terminal in the sky; including the information;
    performing communication with the terminal by the second unit;
    wireless communication methods including;
PCT/JP2022/034830 2022-09-16 2022-09-16 Wireless base station and wireless communication method WO2024057547A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034830 WO2024057547A1 (en) 2022-09-16 2022-09-16 Wireless base station and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034830 WO2024057547A1 (en) 2022-09-16 2022-09-16 Wireless base station and wireless communication method

Publications (1)

Publication Number Publication Date
WO2024057547A1 true WO2024057547A1 (en) 2024-03-21

Family

ID=90274668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034830 WO2024057547A1 (en) 2022-09-16 2022-09-16 Wireless base station and wireless communication method

Country Status (1)

Country Link
WO (1) WO2024057547A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230511A1 (en) * 2019-05-15 2020-11-19 ソニー株式会社 Wireless communication device, wireless communication method, program, and wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230511A1 (en) * 2019-05-15 2020-11-19 ソニー株式会社 Wireless communication device, wireless communication method, program, and wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "UAV support for NR", 3GPP DRAFT; R2-2208250, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Meeting; 20220817 - 20220826, 10 August 2022 (2022-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052261561 *
ZTE CORPORATION, SANECHIPS: "Discussion on subscription-based identification for NR UAV", 3GPP DRAFT; R2-2208413, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20220817 - 20220829, 10 August 2022 (2022-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052261722 *

Similar Documents

Publication Publication Date Title
WO2023162085A1 (en) Communication device and radio communication method
WO2023112180A1 (en) Terminal, base station, radio communication system, and radio communication method
WO2024057547A1 (en) Wireless base station and wireless communication method
WO2024018574A1 (en) Base station and terminal
WO2024043281A1 (en) Terminal and wireless communication method
WO2024024111A1 (en) Terminal and base station
WO2024024112A1 (en) Base station
WO2024034095A1 (en) Terminal
WO2023210006A1 (en) Terminal, wireless base station, and wireless communication method
WO2023090401A1 (en) Wireless communication node and wireless communication method
WO2024043154A1 (en) Wireless base station
WO2024043146A1 (en) Wireless base station and terminal
WO2023067750A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024095494A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024018572A1 (en) Terminal
WO2024034029A1 (en) Terminal and wireless communication method
WO2024034031A1 (en) Terminal and wireless communication method
WO2024069901A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023047501A1 (en) Terminal and wireless communication method
WO2024024100A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024024096A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024024098A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023135637A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2024034032A1 (en) Terminal and wireless communication method
WO2024034093A1 (en) Terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958866

Country of ref document: EP

Kind code of ref document: A1