WO2024057466A1 - Electric vehicle control method and electric vehicle control device - Google Patents

Electric vehicle control method and electric vehicle control device Download PDF

Info

Publication number
WO2024057466A1
WO2024057466A1 PCT/JP2022/034488 JP2022034488W WO2024057466A1 WO 2024057466 A1 WO2024057466 A1 WO 2024057466A1 JP 2022034488 W JP2022034488 W JP 2022034488W WO 2024057466 A1 WO2024057466 A1 WO 2024057466A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
electric vehicle
posture
control
force distribution
Prior art date
Application number
PCT/JP2022/034488
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 古閑
寛之 福田
匡史 岩本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2022/034488 priority Critical patent/WO2024057466A1/en
Publication of WO2024057466A1 publication Critical patent/WO2024057466A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed

Definitions

  • the present invention relates to an electric vehicle control method and an electric vehicle control device.
  • JP4876534B2 discloses a technique for reducing the pitch rate of a vehicle when the vehicle passes over a bump in the road surface, etc., regarding an in-wheel motor type vehicle in which the effect of the suspension is not sufficiently obtained. More specifically, different braking and driving forces are applied to the front and rear wheels, and if a change in pitch rate is detected, different braking and driving forces are applied to the left and right wheels at a predetermined period. It is disclosed that it will be granted.
  • the base point (center of gravity) of posture change during acceleration or deceleration may change.
  • Conventional attitude control controls the attitude of an electric vehicle based on, for example, the state of the electric vehicle at the time of manufacture, etc. Therefore, as mentioned above, when there is a change in the specific usage situation of the electric vehicle This may cause an error, and the attitude of the electric vehicle may not accurately converge to the target attitude.
  • the present invention provides a control method for an electric vehicle that can converge the posture of an electric vehicle to a target posture during acceleration or deceleration, regardless of the specific usage situation of the electric vehicle, and a control method for an electric vehicle.
  • the purpose is to provide equipment.
  • An aspect of the present invention is a control method for an electric vehicle that performs posture control to control the posture in the longitudinal direction by adjusting the distribution of driving force between the front wheels and the rear wheels, which are drive wheels.
  • a basic posture is detected, which is the actual posture in the longitudinal direction when the electric vehicle is stopped.
  • a driving force distribution for attitude control which is a driving force distribution that controls the posture in the longitudinal direction, is calculated.
  • a corrected driving force distribution is calculated, and the driving wheels are controlled by this corrected driving force distribution.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle.
  • FIG. 2 is an explanatory diagram showing a schematic structure of the chassis system.
  • FIG. 3 is an explanatory diagram showing the attitude of the electric vehicle and its changes.
  • FIG. 4 is a block diagram showing the configuration of a controller for posture control.
  • FIG. 5 is a block diagram showing the configuration of the attitude control calculation section.
  • FIG. 6 is a flowchart showing the actions related to attitude control of the electric vehicle.
  • FIG. 7 is a block diagram showing the configuration of the attitude control calculation section in the second embodiment.
  • FIG. 8 is a graph illustrating the relationship between the difference between the front vehicle height and the rear vehicle height and the correction coefficient.
  • FIG. 9 is a flowchart showing the actions related to attitude control in the second embodiment.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle 100.
  • the electric vehicle 100 is, for example, an electric vehicle, a hybrid vehicle, or the like, and is a vehicle that can drive or brake one or more drive wheels using an electric motor.
  • the electric vehicle 100 is a so-called 4WD (four wheel drive) vehicle, and the driving force generated in a plurality of drive wheels can be individually controlled (adjusted).
  • electric vehicle 100 includes a front wheel drive system 10, a rear wheel drive system 11, and a controller 12.
  • the front wheel drive system 10 is a system that controls the front wheel 21, which is the first drive wheel.
  • Front wheel drive system 10 includes a front inverter 22 and a front motor 23.
  • the front inverter 22 drives the front motor 23 by converting DC power output by a battery (not shown) into AC power and supplying the AC power to the front motor 23. Furthermore, when the front motor 23 is rotated by the front wheels 21, the front inverter 22 converts the AC regenerative power generated by the front motor 23 into DC power and inputs the DC power to the battery, thereby charging the battery. .
  • the front motor 23 is an electric motor that drives the front wheels 21.
  • the front motor 23 is, for example, a three-phase AC synchronous motor.
  • the torque generated by the front motor 23 is transmitted to the front wheels 21 via the front drive shaft 24, and generates a driving force (hereinafter referred to as front wheel driving force FF ) at the front wheels 21.
  • the rear wheel drive system 11 is a system that controls the rear wheel 26, which is the second drive wheel.
  • Rear wheel drive system 11 includes a rear inverter 27 and a rear motor 28.
  • the rear inverter 27 drives the rear motor 28 by converting the DC power output by the battery into AC power and supplying the AC power to the rear motor 28. Further, when the rear motor 28 is rotated by the rear wheels 26, the rear inverter 27 converts the AC regenerated power generated by the rear motor 28 into DC power and inputs the DC power to the battery, thereby charging the battery.
  • the rear motor 28 is an electric motor that drives the rear wheels 26.
  • the rear motor 28 is configured by, for example, a three-phase AC synchronous motor similar to the front motor 23.
  • the torque generated by the rear motor 28 is transmitted to the rear wheels 26 via the rear drive shaft 29, and generates a driving force (hereinafter referred to as rear wheel driving force FR ) at the rear wheels 26.
  • the controller 12 is configured by one or more computers that control the operation of the electric vehicle 100. Controller 12 is programmed to control the operation of electric vehicle 100 at a predetermined control cycle. In the present embodiment, the controller 12 is a control device for the electric vehicle 100 that executes posture control to control the posture in the longitudinal direction by adjusting the distribution of driving force between the front wheels 21 and the rear wheels 26 that are drive wheels.
  • the controller 12 distributes the driving force (hereinafter referred to as the total driving force TQ) requested by, for example, the operation of an accelerator pedal (not shown) to the front wheels 21 and the rear wheels 26 that are driving wheels. Then, the controller 12 drives the front wheels 21 and the rear wheels 26 using the front wheel drive system 10 and the rear wheel drive system 11, respectively, so that a front wheel drive force F F and a rear wheel drive force F R are generated according to the distribution. Furthermore, in the present embodiment, the controller 12 is programmed to execute attitude control to control the longitudinal attitude of the electric vehicle 100 by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26 as necessary. has been done.
  • the controller 12 can appropriately obtain various parameters representing the operating state of the electric vehicle 100, etc., using a sensor (not shown) or by calculation.
  • electric vehicle 100 includes an accelerator opening sensor (not shown) that detects accelerator opening APO . Therefore, the controller 12 can appropriately acquire the accelerator opening degree APO .
  • the accelerator opening degree APO is a parameter representing the amount of operation of the accelerator pedal. Further, the controller 12 appropriately acquires the vehicle speed VSP of the electric vehicle 100 using a sensor (not shown) or by calculation.
  • the electric vehicle 100 includes sensors (not shown) (for example, buckle sensors for each seatbelt) that detect the attachment and detachment states of seatbelts provided in the driver's seat, the passenger seat, and the rear seat. Therefore, the controller 12 can appropriately acquire a signal indicating the attachment/detaching state of the seatbelt of each seat (hereinafter referred to as a seatbelt attachment/detachment signal S seat ).
  • the electric vehicle 100 also includes a sensor (a so-called suspension stroke sensor) that detects the stroke amount, etc. of a front suspension 31 (see FIG. 2) provided on the front wheels 21 and a rear suspension 32 (see FIG. 2) provided on the rear wheels 26. ). Therefore, the controller 12 can appropriately acquire a signal indicating the stroke amount of each suspension (hereinafter referred to as suspension stroke signal S sus ).
  • the electric vehicle 100 includes a pitch sensor that detects the pitch angle ⁇ P or pitch rate of the electric vehicle 100. Therefore, the controller 12 can appropriately acquire the pitch angle ⁇ P and pitch rate of the electric vehicle 100. Further, the controller 12 can appropriately acquire the current location of the electric vehicle 100 and the slope of the road surface on which the electric vehicle 100 travels (hereinafter referred to as road surface slope ⁇ LS ) from a car navigation system (not shown). Note that the road surface slope ⁇ LS can be obtained by calculation based on the vehicle speed VSP and acceleration G of the electric vehicle 100, or changes thereof.
  • FIG. 2 is an explanatory diagram showing a schematic structure of the chassis system.
  • the front wheels 21 are connected via a front suspension 31 to a vehicle shed 101, which is a portion of the vehicle body where a passenger compartment and the like are formed.
  • the rear wheels 26 are connected to the vehicle shed 101 via a rear suspension 32.
  • the torque of the front motor 23 that generates the front wheel drive force FF acts on the vehicle shed 101 via the front suspension 31.
  • the front torque generates a moment around the virtual center of rotation O F that acts in a direction that reduces the pitch angle ⁇ P. That is, when electric vehicle 100 accelerates, the front torque suppresses nose up.
  • the torque of the rear motor 28 that generates the rear wheel drive force F R acts on the vehicle shed 101 via the rear suspension 32, and generates a pitch angle ⁇ around the virtual center of rotation O R. A moment is generated that acts in the direction of decreasing P. Therefore, when electric vehicle 100 accelerates, rear torque suppresses nose up.
  • the magnitude of the effect of the front torque on suppressing nose-up during acceleration depends on the magnitude of the anti-scut angle ⁇ F .
  • the magnitude of the effect of the rear torque to suppress nose-up during acceleration depends on the magnitude of the anti-scut angle ⁇ R. Therefore, by adjusting the drive force distribution between the front wheels 21 and the rear wheels 26 so that the distribution to the drive wheels with a relatively large anti-scut angle is increased, the nose-up can be suppressed while maintaining the total drive force. becomes larger. Therefore, in the present embodiment, the controller 12 performs attitude control that controls the attitude of the electric vehicle 100 in the longitudinal direction (i.e., the pitch angle ⁇ P or its variation) by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26. Execute.
  • the virtual center of rotation OF is an instantaneous and virtual center of rotation that occurs in the vehicle body (in particular, the vehicle shed 101) due to the transmission of front torque, and is determined in advance by the specific configuration of the front suspension 31 and the like.
  • the virtual center of rotation OR in the rear section is an instantaneous and virtual center of rotation that occurs in the vehicle body (particularly the vehicle shed 101) due to the transmission of rear torque, and is determined in advance by the specific configuration of the rear suspension 32, etc. Determined.
  • the anti-scut angle ⁇ F is the angle formed by a line connecting the rotation center of the front wheel 21 and the virtual rotation center OF and a line parallel to the road surface in the XZ plane.
  • the anti-scut angle ⁇ R is the angle formed by a line connecting the rotation center of the rear wheel 26 and the virtual rotation center OR and a line parallel to the road surface in the XZ plane.
  • the anti-scut angle ⁇ R of the rear suspension 32 is larger than the anti-scut angle ⁇ F of the front suspension 31. Therefore, for example, when suppressing or reducing the pitch angle ⁇ P from increasing during acceleration, the controller 12 relatively increases the driving force distribution to the rear wheels 26 .
  • the controller 12 executes attitude control by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26 even during deceleration.
  • the electric vehicle 100 assumes a position where the front portion sinks (a so-called nose dive position), so the controller 12 controls the driving of the front wheels 21 and the rear wheels 26 accordingly. Adjust force distribution.
  • the attitude of electric vehicle 100 refers to the attitude in the front-rear direction, that is, the pitch angle ⁇ P.
  • posture control by adjusting the driving force distribution is control of pitch angle ⁇ P , control of pitch rate ⁇ P , or control of pitch angle ⁇ P and pitch rate ⁇ P.
  • the pitch rate ⁇ P is the time rate of change of the pitch angle ⁇ P.
  • FIG. 3 is an explanatory diagram showing the posture of electric vehicle 100 and its changes.
  • FIG. 3(A) shows the attitude of the electric vehicle 100 when it is stopped, which is determined at the time of manufacturing or the like.
  • FIG. 3(B) shows the attitude of electric vehicle 100 when stopped, which changes depending on specific usage conditions.
  • a load WL F is applied to the front wheels 21 due to the vehicle weight
  • a load WL F is applied to the rear wheels 26 due to the vehicle weight.
  • load WLR is subjected to load WLR .
  • the height of the vehicle shed 101 from the road surface at the front end portion (hereinafter referred to as front vehicle height) H F1 and the height of the vehicle shed 101 from the road surface at the rear end portion (hereinafter referred to as front vehicle height) (referred to as rear vehicle height) H R1 is approximately equal. That is, when the vehicle is stopped, the vehicle shed 101 is horizontal.
  • the vehicle shed 101 is in a posture tilted rearward with respect to the standard posture (hereinafter referred to as a backward tilted posture), such as when the electric vehicle 100 is in a nose-up posture due to acceleration. ).
  • the vehicle shed 101 is tilted forward relative to the standard posture (hereinafter referred to as the forward tilted posture), such as when the electric vehicle 100 is in a nose dive posture due to deceleration. ).
  • the actual posture in the longitudinal direction (hereinafter referred to as the basic posture) when the electric vehicle 100 is stopped changes depending on the specific usage situation of the electric vehicle 100.
  • the riding position of the passenger is taken as an example, but changes similar to those described above may also occur depending on the position and loading amount of the luggage.
  • attitude control by adjusting the driving force distribution, on the premise that the electric vehicle 100 maintains a standard attitude while stopped, a moment is generated around the center of gravity OG to control the pitch angle ⁇ P .
  • the driving force distribution is adjusted so as to cause this. For this reason, when the actual position of the center of gravity OG changes due to a change from the standard posture to the basic posture as described above, or due to a change from the basic posture to another basic posture, the planned No moment is generated in the vehicle shed 101. As a result, in attitude control that does not take the basic attitude into consideration, the attitude of electric vehicle 100 may not be the expected attitude.
  • the controller 12 takes into account the basic attitude of the electric vehicle 100 and performs attitude control by adjusting the driving force distribution, as described below.
  • FIG. 4 is a block diagram showing the configuration of the controller 12 for attitude control.
  • the controller 12 includes a total driving force calculation section 41, a basic distribution calculation section 42, an attitude control calculation section 43, a driving force setting section 44, a front motor control section 45, and a rear motor control section 46. .
  • the total driving force calculating section 41 calculates the total driving force TQ based on the operation of the accelerator pedal.
  • Total driving force TQ is the required driving force for electric vehicle 100.
  • the total driving force calculation unit 41 has a map that associates the accelerator opening degree A PO with the total driving force TQ, and calculates the total driving force TQ corresponding to the accelerator opening degree A PO by referring to this map. .
  • the total driving force calculation unit 41 calculates the total driving force TQ based on the accelerator opening degree A PO as described above. Based on this, the total driving force TQ can be calculated. Since these systems are systems that replace the operation of the accelerator pedal by the driver, the calculation of the total driving force TQ performed by the total driving force calculation unit 41 based on the commands of these systems substantially does not require the operation of the accelerator pedal. It is a calculation based on operations.
  • the basic distribution calculation unit 42 distributes the total driving force TQ to the front wheels 21 and the rear wheels 26 according to the basic distribution.
  • the basic distribution is a driving force distribution that is determined so as to maximize electric power consumption within a range that can ensure running stability, and is determined in advance through experiments, simulations, or the like.
  • the basic distribution may change depending on the specific running state (steering state, etc.) of electric vehicle 100.
  • the basic distribution calculation unit 42 calculates the first front torque target value T F1 * and the first rear torque target value T R1 * based on the basic distribution and the total driving force TQ.
  • the first front torque target value T F1 * represents the front motor torque that causes the front wheels 21 to generate the front wheel driving force F F according to the basic distribution.
  • the first rear torque target value T R1 * represents the rear torque that causes the rear wheels 26 to generate the rear wheel drive force F R according to the basic distribution.
  • the combination of the first front torque target value T F1 * and the first rear torque target value T R1 * will be referred to as basic driving force distribution (T F1 * , T R1 * ).
  • Attitude control calculation unit 43 detects the basic attitude of electric vehicle 100 and calculates corrected driving force distribution (T F3 * , T R3 * ) that is driving force distribution for attitude control according to the basic attitude.
  • the attitude control calculation unit 43 detects the basic attitude of the electric vehicle 100 based on the seatbelt attachment/detaching signal S seat .
  • the corrected driving force distribution (T F3 * , T R3 * ) is a final front torque target value (hereinafter referred to as a third front torque target value T F3 ) for controlling the attitude according to the basic attitude of the electric vehicle 100. * ) and the rear torque target value (hereinafter referred to as third rear torque target value T R3 * ).
  • the configuration of the attitude control calculation unit 43 will be described in detail later.
  • the driving force setting unit 44 determines the distribution of the driving force generated between the front wheels 21 and the rear wheels 26 by basic driving force distribution (T F1 * , T R1 * ) or corrected driving force distribution (T F3 * , T R3 * ). Set to either.
  • the driving force setting unit 44 corrects the driving force distribution between the front wheels 21 and the rear wheels 26 when attitude control is turned on by setting or when execution of attitude control is permitted. Set to allocation (T F3 * , T R3 * ).
  • the driving force setting unit 44 adjusts the driving force distribution between the front wheels 21 and the rear wheels 26 to the basic driving force when the attitude control is turned off by setting or the like, or when the execution of the attitude control is not permitted.
  • T F1 * , T R1 * Set to allocation (T F1 * , T R1 * ).
  • attitude control is turned on or execution of attitude control is permitted by setting or the like. That is, in the following description, it is assumed that the driving force setting unit 44 sets the driving force distribution between the front wheels 21 and the rear wheels 26 to the corrected driving force distribution (T F3 * , T R3 * ).
  • the front motor control unit 45 controls the front motor 23 via the front inverter 22 so that the driving force set by the driving force setting unit 44 is generated at the front wheels 21.
  • the front motor control unit 45 causes the front motor 23 to generate a front torque corresponding to the first front torque target value T F1 *.
  • the front motor control unit 45 controls the front motor 23 to adjust the third front torque target value T F3 * to the third front torque target value T F3 * .
  • the front wheel drive force FF is controlled to the basic drive force or the corrected drive force.
  • the rear motor control unit 46 controls the rear motor 28 via the rear inverter 27 so that the driving force set by the driving force setting unit 44 is generated at the rear wheel 26.
  • the rear motor control unit 46 causes the rear motor 28 to generate a rear torque corresponding to the first rear torque target value T R1 * .
  • the rear motor control unit 46 causes the rear motor 28 to generate a rear torque corresponding to the third rear torque target value T R3 *. generate.
  • the rear wheel drive force FR is controlled to the basic drive force or the corrected drive force.
  • front motor control section 45 and the rear motor control section 46 control the front wheels 21 and the rear wheels 26 according to the basic driving force distribution (T F1 * , TR1 * ) or the corrected driving force distribution (T F3 * , T R3 * ).
  • FIG. 5 is a block diagram showing the configuration of the attitude control calculation section 43. As shown in FIG. 5, the attitude control calculation section 43 includes a first calculation section 51 and a second calculation section 52.
  • the first calculation unit 51 calculates the driving force distribution for attitude control (T F2 * , T R2 * ), which is the driving force distribution that controls the longitudinal attitude of the electric vehicle 100. calculate.
  • the first calculation unit 51 includes a basic pitch correction unit 53 as a configuration for calculating the driving force distribution for attitude control (T F2 * , T R2 * ).
  • the basic pitch correction unit 53 calculates a driving force distribution for attitude control (T F2 * , T R2 * ), which is a driving force distribution that controls the attitude in the longitudinal direction when the electric vehicle 100 accelerates or decelerates. This is a distribution calculation section. That is, regardless of the basic attitude of electric vehicle 100, basic pitch correction unit 53 performs the adjustment for attitude control on the premise that electric vehicle 100 maintains a standard attitude while stopped.
  • the driving force distribution (T F2 * , T R2 * ) is calculated. Therefore, the driving force distribution for attitude control (T F2 * , T R2 * ) is based on the front torque target value (hereinafter referred to as the front torque target value) for attitude control on the premise that the electric vehicle 100 maintains the standard attitude when stopped.
  • the basic pitch correction unit 53 adjusts the pitch angle ⁇ P to a target pitch angle (hereinafter referred to as target pitch angle ⁇ P * ) based on, for example, a predetermined vehicle model of the electric vehicle 100.
  • target pitch angle ⁇ P * By correcting the basic driving force distribution (T F1 * , T R1 * ), the attitude control driving force distribution (T F2 * , T R2 * ) is calculated.
  • the attitude control performed by the electric vehicle 100 in this embodiment is performed by feedforward control that corrects (adjusts) the driving force distribution based on the vehicle model, regardless of the pitch angle ⁇ P that actually occurs.
  • the second calculation unit 52 detects the basic attitude of the electric vehicle 100, and corrects the attitude control driving force distribution (T F2 * , T R2 * ) based on the detected basic attitude, thereby generating a corrected driving force. Calculate the distribution (T F3 * , T R3 * ).
  • the second calculation unit 52 includes a basic posture detection unit 54, a correction coefficient calculation unit 55, and a center of gravity correction unit 56 as configurations therefor.
  • Basic attitude detection section 54 detects the basic attitude of electric vehicle 100.
  • the basic posture detection unit 54 detects the basic posture of the electric vehicle 100 based on the seatbelt attachment/detaching signal S seat . Specifically, since the presence or absence of an occupant in each seat is information that substantially determines the basic attitude of the electric vehicle 100 (the position of the center of gravity after transition), the basic attitude detection unit 54 determines whether the seatbelt is attached or removed. Based on the signal S seat , it is detected whether or not each seat is occupied. Then, the basic attitude detection unit 54 outputs the number of passengers in each of the front and rear seats, which are the driver's seat and the passenger seat, as information representing the basic attitude of the electric vehicle 100.
  • the correction coefficient calculation unit 55 calculates a correction coefficient K used for correction of the attitude control driving force distribution (T F2 * , T R2 * ).
  • the correction coefficient K is used to correct the ratio of driving force distribution between the front wheels 21 and the rear wheels 26.
  • the correction coefficient calculation unit 55 calculates a correction coefficient K according to the number of passengers in the front seats and the rear seats, based on Table 1 below. " ⁇ " in Table 1 is a predetermined value predetermined by adaptation through experiment, simulation, or the like.
  • the center of gravity correction unit 56 adjusts the driving force distribution between the front wheels 21 and the rear wheels 26 in the attitude control driving force distribution (T F2 * , T R2 * ) by the amount that the center of gravity OG shifts forward or backward depending on the basic attitude.
  • the corrected driving force distribution (T F3 * , T R3 * ) is calculated by performing gravity center correction that corrects the ratio of .
  • the center of gravity correction unit 56 first calculates the distribution ratio of the driving force to the rear wheels 26 in the attitude control driving force distribution (T F2 * , T R2 * ) based on the following formula (1). , called distribution ratio) D R (%) is calculated.
  • the center of gravity correction section 56 corrects the distribution ratio D R of the rear wheels 26 using the correction coefficient K according to the following formula (2), and corrects the driving force distribution ratio DR to the rear wheels 26 after the correction (hereinafter referred to as , D R '(%) (referred to as corrected allocation ratio) is calculated.
  • This corrected distribution ratio D R ' is a driving force distribution ratio that is corrected according to the basic posture while controlling the posture in the longitudinal direction.
  • the center of gravity correction unit 56 calculates the corrected driving force distribution (T F3 * , T R3 * ) according to the following equations (3) and (4). That is, the center of gravity correction unit 56 redistributes the attitude control driving force distribution (T F2 * , T R2 * ) to the front wheels 21 and the rear wheels 26 according to the corrected distribution ratio D R '.
  • the corrected driving force distribution (T F3 * , T R3 * ) calculated as above is effective for posture control when the basic posture is tilted forward with respect to the predetermined standard posture.
  • the distribution is such that the distribution of the driving force to the front wheels 21 is increased compared to the driving force distribution (T F2 * , T R2 * ).
  • the corrected driving force distribution (T F3 * , TR3 * ) is different from the driving force distribution for attitude control (T F2 * , T R2 * ). This results in an increased distribution of driving force to the rear wheels 26.
  • FIG. 6 is a flowchart showing actions related to attitude control of electric vehicle 100.
  • the basic distribution calculation unit 42 calculates basic driving force distribution (T F1 * , T R1 * ) based on the total driving force TQ.
  • the basic pitch correction unit 53 calculates, based on the vehicle model, based on the basic driving force distribution (T F1 * , T R1 * ), when the electric vehicle 100 is in a stopped state and maintains a standard posture.
  • the driving force distribution for attitude control (T F2 * , T R2 * ) is calculated.
  • step S12 the basic posture detection unit 54 acquires the seatbelt attachment/detachment signal S seat . Further, in step S13, the basic posture detection unit 54 detects the basic posture of the electric vehicle 100 by specifying the number of passengers in each of the front seats and the rear seats based on the acquired seatbelt attachment/detaching signal S seat . Then, in step S14, the correction coefficient calculation unit 55 calculates a correction coefficient K based on the basic posture of the electric vehicle 100, that is, the number of passengers in each of the front seats and the rear seats.
  • step S15 the center of gravity correction unit 56 uses the correction coefficient K to correct the driving force distribution ratio of the front wheels 21 and the rear wheels 26 in the attitude control driving force distribution (T F2 * , T R2 * ). Accordingly, the corrected driving force distribution (T F3 * , T R3 * ) is calculated. Then, in step S16, the front motor control section 45 and the rear motor control section 46 operate the front motor 23 and the rear motor 28 according to the corrected driving force distribution (T F3 * , T R3 * ), thereby controlling the front wheels 21 and the rear wheels. 26.
  • the corrected driving force distribution (T F3 * , T R3 * ) is an accurate driving force distribution for attitude control that is corrected based on the transition of the center of gravity OG according to the basic attitude. Therefore, by driving the front wheels 21 and the rear wheels 26 according to the corrected driving force distribution (T F3 * , T R3 * ), the pitch angle is adjusted around the center of gravity O A precise moment is generated to control ⁇ P.
  • the target posture during acceleration or deceleration is, for example, a standard posture ( ⁇ P ⁇ 0) or a basic posture that is a practical initial posture.
  • the basic attitude detection unit 54 detects the basic attitude of the electric vehicle 100 by specifying the number of passengers in each of the front seats and the rear seats based on the seatbelt attachment/detaching signal S seat .
  • the basic posture of the electric vehicle 100 is detected by specifying the difference ⁇ H FR between the front vehicle height H F2 and the rear vehicle height H R2 .
  • FIG. 7 is a block diagram showing the configuration of the attitude control calculation section 43 in the second embodiment.
  • the posture control calculation section 43 of the second embodiment differs from the first embodiment in the configuration of the second calculation section 52.
  • the attitude control calculation unit 43 of the second embodiment includes a stop detection unit 201, a basic attitude detection unit 202 and a correction coefficient calculation unit 203 that are different from the first embodiment, and a center of gravity similar to the first embodiment.
  • a correction section 56 is provided.
  • Stop detection unit 201 detects whether electric vehicle 100 is stopped on a flat road based on vehicle speed VSP and road surface slope ⁇ LS .
  • the stop detection unit 201 detects when the vehicle speed VSP is zero within a predetermined error range (VSP ⁇ 0) and the road surface slope ⁇ LS is zero within a predetermined error range ( ⁇ LS ⁇ 0). , it is determined that the electric vehicle 100 is stopped on a flat road.
  • the basic posture detection unit 202 acquires a suspension stroke signal S sus when a stop on a flat road is detected. Then, the basic attitude detection unit 202 determines whether the electric vehicle 100 is stopped by calculating the front vehicle height H F2 and the rear vehicle height H R2 or the difference ⁇ H FR between them based on the acquired suspension stroke signal S sus . Detects the posture in the state of Here, it is assumed that electric vehicle 100 is in a basic posture that is different from the standard posture. The front vehicle height H F2 and the rear vehicle height H R2 or their difference ⁇ H FR can be calculated from the suspension stroke signal S sus according to the structural model of the vehicle body. In this embodiment, the basic attitude detection unit 202 calculates the difference ⁇ H FR between the front vehicle height HF2 and the rear vehicle height H R2 .
  • the correction coefficient calculation unit 203 calculates a correction coefficient K used for correction of the attitude control driving force distribution (T F2 * , T R2 * ). This is similar to the correction coefficient calculating section 203 of the first embodiment. However, the correction coefficient calculation unit 203 of the second embodiment calculates the correction coefficient K based on the difference ⁇ HFR between the front vehicle height HF2 and the rear vehicle height HR2 . The relationship between the difference ⁇ H FR between the front vehicle height H F2 and the rear vehicle height H R2 and the correction coefficient K is determined in advance by adaptation through experiments, simulations, or the like.
  • FIG. 8 is a graph illustrating the relationship between the difference ⁇ H FR between the front vehicle height H F2 and the rear vehicle height H R2 and the correction coefficient K.
  • the correction coefficient calculation unit 203 increases or decreases the correction coefficient K in proportion to the difference ⁇ H FR between the front vehicle height H F2 and the rear vehicle height H R2 . It is determined in advance that For example, if the difference ⁇ H FR is ⁇ H FR ', the corresponding correction coefficient K is K'.
  • the properties of the correction coefficient K calculated by the correction coefficient calculation unit 203 are the same as in the first embodiment.
  • the corrected driving force distribution (T F3 * , T R3 * ) increases the distribution of the driving force to the front wheels 21 with respect to the driving force distribution for attitude control (T F2 * , T R2 * ) when the basic posture is tilted forward with respect to the predetermined standard posture.
  • the distribution will be as follows.
  • the corrected driving force distribution (T F3 * , TR3 * ) is different from the driving force distribution for attitude control (T F2 * , T R2 * ). This results in an increased distribution of driving force to the rear wheels 26.
  • FIG. 9 is a flowchart showing the actions related to attitude control in the second embodiment.
  • the basic distribution calculation unit 42 calculates basic driving force distribution (T F1 * , T R1 * ) based on the total driving force TQ.
  • the basic pitch correction unit 53 calculates, based on the vehicle model, basic driving force distribution (T F1 * , T R1 * ) when the electric vehicle 100 is in a stopped state and maintains a standard posture.
  • the driving force distribution for attitude control (T F2 * , T R2 * ) is calculated.
  • step S22 the stop detection unit 201 obtains the vehicle speed VSP and the road surface slope ⁇ LS . Then, in step S23, the stop detection unit 201 detects whether the electric vehicle 100 is stopped based on the vehicle speed VSP. When it is determined that the vehicle speed VSP is substantially zero and the electric vehicle 100 is stopped, the process advances to step S24. In step S24, the stop detection unit 201 detects whether the road surface on which the electric vehicle 100 is stopped is a flat road based on the road surface slope ⁇ LS . Then, when it is detected that the road surface on which the electric vehicle 100 is stopped is a flat road, the process proceeds to step S25, and the basic posture detection unit 202 acquires the suspension stroke signal S sus .
  • step S25 basic attitude detection section 202 detects the basic attitude of electric vehicle 100 based on suspension stroke signal S sus . Specifically, the basic attitude detection unit 202 detects the basic attitude of the electric vehicle 100 by calculating the difference ⁇ HFR between the front vehicle height H F2 and the rear vehicle height H R2 based on the suspension stroke signal S sus . do.
  • step S27 the correction coefficient calculation unit 203 calculates the correction coefficient K based on the difference ⁇ HFR between the front vehicle height HF2 and the rear vehicle height HR2 . Note that if it is determined in step S23 that the electric vehicle 100 is not stopped, or if it is determined in step S24 that the road surface on which the electric vehicle 100 is stopped is not a flat road, the process advances to step S30 and the previous A correction coefficient K is maintained.
  • step S28 the center of gravity correction unit 56 uses the correction coefficient K to correct the driving force distribution ratio of the front wheels 21 and the rear wheels 26 in the attitude control driving force distribution (T F2 * , T R2 * ). Accordingly, the corrected driving force distribution (T F3 * , T R3 * ) is calculated. Then, in step S29, the front motor control section 45 and the rear motor control section 46 operate the front motor 23 and the rear motor 28 according to the corrected driving force distribution (T F3 * , T R3 * ), thereby controlling the front wheel 21 and the rear wheel. 26.
  • the corrected driving force distribution (T F3 * , T R3 * ) is an accurate driving force distribution for attitude control that is corrected based on the transition of the center of gravity OG according to the basic attitude. Therefore, by driving the front wheels 21 and rear wheels 26 according to the corrected driving force distribution (T F3 * , T R3 * ), the pitch angle ⁇ P is controlled around the center of gravity O G that has transitioned to the basic posture. A precise moment is generated to do so. As a result, according to the attitude control of the second embodiment, the attitude of the electric vehicle 100 converges to the target attitude during acceleration or deceleration, similarly to the first embodiment.
  • the corrected driving force distribution (T F3 * , T R3 * ) Accurate posture control driving force distribution is corrected based on the transition of the center of gravity OG according to the basic posture. Therefore, in the second embodiment, the attitude of the electric vehicle 100 is easily converged to the target attitude during acceleration or deceleration.
  • the basic attitude of the electric vehicle 100 is detected based on the suspension stroke signal S sus , but the basic attitude of the electric vehicle 100 is not limited to this, but may be detected using other parameters. Good too.
  • basic attitude detection unit 202 may directly detect the basic attitude of electric vehicle 100 based on the pitch angle ⁇ P.
  • the pitch angle ⁇ P should be obtained when the electric vehicle 100 is stopped on a flat road, as in the second embodiment. .
  • the electric vehicle control method controls the posture in the longitudinal direction by adjusting the driving force distribution of the front wheels 21 and the rear wheels 26, which are the driving wheels.
  • This is a control method for electric vehicle 100 that performs attitude control.
  • a basic posture is detected, which is the actual longitudinal posture when electric vehicle 100 is stopped.
  • the attitude control driving force distribution (T F2 * , T R2 * ), which is the driving force distribution that controls the attitude in the longitudinal direction, is calculated.
  • the corrected driving force distribution (T F3 * , TR3 * ) is calculated. Then, the corrected driving force distribution (T F3 * , T R3 * ) becomes an accurate driving force distribution for attitude control that is corrected based on the transition of the center of gravity OG according to the basic attitude. Therefore, as described above, by driving the front wheels 21 and the rear wheels 26 according to the corrected driving force distribution (T F3 * , T R3 * ), the electric vehicle 100 assumes the basic posture and changes the center of gravity O G around which a precise moment is generated to control the pitch angle ⁇ P. As a result, the attitude of electric vehicle 100 converges to the target attitude during acceleration or deceleration.
  • the corrected driving force distribution (T F3 * , T R3 * ) calculated in this way is an accurate one for controlling the pitch angle ⁇ P around the center of gravity O G to which the electric vehicle 100 has transitioned to the basic posture. Easy to generate moments. Therefore, during acceleration or deceleration, the attitude of electric vehicle 100 tends to converge to the target attitude.
  • the correction coefficient K is calculated based on the basic posture. Further, the distribution ratio (D R ) of the driving force of the front wheels 21 and the rear wheels 26 in the attitude control driving force distribution (T F2 * , T R2 * ) is calculated. Furthermore, using the distribution ratio (D R ) and the correction coefficient K, a corrected distribution ratio (D R ′), which is a distribution ratio corrected according to the basic posture while controlling the posture in the longitudinal direction, is calculated. be done.
  • the corrected driving force distribution (T F3 * , T R3 * ) when the basic posture is tilted forward, the front wheels 21 When the main posture is tilted backward, the distribution of driving force to the rear wheels 26 is increased relative to the posture control driving force distribution (T F2 * , T R2 * ). be able to.
  • the corrected driving force distribution (T F3 * , T R3 * ) tends to generate an accurate moment for controlling the pitch angle ⁇ P around the center of gravity OG to which the electric vehicle 100 has transitioned to the basic posture. As a result, the attitude of electric vehicle 100 tends to converge to the target attitude during acceleration or deceleration.
  • attitude control is performed by feedforward control that corrects driving force distribution based on the vehicle model.
  • the basic posture of electric vehicle 100 is constant and does not change at least during a trip, and the calculation of the corrected driving force distribution (T F3 * , T R3 * ) is substantially based on the vehicle model. This is an operation that corrects the deviation of . Therefore, when attitude control is performed by feedforward control based on a vehicle model, the corrected driving force distribution (T F3 * , T R3 * ) tends to result in particularly accurate driving force distribution for attitude control.
  • the basic posture is detected based on the front vehicle height H F2 and the rear vehicle height H R2 when the electric vehicle 100 is stopped on a flat road.
  • the stroke (S sus ) of the suspension is acquired while the electric vehicle 100 is stopped on a flat road, and the stroke (S sus ) of the suspension (31, 32) is acquired.
  • the basic posture is detected by specifying the front vehicle height H F2 , the rear vehicle height H R2 , or the difference ⁇ H FR between the front vehicle height H F2 and the rear vehicle height H R2 based on the vehicle height H F2 and the rear vehicle height H R2 .
  • the pitch angle ⁇ P of the electric vehicle 100 is acquired while the electric vehicle 100 is stopped on a flat road, and the control method is based on the pitch angle ⁇ P. , can be transformed into a form that detects the basic posture.
  • the basic attitude of electric vehicle 100 can be accurately detected even from the pitch angle ⁇ P when the electric vehicle 100 is stopped on a flat road.
  • the state of attachment and detachment of the seatbelt is detected, and the basic posture is detected based on the state of attachment and detachment of the seatbelt.
  • the basic posture of electric vehicle 100 when detecting the basic posture of electric vehicle 100 according to the state of attachment and detachment of the seat belt, it is possible to accurately detect the basic posture of electric vehicle 100, especially when the posture changes depending on the number of passengers or the riding position. Easy to detect.
  • Another advantage is that the basic posture of electric vehicle 100 can be easily detected accurately regardless of vehicle speed VSP or road surface slope ⁇ LS .
  • the control device for an electric vehicle performs attitude control to control the attitude in the longitudinal direction by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26, which are drive wheels.
  • This is a control device (controller 12) for the electric vehicle 100.
  • This control device (controller 12) includes a basic attitude detection unit (54, 202) that detects a basic attitude that is a longitudinal attitude when electric vehicle 100 is stopped, and when electric vehicle 100 accelerates or decelerates.
  • a driving force distribution calculation unit (53) that calculates the driving force distribution for attitude control (T F2 *, T R2 *) which is the driving force distribution that controls the attitude in the longitudinal direction
  • a driving force distribution calculation unit (53) that calculates the driving force distribution for attitude control (T F2 * , T R2 * ) which is the driving force distribution that controls the attitude in the longitudinal direction
  • a correction unit (56) that calculates the corrected driving force distribution (T F3 * , TR3 * ) by correcting the driving force distribution (T F2 * , T R2 * )
  • a drive wheel control section (45, 46) that controls the drive wheels (21, 26) according to T R3 * ).
  • the corrected driving force distribution (T F3 * , TR3 * ) is calculated. Then, the corrected driving force distribution (T F3 * , T R3 * ) becomes an accurate driving force distribution for attitude control that is corrected based on the transition of the center of gravity OG according to the basic attitude. Therefore, by driving the front wheels 21 and the rear wheels 26 with the corrected driving force distribution (T F3 * , T R3 * ), the pitch angle ⁇ P is set around the center of gravity O G to which the electric vehicle 100 has transitioned to the basic posture. A precise moment is generated to control the As a result, the attitude of electric vehicle 100 converges to the target attitude during acceleration or deceleration.
  • the control program for the electric vehicle according to the first embodiment and the second embodiment described above includes attitude control that controls the attitude in the longitudinal direction by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26, which are drive wheels.
  • This is a control program for electric vehicle 100 that performs.
  • This electric vehicle control program includes a basic posture detection unit (54, 202) that controls the control device (controller 12) of the electric vehicle 100 to detect a basic posture that is a longitudinal posture when the electric vehicle 100 is stopped.
  • a driving force distribution calculation unit (53) that calculates the driving force distribution for attitude control (T F2 * , T R2 * ), which is the driving force distribution that controls the posture in the longitudinal direction when the electric vehicle 100 accelerates or decelerates; ; a correction unit (56) that calculates a corrected driving force distribution (T F3 * , T R3 * ) by correcting the attitude control driving force distribution (T F2 * , T R2 * ) based on the basic attitude; and , and function as a driving wheel control section (45, 46) that controls the driving wheels (21, 26) according to the corrected driving force distribution (T F3 * , T R3 * ).
  • This control program may be stored and provided in any storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

An embodiment of the present invention is an electric vehicle control method for performing posture control for controlling a posture in the front and rear direction by adjusting the drive force allocation of front and rear wheels that are drive wheels. This electric vehicle control method detects a basic posture that is the actual posture in the front and rear direction when an electric vehicle stops. A posture control drive force allocation is also calculated that is the drive force allocation for controlling a posture in the front and rear direction when the electric vehicle is accelerated or decelerated. A corrected drive force allocation is then calculated by correcting the posture control drive force allocation on the basis of the basic posture, and the drive wheels are controlled with this corrected drive force allocation.

Description

電動車両の制御方法、及び、電動車両の制御装置Electric vehicle control method and electric vehicle control device
 本発明は、電動車両の制御方法、及び、電動車両の制御装置に関する。 The present invention relates to an electric vehicle control method and an electric vehicle control device.
 JP4876534B2は、サスペンションの効果が十分に得られないインホイールモータ型の車両に関し、車両が路面の段差等を通過するときに、車両のピッチレートを低減する技術を開示している。より具体的には、前後の車輪に異なる制駆動力を付与し、その上で、ピッチレートの変動が検出された場合にはさらに左右の車輪に対してそれぞれ異なる制駆動力を所定の周期で付与することが開示されている。 JP4876534B2 discloses a technique for reducing the pitch rate of a vehicle when the vehicle passes over a bump in the road surface, etc., regarding an in-wheel motor type vehicle in which the effect of the suspension is not sufficiently obtained. More specifically, different braking and driving forces are applied to the front and rear wheels, and if a change in pitch rate is detected, different braking and driving forces are applied to the left and right wheels at a predetermined period. It is disclosed that it will be granted.
 従来、複数の駆動輪に対する駆動力の配分を調整することによって姿勢制御を行う電動車両が知られている。しかし、従来の姿勢制御では、電動車両の姿勢を、目標とする姿勢に、正しく制御できない場合がある。 Conventionally, electric vehicles are known that perform posture control by adjusting the distribution of driving force to a plurality of drive wheels. However, with conventional attitude control, the attitude of the electric vehicle may not be correctly controlled to the target attitude.
 例えば、乗員の人数や具体的な乗車位置、または、荷室等における荷物の積載量等、電動車両の具体的な使用状況に変化があると、加速または減速時に姿勢変化の基点(重心)が変化する。従来の姿勢制御は、例えば、製造時点等における電動車両の状態を基準として、その姿勢を制御するものであるから、上記のように、電動車両の具体的な使用状況に変化があったときには、これによる誤差が生じて、電動車両の姿勢が目標とする姿勢に正確に収束しない場合がある。 For example, if there is a change in the specific usage conditions of an electric vehicle, such as the number of passengers, their specific riding position, or the amount of luggage loaded in the luggage compartment, etc., the base point (center of gravity) of posture change during acceleration or deceleration may change. Change. Conventional attitude control controls the attitude of an electric vehicle based on, for example, the state of the electric vehicle at the time of manufacture, etc. Therefore, as mentioned above, when there is a change in the specific usage situation of the electric vehicle This may cause an error, and the attitude of the electric vehicle may not accurately converge to the target attitude.
 そこで、本発明は、電動車両の具体的な使用状況によらず、加速または減速時に、電動車両の姿勢を目標とする姿勢に収束させることができる電動車両の制御方法、及び、電動車両の制御装置を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, the present invention provides a control method for an electric vehicle that can converge the posture of an electric vehicle to a target posture during acceleration or deceleration, regardless of the specific usage situation of the electric vehicle, and a control method for an electric vehicle. The purpose is to provide equipment.
 本発明のある態様は、駆動輪である前輪及び後輪の駆動力配分を調整することによって、前後方向の姿勢を制御する姿勢制御を行う電動車両の制御方法である。この電動車両の制御方法では、電動車両が停車しているとき場合における実際の前後方向の姿勢である基本姿勢が検出される。また、電動車両が加速または減速するときに、前後方向の姿勢を制御する駆動力配分である姿勢制御用駆動力配分が演算される。そして、基本姿勢に基づいて姿勢制御用駆動力配分を補正することにより、補正駆動力配分が演算され、この補正駆動力配分で駆動輪が制御される。 An aspect of the present invention is a control method for an electric vehicle that performs posture control to control the posture in the longitudinal direction by adjusting the distribution of driving force between the front wheels and the rear wheels, which are drive wheels. In this method of controlling an electric vehicle, a basic posture is detected, which is the actual posture in the longitudinal direction when the electric vehicle is stopped. Furthermore, when the electric vehicle accelerates or decelerates, a driving force distribution for attitude control, which is a driving force distribution that controls the posture in the longitudinal direction, is calculated. Then, by correcting the attitude control driving force distribution based on the basic attitude, a corrected driving force distribution is calculated, and the driving wheels are controlled by this corrected driving force distribution.
図1は、電動車両の概略構成を示す説明図である。FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle. 図2は、シャシー系の概略構造を示す説明図である。FIG. 2 is an explanatory diagram showing a schematic structure of the chassis system. 図3は、電動車両の姿勢及びその変化を示す説明図である。FIG. 3 is an explanatory diagram showing the attitude of the electric vehicle and its changes. 図4は、姿勢制御のためのコントローラの構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of a controller for posture control. 図5は、姿勢制御演算部の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the attitude control calculation section. 図6は、電動車両の姿勢制御に係る作用を示すフローチャートである。FIG. 6 is a flowchart showing the actions related to attitude control of the electric vehicle. 図7は、第2実施形態における姿勢制御演算部の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of the attitude control calculation section in the second embodiment. 図8は、前方車高と後方車高の差と、補正係数と、の関係を例示するグラフである。FIG. 8 is a graph illustrating the relationship between the difference between the front vehicle height and the rear vehicle height and the correction coefficient. 図9は、第2実施形態の姿勢制御に係る作用を示すフローチャートである。FIG. 9 is a flowchart showing the actions related to attitude control in the second embodiment.
 以下、図面を参照しながら本発明の実施形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 [第1実施形態]
 <電動車両の構成>
 図1は、電動車両100の概略構成を示す説明図である。電動車両100は、例えば電気自動車やハイブリッド車両等であって、電動機によって1または複数の駆動輪を駆動または制動することができる車両である。特に、本実施形態では、電動車両100は、いわゆる4WD(four wheel drive)車両であり、複数の駆動輪に生じさせる駆動力をそれぞれに制御(調整)することができる。具体的には、図1に示すように、電動車両100は、前輪駆動システム10、後輪駆動システム11、及び、コントローラ12を備える。
[First embodiment]
<Configuration of electric vehicle>
FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle 100. The electric vehicle 100 is, for example, an electric vehicle, a hybrid vehicle, or the like, and is a vehicle that can drive or brake one or more drive wheels using an electric motor. In particular, in this embodiment, the electric vehicle 100 is a so-called 4WD (four wheel drive) vehicle, and the driving force generated in a plurality of drive wheels can be individually controlled (adjusted). Specifically, as shown in FIG. 1, electric vehicle 100 includes a front wheel drive system 10, a rear wheel drive system 11, and a controller 12.
 前輪駆動システム10は、第1の駆動輪である前輪21を制御するシステムである。前輪駆動システム10は、フロントインバータ22及びフロントモータ23を含む。 The front wheel drive system 10 is a system that controls the front wheel 21, which is the first drive wheel. Front wheel drive system 10 includes a front inverter 22 and a front motor 23.
 フロントインバータ22は、図示しないバッテリが出力する直流電力を交流電力に変換してフロントモータ23に供給することにより、フロントモータ23を駆動する。また、フロントモータ23が前輪21に連れ回されて回転するときには、フロントインバータ22は、フロントモータ23で生じる交流の回生電力を、直流電力に変換してバッテリに入力することにより、バッテリを充電する。 The front inverter 22 drives the front motor 23 by converting DC power output by a battery (not shown) into AC power and supplying the AC power to the front motor 23. Furthermore, when the front motor 23 is rotated by the front wheels 21, the front inverter 22 converts the AC regenerative power generated by the front motor 23 into DC power and inputs the DC power to the battery, thereby charging the battery. .
 フロントモータ23は、前輪21を駆動する電動機である。フロントモータ23は、例えば、三相交流同期電動機である。フロントモータ23が生じさせるトルクは、フロントドライブシャフト24を介して前輪21に伝達され、前輪21に駆動力(以下、前輪駆動力Fという)を発生させる。 The front motor 23 is an electric motor that drives the front wheels 21. The front motor 23 is, for example, a three-phase AC synchronous motor. The torque generated by the front motor 23 is transmitted to the front wheels 21 via the front drive shaft 24, and generates a driving force (hereinafter referred to as front wheel driving force FF ) at the front wheels 21.
 後輪駆動システム11は、第2の駆動輪である後輪26を制御するシステムである。後輪駆動システム11は、リアインバータ27及びリアモータ28を含む。 The rear wheel drive system 11 is a system that controls the rear wheel 26, which is the second drive wheel. Rear wheel drive system 11 includes a rear inverter 27 and a rear motor 28.
 リアインバータ27は、バッテリが出力する直流電力を交流電力に変換してリアモータ28に供給することにより、リアモータ28を駆動する。また、リアモータ28が後輪26に連れ回されて回転するときには、リアインバータ27は、リアモータ28で生じる交流の回生電力を、直流電力に変換してバッテリに入力することにより、バッテリを充電する。 The rear inverter 27 drives the rear motor 28 by converting the DC power output by the battery into AC power and supplying the AC power to the rear motor 28. Further, when the rear motor 28 is rotated by the rear wheels 26, the rear inverter 27 converts the AC regenerated power generated by the rear motor 28 into DC power and inputs the DC power to the battery, thereby charging the battery.
 リアモータ28は、後輪26を駆動する電動機である。リアモータ28は、例えば、フロントモータ23と同様の三相交流同期電動機によって構成される。リアモータ28が生じさせるトルクは、リアドライブシャフト29を介して後輪26に伝達され、後輪26に駆動力(以下、後輪駆動力Fという)を発生させる。 The rear motor 28 is an electric motor that drives the rear wheels 26. The rear motor 28 is configured by, for example, a three-phase AC synchronous motor similar to the front motor 23. The torque generated by the rear motor 28 is transmitted to the rear wheels 26 via the rear drive shaft 29, and generates a driving force (hereinafter referred to as rear wheel driving force FR ) at the rear wheels 26.
 コントローラ12は、電動車両100の動作を制御する1または複数のコンピュータによって構成される。コントローラ12は、電動車両100の動作を予め定める制御周期で制御するようにプログラムされている。本実施形態では、コントローラ12は、駆動輪である前輪21及び後輪26の駆動力配分を調整することにより、前後方向の姿勢を制御する姿勢制御を実行する電動車両100の制御装置である。 The controller 12 is configured by one or more computers that control the operation of the electric vehicle 100. Controller 12 is programmed to control the operation of electric vehicle 100 at a predetermined control cycle. In the present embodiment, the controller 12 is a control device for the electric vehicle 100 that executes posture control to control the posture in the longitudinal direction by adjusting the distribution of driving force between the front wheels 21 and the rear wheels 26 that are drive wheels.
 コントローラ12は、例えば、アクセルペダル(図示しない)の操作等によって要求された駆動力(以下、総駆動力TQという)を、駆動輪である前輪21と後輪26に配分する。そして、コントローラ12は、その配分に応じた前輪駆動力F及び後輪駆動力Fが生じるように、前輪駆動システム10及び後輪駆動システム11によって前輪21及び後輪26をそれぞれ駆動する。さらに、本実施形態では、コントローラ12は、必要に応じて前輪21及び後輪26の駆動力配分を調整することにより、電動車両100の前後方向の姿勢を制御する姿勢制御を実行するようにプログラムされている。 The controller 12 distributes the driving force (hereinafter referred to as the total driving force TQ) requested by, for example, the operation of an accelerator pedal (not shown) to the front wheels 21 and the rear wheels 26 that are driving wheels. Then, the controller 12 drives the front wheels 21 and the rear wheels 26 using the front wheel drive system 10 and the rear wheel drive system 11, respectively, so that a front wheel drive force F F and a rear wheel drive force F R are generated according to the distribution. Furthermore, in the present embodiment, the controller 12 is programmed to execute attitude control to control the longitudinal attitude of the electric vehicle 100 by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26 as necessary. has been done.
 コントローラ12は、電動車両100の動作を制御するときに、電動車両100の動作状態等を表す各種のパラメータ等を、図示しないセンサにより、または、演算により、適宜に取得することができる。例えば、電動車両100は、アクセル開度APOを検出するアクセル開度センサ(図示しない)を備える。このため、コントローラ12は、アクセル開度APOを適宜に取得することができる。アクセル開度APOは、アクセルペダルの操作量を表すパラメータである。また、コントローラ12は、電動車両100の車速VSPを、図示しないセンサにより、または、演算により、適宜に取得する。 When controlling the operation of the electric vehicle 100, the controller 12 can appropriately obtain various parameters representing the operating state of the electric vehicle 100, etc., using a sensor (not shown) or by calculation. For example, electric vehicle 100 includes an accelerator opening sensor (not shown) that detects accelerator opening APO . Therefore, the controller 12 can appropriately acquire the accelerator opening degree APO . The accelerator opening degree APO is a parameter representing the amount of operation of the accelerator pedal. Further, the controller 12 appropriately acquires the vehicle speed VSP of the electric vehicle 100 using a sensor (not shown) or by calculation.
 この他、本実施形態では、電動車両100は、運転席及び助手席、並びに、後部座席に設けられたシートベルトの着脱状態を検出する図示しないセンサ(例えば各シートベルトのバックルセンサ)を備える。このため、コントローラ12は、各座席のシートベルトの着脱状態を示す信号(以下、シートベルト着脱信号Sseatという)を適宜に取得することができる。また、電動車両100は、前輪21に設けられたフロントサスペンション31(図2参照)や後輪26に設けられたリアサスペンション32(図2参照)のストローク量等を検出するセンサ(いわゆるサスペンションストロークセンサ)を備える。このため、コントローラ12は、各サスペンションのストローク量等を示す信号(以下、サスペンションストローク信号Ssusという)を適宜に取得することができる。 In addition, in the present embodiment, the electric vehicle 100 includes sensors (not shown) (for example, buckle sensors for each seatbelt) that detect the attachment and detachment states of seatbelts provided in the driver's seat, the passenger seat, and the rear seat. Therefore, the controller 12 can appropriately acquire a signal indicating the attachment/detaching state of the seatbelt of each seat (hereinafter referred to as a seatbelt attachment/detachment signal S seat ). The electric vehicle 100 also includes a sensor (a so-called suspension stroke sensor) that detects the stroke amount, etc. of a front suspension 31 (see FIG. 2) provided on the front wheels 21 and a rear suspension 32 (see FIG. 2) provided on the rear wheels 26. ). Therefore, the controller 12 can appropriately acquire a signal indicating the stroke amount of each suspension (hereinafter referred to as suspension stroke signal S sus ).
 さらに、本実施形態では、電動車両100は、電動車両100のピッチ角θまたはピッチレートを検出するピッチセンサを備える。このため、コントローラ12は、電動車両100のピッチ角θ及びピッチレートを適宜に取得することができる。また、コントローラ12は、図示しないカーナビゲーションシステムから、電動車両100の現在地や電動車両100が走行等する路面の勾配(以下、路面勾配φLSという)を適宜に取得することができる。なお、路面勾配φLSは、電動車両100の車速VSPや加速度G、またはこれらの変化等に基づいて、演算により取得され得る。 Furthermore, in this embodiment, the electric vehicle 100 includes a pitch sensor that detects the pitch angle θ P or pitch rate of the electric vehicle 100. Therefore, the controller 12 can appropriately acquire the pitch angle θ P and pitch rate of the electric vehicle 100. Further, the controller 12 can appropriately acquire the current location of the electric vehicle 100 and the slope of the road surface on which the electric vehicle 100 travels (hereinafter referred to as road surface slope φ LS ) from a car navigation system (not shown). Note that the road surface slope φLS can be obtained by calculation based on the vehicle speed VSP and acceleration G of the electric vehicle 100, or changes thereof.
 <駆動力配分による姿勢制御の原理>
 図2は、シャシー系の概略構造を示す説明図である。図2に示すように、前輪21は、フロントサスペンション31を介して、車体のうち車室等が形成される部分である車両上屋101に接続される。同様に、後輪26は、リアサスペンション32を介して、車両上屋101に接続される。
<Principle of posture control using driving force distribution>
FIG. 2 is an explanatory diagram showing a schematic structure of the chassis system. As shown in FIG. 2, the front wheels 21 are connected via a front suspension 31 to a vehicle shed 101, which is a portion of the vehicle body where a passenger compartment and the like are formed. Similarly, the rear wheels 26 are connected to the vehicle shed 101 via a rear suspension 32.
 例えば、前輪駆動力F、後輪駆動力F、または、これらの両方によって電動車両100が加速する場合、荷重は電動車両100の後方(X方向負側)に移動する。その結果、車両上屋101には、重心Oを中心として、ピッチ角θを増大させる方向に作用するモーメントが発生する。このため、電動車両100が加速する場合、原則として、電動車両100は、X方向正側の部分である前方部分が浮き上がる姿勢(いわゆるノーズアップの姿勢)となる。 For example, when electric vehicle 100 is accelerated by front wheel driving force F F , rear wheel driving force F R , or both thereof, the load moves to the rear of electric vehicle 100 (to the negative side in the X direction). As a result, a moment is generated in the vehicle shed 101 around the center of gravity OG that acts in a direction that increases the pitch angle θP . Therefore, when electric vehicle 100 accelerates, in principle, electric vehicle 100 assumes a posture in which the front portion, which is the portion on the positive side in the X direction, rises (so-called nose-up posture).
 一方、前輪駆動力Fを発生させるフロントモータ23のトルク(以下、フロントトルクという)は、フロントサスペンション31を介して車両上屋101に作用する。具体的には、フロントトルクは、仮想回転中心Oの周りに、ピッチ角θを減少させる方向に作用するモーメントを生じさせる。すなわち、電動車両100が加速する場合、フロントトルクはノーズアップを抑制する。同様に、後輪駆動力Fを発生させるリアモータ28のトルク(以下、リアトルクという)は、リアサスペンション32を介して車両上屋101に作用し、仮想回転中心Oの周りに、ピッチ角θを減少させる方向に作用するモーメントを生じさせる。このため、電動車両100が加速する場合、リアトルクはノーズアップを抑制する。 On the other hand, the torque of the front motor 23 that generates the front wheel drive force FF (hereinafter referred to as front torque) acts on the vehicle shed 101 via the front suspension 31. Specifically, the front torque generates a moment around the virtual center of rotation O F that acts in a direction that reduces the pitch angle θ P. That is, when electric vehicle 100 accelerates, the front torque suppresses nose up. Similarly, the torque of the rear motor 28 that generates the rear wheel drive force F R (hereinafter referred to as rear torque) acts on the vehicle shed 101 via the rear suspension 32, and generates a pitch angle θ around the virtual center of rotation O R. A moment is generated that acts in the direction of decreasing P. Therefore, when electric vehicle 100 accelerates, rear torque suppresses nose up.
 そして、加速時にフロントトルクがノーズアップを抑制する作用の大きさは、アンチスカット角θの大きさに依存する。同様に、加速時にリアトルクがノーズアップを抑制する作用の大きさは、アンチスカット角θの大きさに依存する。このため、アンチスカット角が相対的に大きい駆動輪への配分が大きくなるように、前輪21及び後輪26の駆動力配分を調整すると、総駆動力を維持したまま、ノーズアップを抑制する作用は大きくなる。したがって、本実施形態では、コントローラ12は、前輪21及び後輪26の駆動力配分を調整することにより、電動車両100の前後方向の姿勢(すなわちピッチ角θまたはその変動)を制御する姿勢制御を実行する。 The magnitude of the effect of the front torque on suppressing nose-up during acceleration depends on the magnitude of the anti-scut angle θF . Similarly, the magnitude of the effect of the rear torque to suppress nose-up during acceleration depends on the magnitude of the anti-scut angle θ R. Therefore, by adjusting the drive force distribution between the front wheels 21 and the rear wheels 26 so that the distribution to the drive wheels with a relatively large anti-scut angle is increased, the nose-up can be suppressed while maintaining the total drive force. becomes larger. Therefore, in the present embodiment, the controller 12 performs attitude control that controls the attitude of the electric vehicle 100 in the longitudinal direction (i.e., the pitch angle θ P or its variation) by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26. Execute.
 なお、仮想回転中心Oは、フロントトルクの伝達によって車体(特に車両上屋101)に生じる回転の瞬間的かつ仮想的な中心であり、フロントサスペンション31等の具体的な構成によって予め定まる。同様に、後方部の仮想回転中心Oは、リアトルクの伝達によって車体(特に車両上屋101)に生じる回転の瞬間的かつ仮想的な中心であり、リアサスペンション32等の具体的な構成によって予め定まる。また、アンチスカット角θは、XZ面において、前輪21の回転中心と仮想回転中心Oを結ぶ線と、路面と平行な線と、がなす角である。同様に、アンチスカット角θは、XZ面において、後輪26の回転中心と仮想回転中心Oを結ぶ線と、路面と平行な線と、がなす角である。 Note that the virtual center of rotation OF is an instantaneous and virtual center of rotation that occurs in the vehicle body (in particular, the vehicle shed 101) due to the transmission of front torque, and is determined in advance by the specific configuration of the front suspension 31 and the like. Similarly, the virtual center of rotation OR in the rear section is an instantaneous and virtual center of rotation that occurs in the vehicle body (particularly the vehicle shed 101) due to the transmission of rear torque, and is determined in advance by the specific configuration of the rear suspension 32, etc. Determined. Further, the anti-scut angle θ F is the angle formed by a line connecting the rotation center of the front wheel 21 and the virtual rotation center OF and a line parallel to the road surface in the XZ plane. Similarly, the anti-scut angle θ R is the angle formed by a line connecting the rotation center of the rear wheel 26 and the virtual rotation center OR and a line parallel to the road surface in the XZ plane.
 本実施形態では、図2に示すように、リアサスペンション32のアンチスカット角θは、フロントサスペンション31のアンチスカット角θよりも大きい。このため、例えば加速時にピッチ角θの増大を抑制し、または、低減させるときには、コントローラ12は、相対的に後輪26への駆動力配分を増加させる。 In this embodiment, as shown in FIG. 2, the anti-scut angle θ R of the rear suspension 32 is larger than the anti-scut angle θ F of the front suspension 31. Therefore, for example, when suppressing or reducing the pitch angle θ P from increasing during acceleration, the controller 12 relatively increases the driving force distribution to the rear wheels 26 .
 ここでは、シャシー系の構成と、加速時における姿勢制御の関係について説明したが、コントローラ12は、減速時においても、前輪21及び後輪26の駆動力配分の調整による姿勢制御を実行する。但し、減速時には、上記とは逆に、電動車両100は、前方部分が沈み込む姿勢(いわゆるノーズダイブの姿勢)となるので、コントローラ12は、これに応じて、前輪21及び後輪26の駆動力配分を調整する。また、以下では、特に断りのない限り、電動車両100の姿勢とは、前後方向の姿勢、すなわちピッチ角θをいうものとする。すなわち、駆動力配分の調整による姿勢制御は、ピッチ角θの制御、ピッチレートΔの制御、または、ピッチ角θ及びピッチレートΔの制御である。ピッチレートΔは、ピッチ角θの時間変化率である。 Although the relationship between the configuration of the chassis system and attitude control during acceleration has been described here, the controller 12 executes attitude control by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26 even during deceleration. However, during deceleration, contrary to the above, the electric vehicle 100 assumes a position where the front portion sinks (a so-called nose dive position), so the controller 12 controls the driving of the front wheels 21 and the rear wheels 26 accordingly. Adjust force distribution. Furthermore, hereinafter, unless otherwise specified, the attitude of electric vehicle 100 refers to the attitude in the front-rear direction, that is, the pitch angle θ P. That is, posture control by adjusting the driving force distribution is control of pitch angle θ P , control of pitch rate Δ P , or control of pitch angle θ P and pitch rate Δ P. The pitch rate Δ P is the time rate of change of the pitch angle θ P.
 図3は、電動車両100の姿勢及びその変化を示す説明図である。図3(A)は、製造時等において定まる電動車両100の停車時における姿勢を示す。図3(B)は、具体的な使用状況に応じて変化した停車時における電動車両100の姿勢を示す。 FIG. 3 is an explanatory diagram showing the posture of electric vehicle 100 and its changes. FIG. 3(A) shows the attitude of the electric vehicle 100 when it is stopped, which is determined at the time of manufacturing or the like. FIG. 3(B) shows the attitude of electric vehicle 100 when stopped, which changes depending on specific usage conditions.
 図3(A)に示すように、製造時等において定まる電動車両100の停車時の姿勢(以下、標準姿勢という)では、車両重量により、前輪21には荷重WLがかかり、後輪26には荷重WLがかかる。また、標準姿勢においては、例えば、前端部分における車両上屋101の路面からの高さ(以下、前方車高という)HF1と後端部分における車両上屋101の路面からの高さ(以下、後方車高という)HR1は、概ね等しい。すなわち、停車している状態において、車両上屋101は水平である。 As shown in FIG. 3A, in the stopped posture of the electric vehicle 100 determined at the time of manufacturing etc. (hereinafter referred to as the standard posture), a load WL F is applied to the front wheels 21 due to the vehicle weight, and a load WL F is applied to the rear wheels 26 due to the vehicle weight. is subjected to load WLR . In addition, in the standard posture, for example, the height of the vehicle shed 101 from the road surface at the front end portion (hereinafter referred to as front vehicle height) H F1 and the height of the vehicle shed 101 from the road surface at the rear end portion (hereinafter referred to as front vehicle height) (referred to as rear vehicle height) H R1 is approximately equal. That is, when the vehicle is stopped, the vehicle shed 101 is horizontal.
 図3(B)に示すように、例えば、前方にある運転席に運転者33が乗車し、後部座席に同乗者34が2名乗車すると、前輪21及び後輪26の荷重WL,WLはいずれも増加するものの、その増加量は後輪26の荷重WLの方が大きい。このため、電動車両100が停車している状態であっても、重心Oは電動車両100の後方に遷移する。図3(B)では、便宜のために、標準姿勢における重心を「O」で表し、遷移後の重心を「O′」で表している。そして、前方車高HF2は標準姿勢における前方車高HF1よりも大きくなり、後方車高HR2は標準姿勢における前方車高HR1よりも小さくなる。すなわち、加速によってノーズアップの姿勢となったときのように、車両上屋101は、電動車両100が停車している状態においても標準姿勢に対して後側に傾いた姿勢(以下、後傾姿勢という)となる。 As shown in FIG. 3(B), for example, when a driver 33 is in the driver's seat in the front and two passengers 34 are in the rear seats, the loads on the front wheels 21 and rear wheels 26 are WL F , WL R Although both increase, the amount of increase is larger for the load WLR on the rear wheel 26. Therefore, even when electric vehicle 100 is stopped, the center of gravity OG shifts to the rear of electric vehicle 100. In FIG. 3B, for convenience, the center of gravity in the standard posture is represented by " OG ", and the center of gravity after transition is represented by " OG '". The front vehicle height H F2 is larger than the front vehicle height H F1 in the standard position, and the rear vehicle height H R2 is smaller than the front vehicle height H R1 in the standard position. That is, even when the electric vehicle 100 is stopped, the vehicle shed 101 is in a posture tilted rearward with respect to the standard posture (hereinafter referred to as a backward tilted posture), such as when the electric vehicle 100 is in a nose-up posture due to acceleration. ).
 また、図示を省略するが、運転席に運転者33が乗車し、助手席に同乗者34が乗車し、かつ、後方座席には同乗者34が乗車していないときには、上記とは逆に、前輪21の荷重WLが相対的に大きくなる。このため、電動車両100が停車している状態であっても、重心Oは、電動車両100の前方に遷移する。そして、前方車高HF2は標準姿勢における前方車高HF1よりも小さくなり、後方車高HR2は標準姿勢における前方車高HR1よりも大きくなる。すなわち、減速によってノーズダイブの姿勢となったときのように、車両上屋101は、電動車両100が停車している状態においても標準姿勢に対して前側に傾いた姿勢(以下、前傾姿勢という)となる。 Although not shown, when the driver 33 is in the driver's seat, the passenger 34 is in the front passenger seat, and the passenger 34 is not in the rear seat, contrary to the above, The load WLF on the front wheels 21 becomes relatively large. Therefore, even when electric vehicle 100 is stopped, the center of gravity OG shifts to the front of electric vehicle 100. The front vehicle height H F2 is smaller than the front vehicle height H F1 in the standard position, and the rear vehicle height H R2 is larger than the front vehicle height H R1 in the standard position. That is, even when the electric vehicle 100 is stopped, the vehicle shed 101 is tilted forward relative to the standard posture (hereinafter referred to as the forward tilted posture), such as when the electric vehicle 100 is in a nose dive posture due to deceleration. ).
 上記のように、電動車両100が停車している場合における実際の前後方向の姿勢(以下、基本姿勢という)は、電動車両100の具体的な使用状況に応じて変化する。図3(B)では、乗員の乗車位置を例にしているが、荷物の位置や積載量等によっても上記と同様の変化が生じ得る。 As described above, the actual posture in the longitudinal direction (hereinafter referred to as the basic posture) when the electric vehicle 100 is stopped changes depending on the specific usage situation of the electric vehicle 100. In FIG. 3(B), the riding position of the passenger is taken as an example, but changes similar to those described above may also occur depending on the position and loading amount of the luggage.
 そして、駆動力配分の調整による姿勢制御では、電動車両100が停止している状態において標準姿勢を保っていることを前提に、重心Oの周りに、ピッチ角θを制御するためのモーメントを生じさせるように、駆動力配分が調整される。このため、標準姿勢が上記のような基本姿勢に変化したことによって、あるいは、基本姿勢が別の基本姿勢に変化したことによって、重心Oの実際的な位置が変化すると、姿勢制御において予定するモーメントが車両上屋101に生じなくなる。その結果、基本姿勢を考慮しない姿勢制御では、電動車両100の姿勢が予定する姿勢とならない場合がある。 In attitude control by adjusting the driving force distribution, on the premise that the electric vehicle 100 maintains a standard attitude while stopped, a moment is generated around the center of gravity OG to control the pitch angle θP . The driving force distribution is adjusted so as to cause this. For this reason, when the actual position of the center of gravity OG changes due to a change from the standard posture to the basic posture as described above, or due to a change from the basic posture to another basic posture, the planned No moment is generated in the vehicle shed 101. As a result, in attitude control that does not take the basic attitude into consideration, the attitude of electric vehicle 100 may not be the expected attitude.
 そこで、本実施形態では、コントローラ12は、以下のように、電動車両100の基本姿勢を考慮して、駆動力配分の調整による姿勢制御を行う。 Therefore, in the present embodiment, the controller 12 takes into account the basic attitude of the electric vehicle 100 and performs attitude control by adjusting the driving force distribution, as described below.
 <姿勢制御のための構成>
 図4は、姿勢制御のためのコントローラ12の構成を示すブロック図である。図4に示すように、コントローラ12は、総駆動力演算部41、基本配分演算部42、姿勢制御演算部43、駆動力設定部44、フロントモータ制御部45、及び、リアモータ制御部46を備える。
<Configuration for posture control>
FIG. 4 is a block diagram showing the configuration of the controller 12 for attitude control. As shown in FIG. 4, the controller 12 includes a total driving force calculation section 41, a basic distribution calculation section 42, an attitude control calculation section 43, a driving force setting section 44, a front motor control section 45, and a rear motor control section 46. .
 総駆動力演算部41は、アクセルペダルの操作に基づいて、総駆動力TQを演算する。総駆動力TQは、電動車両100に対する要求駆動力である。例えば、総駆動力演算部41は、アクセル開度APOと総駆動力TQを対応付けるマップを有し、このマップを参照することにより、アクセル開度APOに対応する総駆動力TQを演算する。 The total driving force calculating section 41 calculates the total driving force TQ based on the operation of the accelerator pedal. Total driving force TQ is the required driving force for electric vehicle 100. For example, the total driving force calculation unit 41 has a map that associates the accelerator opening degree A PO with the total driving force TQ, and calculates the total driving force TQ corresponding to the accelerator opening degree A PO by referring to this map. .
 なお、総駆動力演算部41は、上記のようにアクセル開度APOに基づいて総駆動力TQを演算する代わりに、ADAS(Advanced Drive Assistance System)またはAD(Autonomous Driving)システム等からの指令に基づいて、総駆動力TQを演算することができる。これらのシステムは、運転者によるアクセルペダルの操作を代替するシステムであるから、総駆動力演算部41がこれらのシステムの指令に基づいて行う総駆動力TQの演算は、実質的にアクセルペダルの操作に基づく演算である。 Note that instead of calculating the total driving force TQ based on the accelerator opening degree A PO as described above, the total driving force calculation unit 41 calculates the total driving force TQ based on the accelerator opening degree A PO as described above. Based on this, the total driving force TQ can be calculated. Since these systems are systems that replace the operation of the accelerator pedal by the driver, the calculation of the total driving force TQ performed by the total driving force calculation unit 41 based on the commands of these systems substantially does not require the operation of the accelerator pedal. It is a calculation based on operations.
 基本配分演算部42は、基本配分にしたがって、総駆動力TQを、前輪21及び後輪26に配分する。基本配分は、走行安定性を確保し得る範囲内で電費が最良となるように決定される駆動力配分であり、実験またはシミュレーション等によって予め定められる。例えば、フロントモータ23とリアモータ28が同型であって、電動車両100が平坦路を一定の速度で走行する場合、基本配分は前輪:後輪=50:50である。基本配分は、電動車両100の具体的な走行状態(操舵の状態等)によって変化する場合がある。 The basic distribution calculation unit 42 distributes the total driving force TQ to the front wheels 21 and the rear wheels 26 according to the basic distribution. The basic distribution is a driving force distribution that is determined so as to maximize electric power consumption within a range that can ensure running stability, and is determined in advance through experiments, simulations, or the like. For example, when the front motor 23 and the rear motor 28 are of the same type and the electric vehicle 100 travels at a constant speed on a flat road, the basic distribution is front wheels: rear wheels = 50:50. The basic distribution may change depending on the specific running state (steering state, etc.) of electric vehicle 100.
 本実施形態では、基本配分演算部42は、基本配分及び総駆動力TQに基づいて、第1フロントトルク目標値TF1 、及び、第1リアトルク目標値TR1 を演算する。第1フロントトルク目標値TF1 は、基本配分に応じた前輪駆動力Fを前輪21に生じさせるフロントモータトルクを表す。第1リアトルク目標値TR1 は、基本配分に応じた後輪駆動力Fを後輪26に生じさせるリアトルクを表す。以下では、第1フロントトルク目標値TF1 と第1リアトルク目標値TR1 の組み合わせを基本駆動力配分(TF1 ,TR1 )という。 In this embodiment, the basic distribution calculation unit 42 calculates the first front torque target value T F1 * and the first rear torque target value T R1 * based on the basic distribution and the total driving force TQ. The first front torque target value T F1 * represents the front motor torque that causes the front wheels 21 to generate the front wheel driving force F F according to the basic distribution. The first rear torque target value T R1 * represents the rear torque that causes the rear wheels 26 to generate the rear wheel drive force F R according to the basic distribution. Hereinafter, the combination of the first front torque target value T F1 * and the first rear torque target value T R1 * will be referred to as basic driving force distribution (T F1 * , T R1 * ).
 姿勢制御演算部43は、電動車両100の基本姿勢を検出し、その基本姿勢に応じた姿勢制御のための駆動力配分である補正駆動力配分(TF3 ,TR3 )を演算する。本実施形態では、姿勢制御演算部43は、シートベルト着脱信号Sseatに基づいて、電動車両100の基本姿勢を検出する。また、補正駆動力配分(TF3 ,TR3 )は、電動車両100の基本姿勢に応じて姿勢制御をするための最終的なフロントトルク目標値(以下、第3フロントトルク目標値TF3 )とリアトルク目標値(以下、第3リアトルク目標値TR3 )の組み合わせである。姿勢制御演算部43の構成については、詳細を後述する。 Attitude control calculation unit 43 detects the basic attitude of electric vehicle 100 and calculates corrected driving force distribution (T F3 * , T R3 * ) that is driving force distribution for attitude control according to the basic attitude. In this embodiment, the attitude control calculation unit 43 detects the basic attitude of the electric vehicle 100 based on the seatbelt attachment/detaching signal S seat . Further, the corrected driving force distribution (T F3 * , T R3 * ) is a final front torque target value (hereinafter referred to as a third front torque target value T F3 ) for controlling the attitude according to the basic attitude of the electric vehicle 100. * ) and the rear torque target value (hereinafter referred to as third rear torque target value T R3 * ). The configuration of the attitude control calculation unit 43 will be described in detail later.
 駆動力設定部44は、前輪21及び後輪26で生じさせる駆動力の配分を、基本駆動力配分(TF1 ,TR1 )または補正駆動力配分(TF3 ,TR3 )のいずれかに設定する。例えば、駆動力設定部44は、設定等により姿勢制御がオンとなっているとき、または、姿勢制御の実行が許可されているときに、前輪21及び後輪26の駆動力配分を補正駆動力配分(TF3 ,TR3 )に設定する。一方、駆動力設定部44は、設定等により姿勢制御がオフとなっているとき、または、姿勢制御の実行が許可されていないときに、前輪21及び後輪26の駆動力配分を基本駆動力配分(TF1 ,TR1 )に設定する。本実施形態では、簡単のため、設定等により姿勢制御がオンとなっているか、または、姿勢制御の実行が許可されているものとする。すなわち、以下では、駆動力設定部44は、前輪21及び後輪26の駆動力配分を補正駆動力配分(TF3 ,TR3 )に設定するものとする。 The driving force setting unit 44 determines the distribution of the driving force generated between the front wheels 21 and the rear wheels 26 by basic driving force distribution (T F1 * , T R1 * ) or corrected driving force distribution (T F3 * , T R3 * ). Set to either. For example, the driving force setting unit 44 corrects the driving force distribution between the front wheels 21 and the rear wheels 26 when attitude control is turned on by setting or when execution of attitude control is permitted. Set to allocation (T F3 * , T R3 * ). On the other hand, the driving force setting unit 44 adjusts the driving force distribution between the front wheels 21 and the rear wheels 26 to the basic driving force when the attitude control is turned off by setting or the like, or when the execution of the attitude control is not permitted. Set to allocation (T F1 * , T R1 * ). In this embodiment, for the sake of simplicity, it is assumed that attitude control is turned on or execution of attitude control is permitted by setting or the like. That is, in the following description, it is assumed that the driving force setting unit 44 sets the driving force distribution between the front wheels 21 and the rear wheels 26 to the corrected driving force distribution (T F3 * , T R3 * ).
 フロントモータ制御部45は、駆動力設定部44によって設定された駆動力が前輪21で生じるように、フロントインバータ22を介してフロントモータ23を制御する。基本駆動力を指令する第1フロントトルク目標値TF1 が入力されたときには、フロントモータ制御部45は、フロントモータ23によって、第1フロントトルク目標値TF1 に対応するフロントトルクを発生させる。一方、姿勢制御のための補正駆動力を指令する第3フロントトルク目標値TF3 が入力されたときには、フロントモータ制御部45は、フロントモータ23によって、第3フロントトルク目標値TF3 に対応するフロントトルクを発生させる。これにより、前輪駆動力Fは、基本駆動力または補正駆動力に制御される。 The front motor control unit 45 controls the front motor 23 via the front inverter 22 so that the driving force set by the driving force setting unit 44 is generated at the front wheels 21. When the first front torque target value T F1 * that commands the basic driving force is input, the front motor control unit 45 causes the front motor 23 to generate a front torque corresponding to the first front torque target value T F1 *. . On the other hand, when the third front torque target value T F3 * that commands the corrected driving force for attitude control is input, the front motor control unit 45 controls the front motor 23 to adjust the third front torque target value T F3 * to the third front torque target value T F3 * . Generates the corresponding front torque. Thereby, the front wheel drive force FF is controlled to the basic drive force or the corrected drive force.
 リアモータ制御部46は、駆動力設定部44によって設定された駆動力が後輪26で生じるように、リアインバータ27を介してリアモータ28を制御する。基本駆動力を指令する第1リアトルク目標値TR1 が入力されたときには、リアモータ制御部46は、リアモータ28によって、第1リアトルク目標値TR1 に対応するリアトルクを発生させる。一方、姿勢制御のための補正駆動力を指令する第3リアトルク目標値TR3 が入力されたときには、リアモータ制御部46は、リアモータ28によって、第3リアトルク目標値TR3 に対応するリアトルクを発生させる。これにより、後輪駆動力Fは、基本駆動力または補正駆動力に制御される。 The rear motor control unit 46 controls the rear motor 28 via the rear inverter 27 so that the driving force set by the driving force setting unit 44 is generated at the rear wheel 26. When the first rear torque target value T R1 * that commands the basic driving force is input, the rear motor control unit 46 causes the rear motor 28 to generate a rear torque corresponding to the first rear torque target value T R1 * . On the other hand, when the third rear torque target value T R3 * that commands the corrected driving force for attitude control is input, the rear motor control unit 46 causes the rear motor 28 to generate a rear torque corresponding to the third rear torque target value T R3 *. generate. Thereby, the rear wheel drive force FR is controlled to the basic drive force or the corrected drive force.
 なお、フロントモータ制御部45及びリアモータ制御部46は、基本駆動力配分(TF1 ,TR1 )または補正駆動力配分(TF3 ,TR3 )にしたがって、前輪21及び後輪26を制御(駆動)する駆動輪制御部を構成する。 Note that the front motor control section 45 and the rear motor control section 46 control the front wheels 21 and the rear wheels 26 according to the basic driving force distribution (T F1 * , TR1 * ) or the corrected driving force distribution (T F3 * , T R3 * ). This constitutes a drive wheel control section that controls (drives) the
 図5は、姿勢制御演算部43の構成を示すブロック図である。図5に示すように、姿勢制御演算部43は、第1演算部51と、第2演算部52と、を備える。 FIG. 5 is a block diagram showing the configuration of the attitude control calculation section 43. As shown in FIG. 5, the attitude control calculation section 43 includes a first calculation section 51 and a second calculation section 52.
 第1演算部51は、電動車両100が加速または減速するときに、電動車両100の前後方向の姿勢を制御する駆動力配分である姿勢制御用駆動力配分(TF2 、TR2 )を演算する。第1演算部51は、姿勢制御用駆動力配分(TF2 、TR2 )を演算するための構成として、基本ピッチ補正部53を含む。 When the electric vehicle 100 accelerates or decelerates, the first calculation unit 51 calculates the driving force distribution for attitude control (T F2 * , T R2 * ), which is the driving force distribution that controls the longitudinal attitude of the electric vehicle 100. calculate. The first calculation unit 51 includes a basic pitch correction unit 53 as a configuration for calculating the driving force distribution for attitude control (T F2 * , T R2 * ).
 基本ピッチ補正部53は、電動車両100が加速または減速するときに、前後方向の姿勢を制御する駆動力配分である姿勢制御用駆動力配分(TF2 ,TR2 )を演算する駆動力配分演算部である。すなわち、基本ピッチ補正部53は、電動車両100の基本姿勢がどのようになっているかに関わらず、電動車両100が停車している状態において標準姿勢を保っていることを前提として、姿勢制御用駆動力配分(TF2 、TR2 )を演算する。したがって、姿勢制御用駆動力配分(TF2 、TR2 )は、電動車両100が停車時に標準姿勢を保っていることを前提として、姿勢制御をするためのフロントトルク目標値(以下、第2フロントトルク目標値TF2 )とリアトルク目標値(以下、第2リアトルク目標値TR2 )の組み合わせである。具体的には、基本ピッチ補正部53は、例えば予め定まる電動車両100の車両モデルに基づいて、ピッチ角θが目標とするピッチ角(以下、目標ピッチ角θ という)となるように基本駆動力配分(TF1 ,TR1 )を補正することにより、姿勢制御用駆動力配分(TF2 、TR2 )を演算する。 The basic pitch correction unit 53 calculates a driving force distribution for attitude control (T F2 * , T R2 * ), which is a driving force distribution that controls the attitude in the longitudinal direction when the electric vehicle 100 accelerates or decelerates. This is a distribution calculation section. That is, regardless of the basic attitude of electric vehicle 100, basic pitch correction unit 53 performs the adjustment for attitude control on the premise that electric vehicle 100 maintains a standard attitude while stopped. The driving force distribution (T F2 * , T R2 * ) is calculated. Therefore, the driving force distribution for attitude control (T F2 * , T R2 * ) is based on the front torque target value (hereinafter referred to as the front torque target value) for attitude control on the premise that the electric vehicle 100 maintains the standard attitude when stopped. This is a combination of a second front torque target value T F2 * ) and a rear torque target value (hereinafter referred to as a second rear torque target value T R2 * ). Specifically, the basic pitch correction unit 53 adjusts the pitch angle θ P to a target pitch angle (hereinafter referred to as target pitch angle θ P * ) based on, for example, a predetermined vehicle model of the electric vehicle 100. By correcting the basic driving force distribution (T F1 * , T R1 * ), the attitude control driving force distribution (T F2 * , T R2 * ) is calculated.
 すなわち、本実施形態で電動車両100が行う姿勢制御は、実際に発生したピッチ角θに依らず、車両モデルに基づき駆動力配分を補正(調整)するフィードフォワード制御によって行われる。 That is, the attitude control performed by the electric vehicle 100 in this embodiment is performed by feedforward control that corrects (adjusts) the driving force distribution based on the vehicle model, regardless of the pitch angle θ P that actually occurs.
 第2演算部52は、電動車両100の基本姿勢を検出し、検出した基本姿勢に基づいて上記の姿勢制御用駆動力配分(TF2 、TR2 )を補正することにより、補正駆動力配分(TF3 ,TR3 )を演算する。第2演算部52は、そのための構成として、基本姿勢検出部54、補正係数演算部55、及び、重心補正部56を備える。 The second calculation unit 52 detects the basic attitude of the electric vehicle 100, and corrects the attitude control driving force distribution (T F2 * , T R2 * ) based on the detected basic attitude, thereby generating a corrected driving force. Calculate the distribution (T F3 * , T R3 * ). The second calculation unit 52 includes a basic posture detection unit 54, a correction coefficient calculation unit 55, and a center of gravity correction unit 56 as configurations therefor.
 基本姿勢検出部54は、電動車両100の基本姿勢を検出する。本実施形態では、基本姿勢検出部54は、シートベルト着脱信号Sseatに基づいて、電動車両100の基本姿勢を検出する。具体的には、各座席における乗員の有無は、実質的に、電動車両100の基本姿勢(遷移後の重心Oの位置)を決定づける情報であるから、基本姿勢検出部54は、シートベルト着脱信号Sseatに基づいて各座席に乗員が乗っているか否かを検出する。そして、基本姿勢検出部54は、運転席及び助手席である前部座席と後部座席の各乗車人数を、電動車両100の基本姿勢を表す情報として出力する。 Basic attitude detection section 54 detects the basic attitude of electric vehicle 100. In this embodiment, the basic posture detection unit 54 detects the basic posture of the electric vehicle 100 based on the seatbelt attachment/detaching signal S seat . Specifically, since the presence or absence of an occupant in each seat is information that substantially determines the basic attitude of the electric vehicle 100 (the position of the center of gravity after transition), the basic attitude detection unit 54 determines whether the seatbelt is attached or removed. Based on the signal S seat , it is detected whether or not each seat is occupied. Then, the basic attitude detection unit 54 outputs the number of passengers in each of the front and rear seats, which are the driver's seat and the passenger seat, as information representing the basic attitude of the electric vehicle 100.
 補正係数演算部55は、姿勢制御用駆動力配分(TF2 、TR2 )の補正に用いる補正係数Kを演算する。本実施形態では、補正係数Kは、前輪21及び後輪26の駆動力配分の割合を補正するために用いられる。補正係数演算部55は、下記の表1に基づき、前部座席及び後部座席の各乗車人数に応じて、補正係数Kを演算する。表1における「α」は、実験またはシミュレーション等によって、適合により予め定める所定値である。 The correction coefficient calculation unit 55 calculates a correction coefficient K used for correction of the attitude control driving force distribution (T F2 * , T R2 * ). In this embodiment, the correction coefficient K is used to correct the ratio of driving force distribution between the front wheels 21 and the rear wheels 26. The correction coefficient calculation unit 55 calculates a correction coefficient K according to the number of passengers in the front seats and the rear seats, based on Table 1 below. "α" in Table 1 is a predetermined value predetermined by adaptation through experiment, simulation, or the like.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 重心補正部56は、基本姿勢に応じて重心Oが前方または後方に遷移した分、姿勢制御用駆動力配分(TF2 、TR2 )に占める前輪21及び後輪26の駆動力配分の割合を補正する重心補正を行うことにより、補正駆動力配分(TF3 ,TR3 )を演算する。 The center of gravity correction unit 56 adjusts the driving force distribution between the front wheels 21 and the rear wheels 26 in the attitude control driving force distribution (T F2 * , T R2 * ) by the amount that the center of gravity OG shifts forward or backward depending on the basic attitude. The corrected driving force distribution (T F3 * , T R3 * ) is calculated by performing gravity center correction that corrects the ratio of .
 本実施形態では、重心補正部56は、まず、下記の数式(1)に基づき、姿勢制御用駆動力配分(TF2 、TR2 )における後輪26への駆動力の配分割合(以下、配分割合という)D(%)を演算する。 In the present embodiment, the center of gravity correction unit 56 first calculates the distribution ratio of the driving force to the rear wheels 26 in the attitude control driving force distribution (T F2 * , T R2 * ) based on the following formula (1). , called distribution ratio) D R (%) is calculated.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 その後、重心補正部56は、下記の数式(2)にしたがって、補正係数Kを用いて、後輪26の配分割合Dを補正し、補正後の後輪26への駆動力配分割合(以下、補正配分割合という)D′(%)を演算する。この補正配分割合D′は、前後方向の姿勢を制御しつつ、かつ、基本姿勢に応じて補正された駆動力の配分割合である。 Thereafter, the center of gravity correction section 56 corrects the distribution ratio D R of the rear wheels 26 using the correction coefficient K according to the following formula (2), and corrects the driving force distribution ratio DR to the rear wheels 26 after the correction (hereinafter referred to as , D R '(%) (referred to as corrected allocation ratio) is calculated. This corrected distribution ratio D R ' is a driving force distribution ratio that is corrected according to the basic posture while controlling the posture in the longitudinal direction.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 そして、重心補正部56は、下記の数式(3)及び数式(4)にしたがって、補正駆動力配分(TF3 ,TR3 )を演算する。すなわち、重心補正部56は、補正配分割合D′にしたがって、姿勢制御用駆動力配分(TF2 、TR2 )を前輪21及び後輪26に再配分する。 Then, the center of gravity correction unit 56 calculates the corrected driving force distribution (T F3 * , T R3 * ) according to the following equations (3) and (4). That is, the center of gravity correction unit 56 redistributes the attitude control driving force distribution (T F2 * , T R2 * ) to the front wheels 21 and the rear wheels 26 according to the corrected distribution ratio D R '.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 補正係数Kの設定から分かるとおり、上記のように演算された補正駆動力配分(TF3 ,TR3 )は、予め定まる標準姿勢に対して基本姿勢が前傾している場合、姿勢制御用駆動力配分(TF2 、TR2 )に対して前輪21への駆動力の配分を増加させた配分となる。また、標準姿勢に対して基本姿勢が後傾している場合、補正駆動力配分(TF3 ,TR3 )は、姿勢制御用駆動力配分(TF2 、TR2 )に対して後輪26への駆動力の配分を増加させた配分となる。 As can be seen from the setting of the correction coefficient K, the corrected driving force distribution (T F3 * , T R3 * ) calculated as above is effective for posture control when the basic posture is tilted forward with respect to the predetermined standard posture. The distribution is such that the distribution of the driving force to the front wheels 21 is increased compared to the driving force distribution (T F2 * , T R2 * ). In addition, when the basic posture is tilted backwards with respect to the standard posture, the corrected driving force distribution (T F3 * , TR3 * ) is different from the driving force distribution for attitude control (T F2 * , T R2 * ). This results in an increased distribution of driving force to the rear wheels 26.
 <作用>
 以下、上記のように構成される電動車両100の姿勢制御に係る作用を説明する。
<Effect>
Hereinafter, the operation related to attitude control of electric vehicle 100 configured as described above will be explained.
 図6は、電動車両100の姿勢制御に係る作用を示すフローチャートである。図6に示すように、ステップS10において、基本配分演算部42は、総駆動力TQに基づいて、基本駆動力配分(TF1 ,TR1 )を演算する。次いで、ステップS11では、基本ピッチ補正部53が、車両モデルに基づき、基本駆動力配分(TF1 ,TR1 )から、電動車両100が停車している状態において標準姿勢を保っているときの姿勢制御用駆動力配分(TF2 、TR2 )を演算する。 FIG. 6 is a flowchart showing actions related to attitude control of electric vehicle 100. As shown in FIG. 6, in step S10, the basic distribution calculation unit 42 calculates basic driving force distribution (T F1 * , T R1 * ) based on the total driving force TQ. Next, in step S11, the basic pitch correction unit 53 calculates, based on the vehicle model, based on the basic driving force distribution (T F1 * , T R1 * ), when the electric vehicle 100 is in a stopped state and maintains a standard posture. The driving force distribution for attitude control (T F2 * , T R2 * ) is calculated.
 一方、ステップS12において、基本姿勢検出部54は、シートベルト着脱信号Sseatを取得する。また、ステップS13において、基本姿勢検出部54は、取得したシートベルト着脱信号Sseatに基づき、前部座席及び後部座席の各乗車人数を特定することにより、電動車両100の基本姿勢を検出する。そして、ステップS14において、補正係数演算部55が、電動車両100の基本姿勢、すなわち前部座席及び後部座席の各乗車人数に基づき、補正係数Kを演算する。その後、ステップS15において、重心補正部56は、補正係数Kを用いて、姿勢制御用駆動力配分(TF2 、TR2 )に占める前輪21及び後輪26の駆動力配分割合を補正することにより、補正駆動力配分(TF3 ,TR3 )を演算する。そして、ステップS16において、フロントモータ制御部45及びリアモータ制御部46は、補正駆動力配分(TF3 ,TR3 )にしたがってフロントモータ23及びリアモータ28を作動させることにより、前輪21及び後輪26を駆動する。 On the other hand, in step S12, the basic posture detection unit 54 acquires the seatbelt attachment/detachment signal S seat . Further, in step S13, the basic posture detection unit 54 detects the basic posture of the electric vehicle 100 by specifying the number of passengers in each of the front seats and the rear seats based on the acquired seatbelt attachment/detaching signal S seat . Then, in step S14, the correction coefficient calculation unit 55 calculates a correction coefficient K based on the basic posture of the electric vehicle 100, that is, the number of passengers in each of the front seats and the rear seats. After that, in step S15, the center of gravity correction unit 56 uses the correction coefficient K to correct the driving force distribution ratio of the front wheels 21 and the rear wheels 26 in the attitude control driving force distribution (T F2 * , T R2 * ). Accordingly, the corrected driving force distribution (T F3 * , T R3 * ) is calculated. Then, in step S16, the front motor control section 45 and the rear motor control section 46 operate the front motor 23 and the rear motor 28 according to the corrected driving force distribution (T F3 * , T R3 * ), thereby controlling the front wheels 21 and the rear wheels. 26.
 補正駆動力配分(TF3 ,TR3 )は、基本姿勢に応じた重心Oの遷移に基づいて補正された正確な姿勢制御用駆動力配分となっている。このため、補正駆動力配分(TF3 ,TR3 )にしたがって前輪21及び後輪26を駆動することにより、電動車両100が基本姿勢となって遷移した重心Oの周りに、ピッチ角θを制御するための正確なモーメントが生じる。その結果、上記の電動車両100の姿勢制御によれば、乗員の人数や具体的な乗車位置等によらず、加速または減速時に、電動車両100の姿勢は目標とする姿勢に収束する。加速または減速時に目標とする姿勢は、例えば、標準姿勢(θ≒0)または実際的な初期姿勢である基本姿勢である。 The corrected driving force distribution (T F3 * , T R3 * ) is an accurate driving force distribution for attitude control that is corrected based on the transition of the center of gravity OG according to the basic attitude. Therefore, by driving the front wheels 21 and the rear wheels 26 according to the corrected driving force distribution (T F3 * , T R3 * ), the pitch angle is adjusted around the center of gravity O A precise moment is generated to control θ P. As a result, according to the attitude control of the electric vehicle 100 described above, the attitude of the electric vehicle 100 converges to the target attitude during acceleration or deceleration, regardless of the number of occupants, specific riding positions, etc. The target posture during acceleration or deceleration is, for example, a standard posture (θ P ≈0) or a basic posture that is a practical initial posture.
 [第2実施形態]
 上記第1実施形態では、基本姿勢検出部54は、シートベルト着脱信号Sseatに基づき、前部座席及び後部座席の各乗車人数を特定することによって、電動車両100の基本姿勢を検出しているが、これに限らない。基本姿勢検出部54は、前方車高HF2及び後方車高HR2、または、これらの差ΔHFR(=HF2-HR2)を特定することによって、電動車両100の基本姿勢を検出することができる。以下、第2実施形態では、前方車高HF2と後方車高HR2の差ΔHFRを特定することによって、電動車両100の基本姿勢を検出する例を説明する。
[Second embodiment]
In the first embodiment, the basic attitude detection unit 54 detects the basic attitude of the electric vehicle 100 by specifying the number of passengers in each of the front seats and the rear seats based on the seatbelt attachment/detaching signal S seat . However, it is not limited to this. The basic attitude detection unit 54 detects the basic attitude of the electric vehicle 100 by specifying the front vehicle height H F2 and the rear vehicle height H R2 or the difference ΔH FR (=H F2 - H R2 ) between them. Can be done. Hereinafter, in the second embodiment, an example will be described in which the basic posture of the electric vehicle 100 is detected by specifying the difference ΔH FR between the front vehicle height H F2 and the rear vehicle height H R2 .
 図7は、第2実施形態における姿勢制御演算部43の構成を示すブロック図である。図7に示すように、第2実施形態の姿勢制御演算部43は、第2演算部52の構成が第1実施形態と異なる。具体的には、第2実施形態の姿勢制御演算部43は、停車検出部201と、第1実施形態と異なる基本姿勢検出部202及び補正係数演算部203と、第1実施形態と同様の重心補正部56と、を備える。 FIG. 7 is a block diagram showing the configuration of the attitude control calculation section 43 in the second embodiment. As shown in FIG. 7, the posture control calculation section 43 of the second embodiment differs from the first embodiment in the configuration of the second calculation section 52. Specifically, the attitude control calculation unit 43 of the second embodiment includes a stop detection unit 201, a basic attitude detection unit 202 and a correction coefficient calculation unit 203 that are different from the first embodiment, and a center of gravity similar to the first embodiment. A correction section 56 is provided.
 停車検出部201は、車速VSPと路面勾配φLSに基づいて、電動車両100が平坦路に停車しているか否かを検出する。停車検出部201は、車速VSPが予め定める誤差の範囲内でゼロであり(VSP≒0)、かつ、路面勾配φLSが予め定める誤差の範囲内でゼロであるときに(φLS≒0)、電動車両100が平坦路に停車している状態であると判定する。 Stop detection unit 201 detects whether electric vehicle 100 is stopped on a flat road based on vehicle speed VSP and road surface slope φLS . The stop detection unit 201 detects when the vehicle speed VSP is zero within a predetermined error range (VSP≒0) and the road surface slope φ LS is zero within a predetermined error range (φ LS ≒0). , it is determined that the electric vehicle 100 is stopped on a flat road.
 基本姿勢検出部202は、平坦路での停車が検出されたときに、サスペンションストローク信号Ssusを取得する。そして、基本姿勢検出部202は、取得したサスペンションストローク信号Ssusに基づいて、前方車高HF2及び後方車高HR2、または、これらの差ΔHFRを演算することにより、電動車両100が停車している状態における姿勢を検出する。ここでは、電動車両100は、標準姿勢とは異なる基本姿勢となっているものとする。前方車高HF2及び後方車高HR2、または、これらの差ΔHFRは、車体の構造的モデルにしたがって、サスペンションストローク信号Ssusから演算することができる。本実施形態では、基本姿勢検出部202は、前方車高HF2と後方車高HR2の差ΔHFRを演算する。 The basic posture detection unit 202 acquires a suspension stroke signal S sus when a stop on a flat road is detected. Then, the basic attitude detection unit 202 determines whether the electric vehicle 100 is stopped by calculating the front vehicle height H F2 and the rear vehicle height H R2 or the difference ΔH FR between them based on the acquired suspension stroke signal S sus . Detects the posture in the state of Here, it is assumed that electric vehicle 100 is in a basic posture that is different from the standard posture. The front vehicle height H F2 and the rear vehicle height H R2 or their difference ΔH FR can be calculated from the suspension stroke signal S sus according to the structural model of the vehicle body. In this embodiment, the basic attitude detection unit 202 calculates the difference ΔH FR between the front vehicle height HF2 and the rear vehicle height H R2 .
 補正係数演算部203は、姿勢制御用駆動力配分(TF2 、TR2 )の補正に用いる補正係数Kを演算する。これは、第1実施形態の補正係数演算部203と同様である。但し、第2実施形態の補正係数演算部203は、前方車高HF2と後方車高HR2の差ΔHFRに基づいて、補正係数Kを演算する。前方車高HF2と後方車高HR2の差ΔHFRと、補正係数Kと、の関係は、実験またはシミュレーション等によって適合により予め定められる。 The correction coefficient calculation unit 203 calculates a correction coefficient K used for correction of the attitude control driving force distribution (T F2 * , T R2 * ). This is similar to the correction coefficient calculating section 203 of the first embodiment. However, the correction coefficient calculation unit 203 of the second embodiment calculates the correction coefficient K based on the difference ΔHFR between the front vehicle height HF2 and the rear vehicle height HR2 . The relationship between the difference ΔH FR between the front vehicle height H F2 and the rear vehicle height H R2 and the correction coefficient K is determined in advance by adaptation through experiments, simulations, or the like.
 図8は、前方車高HF2と後方車高HR2の差ΔHFRと、補正係数Kと、の関係を例示するグラフである。図8に示すように、本実施形態では、補正係数演算部203は、例えば、前方車高HF2と後方車高HR2の差ΔHFRに対して、補正係数Kが比例して増加または減少するように予め定める。例えば、差ΔHFRがΔHFR′である場合、対応する補正係数KはK′である。補正係数演算部203が演算する補正係数Kの性質は、第1実施形態と同様である。 FIG. 8 is a graph illustrating the relationship between the difference ΔH FR between the front vehicle height H F2 and the rear vehicle height H R2 and the correction coefficient K. As shown in FIG. 8, in the present embodiment, the correction coefficient calculation unit 203 increases or decreases the correction coefficient K in proportion to the difference ΔH FR between the front vehicle height H F2 and the rear vehicle height H R2 . It is determined in advance that For example, if the difference ΔH FR is ΔH FR ', the corresponding correction coefficient K is K'. The properties of the correction coefficient K calculated by the correction coefficient calculation unit 203 are the same as in the first embodiment.
 このように前方車高HF2と後方車高HR2の差ΔHFRと、補正係数Kと、の関係を定めることにより、重心補正部56が演算する補正駆動力配分(TF3 ,TR3 )は、予め定まる標準姿勢に対して基本姿勢が前傾している場合、姿勢制御用駆動力配分(TF2 、TR2 )に対して前輪21への駆動力の配分を増加させた配分となる。また、標準姿勢に対して基本姿勢が後傾している場合、補正駆動力配分(TF3 ,TR3 )は、姿勢制御用駆動力配分(TF2 、TR2 )に対して後輪26への駆動力の配分を増加させた配分となる。 In this way, by determining the relationship between the difference ΔH FR between the front vehicle height H F2 and the rear vehicle height H R2 and the correction coefficient K, the corrected driving force distribution (T F3 * , T R3 * ) increases the distribution of the driving force to the front wheels 21 with respect to the driving force distribution for attitude control (T F2 * , T R2 * ) when the basic posture is tilted forward with respect to the predetermined standard posture. The distribution will be as follows. In addition, when the basic posture is tilted backwards with respect to the standard posture, the corrected driving force distribution (T F3 * , TR3 * ) is different from the driving force distribution for attitude control (T F2 * , T R2 * ). This results in an increased distribution of driving force to the rear wheels 26.
 図9は、第2実施形態の姿勢制御に係る作用を示すフローチャートである。図9に示すように、ステップS20では、基本配分演算部42は、総駆動力TQに基づいて、基本駆動力配分(TF1 ,TR1 )を演算する。次いで、ステップS21では、基本ピッチ補正部53が、車両モデルに基づき、基本駆動力配分(TF1 ,TR1 )から、電動車両100が停車している状態において標準姿勢を保っているときの姿勢制御用駆動力配分(TF2 、TR2 )を演算する。 FIG. 9 is a flowchart showing the actions related to attitude control in the second embodiment. As shown in FIG. 9, in step S20, the basic distribution calculation unit 42 calculates basic driving force distribution (T F1 * , T R1 * ) based on the total driving force TQ. Next, in step S21, the basic pitch correction unit 53 calculates, based on the vehicle model, basic driving force distribution (T F1 * , T R1 * ) when the electric vehicle 100 is in a stopped state and maintains a standard posture. The driving force distribution for attitude control (T F2 * , T R2 * ) is calculated.
 一方、ステップS22では、停車検出部201は、車速VSPと路面勾配φLSを取得する。そして、ステップS23において、停車検出部201は、車速VSPに基づいて、電動車両100が停車しているか否かを検出する。車速VSPが実質的にゼロであり、電動車両100が停車していると判定されたときには、ステップS24に進む。ステップS24では、停車検出部201は、路面勾配φLSに基づいて、電動車両100が停車している路面が平坦路であるか否かを検出する。そして、電動車両100が停車している路面が平坦路であることが検出されると、ステップS25に進み、基本姿勢検出部202が、サスペンションストローク信号Ssusを取得する。 On the other hand, in step S22, the stop detection unit 201 obtains the vehicle speed VSP and the road surface slope φLS . Then, in step S23, the stop detection unit 201 detects whether the electric vehicle 100 is stopped based on the vehicle speed VSP. When it is determined that the vehicle speed VSP is substantially zero and the electric vehicle 100 is stopped, the process advances to step S24. In step S24, the stop detection unit 201 detects whether the road surface on which the electric vehicle 100 is stopped is a flat road based on the road surface slope φLS . Then, when it is detected that the road surface on which the electric vehicle 100 is stopped is a flat road, the process proceeds to step S25, and the basic posture detection unit 202 acquires the suspension stroke signal S sus .
 ステップS25では、基本姿勢検出部202が、サスペンションストローク信号Ssusに基づいて、電動車両100の基本姿勢を検出する。具体的には、基本姿勢検出部202は、サスペンションストローク信号Ssusに基づいて、前方車高HF2と後方車高HR2の差ΔHFRを演算することにより、電動車両100の基本姿勢を検出する。 In step S25, basic attitude detection section 202 detects the basic attitude of electric vehicle 100 based on suspension stroke signal S sus . Specifically, the basic attitude detection unit 202 detects the basic attitude of the electric vehicle 100 by calculating the difference ΔHFR between the front vehicle height H F2 and the rear vehicle height H R2 based on the suspension stroke signal S sus . do.
 そして、ステップS27では、補正係数演算部203が、前方車高HF2と後方車高HR2の差ΔHFRに基づいて、補正係数Kを演算する。なお、ステップS23で電動車両100が停車していないと判定された場合、または、ステップS24で電動車両100が停車している路面が平坦路でないと判定された場合は、ステップS30に進み、従前の補正係数Kが維持される。 Then, in step S27, the correction coefficient calculation unit 203 calculates the correction coefficient K based on the difference ΔHFR between the front vehicle height HF2 and the rear vehicle height HR2 . Note that if it is determined in step S23 that the electric vehicle 100 is not stopped, or if it is determined in step S24 that the road surface on which the electric vehicle 100 is stopped is not a flat road, the process advances to step S30 and the previous A correction coefficient K is maintained.
 その後、ステップS28では、重心補正部56は、補正係数Kを用いて、姿勢制御用駆動力配分(TF2 、TR2 )に占める前輪21及び後輪26の駆動力配分割合を補正することにより、補正駆動力配分(TF3 ,TR3 )を演算する。そして、ステップS29では、フロントモータ制御部45及びリアモータ制御部46が、補正駆動力配分(TF3 ,TR3 )にしたがってフロントモータ23及びリアモータ28を作動させることにより、前輪21及び後輪26を駆動する。 After that, in step S28, the center of gravity correction unit 56 uses the correction coefficient K to correct the driving force distribution ratio of the front wheels 21 and the rear wheels 26 in the attitude control driving force distribution (T F2 * , T R2 * ). Accordingly, the corrected driving force distribution (T F3 * , T R3 * ) is calculated. Then, in step S29, the front motor control section 45 and the rear motor control section 46 operate the front motor 23 and the rear motor 28 according to the corrected driving force distribution (T F3 * , T R3 * ), thereby controlling the front wheel 21 and the rear wheel. 26.
 上記のように、前方車高HF2及び後方車高HR2、または、これらの差ΔHFRを特定することによって、電動車両100の基本姿勢を検出する場合も、第1実施形態と同様に、補正駆動力配分(TF3 ,TR3 )は、基本姿勢に応じた重心Oの遷移に基づいて補正された正確な姿勢制御用駆動力配分となる。このため、補正駆動力配分(TF3 ,TR3 )にしたがって前輪21及び後輪26を駆動することにより、基本姿勢となって遷移した重心Oの周りに、ピッチ角θを制御するための正確なモーメントが生じる。その結果、上記第2実施形態の姿勢制御によれば、第1実施形態と同様に、加速または減速時に、電動車両100の姿勢は目標とする姿勢に収束する。 As described above, when detecting the basic posture of the electric vehicle 100 by specifying the front vehicle height H F2 and the rear vehicle height H R2 or the difference ΔH FR between them, similarly to the first embodiment, The corrected driving force distribution (T F3 * , T R3 * ) is an accurate driving force distribution for attitude control that is corrected based on the transition of the center of gravity OG according to the basic attitude. Therefore, by driving the front wheels 21 and rear wheels 26 according to the corrected driving force distribution (T F3 * , T R3 * ), the pitch angle θ P is controlled around the center of gravity O G that has transitioned to the basic posture. A precise moment is generated to do so. As a result, according to the attitude control of the second embodiment, the attitude of the electric vehicle 100 converges to the target attitude during acceleration or deceleration, similarly to the first embodiment.
 また、上記のように、前方車高HF2及び後方車高HR2、または、これらの差ΔHFRを特定することによって、電動車両100の基本姿勢を検出する場合、乗員の人数や具体的な乗車位置等だけでなく、電動車両100に積み込まれた荷物の量や位置に応じて電動車両100の基本姿勢が変化した場合でも、補正駆動力配分(TF3 ,TR3 )は、その基本姿勢に応じた重心Oの遷移に基づいて補正された正確な姿勢制御用駆動力配分となる。したがって、上記第2実施形態は、加速または減速時に、電動車両100の姿勢を目標とする姿勢に収束させやすい。 Further, as described above, when detecting the basic posture of the electric vehicle 100 by specifying the front vehicle height H F2 and the rear vehicle height H R2 or the difference ΔH FR between them, the number of occupants and the specific Even if the basic posture of the electric vehicle 100 changes depending on not only the riding position, etc. but also the amount and position of luggage loaded on the electric vehicle 100, the corrected driving force distribution (T F3 * , T R3 * ) Accurate posture control driving force distribution is corrected based on the transition of the center of gravity OG according to the basic posture. Therefore, in the second embodiment, the attitude of the electric vehicle 100 is easily converged to the target attitude during acceleration or deceleration.
 上記第2実施形態では、サスペンションストローク信号Ssusに基づいて、電動車両100の基本姿勢が検出されるが、これに限らず、他のパラメータを用いて、電動車両100の基本姿勢が検出されてもよい。例えば、電動車両100はピッチ角θを取得可能であるから、基本姿勢検出部202は、ピッチ角θによって直接に電動車両100の基本姿勢を検出してもよい。サスペンションストローク信号Ssusの代わりに、ピッチ角θを用いる場合、ピッチ角θは、上記第2実施形態と同様に、電動車両100が平坦路で停車しているときに取得すべきである。 In the second embodiment, the basic attitude of the electric vehicle 100 is detected based on the suspension stroke signal S sus , but the basic attitude of the electric vehicle 100 is not limited to this, but may be detected using other parameters. Good too. For example, since electric vehicle 100 can acquire the pitch angle θ P , basic attitude detection unit 202 may directly detect the basic attitude of electric vehicle 100 based on the pitch angle θ P. When using the pitch angle θ P instead of the suspension stroke signal S sus , the pitch angle θ P should be obtained when the electric vehicle 100 is stopped on a flat road, as in the second embodiment. .
 以上のように、上記第1実施形態及び第2実施形態に係る電動車両の制御方法は、駆動輪である前輪21及び後輪26の駆動力配分を調整することによって、前後方向の姿勢を制御する姿勢制御を行う電動車両100の制御方法である。この電動車両の制御方法では、電動車両100が停車しているとき場合における実際の前後方向の姿勢である基本姿勢が検出される。また、電動車両100が加速または減速するときに、前後方向の姿勢を制御する駆動力配分である姿勢制御用駆動力配分(TF2 ,TR2 )が演算される。そして、基本姿勢に基づいて姿勢制御用駆動力配分(TF2 ,TR2 )を補正することにより、補正駆動力配分(TF3 ,TR3 )が演算され、この補正駆動力配分(TF3 ,TR3 )にしたがって駆動輪(21,26)が制御される。 As described above, the electric vehicle control method according to the first embodiment and the second embodiment controls the posture in the longitudinal direction by adjusting the driving force distribution of the front wheels 21 and the rear wheels 26, which are the driving wheels. This is a control method for electric vehicle 100 that performs attitude control. In this electric vehicle control method, a basic posture is detected, which is the actual longitudinal posture when electric vehicle 100 is stopped. Furthermore, when the electric vehicle 100 accelerates or decelerates, the attitude control driving force distribution (T F2 * , T R2 * ), which is the driving force distribution that controls the attitude in the longitudinal direction, is calculated. Then, by correcting the attitude control driving force distribution (T F2 * , TR2 * ) based on the basic attitude, a corrected driving force distribution (T F3 * , T R3 * ) is calculated, and this corrected driving force distribution The driving wheels (21, 26) are controlled according to (T F3 * , T R3 * ).
 このように、電動車両100の基本姿勢に基づいて、姿勢制御用駆動力配分(TF2 ,TR2 )を補正することにより、補正駆動力配分(TF3 ,TR3 )を演算すると、補正駆動力配分(TF3 ,TR3 )は、基本姿勢に応じた重心Oの遷移に基づいて補正された正確な姿勢制御用駆動力配分となる。このため、上記のように、補正駆動力配分(TF3 ,TR3 )にしたがって前輪21及び後輪26を駆動することにより、電動車両100が基本姿勢となって遷移した重心Oの周りに、ピッチ角θを制御するための正確なモーメントが生じる。その結果、加速または減速時に、電動車両100の姿勢は目標とする姿勢に収束する。 In this way, by correcting the attitude control driving force distribution (T F2 * , TR2 * ) based on the basic attitude of the electric vehicle 100, the corrected driving force distribution (T F3 * , TR3 * ) is calculated. Then, the corrected driving force distribution (T F3 * , T R3 * ) becomes an accurate driving force distribution for attitude control that is corrected based on the transition of the center of gravity OG according to the basic attitude. Therefore, as described above, by driving the front wheels 21 and the rear wheels 26 according to the corrected driving force distribution (T F3 * , T R3 * ), the electric vehicle 100 assumes the basic posture and changes the center of gravity O G around which a precise moment is generated to control the pitch angle θ P. As a result, the attitude of electric vehicle 100 converges to the target attitude during acceleration or deceleration.
 上記第1実施形態及び第2実施形態に係る電動車両の制御方法では、予め定まる標準姿勢に対して基本姿勢が前傾している場合、姿勢制御用駆動力配分(TF2 ,TR2 )に対して前輪21への駆動力の配分を増加させた補正駆動力配分(TF3 ,TR3 )が演算される。また、標準姿勢に対して基本姿勢が後傾している場合、姿勢制御用駆動力配分(TF2 ,TR2 )に対して後輪26への駆動力の配分を増加させた補正駆動力配分(TF3 ,TR3 )が演算される。 In the electric vehicle control method according to the first embodiment and the second embodiment, when the basic posture is tilted forward with respect to the predetermined standard posture, the driving force distribution for posture control (T F2 * , T R2 * ), a corrected driving force distribution (T F3 * , T R3 * ) is calculated in which the distribution of the driving force to the front wheels 21 is increased. In addition, when the basic posture is tilted backward with respect to the standard posture, a correction drive is performed in which the distribution of the driving force to the rear wheels 26 is increased with respect to the driving force distribution for posture control (T F2 * , T R2 * ). Force distribution (T F3 * , T R3 * ) is calculated.
 このように演算された補正駆動力配分(TF3 ,TR3 )は、電動車両100が基本姿勢となって遷移した重心Oの周りに、ピッチ角θを制御するための正確なモーメントを生じさせやすい。したがって、加速または減速時に、電動車両100の姿勢は目標とする姿勢に収束しやすい。 The corrected driving force distribution (T F3 * , T R3 * ) calculated in this way is an accurate one for controlling the pitch angle θ P around the center of gravity O G to which the electric vehicle 100 has transitioned to the basic posture. Easy to generate moments. Therefore, during acceleration or deceleration, the attitude of electric vehicle 100 tends to converge to the target attitude.
 上記第1実施形態及び第2実施形態に係る電動車両の制御方法では、基本姿勢に基づく補正係数Kが演算される。また、姿勢制御用駆動力配分(TF2 ,TR2 )に占める前輪21及び後輪26の駆動力の配分割合(D)が演算される。さらに、配分割合(D)と補正係数Kとを用いて、前後方向の姿勢を制御しつつ、かつ、基本姿勢に応じて補正された配分割合である補正配分割合(D′)が演算される。そして、補正配分割合(D′)にしたがって、姿勢制御用駆動力配分(TF2 ,TR2 )を前輪21及び後輪26に再配分することによって補正駆動力配分(TF3 ,TR3 )が演算される。 In the electric vehicle control method according to the first embodiment and the second embodiment, the correction coefficient K is calculated based on the basic posture. Further, the distribution ratio (D R ) of the driving force of the front wheels 21 and the rear wheels 26 in the attitude control driving force distribution (T F2 * , T R2 * ) is calculated. Furthermore, using the distribution ratio (D R ) and the correction coefficient K, a corrected distribution ratio (D R ′), which is a distribution ratio corrected according to the basic posture while controlling the posture in the longitudinal direction, is calculated. be done. Then, by redistributing the driving force distribution for attitude control (T F2 * , T R2 * ) to the front wheels 21 and the rear wheels 26 according to the corrected distribution ratio (D R ′), the corrected driving force distribution (T F3 * , T R3 * ) is calculated.
 この補正駆動力配分(TF3 ,TR3 )の演算によれば、基本姿勢が前傾している場合、姿勢制御用駆動力配分(TF2 ,TR2 )に対して前輪21への駆動力の配分を増加させ、本姿勢が後傾している場合、姿勢制御用駆動力配分(TF2 ,TR2 )に対して後輪26への駆動力の配分を増加させることができる。補正駆動力配分(TF3 ,TR3 )は、電動車両100が基本姿勢となって遷移した重心Oの周りに、ピッチ角θを制御するための正確なモーメントを生じさせやすい。その結果、加速または減速時に、電動車両100の姿勢は目標とする姿勢に収束しやすい。 According to the calculation of the corrected driving force distribution (T F3 * , T R3 * ) , when the basic posture is tilted forward, the front wheels 21 When the main posture is tilted backward, the distribution of driving force to the rear wheels 26 is increased relative to the posture control driving force distribution (T F2 * , T R2 * ). be able to. The corrected driving force distribution (T F3 * , T R3 * ) tends to generate an accurate moment for controlling the pitch angle θ P around the center of gravity OG to which the electric vehicle 100 has transitioned to the basic posture. As a result, the attitude of electric vehicle 100 tends to converge to the target attitude during acceleration or deceleration.
 上記第1実施形態及び第2実施形態に係る電動車両の制御方法では、姿勢制御は、車両モデルに基づき駆動力配分を補正するフィードフォワード制御によって行われる。 In the electric vehicle control methods according to the first and second embodiments described above, attitude control is performed by feedforward control that corrects driving force distribution based on the vehicle model.
 電動車両100の基本姿勢は、少なくともトリップ中には変化が生じない程度の恒常的なものであって、補正駆動力配分(TF3 ,TR3 )の演算は、実質的に車両モデルとの乖離を補正する演算である。したがって、姿勢制御を車両モデルに基づくフィードフォワード制御によって行う場合、補正駆動力配分(TF3 ,TR3 )は、特に正確な姿勢制御用駆動力配分となりやすい。 The basic posture of electric vehicle 100 is constant and does not change at least during a trip, and the calculation of the corrected driving force distribution (T F3 * , T R3 * ) is substantially based on the vehicle model. This is an operation that corrects the deviation of . Therefore, when attitude control is performed by feedforward control based on a vehicle model, the corrected driving force distribution (T F3 * , T R3 * ) tends to result in particularly accurate driving force distribution for attitude control.
 上記第2実施形態に係る電動車両の制御方法では、電動車両100が平坦路に停車しているときの前方車高HF2及び後方車高HR2に基づいて、基本姿勢が検出される。 In the electric vehicle control method according to the second embodiment, the basic posture is detected based on the front vehicle height H F2 and the rear vehicle height H R2 when the electric vehicle 100 is stopped on a flat road.
 このように、電動車両100が平坦路に停車しているときの前方車高HF2及び後方車高HR2に基づいて、基本姿勢を検出すれば、基本姿勢またはその変化の要因に依らず、正確な補正駆動力配分(TF3 ,TR3 )が演算されやすい。 In this way, if the basic attitude is detected based on the front vehicle height H F2 and the rear vehicle height H R2 when the electric vehicle 100 is stopped on a flat road, it is possible to detect the basic attitude regardless of the basic attitude or the factors that change it. Accurate corrected driving force distribution (T F3 * , T R3 * ) is easily calculated.
 特に、上記第2実施形態に係る電動車両の制御方法では、電動車両100が平坦路に停車しているときにサスペンションのストローク(Ssus)が取得され、このサスペンション(31,32)のストローク(Ssus)に基づいて、前方車高HF2、後方車高HR2、または、前方車高HF2と後方車高HR2の差ΔHFR、を特定することにより、基本姿勢が検出される。 In particular, in the electric vehicle control method according to the second embodiment, the stroke (S sus ) of the suspension is acquired while the electric vehicle 100 is stopped on a flat road, and the stroke (S sus ) of the suspension (31, 32) is acquired. The basic posture is detected by specifying the front vehicle height H F2 , the rear vehicle height H R2 , or the difference ΔH FR between the front vehicle height H F2 and the rear vehicle height H R2 based on the vehicle height H F2 and the rear vehicle height H R2 .
 このように、サスペンション(31,32)のストロークを用いれば、前方車高HF2、後方車高HR2、または、前方車高HF2と後方車高HR2の差ΔHFR、が正確に特定される。 In this way, by using the stroke of the suspension (31, 32), the front vehicle height HF2 , the rear vehicle height HR2 , or the difference ΔH FR between the front vehicle height HF2 and the rear vehicle height HR2 can be accurately determined. be done.
 また、上記第2実施形態に係る電動車両の制御方法は、電動車両100が平坦路に停車しているときに、電動車両100のピッチ角θを取得し、そのピッチ角θに基づいて、基本姿勢を検出する形態に変形され得る。 Further, in the method for controlling an electric vehicle according to the second embodiment, the pitch angle θ P of the electric vehicle 100 is acquired while the electric vehicle 100 is stopped on a flat road, and the control method is based on the pitch angle θ P. , can be transformed into a form that detects the basic posture.
 このように、平坦路に停車しているときのピッチ角θによっても、電動車両100の基本姿勢が正確に検出され得る。 In this way, the basic attitude of electric vehicle 100 can be accurately detected even from the pitch angle θ P when the electric vehicle 100 is stopped on a flat road.
 上記第1実施形態に係る電動車両の制御方法では、シートベルトの着脱状態が検出され、シートベルトの着脱状態に基づいて、基本姿勢が検出される。このように、シートベルトの着脱状態に応じて、電動車両100の基本姿勢を検出する場合、乗員の人数や乗車位置によって姿勢が変化しているときに、特に正確に電動車両100の基本姿勢が検出されやすい。また、車速VSPや路面勾配φLSに関わらず、正確に電動車両100の基本姿勢が検出されやすいという利点もある。 In the method for controlling an electric vehicle according to the first embodiment, the state of attachment and detachment of the seatbelt is detected, and the basic posture is detected based on the state of attachment and detachment of the seatbelt. In this way, when detecting the basic posture of electric vehicle 100 according to the state of attachment and detachment of the seat belt, it is possible to accurately detect the basic posture of electric vehicle 100, especially when the posture changes depending on the number of passengers or the riding position. Easy to detect. Another advantage is that the basic posture of electric vehicle 100 can be easily detected accurately regardless of vehicle speed VSP or road surface slope φLS .
 上記第1実施形態及び第2実施形態に係る電動車両の制御装置は、駆動輪である前輪21と後輪26の駆動力配分を調整することによって、前後方向の姿勢を制御する姿勢制御を行う電動車両100の制御装置(コントローラ12)である。この制御装置(コントローラ12)は、電動車両100が停車しているときの前後方向の姿勢である基本姿勢を検出する基本姿勢検出部(54,202)と、電動車両100が加速または減速するときに、前後方向の姿勢を制御する駆動力配分である姿勢制御用駆動力配分(TF2 ,TR2 )を演算する駆動力配分演算部(53)と、基本姿勢に基づいて姿勢制御用駆動力配分(TF2 ,TR2 )を補正することにより、補正駆動力配分(TF3 ,TR3 )を演算する補正部(56)と、補正駆動力配分(TF3 ,TR3 )にしたがって駆動輪(21,26)を制御する駆動輪制御部(45,46)と、を含む。 The control device for an electric vehicle according to the first embodiment and the second embodiment performs attitude control to control the attitude in the longitudinal direction by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26, which are drive wheels. This is a control device (controller 12) for the electric vehicle 100. This control device (controller 12) includes a basic attitude detection unit (54, 202) that detects a basic attitude that is a longitudinal attitude when electric vehicle 100 is stopped, and when electric vehicle 100 accelerates or decelerates. , a driving force distribution calculation unit (53) that calculates the driving force distribution for attitude control (T F2 *, T R2 *) which is the driving force distribution that controls the attitude in the longitudinal direction, and a driving force distribution calculation unit (53) that calculates the driving force distribution for attitude control (T F2 * , T R2 * ) which is the driving force distribution that controls the attitude in the longitudinal direction; A correction unit (56) that calculates the corrected driving force distribution (T F3 * , TR3 * ) by correcting the driving force distribution (T F2 * , T R2 * ) ; and a drive wheel control section (45, 46) that controls the drive wheels (21, 26) according to T R3 * ).
 このように、電動車両100の基本姿勢に基づいて、姿勢制御用駆動力配分(TF2 ,TR2 )を補正することにより、補正駆動力配分(TF3 ,TR3 )を演算すると、補正駆動力配分(TF3 ,TR3 )は、基本姿勢に応じた重心Oの遷移に基づいて補正された正確な姿勢制御用駆動力配分となる。したがって、補正駆動力配分(TF3 ,TR3 )で前輪21及び後輪26を駆動することにより、電動車両100が基本姿勢となって遷移した重心Oの周りに、ピッチ角θを制御するための正確なモーメントが生じる。その結果、加速または減速時に、電動車両100の姿勢は目標とする姿勢に収束する。 In this way, by correcting the attitude control driving force distribution (T F2 * , TR2 * ) based on the basic attitude of the electric vehicle 100, the corrected driving force distribution (T F3 * , TR3 * ) is calculated. Then, the corrected driving force distribution (T F3 * , T R3 * ) becomes an accurate driving force distribution for attitude control that is corrected based on the transition of the center of gravity OG according to the basic attitude. Therefore, by driving the front wheels 21 and the rear wheels 26 with the corrected driving force distribution (T F3 * , T R3 * ), the pitch angle θ P is set around the center of gravity O G to which the electric vehicle 100 has transitioned to the basic posture. A precise moment is generated to control the As a result, the attitude of electric vehicle 100 converges to the target attitude during acceleration or deceleration.
 なお、上記第1実施形態及び第2実施形態に係る電動車両の制御プログラムは、駆動輪である前輪21と後輪26の駆動力配分を調整することによって、前後方向の姿勢を制御する姿勢制御を行う電動車両100の制御プログラムである。この電動車両の制御プログラムは、電動車両100の制御装置(コントローラ12)を、電動車両100が停車しているときの前後方向の姿勢である基本姿勢を検出する基本姿勢検出部(54,202);電動車両100が加速または減速するときに、前後方向の姿勢を制御する駆動力配分である姿勢制御用駆動力配分(TF2 ,TR2 )を演算する駆動力配分演算部(53);基本姿勢に基づいて姿勢制御用駆動力配分(TF2 ,TR2 )を補正することにより、補正駆動力配分(TF3 ,TR3 )を演算する補正部(56);及び、補正駆動力配分(TF3 ,TR3 )にしたがって駆動輪(21,26)を制御する駆動輪制御部(45,46);として機能させる。この制御プログラムは、任意の記憶媒体に記憶して提供され得る。 The control program for the electric vehicle according to the first embodiment and the second embodiment described above includes attitude control that controls the attitude in the longitudinal direction by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26, which are drive wheels. This is a control program for electric vehicle 100 that performs. This electric vehicle control program includes a basic posture detection unit (54, 202) that controls the control device (controller 12) of the electric vehicle 100 to detect a basic posture that is a longitudinal posture when the electric vehicle 100 is stopped. ; a driving force distribution calculation unit (53) that calculates the driving force distribution for attitude control (T F2 * , T R2 * ), which is the driving force distribution that controls the posture in the longitudinal direction when the electric vehicle 100 accelerates or decelerates; ; a correction unit (56) that calculates a corrected driving force distribution (T F3 * , T R3 * ) by correcting the attitude control driving force distribution (T F2 * , T R2 * ) based on the basic attitude; and , and function as a driving wheel control section (45, 46) that controls the driving wheels (21, 26) according to the corrected driving force distribution (T F3 * , T R3 * ). This control program may be stored and provided in any storage medium.
 以上、本発明の実施形態について説明したが、上記実施形態及び各変形例で説明した構成は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the configurations described in the above embodiments and each modification example merely show a part of the application examples of the present invention, and are not intended to limit the technical scope of the present invention. do not have.

Claims (9)

  1.  駆動輪である前輪及び後輪の駆動力配分を調整することによって、前後方向の姿勢を制御する姿勢制御を行う電動車両の制御方法であって、
     前記電動車両が停車している場合における実際の前記前後方向の姿勢である基本姿勢を検出し、
     前記電動車両が加速または減速するときに、前記前後方向の姿勢を制御する前記駆動力配分である姿勢制御用駆動力配分を演算し、
     前記基本姿勢に基づいて前記姿勢制御用駆動力配分を補正することにより、補正駆動力配分を演算し、
     前記補正駆動力配分にしたがって前記駆動輪を制御する、
    電動車両の制御方法。
    A control method for an electric vehicle that performs posture control to control the posture in the longitudinal direction by adjusting the distribution of driving force between the front wheels and the rear wheels, which are drive wheels, the method comprising:
    detecting a basic posture that is an actual posture in the longitudinal direction when the electric vehicle is stopped;
    when the electric vehicle accelerates or decelerates, calculates a driving force distribution for attitude control that is the driving force distribution that controls the posture in the longitudinal direction;
    calculating a corrected driving force distribution by correcting the attitude control driving force distribution based on the basic attitude;
    controlling the driving wheels according to the corrected driving force distribution;
    How to control electric vehicles.
  2.  請求項1に記載の電動車両の制御方法であって、
     予め定まる標準姿勢に対して前記基本姿勢が前傾している場合、前記姿勢制御用駆動力配分に対して前記前輪への駆動力の配分を増加させた前記補正駆動力配分を演算し、
     前記標準姿勢に対して前記基本姿勢が後傾している場合、前記姿勢制御用駆動力配分に対して前記後輪への駆動力の配分を増加させた前記補正駆動力配分を演算する、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 1,
    When the basic posture is tilted forward with respect to a predetermined standard posture, calculating the corrected driving force distribution in which the distribution of driving force to the front wheels is increased with respect to the posture control driving force distribution,
    If the basic posture is tilted backward with respect to the standard posture, calculating the corrected driving force distribution in which the distribution of driving force to the rear wheels is increased with respect to the driving force distribution for attitude control.
    How to control electric vehicles.
  3.  請求項1または2に記載の電動車両の制御方法であって、
     前記基本姿勢に基づく補正係数を演算し、
     前記姿勢制御用駆動力配分に占める前記前輪及び前記後輪の駆動力の配分割合を演算し、
     前記配分割合と前記補正係数とを用いて、前記前後方向の姿勢を制御しつつ、かつ、前記基本姿勢に応じて補正された前記配分割合である補正配分割合を演算し、
     前記補正配分割合にしたがって、前記姿勢制御用駆動力配分を前記前輪及び前記後輪に再配分することによって前記補正駆動力配分を演算する、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 1 or 2,
    Calculating a correction coefficient based on the basic posture,
    Calculating the distribution ratio of the driving force of the front wheels and the rear wheels in the attitude control driving force distribution,
    Using the distribution ratio and the correction coefficient, controlling the posture in the longitudinal direction and calculating a corrected distribution ratio that is the distribution ratio corrected according to the basic posture;
    calculating the corrected driving force distribution by redistributing the attitude control driving force distribution to the front wheels and the rear wheels according to the corrected distribution ratio;
    How to control electric vehicles.
  4.  請求項1に記載の電動車両の制御方法であって、
     前記姿勢制御を、車両モデルに基づき前記駆動力配分を補正するフィードフォワード制御によって行う、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 1,
    The attitude control is performed by feedforward control that corrects the driving force distribution based on a vehicle model.
    How to control electric vehicles.
  5.  請求項1に記載の電動車両の制御方法であって、
     前記電動車両が平坦路に停車しているときの前方車高及び後方車高に基づいて、前記基本姿勢を検出する、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 1,
    detecting the basic posture based on a front vehicle height and a rear vehicle height when the electric vehicle is stopped on a flat road;
    How to control electric vehicles.
  6.  請求項5に記載の電動車両の制御方法であって、
     前記電動車両が平坦路に停車しているときにサスペンションのストロークを取得し、
     前記サスペンションのストロークに基づいて、前記前方車高、前記後方車高、または、前記前方車高と前記後方車高の差、を特定することにより、前記基本姿勢を検出する、
    電動車両の制御方法。
    The method for controlling an electric vehicle according to claim 5,
    Obtaining a suspension stroke when the electric vehicle is stopped on a flat road,
    Detecting the basic posture by specifying the front vehicle height, the rear vehicle height, or the difference between the front vehicle height and the rear vehicle height based on the stroke of the suspension;
    How to control electric vehicles.
  7.  請求項5に記載の電動車両の制御方法であって、
     前記電動車両が平坦路に停車しているときに、前記電動車両のピッチ角を取得し、
     前記ピッチ角に基づいて、前記基本姿勢を検出する、
    電動車両の制御方法。
    The method for controlling an electric vehicle according to claim 5,
    obtaining a pitch angle of the electric vehicle when the electric vehicle is stopped on a flat road;
    detecting the basic posture based on the pitch angle;
    How to control electric vehicles.
  8.  請求項1に記載の電動車両の制御方法であって、
     シートベルトの着脱状態を検出し、
     前記シートベルトの着脱状態に基づいて、前記基本姿勢を検出する、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 1,
    Detects whether the seat belt is attached or detached,
    detecting the basic posture based on the attachment/detaching state of the seat belt;
    How to control electric vehicles.
  9.  駆動輪である前輪と後輪の駆動力配分を調整することによって、前後方向の姿勢を制御する姿勢制御を行う電動車両の制御装置であって、
     前記電動車両が停車しているとき場合の実際の前記前後方向の姿勢である基本姿勢を検出する基本姿勢検出部と、
     前記電動車両が加速または減速するときに、前記前後方向の姿勢を制御する前記駆動力配分である姿勢制御用駆動力配分を演算する駆動力配分演算部と、
     前記基本姿勢に基づいて前記姿勢制御用駆動力配分を補正することにより、補正駆動力配分を演算する補正部と、
     前記補正駆動力配分にしたがって前記駆動輪を制御する駆動輪制御部と、
    を備える、電動車両の制御装置。
    A control device for an electric vehicle that performs posture control that controls the posture in the longitudinal direction by adjusting the distribution of driving force between front wheels and rear wheels that are drive wheels, the control device comprising:
    a basic posture detection unit that detects a basic posture that is an actual posture in the longitudinal direction when the electric vehicle is stopped;
    a driving force distribution calculation unit that calculates a driving force distribution for attitude control, which is the driving force distribution that controls the posture in the longitudinal direction when the electric vehicle accelerates or decelerates;
    a correction unit that calculates a corrected driving force distribution by correcting the attitude control driving force distribution based on the basic attitude;
    a driving wheel control unit that controls the driving wheels according to the corrected driving force distribution;
    A control device for an electric vehicle, comprising:
PCT/JP2022/034488 2022-09-14 2022-09-14 Electric vehicle control method and electric vehicle control device WO2024057466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034488 WO2024057466A1 (en) 2022-09-14 2022-09-14 Electric vehicle control method and electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034488 WO2024057466A1 (en) 2022-09-14 2022-09-14 Electric vehicle control method and electric vehicle control device

Publications (1)

Publication Number Publication Date
WO2024057466A1 true WO2024057466A1 (en) 2024-03-21

Family

ID=90274561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034488 WO2024057466A1 (en) 2022-09-14 2022-09-14 Electric vehicle control method and electric vehicle control device

Country Status (1)

Country Link
WO (1) WO2024057466A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093033A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Automobile
JP2018198495A (en) * 2017-05-24 2018-12-13 本田技研工業株式会社 Non-contact power transmission system
WO2019097725A1 (en) * 2017-11-20 2019-05-23 三菱電機株式会社 Optical axis control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093033A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Automobile
JP2018198495A (en) * 2017-05-24 2018-12-13 本田技研工業株式会社 Non-contact power transmission system
WO2019097725A1 (en) * 2017-11-20 2019-05-23 三菱電機株式会社 Optical axis control device

Similar Documents

Publication Publication Date Title
JP6990115B2 (en) Motor vehicle control device, motor vehicle control system, and motor vehicle control method
JP6261154B2 (en) Vehicle control method using in-wheel motor
US9174549B2 (en) Driving force control device for electric vehicle
CN109624947B (en) Braking force control device for vehicle
JP4321569B2 (en) Vehicle control apparatus and control method
JP2016028913A (en) Vehicle pitching vibration control device
US20060015236A1 (en) Drive force distribution system for four wheel independent drive vehicle
US11027617B2 (en) Control method for electrically driven vehicle and control device for electrically driven vehicle
US20060041353A1 (en) Vehicle stability control system
KR20080101738A (en) Motion control device for vehicle using information added acceleration
CN110239499B (en) Vehicle control device and vehicle control method
JP2010081720A (en) Vehicular driving force controller
US20170106755A1 (en) Vehicle control apparatus
JP4524597B2 (en) Driving force distribution device for four-wheel independent drive vehicle
CN110816281A (en) Control unit, device and method for recuperative brake control of a vehicle
WO2006093246A1 (en) Braking-driving force control device of vehicle
US11872980B2 (en) Method for controlling wheel slip of vehicle
JP3972535B2 (en) Automotive braking force control device
WO2024057466A1 (en) Electric vehicle control method and electric vehicle control device
JP2008247064A (en) Motion control device for vehicle
CN113147735B (en) Differential braking/driving coordination rollover prevention control system and control method thereof
US11951874B2 (en) Vehicle driving system
JPWO2014103522A1 (en) Electric vehicle control device and electric vehicle control method
CN114291053A (en) Wheel slip control method for vehicle
KR20210156887A (en) deceleration force assist device and method using spoiler of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958315

Country of ref document: EP

Kind code of ref document: A1