WO2024057367A1 - 固体レーザ装置および固体レーザ加工装置 - Google Patents

固体レーザ装置および固体レーザ加工装置 Download PDF

Info

Publication number
WO2024057367A1
WO2024057367A1 PCT/JP2022/034084 JP2022034084W WO2024057367A1 WO 2024057367 A1 WO2024057367 A1 WO 2024057367A1 JP 2022034084 W JP2022034084 W JP 2022034084W WO 2024057367 A1 WO2024057367 A1 WO 2024057367A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
light
wavelength
pulsed light
generating element
Prior art date
Application number
PCT/JP2022/034084
Other languages
English (en)
French (fr)
Inventor
俊輔 藤井
望 平山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022574324A priority Critical patent/JP7254260B1/ja
Priority to PCT/JP2022/034084 priority patent/WO2024057367A1/ja
Priority to TW112128990A priority patent/TW202412416A/zh
Publication of WO2024057367A1 publication Critical patent/WO2024057367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects

Definitions

  • the present disclosure relates to a solid-state laser device that emits laser light used in laser processing, and a solid-state laser processing device.
  • solid-state laser devices that output short pulse light have been widely used as laser light sources for microprocessing.
  • Such solid-state laser devices often employ a MOPA (Master Oscillator Power Amplifier) method in which weak short pulse light output from a seed light source is amplified by a solid-state amplifier containing a solid-state active medium and output.
  • MOPA Master Oscillator Power Amplifier
  • the advantages of the MOPA system include the fact that it is easy to control the repetition frequency and that it is easy to obtain high output by increasing the number of solid-state amplifier stages.
  • Patent Document 1 discloses that when temporarily stopping the output of pulsed light from the device, it is possible to avoid damage caused by excessive excitation of a solid-state amplifier, and also to avoid deterioration of beam propagation characteristics immediately after restarting the output.
  • a laser light source device is disclosed.
  • the laser light source device described in Patent Document 1 includes a fiber amplifier and a solid-state amplifier that amplify pulsed light output from a seed light source using a gain switching method, and a nonlinear optical element that converts the wavelength of the pulsed light output from the solid-state amplifier.
  • an optical switch element that allows or blocks propagation of pulsed light from the fiber amplifier to the solid-state amplifier; and a control section that controls the seed light source and the optical switch element.
  • the optical switch element is controlled by the control unit so that propagation of the pulsed light from the fiber amplifier to the solid-state amplifier is blocked during the output period of the pulsed light from the seed light source.
  • an output stop state is realized in which the output of pulsed light is stopped from the nonlinear optical element without stopping the seed light source.
  • the optical switch element is controlled by the control unit so that the propagation of light is allowed during a period different from the output period of the pulsed light from the seed light source.
  • the emitted light noise propagates to the subsequent solid-state amplifier, and the energy of the active region of the solid-state amplifier in an excited state by the excitation light source is emitted.
  • Patent Document 1 discloses a technique for preventing the generation of giant pulses, but when a giant pulse occurs, optical elements disposed downstream of the fiber amplifier and solid-state amplifier may be damaged or processing quality may be affected. It was difficult to suppress the decline. As described above, the technique described in Patent Document 1 has a problem in that damage to optical elements and the like due to the generation of unintended giant pulses in a solid-state laser device cannot be avoided.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a solid-state laser device that can suppress damage to an optical element disposed after a solid-state active medium due to the generation of a giant pulse. do.
  • a solid-state laser device includes a seed light source, a solid-state amplifier, a stimulated Raman scattering generating element, and a wavelength filter.
  • the seed light source outputs pulsed light of a first wavelength.
  • the solid-state amplifier has a solid-state active medium that outputs pulsed amplified light of a first wavelength, which is obtained by amplifying pulsed light.
  • the stimulated Raman scattering generating element is placed after the solid-state amplifier, converts the pulsed amplified light into a second wavelength by stimulated Raman scattering with a wavelength conversion efficiency of 1% or more, and combines the first pulsed light of the first wavelength with the second pulsed light.
  • the second pulsed light having the same wavelength is output.
  • the wavelength filter uses the difference in wavelength to separate the second pulsed light from the optical path of the first pulsed light output from the stimulated Raman scattering generating element.
  • the solid-state laser device has the effect of being able to suppress damage to optical elements disposed after the solid-state active medium due to the generation of giant pulses.
  • FIG. 1 is a diagram showing a schematic example of a configuration of a solid-state laser processing apparatus including a solid-state laser device according to the first embodiment.
  • the solid-state laser processing apparatus 100 includes a solid-state laser device 1, a deflector 80, and a condenser lens 90.
  • the solid-state laser device 1 is an apparatus that emits laser light in the solid-state laser processing apparatus 100 using a solid active medium 21, which is a medium that causes stimulated emission, as described later.
  • the solid-state laser processing apparatus 100 is an apparatus that processes a workpiece 51 using laser light emitted from the solid-state laser device 1 using the solid active medium 21. That is, in the solid-state laser processing apparatus 100, the laser light emitted from the solid-state laser device 1 is irradiated onto the workpiece 51 via the deflector 80 and the condenser lens 90, and is used to process the workpiece 51.
  • the solid-state laser device 1 includes a seed light source 10, a control unit 11, a solid-state amplifier 20, an excitation light source 22, a dichroic mirror 23, and a stimulated Raman scattering (SRS) generating element 30. , a temperature control mechanism 31 , a wavelength filter 40 , a damper 41 , and an optical system 50 .
  • SRS stimulated Raman scattering
  • the seed light source 10 generates and outputs pulsed light LS of the first wavelength.
  • the pulsed light LS of the first wavelength is a laser light that is amplified by the solid active medium 21 .
  • the seed light source 10 is configured by, for example, a semiconductor laser, a fiber laser, or the like.
  • the seed light source 10 may be a MOPA light source composed of the seed light source 10 and an amplifier (not shown).
  • the control unit 11 controls various conditions such as the wavelength, pulse width, repetition frequency, and output of the pulsed light LS output from the seed light source 10.
  • the solid-state amplifier 20 includes a solid-state active medium 21 that amplifies the pulsed light LS output from the seed light source 10 and outputs pulsed amplified light L0, which is the amplified pulsed light of the first wavelength.
  • the type of solid active medium 21 is selected depending on the first wavelength, which is the wavelength of the pulsed light LS output from the seed light source 10. For example, when the first wavelength is 1064 nm, Nd:YVO 4 or Nd:YAG (Yttrium Aluminum Garnet) is preferably used as the solid active medium 21.
  • the property of amplifying laser light by doping a solid base material such as YAG or YVO 4 with laser active ions such as Nd, Yb, or Tm and exciting it at a predetermined wavelength that is, gain
  • the medium having the following is called a solid active medium 21.
  • the solid-state amplifier 20 outputs the amplified pulse amplified light L0 of the first wavelength to the SRS generating element 30.
  • the excitation light source 22 is a light source that outputs laser light LE that excites the solid active medium 21.
  • the excitation light source 22 is composed of, for example, a semiconductor laser.
  • the wavelength of the laser beam LE output from the excitation light source 22 is preferably 808 nm, or continuous light with wavelengths of 878.6 nm and 888 nm.
  • the continuous light having a wavelength of 808 nm, 878.6 nm, or 888 nm output from the excitation light source 22 is also simply referred to as excitation light LE.
  • the dichroic mirror 23 is provided to cause the pulsed light LS from the seed light source 10 and the excitation light LE from the excitation light source 22 to coaxially enter the solid active medium 21 .
  • the dichroic mirror 23 is configured to reflect the pulsed light LS from the seed light source 10 and transmit the excitation light LE from the excitation light source 22.
  • the SRS generating element 30 is arranged after the solid-state amplifier 20, and converts a part of the pulse amplified light L0 of the first wavelength amplified by the solid-state active medium 21 into the second pulse light L2 of the second wavelength by SRS, A first pulsed light L1 having a first wavelength and a second pulsed light L2 having a second wavelength are output.
  • the second wavelength is longer than the first wavelength.
  • the SRS generating element 30 wavelength-converts the pulse amplified light L0 to the second wavelength using SRS with a wavelength conversion efficiency of 1% or more.
  • materials such as YVO 4 , GdVO 4 , Ba(NO 3 ) 2 , and diamond are used for the SRS generating element 30 .
  • the SRS generating element 30 may be made of the above material as a base material to which laser active ions are added.
  • the first wavelength is 1064 nm and the SRS generating element 30 is Nd:YVO 4 which is YVO 4 added with Nd as a laser active ion
  • the second pulsed light L2 converted by the SRS generating element 30 is The wavelength is 1176 nm.
  • the SRS generating element 30 includes an anti-reflection coating film that suppresses reflection of light of the first wavelength provided on an incident surface that is a surface on which the pulsed amplified light L0 is incident, and from which the first pulsed light L1 and the second pulsed light L2 are emitted.
  • the light emitting device may include a non-reflective coating film provided on the output surface, which is a surface, for suppressing reflection of light of the first wavelength and the second wavelength.
  • the non-reflection coating film provided on the incident surface can prevent the pulse amplified light L0 from returning to the seed light source 10, the excitation light source 22, and the solid active medium 21.
  • the non-reflection coating film provided on the output surface can prevent the first pulsed light L1 and the second pulsed light L2 from returning to the seed light source 10, the excitation light source 22, and the solid active medium 21.
  • FIG. 2 is a diagram schematically showing another example of the configuration of the SRS generating element.
  • the SRS generating element 30 may be a non-coated structure in which no anti-reflection coating is provided on the incident surface 301 of the pulsed amplified light L0 and the exit surface 302 of the first pulsed light L1 and the second pulsed light L2. .
  • the pulse amplified light L0 is incident on the incident surface 301 of the SRS generating element 30 at a Brewster angle ⁇ Bi
  • the first pulsed light L1 and the second pulsed light L2 are incident on the incident surface 301 of the SRS generating element 30. It may be arranged so that the light is emitted at a Brewster angle ⁇ Bo with respect to the light emitting surface 302.
  • an anti-reflection coating film is provided on the entrance/exit surface of a transmission type optical element.
  • Anti-reflective coatings often have lower damage thresholds than the bulk or interface of optical elements.
  • FIG. 2 when pulsed light is input to and output from the optical element at Brewster angles ⁇ Bi and ⁇ Bo, the reflectance at the input and output surfaces can be reduced even without an anti-reflection coating film. Therefore, damage to the anti-reflection coating film can be avoided, and damage to the optical element is less likely to occur.
  • the temperature control mechanism 31 controls the temperature of the SRS generating element 30.
  • the temperature control mechanism 31 includes a heating section that heats the SRS generating element 30 to a predetermined temperature, and a heating control section that controls heating by the heating section.
  • the temperature control mechanism 31 controls the temperature of the SRS generating element 30 so that the wavelength conversion efficiency of the SRS generating element 30 is 1% or more, as will be described later.
  • the wavelength filter 40 separates the second pulsed light L2 from the first pulsed light L1 and the second pulsed light L2 output from the SRS generation element 30 by utilizing the difference in wavelength. That is, the wavelength filter 40 separates the second pulsed light L2 from the optical path of the first pulsed light L1 output from the SRS generation element 30.
  • the wavelength filter 40 transmits one of the first pulsed light L1 and the second pulsed light L2 emitted from the SRS generating element 30, and reflects the other.
  • the first pulsed light L1 and the second pulsed light L2 which are lights of two wavelengths, are spatially separated.
  • the wavelength filter 40 transmits the first pulsed light L1 and reflects the second pulsed light L2.
  • the damper 41 is placed on the optical path of the second pulsed light L2 reflected by the wavelength filter 40.
  • the damper 41 attenuates the second pulsed light L2.
  • the damper 41 may be a measuring device such as a power meter.
  • the optical system 50 is arranged on the optical path where the first pulsed light L1 passes through the wavelength filter 40.
  • the first pulsed light L1 separated by the wavelength filter 40 passes through the optical system 50.
  • the optical system 50 is configured with a lens or a mirror for transmitting the first pulsed light L1, but can be configured as appropriate depending on the use of the solid-state laser device 1 of the present disclosure.
  • a solid state amplifier may be provided in the optical system 50.
  • a nonlinear optical element for harmonic generation may be provided in the optical system 50. good.
  • the third pulsed light L3, which is pulsed light that has been appropriately processed by the optical system 50, is output from the solid-state laser device 1.
  • the deflector 80 deflects the third pulsed light L3 output from the solid-state laser device 1. Specifically, the deflector 80 arbitrarily displaces the irradiation position of the third pulsed light L3 on the workpiece 51. It is desirable that two deflectors 80 be provided so that the irradiation position of the third pulsed light L3 can be displaced on the workpiece 51 in two directions perpendicular to each other.
  • An example of deflector 80 is a galvano scanner. Note that when the solid-state laser device 1 does not have the optical system 50, the deflector 80 deflects the pulsed light output from the wavelength filter 40.
  • the condenser lens 90 condenses and irradiates the pulsed light deflected by the deflector 80, in the case of FIG. 1, the third pulsed light L3, onto an arbitrary position on the workpiece 51. As a result, the third pulsed light L3 is irradiated onto the workpiece 51, and laser processing is performed.
  • FIG. 1 shows a case where the wavelength filter 40 transmits the first pulsed light L1 and reflects the second pulsed light L2, conversely, it reflects the first pulsed light L1 and reflects the second pulsed light L2. L2 may be transmitted.
  • the damper 41 be placed on the transmission side of the wavelength filter 40 and the optical system 50 be placed on the reflection side of the wavelength filter 40.
  • SRS is used for wavelength conversion of pulsed light.
  • Wavelength conversion of pulsed light using SRS has advantages over harmonic generation, which is a common wavelength conversion method.
  • harmonic generation the wavelength of the pulsed light incident on the nonlinear optical element is converted to 1/2 or less.
  • the damage threshold of the bulk or coating film of an optical element becomes lower as the wavelength of the incident pulsed light becomes shorter. Therefore, when the wavelength of the giant pulse is converted by harmonic generation, there is a problem that optical elements such as the nonlinear optical element and the wavelength filter 40 are easily damaged by the shortened giant pulse.
  • part of the pulsed light of the first wavelength is wavelength-converted into the pulsed light of the second wavelength, but the second wavelength is longer than the first wavelength. Therefore, the giant pulse whose wavelength has been converted to the second wavelength is less likely to damage optical elements such as the SRS generating element 30 and the wavelength filter 40 than the giant pulse having the first wavelength.
  • nonlinear optical elements such as LBO (Lithium Triborate: LiB 3 O 5 ) and CLBO (Cesium Lithium Borate: CsLiB 6 O 10 ) used for harmonic generation have hygroscopic properties, humidity must be controlled.
  • the SRS generating element 30 can be made of Nd:YVO 4 or the like used as a solid-state laser medium, there is no need for a special environment or treatment unlike in LBO, CLBO, etc. can be easily introduced into
  • the wavelength conversion efficiency in the SRS generating element 30 it is preferable to set the wavelength conversion efficiency in the SRS generating element 30 to 1% or more.
  • the intensity I SRS of the SRS light output from the SRS generating element 30 is given by the following equation (1).
  • I SRS I Raman0 ⁇ exp(g Raman ⁇ I Pump ⁇ L) ...(1)
  • I Raman0 is the intensity of the second wavelength pulsed light at the incident surface 301 of the SRS generating element 30
  • g Raman is the Raman gain coefficient of the SRS generating element 30
  • I Pump is the intensity of the second wavelength pulsed light at the incident surface 301 of the SRS generating element 30.
  • the length L of the SRS generating element 30 is the length in the traveling direction of the pulsed light in the SRS generating element 30.
  • the wavelength conversion efficiency ⁇ by SRS can be expressed by the following equation (2).
  • the wavelength conversion efficiency ⁇ of SRS increases non-linearly with respect to the peak intensity of the first pulsed light L1.
  • the wavelength conversion efficiency ⁇ increases. That is, the SRS generating element 30 functions as an attenuator for the first pulsed light L1 having a rated peak intensity or higher.
  • the wavelength conversion efficiency ⁇ increases, so that the SRS generating element 30 generates a large amount of the second pulsed light L2 that is absorbed by the damper 41. This prevents the peak intensity of the first pulsed light L1 output from the SRS generating element 30 from becoming larger than necessary.
  • the Raman gain coefficient at 893 cm -1 which has the largest Raman gain coefficient among the Raman modes of Nd:YVO 4 , is 4.5 cm/GW. It is preferable to set I Pump and L such that the value of I Pump ⁇ L is greater than or equal to "3 GW/cm" and less than or equal to "7 GW/cm.”
  • the solid-state laser device 1 of the first embodiment preferably includes a temperature control mechanism 31 that controls the temperature of the SRS generating element 30.
  • a wavelength conversion efficiency of 1% or more can be obtained for any I Pump ⁇ L.
  • the wavelength conversion efficiency of SRS can be controlled, and the solid active medium by the giant pulse can be It is also possible to obtain the effect of avoiding damage to the SRS generating element 30 and the wavelength filter 40 which are arranged after the SRS generating element 21.
  • I Pump and L may be set so that the wavelength conversion efficiency ⁇ is 1% or more, and the solid-state laser device 1 has the temperature control mechanism 31. You don't have to.
  • the solid-state laser device 1 may be equipped with a temperature control mechanism 31 in order to change g Raman so that the wavelength conversion efficiency ⁇ becomes 1% or more. desirable.
  • FIG. 3 is a diagram showing an example of wavelength conversion characteristics to SRS when Nd:YVO 4 is used as the SRS generating element and pulsed light of 1064 nm is incident on the SRS generating element.
  • the horizontal axis shows the 1064 nm input average output, which is the average input power of 1064 nm pulsed light
  • the left vertical axis shows the 1064 nm output average output, which is the output average output of 1064 nm pulsed light
  • the right vertical axis shows the SRS wavelength.
  • 1176 nm output average output which is the output average output of a certain 1176 nm pulsed light, is shown.
  • the beam diameter, pulse width, and repetition frequency of the incident pulsed light were kept constant, so the peak output and peak intensity at 1064 nm were proportional to the average output.
  • SRS occurs when the average incident power of 1064 nm exceeds a certain value, and it can be confirmed that the average output power of 1064 nm is decreased and the average output power of 1176 nm is increased.
  • the peak of the pulse amplified light L0 is preferably set so that the peak output of the first pulsed light L1 emitted from the SRS generating element 30 becomes maximum.
  • the 1064 nm incident average output where the 1064 nm output average output is the maximum, when the 1064 nm incident average output changes by ⁇ 10%, the 1064 nm output average output changes by ⁇ 1% or less.
  • the 1064 nm output average power on the left vertical axis is a constant value of about 36 W.
  • the variation in the 1064 nm output average output with respect to the variation in the 1064 nm input average output is reduced, and this has the effect of increasing the stability of the output average output.
  • the change in the average output in the experiment shown in Figure 3 means the change in the peak output, so a similar effect can be obtained by setting the 1064 nm incident peak output so that the 1064 nm output peak output is the maximum. can.
  • the beam diameter of the pulsed light passing through the SRS generating element 30 and the wavelength filter 40 is large. If a giant pulse is generated in the configuration of the first embodiment, the SRS generating element 30 may be damaged by the giant pulse of the first wavelength. Furthermore, the SRS generating element 30 and the wavelength filter 40 may be damaged by the giant pulse whose wavelength is converted to the second wavelength.
  • the damage threshold of an optical element caused by pulsed light depends on the peak intensity of the pulsed light. That is, the larger the beam diameter of the pulsed light that enters the optical element, the less likely it is to be damaged. On the other hand, the SRS threshold depends on the peak intensity of the pulsed light and the medium length.
  • the desired SRS light can be generated by increasing the medium length of the SRS generation element 30. Is possible.
  • a giant pulse occurs, it is possible to stably obtain the effect of avoiding damage to the SRS generating element 30 and the wavelength filter 40 disposed downstream of the solid active medium 21 due to the giant pulse.
  • the pulse amplified light L0 is emitted from the solid active medium 21 in a converged state, and after the pulse amplified light L0 changes to a divergent state again behind the condensing point, the pulse amplified light L0 enters the SRS generating element 30.
  • the SRS generating element 30 may be arranged as shown in FIG.
  • the pulse amplified light L0 when the peak output of the pulse amplified light L0 is larger than the predetermined rated peak output, the pulse amplified light L0 is wavelength converted by the SRS generating element 30 and separated from the optical path by the wavelength filter 40. be done. As a result, damage to the optical element disposed downstream of the solid active medium 21 and deterioration in processing quality of the workpiece 51 due to the generation of the giant pulse are suppressed.
  • the SRS generating element 30 may be made of the same material as the solid active medium 21, or the SRS generating element 30 may be made of a non-doped material or a lightly doped material of the same base material as the solid active medium 21. That is, the SRS generating element 30 transfers the same laser active ions as the laser active ions doped into the solid active medium 21 to the same base material as the solid active medium 21 . It may also be a lightly doped material doped at a concentration below . Alternatively, the SRS generating element 30 may be made of a non-doped material that is the same base material as the solid active medium 21 that does not contain laser active ions.
  • the non-doped or lightly doped material is placed after the solid active medium 21.
  • the non-doped material or the lightly doped material may be disposed downstream of the solid active medium 21 and separated from the solid active medium 21, or may be bonded to the surface of the solid active medium 21 from which the pulse amplified light L0 is emitted. may have been done.
  • FIGS. 4 to 6 are diagrams showing configuration examples of a solid active medium and an SRS generation element of a solid state laser device according to the second embodiment.
  • the materials shown in FIGS. 4 to 6 can be used for the SRS generating element 30 when Nd:YVO 4 doped with Nd, which is a laser active ion, is used for the solid active medium 21.
  • the SRS generating element 30 is made of the same material as the solid active medium 21 and has a doping concentration of 0.2 at. % Nd:YVO 4 is shown.
  • FIG. 4 is a doping concentration of 0.2 at. % Nd:YVO 4 is shown.
  • the SRS generating element 30 is made of non-doped YVO 4 which is the same base material as the base material of the solid active medium 21 and is not doped with laser active ions.
  • the SRS generating element 30 injects Nd, which is the same as the laser active ion doped into the solid active medium 21, into YVO 4 , which is the same base material as the solid active medium 21.
  • the case of a lightly doped material doped at a concentration less than or equal to the concentration of laser active ions of 21 is shown.
  • the doping concentration is 0.1 at. % Nd:YVO 4 is used as the SRS generating element 30.
  • the number or types of parts of the solid-state laser device 1 can be reduced. Furthermore, by bonding the SRS generating element 30 to the surface of the solid-state active medium 21 from which the pulse amplified light L0 is emitted, it is possible to downsize the solid-state laser device 1 including the solid-state active medium 21 and the SRS generating element 30. Become.
  • FIG. 7 is a diagram schematically showing an example of the configuration of a solid-state laser device according to the third embodiment. Note that in the third embodiment, the configuration of the optical path between the solid active medium 21 and the wavelength filter 40 is different from that in the first embodiment, so FIG. It shows the configuration of the optical path.
  • the solid-state laser device 1 includes folding mirrors 60a, 60b and a damper 61 between the solid-state active medium 21 and the wavelength filter 40 and after the SRS generating element 30. , a moving mechanism 62, a parallel plane substrate 63, and a rotating mechanism 64.
  • the folding mirrors 60a and 60b When placed on the optical path along which the light travels, the folding mirrors 60a and 60b are placed between the SRS generating element 30 and the wavelength filter 40. In other words, the light passes through the SRS generating element 30, the folding mirrors 60a and 60b, and the wavelength filter 40 in this order. Further, in the arrangement on the optical path, at least one folding mirror 60a, 60b may be provided between the incident surface 301 of the SRS generating element 30 and the wavelength filter 40, and in the example of FIG. , 60b are shown. In the following, the folding mirrors 60a and 60b will be referred to as a folding mirror 60 unless they are distinguished from each other.
  • the folding mirror 60 reflects the first pulsed light L1 of the first wavelength emitted from the SRS generating element 30 and transmits the second pulsed light L2 of the second wavelength.
  • the folding mirror 60 is arranged so that the first pulsed light L1 of the first wavelength passes through the SRS generating element 30 at least twice.
  • the position of the SRS generating element 30 is adjusted by a moving mechanism 62, which will be described later, so that the first pulsed light L1 passes through the SRS generating element 30 twice.
  • FIG. 8 is a diagram schematically showing another example of the configuration of the solid-state laser device according to the third embodiment.
  • FIG. 8 shows a state in which the position of the SRS generating element 30 is adjusted so that the first pulsed light L1, which is the light reflected by the folding mirror 60, all passes through the SRS generating element 30.
  • the SRS generating element 30 is moved upward in the plane of the paper from the state shown in FIG. 8, the first pulsed light L1 reflected by the folding mirror 60b does not pass through the SRS generating element 30, as shown in FIG.
  • the position where the first pulsed light L1 reflected by all the folding mirrors 60 passes through the SRS generating element 30 is called a reference position. Note that by appropriately setting the transmittance of the return mirror 60 for the second pulsed light L2, the partially reflected second pulsed light L2 is made incident on the SRS generation element 30, and the wavelength conversion efficiency in the SRS generation element 30 is increased to 1. % or more.
  • the damper 61 attenuates the second pulsed light L2 transmitted by the folding mirror 60. Therefore, in the example of FIG. 7, the damper 61 is arranged on the transmission side of the folding mirror 60. Note that the damper 61 may be a measuring device such as a power meter.
  • the moving mechanism 62 moves the SRS generating element 30. As shown in FIG. 8, when the SRS generating element 30 is located at the reference position by the moving mechanism 62, the SRS generating element 30 emits the first pulsed light L1 emitted from the solid active medium 21, the folding mirror 60a, It has a size that can transmit all of the first pulsed light L1 reflected by 60b. That is, at the reference position, the SRS generating element 30 is configured so that the first pulsed light L1 passes through the number of folding mirrors 60+1 times. The moving mechanism 62 moves the SRS generating element 30 so that the number of first pulsed lights L1 transmitted through the SRS generating element 30 can be changed from 1 to the number of folding mirrors 60 + 1.
  • the SRS intensity depends on the length of the SRS generating element 30 and the peak intensity of the pulsed light of the first wavelength incident on the SRS generating element 30.
  • the effective element length can be increased by making the pulsed light of the first wavelength, that is, the pulsed amplified light L0 and the first pulsed light L1, travel back and forth through the SRS generating element 30 a plurality of times.
  • the second pulsed light L2 which is the SRS component of the second wavelength, is transmitted through the folding mirror 60 and excluded from the optical path of the first wavelength, I Raman in equation (1) is becomes essentially 0.
  • the third embodiment has the effect of increasing the attenuation rate for the giant pulse compared to the case where the signal passes through the SRS generating element 30 having a long medium length once.
  • the number of times the first pulsed light L1 passes through the SRS generating element 30 and the distance that the first pulsed light L1 passes through the SRS generating element 30 can be increased. It can also be changed.
  • the moving mechanism 62 can move the SRS generating element 30 so that the beam diameter of the first pulsed light L1 incident on the SRS generating element 30 becomes larger.
  • the diameter of the beam incident on the SRS generating element 30 can also be changed by changing the spread angle of the pulse amplified light L0 emitted from the solid active medium 21.
  • the divergence angle of the pulsed light LS that is incident on the solid active medium 21 the diameter of the beam that is incident on the SRS generating element 30 is changed.
  • the moving mechanism 62 has a beam diameter such that the first pulsed light L1 reflected by the folding mirror 60 is incident on the SRS generation element 30, and the first pulsed light L1 passes through the SRS generation element 30. At least one of the number of times the first pulsed light L1 passes through the SRS generating element 30 and the distance through which the first pulsed light L1 passes through the SRS generating element 30 are changed.
  • the parallel plane substrate 63 is placed between the wavelength filter 40 and the folding mirror 60b placed before the wavelength filter 40.
  • the parallel plane substrate 63 has a shape in which an entrance surface, which is a surface on which the first pulsed light L1 enters, and an exit surface, which is a surface from which the first pulsed light L1 is emitted, are parallel to each other.
  • the rotation mechanism 64 changes the angle between the incident surface of the parallel plane substrate 63 and the optical axis of the first pulsed light L1 by rotating the parallel plane substrate 63.
  • the rotation mechanism 64 rotates the parallel plane substrate 63 around two axes that are parallel to the incident surface of the parallel plane substrate 63 and orthogonal to each other.
  • the rotation mechanism 64 corrects the optical axis shift caused by the first pulsed light L1 passing through the SRS generation element 30 by rotating the parallel plane substrate 63.
  • the beam diameter of the first pulsed light L1 reflected by the folding mirror 60 is incident on the SRS generation element 30, the number of times the first pulsed light L1 passes through the SRS generation element 30, and the first pulsed light L1 includes a moving mechanism 62 that changes at least one of the distances through which the SRS generation element 30 passes.
  • the moving mechanism 62 By moving the SRS generating element 30 with the moving mechanism 62, it is possible to change the number of times the first wavelength pulsed light passes through the SRS generating element 30 from 1 time to the number of folding mirrors 60 + 1 time. becomes. Furthermore, by changing the number of times the light passes through, it is possible to increase the substantial medium length of the SRS generating element 30.
  • the possibility of damage to the optical element can be suppressed.
  • the giant pulse when a giant pulse is generated can be reduced. This has the effect of increasing the attenuation rate of the pulse.
  • a parallel plane substrate 63 that is a parallel flat plate and a rotation mechanism 64 that rotates the parallel plane substrate 63 are provided at a stage subsequent to the SRS generating element 30.
  • the first pulsed light L1 passes through the SRS generation element 30 multiple times. By doing so, it becomes possible to correct the optical axis shift that occurs.
  • FIG. 9 is a diagram schematically showing an example of the configuration of a solid-state laser device according to the fourth embodiment. Note that in the fourth embodiment, the configuration of the optical path between the solid active medium 21 and the wavelength filter 40 is different from that in the first embodiment, so FIG. It shows the configuration of the optical path.
  • the solid-state laser device 1 further includes an aperture 70.
  • the aperture 70 is disposed after the SRS generating element 30.
  • the aperture 70 is a plate-shaped member in which an opening is formed.
  • the aperture 70 is preferably a circular opening.
  • the aperture 70 has a function of removing components of the pulsed light passing through the aperture 70, i.e., the first pulsed light L1 and the second pulsed light L2, whose divergence angle is greater than a set value, and transmitting components whose divergence angle is smaller than a set value.
  • the SRS light of the second wavelength generated by a non-waveguide type bulk element has a component with a larger divergence angle than the pulsed light of the first wavelength. Therefore, by arranging the aperture 70 after the SRS generating element 30 as in the fourth embodiment, there is an effect that the pulse component of the second wavelength having a large divergence angle can be selectively removed.
  • Solid-state laser device 10. Seed light source, 11. Control unit, 20. Solid-state amplifier, 21. Solid-state active medium, 22. Excitation light source, 23. Dichroic mirror, 30. SRS generation element, 31. Temperature control mechanism, 40. Wavelength filter, 41, 61. Damper. 50 Optical system, 51 Processing object, 60, 60a, 60b folding mirror, 62 Moving mechanism, 63 Parallel plane substrate, 64 Rotating mechanism, 70 Aperture, 80 Deflector, 90 Condensing lens, 100 Solid laser processing device, 301 Incident surface, 302 exit surface, L0 pulse amplified light, L1 first pulse light, L2 second pulse light, L3 third pulse light, LE excitation light, LS pulse light.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

固体レーザ装置(1)は、種光源(10)と、固体増幅器(20)と、誘導ラマン散乱発生素子(30)と、波長フィルタ(40)と、を備える。種光源(10)は、第1波長のパルス光(LS)を出力する。固体増幅器(20)は、パルス光(LS)を増幅した第1波長のパルス増幅光(L0)を出力する固体活性媒質(21)を有する。誘導ラマン散乱発生素子(30)は、固体増幅器(20)の後段に配置されパルス増幅光(L0)を誘導ラマン散乱によって1%以上の波長変換効率で第2波長へと波長変換し、第1波長の第1パルス光(L1)と第2波長の第2パルス光(L2)とを出力する。波長フィルタ(40)は、波長の違いを利用して、誘導ラマン散乱発生素子(30)から出力された第1パルス光(L1)の光路から第2パルス光(L2)を分離する。

Description

固体レーザ装置および固体レーザ加工装置
 本開示は、レーザ加工で用いられるレーザ光を出射する固体レーザ装置および固体レーザ加工装置に関する。
 近年、微細加工用のレーザ光源として、短パルス光を出力する固体レーザ装置が広く利用されている。このような固体レーザ装置では、種光源から出力される微弱な短パルス光を固体活性媒質を含む固体増幅器によって増幅して出力するMOPA(Master Oscillator Power Amplifier)方式が採られることが多い。MOPA方式の利点として、繰り返し周波数を制御しやすい点、固体増幅器の段数を増やすことで高出力を得やすい点などが挙げられる。
 MOPA方式の固体レーザ装置で加工を行う際に、パルス光の出力を一時的に停止させたい場合、あるいは加工中にパルス光の繰り返し周波数を変化させたい場合がある。このような場合に、固体増幅器の固体活性媒質が励起用光源によって励起された状態で、固体活性媒質に入力されるパルス光のパルス間隔が時間的に大きくなると、励起用光源によって固体活性媒質に蓄積されるエネルギが過剰になる。この結果、次に固体活性媒質に入力されるパルス光は過剰に増幅されて極めて大きなピーク出力のパルス光が出力される。以下では、このようにして出力されるパルス光は、「ジャイアントパルス」とも称される。このジャイアントパルスによって後段に配置した光学素子の損傷および加工品質の低下が引き起こされてしまう。
 特許文献1には、装置から一時的にパルス光の出力を停止させる場合に、固体増幅器の過剰励起に起因する破損を回避するとともに、出力再開直後のビーム伝播特性の劣化を回避することができるレーザ光源装置が開示されている。特許文献1に記載のレーザ光源装置は、ゲインスイッチング法を用いて種光源から出力されるパルス光を増幅するファイバ増幅器および固体増幅器と、固体増幅器から出力されるパルス光を波長変換する非線形光学素子と、ファイバ増幅器から固体増幅器へのパルス光の伝播を許容または阻止する光スイッチ素子と、種光源および光スイッチ素子を制御する制御部と、を備える。
 特許文献1に記載のレーザ光源装置では、種光源からのパルス光の出力期間にファイバ増幅器から固体増幅器へのパルス光の伝播が阻止されるように、制御部によって光スイッチ素子が制御される。これによって、種光源を停止させなくても非線形光学素子からパルス光の出力を停止させる出力停止状態が実現される。また、出力停止状態で、種光源からのパルス光の出力期間と異なる期間に光の伝播が許容されるように、制御部によって光スイッチ素子が制御されるので、前段のファイバ増幅器で生じた自然放出光ノイズが後段の固体増幅器に伝播して、励起用の光源によって励起状態にある固体増幅器の活性領域のエネルギが放出されるようになる。
国際公開第2015/122375号
 しかしながら、特許文献1に記載の技術では、種光源と固体増幅器との間に配置されたファイバ増幅器から出力される自然放出光を利用して励起状態にある固体増幅器の活性領域のエネルギを放出するようにしている。このため、特許文献1に記載の技術を、種光源と固体増幅器との間にファイバ増幅器を用いない一般的な固体レーザ装置に適用することができない。つまり、ファイバ増幅器を有さない一般的な固体レーザ装置において、ジャイアントパルスの発生を予防することは困難であった。また、特許文献1には、ジャイアントパルスの発生を予防する技術が開示されているが、ジャイアントパルスが発生した場合に、ファイバ増幅器および固体増幅器の後段に配置された光学素子の損傷または加工品質の低下を抑制することは困難であった。このように、特許文献1に記載の技術によれば、固体レーザ装置において意図しないジャイアントパルスが発生することによる光学素子などの損傷を回避できないという問題があった。
 本開示は、上記に鑑みてなされたものであって、ジャイアントパルスが発生することによる固体活性媒質の後段に配置される光学素子の損傷を抑制することができる固体レーザ装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係る固体レーザ装置は、種光源と、固体増幅器と、誘導ラマン散乱発生素子と、波長フィルタと、を備える。種光源は、第1波長のパルス光を出力する。固体増幅器は、パルス光を増幅した第1波長のパルス増幅光を出力する固体活性媒質を有する。誘導ラマン散乱発生素子は、固体増幅器の後段に配置されパルス増幅光を誘導ラマン散乱によって1%以上の波長変換効率で第2波長へと波長変換し、第1波長の第1パルス光と第2波長の第2パルス光とを出力する。波長フィルタは、波長の違いを利用して、誘導ラマン散乱発生素子から出力された第1パルス光の光路から第2パルス光を分離する。
 本開示に係る固体レーザ装置は、ジャイアントパルスが発生することによる固体活性媒質の後段に配置される光学素子の損傷を抑制することができるという効果を奏する。
実施の形態1による固体レーザ装置を備える固体レーザ加工装置の構成の一例を模式的に示す図 SRS発生素子の構成の他の例を模式的に示す図 SRS発生素子にNd:YVO4を用い、SRS発生素子に1064nmのパルス光を入射した場合のSRSへの波長変換特性の一例を示す図 実施の形態2による固体レーザ装置の固体活性媒質およびSRS発生素子の構成例を示す図 実施の形態2による固体レーザ装置の固体活性媒質およびSRS発生素子の構成例を示す図 実施の形態2による固体レーザ装置の固体活性媒質およびSRS発生素子の構成例を示す図 実施の形態3による固体レーザ装置の構成の一例を模式的に示す図 実施の形態3による固体レーザ装置の構成の他の例を模式的に示す図 実施の形態4による固体レーザ装置の構成の一例を模式的に示す図
 以下に、本開示の実施の形態に係る固体レーザ装置および固体レーザ加工装置を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1による固体レーザ装置を備える固体レーザ加工装置の構成の一例を模式的に示す図である。固体レーザ加工装置100は、固体レーザ装置1と、偏向器80と、集光レンズ90と、を備える。固体レーザ装置1は、誘導放出を起こす媒体が後述する固体活性媒質21を用いて、固体レーザ加工装置100におけるレーザ光を出射する装置である。固体レーザ加工装置100は、固体活性媒質21を用いた固体レーザ装置1から出射されるレーザ光を用いて加工対象物51の加工を行う装置である。つまり、固体レーザ加工装置100では、固体レーザ装置1から出射されたレーザ光は、偏向器80および集光レンズ90を介して加工対象物51に照射され、加工対象物51の加工に使用される。
 実施の形態1による固体レーザ装置1は、種光源10と、制御部11と、固体増幅器20と、励起用光源22と、ダイクロイックミラー23と、誘導ラマン散乱(Stimulated Raman Scattering:SRS)発生素子30と、温度制御機構31と、波長フィルタ40と、ダンパ41と、光学系50と、を備える。
 種光源10は、第1波長のパルス光LSを発生し、出力する。第1波長のパルス光LSは、固体活性媒質21で増幅されるレーザ光である。種光源10は、一例では半導体レーザ、ファイバレーザなどにより構成される。あるいは、種光源10は、種光源10と図示しない増幅器とで構成されるMOPA光源であってもよい。
 制御部11は、種光源10から出力されるパルス光LSの波長、パルス幅、繰り返し周波数、出力などの諸条件を制御する。
 固体増幅器20は、種光源10から出力されるパルス光LSを増幅し、増幅された第1波長のパルス光であるパルス増幅光L0を出力する固体活性媒質21を有する。種光源10から出力されるパルス光LSの波長である第1波長に応じて固体活性媒質21の種類が選択される。一例では、第1波長が1064nmである場合には、固体活性媒質21にはNd:YVO4、Nd:YAG(Yttrium Aluminum Garnet)が好適に用いられる。なお、本開示では、YAG,YVO4などの固体の母材に、Nd,Yb,Tmなどのレーザ活性イオンをドープし、定められた波長で励起することによってレーザ光を増幅する性質、すなわち利得を持つものを固体活性媒質21と称する。固体増幅器20は、増幅された第1波長のパルス増幅光L0を、SRS発生素子30へと出力する。
 励起用光源22は、固体活性媒質21を励起するレーザ光LEを出力する光源である。励起用光源22は、一例では半導体レーザで構成される。固体活性媒質21がNd:YVO4である場合には、励起用光源22から出力されるレーザ光LEの波長は、波長808nmまたは波長878.6nm、888nmの連続光が好適である。以下では、励起用光源22から出力される波長808nmまたは波長878.6nm、888nmの連続光は、単に励起光LEとも称される。
 ダイクロイックミラー23は、固体活性媒質21に対して、種光源10からのパルス光LSと励起用光源22からの励起光LEとを同軸上に入射させるために設けられている。ここでは、ダイクロイックミラー23は、種光源10からのパルス光LSを反射し、励起用光源22からの励起光LEを透過させるように構成されている。
 SRS発生素子30は、固体増幅器20の後段に配置され、固体活性媒質21で増幅された第1波長のパルス増幅光L0の一部をSRSにより第2波長の第2パルス光L2に変換し、第1波長の第1パルス光L1と第2波長の第2パルス光L2とを出力する。第2波長は、第1波長よりも長い。実施の形態1では、SRS発生素子30は、パルス増幅光L0をSRSによって1%以上の波長変換効率で第2波長へと波長変換する。SRS発生素子30には、一例では、YVO4、GdVO4、Ba(NO32、ダイアモンドなどの材料が用いられる。また、SRS発生素子30は、上記材料を母材としてレーザ活性イオンが添加されているものであってもよい。第1波長が1064nmであり、SRS発生素子30がYVO4にレーザ活性イオンとしてNdを添加したNd:YVO4である場合には、SRS発生素子30によって変換される第2パルス光L2の第2波長は1176nmである。
 SRS発生素子30は、パルス増幅光L0が入射する面である入射面に設けられる第1波長の光に対する反射を抑える無反射コーティング膜と、第1パルス光L1および第2パルス光L2が出射する面である出射面に設けられる第1波長および第2波長の光に対する反射を抑える無反射コーティング膜と、を有していてもよい。入射面に設けられる無反射コーティング膜によって、パルス増幅光L0が種光源10、励起用光源22および固体活性媒質21に戻ってしまうことを抑制することができる。また、出射面に設けられる無反射コーティング膜によって、第1パルス光L1および第2パルス光L2が種光源10、励起用光源22および固体活性媒質21に戻ってしまうことを抑制することができる。
 図2は、SRS発生素子の構成の他の例を模式的に示す図である。図2に示されるように、SRS発生素子30は、パルス増幅光L0の入射面301並びに第1パルス光L1および第2パルス光L2の出射面302に無反射コーティング膜を設けないノンコートとしてもよい。また、SRS発生素子30は、SRS発生素子30の入射面301に対してパルス増幅光L0がブリュースター角θBiで入射し、かつ第1パルス光L1および第2パルス光L2がSRS発生素子30の出射面302に対してブリュースター角θBoで出射するように配置されるようにしてもよい。
 一般に透過型の光学素子の入出射面には無反射コーティング膜が設けられる。無反射コーティング膜は光学素子のバルクまたは界面よりも損傷閾値が低いことが多い。一方、図2に示されるように、ブリュースター角θBi,θBoで光学素子にパルス光を入出射させると、無反射コーティング膜が無くても入出射面での反射率を低減することができる。このため、無反射コーティング膜の損傷が回避でき、光学素子の損傷が起こりにくくなる。また、ブリュースター角θBi,θBoで光学素子にパルス光を入出射させる場合には、SRS発生素子30の入射面301および出射面302に無反射コーティング膜を設けなくてもよいことから、無反射コーティング膜の損傷を回避できる利点がある。
 図1に戻り、温度制御機構31は、SRS発生素子30の温度を制御する。一例では、温度制御機構31は、SRS発生素子30を定められた温度に加熱する加熱部と、加熱部による加熱を制御する加熱制御部と、を有する。温度制御機構31は、後述するように、SRS発生素子30での波長変換効率が1%以上となるようにSRS発生素子30の温度を制御する。
 波長フィルタ40は、波長の違いを利用してSRS発生素子30から出力された第1パルス光L1および第2パルス光L2から第2パルス光L2を分離する。つまり、波長フィルタ40は、SRS発生素子30から出力された第1パルス光L1の光路から第2パルス光L2を分離する。図1の例では、波長フィルタ40は、SRS発生素子30から出射された第1パルス光L1および第2パルス光L2のうち、一方を透過させ、他方を反射させる。これによって、2つの波長の光である第1パルス光L1および第2パルス光L2が空間的に分離される。図1の例では、波長フィルタ40は、第1パルス光L1を透過させ、第2パルス光L2を反射する。
 ダンパ41は、波長フィルタ40で反射される第2パルス光L2の光路上に配置される。ダンパ41は、第2パルス光L2を減衰させる。なお、ダンパ41は、パワーメータなどの計測機器であってもよい。
 光学系50は、第1パルス光L1が波長フィルタ40を透過する光路上に配置される。波長フィルタ40で分離された第1パルス光L1は、光学系50を通過する。光学系50は、第1パルス光L1を伝送するためのレンズまたはミラーで構成されるが、本開示の固体レーザ装置1の用途に応じて適宜構成することができる。一例では、第1パルス光L1の出力をさらに増幅させたい場合には、光学系50に固体増幅器を設けてもよい。あるいは、第1パルス光L1を高調波発生により第2高調波、第3高調波または第4高調波に波長変換したい場合には、光学系50に高調波発生用の非線形光学素子を設けてもよい。光学系50で適宜処理を施されたパルス光である第3パルス光L3は、固体レーザ装置1から出力される。
 偏向器80は、固体レーザ装置1から出力される第3パルス光L3を偏向する。具体的には、偏向器80は、第3パルス光L3の加工対象物51における照射位置を任意に変位させる。偏向器80は、加工対象物51上で互いに直交する2方向における第3パルス光L3の照射位置を変位させることができるように、2つ設けられることが望ましい。偏向器80の一例は、ガルバノスキャナである。なお、固体レーザ装置1が光学系50を有さない場合には、偏向器80は、波長フィルタ40から出力されたパルス光を偏向する。
 集光レンズ90は、偏向器80で偏向されたパルス光、図1の場合には第3パルス光L3を、加工対象物51の任意の位置に集光して照射する。これによって、第3パルス光L3が加工対象物51に照射され、レーザ加工が行われる。
 なお、図1では、波長フィルタ40が、第1パルス光L1を透過させ、第2パルス光L2を反射させる場合を示しているが、逆に第1パルス光L1を反射させ、第2パルス光L2を透過させるようにしてもよい。この場合には、ダンパ41は波長フィルタ40の透過側に配置され、光学系50は波長フィルタ40の反射側に配置されることが好ましい。
 実施の形態1では、パルス光の波長変換にSRSを利用している。このSRSを利用したパルス光の波長変換には、一般的な波長変換の手法である高調波発生と比べて利点が存在する。高調波発生では、非線形光学素子に入射するパルス光の波長を1/2倍あるいはそれ以下に波長変換する。一般に光学素子のバルクまたはコーティング膜の損傷閾値は、入射するパルス光の波長が短いほど低くなる。従って、ジャイアントパルスを高調波発生で波長変換した場合には、短波長化されたジャイアントパルスによって非線形光学素子、波長フィルタ40などの光学素子が損傷しやすくなるという問題がある。一方、SRSでは、第1波長のパルス光の一部が第2波長のパルス光に波長変換されるが、第2波長は第1波長と比べて長い。従って、第2波長に波長変換されたジャイアントパルスは、第1波長と比べてSRS発生素子30、波長フィルタ40などの光学素子を損傷させにくくなる。
 また、高調波発生に用いられるLBO(Lithium Triborate:LiB35),CLBO(Cesium Lithium Borate:CsLiB610)などの非線形光学素子は吸湿性を持つため、湿度管理を行う必要がある。一方、SRS発生素子30には固体レーザ媒質に用いられるNd:YVO4などを使用することができるため、LBO,CLBOなどのように特別な環境および処理は必要なく、従来の固体レーザ装置の内部に容易に導入することができる。
 実施の形態1では、SRS発生素子30における波長変換効率を1%以上に設定することが好ましい。SRS発生素子30から出力されるSRS光の強度ISRSは次式(1)で与えられる。
SRS=IRaman0・exp(gRaman・IPump・L) ・・・(1)
 ここで、IRaman0は、SRS発生素子30の入射面301における第2波長のパルス光の強度であり、gRamanは、SRS発生素子30のラマン利得係数であり、IPumpは、SRS発生素子30に入射する第1波長のパルス増幅光L0のピーク強度であり、Lは、SRS発生素子30の長さである。SRS発生素子30の長さLは、SRS発生素子30でのパルス光の進行方向における長さである。また、SRSによる波長変換効率ηは次式(2)で表せる。
η=ISRS/IPump ・・・(2)
 SRSの波長変換効率ηは、(1)式および(2)式から、第1パルス光L1のピーク強度に対して非線形に増加するため、入射パルス光のピーク強度が定められた定格ピーク強度よりも増加した場合に、波長変換効率ηが増加する。すなわち、SRS発生素子30は、定格ピーク強度以上の第1パルス光L1に対して、減衰器として機能する。SRS発生素子30から出射した第2パルス光L2を波長フィルタ40によって第1パルス光L1の光路から除外することで、ジャイアントパルスが発生した場合に、ジャイアントパルスによって光学系50の損傷および加工対象物51の加工品質の低下を回避することができる。つまり、ジャイアントパルスが発生しても、波長変換効率ηが増加するため、SRS発生素子30で、ダンパ41に吸収される第2パルス光L2が多く生成される。これによって、SRS発生素子30から出力される第1パルス光L1のピーク強度が必要以上に大きくなることが抑制される。
 波長変換効率ηを1%以上とするためには、(1)式の指数関数の中、すなわちgRaman×IPump×Lの値が「15」以上「30」以下になるようにgRaman,IPumpおよびLを設定することが好ましい。一例では、SRS発生素子30にNd:YVO4を用いる場合には、Nd:YVO4のラマンモードのうち最もラマン利得係数の大きい893cm-1におけるラマン利得係数は4.5cm/GWであるため、IPump×Lの値が「3GW/cm」以上「7GW/cm」以下となるIPumpおよびLに設定することが好ましい。
 一方、gRamanは、温度が高いほど小さくなり、かつ温度が低いほど大きくなる性質を有する。つまり、SRS発生素子30の温度を温度制御機構31によって調整することで、IPumpまたはLを変化させる場合と同じ効果が得られる。このため、上記したように実施の形態1の固体レーザ装置1では、SRS発生素子30の温度を制御する温度制御機構31を備えることが好ましい。SRS発生素子30の温度を温度制御機構31で調整することによって、任意のIPump×Lに対して1%以上の波長変換効率を得ることができる。このように、SRSの強度がSRS発生素子30の温度に依存することを利用して、SRS発生素子30の温度を制御することで、SRSの波長変換効率を制御し、ジャイアントパルスによる固体活性媒質21の後段に配置されるSRS発生素子30および波長フィルタ40の損傷を回避するという効果を得られるようにすることもできる。
 以上のように、gRamanを一定に保つことができる場合には、波長変換効率ηが1%以上となるIPumpおよびLを設定すればよく、固体レーザ装置1は、温度制御機構31を有さなくてもよい。一方、任意のIPumpおよびLが設定される場合には、波長変換効率ηが1%以上となるようにgRamanを変化させるために、固体レーザ装置1は、温度制御機構31を備えることが望ましい。
 図3は、SRS発生素子にNd:YVO4を用い、SRS発生素子に1064nmのパルス光を入射した場合のSRSへの波長変換特性の一例を示す図である。横軸は1064nmのパルス光の入射平均出力である1064nm入射平均出力を示し、左の縦軸は1064nmのパルス光の出射平均出力である1064nm出射平均出力を示し、右の縦軸はSRS波長である1176nmのパルス光の出射平均出力である1176nm出射平均出力を示している。本実験では入射パルス光のビーム径、パルス幅および繰り返し周波数を一定としているため、1064nmのピーク出力およびピーク強度は平均出力に比例する。1064nm入射平均出力がある値以上でSRSが発生し、1064nm出射平均出力の低下および1176nm出射平均出力の増加が確認できる。
 実施の形態1の構成において、SRS発生素子30の材質および光軸方向における長さ、並びにSRS発生素子30に入射するパルス増幅光L0のビーム径を一定とした場合に、パルス増幅光L0のピーク出力は、SRS発生素子30から出射される第1パルス光L1のピーク出力が最大となるように設定することが好ましい。図3によれば、1064nm出射平均出力が最大となる1064nm入射平均出力において、1064nm入射平均出力が±10%変化した場合に、1064nm出射平均出力の変化は±1%以下になっている。具体的には、横軸の1064nm入射平均出力が40W以上50W以下の範囲において、左側の縦軸の1064nm出射平均出力は、約36Wで一定の値となっている。つまり、1064nm入射平均出力の変動に対する1064nm出射平均出力の変動が低減されており、出射平均出力の安定性を高める効果を奏している。上述のように図3の実験における平均出力の変化はピーク出力の変化を意味するため、1064nm出射ピーク出力が最大となるように1064nm入射ピーク出力を設定することで、同様の効果を得ることができる。ただし、1064nmの出射ピーク出力、すなわち透過パワーを最大とするには、SRSの発生に関与する出力以外の条件、すなわちSRS発生素子30の材質および光軸方向における長さ、並びにSRS発生素子30に入射するパルス増幅光L0のビーム径が定められた状態とする必要がある。
 実施の形態1では、SRS発生素子30および波長フィルタ40を通過するパルス光のビーム径は大きいことが好ましい。実施の形態1の構成でジャイアントパルスが発生した場合、第1波長のジャイアントパルスによってSRS発生素子30が損傷する可能性がある。また、第2波長へと波長変換されたジャイアントパルスによってSRS発生素子30および波長フィルタ40が損傷する可能性がある。一般に、パルス光による光学素子の損傷閾値は、パルス光のピーク強度に依存する。すなわち、光学素子に入射するパルス光のビーム径が大きいほど、損傷しにくくなる。一方、SRSの閾値はパルス光のピーク強度および媒質長に依存する。つまり、SRS発生素子30を通過するパルス光のビーム径を拡大することでパルス光のピーク強度が低下した場合には、SRS発生素子30の媒質長を長くすることによって所望のSRS光を発生させることが可能である。この結果、ジャイアントパルスが発生した場合に、ジャイアントパルスによる固体活性媒質21の後段に配置されるSRS発生素子30および波長フィルタ40の損傷を回避するという効果を安定的に得ることが可能となる。
 SRS発生素子30を通過するビーム径を大きくする手段として、固体活性媒質21から出射するパルス増幅光L0の発散角を大きくすることが好適である。あるいは、固体活性媒質21からパルス増幅光L0を収束した状態で出射させ、集光点の後方で再びパルス増幅光L0が発散した状態に変化した後にSRS発生素子30にパルス増幅光L0が入射するようにSRS発生素子30を配置してもよい。
 実施の形態1によれば、パルス増幅光L0のピーク出力が定められた定格のピーク出力よりも大きい場合に、パルス増幅光L0はSRS発生素子30によって波長変換され、波長フィルタ40によって光路から分離される。この結果、ジャイアントパルスが発生することによる固体活性媒質21の後段に配置される光学素子の損傷、および加工対象物51の加工品質の低下が抑制されるという効果を有する。
実施の形態2.
 実施の形態2では、SRS発生素子30は、固体活性媒質21と同一材料としてもよいし、SRS発生素子30は、固体活性媒質21と同一母材のノンドープ材料または低ドープ材料としてもよい。すなわち、SRS発生素子30は、固体活性媒質21の母材と同一の母材に対して、固体活性媒質21にドープされたレーザ活性イオンと同一のレーザ活性イオンを固体活性媒質21のレーザ活性イオンの濃度以下の濃度でドープした低ドープ材料であってもよい。あるいはSRS発生素子30は、レーザ活性イオンを含有しない固体活性媒質21の母材と同一の母材であるノンドープ材料であってもよい。ノンドープ材料または低ドープ材料は、固体活性媒質21の後段に配置することが好ましい。さらに、ノンドープ材料または低ドープ材料は、固体活性媒質21の後段に固体活性媒質21と離間して配置されていてもよいし、あるいは固体活性媒質21のパルス増幅光L0が出射される面に接合されていてもよい。
 図4から図6は、実施の形態2による固体レーザ装置の固体活性媒質およびSRS発生素子の構成例を示す図である。一例では、母材であるYVO4に0.2at.%のレーザ活性イオンであるNdをドープしたNd:YVO4を固体活性媒質21に用いる場合のSRS発生素子30には、図4から図6に示される材料を用いることができる。図4には、SRS発生素子30が、固体活性媒質21と同一の材料であるドープ濃度0.2at.%のNd:YVO4である場合が示されている。図5には、SRS発生素子30が、固体活性媒質21の母材と同一の母材であって、レーザ活性イオンがドープされていないドープ材料であるノンドープのYVO4である場合が示されている。図6には、SRS発生素子30が、固体活性媒質21の母材と同一の母材であるYVO4に対して、固体活性媒質21にドープされたレーザ活性イオンと同一のNdを固体活性媒質21のレーザ活性イオンの濃度以下の濃度でドープした低ドープ材料である場合が示されている。図6では、ドープ濃度が0.1at.%のNd:YVO4がSRS発生素子30として用いられている。
 このように、SRS発生素子30に固体活性媒質21と同一材料、固体活性媒質21と同一母材のノンドープ材料、あるいは固体活性媒質21よりもレーザ活性イオンの濃度が低い低ドープ材料を用いることで、固体レーザ装置1の部品点数または部品種類を削減することができる。また、SRS発生素子30を固体活性媒質21のパルス増幅光L0が出射される面に接合することで、固体活性媒質21およびSRS発生素子30を含む固体レーザ装置1を小型化することが可能となる。
実施の形態3.
 図7は、実施の形態3による固体レーザ装置の構成の一例を模式的に示す図である。なお、実施の形態3では、固体活性媒質21と波長フィルタ40との間の光路の構成が実施の形態1とは異なるので、図7には、固体活性媒質21と波長フィルタ40との間の光路の構成を示している。
 実施の形態3では、図7に示されるように、固体レーザ装置1は、固体活性媒質21と波長フィルタ40との間でSRS発生素子30の後段に、折り返しミラー60a,60bと、ダンパ61と、移動機構62と、平行平面基板63と、回転機構64と、をさらに備える。
 光の進行する光路上の配置では、折り返しミラー60a,60bがSRS発生素子30と波長フィルタ40との間に配置される。言い換えれば、SRS発生素子30、折り返しミラー60a,60b、波長フィルタ40の順に光が通過する。また、光路上の配置において、折り返しミラー60a,60bは、SRS発生素子30の入射面301と波長フィルタ40との間に少なくとも1つ設けられればよく、図7の例では、2つの折り返しミラー60a,60bが設けられる場合が示されている。以下では、折り返しミラー60a,60bは、それぞれを区別しない場合には、折り返しミラー60と称される。折り返しミラー60は、SRS発生素子30から出射した第1波長の第1パルス光L1を反射し、第2波長の第2パルス光L2を透過する。折り返しミラー60は、第1波長の第1パルス光L1がSRS発生素子30を少なくとも2回以上透過するように配置される。ただし、図7の例では、第1パルス光L1がSRS発生素子30を2回透過するように、後述する移動機構62によってSRS発生素子30の位置が調整されている。
 図8は、実施の形態3による固体レーザ装置の構成の他の例を模式的に示す図である。図8では、折り返しミラー60による反射光である第1パルス光L1がすべてSRS発生素子30を透過するようにSRS発生素子30の位置が調整されている状態が示されている。図8の状態からSRS発生素子30を紙面内における上方に移動させると図7に示されるように、折り返しミラー60bで反射された第1パルス光L1がSRS発生素子30を透過しない状態となる。図8に示されるように、すべての折り返しミラー60によって反射される第1パルス光L1がSRS発生素子30を透過する位置は、基準位置と称される。なお、第2パルス光L2に対する折り返しミラー60の透過率を適切に設定することで、部分反射された第2パルス光L2をSRS発生素子30に入射させ、SRS発生素子30における波長変換効率が1%以上となるように構成することも可能である。
 ダンパ61は、折り返しミラー60で透過する第2パルス光L2を減衰させる。このため、図7の例では、ダンパ61は、折り返しミラー60の透過側に配置される。なお、ダンパ61は、パワーメータなどの計測機器であってもよい。
 移動機構62は、SRS発生素子30を移動させる。図8に示されるように、移動機構62によってSRS発生素子30が基準位置にある場合には、SRS発生素子30は、固体活性媒質21から出射される第1パルス光L1、および折り返しミラー60a,60bによって反射される第1パルス光L1のすべてを透過することができる大きさを有する。つまり、基準位置において、SRS発生素子30は、折り返しミラー60の数+1回だけ第1パルス光L1が透過するように構成される。移動機構62は、SRS発生素子30を透過する第1パルス光L1の数を1回から折り返しミラー60の数+1回までの範囲で変更することができるように、SRS発生素子30を移動させる。
 (1)式によれば、SRS強度はSRS発生素子30の長さとSRS発生素子30に入射する第1波長のパルス光のピーク強度に依存する。実施の形態3では、第1波長のパルス光、すなわちパルス増幅光L0および第1パルス光L1がSRS発生素子30を複数回往復することで、実効的な素子長を長くすることができる。また、折り返しミラー60で第2波長のSRS成分である第2パルス光L2を透過させて第1波長の光路から除外しているため、(1)式におけるIRamanは折り返しミラー60を通過する度に実質的に0になる。この結果、媒質長の長いSRS発生素子30を1回通過する場合と比べて、実施の形態3ではジャイアントパルスに対する減衰率を高める効果を奏する。このように、移動機構62でSRS発生素子30を移動させることで、第1パルス光L1がSRS発生素子30を通過する回数とともに、第1パルス光L1がSRS発生素子30を通過する通過距離を変化させることもできる。
 このほかに、SRS発生素子30を、固体増幅器20から出射されるパルス増幅光L0の進行方向に移動させることで、折り返しミラー60で反射された第1パルス光L1がSRS発生素子30に入射するビーム径を変化させることもできる。一例では、実施の形態1で説明したように、SRS発生素子30に入射する第1パルス光L1のビーム径が大きくなるように、移動機構62はSRS発生素子30を移動させることができる。なお、固体活性媒質21から出射されるパルス増幅光L0の拡がり角を変えることでも、SRS発生素子30に入射するビーム径を変化させることができる。ただし、実際には、固体活性媒質21に入射するパルス光LSの発散角を変えることで、SRS発生素子30に入射するビーム径を変化させることになる。
 このように、実施の形態3では、移動機構62は、折り返しミラー60で反射された第1パルス光L1がSRS発生素子30に入射するビーム径、第1パルス光L1がSRS発生素子30を通過する回数、および第1パルス光L1がSRS発生素子30を通過する通過距離のうち少なくとも1つを変化させる。
 平行平面基板63は、波長フィルタ40の前段に配置される折り返しミラー60bと波長フィルタ40との間に配置される。平行平面基板63は、第1パルス光L1が入射する面である入射面と、第1パルス光L1が出射する面である出射面と、が互いに平行となる形状を有する。
 回転機構64は、平行平面基板63を回転させることによって、平行平面基板63の入射面と第1パルス光L1の光軸との間の角度を変化させる。一例では、回転機構64は、平行平面基板63の入射面に平行で互いに直交する2つの軸の回りに、平行平面基板63を回転させる。回転機構64は、平行平面基板63を回転させることで、第1パルス光L1がSRS発生素子30を通過することによって生じた光軸シフトを補正する。
 実施の形態3では、折り返しミラー60で反射された第1パルス光L1がSRS発生素子30に入射するビーム径、第1パルス光L1がSRS発生素子30を通過する回数、および第1パルス光L1がSRS発生素子30を通過する通過距離のうち少なくとも1つを変化させる移動機構62を備える。移動機構62でSRS発生素子30を移動させることによって、第1波長のパルス光がSRS発生素子30を通過する回数を、1回から折り返しミラー60の数+1回までの間で変化させることが可能となる。また、通過する回数を変化させることで、実質的なSRS発生素子30の媒質長を長くすることが可能となる。さらに、SRS発生素子30に入射するビーム径を大きくすることで、光学素子の損傷の可能性を抑制することができる。このように、第1パルス光L1がSRS発生素子30を複数回往復するようにし、かつ各折り返しミラー60での反射時に第2パルス光L2を除去することで、ジャイアントパルスが発生した場合のジャイアントパルスの減衰率を高めることができるという効果を奏する。
 また、実施の形態3では、SRS発生素子30の後段に平行平板である平行平面基板63および平行平面基板63を回転させる回転機構64を備える。回転機構64を用いて、平行平面基板63の入射面と第1パルス光L1の光軸との間の角度を適切に設定することで、第1パルス光L1がSRS発生素子30を複数回通過することにより生じた光軸シフトを補正することが可能となる。
実施の形態4.
 図9は、実施の形態4による固体レーザ装置の構成の一例を模式的に示す図である。なお、実施の形態4では、固体活性媒質21と波長フィルタ40との間の光路の構成が実施の形態1とは異なるので、図9には、固体活性媒質21と波長フィルタ40との間の光路の構成を示している。
 実施の形態4では、図9に示されるように、固体レーザ装置1は、アパーチャ70をさらに備える。アパーチャ70は、SRS発生素子30の後段に配置される。アパーチャ70は、開口が形成された板状部材である。アパーチャ70は、円形の開口であることが好ましい。アパーチャ70は、アパーチャ70を通過するパルス光、すなわち第1パルス光L1および第2パルス光L2のうち、発散角が定められた値よりも大きい成分を除去し、発散角が定められた値よりも小さい成分を透過させる機能を有する。
 一般に、非導波路型のバルク素子で発生する第2波長のSRS光は、第1波長のパルス光よりも発散角の大きい成分を有する。従って、実施の形態4のように、SRS発生素子30の後段にアパーチャ70を配置することで、発散角の大きい第2波長のパルス成分を選択的に除去することができるという効果を有する。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 固体レーザ装置、10 種光源、11 制御部、20 固体増幅器、21 固体活性媒質、22 励起用光源、23 ダイクロイックミラー、30 SRS発生素子、31 温度制御機構、40 波長フィルタ、41,61 ダンパ、50 光学系、51 加工対象物、60,60a,60b 折り返しミラー、62 移動機構、63 平行平面基板、64 回転機構、70 アパーチャ、80 偏向器、90 集光レンズ、100 固体レーザ加工装置、301 入射面、302 出射面、L0 パルス増幅光、L1 第1パルス光、L2 第2パルス光、L3 第3パルス光、LE 励起光、LS パルス光。

Claims (10)

  1.  第1波長のパルス光を出力する種光源と、
     前記パルス光を増幅した前記第1波長のパルス増幅光を出力する固体活性媒質を有する固体増幅器と、
     前記固体増幅器の後段に配置され前記パルス増幅光を誘導ラマン散乱によって1%以上の波長変換効率で第2波長へと波長変換し、前記第1波長の第1パルス光と前記第2波長の第2パルス光とを出力する誘導ラマン散乱発生素子と、
     波長の違いを利用して、前記誘導ラマン散乱発生素子から出力された前記第1パルス光の光路から前記第2パルス光を分離する波長フィルタと、
     を備えることを特徴とする固体レーザ装置。
  2.  前記誘導ラマン散乱発生素子は、前記パルス増幅光が前記誘導ラマン散乱発生素子の入射面に対してブリュースター角で入射し、かつ前記第1パルス光が前記誘導ラマン散乱発生素子の出射面に対してブリュースター角で出射するように配置されることを特徴とする請求項1に記載の固体レーザ装置。
  3.  前記誘導ラマン散乱発生素子の温度を制御する温度制御機構をさらに備えることを特徴とする請求項1に記載の固体レーザ装置。
  4.  前記誘導ラマン散乱発生素子は、
     前記固体活性媒質の母材と同一の母材に対して前記固体活性媒質にドープされたレーザ活性イオンと同一のレーザ活性イオンを前記固体活性媒質の前記レーザ活性イオンの濃度以下の濃度でドープした低ドープ材料、または前記レーザ活性イオンを含有しない前記母材であるノンドープ材料であり、
     前記固体活性媒質の後段に前記固体活性媒質と離間して、あるいは前記固体活性媒質の前記パルス増幅光が出射される面に接合して配置されることを特徴とする請求項1から3のいずれか1つに記載の固体レーザ装置。
  5.  前記第1パルス光を反射し、前記第2パルス光を透過する折り返しミラーをさらに備え、
     前記折り返しミラーは、前記折り返しミラーで反射された前記第1パルス光を前記誘導ラマン散乱発生素子に入射させるように、前記誘導ラマン散乱発生素子と前記波長フィルタとの間の光の進行する光路上に配置されることを特徴とする請求項1から4のいずれか1つに記載の固体レーザ装置。
  6.  前記誘導ラマン散乱発生素子を移動させる移動機構をさらに備え、
     前記移動機構は、前記折り返しミラーで反射された前記第1パルス光が前記誘導ラマン散乱発生素子に入射するビーム径、前記第1パルス光が前記誘導ラマン散乱発生素子を通過する回数、および前記第1パルス光が前記誘導ラマン散乱発生素子を通過する通過距離のうち少なくとも1つを変化させることを特徴とする請求項5に記載の固体レーザ装置。
  7.  前記誘導ラマン散乱発生素子の後段に配置され、互いに平行な入射面および出射面を有する平行平面基板と、
     前記平行平面基板を回転させて、前記入射面と前記第1パルス光の光軸との間の角度を変化させる回転機構と、
     をさらに備えることを特徴とする請求項5または6に記載の固体レーザ装置。
  8.  前記誘導ラマン散乱発生素子の後段に配置され、前記第1パルス光および前記第2パルス光のうち、発散角が定められた値よりも大きい成分を除去し、前記発散角が前記定められた値よりも小さい成分を透過させるアパーチャをさらに備えることを特徴とする請求項1から4のいずれか1つに記載の固体レーザ装置。
  9.  前記誘導ラマン散乱発生素子の材質および光軸方向における長さ、並びに前記誘導ラマン散乱発生素子に入射する前記パルス増幅光のビーム径が定められた状態において、前記誘導ラマン散乱発生素子から出射される前記第1パルス光のピーク出力が最大となるように、前記パルス増幅光のピーク出力が定められることを特徴とする請求項1から8のいずれか1つに記載の固体レーザ装置。
  10.  第1波長のパルス光を出力する種光源と、
     前記パルス光を増幅した前記第1波長のパルス増幅光を出力する固体活性媒質を有する固体増幅器と、
     前記固体増幅器の後段に配置され前記パルス増幅光を誘導ラマン散乱によって1%以上の波長変換効率で第2波長へと波長変換し、前記第1波長の第1パルス光と前記第2波長の第2パルス光とを出力する誘導ラマン散乱発生素子と、
     波長の違いを利用して、前記誘導ラマン散乱発生素子から出力された前記第1パルス光の光路から前記第2パルス光を分離する波長フィルタと、
     前記波長フィルタから出力されたパルス光を偏向する偏向器と、
     前記偏向器で偏向されたパルス光を加工対象物の任意の位置に集光して照射する集光レンズと、
     を備えることを特徴とする固体レーザ加工装置。
PCT/JP2022/034084 2022-09-12 2022-09-12 固体レーザ装置および固体レーザ加工装置 WO2024057367A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022574324A JP7254260B1 (ja) 2022-09-12 2022-09-12 固体レーザ装置および固体レーザ加工装置
PCT/JP2022/034084 WO2024057367A1 (ja) 2022-09-12 2022-09-12 固体レーザ装置および固体レーザ加工装置
TW112128990A TW202412416A (zh) 2022-09-12 2023-08-02 固體雷射裝置以及固體雷射加工裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034084 WO2024057367A1 (ja) 2022-09-12 2022-09-12 固体レーザ装置および固体レーザ加工装置

Publications (1)

Publication Number Publication Date
WO2024057367A1 true WO2024057367A1 (ja) 2024-03-21

Family

ID=85795581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034084 WO2024057367A1 (ja) 2022-09-12 2022-09-12 固体レーザ装置および固体レーザ加工装置

Country Status (3)

Country Link
JP (1) JP7254260B1 (ja)
TW (1) TW202412416A (ja)
WO (1) WO2024057367A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459410B1 (ja) 2023-10-24 2024-04-01 三菱電機株式会社 レーザ装置およびレーザ加工装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031823A (ja) * 2000-07-14 2002-01-31 Japan Atom Energy Res Inst 高出力短パルスレーザー光の発生システム
JP2003017787A (ja) * 2001-07-04 2003-01-17 Toshiba Corp 固体レーザ装置及びqスイッチドライバの駆動回路
JP2006019603A (ja) * 2004-07-05 2006-01-19 Matsushita Electric Ind Co Ltd コヒーレント光源および光学装置
US20060120418A1 (en) * 2004-12-07 2006-06-08 Imra America, Inc. Yb: and Nd: mode-locked oscillators and fiber systems incorporated in solid-state short pulse laser systems
JP2008209909A (ja) * 2007-01-31 2008-09-11 Matsushita Electric Ind Co Ltd 波長変換装置および2次元画像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031823A (ja) * 2000-07-14 2002-01-31 Japan Atom Energy Res Inst 高出力短パルスレーザー光の発生システム
JP2003017787A (ja) * 2001-07-04 2003-01-17 Toshiba Corp 固体レーザ装置及びqスイッチドライバの駆動回路
JP2006019603A (ja) * 2004-07-05 2006-01-19 Matsushita Electric Ind Co Ltd コヒーレント光源および光学装置
US20060120418A1 (en) * 2004-12-07 2006-06-08 Imra America, Inc. Yb: and Nd: mode-locked oscillators and fiber systems incorporated in solid-state short pulse laser systems
JP2008209909A (ja) * 2007-01-31 2008-09-11 Matsushita Electric Ind Co Ltd 波長変換装置および2次元画像表示装置

Also Published As

Publication number Publication date
JPWO2024057367A1 (ja) 2024-03-21
JP7254260B1 (ja) 2023-04-07
TW202412416A (zh) 2024-03-16

Similar Documents

Publication Publication Date Title
US7885298B2 (en) Method and apparatus for producing arbitrary pulsetrains from a harmonic fiber laser
EP2879249B1 (en) A laser system
US9160136B1 (en) External diffusion amplifier
US20140056321A1 (en) Optical amplifier and process
JP6295003B2 (ja) 受動パルスシェイピング付き光源
US8873595B2 (en) Laser processing method
US9941654B2 (en) Fiber-laser pumped crystal-laser
WO2024057367A1 (ja) 固体レーザ装置および固体レーザ加工装置
JP2012044098A (ja) レーザ出射方法
JP5151018B2 (ja) 光源装置
EP3097613A1 (en) Multi-pump-pass fiber based lasers and amplifiers
JP5794237B2 (ja) レーザ装置
US10288981B2 (en) Laser light-source apparatus and laser pulse light generating method
US20150349483A1 (en) Powerful pulsed self-seeding co2 laser
EP3309912A2 (en) Laser light-source apparatus and laser pulse light generating method
US8457171B2 (en) Miniaturized laser amplifier arrangement having a pump source
JP7214056B1 (ja) レーザ装置およびレーザ加工機
JP7459410B1 (ja) レーザ装置およびレーザ加工装置
Büker et al. High-pulse-energy Q-switched Ho3+: YAG laser
JP7500069B2 (ja) 光発振器
US10638589B2 (en) Amplifying laser pulses having different wavelengths for EUV radiation generation
CN115459043A (zh) 激光脉冲宽度压缩装置及调控方法
Kiyko et al. Powerful pulsed self-seeding CO 2 laser
Kuznetsov et al. High-power laser based on amplifiers with Yb: YAG elements of advanced geometries
Zimer et al. High-power Nd: YAG-MISER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958702

Country of ref document: EP

Kind code of ref document: A1