WO2024057003A1 - Ruggedisation apparatus - Google Patents

Ruggedisation apparatus Download PDF

Info

Publication number
WO2024057003A1
WO2024057003A1 PCT/GB2023/052350 GB2023052350W WO2024057003A1 WO 2024057003 A1 WO2024057003 A1 WO 2024057003A1 GB 2023052350 W GB2023052350 W GB 2023052350W WO 2024057003 A1 WO2024057003 A1 WO 2024057003A1
Authority
WO
WIPO (PCT)
Prior art keywords
chassis
enclosure
electronic
reinforcement
spine
Prior art date
Application number
PCT/GB2023/052350
Other languages
French (fr)
Inventor
Alan JORDON
Original Assignee
Bae Systems Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bae Systems Plc filed Critical Bae Systems Plc
Publication of WO2024057003A1 publication Critical patent/WO2024057003A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1487Blade assemblies, e.g. blade cases or inner arrangements within a blade
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/183Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1633Protecting arrangement for the entire housing of the computer

Definitions

  • the present invention relates to the ruggedisation of electronic enclosures, particularly to the shock protection of racks, cabinets and enclosures of computers and servers.
  • Computers such as servers, personal computers are designed to withstand dropping, when packaged but not large shock forces during normal service life.
  • a ruggedised electronic enclosure comprising a chassis and at least one hardware component, further comprising a reinforcement spine connected to the chassis and the at least one hardware component, to prevent movement of said component during a shock-loading event; preferably there are a plurality of hardware components.
  • the reinforcement spine coupled with the chassis capable of offering protection and/or retention of components during and following a shock event.
  • the shock event typically being greater than the acceleration due to gravity, ie a drop hazard or external event.
  • a sudden deceleration event, or shock loading such as, for example where shock forces are applied lasting typically less than ⁇ 50 milliseconds.
  • the chassis may be a box or container that houses the hardware components, such as the electronic components.
  • the chassis may be typically thin metal sheets, which are fastened together form the container.
  • the chassis may typically have a base, 4 walls, and a lid. Typically the lid or at least one of the walls will be removable to allow access to the hardware components.
  • the at least one hardware component may be an electronic component, a vulnerable and/or heavy component, such as, for example, processors, network cards, memory, cooling fans, hard drive, memory storage, eg PSUs, PCBs, mounted heatsinks, back-up batteries, cables, connectors etc, the reinforcement spine may preferably retain the at least one heat sink and/or PSU, and power supply. The reinforcement spine may prevent the movement of vulnerable and/or heavy components, and their separation from the chassis and electronic boards.
  • a vulnerable and/or heavy component such as, for example, processors, network cards, memory, cooling fans, hard drive, memory storage, eg PSUs, PCBs, mounted heatsinks, back-up batteries, cables, connectors etc
  • the reinforcement spine may preferably retain the at least one heat sink and/or PSU, and power supply.
  • the reinforcement spine may prevent the movement of vulnerable and/or heavy components, and their separation from the chassis and electronic boards.
  • the reinforcement spine allows the attachment of further structural components, such as reinforcement plates to provide yet further rigidity to the chassis during a shock event where the shock load path is acting on the horizontal plane, which may lie outside of the computer.
  • the reinforcement spine may further prevent heavy components from leaving the chassis which may lead to power failure or mal-function during and after a shock event.
  • the heavy components may not damage the chassis but may damage surrounding computers/servers, especially within a stack or racked arrangement.
  • At least one said at least one PCB and/or PSU are affixed to the both the chassis and the reinforcement spine.
  • At least one said hard drive and power supply are affixed to the both the chassis and the reinforcement spine.
  • the reinforcement spine may be attached to the chassis during manufacture or retro-fitted into existing commercial off the shelf (COTS) electronic enclosures.
  • COTS commercial off the shelf
  • the reinforcement spine may comprise at least two sides which are fixedly engaged with the chassis.
  • the at least two sides may be operably fastened by a linkage, which provides rigidity to the at least two sides.
  • the at least two sides may extend over to form a mounting lip to form part of an upper surface.
  • the at least two sides may comprise the mounting lips which may be operably fastened by the linkage to provide rigidity to the at least two sides.
  • the at least two sides may each comprise a lower surface, said lower surface may be fastened to the chassis of the electronic enclosure.
  • the lower surface may be elongate.
  • the lower surface may comprise one of the at least two sides, and a further side.
  • the at least two sides, their respective upper and lower surfaces forming a rigid frame with the linkage.
  • the linkage may be a tubular rod, bar, slotted panel to allow airflow through the electronic components and chassis.
  • the linkage may be a plurality of tubular rods to provide both rigidity and reduction of the mass of the reinforcement spine.
  • the use of tubes may also allow for cable management by providing a conduit therethrough.
  • the reinforcement spine may be made from metal, metal alloys, polymers, fibre reinforced polymer composites.
  • the further reinforcement spine may be mounted on top of the reinforcement spine to provide attachment to layered and/or stacked hardware components, particularly heavy internal components.
  • the further reinforcement spine may for example be fastened to a heat sink which may be in thermal contact with electronic components, such as for example they may be located above the processing units.
  • the reinforcement spine and/ or further reinforcement spine may comprise at least one connection element which is mounted thereon, to retain or fasten the at least one item of hardware.
  • the connection element may be reversible such as, for example a clamp, co-operative threads, magnets.
  • the connection element may simply be friction between the linkage and the at least one item of hardware, or clamping between the reinforcement spine and the further reinforcement spine.
  • the reversible connection may also comprise security features, such as locks, interlocks, to control the removal to only authorised users.
  • the connection element may be permanent, such as adhesive bonding, welding, rivets etc.
  • connection elements may also be mounted on the mounting lip on the at least two walls of the reinforcement spine.
  • the reinforcement spine may mitigate the movement of components both inside the electronic enclosure and any neighbouring electronic enclosures, such as for example the movement of components both inside the computer and neighbouring computers, especially when in a rack, cabinet or stacked environment.
  • the electronic enclosure or computer may comprise a spall liner, to prevent any debris, attachments and fixings ejected from the electronic enclosure during a shock loading event from penetrating adjacent stacked, further electronic enclosures.
  • Debris, attachments and fixings may be items such as screws, solder, electronic connecters, small electronic components that may be ejected under high shock loadings.
  • the spall liner may be made from rubberized aramid, high-performance polyethylene or fiberglass.
  • the spall liner may be mounted on the inside of the computer and held in place by the reinforcement spine.
  • the electronic enclosure may be any type of computer, such as a desktop, laptop, at least one computer or server on a rack, cabinet or stack.
  • the computer is preferably one that is part of a stack or rack of computers/servers, where shock damage caused to one may result in the mal-function or destruction of the rest of the rack, cabinet or stack of computers.
  • a rack, stack or cabinet electronic system comprising a plurality of servers and or computers, as defined herein, each with a reinforcement spine as defined herein.
  • Figure 1 shows prior art computer
  • Figure 2 shows a reinforcement spine according to the invention
  • Figure 3 shows and expanded view of the reinforcement spine in a ruggedised computer
  • Figure 4 shows a further reinforcement spine clamping the heat sink; and Figure 5 shows a server rack being separated by reinforcement spines.
  • FIG. 1 there is shown a prior art computer 1 , with a chassis 2, housed inside the chassis is a power supply 4 in the form of a transformer, which receives power externally via the socket 5.
  • the chassis further comprises a mother board 8, with a processor which is cooled by a heat sink 7, which is located thereupon. Further cooling is provided by fans 6, to increase airflow around the electronic components.
  • the computer has a storage in the form of hard drives 3.
  • a reinforcement spine 10 with at least two sides 17, 17a which are capable in use of being attached to a computer chassis.
  • the side 17 has a lower surface 16, and a further side 22, which all three together with the linkage 12 forms a rigid structure to provide reinforcement when attached to the chassis.
  • the side 17, has a lip 19, which extends at right angles therefrom to form a mounting area for the linkage 12, said linkage 12 is in the form of three tubular rods.
  • the lip 19 also provides a mount for a further reinforcement spine 11 , which has at least two sides 18, 18a each of which further comprising a further lip 15.
  • the further lip 15 providing a mounting point for the further linkage 14, in the form of a singular tubular rod.
  • Reinforcement plates 20 and 21 act as extensions from the electronic enclosure which attach to the linkage 12, to retain, in this case, PSUs during a shock event. Especially where the load path of the shock is acting horizontally.
  • a ruggedised computer 30 with a chassis 32, which houses a plurality of hardware components, such as hard drives 33, processors 31 , and power supply transformer 40.
  • a chassis 32 which houses a plurality of hardware components, such as hard drives 33, processors 31 , and power supply transformer 40.
  • One of the walls 35, of the at least two side walls 35, 35a and base layer 41 are sized to fit in the cavity 34, adjacent to the power supply transformer 40.
  • the side wall 35 may then be screwed or otherwise affixed to the chassis 32.
  • the at least two walls 35, 35a and their associated base layers 41 are formed into a rigid structure by the linkage 39, to form the reinforcement spine 42.
  • the heat sink 37 which is a heavy bulky metal plate designed to conduct heat away from the processors 31 , is retained in place by being clamped between the linkage 39 and the further linkage 38 of the further reinforcement spine 36. In the event of a rapid deceleration or shock event, the heat sink 37 may not be retained by small screws and would damage the processors 31 or be ejected at great velocity and may cause mal-function and/or catastrophic system damage to adjacent computers(see fig 5).
  • the reinforcement spine 42 and further reinforcement spine 36 prevent the movement of the heat sink 37, the power supply 40 and provide further rigidity to the chassis 32.
  • FIG 4 there is provided a ruggedised computer 50, with the reinforcement spine 59 being secured to the chassis 52, the further reinforcement spine 56 being fastened to the reinforcement spine 59, the two spines clamping the heat sink 57 and transformer 54 to prevent their movement.
  • FIG 5 there is provided a stack of servers 60, wherein the chassis 62 of each server is separated and connected by an external reinforcement spine 68, to provide yet further rigidity to the stack of servers.
  • Reinforcement plates 65, 66 are a locking feature using vertical locking pins 64 to support PSUs during a shock event where the shock load path is acting on the horizontal plane.
  • the upper plate 65 is rigidly connected to one of the tubular linkages (Fig 2, item 12).
  • the lower plate 66 can be secured directly to the outside surface of the chassis 60 also increasing the chassis’ rigidity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The present invention relates to the ruggedisation of electronic enclosures, particularly to the shock protection of racks, cabinets and enclosures of computers and servers.There is provided a ruggedised electronic enclosure, comprising a chassis, and a plurality of hardware components, wherein there is a reinforcement spine connected to the chassis and at least one hardware component, to prevent movement of said component during a shock-loading event.

Description

RUGGEDISATION APPARATUS
FIELD
The present invention relates to the ruggedisation of electronic enclosures, particularly to the shock protection of racks, cabinets and enclosures of computers and servers.
BACKGROUND
Computers, such as servers, personal computers are designed to withstand dropping, when packaged but not large shock forces during normal service life.
SUMMARY
According to an aspect of the present invention, there is provided a ruggedised electronic enclosure, comprising a chassis and at least one hardware component, further comprising a reinforcement spine connected to the chassis and the at least one hardware component, to prevent movement of said component during a shock-loading event; preferably there are a plurality of hardware components.
The reinforcement spine coupled with the chassis capable of offering protection and/or retention of components during and following a shock event. The shock event typically being greater than the acceleration due to gravity, ie a drop hazard or external event. Typically a sudden deceleration event, or shock loading, such as, for example where shock forces are applied lasting typically less than < 50 milliseconds.
The chassis may be a box or container that houses the hardware components, such as the electronic components. The chassis may be typically thin metal sheets, which are fastened together form the container. The chassis may typically have a base, 4 walls, and a lid. Typically the lid or at least one of the walls will be removable to allow access to the hardware components.
The at least one hardware component may be an electronic component, a vulnerable and/or heavy component, such as, for example, processors, network cards, memory, cooling fans, hard drive, memory storage, eg PSUs, PCBs, mounted heatsinks, back-up batteries, cables, connectors etc, the reinforcement spine may preferably retain the at least one heat sink and/or PSU, and power supply. The reinforcement spine may prevent the movement of vulnerable and/or heavy components, and their separation from the chassis and electronic boards.
The reinforcement spine allows the attachment of further structural components, such as reinforcement plates to provide yet further rigidity to the chassis during a shock event where the shock load path is acting on the horizontal plane, which may lie outside of the computer.
The reinforcement spine may further prevent heavy components from leaving the chassis which may lead to power failure or mal-function during and after a shock event. The heavy components may not damage the chassis but may damage surrounding computers/servers, especially within a stack or racked arrangement.
Preferably, at least one said at least one PCB and/or PSU are affixed to the both the chassis and the reinforcement spine.
Preferably, at least one said hard drive and power supply are affixed to the both the chassis and the reinforcement spine.
The reinforcement spine may be attached to the chassis during manufacture or retro-fitted into existing commercial off the shelf (COTS) electronic enclosures. The ability to provide structural integrity through the use of a retro-fit solution to achieve shock compliance allows greater range of electronic enclosures, for example computer systems, to be selected.
The reinforcement spine may comprise at least two sides which are fixedly engaged with the chassis. The at least two sides may be operably fastened by a linkage, which provides rigidity to the at least two sides.
The at least two sides may extend over to form a mounting lip to form part of an upper surface. The at least two sides may comprise the mounting lips which may be operably fastened by the linkage to provide rigidity to the at least two sides. The at least two sides, may each comprise a lower surface, said lower surface may be fastened to the chassis of the electronic enclosure. The lower surface may be elongate. The lower surface may comprise one of the at least two sides, and a further side. The at least two sides, their respective upper and lower surfaces forming a rigid frame with the linkage.
The linkage may be a tubular rod, bar, slotted panel to allow airflow through the electronic components and chassis. Preferably the linkage may be a plurality of tubular rods to provide both rigidity and reduction of the mass of the reinforcement spine. The use of tubes may also allow for cable management by providing a conduit therethrough.
The reinforcement spine may be made from metal, metal alloys, polymers, fibre reinforced polymer composites.
There may be a further reinforcement spine mounted on top of the reinforcement spine to provide attachment to layered and/or stacked hardware components, particularly heavy internal components. The further reinforcement spine may for example be fastened to a heat sink which may be in thermal contact with electronic components, such as for example they may be located above the processing units.
The reinforcement spine and/ or further reinforcement spine may comprise at least one connection element which is mounted thereon, to retain or fasten the at least one item of hardware. The connection element may be reversible such as, for example a clamp, co-operative threads, magnets. The connection element may simply be friction between the linkage and the at least one item of hardware, or clamping between the reinforcement spine and the further reinforcement spine. The reversible connection may also comprise security features, such as locks, interlocks, to control the removal to only authorised users. The connection element may be permanent, such as adhesive bonding, welding, rivets etc.
The connection elements may also be mounted on the mounting lip on the at least two walls of the reinforcement spine.
The reinforcement spine may mitigate the movement of components both inside the electronic enclosure and any neighbouring electronic enclosures, such as for example the movement of components both inside the computer and neighbouring computers, especially when in a rack, cabinet or stacked environment.
As a further means of mitigation the electronic enclosure or computer may comprise a spall liner, to prevent any debris, attachments and fixings ejected from the electronic enclosure during a shock loading event from penetrating adjacent stacked, further electronic enclosures. Debris, attachments and fixings, may be items such as screws, solder, electronic connecters, small electronic components that may be ejected under high shock loadings.
The spall liner may be made from rubberized aramid, high-performance polyethylene or fiberglass. The spall liner may be mounted on the inside of the computer and held in place by the reinforcement spine.
The electronic enclosure may be any type of computer, such as a desktop, laptop, at least one computer or server on a rack, cabinet or stack. The computer is preferably one that is part of a stack or rack of computers/servers, where shock damage caused to one may result in the mal-function or destruction of the rest of the rack, cabinet or stack of computers.
According to a further aspect of the invention there is provided a rack, stack or cabinet electronic system comprising a plurality of servers and or computers, as defined herein, each with a reinforcement spine as defined herein.
BRIEF DESCRIPTION OF THE FIGURES
Embodiments of the invention will now be described by way of example only with reference to the figures, in which:
Figure 1 shows prior art computer;
Figure 2 shows a reinforcement spine according to the invention;
Figure 3 shows and expanded view of the reinforcement spine in a ruggedised computer;
Figure 4 shows a further reinforcement spine clamping the heat sink; and Figure 5 shows a server rack being separated by reinforcement spines. DETAILED DESCRIPTION
Turning to figure 1 , there is shown a prior art computer 1 , with a chassis 2, housed inside the chassis is a power supply 4 in the form of a transformer, which receives power externally via the socket 5. The chassis further comprises a mother board 8, with a processor which is cooled by a heat sink 7, which is located thereupon. Further cooling is provided by fans 6, to increase airflow around the electronic components. The computer has a storage in the form of hard drives 3.
Turning to figure 2 there is provided a reinforcement spine 10, with at least two sides 17, 17a which are capable in use of being attached to a computer chassis. The side 17 has a lower surface 16, and a further side 22, which all three together with the linkage 12 forms a rigid structure to provide reinforcement when attached to the chassis.
The side 17, has a lip 19, which extends at right angles therefrom to form a mounting area for the linkage 12, said linkage 12 is in the form of three tubular rods. The lip 19 also provides a mount for a further reinforcement spine 11 , which has at least two sides 18, 18a each of which further comprising a further lip 15. The further lip 15 providing a mounting point for the further linkage 14, in the form of a singular tubular rod.
Reinforcement plates 20 and 21 act as extensions from the electronic enclosure which attach to the linkage 12, to retain, in this case, PSUs during a shock event. Especially where the load path of the shock is acting horizontally.
Turning to figure 3, there is provided a ruggedised computer 30, with a chassis 32, which houses a plurality of hardware components, such as hard drives 33, processors 31 , and power supply transformer 40. One of the walls 35, of the at least two side walls 35, 35a and base layer 41 are sized to fit in the cavity 34, adjacent to the power supply transformer 40. The side wall 35 may then be screwed or otherwise affixed to the chassis 32. The at least two walls 35, 35a and their associated base layers 41 are formed into a rigid structure by the linkage 39, to form the reinforcement spine 42. The heat sink 37 which is a heavy bulky metal plate designed to conduct heat away from the processors 31 , is retained in place by being clamped between the linkage 39 and the further linkage 38 of the further reinforcement spine 36. In the event of a rapid deceleration or shock event, the heat sink 37 may not be retained by small screws and would damage the processors 31 or be ejected at great velocity and may cause mal-function and/or catastrophic system damage to adjacent computers(see fig 5). The reinforcement spine 42 and further reinforcement spine 36 prevent the movement of the heat sink 37, the power supply 40 and provide further rigidity to the chassis 32.
Turning to figure 4 there is provided a ruggedised computer 50, with the reinforcement spine 59 being secured to the chassis 52, the further reinforcement spine 56 being fastened to the reinforcement spine 59, the two spines clamping the heat sink 57 and transformer 54 to prevent their movement.
Turning to figure 5, there is provided a stack of servers 60, wherein the chassis 62 of each server is separated and connected by an external reinforcement spine 68, to provide yet further rigidity to the stack of servers. Reinforcement plates 65, 66 (as shown in Fig 2), are a locking feature using vertical locking pins 64 to support PSUs during a shock event where the shock load path is acting on the horizontal plane. The upper plate 65 is rigidly connected to one of the tubular linkages (Fig 2, item 12). The lower plate 66 can be secured directly to the outside surface of the chassis 60 also increasing the chassis’ rigidity.

Claims

1 . A ruggedised electronic enclosure, comprising a chassis and at least one hardware component, further comprising a reinforcement spine connected to the chassis and the at least one hardware component, to prevent movement of said component during a shock-loading event.
2. An enclosure, according to claim 1 , wherein the at least one hardware component, comprises an electronic component.
3. An enclosure according to claim 2, wherein the electronic component is selected from at least one of a processor, network cards, memory, harddrive, storage, PCB, PSU, heat sink, and power supply.
4. An enclosure according to claim 3, wherein the hard drive and power supply are affixed to the both the chassis and the reinforcement spine.
5. An enclosure according to any one of the preceding claims, wherein the reinforcement spine is a retrofit insert, which is affixed to the chassis.
6. An enclosure according to any one of the preceding claims wherein the reinforcement spine comprises at least two sides which are fixedly engaged with the chassis.
7. An enclosure according to claim 6, wherein the at least two side walls extend over to form a mounting lip on the upper surface.
8. An enclosure according to claim 6 or 7, wherein the at least two sides are operably fastened by a linkage, which provides rigidity to the at least two sides, and or mounting lips.
9. An enclosure according to claim 8, wherein the linkage is a tubular rod, bar, slotted panel to allow airflow through the electronic components.
10. An enclosure according any one of the preceding claims, wherein there is a connection element which is mounted on the reinforcement spine, to retain the at least one hardware component.
11. An enclosure according any one of the preceding claims, wherein there is a further reinforcement spine mounted on top of the reinforcement spine.
12. An enclosure according to any one of the preceding claims, wherein the electronic enclosure comprises a spall liner.
13. An enclosure according to any one of the preceding claims, wherein the electronic enclosure is at least one server or computer.
14. A rack, stack or cabinet electronic system comprising a plurality of computers or servers according to claim 13.
15. A system according to claim 14, wherein located between each computer is located a reinforcement spine to prevent the separation of each of said computers.
PCT/GB2023/052350 2022-09-14 2023-09-12 Ruggedisation apparatus WO2024057003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2213430.8 2022-09-14
GB2213430.8A GB2622384A (en) 2022-09-14 2022-09-14 Ruggedisation apparatus

Publications (1)

Publication Number Publication Date
WO2024057003A1 true WO2024057003A1 (en) 2024-03-21

Family

ID=83945089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2023/052350 WO2024057003A1 (en) 2022-09-14 2023-09-12 Ruggedisation apparatus

Country Status (2)

Country Link
GB (1) GB2622384A (en)
WO (1) WO2024057003A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282114A (en) * 1991-11-05 1994-01-25 Codar Technology Inc. Ruggedized computer assembly providing accessibility and adaptability to, and effective cooling of, electronic components
EP0910937A1 (en) * 1996-07-12 1999-04-28 Nortel Networks Corporation Equipment rack

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528462B1 (en) * 1999-06-11 2005-11-15 삼성전자주식회사 Computer with a strut for supporting electronic devices
JP2007193410A (en) * 2006-01-17 2007-08-02 Ricoh Co Ltd Information processor
US20080174960A1 (en) * 2007-01-22 2008-07-24 Themis Computer Clamshell enclosure for electronic circuit assemblies
CN103092282A (en) * 2011-10-27 2013-05-08 鸿富锦精密工业(武汉)有限公司 Expansion card fixing device
FR3056373B1 (en) * 2016-09-19 2018-10-19 Ldlc.Com EQUIPMENT FOR MAINTAINING A COMPONENT INSIDE A COMPUTER HOUSING

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282114A (en) * 1991-11-05 1994-01-25 Codar Technology Inc. Ruggedized computer assembly providing accessibility and adaptability to, and effective cooling of, electronic components
EP0910937A1 (en) * 1996-07-12 1999-04-28 Nortel Networks Corporation Equipment rack

Also Published As

Publication number Publication date
GB202213430D0 (en) 2022-10-26
GB2622384A (en) 2024-03-20

Similar Documents

Publication Publication Date Title
US5309315A (en) Severe environment enclosure with thermal heat sink and EMI protection
CA2858200C (en) Partial-width rack-mounted computing devices
US10237998B2 (en) System with movable computing devices
US8730671B2 (en) Side-exhaust cooling system with extensible duct for rack mounted equipment
US8897017B2 (en) Serviceable hard disk drive trays for a server rack
US8755192B1 (en) Rack-mounted computer system with shock-absorbing chassis
CN107239115B (en) Rack-mounted modular computing unit
US7286345B2 (en) Rack-mounted air deflector
US7606044B2 (en) Multi-purpose structural support I/O member for a server
US20080037209A1 (en) Computer chassis for two motherboards oriented one above the other
US20030227757A1 (en) Electronics assembly
US20120019115A1 (en) Mobile universal hardware platform
US20160037687A1 (en) Airfoil to provide directed cooling
US20120120578A1 (en) Rail Including a Shelf for Supporting an Information Handling System
US20100315788A1 (en) Side-exhaust cooling system for rack mounted equipment
CN101222827A (en) Machine cabinet
CN204143324U (en) Server with detachable panel module and detachable module structure
US9992900B2 (en) Electronic equipment divider assembly
US9615480B2 (en) Storage device assembly
WO2024057003A1 (en) Ruggedisation apparatus
US8724329B2 (en) Casing structure and server using the same
US20090140617A1 (en) Load Balancing Robust Computer Frame
JP2011040608A (en) Rack plate for storing electronic device, storage rack including rack plate for storing electronic device, and electronic device stored on rack plate for storing electronic device
US20030227752A1 (en) Electronics assembly
CN217606554U (en) Hard disk module and server

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23776089

Country of ref document: EP

Kind code of ref document: A1