WO2024055993A1 - Cqi传输方法、装置、终端及网络侧设备 - Google Patents

Cqi传输方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2024055993A1
WO2024055993A1 PCT/CN2023/118570 CN2023118570W WO2024055993A1 WO 2024055993 A1 WO2024055993 A1 WO 2024055993A1 CN 2023118570 W CN2023118570 W CN 2023118570W WO 2024055993 A1 WO2024055993 A1 WO 2024055993A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal
cqi
channel information
target
Prior art date
Application number
PCT/CN2023/118570
Other languages
English (en)
French (fr)
Inventor
任千尧
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024055993A1 publication Critical patent/WO2024055993A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a CQI transmission method, device, terminal and network side equipment.
  • the transmitter can optimize signal transmission based on channel state information (CSI) to better match the channel state. For example: the transmitter can select an appropriate modulation and coding scheme (MCS) according to the channel quality indicator (CQI) in CSI to implement link adaptation; according to the precoding matrix indicator (precoding matrix) in CSI indicator (PMI), which can implement eigen beamforming (eigen beamforming) to maximize the strength of the received signal, or to suppress interference, such as inter-cell interference, interference between multiple users, etc. Therefore, since multi-antenna technology (multi-input multi-output, MIMO) was proposed, how to obtain CSI has been a hot research topic.
  • MCS modulation and coding scheme
  • the CSI feedback scheme based on the Artificial Intelligence (AI) model is: the terminal inputs the channel information into the encoding network to obtain the encoding result, and transmits the encoding result to the base station; after the base station receives the encoding result, it Input it into the decoding network to obtain the restored channel information.
  • AI Artificial Intelligence
  • terminals usually only store compression models but not decompression models, or the decompression model of the terminal is different from that of the base station.
  • the terminal cannot obtain the channel information recovered by the base station and can only use the channel information before compression encoding to determine the CQI. , and transmits the CQI to the base station, which will cause a mismatch between the CQI received by the base station and the recovered channel information.
  • Embodiments of the present application provide a CQI transmission method, device, terminal and network side equipment, which can solve the problem of how the terminal transmits CQI that matches the channel information restored by the base station.
  • a CQI transmission method which method includes:
  • the terminal determines the target CQI corresponding to the second channel information based on the first channel information and the target message;
  • the terminal sends the target CQI to the first network side device
  • the target message is used to assist the terminal in determining the target CQI;
  • the second channel information is information obtained after the first network side device inputs channel characteristic information into the second model;
  • the channel characteristics The information is information obtained after the terminal inputs the first channel information into the first model.
  • a CQI transmission method which method includes:
  • the first network side device receives the target CQI corresponding to the second channel information sent by the terminal;
  • the second channel information is the information obtained after the first network side device inputs the channel characteristic information into the second model;
  • the channel characteristic information is the information obtained after the terminal inputs the first channel information into the first model. information obtained.
  • a CQI transmission device which device includes:
  • a determination module configured to determine the target CQI corresponding to the second channel information based on the first channel information and the target message
  • a first sending module configured to send the target CQI to the first network side device
  • the target message is used to assist the terminal in determining the target CQI;
  • the second channel information is the information obtained after the first network side device inputs the channel characteristic information into the second model;
  • the channel characteristic information is Information obtained after the terminal inputs the first channel information into the first model.
  • a CQI transmission device which includes:
  • the first receiving module is configured to receive the target CQI corresponding to the second channel information sent by the terminal;
  • the second channel information is the information obtained after the first network side device inputs the channel characteristic information into the second model; the said channel characteristic information is the information obtained after the terminal inputs the first channel information into the first model. information.
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface; wherein the processor is used to determine the target CQI corresponding to the second channel information based on the first channel information and the target message, and the communication interface is used to provide The first network side device sends the target CQI;
  • the target message is used to assist the terminal in determining the target CQI;
  • the second channel information is the information obtained after the first network side device inputs the channel characteristic information into the second model;
  • the channel characteristic information is Information obtained after the terminal inputs the first channel information into the first model.
  • a network side device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface; wherein the communication interface is used to receive the target CQI corresponding to the second channel information sent by the terminal; wherein the second channel information is the first A network-side device inputs channel characteristic information into the second model.
  • the channel characteristic information is information obtained after the terminal inputs the first channel information into the first model.
  • a ninth aspect provides a CQI transmission system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the method described in the first aspect.
  • the network side device can be used to perform the steps of the method described in the second aspect. steps of the method described.
  • a readable storage medium In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement a method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the terminal determines the target CQI corresponding to the second channel information based on the first channel information and the target message. This enables the terminal to determine the target CQI when it is unable to obtain the second channel information restored by the first network side device.
  • the target CQI corresponding to the second channel information is then sent to the first network side device to ensure that the reported target CQI matches the second channel information, thereby reducing scheduling errors.
  • Figure 1 is a schematic diagram of a wireless communication system applicable to the embodiment of the present application.
  • FIG. 2 is one of the flow diagrams of the CQI transmission method provided by the embodiment of the present application.
  • FIG. 3 is the second schematic flow chart of the CQI transmission method provided by the embodiment of the present application.
  • FIG. 4 is one of the structural schematic diagrams of the CQI transmission device provided by the embodiment of the present application.
  • Figure 5 is a second structural schematic diagram of a CQI transmission device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a network-side device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 is a schematic diagram of a wireless communication system applicable to the embodiment of the present application.
  • the wireless communication system shown in Figure 1 includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PC personal computers
  • teller machines or self-service Terminal devices such as mobile phones
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), Smart wristbands, smart clothing, etc. It should be noted that the embodiment of the present application does not limit the specific type of the terminal 11.
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or wireless access network unit.
  • Access network equipment can include base stations, WLAN access points or WiFi nodes, etc.
  • the base station can be called Node B, Evolved Node B (eNB), access point, Base Transceiver Station (BTS), radio base station , radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home B-Node, Home Evolved B-Node, Transmitting Receiving Point (TRP) or the above
  • eNB Evolved Node B
  • BTS Base Transceiver Station
  • ESS Extended Service Set
  • TRP Transmitting Receiving Point
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Services Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data warehousing (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application
  • MME Mobility Management Entity
  • AMF Access Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF
  • the base station sends a CSI Reference Signal (CSI-RS) on certain time-frequency resources in a certain slot.
  • the terminal performs channel estimation based on the CSI-RS, calculates the channel information on this slot, and converts the PMI into the codebook.
  • Feedback to the base station the base station combines the channel information based on the codebook information fed back by the terminal, and the base station uses this to perform data precoding and multi-user scheduling before the next CSI report.
  • the terminal projects the precoding matrix on the selected orthogonal basis and reports the stronger coefficients to the base station.
  • the terminal can calculate the precoding moment restored by the base station based on the reported content. matrix, use the restored precoding matrix to calculate the signal-to-noise ratio to obtain the CQI, so that the CQI corresponds to the reported precoding matrix.
  • the terminal can change the PMI reported on each subband to report PMI based on delay. Since the channels in the delay domain are more concentrated, PMI with fewer delays can approximately represent the PMI of all subbands. That is, the delay field information will be compressed before reporting.
  • the base station can precode the CSI-RS in advance and send the coded CSI-RS to the terminal. What the terminal sees is the channel corresponding to the coded CSI-RS. The terminal only needs to Just select several ports with greater strength among the indicated ports and report the coefficients corresponding to these ports.
  • neural network or machine learning methods can be used.
  • AI modules such as neural networks, decision trees, support vector machines, Bayesian classifiers, etc. This application takes neural network as an example for explanation, but does not limit the specific type of AI module.
  • the process of compressing and restoring CSI based on the AI model is: the terminal estimates the CSI-RS, calculates the channel information, passes the calculated channel information or the original estimated channel information through the coding network to obtain the coding result, and sends the coding result to the base station.
  • the base station The encoded result is received and input into the decoding network to restore the channel information.
  • the CSI compression feedback scheme based on neural network is: using the encoding network to compress and encode the channel information at the terminal, sending the compressed content to the base station, and using the decoding network at the base station to process the compressed content. Decoding to restore channel information.
  • the decoding network of the base station and the encoding network of the terminal need to be jointly trained to achieve a reasonable matching degree.
  • the input of the encoding model is channel information, and the output is encoding information.
  • the input of the decoding model is encoding information, and the output is channel information.
  • the encoding network and decoding network can be trained in the following three ways:
  • the neural network is a joint neural network formed by the encoder of the terminal and the decoder of the base station, and is jointly trained by the network side. After the training is completed, the base station sends the encoder network to the terminal.
  • Method 2 The terminal and the base station each train their own encoding network and decoding network, and perform matching through the matching process, so that the encoding network of the terminal and the decoding network of the base station match each other.
  • Method 3 The terminal trains the encoding model and the decoding model.
  • the base station trains the decoding model based on the original data and the encoding results of the terminal. At this time, the base station does not need to train the encoding model.
  • the terminal does not know the base station.
  • Decoding model that is, the terminal cannot calculate the channel information restored by the base station, and can only use the channel information before compression and encoding to determine the CQI and transmit the CQI to the base station. This will cause the CQI received by the base station to not match the restored channel information, that is, CQI Obviously on the high side.
  • the terminal determines the target CQI corresponding to the second channel information based on the first channel information and the target message. This enables the terminal to determine the target CQI when it is unable to obtain the second channel information restored by the first network side device.
  • the target CQI corresponding to the second channel information is then sent to the first network side device to ensure that the reported target CQI matches the second channel information, thereby reducing scheduling errors.
  • FIG 2 is one of the flow diagrams of the CQI transmission method provided by the embodiment of the present application. As shown in Figure 2, the method includes steps 201-202.
  • Step 201 The terminal determines the target CQI corresponding to the second channel information based on the first channel information and the target message.
  • the target message is used to assist the terminal in determining the target CQI;
  • the second channel information is information obtained after the first network side device inputs channel characteristic information into the second model;
  • the channel characteristics The information is information obtained after the terminal inputs the first channel information into the first model.
  • the terminal includes but is not limited to the types of terminal 11 listed above, and this application is not limited thereto; the first network side device includes but is not limited to the type of network side device 12 listed above, and this application does not limit this. Not limited.
  • the terminal cannot obtain the channel information (i.e., the second channel information) recovered by the first network side device (such as the base station), the terminal can only use the channel information before compression encoding (i.e., the first channel information).
  • Channel information determines the CQI and transmits the CQI to the base station. This will cause the CQI received by the base station to not match the restored channel information, that is, the CQI is obviously high.
  • the target message is used to assist the terminal in determining the target CQI when the second channel information cannot be obtained.
  • the second channel information is the information obtained after the first network side device inputs the channel characteristic information into the second model; the channel characteristic information is the information obtained after the terminal inputs the first channel information into the first model.
  • the first channel information includes: channel information estimated by the terminal; or a precoding matrix obtained by calculating the estimated channel information by the terminal.
  • the terminal In order to transmit the target CQI corresponding to the second channel information to the first network side device, in this embodiment of the present application, the terminal needs to perform channel estimation based on the CSI-RS sent by the first network side device to obtain the first channel information; after obtaining After the first channel information, the terminal can determine the target CQI corresponding to the second channel information based on the first channel information and the target message from the first network side device. That is to say, even if the terminal cannot obtain the second channel information, it can determine the target CQI corresponding to the second channel information based on the first channel information and the target message.
  • the target message includes at least one of the following:
  • First information used to assist the terminal in determining the SINR of the second channel information based on the SINR of the first channel information
  • Second information used to assist the terminal in determining a random matrix; the random matrix is used by the terminal to determine the target CQI based on the first channel information;
  • the target mapping relationship includes the corresponding relationship between SINR and CQI.
  • Step 202 The terminal sends the target CQI to the first network side device.
  • the terminal after determining the target CQI based on the first channel information and the target message, the terminal sends the target CQI to the first network side device.
  • the terminal determines the target CQI corresponding to the second channel information based on the first channel information and the target message, thereby realizing that the terminal can obtain the second channel information restored by the first network side device.
  • the target CQI corresponding to the second channel information is determined, and then the target CQI is sent to the first network side device to ensure that the reported target CQI matches the second channel information, which can reduce scheduling errors.
  • the first information includes at least one of the following:
  • the first information when the first channel information is a multi-rank precoding matrix, the first information corresponds to a layer of a multi-rank precoding matrix, and/or the first information corresponds to a multi-rank precoding matrix.
  • the rank correspondence of the precoding matrix of rank when the first channel information is a multi-rank precoding matrix, the first information corresponds to a layer of a multi-rank precoding matrix, and/or the first information corresponds to a multi-rank precoding matrix.
  • the terminal determines the target CQI corresponding to the second channel information based on the first channel information and the target message, which can be implemented in at least one of the following ways:
  • Method 1 Specifically includes the following steps [1]-step [2]:
  • Step [2] The terminal determines the target CQI based on the SINR of the second channel information.
  • Method 2 Specifically includes the following steps [1]-step [3]:
  • Step [3] The terminal determines the target CQI based on the SINR of the third channel information.
  • Method 3 When the target message includes the third information, the terminal determines the target CQI based on the CQI corresponding to the first channel information and the third information.
  • Method 4 When the target message includes the target model, after the terminal uses the target model to decode the channel characteristic information, the CQI corresponding to the decoded channel information is determined as the CQI. Target CQI.
  • Method 5 When the target message includes the fourth information, the terminal determines the CQI corresponding to the first channel information as the target CQI.
  • Method 6 When the target message includes the fifth information, the terminal determines the target CQI based on the target mapping relationship and the SINR of the first channel information.
  • Method 1 Specifically includes the following steps [1]-step [2]:
  • Step [2] The terminal determines the target CQI based on the SINR of the second channel information.
  • the terminal when the first information includes the signal-to-interference-noise ratio SINR fallback value, the terminal needs to determine the equivalent SINR of the second channel information based on the SINR and SINR fallback value of the first channel information; The target CQI is then determined based on the SINR of the second channel information.
  • the terminal needs to subtract the SINR backoff value to obtain the SINR of the second channel information.
  • the target CQI can be quantified by querying the CQI table. , wherein the CQI table contains the mapping relationship between the SINR of the second channel information and the target CQI.
  • the terminal calculates that the SINR of the first channel information is 10dB, and the SINR backoff value indicated by the base station is 2dB, then the terminal determines that the SINR of the second channel information is 8dB, and the actually reported target CQI is the CQI corresponding to the 8dB SINR.
  • the terminal needs to determine the SINR of the second channel information based on the SINR of the first channel information and the power ratio or amplitude ratio; and then determine the target CQI based on the SINR of the second channel information.
  • the terminal After the terminal calculates the SINR of the first channel information, it needs to multiply by the power ratio or amplitude ratio to obtain the SINR of the second channel information; based on the SINR of the second channel information, the target can be quantified by querying the CQI table CQI.
  • the terminal calculates that the SINR of the first channel information is 20dB, the corresponding linear value is 100, and the power ratio indicated by the base station is 0.8, then the terminal determines that the SINR of the second channel information is 80, that is, 19dB; or, the amplitude ratio indicated by the base station is 0.9, then the terminal determines that the SINR of the second channel information is 81, which is also about 19dB; then the target CQI actually reported by the terminal is the CQI corresponding to the 19db SINR.
  • the power factor or amplitude factor of each layer of the precoding matrix can be different, depending on the recovery effect of each layer of the AI model.
  • the base station can be instructed by layer; the adjustments for different ranks can therefore be different, for example, rank1 uses 0.9 and rank2 uses 0.8.
  • the terminal when the target message includes the first information, based on the SINR of the first channel information and the first information, the terminal can determine the information related to the second channel information even when the second channel information cannot be obtained.
  • the target CQI corresponding to the second channel information when the target message includes the first information, based on the SINR of the first channel information and the first information, the terminal can determine the information related to the second channel information even when the second channel information cannot be obtained.
  • Method 2 Specifically includes the following steps [1]-step [3]:
  • Step [3] The terminal determines the target CQI based on the SINR of the third channel information.
  • the second information includes at least one of the following:
  • the similarity can be cosine similarity, normalized mean squared error (NMSE), any other metric that describes the relationship between two matrices, or a level indicating the degree of similarity; this application uses similarity
  • NMSE normalized mean squared error
  • the description method is not specifically limited.
  • the terminal when the second information includes a power ratio or an amplitude ratio, the terminal needs to determine a random matrix based on the power ratio or amplitude ratio; and then determine the third channel based on the random matrix and the SINR of the first channel information. information, and finally based on the SINR of the third channel information, according to the corresponding modulation method, code rate and spectral efficiency, look up the table to obtain the target CQI corresponding to the SINR.
  • the terminal needs to generate a random matrix based on the power ratio or amplitude ratio, and obtain the third channel information equivalent to the second channel information based on the SINR of the first channel information and the random matrix. Based on the SINR of the third channel information, Determine the target CQI.
  • the terminal needs to determine the random matrix based on the random perturbation value or the similarity between the first channel information and the second channel information, and then Based on the random matrix and the first channel information, the third channel information is determined, and finally based on the SINR of the third channel information, the target CQI is determined.
  • the terminal needs to generate a random matrix to act on the first channel information based on the random disturbance value or the similarity between the first channel information and the second channel information to obtain the third channel information that is equivalent to the second channel information (for example Such as equivalent channel matrix or precoding matrix), and then use this equivalent third channel information to calculate the corresponding SINR and quantize it into the target CQI.
  • the third channel information that is equivalent to the second channel information (for example Such as equivalent channel matrix or precoding matrix)
  • the first channel information is a precoding matrix.
  • the base station indicates that the similarity between the first channel information and the second channel information is 0.9.
  • the terminal randomly generates a dimension that is the same as the precoding matrix, subject to a mean value of 0 and a variance (that is, a random disturbance value ) is a complex Gaussian random matrix of 0.1, which is added to the original first channel information (i.e., precoding matrix) and then normalized to obtain the equivalent precoding matrix (i.e., third channel information), and the corresponding SINR is calculated.
  • the target CQI is determined.
  • the terminal determines a third channel information based on the correlation indicated by the base station and the first channel information, and then calculates the SINR of the third channel information.
  • the random perturbation value or similarity of each layer of the precoding matrix can be different, and the recovery of each layer according to the AI model The effect is determined.
  • the base station can be instructed by layer; the adjustments for different ranks can therefore be different. For example, rank1 uses 0.9 and rank2 uses 0.8.
  • the terminal when the target message includes the second information, the terminal determines the random matrix based on the second information; determines the third channel information based on the random matrix and the first channel information, and finally determines the SINR based on the third channel information , determining the target CQI enables the terminal to determine the target CQI corresponding to the second channel information even when the terminal cannot obtain the second channel information.
  • Method 3 When the target message includes the third information, the terminal determines the target CQI based on the CQI corresponding to the first channel information and the third information.
  • the third information is used to assist the terminal in determining the target CQI based on the CQI corresponding to the first channel information.
  • the third information includes: a CQI backoff value or a CQI compensation value, where the CQI compensation value may be a positive number or a negative number.
  • the terminal needs to calculate the SINR of the first channel information and query the CQI table to obtain the CQI of the first channel information; and then use the third
  • the target CQI can be determined by adding the CQI of a channel information to the CQI compensation value.
  • the terminal needs to calculate the SINR of the first channel information and query the CQI table to obtain the CQI of the first channel information; and then use The target CQI can be determined by subtracting the CQI backoff value from the CQI of the first channel information.
  • the terminal After the terminal calculates the SINR of the first channel information, it queries the CQI table and obtains that the CQI of the first channel information is 23, and the CQI fallback value indicated by the base station is 3, then the target CQI reported by the terminal is 20.
  • the terminal when the target message includes the third information, the terminal can determine the information related to the second channel information based on the CQI and the third information corresponding to the first channel information even if the terminal cannot obtain the second channel information.
  • Method 4 When the target message includes the target model, after the terminal uses the target model to decode the channel characteristic information, the CQI corresponding to the decoded channel information is determined as the CQI. Target CQI.
  • the target model is a public decoding network.
  • the public decoding network may be instructed by the first network side device, may be agreed upon by a protocol, or may be trained by the terminal itself.
  • the terminal uses this public decoding network to decode the channel characteristic information, obtains the decoded channel information, and determines the CQI corresponding to the SINR of the channel information as the target CQI.
  • Method 5 When the target message includes the fourth information, the terminal determines the CQI corresponding to the first channel information as the target CQI.
  • the fourth information is used to instruct the terminal to determine the CQI corresponding to the first channel information as the target CQI.
  • the base station sends fourth information to the terminal, instructing the terminal to use the first channel information before compression encoding to calculate the CQI, and determine the CQI corresponding to the first channel information as the target CQI, that is, no compensation is performed.
  • Method 6 When the target message includes the fifth information, the terminal determines the target CQI based on the target mapping relationship and the SINR of the first channel information.
  • the fifth information is used to instruct the terminal to determine the target CQI based on the target mapping relationship; where the target mapping relationship includes the corresponding relationship between SINR and CQI, and the target mapping relationship may be a fixed mapping relationship agreed upon in the protocol.
  • the base station instructs the terminal to use a new CQI table (ie, target mapping relationship) to perform a CQI table lookup, and perform compensation through the table to determine the target CQI.
  • a new CQI table ie, target mapping relationship
  • the target mapping relationship refers to the relationship between CQI and modulation mode, code rate and spectral efficiency.
  • the terminal calculates the corresponding spectral efficiency through SINR and selects the corresponding one under the condition of satisfying the Block Error Ratio (BLER). CQI.
  • the target message corresponds to the user; and/or the target message corresponds to the second model.
  • the target message indicated by the first network side device (such as the base station) to each user may be independent, that is, the target message corresponds to the user;
  • the base station uses a common decoder as the second model, the same target message can be indicated to each user, that is, the target message corresponds to the second model.
  • the terminal obtains the target message in a manner that includes at least one of the following:
  • Method 1 The terminal receives the target message sent by the first network side device or the second network side device.
  • the first network side device can transmit the corresponding relationship between the target message (for example, CQI backoff value) and the second model ID through the broadcast channel, and the terminal determines the CQI backoff value according to the corresponding second model.
  • the target message for example, CQI backoff value
  • the terminal determines the CQI backoff value according to the corresponding second model.
  • the second network side device includes at least one of the following:
  • the second network side device can directly send the target message to the terminal; or the second network side device can send the target message to the terminal through the first network side device.
  • Method 2 The terminal obtains the target message based on the protocol agreement.
  • Method 3 The terminal receives the target message sent by the communication device via the sidelink.
  • the terminal receives the target message sent by the first network side device or the second network side device, which can be implemented in the following manner, specifically including steps 1 to 2:
  • Step 1 The terminal receives the correspondence between the target message and the second model and the identifier of the second model sent by the first network side device or the second network side device;
  • Step 2 The terminal obtains the target message based on the corresponding relationship between the target message and the second model and the identifier of the second model.
  • the first network side device or the second network side device sends the corresponding relationship between the target message and the second model and the identification of the second model to each terminal.
  • Each terminal is based on the corresponding relationship between the target message and the second model.
  • the target message can be obtained by identifying the relationship and the second model.
  • the target message is carried in at least one of the following:
  • the target message is configured in the CSI report configuration (CSI-reportConfig). All subsequent CSI reports, as long as they are CSI reports based on the AI model, use the method corresponding to the target message to determine the target.
  • CQI CSI report configuration
  • the target message can be configured in each CSI-reportConfig, or DCI or MACCE can be used to directly indicate the target message to the terminal.
  • the target message is directly configured through RRC signaling. Regardless of periodic, semi-persistent, or aperiodic CSI, as long as the terminal reports the channel characteristic information (such as PMI) compressed by the first model, the terminal uses the method corresponding to the target message to determine Target CQI.
  • the terminal after the terminal sends the target CQI to the first network side device, the first network side device also needs to update the target message. Therefore, the terminal also needs to perform at least one of the following steps:
  • the terminal sends the first channel information and/or CSI identification to the first network side device or the second network side device based on a network indication.
  • the terminal sends the first channel information to the first network side device or the second network side device based on a network indication.
  • the terminal sends the first channel information and the CSI identifier to the first network side device or the second network side device based on a network indication.
  • the CSI identification may include a CSI report ID (CSI report ID) or a CSI reference signal resource ID (CSI-RS resource ID).
  • CSI report ID CSI report ID
  • CSI-RS resource ID CSI reference signal resource ID
  • the terminal can use the first channel information and/or the CSI identifier as uplink control information (UCI) through the physical uplink shared channel (Physical uplink shared channel, PUSCH) or the physical uplink control channel ( Physical Uplink Control Channel, PUCCH) reporting, can also be uploaded as data through PUSCH.
  • UCI uplink control information
  • PUSCH Physical uplink shared channel
  • PUCCH Physical Uplink Control Channel
  • the terminal sends the first channel information and/or the channel characteristic information to the first network side device or the second network side device based on a network indication.
  • the terminal may report the first channel information and/or channel characteristic information as UCI through PUSCH or PUCCH, or may upload it as data through PUSCH.
  • the terminal may also carry the first channel information when reporting channel state information CSI to the first network side device based on network instructions.
  • the first network side device can be triggered by DCI or MACCE or RRC to instruct the terminal to carry the first channel information when reporting CSI at a certain time or at certain times;
  • the first network side device can also configure the terminal to carry the first channel information at a fixed period.
  • This configuration can be in CSI-reportConfig or independent RRC signaling.
  • FIG. 3 is a second schematic flowchart of the CQI transmission method provided by the embodiment of the present application. As shown in Figure 3, the method includes step 301; wherein:
  • Step 301 The first network side device receives the target CQI corresponding to the second channel information sent by the terminal;
  • the second channel information is the information obtained after the first network side device inputs the channel characteristic information into the second model;
  • the channel characteristic information is the information obtained after the terminal inputs the first channel information into the first model. information obtained.
  • the terminal includes but is not limited to the types of terminal 11 listed above, and this application is not limited thereto; the first network side device includes but is not limited to the type of network side device 12 listed above, and this application does not limit this. Not limited.
  • the terminal Since during the process of transmitting CQI based on the AI model, the terminal cannot obtain the channel information (i.e., the second channel information) recovered by the first network side device (such as the base station), so the terminal can only use the channel information before compression encoding. (i.e., the first channel information) determines the CQI and transmits the CQI to the base station. This will cause the CQI received by the base station to not match the restored channel information, that is, the CQI is obviously high.
  • the channel information i.e., the second channel information
  • the first network side device such as the base station
  • the second channel information is the information obtained after the first network side device inputs the channel characteristic information into the second model; the channel characteristic information is the information obtained after the terminal inputs the first channel information into the first model.
  • the first channel information includes: channel information estimated by the terminal; or a precoding matrix obtained by calculating the estimated channel information by the terminal.
  • the first network side device ensures that the target CQI reported by the terminal matches the second channel information by receiving the target CQI corresponding to the second channel information sent by the terminal, thereby reducing scheduling errors.
  • the first network side device before the first network side device receives the target CQI corresponding to the second channel information sent by the terminal, the first network side device also needs to send a target message to the terminal; the target message is used to assist the terminal in determining The target CQI.
  • the terminal can determine the target CQI corresponding to the second channel information based on the first channel information and the target message; and sends the target CQI to the first network side device.
  • the target message is carried in at least one of the following:
  • the target message includes at least one of the following:
  • First information used to assist the terminal in determining the SINR of the second channel information based on the SINR of the first channel information
  • Second information used to assist the terminal in determining a random matrix; the random matrix is used by the terminal to determine the target CQI based on the first channel information;
  • the target mapping relationship includes the corresponding relationship between SINR and CQI.
  • the first information includes at least one of the following:
  • the first information when the first channel information is a multi-rank precoding matrix, the first information corresponds to a layer of a multi-rank precoding matrix, and/or the first information corresponds to a multi-rank precoding matrix.
  • the rank correspondence of the precoding matrix of rank when the first channel information is a multi-rank precoding matrix, the first information corresponds to a layer of a multi-rank precoding matrix, and/or the first information corresponds to a multi-rank precoding matrix.
  • the second information includes at least one of the following:
  • the third information includes: CQI backoff value or CQI compensation value.
  • the target message corresponds to the user; and/or the target message corresponds to the second model.
  • the first network side device sends the target message to the terminal, which can be implemented in the following manner: the first network side device sends the target message and the third message to the terminal.
  • the first network side device sends the target message and the third message to the terminal.
  • the terminal after the terminal receives the corresponding relationship between the target message and the second model and the identifier of the second model sent by the first network side device, the terminal based on the corresponding relationship between the target message and the second model and the identifier of the second model, that is, Get the target message.
  • the first network side device after the first network side device receives the target CQI from the terminal, the first network side device also needs to update the target message, which can be implemented in any of the following ways:
  • Method 1 The first network side device receives the first channel information and/or the CSI identifier sent by the terminal; the first network side device based on the first channel information and/or the CSI identifier, Update the target message.
  • Method 2 The first network side device receives the first channel information and/or the channel characteristic information sent by the terminal; the first network side device based on the first channel information and/or the Channel characteristic information is used to update the target message.
  • the first network side device determines the updated target message based on the first channel information and the channel information recovered from the channel characteristic information, and corrects or reconfigures it through DCI, MACCE, and RRC. Either way, the updated target message is sent to the terminal.
  • the terminal may also carry the first channel information when reporting the channel state information CSI to the first network side device based on the network indication;
  • the first network side device may also receive channel state information CSI reported by the terminal; the CSI carries the first channel information.
  • the execution subject may be a CQI transmission device.
  • a CQI transmission device performing a CQI transmission method is used as an example to illustrate the CQI transmission device provided by the embodiment of the present application.
  • FIG. 4 is one of the schematic structural diagrams of a CQI transmission device provided by an embodiment of the present application. As shown in Figure 4, the CQI transmission device 400 includes:
  • the determination module 401 is used to determine the target CQI corresponding to the second channel information based on the first channel information and the target message;
  • the first sending module 402 is configured to send the target CQI to the first network side device
  • the target message is used to assist the terminal in determining the target CQI;
  • the second channel information is the information obtained after the first network side device inputs the channel characteristic information into the second model;
  • the channel characteristic information is Information obtained after the terminal inputs the first channel information into the first model.
  • the target CQI corresponding to the second channel information is determined based on the first channel information and the target message, so that the terminal can obtain the second channel information restored by the first network side device when it is unable to obtain it.
  • the target CQI corresponding to the second channel information is determined, and then the target CQI is sent to the first network side device to ensure that the reported target CQI matches the second channel information, which can reduce scheduling errors.
  • the target message includes at least one of the following:
  • First information used to assist the terminal in determining the SINR of the second channel information based on the SINR of the first channel information
  • the second information is used to assist the terminal in determining a random matrix; the random matrix is used by the terminal to determine the target CQI based on the first channel information;
  • third information used to assist the terminal in determining the target CQI based on the CQI corresponding to the first channel information
  • Fourth information used to instruct the terminal to determine the CQI corresponding to the first channel information as the target CQI
  • the fifth information is used to instruct the terminal to determine the target CQI based on the target mapping relationship; the target mapping relationship includes the corresponding relationship between SINR and CQI.
  • the first information includes at least one of the following:
  • the first information when the first channel information is a multi-rank precoding matrix, the first information corresponds to a layer of a multi-rank precoding matrix, and/or the first information corresponds to a multi-rank precoding matrix.
  • the rank correspondence of the precoding matrix of rank when the first channel information is a multi-rank precoding matrix, the first information corresponds to a layer of a multi-rank precoding matrix, and/or the first information corresponds to a multi-rank precoding matrix.
  • the determination module 401 is further used for any of the following:
  • the target message includes the first information
  • determining the SINR of the second channel information based on the SINR of the first channel information and the first information
  • the target CQI is determined based on the SINR of the second channel information.
  • the second information includes at least one of the following:
  • the determining module 401 is further used to:
  • the terminal determines the random matrix based on the second information
  • the terminal determines third channel information based on the random matrix and the first channel information
  • the terminal determines the target CQI based on the SINR of the third channel information.
  • the determination module 401 is further used for at least one of the following:
  • the target message includes the third information
  • the target message includes the target model
  • the target model after using the target model to decode the channel characteristic information, determine the CQI corresponding to the decoded channel information as the target CQI;
  • the target CQI is determined based on the target mapping relationship and the SINR of the first channel information.
  • the third information includes: CQI backoff value or CQI compensation value.
  • the target message corresponds to the user; and/or the target message corresponds to the second model.
  • the first channel information includes: channel information estimated by the terminal; or a precoding matrix obtained by calculating the estimated channel information by the terminal.
  • the device further includes at least one of the following:
  • a second receiving module configured to receive the target message sent by the first network side device or the second network side device
  • Obtaining module used to obtain the target message based on the protocol agreement
  • the third receiving module is configured for the terminal to receive the target message sent by the communication device via the sidelink.
  • the second receiving module is further used for:
  • the target message is obtained based on the corresponding relationship between the target message and the second model and the identification of the second model.
  • the second network side device includes at least one of the following:
  • Base station Base station; core network node; artificial intelligence AI model training node.
  • the target message is carried in at least one of the following:
  • the device further includes at least one of the following:
  • a second sending module configured to send the first channel information and/or CSI identifier to the first network side device or the second network side device based on a network indication
  • a third sending module configured to send the first channel information and/or the channel characteristic information to the first network side device or the second network side device based on a network indication.
  • the terminal carries the first channel information when reporting channel state information CSI to the first network side device based on a network instruction.
  • FIG. 5 is a second structural schematic diagram of a CQI transmission device provided by an embodiment of the present application. As shown in Figure 5, the CQI transmission device 500 includes:
  • the first receiving module 501 is configured to receive the target CQI corresponding to the second channel information sent by the terminal;
  • the second channel information is the information obtained after the first network side device inputs the channel characteristic information into the second model; the said channel characteristic information is the information obtained after the terminal inputs the first channel information into the first model. information.
  • the CQI transmission device by receiving the target CQI corresponding to the second channel information sent by the terminal, it is ensured that the target CQI reported by the terminal matches the second channel information, and the scheduling error can be reduced.
  • the device also includes:
  • the fourth sending module is configured to send a target message to the terminal; the target message is used to assist the terminal in determining the target CQI.
  • the target message is carried in at least one of the following:
  • the target message includes at least one of the following:
  • First information used to assist the terminal in determining the SINR of the second channel information based on the SINR of the first channel information
  • the second information is used to assist the terminal in determining a random matrix; the random matrix is used by the terminal to determine the target CQI based on the first channel information;
  • Third information used to assist the terminal in determining the target CQI based on the CQI corresponding to the first channel information
  • Fourth information used to instruct the terminal to determine the CQI corresponding to the first channel information as the target CQI
  • the fifth information is used to instruct the terminal to determine the target CQI based on the target mapping relationship; the target mapping relationship includes the corresponding relationship between SINR and CQI.
  • the first information includes at least one of the following:
  • the first information when the first channel information is a multi-rank precoding matrix, the first information corresponds to a layer of a multi-rank precoding matrix, and/or the first information corresponds to a multi-rank precoding matrix.
  • the rank correspondence of the precoding matrix of rank when the first channel information is a multi-rank precoding matrix, the first information corresponds to a layer of a multi-rank precoding matrix, and/or the first information corresponds to a multi-rank precoding matrix.
  • the second information includes at least one of the following:
  • the third information includes: CQI backoff value or CQI compensation value.
  • the target message corresponds to the user; and/or the target message corresponds to the second model.
  • the first channel information includes: channel information estimated by the terminal; or a precoding matrix obtained by calculating the estimated channel information by the terminal.
  • the fourth sending module is further used to:
  • the device also includes any of the following:
  • a fourth receiving module configured to receive the first channel information and/or CSI identification sent by the terminal
  • a first update module configured to update the target message based on the first channel information and/or the CSI identifier
  • a fifth receiving module configured to receive the first channel information and/or the channel characteristic information sent by the terminal
  • a second update module configured to update the target message based on the first channel information and/or the channel characteristic information.
  • the device also includes:
  • the sixth receiving module is configured to receive the channel state information CSI reported by the terminal; the CSI carries the first channel information.
  • the CQI transmission device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the CQI transmission device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figures 2 to 3, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 600 includes a processor 601 and a memory 602.
  • the memory 602 stores programs that can run on the processor 601. or instructions.
  • the communication device 600 is a terminal, when the program or instructions are executed by the processor 601, each step of the CQI transmission method embodiment in Figure 2 is implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device, when the program or instruction is executed by the processor 601, the various steps of the CQI transmission method embodiment in Figure 3 are implemented, and the same technical effect can be achieved. To avoid duplication, they will not be described again here. .
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the processor is configured to determine the target CQI corresponding to the second channel information based on the first channel information and the target message, wherein the target message is used to assist the
  • the terminal determines the target CQI;
  • the second channel information is the information obtained after the first network side device inputs the channel characteristic information into the second model;
  • the channel characteristic information is the terminal's input of the first channel Information obtained after inputting information into the first model;
  • the communication interface is used to send the target CQI to the first network side device.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • Figure 7 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, and a display unit. 706. At least some components of the user input unit 707, the interface unit 708, the memory 709, the processor 710, etc.
  • the terminal 700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 710 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in Figure 7 does not constitute a Limitation, the terminal may include more or less components than shown in the figure, or combine certain components, or arrange different components, which will not be described again here.
  • the input unit 704 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and at least one of other input devices 7072 .
  • Touch panel 7071 also called touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 701 after receiving downlink data from the network side device, can transmit it to the processor 710 for processing; in addition, the radio frequency unit 701 can send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 709 may include volatile memory or non-volatile memory, or memory 709 may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above-mentioned modem processor may not be integrated into the processor 710.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the communication interface is used to receive the target CQI corresponding to the second channel information sent by the terminal; wherein the second channel information is the first network
  • the side device inputs the channel characteristic information into the second model; the channel characteristic information is the information obtained after the terminal inputs the first channel information into the first model.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • FIG8 is a schematic diagram of the structure of a network side device provided in an embodiment of the present application.
  • the network side device 800 includes: an antenna 801, a radio frequency device 802, a baseband device 803, a processor 804, and a memory 805.
  • the antenna 801 is connected to the radio frequency device 802.
  • the radio frequency device 802 receives information through the antenna 801 and sends the received information to the baseband device 803 for processing.
  • the baseband device 803 processes the information to be sent and sends it to the radio frequency device 802.
  • the radio frequency device 802 processes the received information and sends it out through the antenna 801.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 803, which includes a baseband processor.
  • the baseband device 803 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 806, which is, for example, a common public radio interface (CPRI).
  • a network interface 806, which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 800 in this embodiment of the present invention also includes: instructions or programs stored in the memory 805 and executable on the processor 804.
  • the processor 804 calls the instructions or programs in the memory 805 to execute the CQI as described above.
  • the transmission method and achieve the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a CQI transmission system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the CQI transmission method as described above.
  • the network side device can be used to perform the CQI transmission method as described above. Steps of the transfer method.
  • Embodiments of the present application also provide a readable storage medium.
  • the readable storage medium may be volatile or non-volatile.
  • the readable storage medium stores a program or instructions. The program Or when the instruction is executed by the processor, each process of the above CQI transmission method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, the details will not be described here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned CQI transmission method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above CQI transmission method embodiment.
  • Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道质量指示CQI传输方法、装置、终端及网络侧设备,属于通信技术领域,本申请实施例的CQI传输方法包括:终端基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI;所述终端向第一网络侧设备发送所述目标CQI;其中,所述目标消息用于辅助所述终端确定所述目标CQI;所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将所述第一信道信息输入至第一模型后得到的信息。

Description

CQI传输方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请要求享有于2022年09月15日提交的名称为“CQI传输方法、装置、终端及网络侧设备”的中国专利申请202211125016.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于通信技术领域,具体涉及一种CQI传输方法、装置、终端及网络侧设备。
背景技术
对于多天线***,发送端可以根据信道状态信息(channel state information,CSI)优化信号的发送,使其更加匹配信道的状态。如:发送端根据CSI中的信道质量指示(channel quality indicator,CQI)可以选择合适的调制编码方案(modulation and coding scheme,MCS)实现链路自适应;根据CSI中的预编码矩阵指示(precoding matrix indicator,PMI),可以实现特征波束成形(eigen beamforming),从而最大化接收信号的强度,或者用来抑制干扰,例如小区间干扰、多用户之间干扰等。因此,自从多天线技术(multi-input multi-output,MIMO)被提出以来,如何获取CSI一直都是研究热点。
相关技术中,基于人工智能(Artificial Intelligence,AI)模型的CSI反馈方案为:终端将信道信息输入至编码网络后得到编码结果,将编码结果传输至基站;基站接收到编码结果后,将编码结果输入到解码网络中,得到恢复的信道信息。
然而,相关技术中终端通常只存储有压缩模型,而没有解压缩模型,或者终端的解压缩模型和基站的不同,终端无法获知基站恢复的信道信息,只能使用压缩编码前的信道信息确定CQI,并将CQI传输至基站,这会导致基站接收到的CQI和恢复的信道信息不匹配。
因此,终端如何传输与基站恢复的信道信息相匹配的CQI是亟待解决的问题。
发明内容
本申请实施例提供一种CQI传输方法、装置、终端及网络侧设备,能够解决终端如何传输与基站恢复的信道信息相匹配的CQI的问题。
第一方面,提供了一种CQI传输方法,该方法包括:
终端基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI;
所述终端向第一网络侧设备发送所述目标CQI;
其中,所述目标消息用于辅助所述终端确定所述目标CQI;所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将所述第一信道信息输入至第一模型后得到的信息。
第二方面,提供了一种CQI传输方法,该方法包括:
第一网络侧设备接收终端发送的第二信道信息对应的目标CQI;
其中,所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将第一信道信息输入至第一模型后得到的信息。
第三方面,提供了一种CQI传输装置,该装置包括:
确定模块,用于基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI;
第一发送模块,用于向第一网络侧设备发送所述目标CQI;
其中,所述目标消息用于辅助终端确定所述目标CQI;所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将所述第一信道信息输入至第一模型后得到的信息。
第四方面,提供了一种CQI传输装置,该装置包括:
第一接收模块,用于接收终端发送的第二信道信息对应的目标CQI;
其中,所述第二信道信息为第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将第一信道信息输入至第一模型后得到的信息。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口;其中,所述处理器用于基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI,所述通信接口用于向第一网络侧设备发送所述目标CQI;
其中,所述目标消息用于辅助终端确定所述目标CQI;所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将所述第一信道信息输入至第一模型后得到的信息。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口;其中,所述通信接口用于接收终端发送的第二信道信息对应的目标CQI;其中,所述第二信道信息为第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将第一信道信息输入至第一模型后得到的信息。
第九方面,提供了一种CQI传输***,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的方法的步骤,所述网络侧设备可用于执行如第二方面所述的方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
在本申请实施例中,终端基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI,实现了终端可以在无法获知第一网络侧设备恢复的第二信道信息的情况下,确定第二信道信息对应的目标CQI,进而将目标CQI发送至第一网络侧设备,保证上报的目标CQI与第二信道信息匹配,能够降低调度误差。
附图说明
图1是本申请实施例可应用的无线通信***的示意图;
图2是本申请实施例提供的CQI传输方法的流程示意图之一;
图3是本申请实施例提供的CQI传输方法的流程示意图之二;
图4是本申请实施例提供的CQI传输装置的结构示意图之一;
图5是本申请实施例提供的CQI传输装置的结构示意图之二;
图6是本申请实施例提供的通信设备的结构示意图;
图7是本申请实施例提供的终端的结构示意图;
图8是本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的通信***,如第6代(6th Generation,6G)通信***。
图1是本申请实施例可应用的无线通信***的示意图,图1示出的无线通信***包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。
网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)、位置管理功能(location manage function,LMF)、增强服务移动定位中心(Enhanced Serving Mobile Location Centre,E-SMLC)、网络数据分析功能(network data analytics function,NWDAF)等。需要说明的是,在本申请实施例中仅以NR***中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为了便于更加清晰地理解本申请各实施例,首先对一些相关的背景知识进行如下介绍。
通常,基站在某个slot的某些时频资源上发送CSI参考信号(CSI Reference Signal,CSI-RS),终端根据CSI-RS进行信道估计,计算这个slot上的信道信息,通过码本将PMI反馈给基站,基站根据终端反馈的码本信息组合出信道信息,在下一次CSI上报之前,基站以此进行数据预编码及多用户调度。
也就是说,传统的基于码本的CSI反馈,终端将预编码矩阵投影在选择的正交基上,将较强的系数上报给基站,终端可以根据上报的内容计算出基站恢复的预编码矩 阵,使用恢复后的预编码矩阵计算信噪比得到CQI,从而使CQI与上报的预编码矩阵对应。
为了进一步减少CSI反馈开销,终端可以将每个子带上报PMI改成按照延迟(delay)上报PMI,由于delay域的信道更集中,用更少的delay的PMI就可以近似表示全部子带的PMI,即将delay域信息压缩之后再上报。
同样,为了减少开销,基站可以事先对CSI-RS进行预编码,将编码后的CSI-RS发送至终端,终端看到的是经过编码之后的CSI-RS对应的信道,终端只需要在网络侧指示的端口中选择若干个强度较大的端口,并上报这些端口对应的系数即可。
进一步,为了更好的压缩信道信息,可以使用神经网络或机器学习的方法。
人工智能目前在各个领域获得了广泛的应用。AI模块有多种实现方式,例如神经网络、决策树、支持向量机、贝叶斯分类器等。本申请以神经网络为例进行说明,但是并不限定AI模块的具体类型。
基于AI模型对CSI进行压缩恢复的流程为:终端估计CSI-RS,计算信道信息,将计算的信道信息或者原始的估计到的信道信息通过编码网络得到编码结果,将编码结果发送给基站,基站接收编码后的结果,输入到解码网络中,恢复信道信息。
具体的,基于神经网络(即AI模型)的CSI压缩反馈方案是:在终端利用编码网络对信道信息进行压缩编码,将压缩后的内容发送给基站,在基站利用解码网络对压缩后的内容进行解码,从而恢复信道信息,此时基站的解码网络和终端的编码网络需要联合训练,达到合理的匹配度。编码模型的输入是信道信息,输出是编码信息,解码模型的输入是编码信息,输出是信道信息。其中,编码网络和解码网络可以通过以下三种方式训练得到:
方式一:神经网络是通过终端的编码器和基站的解码器组成联合的神经网络,由网络侧进行联合训练,训练完成之后,基站将编码器网络发送给终端。
方式二:终端和基站各自训练各自的编码网络和解码网络,通过匹配过程进行匹配,使得终端的编码网络和基站的解码网络相互匹配。
方式三:终端训练编码模型和解码模型,基站根据原始数据和终端的编码结果训练解码模型,此时基站不需要训练编码模型
然而,在基于AI模型传输CSI中CQI的过程中,无论是基站训练网络模型将编码部分发送给终端,还是终端和基站各自训练编码和解码部分,然后进行匹配,都可能出现终端不知道基站的解码模型,即终端无法计算基站恢复的信道信息,只能使用压缩编码前的信道信息确定CQI,并将CQI传输至基站,这会导致基站接收到的CQI和恢复的信道信息不匹配,即CQI明显偏高。
因此,终端如何传输与基站恢复的信道信息相匹配的CQI是亟待解决的问题。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的CQI传输方法进行详细地说明。
在本申请实施例中,终端基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI,实现了终端可以在无法获知第一网络侧设备恢复的第二信道信息的情况下,确定第二信道信息对应的目标CQI,进而将目标CQI发送至第一网络侧设备,保证上报的目标CQI与第二信道信息匹配,能够降低调度误差。
图2是本申请实施例提供的CQI传输方法的流程示意图之一,如图2所示,该方法包括步骤201-202。
步骤201、终端基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI。
其中,所述目标消息用于辅助所述终端确定所述目标CQI;所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将所述第一信道信息输入至第一模型后得到的信息。
需要说明的是,本申请实施例可应用于CQI传输的场景中。所述终端包括但不限于上述所列举的终端11的类型,本申请对此并不限定;所述第一网络侧设备包括但不限于上述所列举的网络侧设备12的类型,本申请对此并不限定。
由于在基于AI模型传输CQI的过程中,终端无法获得第一网络侧设备(例如基站)恢复的信道信息(即第二信道信息),因此终端只能使用压缩编码前的信道信息(即第一信道信息)确定CQI,并将CQI传输至基站,这会导致基站接收到的CQI和恢复的信道信息不匹配,即CQI明显偏高。所述目标消息用于辅助所述终端在无法获知所述第二信道信息的情况下确定所述目标CQI。
其中,第二信道信息为第一网络侧设备将信道特征信息输入至第二模型后得到的信息;信道特征信息为终端将第一信道信息输入至第一模型后得到的信息。
可选地,所述第一信道信息,包括:所述终端估计到的信道信息;或者,所述终端对于估计到的信道信息进行计算后得到的预编码矩阵。
为了向第一网络侧设备传输与第二信道信息对应的目标CQI,在本申请实施例中,终端需要基于第一网络侧设备发送的CSI-RS进行信道估计,得到第一信道信息;在得到第一信道信息之后,终端基于第一信道信息及来自第一网络侧设备的目标消息,可以确定出第二信道信息对应的目标CQI。也就是说,终端即使在无法获知第二信道信息的情况下,也能够根据第一信道信息及目标消息,确定出与第二信道信息相对应的目标CQI。
可选地,所述目标消息包括以下至少一项:
a)第一信息,用于辅助所述终端基于所述第一信道信息的SINR,确定所述第二信道信息的SINR;
b)第二信息,用于辅助所述终端确定随机矩阵;所述随机矩阵用于所述终端基于所述第一信道信息确定所述目标CQI;
c)第三信息,用于辅助所述终端基于所述第一信道信息对应的CQI,确定所述目标CQI;
d)目标模型;
e)第四信息,用于指示所述终端将所述第一信道信息对应的CQI,确定为所述目标CQI;
f)第五信息,用于指示所述终端基于目标映射关系确定所述目标CQI;所述目标映射关系包括SINR和CQI的对应关系。
步骤202、所述终端向第一网络侧设备发送所述目标CQI。
在本实施例中,终端在基于第一信道信息及目标消息,确定出目标CQI之后,便向第一网络侧设备发送目标CQI。
本申请实施例提供的CQI传输方法中,终端基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI,实现了终端可以在无法获知第一网络侧设备恢复的第二信道信息的情况下,确定第二信道信息对应的目标CQI,进而将目标CQI发送至第一网络侧设备,保证上报的目标CQI与第二信道信息匹配,能够降低调度误差。
可选地,所述第一信息包括以下至少一项:
a)信干噪比SINR回退值;
b)功率比例;
c)幅度比例。
可选地,在所述第一信道信息为多秩rank的预编码矩阵的情况下,所述第一信息与多rank的预编码矩阵的layer对应,和/或,所述第一信息与多rank的预编码矩阵的rank对应。
可选地,所述终端基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI,具体可以通过以下至少一种方式实现:
方式1、具体包括以下步骤[1]-步骤[2]:
步骤[1]、在所述目标消息包括所述第一信息的情况下,所述终端基于所述第一信道信息的SINR和所述第一信息,确定所述第二信道信息的SINR;
步骤[2]、所述终端基于所述第二信道信息的SINR确定所述目标CQI。
方式2、具体包括以下步骤[1]-步骤[3]:
步骤[1]、在所述目标消息包括所述第二信息的情况下,所述终端基于所述第二信息,确定所述随机矩阵;
步骤[2]、所述终端基于所述随机矩阵和所述第一信道信息,确定第三信道信息;
步骤[3]、所述终端基于所述第三信道信息的SINR,确定所述目标CQI。
方式3、在所述目标消息包括所述第三信息的情况下,所述终端基于所述第一信道信息对应的CQI和所述第三信息,确定所述目标CQI。
方式4、在所述目标消息包括所述目标模型的情况下,所述终端使用所述目标模型对所述信道特征信息进行解码后,将基于解码得到的信道信息对应的CQI,确定为所述目标CQI。
方式5、在所述目标消息包括所述第四信息的情况下,所述终端将所述第一信道信息对应的CQI,确定为所述目标CQI。
方式6、在所述目标消息包括所述第五信息的情况下,所述终端基于所述目标映射关系及所述第一信道信息的SINR,确定所述目标CQI。
这里,针对方式1-方式6分别进行说明:
方式1、具体包括以下步骤[1]-步骤[2]:
步骤[1]、在所述目标消息包括所述第一信息的情况下,所述终端基于所述第一信道信息的SINR和所述第一信息,确定所述第二信道信息的SINR;
步骤[2]、所述终端基于所述第二信道信息的SINR确定所述目标CQI。
在本申请实施例中,在第一信息包括信干噪比SINR回退值的情况下,终端需要基于第一信道信息的SINR和SINR回退值,确定等效的第二信道信息的SINR;然后基于第二信道信息的SINR确定目标CQI。
具体地,终端在计算出第一信道信息的SINR之后,需要减去SINR回退值,得到第二信道信息的SINR,基于第二信道信息的SINR,通过查询CQI表格,即可量化得到目标CQI,其中,CQI表格中有第二信道信息的SINR与目标CQI之间的映射关系。
例如:终端计算得到第一信道信息的SINR为10dB,基站指示的SINR回退值为2dB,则终端确定第二信道信息的SINR为8dB,实际上报的目标CQI是8dB SINR对应的CQI。
在第一信息包括功率比例或幅度比例的情况下,终端需要基于第一信道信息的SINR和功率比例或幅度比例,确定第二信道信息的SINR;然后基于第二信道信息的SINR确定目标CQI。
具体地,终端在计算出第一信道信息的SINR之后,需要乘以功率比例或幅度比例,得到第二信道信息的SINR;基于第二信道信息的SINR,通过查询CQI表格,即可量化得到目标CQI。
例如:终端计算得到第一信道信息的SINR为20dB,对应的线性值100,基站指示的功率比例为0.8,则终端确定第二信道信息的SINR为80,即19dB;或者,基站指示的幅度比例为0.9,则终端确定第二信道信息的SINR为81,也约为19dB;则终端实际上报的目标CQI是19db SINR对应的CQI。
需要说明的是,在第一信道信息为多秩rank的预编码矩阵的情况下,预编码矩阵每个层(layer)的功率因子或幅度因子可以不同,根据AI模型对每个layer的恢复效果确定,基站可以按layer指示;不同rank的调整因此可以不同,例如rank1使用0.9,rank2使用0.8。
在上述实施方式中,在目标消息包括第一信息的情况下,终端基于第一信道信息的SINR和第一信息,实现了即使在无法获知第二信道信息的情况下,也能够确定出与第二信道信息相对应的目标CQI。
方式2、具体包括以下步骤[1]-步骤[3]:
步骤[1]、在所述目标消息包括所述第二信息的情况下,所述终端基于所述第二信息,确定所述随机矩阵;
步骤[2]、所述终端基于所述随机矩阵和所述第一信道信息,确定第三信道信息;
步骤[3]、所述终端基于所述第三信道信息的SINR,确定所述目标CQI。
可选地,所述第二信息包括以下至少一项:
a)功率比例;
b)幅度比例;
c)随机扰动值;
d)所述第一信道信息和所述第二信道信息的相似度。
例如,相似度可以是余弦相似度、归一化均方误差(normalized mean squared error,NMSE)、其他任何描述两个矩阵关系的度量标准,或者是表示相似程度的一个等级;本申请对相似度的描述方法不作具体限定。
在本申请实施例中,在第二信息包括功率比例或幅度比例的情况下,终端需要基于功率比例或幅度比例,确定随机矩阵;然后基于随机矩阵和第一信道信息的SINR,确定第三信道信息,最后基于第三信道信息的SINR,根据对应的调制方式、码率及谱效率,查表获得SINR对应的目标CQI。
具体地,终端需要基于功率比例或幅度比例生成一个随机矩阵,并根据第一信道信息的SINR及随机矩阵,得到与第二信道信息等效的第三信道信息,基于第三信道信息的SINR,确定目标CQI。
在第二信息包括随机扰动值或第一信道信息和第二信道信息的相似度的情况下,终端需要基于随机扰动值或第一信道信息和第二信道信息的相似度,确定随机矩阵,然后基于随机矩阵和第一信道信息,确定第三信道信息,最后基于第三信道信息的SINR,确定目标CQI。
具体地,终端需要根据随机扰动值或第一信道信息和第二信道信息的相似度,生成一个随机矩阵作用于第一信道信息,得到与第二信道信息等效的第三信道信息(例 如等效的信道矩阵或预编码矩阵),然后使用这个等效的第三信道信息计算对应的SINR并量化为目标CQI。
例如,第一信道信息是预编码矩阵,基站指示第一信道信息和第二信道信息的相似度为0.9,终端随机生成一个维度与预编码矩阵相同,服从均值为0,方差(即随机扰动值)为0.1的复高斯随机矩阵,与原始的第一信道信息(即预编码矩阵)相加之后经过归一化得到等效的预编码矩阵(即第三信道信息),计算对应的SINR,最后基于第三信道信息的SINR,确定目标CQI。
需要说明的是,本申请对随机扰动的公式不做限定,可以是协议约定的,也可以是终端实现。本申请对随机矩阵的行为也不做限定,终端根据基站指示的相关性和第一信道信息确定一个第三信道信息,然后计算第三信道信息的SINR。
需要说明的是,在第二信道信息为多秩rank的预编码矩阵的情况下,预编码矩阵每个层(layer)的随机扰动值或相似度可以不同,根据AI模型对每个layer的恢复效果确定,基站可以按layer指示;不同rank的调整因此可以不同,例如rank1使用0.9,rank2使用0.8。
在上述实施方式中,在目标消息包括第二信息的情况下,终端基于第二信息,确定随机矩阵;基于随机矩阵和第一信道信息,确定第三信道信息,最后基于第三信道信息的SINR,确定目标CQI,实现了终端在无法获知第二信道信息的情况下,也能够确定出与第二信道信息相对应的目标CQI。
方式3、在所述目标消息包括所述第三信息的情况下,所述终端基于所述第一信道信息对应的CQI和所述第三信息,确定所述目标CQI。
在本申请实施例中,第三信息用于辅助终端基于第一信道信息对应的CQI,确定目标CQI。
可选地,所述第三信息包括:CQI回退值或CQI补偿值,其中,CQI补偿值可以为正数,也可以为负数。
具体地,在第一网络侧设备(例如基站)指示的目标消息包括CQI补偿值的情况下,终端需要计算第一信道信息的SINR,查询CQI表格可以得到第一信道信息的CQI;然后用第一信道信息的CQI加上CQI补偿值,即可确定目标CQI。
具体地,在第一网络侧设备(例如基站)指示的目标消息包括CQI回退值的情况下,终端需要计算第一信道信息的SINR,查询CQI表格可以得到第一信道信息的CQI;然后用第一信道信息的CQI减去CQI回退值,即可确定目标CQI。
例如:终端计算出第一信道信息的SINR之后,查询CQI表格得到第一信道信息的CQI为23,基站指示的CQI回退值为3,则终端上报的目标CQI为20。
在上述实施方式中,在目标消息包括第三信息的情况下,终端基于第一信道信息对应的CQI和第三信息,实现了终端在无法获知第二信道信息的情况下,也能够确定出与第二信道信息相对应的目标CQI。
方式4、在所述目标消息包括所述目标模型的情况下,所述终端使用所述目标模型对所述信道特征信息进行解码后,将基于解码得到的信道信息对应的CQI,确定为所述目标CQI。
在本申请实施例中,目标模型为一个公共解码网络,该公共解码网络可以是第一网络侧设备指示的,也可以是协议约定的、或终端自己训练的。
终端使用这个公共解码网络对信道特征信息进行解码,得到解码后的信道信息,将该信道信息的SINR对应的CQI确定为目标CQI。
方式5、在所述目标消息包括所述第四信息的情况下,所述终端将所述第一信道信息对应的CQI,确定为所述目标CQI。
在本申请实施例中,第四信息用于指示终端将第一信道信息对应的CQI,确定为目标CQI。
例如,基站向终端发送第四信息,指示终端使用压缩编码前的第一信道信息计算CQI,并将第一信道信息对应的CQI,确定为目标CQI,即不做补偿。
方式6、在所述目标消息包括所述第五信息的情况下,所述终端基于所述目标映射关系及所述第一信道信息的SINR,确定所述目标CQI。
在本申请实施例中,第五信息,用于指示终端基于目标映射关系确定目标CQI;其中,目标映射关系包括SINR和CQI的对应关系,该目标映射关系可以是协议约定的固定的映射关系。
例如:基站指示终端使用新的CQI表格(即目标映射关系)进行CQI查表,通过表格进行补偿,从而确定目标CQI。需要说明的是,目标映射关系是指CQI和调制方式、码率及谱效率之间的关系,终端通过SINR计算对应的谱效率在满足误块率(Block Error Ratio,BLER)条件下选择对应的CQI。
可选地,所述目标消息与用户对应;和/或,所述目标消息与所述第二模型对应。
在本实施例中,第一网络侧设备(例如基站)给每个用户指示的目标消息可以是独立的,即目标消息与用户对应;
如果基站使用一个公共的解码器作为第二模型,可以对每个用户指示相同的目标消息,即目标消息与第二模型对应。
可选地,终端获取目标消息的方式包括以下至少一项:
方式1、所述终端接收所述第一网络侧设备或第二网络侧设备发送的所述目标消息。
例如:第一网络侧设备可以通过广播信道传递目标消息(例如CQI回退值)与第二模型ID的对应关系,终端根据对应的第二模型确定CQI回退值。
可选地,所述第二网络侧设备包括以下至少一项:
a)基站;
b)核心网节点;
c)人工智能AI模型训练节点。
具体地,第二网络侧设备可以直接将目标消息发送给终端;或者第二网络侧设备可以通过第一网络侧设备将目标消息发送给终端。
方式2、所述终端基于协议约定获得所述目标消息。
方式3、所述终端接收通信设备经由旁链路sidelink发送的所述目标消息。
可选地,在多用户的情况下,所述终端接收所述第一网络侧设备或第二网络侧设备发送的所述目标消息,可以通过以下方式实现,具体包括步骤1至步骤2:
步骤1、所述终端接收所述第一网络侧设备或所述第二网络侧设备发送的所述目标消息与所述第二模型的对应关系及所述第二模型的标识;
步骤2、所述终端基于所述目标消息与第二模型的对应关系及所述第二模型的标识,获取所述目标消息。
在多用户的情况下,第一网络侧设备或第二网络侧设备向每个终端发送目标消息与第二模型的对应关系及第二模型的标识,各终端基于目标消息与第二模型的对应关系及第二模型的标识,即可获取目标消息。
可选地,所述目标消息承载于以下至少一项:
a)下行控制信息DCI;
b)媒质接入控制MAC控制单元CE;
具体地,对于周期或半持续的CSI上报,在CSI报告配置(CSI-reportConfig)中配置目标消息,后续所有的CSI上报,只要是基于AI模型的CSI上报,都使用目标消息对应的方式确定目标CQI;
对于非周期的CSI上报,可以在每次的CSI-reportConfig中配置目标消息,也可以使用DCI或MACCE直接向终端指示目标消息。
c)无线资源控制RRC。
具体地,通过RRC信令直接配置目标消息,无论周期,半持续,非周期CSI,只要是终端上报第一模型压缩的信道特征信息(例如PMI)的时候,终端都使用目标消息对应的方式确定目标CQI。
可选地,终端将目标CQI发送至第一网络侧设备之后,第一网络侧设备还需要对目标消息进行更新,因此,终端还需执行以下至少一项步骤:
a)所述终端基于网络指示向所述第一网络侧设备或所述第二网络侧设备发送所述第一信道信息和/或CSI标识。
具体地,所述终端基于网络指示向所述第一网络侧设备或所述第二网络侧设备发送所述第一信道信息。
或者,所述终端基于网络指示向所述第一网络侧设备或所述第二网络侧设备发送所述第一信道信息和CSI标识。
可选地,CSI标识可以包括CSI报告ID(CSI report ID)或CSI参考信号资源ID(CSI-RS resource ID)。
需要说明的是,终端可以将第一信道信息和/或CSI标识作为上行控制信息(Uplink Control Information,UCI),通过物理上行链路共享信道(Physical uplink shared channel,PUSCH)或物理上行控制信道(Physical Uplink Control Channel,PUCCH)上报,也可以作为数据通过PUSCH上传。
b)所述终端基于网络指示向所述第一网络侧设备或所述第二网络侧设备发送所述第一信道信息和/或所述信道特征信息。
需要说明的是,终端可以将第一信道信息和/或信道特征信息作为UCI,通过PUSCH或PUCCH上报,也可以作为数据通过PUSCH上传。
可选地,所述终端基于网络指示在向所述第一网络侧设备进行信道状态信息CSI上报时,还可以携带第一信道信息。
具体地,第一网络侧设备可以由DCI或MACCE或RRC触发,指示终端在某一次或某几次CSI上报的时候携带第一信道信息;
第一网络侧设备还可以配置终端按照固定的周期携带第一信道信息,这个配置可以在CSI-reportConfig或者独立的RRC信令中。
图3是本申请实施例提供的CQI传输方法的流程示意图之二,如图3所示,该方法包括步骤301;其中:
步骤301、第一网络侧设备接收终端发送的第二信道信息对应的目标CQI;
其中,所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将第一信道信息输入至第一模型后得到的信息。
需要说明的是,本申请实施例可应用于CQI传输的场景中。所述终端包括但不限于上述所列举的终端11的类型,本申请对此并不限定;所述第一网络侧设备包括但不限于上述所列举的网络侧设备12的类型,本申请对此并不限定。
由于在基于AI模型传输CQI的过程中,终端无法获得第一网络侧设备(例如基站)恢复的信道信息(即第二信道信息),因此终端只能使用压缩编码前的信道信息 (即第一信道信息)确定CQI,并将CQI传输至基站,这会导致基站接收到的CQI和恢复的信道信息不匹配,即CQI明显偏高。
其中,第二信道信息为第一网络侧设备将信道特征信息输入至第二模型后得到的信息;信道特征信息为终端将第一信道信息输入至第一模型后得到的信息。
可选地,所述第一信道信息,包括:所述终端估计到的信道信息;或者,所述终端对于估计到的信道信息进行计算后得到的预编码矩阵。
本申请实施例提供的CQI传输方法中,第一网络侧设备通过接收终端发送的第二信道信息对应的目标CQI,保证终端上报的目标CQI与第二信道信息匹配,能够降低调度误差。
可选地,在第一网络侧设备接收终端发送的第二信道信息对应的目标CQI之前,第一网络侧设备还需要向所述终端发送目标消息;所述目标消息用于辅助所述终端确定所述目标CQI。
相应地,终端在接收到来自第一网络侧设备的目标消息之后,基于第一信道信息及目标消息,即可确定出第二信道信息对应的目标CQI;并向第一网络侧设备发送目标CQI。
可选地,所述目标消息承载于以下至少一项:
a)下行控制信息DCI;
b)媒质接入控制MAC控制单元CE;
c)无线资源控制RRC。
可选地,所述目标消息包括以下至少一项:
a)第一信息,用于辅助所述终端基于所述第一信道信息的SINR,确定所述第二信道信息的SINR;
b)第二信息,用于辅助所述终端确定随机矩阵;所述随机矩阵用于所述终端基于所述第一信道信息确定所述目标CQI;
c)第三信息,用于辅助所述终端基于所述第一信道信息对应的CQI,确定所述目标CQI;
d)目标模型;
e)第四信息,用于指示所述终端将所述第一信道信息对应的CQI,确定为所述目标CQI;
f)第五信息,用于指示所述终端基于目标映射关系确定所述目标CQI;所述目标映射关系包括SINR和CQI的对应关系。
可选地,所述第一信息包括以下至少一项:
a)信干噪比SINR回退值;
b)功率比例;
c)幅度比例。
可选地,在所述第一信道信息为多秩rank的预编码矩阵的情况下,所述第一信息与多rank的预编码矩阵的layer对应,和/或,所述第一信息与多rank的预编码矩阵的rank对应。
可选地,所述第二信息包括以下至少一项:
a)功率比例;
b)幅度比例;
c)随机扰动值;
d)所述第一信道信息和所述第二信道信息的相似度。
可选地,所述第三信息包括:CQI回退值或CQI补偿值。
可选地,所述目标消息与用户对应;和/或,所述目标消息与所述第二模型对应。
可选地,在多用户的情况下,所述第一网络侧设备向所述终端发送目标消息,可以通过以下方式实现:所述第一网络侧设备向所述终端发送所述目标消息与第二模型的对应关系及所述第二模型的标识。
相应地,终端接收到第一网络侧设备发送的目标消息与第二模型的对应关系及第二模型的标识之后,终端基于目标消息与第二模型的对应关系及第二模型的标识,即可获取目标消息。
可选地,第一网络侧设备接收到来自终端的目标CQI之后,第一网络侧设备还需要对目标消息进行更新,具体可以通过以下任一种方式实现:
方式1、所述第一网络侧设备接收所述终端发送的所述第一信道信息和/或CSI标识;所述第一网络侧设备基于所述第一信道信息和/或所述CSI标识,更新所述目标消息。
方式2、所述第一网络侧设备接收所述终端发送的所述第一信道信息和/或所述信道特征信息;所述第一网络侧设备基于所述第一信道信息和/或所述信道特征信息,更新所述目标消息。
实际应用中,第一网络侧设备接收到第一信道信息之后,根据第一信道信息以及从信道特征信息恢复的信道信息,确定更新后的目标消息,通过DCI、MACCE、RRC修正或者重新配置中的任一项方式,向终端发送更新后的目标消息。
可选地,终端基于网络指示在向第一网络侧设备进行信道状态信息CSI上报时,还可以携带第一信道信息;
相应地,所述第一网络侧设备还可以接收所述终端上报的信道状态信息CSI;所述CSI中携带所述第一信道信息。
本申请实施例提供的CQI传输方法,执行主体可以为CQI传输装置。本申请实施例中以CQI传输装置执行CQI传输方法为例,说明本申请实施例提供的CQI传输装置。
图4是本申请实施例提供的CQI传输装置的结构示意图之一,如图4所示,该CQI传输装置400,包括:
确定模块401,用于基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI;
第一发送模块402,用于向第一网络侧设备发送所述目标CQI;
其中,所述目标消息用于辅助终端确定所述目标CQI;所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将所述第一信道信息输入至第一模型后得到的信息。
本申请实施例提供的CQI传输装置中,基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI,实现了终端可以在无法获知第一网络侧设备恢复的第二信道信息的情况下,确定第二信道信息对应的目标CQI,进而将目标CQI发送至第一网络侧设备,保证上报的目标CQI与第二信道信息匹配,能够降低调度误差。
可选地,所述目标消息包括以下至少一项:
第一信息,用于辅助所述终端基于所述第一信道信息的SINR,确定所述第二信道信息的SINR;
第二信息,用于辅助所述终端确定随机矩阵;所述随机矩阵用于所述终端基于所述第一信道信息确定所述目标CQI;
第三信息,用于辅助所述终端基于所述第一信道信息对应的CQI,确定所述目标CQI;
目标模型;
第四信息,用于指示所述终端将所述第一信道信息对应的CQI,确定为所述目标CQI;
第五信息,用于指示所述终端基于目标映射关系确定所述目标CQI;所述目标映射关系包括SINR和CQI的对应关系。
可选地,所述第一信息包括以下至少一项:
信干噪比SINR回退值;
功率比例;
幅度比例。
可选地,在所述第一信道信息为多秩rank的预编码矩阵的情况下,所述第一信息与多rank的预编码矩阵的layer对应,和/或,所述第一信息与多rank的预编码矩阵的rank对应。
可选地,确定模块401,进一步用于以下任一项:
在所述目标消息包括所述第一信息的情况下,基于所述第一信道信息的SINR和所述第一信息,确定所述第二信道信息的SINR;
基于所述第二信道信息的SINR确定所述目标CQI。
可选地,所述第二信息包括以下至少一项:
功率比例;
幅度比例;
随机扰动值;
所述第一信道信息和所述第二信道信息的相似度。
可选地,确定模块401,进一步用于:
在所述目标消息包括所述第二信息的情况下,所述终端基于所述第二信息,确定所述随机矩阵;
所述终端基于所述随机矩阵和所述第一信道信息,确定第三信道信息;
所述终端基于所述第三信道信息的SINR,确定所述目标CQI。
可选地,确定模块401,进一步用于以下至少一项:
在所述目标消息包括所述第三信息的情况下,基于所述第一信道信息对应的CQI和所述第三信息,确定所述目标CQI;
在所述目标消息包括所述目标模型的情况下,使用所述目标模型对所述信道特征信息进行解码后,将基于解码得到的信道信息对应的CQI,确定为所述目标CQI;
在所述目标消息包括所述第五信息的情况下,基于所述目标映射关系及所述第一信道信息的SINR,确定所述目标CQI。
可选地,所述第三信息包括:CQI回退值或CQI补偿值。
可选地,所述目标消息与用户对应;和/或,所述目标消息与所述第二模型对应。
可选地,所述第一信道信息,包括:所述终端估计到的信道信息;或者,所述终端对于估计到的信道信息进行计算后得到的预编码矩阵。
可选地,所述装置还包括以下至少一项:
第二接收模块,用于接收所述第一网络侧设备或第二网络侧设备发送的所述目标消息;
获得模块,用于基于协议约定获得所述目标消息;
第三接收模块,用于所述终端接收通信设备经由旁链路sidelink发送的所述目标消息。
可选地,第二接收模块,进一步用于:
接收所述第一网络侧设备或所述第二网络侧设备发送的所述目标消息与所述第二模型的对应关系及所述第二模型的标识;
基于所述目标消息与第二模型的对应关系及所述第二模型的标识,获取所述目标消息。
可选地,所述第二网络侧设备包括以下至少一项:
基站;核心网节点;人工智能AI模型训练节点。
可选地,所述目标消息承载于以下至少一项:
下行控制信息DCI;
媒质接入控制MAC控制单元CE;
无线资源控制RRC。
可选地,所述装置还包括以下至少一项:
第二发送模块,用于基于网络指示向所述第一网络侧设备或所述第二网络侧设备发送所述第一信道信息和/或CSI标识;
第三发送模块,用于基于网络指示向所述第一网络侧设备或所述第二网络侧设备发送所述第一信道信息和/或所述信道特征信息。
可选地,所述终端基于网络指示在向所述第一网络侧设备进行信道状态信息CSI上报时,携带所述第一信道信息。
图5是本申请实施例提供的CQI传输装置的结构示意图之二,如图5所示,该CQI传输装置500,包括:
第一接收模块501,用于接收终端发送的第二信道信息对应的目标CQI;
其中,所述第二信道信息为第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将第一信道信息输入至第一模型后得到的信息。
本申请实施例提供的CQI传输装置中,通过接收终端发送的第二信道信息对应的目标CQI,保证终端上报的目标CQI与第二信道信息匹配,能够降低调度误差。
可选地,所述装置还包括:
第四发送模块,用于向所述终端发送目标消息;所述目标消息用于辅助所述终端确定所述目标CQI。
可选地,所述目标消息承载于以下至少一项:
下行控制信息DCI;
媒质接入控制MAC控制单元CE;
无线资源控制RRC。
可选地,所述目标消息包括以下至少一项:
第一信息,用于辅助所述终端基于所述第一信道信息的SINR,确定所述第二信道信息的SINR;
第二信息,用于辅助所述终端确定随机矩阵;所述随机矩阵用于所述终端基于所述第一信道信息确定所述目标CQI;
第三信息,用于辅助所述终端基于所述第一信道信息对应的CQI,确定所述目标CQI;
目标模型;
第四信息,用于指示所述终端将所述第一信道信息对应的CQI,确定为所述目标CQI;
第五信息,用于指示所述终端基于目标映射关系确定所述目标CQI;所述目标映射关系包括SINR和CQI的对应关系。
可选地,所述第一信息包括以下至少一项:
信干噪比SINR回退值;
功率比例;
幅度比例。
可选地,在所述第一信道信息为多秩rank的预编码矩阵的情况下,所述第一信息与多rank的预编码矩阵的layer对应,和/或,所述第一信息与多rank的预编码矩阵的rank对应。
可选地,所述第二信息包括以下至少一项:
功率比例;
幅度比例;
随机扰动值;
所述第一信道信息和所述第二信道信息的相似度。
可选地,所述第三信息包括:CQI回退值或CQI补偿值。
可选地,所述目标消息与用户对应;和/或,所述目标消息与所述第二模型对应。
可选地,所述第一信道信息,包括:所述终端估计到的信道信息;或者,所述终端对于估计到的信道信息进行计算后得到的预编码矩阵。
可选地,所述第四发送模块,进一步用于:
向所述终端发送所述目标消息与第二模型的对应关系及所述第二模型的标识。
可选地,所述装置还包括以下任一项:
第四接收模块,用于接收所述终端发送的所述第一信道信息和/或CSI标识;
第一更新模块,用于基于所述第一信道信息和/或所述CSI标识,更新所述目标消息;
第五接收模块,用于接收所述终端发送的所述第一信道信息和/或所述信道特征信息;
第二更新模块,用于基于所述第一信道信息和/或所述信道特征信息,更新所述目标消息。
可选地,所述装置还包括:
第六接收模块,用于接收所述终端上报的信道状态信息CSI;所述CSI中携带所述第一信道信息。
本申请实施例中的CQI传输装置可以是电子设备,例如具有操作***的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的CQI传输装置能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图6是本申请实施例提供的通信设备的结构示意图,如图6所示,该通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述图2中CQI传输方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述图3中CQI传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI,其中,所述目标消息用于辅助所述终端确定所述目标CQI;所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将所述第一信道信息输入至第一模型后得到的信息;
通信接口用于向第一网络侧设备发送所述目标CQI。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。
图7是本申请实施例提供的终端的结构示意图,如图7所示,该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器710逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的 限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选的,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作***、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于接收终端发送的第二信道信息对应的目标CQI;其中,所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将第一信道信息输入至第一模型后得到的信息。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
图8是本申请实施例提供的网络侧设备的结构示意图,如图8所示,该网络侧设备800包括:天线801、射频装置802、基带装置803、处理器804和存储器805。天线801与射频装置802连接。在上行方向上,射频装置802通过天线801接收信息,将接收的信息发送给基带装置803进行处理。在下行方向上,基带装置803对要发送的信息进行处理,并发送给射频装置802,射频装置802对收到的信息进行处理后经过天线801发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置803中实现,该基带装置803包括基带处理器。
基带装置803例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为基带处理器,通过总线接口与存储器805连接,以调用存储器805中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口806,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备800还包括:存储在存储器805上并可在处理器804上运行的指令或程序,处理器804调用存储器805中的指令或程序执行如上所述的CQI传输方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供了一种CQI传输***,包括:终端及网络侧设备,所述终端可用于执行如上所述的CQI传输方法的步骤,所述网络侧设备可用于执行如上所述的CQI传输方法的步骤。
本申请实施例还提供一种可读存储介质,所述可读存储介质可以是以易失性的,也可以是非易失性的,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述CQI传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述CQI传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述CQI传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (35)

  1. 一种信道质量指示CQI传输方法,包括:
    终端基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI;
    所述终端向第一网络侧设备发送所述目标CQI;
    其中,所述目标消息用于辅助所述终端确定所述目标CQI;所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将所述第一信道信息输入至第一模型后得到的信息。
  2. 根据权利要求1所述的CQI传输方法,其中,所述目标消息包括以下至少一项:
    第一信息,用于辅助所述终端基于所述第一信道信息的SINR,确定所述第二信道信息的SINR;
    第二信息,用于辅助所述终端确定随机矩阵;所述随机矩阵用于所述终端基于所述第一信道信息确定所述目标CQI;
    第三信息,用于辅助所述终端基于所述第一信道信息对应的CQI,确定所述目标CQI;
    目标模型;
    第四信息,用于指示所述终端将所述第一信道信息对应的CQI,确定为所述目标CQI;
    第五信息,用于指示所述终端基于目标映射关系确定所述目标CQI;所述目标映射关系包括SINR和CQI的对应关系。
  3. 根据权利要求2所述的CQI传输方法,其中,所述第一信息包括以下至少一项:
    信干噪比SINR回退值;
    功率比例;
    幅度比例。
  4. 根据权利要求3所述的CQI传输方法,其中,在所述第一信道信息为多秩rank的预编码矩阵的情况下,所述第一信息与多rank的预编码矩阵的layer对应,和/或,所述第一信息与多rank的预编码矩阵的rank对应。
  5. 根据权利要求3或4所述的CQI传输方法,其中,所述终端基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI,包括:
    在所述目标消息包括所述第一信息的情况下,所述终端基于所述第一信道信息的SINR和所述第一信息,确定所述第二信道信息的SINR;
    所述终端基于所述第二信道信息的SINR确定所述目标CQI。
  6. 根据权利要求2所述的CQI传输方法,其中,所述第二信息包括以下至少一项:
    功率比例;
    幅度比例;
    随机扰动值;
    所述第一信道信息和所述第二信道信息的相似度。
  7. 根据权利要求2或6所述的CQI传输方法,其中,所述终端基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI,包括:
    在所述目标消息包括所述第二信息的情况下,所述终端基于所述第二信息,确定所述随机矩阵;
    所述终端基于所述随机矩阵和所述第一信道信息,确定第三信道信息;
    所述终端基于所述第三信道信息的SINR,确定所述目标CQI。
  8. 根据权利要求2所述的CQI传输方法,其中,所述终端基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI,包括以下至少一项:
    在所述目标消息包括所述第三信息的情况下,所述终端基于所述第一信道信息对应的CQI和所述第三信息,确定所述目标CQI;
    在所述目标消息包括所述目标模型的情况下,所述终端使用所述目标模型对所述信道特征信息进行解码后,将基于解码得到的信道信息对应的CQI,确定为所述目标CQI;
    在所述目标消息包括所述第五信息的情况下,所述终端基于所述目标映射关系及所述第一信道信息的SINR,确定所述目标CQI。
  9. 根据权利要求2或8所述的CQI传输方法,其中,所述第三信息包括:CQI回退值或CQI补偿值。
  10. 根据权利要求1至9任一项所述的CQI传输方法,其中,所述目标消息与用户对应;和/或,所述目标消息与所述第二模型对应。
  11. 根据权利要求1至10任一项所述的CQI传输方法,其中,所述第一信道信息,包括:所述终端估计到的信道信息;或者,所述终端对于估计到的信道信息进行计算后得到的预编码矩阵。
  12. 根据权利要求1至11任一项所述的CQI传输方法,所述方法还包括以下至少一项:
    所述终端接收所述第一网络侧设备或第二网络侧设备发送的所述目标消息;
    所述终端基于协议约定获得所述目标消息;
    所述终端接收通信设备经由旁链路sidelink发送的所述目标消息。
  13. 根据权利要求12所述的CQI传输方法,其中,所述终端接收所述第一网络侧设备或第二网络侧设备发送的所述目标消息,包括:
    所述终端接收所述第一网络侧设备或所述第二网络侧设备发送的所述目标消息与所述第二模型的对应关系及所述第二模型的标识;
    所述终端基于所述目标消息与第二模型的对应关系及所述第二模型的标识,获取所述目标消息。
  14. 根据权利要求12或13所述的CQI传输方法,其中,所述第二网络侧设备包括以下至少一项:
    基站;核心网节点;人工智能AI模型训练节点。
  15. 根据权利要求12至14任一项所述的CQI传输方法,其中,所述目标消息承载于以下至少一项:
    下行控制信息DCI;
    媒质接入控制MAC控制单元CE;
    无线资源控制RRC。
  16. 根据权利要求12至15任一项所述的CQI传输方法,所述方法还包括以下至少一项:
    所述终端基于网络指示向所述第一网络侧设备或所述第二网络侧设备发送所述第一信道信息和/或CSI标识;
    所述终端基于网络指示向所述第一网络侧设备或所述第二网络侧设备发送所述第一信道信息和/或所述信道特征信息。
  17. 根据权利要求16所述的CQI传输方法,其中,所述终端基于网络指示在向所述第一网络侧设备进行信道状态信息CSI上报时,携带所述第一信道信息。
  18. 一种信道质量指示CQI传输方法,包括:
    第一网络侧设备接收终端发送的第二信道信息对应的目标CQI;
    其中,所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将第一信道信息输入至第一模型后得到的信息。
  19. 根据权利要求18所述的CQI传输方法,所述方法还包括:
    所述第一网络侧设备向所述终端发送目标消息;所述目标消息用于辅助所述终端确定所述目标CQI。
  20. 根据权利要求19所述的CQI传输方法,其中,所述目标消息承载于以下至少一项:
    下行控制信息DCI;
    媒质接入控制MAC控制单元CE;
    无线资源控制RRC。
  21. 根据权利要求19或20所述的CQI传输方法,其中,所述目标消息包括以下至少一项:
    第一信息,用于辅助所述终端基于所述第一信道信息的SINR,确定所述第二信道信息的SINR;
    第二信息,用于辅助所述终端确定随机矩阵;所述随机矩阵用于所述终端基于所述第一信道信息确定所述目标CQI;
    第三信息,用于辅助所述终端基于所述第一信道信息对应的CQI,确定所述目标CQI;
    目标模型;
    第四信息,用于指示所述终端将所述第一信道信息对应的CQI,确定为所述目标CQI;
    第五信息,用于指示所述终端基于目标映射关系确定所述目标CQI;所述目标映射关系包括SINR和CQI的对应关系。
  22. 根据权利要求21所述的CQI传输方法,其中,所述第一信息包括以下至少一项:
    信干噪比SINR回退值;
    功率比例;
    幅度比例。
  23. 根据权利要求22所述的CQI传输方法,其中,在所述第一信道信息为多秩rank的预编码矩阵的情况下,所述第一信息与多rank的预编码矩阵的layer对应,和/或,所述第一信息与多rank的预编码矩阵的rank对应。
  24. 根据权利要求21所述的CQI传输方法,其中,所述第二信息包括以下至少一项:
    功率比例;
    幅度比例;
    随机扰动值;
    所述第一信道信息和所述第二信道信息的相似度。
  25. 根据权利要求21所述的CQI传输方法,其中,所述第三信息包括:CQI回退值或CQI补偿值。
  26. 根据权利要求19至25任一项所述的CQI传输方法,其中,所述目标消息与用户对应;和/或,所述目标消息与所述第二模型对应。
  27. 根据权利要求18至24任一项所述的CQI传输方法,其中,所述第一信道信息,包括:所述终端估计到的信道信息;或者,所述终端对于估计到的信道信息进行计算后得到的预编码矩阵。
  28. 根据权利要求19所述的CQI传输方法,其中,所述第一网络侧设备向所述终端发送目标消息,包括:
    所述第一网络侧设备向所述终端发送所述目标消息与第二模型的对应关系及所述第二模型的标识。
  29. 根据权利要求19所述的CQI传输方法,所述方法还包括以下任一项:
    所述第一网络侧设备接收所述终端发送的所述第一信道信息和/或CSI标识;所述第一网络侧设备基于所述第一信道信息和/或所述CSI标识,更新所述目标消息;
    所述第一网络侧设备接收所述终端发送的所述第一信道信息和/或所述信道特征信息;所述第一网络侧设备基于所述第一信道信息和/或所述信道特征信息,更新所述目标消息。
  30. 根据权利要求29所述的CQI传输方法,所述方法还包括:
    所述第一网络侧设备接收所述终端上报的信道状态信息CSI;所述CSI中携带所述第一信道信息。
  31. 一种信道质量指示CQI传输装置,包括:
    确定模块,用于基于第一信道信息及目标消息,确定第二信道信息对应的目标CQI;
    第一发送模块,用于向第一网络侧设备发送所述目标CQI;
    其中,所述目标消息用于辅助终端确定所述目标CQI;所述第二信道信息为所述第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将所述第一信道信息输入至第一模型后得到的信息。
  32. 一种信道质量指示CQI传输装置,包括:
    第一接收模块,用于接收终端发送的第二信道信息对应的目标CQI;
    其中,所述第二信道信息为第一网络侧设备将信道特征信息输入至第二模型后得到的信息;所述信道特征信息为所述终端将第一信道信息输入至第一模型后得到的信息。
  33. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至17任一项所述的CQI传输方法的步骤。
  34. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求18至30任一项所述的CQI传输方法的步骤。
  35. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至17任一项所述的CQI传输方法,或者实现如权利要求18至30任一项所述的CQI传输方法的步骤。
PCT/CN2023/118570 2022-09-15 2023-09-13 Cqi传输方法、装置、终端及网络侧设备 WO2024055993A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211125016.6A CN117715075A (zh) 2022-09-15 2022-09-15 Cqi传输方法、装置、终端及网络侧设备
CN202211125016.6 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024055993A1 true WO2024055993A1 (zh) 2024-03-21

Family

ID=90142967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118570 WO2024055993A1 (zh) 2022-09-15 2023-09-13 Cqi传输方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN117715075A (zh)
WO (1) WO2024055993A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210351885A1 (en) * 2019-04-16 2021-11-11 Samsung Electronics Co., Ltd. Method and apparatus for reporting channel state information
WO2021237715A1 (zh) * 2020-05-29 2021-12-02 Oppo广东移动通信有限公司 一种信道状态信息处理方法、电子设备及存储介质
WO2021249515A1 (zh) * 2020-06-12 2021-12-16 华为技术有限公司 信道信息反馈方法、通信装置及存储介质
US20220149904A1 (en) * 2019-03-06 2022-05-12 Telefonaktiebolaget Lm Ericsson (Publ) Compression and Decompression of Downlink Channel Estimates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220149904A1 (en) * 2019-03-06 2022-05-12 Telefonaktiebolaget Lm Ericsson (Publ) Compression and Decompression of Downlink Channel Estimates
US20210351885A1 (en) * 2019-04-16 2021-11-11 Samsung Electronics Co., Ltd. Method and apparatus for reporting channel state information
WO2021237715A1 (zh) * 2020-05-29 2021-12-02 Oppo广东移动通信有限公司 一种信道状态信息处理方法、电子设备及存储介质
WO2021249515A1 (zh) * 2020-06-12 2021-12-16 华为技术有限公司 信道信息反馈方法、通信装置及存储介质

Also Published As

Publication number Publication date
CN117715075A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
EP4231693A1 (en) Configuration method for ai network parameter and device
US20230244911A1 (en) Neural network information transmission method and apparatus, communication device, and storage medium
US20230412430A1 (en) Inforamtion reporting method and apparatus, first device, and second device
WO2023246618A1 (zh) 信道矩阵处理方法、装置、终端及网络侧设备
WO2023185978A1 (zh) 信道特征信息上报及恢复方法、终端和网络侧设备
WO2024055993A1 (zh) Cqi传输方法、装置、终端及网络侧设备
WO2024055974A1 (zh) Cqi传输方法、装置、终端及网络侧设备
WO2024149156A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2024140422A1 (zh) Ai单元的性能监测方法、终端及网络侧设备
WO2024007949A1 (zh) Ai模型处理方法、装置、终端及网络侧设备
WO2024149157A1 (zh) Csi传输方法、装置、终端及网络侧设备
WO2023179460A1 (zh) 信道特征信息传输方法、装置、终端及网络侧设备
WO2023179570A1 (zh) 信道特征信息传输方法、装置、终端及网络侧设备
WO2023185980A1 (zh) 信道特征信息传输方法、装置、终端及网络侧设备
WO2024140578A1 (zh) 基于ai模型的csi反馈方法、终端及网络侧设备
WO2024037380A1 (zh) 信道信息处理方法、装置、通信设备及存储介质
WO2023198058A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2024032606A1 (zh) 信息传输方法、装置、设备、***及存储介质
WO2023185995A1 (zh) 信道特征信息传输方法、装置、终端及网络侧设备
WO2024051564A1 (zh) 信息传输方法、ai网络模型训练方法、装置和通信设备
WO2023179476A1 (zh) 信道特征信息上报及恢复方法、终端和网络侧设备
WO2023207920A1 (zh) 信道信息反馈方法、终端及网络侧设备
WO2023143361A1 (zh) 能力信息上报方法、装置及终端
WO2024061287A1 (zh) 人工智能ai模型传输方法、装置、终端及介质
WO2024104126A1 (zh) 更新ai网络模型的方法、装置和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864725

Country of ref document: EP

Kind code of ref document: A1