WO2024055985A1 - 通信方法、装置及计算机可读存储介质 - Google Patents

通信方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2024055985A1
WO2024055985A1 PCT/CN2023/118516 CN2023118516W WO2024055985A1 WO 2024055985 A1 WO2024055985 A1 WO 2024055985A1 CN 2023118516 W CN2023118516 W CN 2023118516W WO 2024055985 A1 WO2024055985 A1 WO 2024055985A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
access
terminal device
information
function network
Prior art date
Application number
PCT/CN2023/118516
Other languages
English (en)
French (fr)
Inventor
项弘禹
陈磊
潘奇
王燕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024055985A1 publication Critical patent/WO2024055985A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/568Storing data temporarily at an intermediate stage, e.g. caching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method, device and computer-readable storage medium.
  • discontinuous reception (DRX) technology can be used to regularly monitor paging messages according to the DRX cycle.
  • extended discontinuous reception (eDRX) technology can be used to extend the period of monitoring paging messages and increase the sleep duration of the UE, thereby further reducing power consumption.
  • the eDRX technology in the inactive (INACTIVE) state discusses the situation where the eDRX cycle is not greater than 10.24s.
  • the use of the eDRX cycle is the same as the use of the DRX cycle.
  • the UE monitors paging messages every INACTIVE eDRX cycle. During this period, the network The data or signaling sent to the UE is directly cached in the access network (radio access network, RAN).
  • RAN radio access network
  • RRC radio resource control
  • the UE data can be cached in the user plane function (UPF) network element, and the signal can be adjusted. Order time.
  • the core network (core network, CN) device sends a message to the access network through the N3/N2 interface to initiate RAN paging.
  • the terminal device responds to the RAN paging and requests to restore the radio resource control (RRC) connection.
  • RRC radio resource control
  • the RAN After the UE and RAN complete the RRC connection restoration, the RAN notifies the UPF to no longer cache the data of the terminal device and perform data or signaling. transmission, but this method will cause a certain delay in the transmission of data or signaling, and the signaling overhead in the RRC connection recovery process is relatively large.
  • Small data transmission (SDT) technology and early data transmission (EDT) technology can transmit data or signaling while the UE remains in a non-connected state, saving signaling and power caused by RRC state transition. It consumes overhead, but SDT technology does not support MT SDT transmission, and EDT technology cannot be directly reused in scenarios where the inactive eDRX is greater than 10.24s.
  • Embodiments of the present application disclose a communication method, device and computer-readable storage medium, which can support terminal equipment to maintain an inactive state for data or signaling transmission, and can save power consumption caused by RRC state switching of terminal equipment.
  • embodiments of the present application disclose a first communication method, including: access network equipment from an access and mobility management function network element (for example, access and mobility management function (AMF) ) network element) receives the first information; the access network device determines that the downlink data is small packet data based on the data size of the downlink data; the access network device sends the first instruction to the terminal device; the access network device sends a request to the access and mobility management The functional network element or the user plane functional network element sends the second instruction.
  • AMF access and mobility management function
  • the first information carries the terminal device cached in the user plane function network element (for example, user plane function (UPF) network element) or session management function (for example, (session management function, SMF) network element)
  • the data size of the downstream data carries the terminal device cached in the user plane function network element (for example, user plane function (UPF) network element) or session management function (for example, (session management function, SMF) network element)
  • the terminal device is in an inactive state, and the access network device is configured with an eDRX cycle.
  • the first instruction is used to instruct the terminal device to transmit small packet data
  • the second instruction is used to instruct the user plane functional network element to send small packet data to the access network device.
  • the access network device can decide whether to transmit small packet data. If so, the terminal device remains inactive when the terminal device is configured with an inactive eDRX cycle. state and transmits data or signaling, saving the power consumption caused by the RRC state switching of the terminal equipment.
  • the access network device that communicates with the core network device may be the last serving base station, and the access network device that communicates with the terminal device may be the receiving station in the access network notification area other than the last serving base station. base station.
  • the receiving base station can interact with the last serving base station to store the context of the terminal device and interact with the core network device.
  • the first information and the second indication may interact with the access and mobility management function network element and the access network device.
  • An N2 message After the access network device sends the second instruction to the access and mobility management function network element, it may also include: the access management function network element sends a session update request to the session management function network element.
  • the session management function network element receives the session update request from the access management function network element.
  • the session management function network element may be a session management function network element associated with the terminal device.
  • the session update request is used to request to update the session state of the protocol data unit (PDU) session established with the UE.
  • the session management function network element After receiving the session update request, the session management function network element will update the PDU session status and update the associated UPF rules so that the UPF no longer caches the UE's downlink data and causes the UPF to send downlink data as small packet data to the access network device. .
  • PDU protocol data unit
  • the second indication may be an N3 message for interaction between the user plane functional network element and the access network device.
  • the user plane functional network element may be instructed to no longer cache the downlink data of the terminal device and send the downlink data as small packet data to the access network device.
  • the method further includes: the access network device receives the second information from the terminal device.
  • the second information is used to confirm that the terminal device can perform data transmission with the core network device, or to confirm that the terminal device can restore the connection.
  • the access network device can send the second instruction to the access and mobility management function network element or the user plane function network element, which is beneficial to improving the success rate of communication.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • the access network device determines that the downlink data is small packet data based on the data size of the downlink data including: if the data size of the downlink data is less than the capacity threshold, determines that the downlink data is small packet data.
  • This application does not limit the capacity threshold. It can refer to the maximum value of small packet data specified in the communication standard, or it can be determined based on the network rate, network resources, etc. of the access network equipment in the current communication system. It can be understood that in this example, determining whether the downlink data is small packet data is based on whether the data size of the downlink data is less than the capacity threshold, which can improve the accuracy of determining small packet data.
  • embodiments of the present application disclose a second communication method, which includes: the access and mobility management function network element receives the third information from the session management function network element; the access and mobility management function network element The network device sends the first message.
  • the third information carries the data size of the downlink data of the terminal device cached in the user plane functional network element or the session management functional network element.
  • the first information carries the data size of the downlink data, and the data size of the downlink data can be used to determine whether the downlink data is small packet data.
  • the terminal device is in an inactive state, and the access network device is configured with an eDRX cycle. In this way, the access network device can determine whether the downlink data is small packet data based on the data size of the downlink data, so that the access network device can decide whether to transmit small packet data. If so, configure the inactive mode on the terminal device. In the case of eDRX cycle, the terminal equipment maintains the inactive state and transmits data or signaling, which saves the power consumption caused by the RRC state switching of the terminal equipment.
  • the method further includes: the access and mobility management function network element receives a second indication from the access network device; The second instruction is used to instruct the user plane functional network element to send small packet data to the access network device.
  • the method further includes: the access and mobility management function network element sends a session update request to the session management function network element. .
  • the session update request is used to request to update the session status of the PDU session established with the terminal device.
  • the session management function network element will update the PDU session status and update the associated UPF rules, so that the user plane function network element no longer caches the downlink data of the terminal device, and allows the user plane function network element to access the The network device sends downlink data as small packet data.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • embodiments of the present application disclose a third communication method, which includes: when the buffering time of the downlink data of the terminal device cached in the user plane functional network element or the session management functional network element reaches, the access network device obtains the data from the user plane.
  • the plane functional network element receives the downlink data; the access network equipment determines that the downlink data is small packet data; the access network equipment sends a first instruction to the terminal equipment.
  • the terminal device is in an inactive state, and the access network device is configured with an eDRX cycle.
  • the first instruction is used to instruct the terminal device to perform small packet data transmission.
  • the user plane functional network element sends the downlink data to the access network device.
  • the access network equipment can decide whether to transmit small packet data. If so, when the terminal equipment is configured with an inactive eDRX cycle, the terminal equipment maintains the inactive state and transmits data or signaling. This saves the power consumption caused by the RRC state switching of the terminal equipment.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • This application does not limit the method of determining whether the downlink data is small packet data. It can be determined whether the data size of the downlink data is less than the capacity threshold. Or it can identify whether the identifier in the downlink data is the identifier of the small packet data.
  • the 5G core network builds One or more PDU sessions are established, and the QoS flow is identified in the PDU session by the quality of service (QoS flow identity, QFI).
  • QoS flow is mapped to the data radio bearer (DRB) in the access wireless access network. Therefore, the QFI corresponding to the QoS flow can be used to obtain whether the DRB carrying downlink data is the DRB associated with SDT to determine the QoS flow. Whether the data in it is small packet data. If the DRB corresponding to the QoS flow is the DRB associated with the SDT, determine whether the data in the QoS flow is small packet data.
  • embodiments of the present application disclose a fourth communication method, which includes: the user plane functional network element receives the third instruction from the session management function network element; the user plane functional network element receives the third instruction from the user plane functional network element or the session management function network When the cache time of the downlink data of the terminal device cached in the metadata reaches the end, the downlink data is sent to the access network device.
  • the third indication is used to indicate that when the buffering time of the downlink data of the terminal device cached in the user plane functional network element or the session management functional network element reaches, the downlink data is sent to the access network device and the terminal device is in an inactive state.
  • the access network device is configured with an eDRX cycle. In this way, the downlink data can be sent to the access network device when the cache duration of the downlink data is reached, so that the access network device determines whether the downlink data is small packet data. If so, the terminal device is configured with an inactive state. During the eDRX cycle, the terminal device remains in an inactive state and transmits data or signaling, saving power consumption caused by the terminal device's RRC state switching.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • embodiments of the present application disclose a fifth communication method, which includes: the access and mobility management function network element obtains the cache duration of downlink data of the terminal device cached in the user plane function network element or the session management function network element. ; The access and mobility management function network element sends the fourth information to the session management function network element.
  • the fourth information carries the cache duration.
  • the cache duration in the third aspect, the fourth aspect and the fifth aspect may be different from the cache duration in the above-mentioned first aspect, the second aspect, the later-described sixth aspect and the seventh aspect, and the cache duration here is used to indicate The reachable time of the terminal device, so that the user plane functional network element can perform data transmission or signaling transmission when the buffer time is reached.
  • the user plane functional network element can send the downlink data to the access network device, so that the access network device Decide whether to transmit small packet data. If so, when the terminal device is configured with an inactive eDRX cycle, the terminal device maintains the inactive state and transmits data or signaling, saving the terminal device the RRC state. Power consumption caused by switching.
  • the access and mobility management function network element obtains the cache duration of the downlink data of the terminal device cached in the user plane function network element or the session management function network element based on the eDRX configuration of the terminal device.
  • the eDRX configuration includes the eDRX cycle configured by the access network equipment. In this way, the accuracy of configuring the cache duration of downlink data can be improved.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • embodiments of the present application disclose a sixth communication method, which includes: the access and mobility management function network element receives the fifth information from the access network device; the access and mobility management function network element receives the fifth information from the session management function The network element receives the sixth information; the access and mobility management function network element sends the fourth instruction to the access network device.
  • the fifth information carries the eDRX cycle configured when the access network device is in the inactive state of the terminal device.
  • the fifth information is used to determine that the terminal equipment and the access network equipment support small packet data transmission.
  • the sixth information is used to determine that the downlink data of the terminal device cached in the user plane functional network element or the session management network element is small packet data.
  • the fourth instruction is used to instruct the access network device to transmit small packet data. In this way, the core network equipment can decide whether to transmit small packet data. If so, when the terminal equipment is configured with an inactive eDRX cycle, the terminal equipment maintains the inactive state and transmits data or signaling. Save the power consumption caused by RRC state switching of terminal equipment.
  • the fifth information also carries capability information of the terminal device. Further, the fifth information may include the capability of the terminal device to support SDT.
  • the access and mobility management function network element receives the fifth information from the access network device, it also includes: the access and mobility management function network element determines that the user plane function network element supports caching the terminal device based on the capability information of the terminal device. packet data.
  • the sixth information carries the data size of the downlink data.
  • the sixth information may include indication information used to indicate that the downlink data of the terminal device cached in the user plane functional network element is small packet data, and the indication information may be determined by the session management functional network element.
  • the sixth information may include the data size of the downlink data, so that the access and mobility management function network element can determine whether the downlink data is small packet data based on the data size of the downlink data.
  • the fifth information can also be used to instruct the access and mobility management function network element to calculate the reachable time of the terminal device, determine whether the user plane function network element caches the downlink data of the terminal device, etc.
  • This application does not limit the method of determining that the terminal equipment and the access network equipment support small packet data transmission.
  • the access and mobility management function network element can determine whether the terminal equipment supports small packet data transmission based on the capability information of the terminal equipment. If the fifth information does not carry the capability information of the terminal device, the access and mobility management function network element can obtain the capability information of the terminal device through the context information or other information of the terminal device.
  • the access and mobility management function network element can also pass the previously received N2 message, for example, NG Setup, etc., determine whether the access network equipment supports small packet data transmission. Or it is determined that the access network device supports small packet data transmission by determining that the access network device indicated in the fifth information is a target access network device that supports SDT.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • the method further includes: the access and mobility management function network element receives the second instruction from the access network device; The second instruction is used to instruct the user plane functional network element to send small packet data to the access network device.
  • the method further includes: the access and mobility management function network element sends a session update request to the session management function network element. .
  • the session update request is used to request to update the session status of the PDU session established with the terminal device.
  • the session management function network element will update the PDU session status and update the associated UPF rules, so that the user plane function network element no longer caches the downlink data of the terminal device, and allows the user plane function network element to access the The network device sends downlink data as small packet data.
  • embodiments of the present application disclose a seventh communication method, which includes: the access network device sends the fifth information to the access and mobility management function network element; the access network device sends the fifth information from the access and mobility management function network element Yuan receives the fourth instruction.
  • the fifth information carries the eDRX cycle configured when the access network device is in the inactive state of the terminal device.
  • the fifth information is used to determine that the terminal equipment and the access network equipment support small packet data transmission; the fourth indication is used to instruct the access network equipment to perform small packet data transmission. In this way, the core network equipment can decide whether to transmit small packet data. If so, when the terminal equipment is configured with an inactive eDRX cycle, the terminal equipment maintains the inactive state and transmits data or signaling. Save the power consumption caused by RRC state switching of terminal equipment.
  • the method further includes: the access network device sending the first indication to the terminal device.
  • the first instruction is used to instruct the terminal device to perform small packet data transmission. In this way, it is helpful to improve the success rate of communication.
  • the access network device after the access network device receives the fourth indication from the access and mobility management function network element, it further includes: the access network device sends a request to the access and mobility management function network element or the user plane function network
  • the second instruction is used to instruct the user plane functional network element to send downlink data as small packet data to the access network device. In this way, it is helpful to improve the success rate of communication.
  • the method further includes: the access network device receives the second information from the terminal device.
  • the second information is used to confirm that the terminal device can perform data transmission with the core network device, or to confirm that the terminal device can restore the connection.
  • the access network device after the access network device receives the second information, it can send the second instruction to the access and mobility management function network element or the user plane function network element, which is beneficial to improving the communication success rate.
  • this application discloses a first communication device, which is suitable for access network equipment, including: a transceiver unit for receiving the first information from the access and mobility management function network element; a processing unit for The data size determines that the downlink data is small packet data; the transceiver unit is also used to send a first instruction to the terminal device; the access network device sends a second instruction to the access and mobility management function network element or the user plane function network element.
  • the first information carries the data size of the downlink data of the terminal device cached in the user plane function network element or the session management function.
  • the terminal device is in an inactive state and the access network device is configured with an eDRX cycle.
  • the first indication is used to instruct the terminal device to transmit small packet data
  • the second indication is used to instruct the user plane function network element to send small packet data to the access network device.
  • the transceiver unit is also used to receive the second information from the terminal device.
  • the second information is used to confirm that the terminal device can perform data transmission with the core network device, or to confirm that the terminal device can restore the connection.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • this application discloses a second communication device, which is suitable for access and mobility management function network elements, and includes: a transceiver unit for receiving third information from a session management function network element; the transceiver unit is also used for communicating with the access The network access device sends the first information.
  • the third information carries the data size of the downlink data of the terminal device cached in the user plane functional network element or the session management functional network element.
  • the first information carries the data size of the downlink data, and the data size of the downlink data can be used to determine whether the downlink data is small packet data.
  • the terminal device is in an inactive state, and the access network device is configured with an eDRX cycle.
  • the transceiver unit is also configured to receive a second indication from the access network device; the second indication is used to instruct the user plane functional network element to send downlink data as small packet data to the access network device.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • the present application discloses a third communication device, which is suitable for access network equipment, including: a transceiver unit used to buffer the downlink data of the terminal device in the user plane functional network element or the session management functional network element.
  • a transceiver unit used to buffer the downlink data of the terminal device in the user plane functional network element or the session management functional network element.
  • the processing unit is used to determine that the downlink data is small packet data;
  • the transceiver unit is also used to send the first indication to the terminal device.
  • the terminal device is in an inactive state, and the access network device is configured with an eDRX cycle.
  • the first instruction is used to instruct the terminal device to perform small packet data transmission.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • this application discloses a fourth communication device, which is suitable for user plane functional network elements and includes: a transceiver unit for receiving the third instruction from the session management functional network element; the transceiver unit is also used for When the cache time of the downlink data of the terminal device cached in the network element or the session management function network element reaches the end, the downlink data is sent to the access network device.
  • the third indication is used to indicate that when the buffering time of the downlink data of the terminal device cached in the user plane functional network element or the session management functional network element reaches, the downlink data is sent to the access network device and the terminal device is in an inactive state.
  • the access network device is configured with an eDRX cycle.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • this application discloses a fifth communication device, which is suitable for access and mobility management function network elements, including: a processing unit used to obtain cached terminal equipment in the user plane function network element or the session management function network element.
  • the buffering duration of downlink data; the transceiver unit is used to send the fourth information to the session management function network element.
  • the fourth information carries the cache duration.
  • the processing unit is specifically configured to obtain the cache duration of downlink data of the terminal device cached in the user plane functional network element or the session management functional network element based on the eDRX configuration of the terminal device.
  • the eDRX configuration includes the eDRX cycle configured by the access network equipment.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • this application discloses a sixth communication device, which is suitable for access and mobility management function network elements, including: a transceiver unit for receiving the fifth information from the access network device; the transceiver unit is also used for receiving the fifth information from the session; The management function network element receives the sixth information; the transceiver unit is also used to send the fourth instruction to the access network device.
  • the fifth information carries the eDRX cycle configured by the access network device when the terminal device is in an inactive state.
  • the fifth information is used to determine that the terminal equipment and the access network equipment support small packet data transmission.
  • the sixth information is used to determine that the downlink data of the terminal device cached in the user plane functional network element or the session management network element is small packet data.
  • the fourth instruction is used to instruct the access network device to transmit small packet data.
  • the fifth information also carries capability information of the terminal device. Further, the fifth information may include the capability of the terminal device to support SDT.
  • the processing unit is configured to determine, based on the capability information of the terminal device, that the user plane functional network element supports caching small packet data of the terminal device.
  • the sixth information carries the data size of the downlink data.
  • the sixth information may include indication information used to indicate that the downlink data of the terminal device cached in the user plane functional network element is small packet data, and the indication information may be determined by the session management functional network element.
  • the sixth information may include the data size of the downlink data, so that the access and mobility management function network element can determine whether the downlink data is small packet data based on the data size of the downlink data.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • this application discloses a seventh communication device, which is suitable for access network equipment and includes: a transceiver unit for sending the fifth information to the access and mobility management function network element; the transceiver unit is also used for receiving from the access network element.
  • the access and mobility management function network element receives the fourth indication.
  • the fifth information carries the eDRX cycle configured by the access network device when the terminal device is in an inactive state.
  • the fifth information is used to determine that the terminal equipment and the access network equipment support small packet data transmission.
  • the fourth instruction is used to instruct the access network device to transmit small packet data.
  • the transceiver unit is also configured to send a first instruction to the terminal device; wherein the first instruction is used to instruct the terminal device to perform small packet data transmission.
  • the first instruction is used to instruct the terminal device to perform small packet data transmission and send the second instruction to the access and mobility management function network element or the user plane function network element; wherein the second instruction is used to instruct the user plane function network element to the access and mobility management function network element.
  • the network access device sends downlink data as small packet data.
  • the transceiver unit is also used to receive the second information from the terminal device.
  • the second information is used to confirm that the terminal device can perform data transmission with the core network device, or to confirm that the terminal device can restore the connection.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • the communication device can be a terminal device, an access network device, a core network device, an access and mobility management function network element, a session management function network element, a user plane Functional network elements, etc., may include devices in these devices, such as chips, chip systems, circuits, etc., or devices that can implement related functions.
  • the communication device includes a processor, which is configured to execute instructions stored in the memory. When the instructions are executed, the above-mentioned first aspect and any feasible example thereof, the second aspect and any feasible example thereof, and the third aspect are implemented. Three aspects and any feasible examples thereof, the fourth aspect and any feasible examples thereof, the fifth aspect and any feasible examples thereof, the sixth aspect and any feasible examples thereof, and the seventh aspect and any feasible examples thereof. Communication methods in feasible examples.
  • the communication device further includes one or more of a memory and a transceiver for sending and receiving data and/or signaling.
  • embodiments of the present application disclose a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium.
  • the computer program implements the above-mentioned first aspect and any of the above when one or more processors are running.
  • embodiments of the present application disclose a computer program product.
  • the computer program product is used to store computer programs.
  • the computer is caused to execute the above-mentioned first aspect and any feasible examples thereof, the second aspect and any feasible examples thereof, the third aspect and any feasible examples thereof, the fourth aspect and Any feasible example thereof, the fifth aspect and any feasible example thereof, the sixth aspect and any feasible example thereof, and the communication method in the seventh aspect and any feasible example thereof.
  • embodiments of the present application disclose a first chip, including a processor and a memory.
  • the processor is configured to call and run instructions stored in the memory, so that the device equipped with the chip executes the above first aspect and its Any feasible example, the second aspect and any feasible example thereof, the third aspect and any feasible example thereof, the fourth aspect and any feasible example thereof, the fifth aspect and any feasible example thereof, The sixth aspect and any feasible example thereof and the communication method in the seventh aspect and any feasible example thereof.
  • embodiments of the present application disclose a second chip, including: an input interface, an output interface and a processing circuit.
  • the input interface, the output interface and the processing circuit are connected through internal connection paths.
  • the processing circuit is used to execute the above-mentioned first step.
  • the embodiment of the present application discloses a third chip, including: an input interface, an output interface, a processor, and optionally a memory.
  • the input interface, the output interface, the processor, and the memory are connected through internal connections.
  • the paths are connected, and the processor is used to execute the code in the memory.
  • the processor is used to execute the above-mentioned first aspect and any feasible example thereof, the second aspect and any feasible example thereof, the third aspect and its Any feasible example, the fourth aspect and any feasible example thereof, the fifth aspect and any feasible example thereof, the sixth aspect and any feasible example thereof, and the seventh aspect and any feasible example thereof. communication method.
  • embodiments of the present application disclose a chip system, including at least one processor, memory and interface circuit, the memory, transceiver and at least one processor are interconnected through lines, and at least one memory stores a computer program;
  • the computer program is executed by a processor to execute the above-mentioned first aspect and any feasible example thereof, the second aspect and any feasible example thereof, the third aspect and any feasible example thereof, the fourth aspect and any feasible example thereof.
  • Figure 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a paging method proposed in the prior art
  • Figure 4 is a schematic flow chart of the first communication method provided by the embodiment of the present application.
  • Figure 5 is a schematic flow chart of the second communication method provided by the embodiment of the present application.
  • Figure 6 is a schematic flow chart of the third communication method provided by the embodiment of the present application.
  • Figure 7 is a schematic flow chart of the fourth communication method provided by the embodiment of the present application.
  • Figure 8 is a schematic flow chart of the fifth communication method provided by the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • GSM global system for mobile communication
  • GPRS general packet radio service
  • 3G third generation mobile communication technology
  • code division multiple access code division multiple access
  • CDMA compact disc-to-media access
  • WCDMA wideband code division multiple access
  • UMTS universal mobile telecommunication system
  • 4G fourth generation mobile communication technology corresponding to the long-term evolution
  • Current communication systems such as long term evolution (LTE) system
  • NR new radio technology
  • 5G fifth generation
  • future communication systems such as the 6th Generation (sixth generation, 6G) systems, etc.
  • the 5G mobile communication system can also be called the next generation mobile communication system, which can be referred to as the 5G system.
  • the 5G communication system can be composed of terminal equipment, (radio) access network ((R)AN) equipment (can be called NextGen(R)AN, or simply NG-RAN) , core network equipment (core network, CN) (can be called NextGen Core, or 5GC) and data network equipment (data network, DN) (can be called NextGen Data network).
  • R radio access network
  • CN core network equipment
  • data network, DN data network equipment
  • the terminal device is a device with wireless transceiver function.
  • the terminal device can be deployed on land, indoors or outdoors, handheld, wearable or vehicle-mounted.
  • the terminal equipment can also be deployed on the water (such as ships, etc.) or in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal device can be a mobile phone (mobile phone), tablet computer (Pad), computer with wireless transceiver function, virtual reality (VR) terminal device, augmented reality (AR) terminal device, industrial control (industrial) Wireless terminals in control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • Terminal equipment can sometimes also be called user equipment (UE), terminal, access terminal, UE unit, UE station, mobile equipment, mobile station, mobile station, mobile terminal, mobile client , mobile unit, remote station, remote terminal equipment, remote unit, wireless unit, wireless communication equipment, user agent or user device, etc.
  • UE user equipment
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), or Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G or future evolved public land mobile networks (PLMN) Terminal equipment, or terminal equipment in future non-public networks (Non-Public network, NPN), etc.
  • PLMN public land mobile networks
  • NPN Non-Public network
  • the access network device may be a device used to support terminal access to the communication system, and may be a base station, a relay station or an access point. Further, it may include but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WIFI) system access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., and can also be a 5G communication system, such as an NR system The gNB, or transmission point (TRP or TP), one or a group (including multiple antenna panels) of the base station in the 5G communication system, the antenna panel,
  • eNB evolved No
  • it may also be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (DU, distributed unit), etc.
  • BBU baseband unit
  • DU distributed unit
  • it can be a wireless controller in a cloud radio access network (CRAN) scenario, a base station in a future communication network or an access network device in a future evolved PLMN network, or it can be Wearable or vehicle-mounted devices.
  • CRAN cloud radio access network
  • the main functions of access network equipment include: management of wireless resources, compression of Internet Protocol (IP) headers and encryption of user data streams, and selection of mobile management entities (MME) when user equipment is attached. , routing user plane data to the service gateway (SGW), organization and sending of paging messages, organization and sending of broadcast messages, measurement for mobility or scheduling purposes and configuration of measurement reports, etc.
  • IP Internet Protocol
  • MME mobile management entities
  • the access network equipment is similar to the base station in the traditional network. It is deployed close to the terminal equipment to provide network access functions for authorized users in specific areas, and can determine different qualities according to the user level, business needs, etc. A transmission tunnel to transmit user data.
  • the access network can manage its own resources, utilize them rationally, provide access services to terminal devices on demand, and is responsible for forwarding control signals and user data between terminal devices and the core network.
  • the core network device can be connected to one or more access network devices.
  • the core network equipment is responsible for maintaining the contract data of the mobile network, managing the network elements of the mobile network, and providing functions such as session management, mobility management, policy management, and security authentication for terminal devices.
  • network access authentication is provided for the terminal device; when the terminal device has a service request, network resources are allocated to the terminal device; when the terminal device moves, network resources are updated for the terminal device; when the terminal device When it is idle, it provides a quick recovery mechanism for the terminal device; when the terminal device is detached, it releases network resources for the terminal device; when the terminal device has business data, it provides a data routing function for the terminal device, such as in a 5G communication system , forward the uplink data to the data network device; or forward the downlink data received from the data network device to the access network device, so that the access network device sends the downlink data to the terminal device.
  • a data routing function for the terminal device, such as in a 5G communication system , forward the uplink data to the data network device; or forward the downlink data received from the data network device to the access network device, so that the access network device sends the downlink data to the terminal device.
  • core network equipment can correspond to different equipment.
  • core network equipment in the 3G communication system, it can correspond to the serving GPRS support node (SGSN) and/or the GPRS gateway support node (GGSN); in the 4G communication system, it can correspond to the MME and/or Serving gateway (S-GW); in the 5G communication system, it can correspond to the access and mobility management function (AMF) network element, the session management function (SMF) network element or User plane function (UPF) network element.
  • SGSN serving GPRS support node
  • GGSN GPRS gateway support node
  • MME Mobility Management Entity gateway
  • S-GW Serving gateway
  • AMF access and mobility management function
  • SMF Session management function
  • UPF User plane function
  • Data network equipment is used to provide business services to users.
  • the client is a terminal device and the server is a data network equipment.
  • the data network provided by the data network device may include a private network, such as a local area network.
  • the data network may also include external networks that are not controlled by the operator, such as the Internet.
  • Data networks may include proprietary networks deployed jointly by operators, such as networks that provide IP multimedia subsystem (IMS) services.
  • IMS IP multimedia subsystem
  • network slicing technology can be used to cut a physical network into multiple virtual end-to-end virtual networks.
  • each divided virtual network is logically independent, including the equipment, access technology, transmission path and core network within the virtual network.
  • each network slice is composed of an independent instantiation of a network function or a combination of functions.
  • the separation of each network slice allows different users or user groups to flexibly and dynamically implement services based on different application scenarios and needs. Custom network capabilities.
  • a network slice includes control plane function (CPF) network elements and UPF network elements.
  • the CPF network element mainly completes functions such as access authentication, security encryption, and location registration of terminal equipment, and completes the establishment, release, and modification of user plane transmission paths;
  • the UPF network element mainly completes functions such as routing and forwarding of user plane data.
  • the NG2 reference point shown in Figure 1 can be located between the control plane of the access network equipment and the control plane of the core network equipment.
  • the NG3 reference point can be located between the user plane of the access network equipment and the user plane of the core network equipment.
  • NG6 The reference point may be located between the user plane of the core network equipment and the user plane of the data network.
  • the control plane of the core network adopts a service-oriented architecture, and the interaction between control plane functional network elements adopts the method of service invocation to replace the point-to-point communication method in the traditional architecture.
  • the control plane functional network elements will open services to other control plane functional network elements for calls by other control plane functional network elements; in point-to-point communication, there will be a specific set of messages in the communication interfaces between the control plane functional network elements. , can only be used by the control plane functional network elements at both ends of the interface during communication.
  • FIG. 2 is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • the communication system may include functional entities of terminal equipment, data network equipment, (wireless) access network equipment, and core network equipment.
  • the functional entities of the core network equipment may include user plane functional network elements, which are used for packet routing and forwarding and quality of service (QoS) processing of user plane data.
  • the user plane functional network element can forward user data packets according to the routing rules of the session management functional network element. For example, uplink data is sent to the data network or other user plane functional network elements, and downlink data is forwarded to other user plane functional network elements or (R) AN network element.
  • the user plane functional network element may be a UPF network element in the 5G communication system.
  • the functional entities of the core network equipment may also include control plane functional network elements, such as authentication service functional network elements, access and mobility management functional network elements, session management functional network elements, network slice selection functional network elements, and network opening functional network elements. element, network storage function network element, policy control function Energy network element, data management network element and application function network element.
  • control plane functional network elements such as authentication service functional network elements, access and mobility management functional network elements, session management functional network elements, network slice selection functional network elements, and network opening functional network elements.
  • element network storage function network element, policy control function Energy network element, data management network element and application function network element.
  • the authentication service function network element is used for authentication services, generating keys to implement two-way authentication of terminal devices, supporting a unified authentication framework, and performing security authentication of terminal devices.
  • the authentication server can be an authentication server function (AUSF) network element in the 5G communication system.
  • AUSF authentication server function
  • Access and mobility management function network elements are used to implement access management and mobility management of terminal equipment. For example, it is responsible for the status maintenance of terminal equipment, the reachability management of terminal equipment, the forwarding of non-access-stratum (NAS) messages of non-mobility management (MM), and session management. , forwarding of SM)N2 messages, etc.
  • the access and mobility management function network element can be the AMF network element in the 5G communication system.
  • the session management function network element is used to implement session management of terminal devices, allocate resources and release resources for sessions of terminal devices.
  • resources include resource preset parameters QoS, session paths, forwarding rules, etc.
  • the session management function network element may be an SMF network element in the 5G communication system.
  • the network slice selection function network element is used to select network slices for terminal devices.
  • the network slice selection function network element may be a network slice selection function (NSSF) network element in the 5G communication system.
  • NSSF network slice selection function
  • the network opening function network element opens network functions to third parties through northbound API interfaces.
  • the network exposure function network element may be a network exposure function (NEF) network element in the 5G communication system.
  • NEF network exposure function
  • the network storage function network element is used to provide other network elements with the storage function and selection function of network function entity information.
  • the network storage function network element can be called the network function repository function (NRF) network element in the 5G communication system.
  • NRF network function repository function
  • the data management network element is used to implement context management of user subscriptions. For example, the subscription information of the terminal device is stored.
  • the data management network element can be called the unified data management (UDM) network element in the 5G communication system.
  • the policy control function network element is used to implement user policy management. Similar to the policy and charging rules function (PCRF) network element in LTE, it is mainly responsible for the generation of policy authorization, service quality and charging rules, and delivers the corresponding rules to the UPF network through the SMF network element Yuan to complete the installation of corresponding policies and rules.
  • the policy control function network element may be a policy control function (PCF) network element in the 5G communication system.
  • the application function network element can be a third-party application control platform or the operator's own equipment. Application function network elements are used to implement application management and can provide services for multiple application servers.
  • the application function network element may be an application function (AF) network element in the 5G communication system.
  • AMF, SMF, UDM, etc. are called network elements only for illustration.
  • a network element can be a network element implemented on dedicated hardware, a software instance running on dedicated hardware, or an instance of a virtualization function on an appropriate platform.
  • the above virtualization platform can be a cloud platform .
  • the above network elements may have other names, which are not limited in this application.
  • data can be transmitted between the AMF network element and the terminal device through the N1 port, and data can be transmitted between the AMF network element and the (R)AN network element through the N2 port.
  • (R)AN network elements and UPF network elements can transmit data through the N3 port
  • UPF network elements and SMF network elements can transmit data through the N4 port
  • UPF network elements and data network equipment can transmit data through the N6 port.
  • the functional entities of the above-mentioned core network can transmit data using the HTTP/TCP protocol through its service interface (serves based interface, SBI).
  • Nnssf is an interface based on NSSF services
  • Nausf is an interface based on AUSF services
  • Namf is an interface based on AMF services
  • the above N1, N2, N3, N4, and N6 can also be called NG1, NG2, NG3, NG4, and NG6.
  • the embodiments of this application do not limit the distribution form of each network element in the core network.
  • the distribution form shown in Figure 2 is only exemplary and is not limited by this application.
  • the network architecture and business scenarios described in the embodiments of this application are for the purpose of explaining the technical solutions of the embodiments of this application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of this application.
  • Those of ordinary skill in the art will know that with the network With the evolution of architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • information, signal, message, and channel can sometimes be used interchangeably. It should be noted that when the difference is not emphasized, the meanings they convey are consistent. “Of”, “corresponding, relevant” and “corresponding” can sometimes be used interchangeably. It should be noted that when the difference is not emphasized, the meanings they convey are consistent.
  • UE is often used as a terminal device for illustration, and may be referred to as a terminal for short.
  • the core network in the embodiment of this application can be understood as the core network equipment, or the network provided by the core network equipment.
  • the access network can be understood as the access network equipment, or the network provided by the access network equipment.
  • Paging used to notify terminal equipment in idle or inactive state to establish the called service, or to communicate through If the system message of the terminal equipment communication system changes, the terminal equipment needs to re-read the changed system broadcast message, or notify the terminal equipment to receive earthquake and tsunami warning system (earthquake and tsunami warning system, ETWS) information.
  • earthquake and tsunami warning system earthquake and tsunami warning system, ETWS
  • ETWS earthquake and tsunami warning system
  • DRX Discontinuous reception
  • the source of the paging message it can be divided into idle state non-connection receiving paging message (idle DRX for CN paging) configuration (can be referred to as idle DRX configuration) and non-idle state non-connection receiving paging message (inactive DRX for CN paging) RAN paging) configuration (can be referred to as inactive DRX configuration).
  • the period of time that the terminal device periodically monitors can be called the DRX cycle, for example, 1.28s or 2.56s, etc.
  • the terminal device can be awakened when the DRX cycle arrives and be used to monitor paging messages.
  • the base station sends the network default DRX configuration to the UE through system information block type 1 (SIB1).
  • SIB1 system information block type 1
  • the UE can use NAS signaling to negotiate with the core network.
  • the UE uses the specific DRX cycle configured by the core network equipment (specific DRX cycle configured by CN) and SIB1 Configure the minimum value of the default DRX cycle configured by SIB1 to monitor paging messages.
  • the base station can provide a specific period when releasing the UE to the inactive state. Specially, at this time, the inactive UE needs to use the idle DRX configuration to monitor CN paging messages.
  • Extended discontinuous reception (eDRX) technology extends the DRX cycle and increases the sleep duration of terminal equipment, thereby further reducing power consumption.
  • the configuration of idle eDRX can refer to eDRX in LTE, extending the eDRX cycle to more than 3 hours.
  • at least one paging time window (PTW) is set.
  • the terminal equipment monitors the paging channel according to the DRX cycle within the PTW in order to receive downlink data. During the rest of the time, the terminal equipment is in a sleep state and does not receive downlink data.
  • the inactive eDRX configuration only discusses the case where the eDRX cycle is not greater than 10.24s.
  • the use of the eDRX cycle is the same as the use of the DRX cycle.
  • the terminal equipment wakes up every interval of the inactive eDRX cycle to listen for paging messages.
  • Figure 3 is a schematic flow chart of a RAN paging method proposed in the prior art.
  • Figure 3 takes the access network as gNB and the terminal as UE1 as an example.
  • gNBn can be called the last serving base station (last serving gNB).
  • the last serving base station refers to the base station that releases the UE to the inactive state of RRC.
  • the final serving base station and (n-1) other gNBs other than gNBn, such as gNB1, etc., are all receiving base stations (receiving gNBs) within the RAN notification area of UE1.
  • n can be greater than or equal to 2.
  • the AMF sends the downlink data of UE1 to gNBn.
  • the gNBn can send paging messages to (n-1) receiving base stations through the Xn interface, so that (n-1) receiving base stations can initiate RAN paging, and gNBn itself also initiates RAN paging.
  • UE1 monitors its own paging message at the paging occasion (PO), then in response to the paging message, UE1 initiates an RRC connection recovery request to the base station, for example, the base station currently camping is gNB1.
  • gNB1 sends a context acquisition request to gNBn, thereby acquiring the context of UE1 from the context acquisition response sent by gNBn.
  • gNB1 may send an RRC connection recovery response to UE1 based on this context to confirm the RRC connection recovery request.
  • UE1 After UE1 establishes a connection with gNB1, UE1 sends an RRC connection recovery completion message to gNB1 to indicate that UE1 has completed the restoration of the connection state.
  • gNB1 can send a path switch message to the AMF to indicate that the switching path of UE1's access network has changed.
  • PTW can be introduced based on the eDRX technology in the idle state, so that the terminal device can enter the dormant state for a longer period of time.
  • the data that needs to be cached in the access network device can be cached in the UPF network element, and the signaling countdown time can be adjusted.
  • NG-RAN delivers the inactive eDRX configuration, such as an eDRX cycle greater than 10.24s, to the UE, it needs to inform the core network device of the eDRX configuration so that the core network device knows the next time the UE wakes up.
  • the reachable time for monitoring paging If the core network device receives data or signaling indicating to be sent to the UE, the core network device can send a message to the access network device through the N2 interface after the reachable time is reached, and the access network device can initiate RAN paging. .
  • the UE responds to the RAN paging to restore the RRC connection, and the access network device notifies the UPF to no longer cache the data of the terminal device.
  • the core network can transmit data or signaling, but in this case, the UE is required to enter Data transmission can only be carried out in the connected state.
  • the UE's RRC connection recovery process signaling has a large overhead and takes a long time, and there is a delay in the transmission of data or signaling.
  • SDT Small data transmission
  • RACH random access channel
  • Type1CG configured grant type 1
  • PUSCH physical uplink shared channel
  • the early data transmission (EDT) technology of MT in LTE allows the terminal device to transmit uplink small data packets or receive downlink small data packets without entering the connected state.
  • the UE can interact with the CN through NAS signaling to support the MT EDT capability.
  • the MME After the MME receives the downlink data size information from the S-GW, it sends a paging message to the eNB.
  • the paging message carries downlink data size information and is used to assist the eNB in determining whether MT-EDT is required.
  • the paging message can be transmitted based on the S1 application protocol (AP).
  • AP application protocol
  • the paging message sent by the eNB to the UE carries the MT EDT identifier to instruct the UE to perform a control plane-based MO EDT process.
  • EDT technology is used to support idle state MT EDT and cannot be directly reused in scenarios where inactive eDRX is greater than 10.24s.
  • the UE needs to enter the connected state for data transmission.
  • SDT technology and EDT technology can transmit data in a non-connected state, but SDT technology does not support MT SDT transmission, and EDT technology cannot be directly reused in scenarios where eDRX in the inactive state is greater than 10.24s.
  • FIG 4 is a schematic flow chart of the first communication method provided by the embodiment of the present application.
  • the communication device involved in the communication method may include terminal equipment, access network equipment, access and mobility management function network elements, session management function network elements, user plane function network elements, etc.
  • the terminal equipment is UE
  • the access network equipment is NG-RAN
  • the access and mobility management function network element is AMF
  • the session management function network element is SMF
  • the user plane function The network element is a functional entity such as UPF.
  • the core network side and the access network side do not interact with each other. Under the assumption that the access network side and terminal equipment have SDT support capabilities, the paging process initiated by the access network side is illustrated with an example. It should be understood that the downlink data of the UE can be cached in at least one UPF, and each UPF can perform the same communication method provided by this application. One UPF is used as an example in Figure 4.
  • the UE in this communication method is in an inactive state and is configured with an eDRX cycle by the NG-RAN. In some feasible examples, the eDRX cycle may be 10.24s, or may be longer than 10.24s, etc., which is not limited here.
  • the communication method includes the following steps:
  • the AMF sends the first information to the NG-RAN.
  • NG-RAN receives the first information from the AMF.
  • the first information carries the data size of the downlink data of the UE cached in the UPF or SMF, for example, DL data size info.
  • the data size of the UE's downlink data is used by NG-RAN to make an SDT decision, that is, the content in step S104, to determine whether the UE's downlink data cached in the UPF is small packet data.
  • the first information may also include the data type of downlink data, etc., which is not limited here.
  • the first information may be an N2 message for interaction between AMF and NG-RAN. And the NG-RAN in step S102, step S104 and step S108 may be the last serving base station that releases the UE to the inactive state of RRC.
  • NG-RAN determines whether the downlink data is small packet data based on the data size of the downlink data.
  • the NG-RAN determines that the downlink data is small packet data based on the data size of the downlink data, subsequent steps are performed, for example, step S106 and step S108. If the NG-RAN determines that the downlink data is not small packet data based on the data size of the downlink data, it may send an instruction not to perform data transmission of the UE to the core network, such as AMF or UPF, or may not perform subsequent steps.
  • the core network such as AMF or UPF
  • step S104 may include: if the data size of the downlink data is less than the capacity threshold, determining that the downlink data is small packet data.
  • This application does not limit the capacity threshold. It can refer to the maximum value of small packet data specified in the communication standard, or it can be determined based on the network rate and network resources of NG-RAN in the current communication system. It can be understood that in this example, determining whether the downlink data is small packet data is based on whether the data size of the downlink data is less than the capacity threshold, which can improve the accuracy of determining small packet data.
  • NG-RAN sends the first indication to the UE.
  • the UE receives the first indication from the NG-RAN.
  • the first indication may be used to instruct the UE to perform small packet data transmission.
  • the NG-RAN in step S106 may be other base stations in the RAN notification area where the UE is located, except for the last serving base station. That is to say, other base stations may first receive the first indication or a message carrying the first indication from the last serving base station, and then send another message carrying the first indication to the UE.
  • the message carrying the first indication and the other message may be understood as paging messages carrying indication information for small packet data transmission, for example, RAN paging with SDT indication. It can be understood that after determining that the downlink data is small packet data, the NG-RAN may send a first instruction to the UE so that the UE is prepared to transmit small packet data, which is beneficial to improving the success rate of communication.
  • NG-RAN sends the second instruction to the AMF or UPF.
  • the AMF receives the second indication from the NG-RAN.
  • the UPF receives the second indication from the NG-RAN.
  • the second instruction is used to instruct the UPF to send small packet data to the NG-RAN. That is to say, the downlink data (as small packet data) of the UE cached by the UPF is sent to the NG-RAN.
  • the second indication may be another N2 message for interaction between AMF and NG-RAN.
  • the AMF may also include: the AMF sending a session update request to the SMF.
  • SMF receives the session update request from AMF.
  • the SMF may be the SMF associated with the UE.
  • the session update request is used to request to update the session state of the protocol data unit (PDU) session established with the UE.
  • PDU protocol data unit
  • SMF After receiving the session update request, SMF will update the PDU session status and update the associated UPF rules so that UPF no longer caches the UE's downlink data and causes UPF to send downlink data as small packet data to NG-RAN.
  • the second indication may be an N3 message for interaction between NG-RAN and UPF. After the UPF receives the second indication, the UPF may be instructed to no longer cache the downlink data of the UE and send the downlink data as small packet data to the NG-RAN.
  • the access network device configures the eDRX cycle when the terminal device is in the inactive state
  • the NG-RAN may based on the first The data size of the downlink data carried in a message determines whether the downlink data is small packet data. If so, the NG-RAN may send a first indication to the UE to enable the UE to perform small packet data transmission. NG-RAN may also send a second instruction to AMF or UPF, so that UPF sends downlink data determined to be small packet data to NG-RAN. In this way, the access network equipment can decide whether to transmit small packet data. If so, when the terminal equipment is configured with an inactive eDRX cycle, the terminal equipment maintains the inactive state and transmits data or signaling. , saving the power consumption caused by the RRC state switching of the terminal equipment.
  • FIG. 5 is a schematic flow chart of the second communication method provided by the embodiment of the present application.
  • the communication device involved in the communication method may include terminal equipment, access network equipment, access and mobility management function network elements, session management function network elements, user plane function network elements, etc.
  • functional entities such as UE, NG-RAN, AMF, SMF, and UPF
  • the access network side can The paging process initiated by the incoming network side is described with an example, and a UPF is used as an example.
  • the UE in this communication method is in an inactive state and is configured with an eDRX cycle by the NG-RAN.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • the second communication method may include the first communication method. Before step S102, it may also include but is not limited to the following steps S100a to S100d, and step S101, wherein:
  • UPF sends a data notification message to SMF.
  • SMF receives the data notification message from UPF.
  • the data notification message for example, Data Notification, etc.
  • the data notification message can be used to indicate that the downlink data of the UE is cached in the UPF.
  • This step S100a may be sent after the downlink data of the UE is received in the UPF, or when the buffering time is reached.
  • the data notification message may carry the data size of the downlink data.
  • the SMF sends the third information to the AMF.
  • the AMF receives the third information from the SMF.
  • the third information may carry the data size of the UE's downlink data cached in the UPF or SMF.
  • the data size of the downstream data can be used to determine whether the downstream data is small packet data.
  • the third information and the following first response can be transmitted through Namf messages exchanged between AMF and SMF.
  • the third information can be Namf_MT_EnableUEReachability request, and the first response can be Namf_MT_EnableUEReachability response.
  • AMF sends the first response to SMF.
  • the first response may be a response message of the third information.
  • the first response may carry the cache duration (timer) of the downlink data. This application does not limit the cache duration, which can be determined by the core network device (for example, AMF, etc.) based on the reachable time of the UE next waking up for paging. , for example, the cache duration is greater than or equal to the UE's reachability time.
  • the first response may be used to instruct the UE's downlink data cached in the UPF to discard the downlink data when the cache duration is reached, thereby clearing the cached data in a timely manner and avoiding occupying UPF resources.
  • SMF sends a data notification response to UPF.
  • the UPF receives the data notification response from the SMF.
  • the data notification response may be a response message of the data notification message.
  • the data notification response may include a cache duration, which is used to instruct the UPF to discard the downlink data when the cache duration of the UE's downlink data reaches the time.
  • the UPF Based on the cache duration, the UPF times or counts down the cache time of the downlink data of the UE cached in the UPF.
  • step S102 can be executed before the cache duration is reached, and after step S102 is executed, step S104 and step S106 can be executed. After executing step S106 and before executing step S108, step S107 may also be included, in which the UE sends second information to the NG-RAN.
  • the NG-RAN receives the second information from the UE.
  • the second information is used to confirm that the UE can perform data transmission with the core network device, or to confirm that the UE can restore the connection.
  • the second information can be a completion message sent after initiating the RACH process for the UE and resuming the connection with the access network device, for example, RRC Resume complete.
  • the second information may be a request for the UE to resume the connection with the access network device, for example, RRC Resume request.
  • the NG-RAN receives the second information, it can confirm that the UE can communicate with the core network equipment, and then perform step S108 to send the second instruction to the AMF or UPF, so that the UPF sends the instruction in the UPF to the NG-RAN.
  • the cached UE's downlink data is used as small packet data, which is beneficial to improving the communication success rate.
  • steps S109 and S110 may also be included, wherein:
  • UPF sends small packet data to NG-RAN.
  • NG-RAN receives small packet data from UPF.
  • the UE and NG-RAN execute the small packet data transmission process.
  • This application does not limit the small packet data transmission process, which can be an SDT process based on RACH, or an SDT process based on Type1CG in PUSCH, etc.
  • the small packet data transmission process is executed. Otherwise, step S110 is no longer performed.
  • FIG. 6 is a schematic flowchart of the third communication method provided by an embodiment of the present application.
  • the communication device involved in the communication method may include terminal equipment, access network equipment, access and mobility management function network elements, session management function network elements, user plane function network elements, etc.
  • functional entities such as UE, NG-RAN, AMF, SMF, and UPF
  • the access network side can The paging process initiated by the incoming network side is described with an example, and a UPF is used as an example.
  • the UE in this communication method is in an inactive state and is configured with an eDRX cycle by the NG-RAN.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • the communication method includes but is not limited to the following steps:
  • the AMF obtains the cache duration of the downlink data of the terminal device cached in the UPF or SMF.
  • step S202 may include the AMF obtaining the cache duration of the downlink data of the terminal device cached in the UPF or SMF based on the eDRX configuration of the UE.
  • the eDRX configuration may include an eDRX cycle configured by NG-RAN.
  • the cache duration here may be the same as or different from the cache duration in Figures 4 and 5, and the cache duration may be equal to the reachable time of the UE.
  • the cache duration in Figure 6 is used to indicate the reachable time of the UE, so that data transmission can be performed when the cache duration reaches, thereby sending the UE's downlink data to the NG-RAN.
  • AMF sends fourth information to SMF.
  • the SMF receives the fourth information from the AMF.
  • the fourth information may carry the cache duration of downlink data.
  • the SMF sends the third instruction to the UPF.
  • the UPF receives the third indication from the SMF.
  • the third indication may include a cache duration, which is used to instruct the UPF to send the downlink data to the NG-RAN when the cache duration of the UE's downlink data cached in the UPF or SMF reaches the time.
  • the UPF sends the downlink data to the NG-RAN.
  • the NG-RAN receives the downlink data from the UPF.
  • NG-RAN determines whether the downlink data is small packet data.
  • step S212 is performed and the NG-RAN sends the first indication to the UE. Accordingly, the UE receives the first indication from the NG-RAN.
  • the first indication may be used to instruct the UE to perform small packet data transmission.
  • step S106 reference may be made to the description of step S106, which is not limited here.
  • the NG-RAN may send an instruction not to perform data transmission of the UE to the core network, such as AMF or UPF, or may not perform subsequent steps.
  • This application does not limit the method of determining whether the downlink data is small packet data. It can be determined whether the data size of the downlink data is less than the capacity threshold. Or it can identify whether the identifier in the downlink data is the identifier of the small packet data.
  • the 5G core network establishes one or more protocol data unit (PDU) sessions for each UE.
  • PDU protocol data unit
  • QoS quality of service
  • QFI QoS flow identity
  • QoS flows are mapped to data radio bearers (DRBs) in the access wireless access network. Therefore, whether the DRB carrying downlink data is the DRB associated with SDT can be obtained through the QFI corresponding to the QoS flow.
  • the DRB associated with SDT is the DRB associated with SDT. , to determine whether the data in the QoS flow is small packet data. If the DRB corresponding to the QoS flow is the DRB associated with the SDT, determine whether the data in the QoS flow is small packet data.
  • the AMF when the access network device configures the eDRX cycle when the terminal device is in the inactive state, the AMF first obtains the cache duration of the UE's downlink data cached in the UPF or SMF. When the cache duration of the UE's downlink data cached in the UPF reaches the time, the UPF can consider that the UE is reachable and send the downlink data to the NG-RAN. Then NG-RAN determines whether the downlink data is small packet data. If yes, a first instruction is sent to the UE to instruct the UE to perform small packet data transmission.
  • the access network device can decide to transmit the downlink data as small packet data when the downlink data of the terminal device is cached, so that when the terminal device is configured with an inactive eDRX cycle, the terminal device maintains the inactive state and Transmitting data or signaling saves the power consumption caused by RRC state switching of terminal equipment.
  • step S202 it may also include: UPF sending a data notification message to SMF.
  • SMF receives the data notification message from UPF.
  • the data notification message for example, Data Notification, etc.
  • the data notification message can be used to indicate that the downlink data of the UE is cached in the UPF.
  • This step may refer to the description of step S100a, and may be sent after the downlink data of the UE is received in the UPF, or when the cache duration is reached, etc., which will not be described again here.
  • step S202 it may also include: the SMF sending a first request to the AMF.
  • the AMF receives the first request from the SMF.
  • the first request may request the AMF to obtain the cache duration of downlink data of the UE.
  • the first request and the above-mentioned fourth information can be transmitted through Namf messages exchanged between AMF and SMF.
  • the first request can be Namf_MT_EnableUEReachability request
  • the fourth information can be Namf_MT_EnableUEReachability response.
  • step S206 it may also include: the UPF timing or counting down the cache time of the downlink data of the UE cached in the UPF based on the cache duration.
  • step S212 it may also include: the UE and NG-RAN executing a small packet data transmission process.
  • step S110 may also include: the UE and NG-RAN executing a small packet data transmission process.
  • the communication device involved in the communication method may include terminal equipment, access network equipment, access and mobility management function network elements, session management function network elements, user plane function network elements, etc.
  • functional entities such as UE, NG-RAN, AMF, SMF and UPF can be used to assume that the core network side and the access network side can interact with the SDT support capabilities of the terminal equipment and the access network side.
  • the paging process initiated by the core network side is explained with an example, and a UPF is used as an example.
  • the UE in this communication method is in an inactive state and is configured with an eDRX cycle by the NG-RAN.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • the communication method may include the following steps:
  • NG-RAN sends the fifth information to the AMF.
  • the AMF receives fifth information from the NG-RAN.
  • the fifth information can be an N2 message for interaction between AMF and NG-RAN.
  • the N2 message can be a newly defined message, or it can be an existing message, for example, a message obtained by improving RRC INACTIVE TRANSITION REPORT.
  • the fifth information may carry the eDRX cycle configured by NG-RAN when the UE is in the inactive state, or may include capability information of the UE. Further, the fifth information may include the UE's ability to support SDT.
  • the fifth information may be used to instruct the AMF that the NG-RAN supports SDT as the target access network device, which is not limited here.
  • the fifth information is used to determine whether the UE and NG-RAN support small packet data transmission. It can also be used to instruct the AMF to calculate the reachable time of the UE, determine whether the UPF caches the downlink data of the UE, etc. This application does not limit the method for determining that the UE and NG-RAN support small packet data transmission.
  • the AMF can determine whether the UE supports small packet data transmission based on the UE's capability information. If the fifth information does not carry the UE's capability information, the AMF may obtain the UE's capability information through the UE's context information or other information. AMF can also determine whether NG-RAN supports small packet data transmission through previously received N2 messages, such as NG Setup, etc. Or it is determined that the NG-RAN supports small packet data transmission by indicating that the NG-RAN indicated in the fifth information is a target access network device that supports SDT.
  • the AMF receives the sixth information from the SMF.
  • the SMF sends the sixth information to the AMF.
  • the sixth information may be used to determine that the downlink data of the UE cached in the UPF is small packet data.
  • the sixth information may include indication information used to indicate that the downlink data of the UE cached in the UPF is small packet data, and the indication information may be obtained by SMF judgment.
  • the sixth information may include the data size of the downlink data, so that the AMF can determine whether the downlink data is small packet data based on the data size of the downlink data.
  • the method for the SMF and AMF to determine whether the downlink data is small packet data may refer to the description of step S104, which will not be described again here.
  • the AMF sends a fourth instruction to the NG-RAN.
  • the NG-RAN receives the fourth indication from the AMF.
  • the fourth indication may be used to instruct NG-RAN to perform small packet data transmission.
  • a fourth indication may be sent to the NG-RAN, so that the small packet data of the UE buffered in the UPF or SMF may be sent to the UE through the NG-RAN.
  • the core network equipment can decide whether to transmit small packet data. If so, when the terminal equipment is configured with an inactive eDRX cycle, the terminal equipment maintains the inactive state and transmits data or signaling. This saves the power consumption caused by the RRC state switching of the terminal equipment.
  • FIG. 8 is a schematic flowchart of the fifth communication method provided by an embodiment of the present application.
  • the communication device involved in the communication method may include terminal equipment, access network equipment, access and mobility management function network elements, session management function network elements, user plane function network elements, etc.
  • functional entities such as UE, NG-RAN, AMF, SMF and UPF can be used to assume that the core network side and the access network side can interact with the SDT support capabilities of the terminal equipment and the access network side.
  • the paging process initiated by the core network side is explained with an example, and a UPF is used as an example.
  • the UE in this communication method is in an inactive state and is configured with an eDRX cycle by the NG-RAN.
  • the eDRX cycle may be 10.24s, or longer than 10.24s, etc., which is not limited here.
  • the fifth communication method may include the fourth communication method. Before step S302, it may also include but is not limited to the following steps S300a, step S300b and step S301, wherein:
  • S300a, NG-RAN and AMF determine the eDRX parameters during the UE registration process.
  • the eDRX parameters may include the eDRX cycle, etc., which are not limited here.
  • the AMF sends the capability information when the UE is in the inactive state to the NG-RAN.
  • NG-RAN receives the capability information when the UE is in the inactive state from the AMF.
  • the capability information when the UE is in the inactive state may include the SDT capability when the UE is in the inactive state, etc., which is not limited here.
  • NG-RAN determines the eDRX configuration when releasing the UE to the inactive state and the inactive state.
  • NG-RAN may determine whether to release the UE to the inactive state during the historical usage period of the UE, or may determine whether to release the UE to the inactive state based on the communication quality of the NG-RAN, etc., which are not limited here.
  • the eDRX configuration in the inactive state may include the eDRX cycle, etc., and is not limited here.
  • steps S303a to S303c may also be included, wherein:
  • AMF sends a second request to SMF.
  • the SMF receives the second request from the AMF.
  • the second request may be used to request to update the PDU session.
  • the second request and the following second response as the response message of the second request can be transmitted through Namf messages interacted between AMF and SMF.
  • the second request can be Namf_PDUSession_UpdateSMContext request
  • the second response can be Namf_PDUSession_UpdateSMContext. response.
  • S303b, SMF and UPF perform session updates.
  • S303c SMF sends the second response to AMF.
  • the AMF receives a second response from the SMF.
  • step S307 may also be included, in which the NG-RAN releases the UE to an inactive state.
  • step S304 it may also include: UPF sending a data notification message to SMF.
  • SMF receives the data notification message from UPF.
  • step S100a the description of step S100a, which will not be described again here.
  • the SMF receives the first response from the AMF.
  • the first response may be a response message of the sixth information.
  • the first response can carry the cache duration of downlink data. Please refer to the steps. Description of S100c.
  • the first response may be used to instruct the UE's downlink data cached in the UPF to discard the downlink data when the cache duration is reached, thereby clearing the cached data in a timely manner and avoiding occupying UPF resources.
  • the UPF receives the data notification response from the SMF.
  • the data notification response may be a response message to the data notification message.
  • the data notification response may include a cache duration, which is used to instruct the UPF to discard the downlink data when the cache duration of the UE's downlink data reaches.
  • step S306 it may also include: NG-RAN sending a first indication to the UE; and NG-RAN sending a second indication to the AMF or UPF.
  • the UE receives the first indication from the NG-RAN.
  • the AMF receives the second indication from the NG-RAN, or the UPF receives the second indication from the NG-RAN.
  • the first instruction may be used to instruct the UE to perform small packet data transmission. For this step, reference may be made to the description of step S106 and step S108, which will not be described again here.
  • the NG-RAN after the NG-RAN sends the first indication to the UE and before the NG-RAN sends the second indication to the AMF or UPF, it may also include: the UE sending the second information to the NG-RAN.
  • the NG-RAN receives the second information from the UE.
  • the second information is used to confirm that the UE can perform data transmission with the core network device, or to confirm that the UE can restore the connection.
  • step S107 For this step, reference may be made to the description of step S107, which will not be described again here.
  • the NG-RAN after the NG-RAN sends the second indication to the AMF or UPF, it may also include: the UPF sending the small packet data to the NG-RAN.
  • NG-RAN receives small packet data from UPF.
  • the UPF may also include: the UE and the NG-RAN executing a small packet data transmission process.
  • the UE may also include: the UE and the NG-RAN executing a small packet data transmission process.
  • step S110 for this step, reference may be made to the description of step S110, which will not be described again here.
  • the communication device may include a transceiver unit 101 and a processing unit 102.
  • the transceiver unit 101 may be a device with signal input (reception) or output (transmission), and is used for signal transmission with other network devices or other devices in the device.
  • the processing unit 102 may be a device with processing functions, and may include one or more processors.
  • the processor may be a general-purpose processor or a special-purpose processor, etc.
  • the processor may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control devices (such as host nodes, relay nodes or chips, etc.), execute software programs, and process data of software programs.
  • the communication device may include a terminal device, an access network device, an access and mobility management function network element, a session management function network element, and a user plane function network element, and may be applied to at least one of the communication methods in Figures 4 to 8 above. Example.
  • access network equipment includes:
  • the transceiver unit 101 is configured to receive first information from the access and mobility management function network element; wherein the first information carries the data size of the downlink data of the terminal device cached in the user plane function network element or the session management function, and the terminal device It is in an inactive state and the access network device is configured with an eDRX cycle;
  • the processing unit 102 is configured to determine that the downlink data is small packet data based on the data size of the downlink data;
  • the transceiver unit 101 is also used to send a first instruction to the terminal device; wherein the first instruction is used to instruct the terminal device to perform small packet data transmission;
  • the access network device sends a second instruction to the access and mobility management function network element or the user plane function network element, where the second instruction is used to instruct the user plane function network element to send small packet data to the access network device.
  • the transceiver unit 101 of the access network device is also used to receive second information from the terminal device; wherein the second information is used to confirm that the terminal device can perform data transmission with the core network device. , or used to confirm the terminal device to restore the connection.
  • the access and mobility management functional network elements include:
  • the transceiver unit 101 is configured to receive third information from the session management function network element, where the third information carries the data size of the downlink data of the terminal device cached in the user plane function network element or the session management function network element, and the terminal device is in a non- Activated state, and the access network device is configured with the eDRX cycle;
  • the transceiver unit 101 is also configured to send first information to the access network device, where the first information carries the data size of the downlink data, and the data size of the downlink data can be used to determine whether the downlink data is small packet data.
  • the terminal device includes:
  • the transceiver unit 101 is configured to receive a first indication from the access network device; wherein the first indication is used to instruct the terminal device to perform small packet data transmission, the terminal device is in an inactive state, and the access network device is configured with an eDRX cycle.
  • the transceiver unit 101 of the terminal device is also used to send second information to the access network device; wherein the second information is used to confirm that the terminal device can perform data transmission with the core network device. , or used to confirm the terminal device to restore the connection.
  • the session management function network element includes:
  • the transceiver unit 101 is configured to send third information to the access and mobility management function network element; wherein the third information carries the data size of the downlink data of the terminal device cached in the user plane function network element or the session management function network element,
  • the terminal device is in an inactive state, and the access network device is configured with an eDRX cycle.
  • the eDRX period is greater than or equal to 10.24s.
  • the transceiver unit 101 included in the user plane functional network element is used to send a data notification message to the session management functional network element.
  • the transceiver unit 101 included in the session management function network element is used to receive the data notification message from the user plane function network element.
  • the transceiver unit 101 included in the user plane functional network element is used to send the first response to the session management functional network element.
  • the transceiver unit 101 included in the session management function network element is used to receive the first response from the user plane function network element.
  • the transceiver unit 101 included in the session management function network element is used to send a data notification response to the user plane function network element.
  • the transceiver unit 101 included in the user plane functional network element is used to receive a data notification response from the session management functional network element.
  • the processing unit 102 in the user plane functional network element is used to time or count down the cache duration of the downlink data of the terminal device cached in the user plane functional network element based on the cache duration.
  • the transceiver unit 101 of the access and mobility management function network element is configured to send the first information to the access network device when the cache duration reaches.
  • the processing unit 102 in the user plane functional network element is used to send downlink data determined to be small packet data to the access network device.
  • the access network equipment includes:
  • the transceiver unit 101 is configured to receive downlink data from the user plane functional network element when the buffering time of the downlink data of the terminal device cached in the user plane functional network element or the session management functional network element reaches; wherein, the terminal device is in an inactive state, And the access network device is configured with an eDRX cycle;
  • the processing unit 102 is used to determine that the downlink data is small packet data
  • the transceiver unit 101 is also configured to send a first instruction to the terminal device; wherein the first instruction is used to instruct the terminal device to perform small packet data transmission.
  • user plane functional network elements include:
  • the transceiver unit 101 is configured to receive a third indication from the session management function network element; wherein the third indication is used to indicate that when the cache duration of the downlink data of the terminal device cached in the user plane function network element or the session management function network element reaches, Send downlink data to the access network device, the terminal device is in an inactive state, and the eDRX cycle is configured by the access network device;
  • the transceiver unit 101 is also configured to send downlink data to the access network device when the buffering time of the downlink data of the terminal device cached in the user plane functional network element or the session management functional network element reaches.
  • the access and mobility management functional network elements include:
  • the processing unit 102 is configured to obtain the cache duration of the downlink data of the terminal device cached in the user plane functional network element or the session management functional network element;
  • the transceiver unit 101 is configured to send fourth information to the session management function network element; wherein the fourth information carries the cache duration.
  • the processing unit 102 of the access and mobility management function network element is specifically used to obtain the user plane function network element or the session management function network element based on the eDRX configuration of the terminal device.
  • the eDRX configuration includes the eDRX cycle configured by the access network equipment.
  • the eDRX period is greater than or equal to 10.24s.
  • the transceiver unit 101 included in the user plane functional network element is used to send a data notification message to the session management functional network element.
  • the transceiver unit 101 included in the session management function network element is used to receive data from the user plane function network element notification message.
  • the transceiver unit 101 included in the session management function network element is used to send the first request to the access and mobility management function network element.
  • the transceiver unit 101 included in the access and mobility management function network element is used to receive the first request from the session management function network element.
  • the processing unit 102 in the user plane functional network element is configured to time or count down the cache duration of the downlink data of the terminal device cached in the user plane functional network element based on the cache duration.
  • the access and mobility management functional network elements include:
  • the transceiver unit 101 is configured to receive fifth information from the access network device; wherein the fifth information carries the eDRX cycle configured when the access network device is the terminal device in an inactive state, and the fifth information is used to determine the terminal device and access Network equipment supports small packet data transmission;
  • the transceiver unit 101 is also configured to receive sixth information from the session management function network element; wherein the sixth information is used to determine that the downlink data of the terminal device cached in the user plane function network element or the session management network element is small packet data;
  • the transceiver unit 101 is also configured to send a fourth instruction to the access network device; wherein the fourth instruction is used to instruct the access network device to perform small packet data transmission.
  • the fifth information also carries capability information of the terminal device. Further, the fifth information may include the capability of the terminal device to support SDT.
  • the processing unit 102 of the access and mobility management function network element is configured to determine, based on the capability information of the terminal device, that the user plane function network element supports caching small packet data of the terminal device.
  • the sixth information carries the data size of the downlink data.
  • the sixth information may include indication information used to indicate that the downlink data of the terminal device cached in the user plane functional network element is small packet data, and the indication information may be determined by the session management functional network element.
  • the sixth information may include the data size of the downlink data, so that the access and mobility management function network element can determine whether the downlink data is small packet data based on the data size of the downlink data.
  • the access network equipment includes:
  • the transceiver unit 101 is used to send the fifth information to the access and mobility management function network element; wherein the fifth information carries the eDRX cycle configured when the access network equipment is in the inactive state of the terminal equipment, and the fifth information is used to determine Terminal equipment and access network equipment support small packet data transmission;
  • the transceiver unit 101 is also configured to receive a fourth instruction from the access and mobility management function network element; wherein the fourth instruction is used to instruct the access network device to perform small packet data transmission.
  • the transceiver unit 101 of the access network device is also configured to send a first indication to the terminal device; to send a third instruction to the access and mobility management function network element or the user plane function network element.
  • the first instruction is used to instruct the terminal device to transmit small packet data
  • the second instruction is used to instruct the user plane functional network element to send downlink data as small packet data to the access network device.
  • the transceiver unit 101 of the access network device is also configured to receive the second information from the terminal device.
  • the second information is used to confirm that the terminal device can perform data transmission with the core network device, or to confirm that the terminal device can restore the connection.
  • the eDRX period is greater than or equal to 10.24s.
  • the transceiver unit 101 included in the user plane functional network element is used to send a data notification message to the session management functional network element.
  • the transceiver unit 101 included in the session management function network element is used to receive the data notification message from the user plane function network element.
  • the transceiver unit 101 included in the user plane function network element is used to send the first response to the session management function network element.
  • the transceiver unit 101 included in the session management function network element is used to receive the first response from the user plane function network element.
  • the transceiver unit 101 included in the session management function network element is used to send a data notification response to the user plane function network element.
  • the transceiver unit 101 included in the user plane functional network element is used to receive a data notification response from the session management functional network element.
  • the processing unit 102 included in the user plane functional network element is configured to time the cache duration of the downlink data of the terminal device cached in the user plane functional network element based on the cache duration or Countdown.
  • the transceiver unit 101 included in the access and mobility management function network element is configured to send a fourth indication to the access network device when the cache duration arrives.
  • the processing unit 102 included in the user plane functional network element is used to send downlink data determined to be small packet data to the access network device.
  • the processing unit 102 included in the access network device and the access and mobility management function network element is used to determine eDRX parameters during the registration process of the terminal device.
  • eDRX parameters can include eDRX cycle, etc., which will not be done here. limited.
  • the transceiver unit 101 included in the access and mobility management function network element is used to send capability information when the terminal device is in an inactive state to the access network device.
  • the transceiver unit 101 included in the access network device is configured to receive capability information when the terminal device is in an inactive state from the access and mobility management function network element.
  • the capability information when the terminal device is in the inactive state may include the SDT capability when the UE is in the inactive state, etc., which is not limited here.
  • the processing unit 102 included in the access network device is used to determine the eDRX configuration when releasing the terminal device to the inactive state and the inactive state.
  • the transceiver unit 101 included in the access and mobility management function network element is used to send the second request to the session management function network element.
  • the session management function network element receives the second request from the transceiver unit 101 included in the access and mobility management function network element.
  • the second request may be used to request to update the PDU session.
  • the processing unit 102 and the transceiver unit 101 included in the session management function network element and the user plane function network element are used to perform session updates.
  • the transceiver unit 101 included in the session management function network element is used to send the second response to the access and mobility management function network element.
  • the transceiver unit 101 included in the access and mobility management function network element receives the second response from the session management function network element.
  • the transceiver unit 101 included in the access network device is used to release the terminal device to the inactive state.
  • each unit may also correspond to the corresponding description with reference to at least one embodiment in FIGS. 4 to 8 .
  • the communication device 1000 may include one or more processors 1001.
  • the processors 1001 may also be called processing units and may implement corresponding control functions.
  • the processor 1001 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, and process Software program data.
  • the processor 1001 may also store instructions 1003, and the instructions 1003 may be executed by the processor 1001, so that the communication device 1000 executes the communication method described in the above method embodiment.
  • the processor 1001 may include a transceiver unit for implementing receiving and transmitting functions.
  • the transceiver unit may be a transceiver circuit, an interface, an interface circuit, or a communication interface.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the communication device 1000 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing communication method embodiment.
  • the communication device 1000 may include one or more memories 1002, on which instructions 1004 may be stored, and the instructions 1004 may be executed on the processor 1001, so that the communication device 1000 executes the communication method described in the above method embodiment.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor 1001.
  • the processor 1001 and the memory 1002 can be provided separately or integrated together. For example, the corresponding relationship described in the above method embodiment may be stored in the memory 1002 or in the processor 1001.
  • the communication device 1000 may also include a transceiver 1005 and/or an antenna 1006.
  • the processor 1001 may be called a processing unit and controls the communication device 1000.
  • the transceiver 1005 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver device or a transceiver module, etc., and is used to implement transceiver functions.
  • the communication device 1000 in the embodiment of the present application may be used to perform the steps described in at least one communication method in FIGS. 4 to 8 in the embodiment of the present application.
  • the communication device 1000 may be a terminal device, a device in the terminal device (for example, a chip, a chip system, or a circuit), or a device that can be used in conjunction with the terminal device.
  • the transceiver 1005 is used to perform the operations performed by the transceiver unit 101 in the above embodiment.
  • the transceiver 1005 is also used to send information to other communication devices other than the communication device.
  • the above terminal device can also be used to perform various communication methods performed by the terminal device in the above method embodiments shown in Figures 4 to 8, which will not be described again.
  • the communication device 1000 may be a network device, such as an access network device or a core network device, or a core network device.
  • the access and mobility management function network elements, session management function network elements, user plane function network elements, etc. in the equipment may be devices in the network equipment (for example, chips, or chip systems, or circuits), or they may be capable of A device used with network equipment.
  • the transceiver 1005 is used to receive information from other communication devices other than the communication device 1000.
  • the transceiver 1005 is also used to perform the operations performed by the transceiver unit 101 in the above embodiment.
  • the above network device can also be used to perform various communication methods performed by the network device in the above method embodiments shown in Figures 4 to 8, which will not be described again.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 10 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include a storage component for storing data and/or instructions;
  • ASIC mobile station modem
  • Embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program implements one or more steps in any of the above communication methods when one or more processors are run.
  • the embodiment of the present application also provides a computer program product, and the computer program product is used to store the computer program.
  • the computer program product is used to store the computer program.
  • the computer or processor is caused to perform one or more steps in any of the above communication methods. If each component module of the above-mentioned equipment is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • An embodiment of the present application also discloses a communication system, which includes a terminal device and a network device.
  • a communication system which includes a terminal device and a network device.
  • Embodiments of the present application also provide a first chip, including a processor and a memory.
  • the processor is configured to call and run instructions stored in the memory, so that the device installed with the chip executes one or more of the above communication methods. step.
  • Embodiments of the present application also provide a second chip, including: an input interface, an output interface and a processing circuit, wherein the input interface, the output interface and the processing circuit are connected through internal connection paths, and the processing circuit is used to perform any of the above communication methods. one or more steps in .
  • Embodiments of the present application also provide a third chip, including: an input interface, an output interface, a processor, and optionally a memory, wherein the input interface, the output interface, the processor, and the memory are connected through an internal connection path.
  • the processor is used to execute the code in the memory. When the code is executed, the processor is used to execute one or more steps in any of the above communication methods.
  • Embodiments of the present application also provide a chip system.
  • the chip system includes at least one processor, a memory and an interface circuit.
  • the memory, transceiver and at least one processor are interconnected through lines.
  • At least one memory stores instructions; the instructions are executed by the processor.
  • the access network equipment or the core network equipment decides whether to transmit small packet data. If so, when the terminal equipment is configured with an inactive eDRX cycle, the terminal The device remains in an inactive state and transmits data or signaling, saving the power consumption caused by the RRC state switching of the terminal device.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory can be a hard disk drive (HDD), a solid-state drive (SSD), a read-only memory (ROM), or a programmable ROM.
  • PROM erasable programmable read-only memory
  • EPROM electrically erasable programmable read-only memory
  • flash memory volatile memory
  • Volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static RAM static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced Synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory direct ram bus RAM, DR RAM
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • Functions may be stored in a computer-readable storage medium when implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the modules/units in the device of the embodiment of the present application can be merged, divided and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置及存储介质。其中,通信方法可包括:接入网设备从接入和移动性管理功能网元接收第一信息,第一信息携带有用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的数据大小,终端设备处于非激活态且被接入网设备配置了扩展的非连续接收周期;接入网设备基于下行数据的数据大小确定下行数据为小包数据;接入网设备向终端设备发送第一指示,以指示终端设备进行小包数据传输;接入网设备向接入和移动性管理功能网元或者用户面功能网元发送第二指示,以指示用户面功能网元向接入网设备发送小包数据。采用本申请实施例,能够支持终端设备维持非激活态进行数据或者信令的传输,可节省终端设备的功耗。

Description

通信方法、装置及计算机可读存储介质
本申请要求于2022年09月16日提交中国国家知识产权局、申请号为202211131326.9、申请名称为“通信方法、装置及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置及计算机可读存储介质。
背景技术
为了节省用户终端(user equipment,UE)监听寻呼(paging)消息功耗,可以采用非连续接收(discontinuous reception,DRX)技术,按照DRX周期定期监听寻呼消息。进一步的,可采用扩展的非连续接收(extended discontinuous reception,eDRX)技术,延长了监听寻呼消息的周期,增加了UE的休眠时长,从而进一步降低电能的消耗。
目前,非激活(INACTIVE)态的eDRX技术中讨论了eDRX周期不大于10.24s的情况,eDRX周期的使用和DRX周期的使用相同,UE每隔INACTIVE eDRX周期监听寻呼消息,在此期间,网络发送给UE的数据或者信令都直接缓存到接入网(radio access network,RAN)中,在RAN寻呼后,UE与RAN建立无线资源控制(radio resource control,RRC)连接后,RAN将缓存的数据或者信令发送给UE。对于大于10.24s的情况,为避免RAN设备需要缓存的数据过大,或者网络发送给UE的信令超时,可以将UE的数据缓存到用户面功能(user plane function,UPF)网元,调整信令计时时间。在到达UE的寻呼监听时机前,如果存在需要发送给终端设备的数据或者信令,核心网(core network,CN)设备通过N3/N2接口发送消息给接入网,启动RAN寻呼。终端设备响应该RAN寻呼,并请求恢复无线资源控制(radio resource control,RRC)连接,在UE和RAN完成RRC连接恢复后,RAN通知UPF不再缓存终端设备的数据,进行数据或者信令的传输,但这种方法会导致数据或者信令的传输存在一定延迟,并且RRC连接恢复过程信令的开销较大。
小包数据传输(small data transmission,SDT)技术和数据早传(early data transmission,EDT)技术可以在UE维持非连接态下进行数据或者信令的传输,节省RRC状态转换带来的信令和功耗开销,但SDT技术不支持MT SDT传输,EDT技术无法直接复用到非激活态的eDRX大于10.24s的场景下。
发明内容
本申请实施例公开了一种通信方法、装置及计算机可读存储介质,能够支持终端设备维持非激活态进行数据或者信令的传输,可节省终端设备进行RRC状态切换带来的功耗。
第一方面,本申请实施例公开了第一种通信方法,包括:接入网设备从接入和移动性管理功能网元(例如,接入和移动性管理功能(access and mobility management function,AMF)网元)接收第一信息;接入网设备基于下行数据的数据大小,确定下行数据为小包数据;接入网设备向终端设备发送第一指示;接入网设备向接入和移动性管理功能网元或者用户面功能网元发送第二指示。
其中,第一信息携带有用户面功能网元(例如,用户面功能(user plane function,UPF)网元)或会话管理功能(例如,(session management function,SMF)网元)中缓存的终端设备的下行数据的数据大小。终端设备处于非激活态,且被接入网设备配置了eDRX周期。第一指示用于指示终端设备进行小包数据传输,第二指示用于指示用户面功能网元向接入网设备发送小包数据。
可以理解,通过实施第一种通信方法,可以由接入网设备决策是否进行小包数据传输,在是的情况下,使得在终端设备配置了非激活态eDRX周期的情况下,终端设备维持非激活态并进行数据或者信令的传输,节省了终端设备进行RRC状态切换带来的功耗。
在本申请实施例中,与核心网设备进行通信的接入网设备可以为最后服务基站,与终端设备进行通信的接入网设备可以为接入网通知区域内除最后服务基站之外的接收基站。该接收基站可以与最后服务基站进行交互,以存储终端设备的上下文,并与核心网设备进行交互。
在一些可行的示例中,第一信息和第二指示可以为接入和移动性管理功能网元和接入网设备进行交互 的一种N2消息。在接入网设备向接入和移动性管理功能网元发送第二指示之后,还可以包括:接入管理功能网元向会话管理功能网元发送会话更新请求。相应地,会话管理功能网元从接入管理功能网元接收会话更新请求。
其中,会话管理功能网元可以为与终端设备关联的会话管理功能网元。会话更新请求用于请求更新与UE建立的协议数据单元(protocol data unit,PDU)会话的会话状态。会话管理功能网元接收到会话更新请求之后,会更新PDU会话状态,并更新关联的UPF规则,使得UPF不再缓存UE的下行数据,并使得UPF向接入网设备发送作为小包数据的下行数据。
在另一些可行的示例中,第二指示可以为用户面功能网元和接入网设备进行交互的一种N3消息。在用户面功能网元接收到第二指示之后,可以指示用户面功能网元不再缓存终端设备的下行数据,并向接入网设备发送作为小包数据的下行数据。
在一些可行的示例中,在接入网设备向接入和移动性管理功能网元或者用户面功能网元发送第二指示之前,还包括:接入网设备从终端设备接收第二信息。其中,第二信息用于确认终端设备能与核心网设备进行数据传输,或者用于确认终端设备进行恢复连接。如此,在接入网设备接收到第二信息之后,可以向接入和移动性管理功能网元或者用户面功能网元发送第二指示,利于提高通信的成功率。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
在一些可行的示例中,接入网设备基于下行数据的数据大小,确定下行数据为小包数据包括:若下行数据的数据大小小于容量阈值,则确定下行数据为小包数据。
本申请对于容量阈值不做限定,可以参照通信标准中规定的小包数据的最大值,或者可以基于当前通信***中接入网设备的网络速率、网络资源等进行确定。可以理解,在该示例中,通过下行数据的数据大小是否小于容量阈值,来确定该下行数据是否为小包数据,可提高确定小包数据的准确率。
第二方面,本申请实施例公开了第二种通信方法,包括:接入和移动性管理功能网元从会话管理功能网元接收第三信息;接入和移动性管理功能网元向接入网设备发送第一信息。
其中,第三信息携带有用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的数据大小。第一信息携带有下行数据的数据大小,该下行数据的数据大小可用于确定该下行数据是否为小包数据。终端设备处于非激活态,且被接入网设备配置了eDRX周期。如此,接入网设备可以基于下行数据的数据大小确定该下行数据是否为小包数据,从而可以由接入网设备决策是否进行小包数据传输,在是的情况下,使得在终端设备配置了非激活态eDRX周期的情况下,终端设备维持非激活态并进行数据或者信令的传输,节省了终端设备进行RRC状态切换带来的功耗。
在一些可行的示例中,在接入和移动性管理功能网元向接入网设备发送第一信息之后,还包括:接入和移动性管理功能网元从接入网设备接收第二指示;其中,第二指示用于指示用户面功能网元向接入网设备发送小包数据。
在一些可行的示例中,在接入和移动性管理功能网元从接入网设备接收第二指示之后,还包括:接入和移动性管理功能网元向会话管理功能网元发送会话更新请求。其中,会话更新请求用于请求更新与终端设备建立的PDU会话的会话状态。会话管理功能网元接收到会话更新请求之后,会更新PDU会话状态,并更新关联的UPF规则,使得用户面功能网元不再缓存终端设备的下行数据,并使得用户面功能网元向接入网设备发送作为小包数据的下行数据。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
第三方面,本申请实施例公开了第三种通信方法,包括:在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,接入网设备从用户面功能网元接收下行数据;接入网设备确定下行数据为小包数据;接入网设备向终端设备发送第一指示。
其中,终端设备处于非激活态,且被接入网设备配置了eDRX周期。第一指示用于指示终端设备进行小包数据传输。如此,在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,用户面功能网元向接入网设备发送该下行数据。然后可以由接入网设备决策是否进行小包数据传输,在是的情况下,使得在终端设备配置了非激活态eDRX周期的情况下,终端设备维持非激活态并进行数据或者信令的传输,节省了终端设备进行RRC状态切换带来的功耗。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
本申请对于确定下行数据是否为小包数据的方法不做限定,可以确定该下行数据的数据大小是否小于容量阈值。或者可以识别下行数据中的标识是否为小包数据的标识。例如,5G核心网为每个终端设备建 立一个或多个PDU会话,在PDU会话中通过服务质量(quality of service,QoS)流标识符(QoS flow identity,QFI)来识别QoS流。QoS流在接入无线接入网络中映射到数据无线承载(data radio bearer,DRB),因而可通过QoS流对应的QFI来获取承载下行数据的DRB是否为SDT关联的DRB,来判决该QoS流内的数据是否为小包数据。若QoS流对应的DRB为SDT关联的DRB,则确定该QoS流内的数据是否为小包数据。
第四方面,本申请实施例公开了第四种通信方法,包括:用户面功能网元从会话管理功能网元接收第三指示;用户面功能网元在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,向接入网设备发送下行数据。
其中,第三指示用于指示在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,向接入网设备发送下行数据,终端设备处于非激活态,且被接入网设备配置了eDRX周期。如此,可以在下行数据的缓存时长到达时向接入网设备发送下行数据,以使接入网设备确定该下行数据是否为小包数据,在是的情况下,使得在终端设备配置了非激活态eDRX周期的情况下,终端设备维持非激活态并进行数据或者信令的传输,节省了终端设备进行RRC状态切换带来的功耗。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
第五方面,本申请实施例公开了第五种通信方法,包括:接入和移动性管理功能网元获取用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长;接入和移动性管理功能网元向会话管理功能网元发送第四信息。
其中,第四信息携带有缓存时长。第三方面、第四方面和第五方面中的缓存时长可以与上述的第一方面、第二方面、后述的第六方面和第七方面的缓存时长不同,此处的缓存时长用于指示终端设备的可达时间,从而用户面功能网元可在缓存时长到达时进行数据传输或信令传输。如此,在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,用户面功能网元可以向接入网设备发送该下行数据,以使接入网设备决策是否进行小包数据传输,在是的情况下,使得在终端设备配置了非激活态eDRX周期的情况下,终端设备维持非激活态并进行数据或者信令的传输,节省了终端设备进行RRC状态切换带来的功耗。
在一些可行的示例中,接入和移动性管理功能网元基于终端设备的eDRX配置,获取用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长。其中,eDRX配置包括接入网设备配置的eDRX周期。如此,可提高配置下行数据的缓存时长的准确率。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
第六方面,本申请实施例公开了第六种通信方法,包括:接入和移动性管理功能网元从接入网设备接收第五信息;接入和移动性管理功能网元从会话管理功能网元接收第六信息;接入和移动性管理功能网元向接入网设备发送第四指示。
其中,第五信息携带有接入网设备为终端设备处于非激活态时配置的eDRX周期。第五信息用于确定终端设备和接入网设备支持小包数据传输。第六信息用于确定用户面功能网元或会话管理网元中缓存的终端设备的下行数据为小包数据。第四指示用于指示接入网设备进行小包数据传输。如此,可以由核心网设备决策是否进行小包数据传输,在是的情况下,使得在终端设备配置了非激活态eDRX周期的情况下,终端设备维持非激活态并进行数据或者信令的传输,节省终端设备进行RRC状态切换带来的功耗。
在一些可行的示例中,第五信息还携带有终端设备的能力信息。进一步的,第五信息可以包括终端设备支持SDT的能力。在接入和移动性管理功能网元从接入网设备接收第五信息之后,还包括:接入和移动性管理功能网元基于终端设备的能力信息,确定用户面功能网元支持缓存终端设备的小包数据。
在一些可行的示例中,第六信息携带有下行数据的数据大小。其中,第六信息可以包括一个指示信息,用于指示用户面功能网元中缓存的终端设备的下行数据为小包数据,该指示信息可以为会话管理功能网元判决得到的。第六信息或者可以包括下行数据的数据大小,从而接入和移动性管理功能网元可以基于该下行数据的数据大小来确定该下行数据是否为小包数据。
第五信息还可以用于指示接入和移动性管理功能网元计算终端设备的可达时间,确定用户面功能网元是否缓存终端设备的下行数据等。本申请对于确定终端设备和接入网设备支持小包数据传输的方法不做限定,接入和移动性管理功能网元可以基于终端设备的能力信息确定终端设备是否支持小包数据传输。若第五信息没有携带终端设备的能力信息,则接入和移动性管理功能网元可通过终端设备的上下文信息或其他信息获取终端设备的能力信息。接入和移动性管理功能网元还可以通过之前收到的N2消息,例如,NG  Setup等,确定接入网设备是否支持小包数据传输。或者通过第五信息中指示的接入网设备为支持SDT的目标接入网设备,来确定接入网设备支持小包数据传输。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
在一些可行的示例中,在接入和移动性管理功能网元向接入网设备发送第四指示之后,还包括:接入和移动性管理功能网元从接入网设备接收第二指示;其中,第二指示用于指示用户面功能网元向接入网设备发送小包数据。
在一些可行的示例中,在接入和移动性管理功能网元从接入网设备接收第二指示之后,还包括:接入和移动性管理功能网元向会话管理功能网元发送会话更新请求。其中,会话更新请求用于请求更新与终端设备建立的PDU会话的会话状态。会话管理功能网元接收到会话更新请求之后,会更新PDU会话状态,并更新关联的UPF规则,使得用户面功能网元不再缓存终端设备的下行数据,并使得用户面功能网元向接入网设备发送作为小包数据的下行数据。
第七方面,本申请实施例公开了第七种通信方法,包括:接入网设备向接入和移动性管理功能网元发送第五信息;接入网设备从接入和移动性管理功能网元接收第四指示。
其中,第五信息携带有接入网设备为终端设备处于非激活态时配置的eDRX周期。第五信息用于确定终端设备和接入网设备支持小包数据传输;第四指示用于指示接入网设备进行小包数据传输。如此,可以由核心网设备决策是否进行小包数据传输,在是的情况下,使得在终端设备配置了非激活态eDRX周期的情况下,终端设备维持非激活态并进行数据或者信令的传输,节省终端设备进行RRC状态切换带来的功耗。
在一些可行的示例中,在接入网设备从接入和移动性管理功能网元接收第四指示之后,还包括:接入网设备向终端设备发送第一指示。其中,第一指示用于指示终端设备进行小包数据传输。如此,利于提高通信成功率。
在一些可行的示例中,在接入网设备从接入和移动性管理功能网元接收第四指示之后,还包括:接入网设备向接入和移动性管理功能网元或者用户面功能网元发送第二指示;其中,第二指示用于指示用户面功能网元向接入网设备发送作为小包数据的下行数据。如此,利于提高通信成功率。
在一些可行的示例中,在接入网设备向接入和移动性管理功能网元或者用户面功能网元发送第二指示之前,还包括:接入网设备从终端设备接收第二信息。其中,第二信息用于确认终端设备能与核心网设备进行数据传输,或者用于确认终端设备进行恢复连接。如此,在接入网设备接收到第二信息之后,可以向接入和移动性管理功能网元或者用户面功能网元发送第二指示,利于提高通信成功率。
第八方面,本申请公开了第一种通信装置,适用于接入网设备,包括:收发单元用于从接入和移动性管理功能网元接收第一信息;处理单元用于基于下行数据的数据大小,确定下行数据为小包数据;收发单元还用于向终端设备发送第一指示;接入网设备向接入和移动性管理功能网元或者用户面功能网元发送第二指示。
其中,第一信息携带有用户面功能网元或会话管理功能中缓存的终端设备的下行数据的数据大小。终端设备处于非激活态,且被接入网设备配置了eDRX周期。第一指示用于指示终端设备进行小包数据传输,第二指示用于指示用户面功能网元向接入网设备发送小包数据。
在一些可行的示例中,收发单元还用于从终端设备接收第二信息。其中,第二信息用于确认终端设备能与核心网设备进行数据传输,或者用于确认终端设备进行恢复连接。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
可以理解,第八方面的具体内容与第一方面的内容对应,第八方面相应特征以及达到的有益效果可以参考第一方面的描述,为避免重复,此处适当省略详细描述。
第九方面,本申请公开了第二种通信装置,适用于接入和移动性管理功能网元,包括:收发单元用于从会话管理功能网元接收第三信息;收发单元还用于向接入网设备发送第一信息。
其中,第三信息携带有用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的数据大小。第一信息携带有下行数据的数据大小,该下行数据的数据大小可用于确定该下行数据是否为小包数据。终端设备处于非激活态,且被接入网设备配置了eDRX周期。
在一些可行的示例中,收发单元还用于从接入网设备接收第二指示;第二指示用于指示用户面功能网元向接入网设备发送作为小包数据的下行数据。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
可以理解,第九方面的具体内容与第二方面的内容对应,第九方面相应特征以及达到的有益效果可以参考第二方面的描述,为避免重复,此处适当省略详细描述。
第十方面,本申请公开了第三种通信装置,适用于接入网设备,包括:收发单元用于在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,从用户面功能网元接收下行数据;处理单元用于确定下行数据为小包数据;收发单元还用于向终端设备发送第一指示。其中,终端设备处于非激活态,且被接入网设备配置了eDRX周期。第一指示用于指示终端设备进行小包数据传输。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
可以理解,第十方面的具体内容与第三方面的内容对应,第十方面相应特征以及达到的有益效果可以参考第三方面的描述,为避免重复,此处适当省略详细描述。
第十一方面,本申请公开了第四种通信装置,适用于用户面功能网元,包括:收发单元用于从会话管理功能网元接收第三指示;收发单元还用于在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,向接入网设备发送下行数据。其中,第三指示用于指示在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,向接入网设备发送下行数据,终端设备处于非激活态,且被接入网设备配置了eDRX周期。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
可以理解,第十一方面的具体内容与第四方面的内容对应,第十一方面相应特征以及达到的有益效果可以参考第四方面的描述,为避免重复,此处适当省略详细描述。
第十二方面,本申请公开了第五种通信装置,适用于接入和移动性管理功能网元,包括:处理单元用于获取用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长;收发单元用于向会话管理功能网元发送第四信息。其中,第四信息携带有缓存时长。
在一些可行的示例中,处理单元具体用于基于终端设备的eDRX配置,获取用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长。其中,eDRX配置包括接入网设备配置的eDRX周期。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
可以理解,第十二方面的具体内容与第五方面的内容对应,第十二方面相应特征以及达到的有益效果可以参考第五方面的描述,为避免重复,此处适当省略详细描述。
第十三方面,本申请公开了第六种通信装置,适用于接入和移动性管理功能网元,包括:收发单元用于从接入网设备接收第五信息;收发单元还用于从会话管理功能网元接收第六信息;收发单元还用于向接入网设备发送第四指示。
其中,第五信息携带有接入网设备为终端设备处于非激活态时配置了eDRX周期。第五信息用于确定终端设备和接入网设备支持小包数据传输。第六信息用于确定用户面功能网元或会话管理网元中缓存的终端设备的下行数据为小包数据。第四指示用于指示接入网设备进行小包数据传输。
在一些可行的示例中,第五信息还携带有终端设备的能力信息。进一步的,第五信息可以包括终端设备支持SDT的能力。处理单元用于基于终端设备的能力信息,确定用户面功能网元支持缓存终端设备的小包数据。
在一些可行的示例中,第六信息携带有下行数据的数据大小。其中,第六信息可以包括一个指示信息,用于指示用户面功能网元中缓存的终端设备的下行数据为小包数据,该指示信息可以为会话管理功能网元判决得到的。第六信息或者可以包括下行数据的数据大小,从而接入和移动性管理功能网元可以基于该下行数据的数据大小来确定该下行数据是否为小包数据。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
可以理解,第十三方面的具体内容与第六方面的内容对应,第十三方面相应特征以及达到的有益效果可以参考第六方面的描述,为避免重复,此处适当省略详细描述。
第十四方面,本申请公开了第七种通信装置,适用于接入网设备,包括:收发单元用于向接入和移动性管理功能网元发送第五信息;收发单元还用于从接入和移动性管理功能网元接收第四指示。其中,第五信息携带有接入网设备为终端设备处于非激活态时配置了eDRX周期。第五信息用于确定终端设备和接入网设备支持小包数据传输。第四指示用于指示接入网设备进行小包数据传输。
在一些可行的示例中,收发单元还用于向终端设备发送第一指示;其中,第一指示用于指示终端设备进行小包数据传输。
其中,第一指示用于指示终端设备进行小包数据传输向接入和移动性管理功能网元或者用户面功能网元发送第二指示;其中,第二指示用于指示用户面功能网元向接入网设备发送作为小包数据的下行数据。
在一些可行的示例中,收发单元还用于从终端设备接收第二信息。其中,第二信息用于确认终端设备能与核心网设备进行数据传输,或者用于确认终端设备进行恢复连接。
在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。
可以理解,第十四方面的具体内容与第七方面的内容对应,第十四方面相应特征以及达到的有益效果可以参考第七方面的描述,为避免重复,此处适当省略详细描述。
第十五方面,本申请公开了第八种通信装置,该通信装置可以为终端设备、接入网设备、核心网设备、接入和移动性管理功能网元、会话管理功能网元、用户面功能网元等,或者可以包括这些设备中的装置,例如,芯片,或者芯片***,或者电路等,或者是能够实现相关功能的装置。通信装置包括处理器,该处理器用于执行存储于存储器中的指令,当该指令被执行时,实现上述第一方面及其任一可行的示例、第二方面及其任一可行的示例、第三方面及其任一可行的示例、第四方面及其任一可行的示例、第五方面及其任一可行的示例、第六方面及其任一可行的示例和第七方面及其任一可行的示例中的通信方法。
在一些可行的示例中,通信装置还包括存储器和收发器中的一项或多项,该收发器用于收发数据和/或信令。
第十六方面,本申请实施例公开了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,该计算机程序在一个或多个处理器运行时实现上述第一方面及其任一可行的示例、第二方面及其任一可行的示例、第三方面及其任一可行的示例、第四方面及其任一可行的示例、第五方面及其任一可行的示例、第六方面及其任一可行的示例和第七方面及其任一可行的示例中的通信方法。
第十七方面,本申请实施例公开了一种计算机程序产品,计算机程序产品用于存储计算机程序。当计算机程序在计算机上运行时,使得计算机执行上述第一方面及其任一可行的示例、第二方面及其任一可行的示例、第三方面及其任一可行的示例、第四方面及其任一可行的示例、第五方面及其任一可行的示例、第六方面及其任一可行的示例和第七方面及其任一可行的示例中的通信方法。
第十八方面,本申请实施例公开了第一种芯片,包括处理器和存储器,处理器用于从存储器中调用并运行存储器中存储的指令,使得安装有芯片的设备执行上述第一方面及其任一可行的示例、第二方面及其任一可行的示例、第三方面及其任一可行的示例、第四方面及其任一可行的示例、第五方面及其任一可行的示例、第六方面及其任一可行的示例和第七方面及其任一可行的示例中的通信方法。
第十九方面,本申请实施例公开了第二种芯片,包括:输入接口、输出接口和处理电路,输入接口、输出接口与处理电路之间通过内部连接通路相连,处理电路用于执行上述第一方面及其任一可行的示例、第二方面及其任一可行的示例、第三方面及其任一可行的示例、第四方面及其任一可行的示例、第五方面及其任一可行的示例、第六方面及其任一可行的示例和第七方面及其任一可行的示例中的通信方法。
第二十方面,本申请实施例公开了第三种芯片,包括:输入接口、输出接口、处理器,可选的,还包括存储器,输入接口、输出接口、处理器以及存储器之间通过内部连接通路相连,处理器用于执行存储器中的代码,当代码被执行时,处理器用于执行上述第一方面及其任一可行的示例、第二方面及其任一可行的示例、第三方面及其任一可行的示例、第四方面及其任一可行的示例、第五方面及其任一可行的示例、第六方面及其任一可行的示例和第七方面及其任一可行的示例中的通信方法。
第二十一方面,本申请实施例公开了一种芯片***,包括至少一个处理器,存储器和接口电路,存储器、收发器和至少一个处理器通过线路互联,至少一个存储器中存储有计算机程序;计算机程序被处理器执行上述第一方面及其任一可行的示例、第二方面及其任一可行的示例、第三方面及其任一可行的示例、第四方面及其任一可行的示例、第五方面及其任一可行的示例、第六方面及其任一可行的示例和第七方面及其任一可行的示例中的通信方法。
应理解的是,本申请上述多个方面的实现和有益效果可互相参考。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种通信***的构架示意图;
图2是本申请实施例提供的另一种通信***的构架示意图;
图3现有技术中提出的一种寻呼方法的流程示意图;
图4是本申请实施例提供的第一种通信方法的流程示意图;
图5是本申请实施例提供的第二种通信方法的流程示意图;
图6是本申请实施例提供的第三种通信方法的流程示意图;
图7是本申请实施例提供的第四种通信方法的流程示意图;
图8是本申请实施例提供的第五种通信方法的流程示意图;
图9是本申请实施例提供的一种通信装置的结构示意图;
图10是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
本申请实施例的技术方案可以应用于各种通信***,例如:第二代(second generation,2G)移动通信技术对应的全球移动通讯(global system for mobile communication,GSM)***、介于第二代移动通信技术和第三代(third generation,3G)移动通信技术之间的通用分组无线业务(general packet radio service,GPRS)、第三代移动通信技术对应的码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***和通用移动通信***(universal mobile telecommunication system,UMTS)、***(fourth generation,4G)移动通信技术对应的长期演进(long term evolution,LTE)***、第五代(fifth generation,5G)移动通信技术对应的新空口技术(new radio,NR)***等目前的通信***,以及,应用于未来的通信***,如第六代(sixth generation,6G)***等。
为使本申请的目的、技术方案和优点更加清楚,以下以5G通信***进行举例说明。5G移动通信***还可称为下一代移动通信***,可简称为5G***,英文可简称为NextGen或者5GS。如图1所示,5G通信***可以由终端设备、(无线)接入网((radio)access network,(R)AN)设备(可称为NextGen(R)AN,或简称为NG-RAN)、核心网设备(core network,CN)(可称为NextGen Core,或者5GC)和数据网络设备(data network,DN)(可称为NextGen Data network)组成。
其中,终端设备是一种具有无线收发功能的设备。该终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载。该终端设备还可以部署在水面上(如轮船等)或空中(例如飞机、气球和卫星上等)。该终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
本申请的实施例对于应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、终端(terminal)、接入终端、UE单元、UE站、移动设备、移动站、移动台(mobile station)、移动终端、移动客户端、移动单元(mobile unit)、远方站、远程终端设备、远程单元、无线单元、无线通信设备、用户代理或用户装置等。其中,接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G中的终端设备或者未来演进的公共陆地移动网(public land mobile network,PLMN)中的终端设备,或者未来的非公共网络(Non-Public network,NPN)中的终端设备等。在5G通信***中,终端设备会采用新空口技术,与接入网设备建立信号连接和数据连接,从而传输控制信号和业务数据到数据网络。
在本申请实施例中,接入网设备可以是用于支持终端接入通信***的设备,可以是基站、中继站或接入点。进一步的,可以包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G通信***,如,NR***中的gNB,或者,传输点(TRP或TP),5G通信***中的基站的一个或一组(包括多个天线面板)天线面板,或者接入网设备可以称为宿主节点、IAB宿主(IAB donor)、宿主IAB、宿主或宿主gNB(donor gNB,DgNB)等。或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit)等。或者可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,还可以是未来的通信网络中的基站或者未来演进的PLMN网络中的接入网设备,还可以是可穿戴设备或车载设备。
接入网设备的主要功能有:进行无线资源的管理、互联网协议(internet protocol,IP)头的压缩及用户数据流的加密、用户设备附着时进行移动管理实体(mobile management entity,MME)的选择、路由用户面数据至服务网关(service gateway,SGW)、寻呼消息的组织和发送、广播消息的组织和发送、以移动性或调度为目的的测量及测量报告的配置等等。
在5G通信***中,接入网设备类似于传统网络里面的基站,部署在靠近终端设备的位置,为特定区域的授权用户提供入网功能,并能够根据用户的级别,业务的需求等确定不同质量的传输隧道来传输用户数据。接入网能够管理自身的资源,合理利用,按需为终端设备提供接入服务,并负责把控制信号和用户数据在终端设备和核心网之间转发。
在本申请实施例中,核心网设备可以连接一个或者多个接入网设备。核心网设备负责维护移动网络的签约数据,管理移动网络的网元,为终端设备提供会话管理、移动性管理、策略管理、安全认证等功能。示例性地,在终端设备附着的时候,为终端设备提供入网认证;在终端设备有业务请求时,为终端设备分配网络资源;在终端设备移动的时候,为终端设备更新网络资源;在终端设备处于空闲的时候,为终端设备提供快恢复机制;在终端设备去附着的时候,为终端设备释放网络资源;在终端设备有业务数据时,为终端设备提供数据路由功能,如在5G通信***中,转发上行数据给数据网络设备;或者将从数据网络设备接收的下行数据,转发给接入网设备,以使接入网设备将该下行数据发送给终端设备。
在不同的通信***中核心网设备可以对应不同的设备。比如,在3G通信***中可以对应GPRS的服务支持节点(serving GPRS support node,SGSN)和/或GPRS的网关支持节点(gateway GPRS support node,GGSN);在4G通信***中可以对应MME和/或服务网关(serving gateway,S-GW);在5G通信***中可以对应接入和移动性管理功能(access and mobility management function,AMF)网元,会话管理功能(session management function,SMF)网元或者用户面功能(user plane function,UPF)网元。
数据网络设备用于为用户提供业务服务,一般客户端为终端设备,服务端为数据网络设备。数据网络设备所提供的数据网络可以包括私有网络,如局域网。数据网络或者可以包括不受运营商管控的外部网络,如Internet。数据网络或者可以包括运营商共同部署的专有网络,如提供IP多媒体子***(IP multimedia subsystem,IMS)服务的网络。
为了提供特定的网络功能和网络特性,可采用网络切片(network slice)技术,将一个物理网络切割成多个虚拟的端到端的虚拟网络。其中,分割出的每个虚拟网络之间,包括虚拟网络内的设备、接入技术、传输路径和核心网等是逻辑独立的。如此,每个网络切片由一个独立的网络功能或功能组合实例化构成,每个网络切片相互之间的分离,可以使得不同用户或用户组可以根据不同应用场景和需求,去灵活的、动态的定制网络能力。
在5G通信***中,可以采用网络切片技术,实现网络功能分离,即将控制面(control plane,CP)和用户面(user plane,UP)功能分离,以满足广泛变化的业务需求。一个网络切片包括控制面功能(control plane function,CPF)网元和UPF网元。CPF网元主要完成终端设备的接入鉴权、安全加密、位置注册等功能,完成用户面传输路径的建立、释放和更改等功能;UPF网元主要完成用户面数据的路由转发等功能。图1所示的NG2参考点可以位于接入网设备的控制面和核心网设备的控制面之间,NG3参考点可以位于接入网设备的用户面和核心网设备的用户面之间,NG6参考点可以位于核心网设备的用户面和数据网络的用户面之间。
核心网的控制面采用服务化架构,控制面功能网元之间的交互采用服务调用的方式,来替换传统架构中的点对点通信方式。服务化架构中,控制面功能网元会向其他控制面功能网元开放服务,供其他控制面功能网元调用;点对点通信中,控制面功能网元之间通信接口会存在一套特定的消息,只能由接口两端的控制面功能网元在通信时使用。
请参阅图2,图2是本申请实施例提供的另一种通信***的构架示意图。如图2所示,该通信***可包括终端设备、数据网络设备、(无线)接入网设备以及核心网设备的功能实体。其中,核心网设备的功能实体可包括用户面功能网元,用于分组路由和转发以及用户面数据的服务质量(quality of service,QoS)处理等。用户面功能网元可以根据会话管理功能网元的路由规则执行用户数据包转发,如上行数据发送到数据网络或其他用户面功能网元,下行数据转发到其他用户面功能网元或者(R)AN网元。该用户面功能网元可以为5G通信***中的UPF网元。
核心网设备的功能实体还可包括控制面功能网元,例如,认证服务功能网元、接入和移动性管理功能网元、会话管理功能网元、网络切片选择功能网元、网络开放功能网元、网络存储功能网元、策略控制功 能网元、数据管理网元和应用功能网元。以下分别介绍各个功能实体的功能。其中:
认证服务功能网元用于鉴权服务、产生密钥实现对终端设备的双向鉴权,支持统一的鉴权框架,执行终端设备的安全认证。该认证服务器可以为5G通信***中的认证服务功能(authentication server function,AUSF)网元。
接入和移动性管理功能网元用于实现终端设备的接入管理和移动性管理。例如,负责终端设备的状态维护,终端设备的可达性管理,非移动性管理(mobility management,MM)的非接入层(non-access-stratum,NAS)消息的转发,会话管理(session management,SM)N2消息的转发等。接入和移动性管理功能网元可以为5G通信***中的AMF网元。
会话管理功能网元用于实现终端设备的会话管理,为终端设备的会话分配资源和释放资源。其中,资源包括资源预置参数QoS,会话路径,转发规则等。会话管理功能网元可以为5G通信***中的SMF网元。
网络切片选择功能网元用于为终端设备选择网络切片。网络切片选择功能网元可以为5G通信***中的网络切片选择功能(network slice selection function,NSSF)网元。
网络开放功能网元,以北向API接口的方式向第三方开放网络功能。网络开放功能网元可以为5G通信***中的网络开放功能(network exposure function,NEF)网元。
网络存储功能网元用于为其他网元提供网络功能实体信息的存储功能和选择功能。网络存储功能网元可以称为5G通信***中的网络功能仓储功能(network function repository function,NRF)网元。
数据管理网元用于实现用户签约的上下文管理。例如,存储终端设备的签约信息。数据管理网元可以称为5G通信***中的统一数据管理(unified data management,UDM)网元。
策略控制功能网元用于实现用户策略管理。类似于LTE中的策略与计费规则功能(policy and charging rules function,PCRF)网元,主要负责策略授权、服务质量以及计费规则的生成,并将相应规则通过SMF网元下发至UPF网元,完成相应策略及规则的安装。策略控制功能网元可以为5G通信***中的策略控制功能(policy control function,PCF)网元。
应用功能网元,可以是第三方的应用控制平台,也可以是运营商自己的设备。应用功能网元用于实现应用管理,可以为多个应用服务器提供服务。应用功能网元可以为5G通信***中的应用功能(application function,AF)网元。
需要说明的是,本申请实施例将AMF、SMF、UDM等称为网元仅为一种示意。实际中,网元可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。在未来通信***中,以上网元可以有其它的名称,本申请不做限定。
在5G通信***中,AMF网元与终端设备之间可通过N1口传输数据,AMF网元与(R)AN网元之间可通过N2口传输数据。(R)AN网元与UPF网元之间可通过N3口传输数据,UPF网元与SMF网元可通过N4口传输数据,UPF网元与数据网络设备之间可通过N6口传输数据。上述的核心网的功能实体可通过其业务的接口(serves based interface,SBI),采用HTTP/TCP协议传输数据。例如,Nnssf是基于NSSF业务的接口,Nausf是基于AUSF业务的接口,Namf是基于AMF业务的接口等。以上N1、N2、N3、N4、N6,或者可以称为NG1、NG2、NG3、NG4、NG6。
需要说明的是,本申请实施例并不限定核心网中各个网元的分布形式,图2所示的分布形式只是示例性的,本申请不作限定。本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
以下描述中多以UE为终端设备进行举例说明,可以简称为终端。本申请实施例中的核心网可以理解为核心网设备,或核心网设备所提供的网络。接入网可以理解为接入网设备,或接入网设备所提供的网络。
下面先给出本申请实施例可能出现的技术术语的定义。本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
(1)寻呼(paging),用于通知空闲(idle)态或者非激活(inactive)态的终端设备建立被叫业务,或者通 知终端设备通信***的***消息发生改变,需要终端设备重新读取改变后的***广播消息,或者通知终端设备接收地震海啸告警***(earthquake and tsunami warning system,ETWS)信息。根据寻呼消息的发起方,寻呼分为核心网发起的CN寻呼和接入网发起的RAN寻呼。其中,CN寻呼主要用于寻呼空闲态的终端,RAN寻呼用于寻呼非激活态的终端。
(2)非连续接收(discontinuous reception,DRX)技术,用于定期监听寻呼消息。根据寻呼消息的来源,可以分为空闲态的非连接接收寻呼消息(idle DRX for CN paging)配置(可简称为idle DRX配置)和非空闲态的非连接接收寻呼消息(inactive DRX for RAN paging)配置(可简称为inactive DRX配置)。终端设备定期监听的时长可以称为DRX周期,例如,1.28s或者2.56s等,终端设备可以在DRX周期到达时被唤醒,且用于监听寻呼消息。
示例性地,基站通过***信息块类型一(system information block type 1,SIB1)将网络缺省的DRX配置发送给UE。如果UE需要使用到特定的(specific)idle DRX配置,UE可以使用NAS信令和核心网协商,UE使用核心网设备配置的特定的非连续接收的周期(specific DRX cycle configured by CN)和SIB1中配置缺省的DRX配置的周期(default DRX cycle configured by SIB1)中的最小值,来监听寻呼消息。如果UE需要使用到specific的inactive DRX配置,基站在释放UE到非激活态时,可以提供specific的周期,特殊的,此时非激活态的UE需要使用idle DRX配置进行CN寻呼消息的监听。
(3)扩展的非连续接收(extended discontinuous reception,eDRX)技术,延长了DRX周期,增加了终端设备的休眠时长,从而进一步降低电能的消耗。其中,空闲态的eDRX的配置可参照LTE中的eDRX,将eDRX周期扩展至3小时以上。且在除了5.12s和10.24s之外的eDRX周期内,设置有至少一个寻呼时间窗口(paging time window,PTW)。终端设备在PTW内按照DRX周期监听寻呼信道,以便接收下行数据,其余时间终端设备处于休眠状态,不接收下行数据。非激活态的eDRX配置仅讨论了eDRX周期不大于10.24s的情况,eDRX周期的使用和DRX周期的使用相同,终端设备每间隔非激活态的eDRX周期唤醒,以监听寻呼消息。
请参照图3,图3是现有技术中提出的一种RAN寻呼方法的流程示意图。图3以接入网为gNB,终端为UE1进行举例。如图3所示,gNBn可以称为最后服务基站(last serving gNB),最后服务基站是指将UE释放到RRC的非激活态的基站。最后服务基站和除了gNBn之外的(n-1)个其他gNB,例如,gNB1等,均为UE1的RAN通知区域内的接收基站(receiving gNB)。其中,n可以大于等于2。
在图3所示的寻呼方法中,AMF向gNBn发送UE1的下行数据。在gNBn接收到UE1的下行数据之后,该gNBn可以向(n-1)个接收基站通过Xn接口发送寻呼消息,使得(n-1)个接收基站可以发起RAN寻呼,同时gNBn本身也发起RAN寻呼。如果UE1在寻呼时机(paging occasion,PO)监听到属于自己的寻呼消息,则响应该寻呼消息,UE1向基站,例如当前驻留的基站为gNB1为例,发起RRC连接恢复请求。然后,gNB1向gNBn发送上下文获取请求,从而通过从gNBn发送的上下文获取响应中获取UE1的上下文。gNB1可以基于该上下文向UE1发送RRC连接恢复响应,以确认RRC连接的恢复请求。在UE1与gNB1建立连接之后,UE1向gNB1发送RRC连接恢复完成消息,以指示UE1已经完成连接态的恢复。然后gNB1可以向AMF发送路径切换(path switch)消息,以指示UE1的接入网的切换路径发生改变。
对于非激活态的eDRX周期大于10.24s的情况,可以仿照空闲态的eDRX技术引入PTW,使得终端设备能够更长时间进入休眠状态。且为了避免过长的休眠时间导致接入网设备需要缓存的数据过大,或者信令超时,可以将接入网设备中需要缓存的数据缓存到UPF网元,调整信令倒计时时间。此时,NG-RAN在将非激活态的eDRX配置,例如,大于10.24s的eDRX周期等,下发给UE前,需要将eDRX配置告知核心网设备,使得核心网设备获知UE下一次醒来监听寻呼的可达时间。如果核心网设备接收到用于指示发送给UE的数据或者信令,则核心网设备可以在可达时间到达后,通过N2接口向接入网设备发送消息,接入网设备可启动RAN寻呼。UE响应该RAN寻呼,以恢复RRC连接,并且接入网设备通知UPF不再缓存终端设备的数据,此时,核心网可以进行数据或者信令的传输,但这种情况下,需要UE进入连接态才能进行数据传输,UE进行RRC连接恢复过程信令的开销较大,并且耗时较长,数据或者信令的传输存在延迟。
(4)NR中的小包数据传输(small data transmission,SDT)技术,根据SDT传输所使用的资源,SDT可以分为基于随机接入信道(random access channel,RACH)的SDT和基于上行物理共享信道(physical uplink shared channel,PUSCH)中的配置授权类型1(configured grant type1,Type1CG)的SDT。在采用 SDT技术之后,若接入网设备收到来自INACTIVE态终端设备的SDT数据或者信令后,可以直接将小包数据转发给核心网设备。如此,可以实现终端设备在非激活态的小包传输,也就是说可以在非连接态实现数据传输,增加了终端设备处于非连接态的时间,减小了状态切换过程带来的信令开销。然而,现有NR仅考虑了终端发起(mobile originated,MO)的SDT,不包括终端终止(mobile terminated,MT)的SDT。
(5)LTE中MT的数据早传(early data transmission,EDT)技术,可使终端设备无需进入连接态就可以传输上行小数据包或接收下行小数据包。以基于控制面的MT EDT过程为例,UE可通过NAS信令与CN交互了MT EDT支持能力后,当MME收到来自S-GW的下行数据大小信息后,向eNB发送寻呼消息。该寻呼消息携带有下行数据大小信息,用于辅助eNB判决是否需要进行MT-EDT。该寻呼消息可以基于S1应用协议(application protocol,AP)进行传输。如果eNB判决为是,则在eNB向UE发送的寻呼消息中携带MT EDT标识,用于指示UE进行基于控制面的MO EDT过程。然而,EDT技术用于支持空闲态的MT EDT,无法直接复用到非激活态的eDRX大于10.24s的场景下。
综上,对于非激活态的eDRX周期大于10.24s的情况,若仿照空闲态的eDRX技术引入PTW,并将数据缓存到UPF处,需要UE进入连接态才能进行数据传输。SDT技术和EDT技术可以在非连接态进行数据传输,但SDT技术不支持MT SDT传输,EDT技术无法直接复用到非激活态的eDRX大于10.24s的场景下。
基于此,本申请提出一种通信方法,能够支持终端设备维持非激活态进行数据或者信令的传输,可节省终端设备进行RRC状态切换带来的功耗。请先参照图4,图4是本申请实施例提供的第一种通信方法的流程示意图。该通信方法所涉及的通信装置可以包括终端设备、接入网设备、接入和移动性管理功能网元、会话管理功能网元、用户面功能网元等。具体的,以5G通信***中的装置,例如,终端设备为UE、接入网设备为NG-RAN、接入和移动性管理功能网元为AMF、会话管理功能网元为SMF,用户面功能网元为UPF等功能实体,对核心网侧与接入网侧不交互接入网侧和终端设备的SDT支持能力的假设下,接入网侧发起的寻呼过程进行举例说明。应理解,UE的下行数据可以缓存在至少1个UPF中,各UPF可执行本申请提供的通信方法相同,图4中以一个UPF进行举例说明。该通信方法中的UE处于非激活态,且被NG-RAN配置了eDRX周期。在一些可行的示例中,eDRX周期可以为10.24s,或者可以大于10.24s的时长等,在此不做限定。该通信方法包括以下步骤:
S102、AMF向NG-RAN发送第一信息。
相应地,NG-RAN从AMF接收第一信息。
其中,第一信息携带有UPF或SMF中缓存的UE的下行数据的数据大小,例如,DL data size info。UE的下行数据的数据大小用于NG-RAN进行SDT判决,即步骤S104中的内容,确定UPF中缓存的UE的下行数据是否为小包数据。第一信息还可包括下行数据的数据类型等,在此不做限定。该第一信息可以为AMF和NG-RAN进行交互的一种N2消息。且步骤S102、步骤S104和步骤S108中的NG-RAN可以为将UE释放到RRC的非激活态的最后服务基站。
S104、NG-RAN基于下行数据的数据大小,确定下行数据是否为小包数据。
可选的,若NG-RAN基于下行数据的数据大小,确定下行数据是小包数据,则执行后续步骤,例如,步骤S106、步骤S108。若NG-RAN基于下行数据的数据大小,确定下行数据非小包数据,则可以向核心网,例如,AMF或UPF等,发送不进行UE的数据传输的指示,或者可以不执行后续步骤。
在一些可行的示例中,步骤S104可以包括:若下行数据的数据大小小于容量阈值,则确定下行数据为小包数据。
本申请对于容量阈值不做限定,可以参照通信标准中规定的小包数据的最大值,或者可以基于当前通信***中NG-RAN的网络速率、网络资源等进行确定。可以理解,在该示例中,通过下行数据的数据大小是否小于容量阈值,来确定该下行数据是否为小包数据,可提高确定小包数据的准确率。
S106、NG-RAN向UE发送第一指示。
相应地,UE从NG-RAN接收第一指示。
其中,第一指示可以用于指示UE进行小包数据传输。需要说明的是,步骤S106中的NG-RAN可以为UE所在的RAN通知区域内除最后服务基站之外的其他基站。也就是说,其他基站可以先从最后服务基站接收到第一指示或携带第一指示的一消息,再向UE发送携带第一指示的另一消息。携带第一指示的消息和另一消息可以理解为携带小包数据传输的指示信息的寻呼消息,例如,RAN paging with SDT  indication。可以理解,在确定下行数据为小包数据之后,NG-RAN可以向UE发送第一指示,以使UE准备进行小包数据传输,利于提高通信的成功率。
S108、NG-RAN向AMF或者UPF发送第二指示。
相应地,AMF从NG-RAN接收第二指示。或者UPF从NG-RAN接收第二指示。
其中,第二指示用于指示UPF向NG-RAN发送小包数据。也就是说,将UPF对其缓存的UE的(作为小包数据的)下行数据发送给NG-RAN。
在一些可行的示例中,第二指示可以为AMF和NG-RAN进行交互的另一种N2消息。在AMF接收到第二指示之后,还可以包括:AMF向SMF发送会话更新请求。
相应地,SMF从AMF接收会话更新请求。
其中,SMF可以为与UE关联的SMF。会话更新请求用于请求更新与UE建立的协议数据单元(protocol data unit,PDU)会话的会话状态。SMF接收到会话更新请求之后,会更新PDU会话状态,并更新关联的UPF规则,使得UPF不再缓存UE的下行数据,并使得UPF向NG-RAN发送作为小包数据的下行数据。
在另一些可行的示例中,第二指示可以为NG-RAN和UPF进行交互的一种N3消息。在UPF接收到第二指示之后,可以指示UPF不再缓存UE的下行数据,并向NG-RAN发送作为小包数据的下行数据。
在图4所示的通信方法中,在接入网设备在终端设备处于非激活态时配置了eDRX周期的情况下,若NG-RAN从AMF接收到第一信息,则NG-RAN可以基于第一信息中携带的下行数据的数据大小,确定该下行数据是否为小包数据。若是,则NG-RAN可以向UE发送第一指示,以使UE进行小包数据传输。NG-RAN还可以向AMF或UPF发送第二指示,以使UPF向NG-RAN发送确定为小包数据的下行数据。如此,可以由接入网设备决策是否进行小包数据传输,在是的情况下,使得在终端设备配置了非激活态eDRX周期的情况下,终端设备维持非激活态并进行数据或者信令的传输,节省了终端设备进行RRC状态切换带来的功耗。
进一步的,请参见图5,图5是本申请实施例提供的第二种通信方法的流程示意图。该通信方法所涉及的通信装置可以包括终端设备、接入网设备、接入和移动性管理功能网元、会话管理功能网元、用户面功能网元等。具体的,可以参照图4的描述,以UE、NG-RAN、AMF、SMF和UPF等功能实体,对核心网侧与接入网侧不交互接入网侧的SDT支持能力的假设下,接入网侧发起的寻呼过程进行举例说明,且以一个UPF进行举例。该通信方法中的UE处于非激活态,且被NG-RAN配置了eDRX周期。在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。第二种通信方法可以包含第一种通信方法,在步骤S102之前,还可以包括但不限于如下步骤S100a至步骤S100d,以及步骤S101,其中:
S100a、UPF向SMF发送数据通知消息。
相应地,SMF从UPF接收数据通知消息。
其中,数据通知消息,例如,Data Notification等,可以用于指示UPF中缓存有UE的下行数据。该步骤S100a可以在UPF中接收到UE的下行数据之后,或缓存时长到达时进行发送等。该数据通知消息可携带有下行数据的数据大小。
S100b、SMF向AMF发送第三信息。
相应地,AMF从SMF接收第三信息。
其中,第三信息可以携带有UPF或SMF中缓存的UE的下行数据的数据大小。下行数据的数据大小可用于确定该下行数据是否为小包数据。第三信息和下述的第一响应可以通过AMF和SMF之间进行交互的Namf消息进行传输,例如,第三信息可以为Namf_MT_EnableUEReachability request,第一响应可以为Namf_MT_EnableUEReachability response。
S100c、AMF向SMF发送第一响应。
其中,第一响应可以为第三信息的响应消息。第一响应可以携带有下行数据的缓存时长(timer),本申请对于缓存时长不做限定,可以由核心网设备(例如,AMF等)基于UE下一次醒来进行寻呼的可达时间进行确定,例如,缓存时长大于或等于UE的可达时间。第一响应可以用于指示在UPF中缓存的UE的下行数据的缓存时长到达时丢掉该下行数据,从而适时清理缓存数据,避免占用UPF的资源。
S100d、SMF向UPF发送数据通知响应。
相应地,UPF从SMF接收数据通知响应。
其中,数据通知响应可以为数据通知消息的响应消息。该数据通知响应可以包括缓存时长,用于指示UPF在UE的下行数据的缓存时长到达时丢掉该下行数据。
S101、UPF基于缓存时长,对UPF中缓存的UE的下行数据的缓存时间进行计时或倒计时。
如图5所示,步骤S102可以在缓存时长到达之前执行,在执行步骤S102之后,可以执行步骤S104和步骤S106。在执行步骤S106之后,且在执行步骤S108之前,还可以包括步骤S107、UE向NG-RAN发送第二信息。
相应地,NG-RAN从UE接收第二信息。
其中,第二信息用于确认UE能与核心网设备进行数据传输,或者用于确认UE进行恢复连接。第二信息可以为UE启动RACH过程,恢复与接入网设备的连接之后发送的完成消息,例如,RRC Resume complete。或者第二信息可以为UE恢复与接入网设备的连接请求,例如,RRC Resume request。可以理解,在NG-RAN接收到第二信息之后,可确认UE可与核心网设备进行通信,再执行步骤S108,向AMF或UPF发送第二指示,以使UPF向NG-RAN发送在UPF中缓存的UE的作为小包数据的下行数据,利于提高通信成功率。
如图5所示,在步骤S108之后,还可以包括步骤S109和步骤S110,其中:
S109、UPF向NG-RAN发送小包数据。
相应地,NG-RAN从UPF接收小包数据。
S110、UE与NG-RAN执行小包数据传输流程。
本申请对于小包数据传输流程不做限定,可以为基于RACH的SDT流程,或者可以为基于PUSCH中的Type1CG的SDT流程等。可选的,考虑到数据传输的限制条件,例如,参考信号接收功率(reference signal receiving power,RSRP)大于启动门限值,就执行小包数据传输流程。否则,不再执行步骤S110。
请参照图6,图6是本申请实施例提供的第三种通信方法的流程示意图。该通信方法所涉及的通信装置可以包括终端设备、接入网设备、接入和移动性管理功能网元、会话管理功能网元、用户面功能网元等。具体的,可以参照图4的描述,以UE、NG-RAN、AMF、SMF和UPF等功能实体,对核心网侧与接入网侧不交互接入网侧的SDT支持能力的假设下,接入网侧发起的寻呼过程进行举例说明,且以一个UPF进行举例。该通信方法中的UE处于非激活态,且被NG-RAN配置了eDRX周期。在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。该通信方法包括但不限于如下步骤:
S202、AMF获取UPF或SMF中缓存的终端设备的下行数据的缓存时长。
在一些可行的示例中,步骤S202可以包括AMF基于UE的eDRX配置,获取UPF或SMF中缓存的终端设备的下行数据的缓存时长。
其中,eDRX配置可以包括NG-RAN配置的eDRX周期。需要说明的是,此处的缓存时长可以与图4和图5中的缓存时长的时间相同或不同,该缓存时长可以等于UE的可达时间。图6中的缓存时长用于指示UE的可达时间,从而可在缓存时长到达时进行数传,从而向NG-RAN发送UE的下行数据。
S204、AMF向SMF发送第四信息。
相应地,SMF从AMF接收第四信息。其中,第四信息可以携带有下行数据的缓存时长。
S206、SMF向UPF发送第三指示。
相应地,UPF从SMF接收第三指示。其中,第三指示可以包括缓存时长,用于指示UPF在UPF或SMF中缓存的UE的下行数据的缓存时长到达时向NG-RAN发送该下行数据。
S208、在UPF或SMF中缓存的UE的下行数据的缓存时长到达时,UPF向NG-RAN发送下行数据。
相应地,在UPF或SMF中缓存的UE的下行数据的缓存时长到达时,NG-RAN从UPF接收下行数据。
S210、NG-RAN确定下行数据是否为小包数据。
若NG-RAN确定下行数据是小包数据,则执行后续步骤S212、NG-RAN向UE发送第一指示。相应地,UE从NG-RAN接收第一指示。该第一指示可以用于指示UE进行小包数据传输。该步骤S212可参照步骤S106的描述,在此不做限定。可选的,若NG-RAN确定下行数据非小包数据,则可以向核心网,例如,AMF或UPF等,发送不进行UE的数据传输的指示,或者可以不执行后续步骤。
本申请对于确定下行数据是否为小包数据的方法不做限定,可以确定该下行数据的数据大小是否小于容量阈值。或者可以识别下行数据中的标识是否为小包数据的标识。例如,5G核心网为每个UE建立一个或多个协议数据单元(protocol data unit,PDU)会话,在PDU会话中通过服务质量(quality of service, QoS)流标识符(QoS flow identity,QFI)来识别QoS流。QoS流在接入无线接入网络中映射到数据无线承载(data radio bearer,DRB),因而可通过QoS流对应的QFI来获取承载下行数据的DRB是否为SDT关联的DRB是否为SDT关联的DRB,来判决该QoS流内的数据是否为小包数据。若QoS流对应的DRB为SDT关联的DRB,则确定该QoS流内的数据是否为小包数据。
在图6所描述的通信方法中,在接入网设备在终端设备处于非激活态时配置了eDRX周期的情况下,AMF先获取在UPF或SMF中缓存的UE的下行数据的缓存时长。在UPF中缓存的UE的下行数据的缓存时长到达时,UPF可以认为UE可达,从而向NG-RAN发送下行数据。然后NG-RAN确定该下行数据是否为小包数据。若是,则向UE发送第一指示,以指示UE进行小包数据传输。如此,可以由接入网设备决策在终端设备的下行数据的缓存时长时,传输作为小包数据的下行数据,使得在终端设备配置了非激活态eDRX周期的情况下,终端设备维持非激活态并进行数据或者信令的传输,节省了终端设备进行RRC状态切换带来的功耗。
在一些可行的示例中,在步骤S202之前,还可以包括:UPF向SMF发送数据通知消息。
相应地,SMF从UPF接收数据通知消息。
其中,数据通知消息,例如,Data Notification等,可以用于指示UPF中缓存有UE的下行数据。该步骤可参照步骤S100a的描述,可以在UPF中接收到UE的下行数据之后,或缓存时长到达时进行发送等,在此不再赘述。
在一些可行的示例中,在步骤S202之前,还可以包括:SMF向AMF发送第一请求。
相应地,AMF从SMF接收第一请求。
其中,第一请求可以请求AMF获取UE的下行数据的缓存时长。该第一请求和上述的第四信息可以通过AMF和SMF之间进行交互的Namf消息进行传输,例如,第一请求可以为Namf_MT_EnableUEReachability request,第四信息可以为Namf_MT_EnableUEReachability response。
在一些可行的示例中,在步骤S206之后,还可以包括:UPF基于缓存时长,对UPF中缓存的UE的下行数据的缓存时间进行计时或倒计时。
在一些可行的示例中,在步骤S212之后,还可以包括:UE与NG-RAN执行小包数据传输流程。该步骤可以参照步骤S110的描述,在此不再赘述。
请参见图7,图7是本申请实施例提供的第四种通信方法的流程示意图。该通信方法所涉及的通信装置可以包括终端设备、接入网设备、接入和移动性管理功能网元、会话管理功能网元、用户面功能网元等。具体的,可以参照图4的描述,以UE、NG-RAN、AMF、SMF和UPF等功能实体,对核心网侧与接入网侧可以交互终端设备和接入网侧的SDT支持能力的假设下,核心网侧发起的寻呼过程进行举例说明,且以一个UPF进行举例。该通信方法中的UE处于非激活态,且被NG-RAN配置了eDRX周期。在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。该通信方法可以包括以下步骤:
S302、NG-RAN向AMF发送第五信息。
相应地,AMF从NG-RAN接收第五信息。
其中,第五信息可以为AMF和NG-RAN之间进行交互的N2消息,该N2消息可以为新定义的消息,或者可以为已有的消息,例如,RRC INACTIVE TRANSITION REPORT进行改进得到的消息。该第五信息可以携带NG-RAN为UE处于非激活态时配置的eDRX周期,或者可以包括UE的能力信息。进一步的,第五信息可以包括UE支持SDT的能力。第五信息或者可以用于指示AMF该NG-RAN作为目标接入网设备支持SDT等,在此不做限定。
第五信息用于确定UE和NG-RAN是否支持小包数据传输,还可以用于指示AMF计算UE的可达时间,确定UPF是否缓存UE的下行数据等。本申请对于确定UE和NG-RAN支持小包数据传输的方法不做限定,AMF可以基于UE的能力信息确定UE是否支持小包数据传输。若第五信息没有携带UE的能力信息,则AMF可通过UE的上下文信息或其他信息获取UE的能力信息。AMF还可以通过之前收到的N2消息,例如,NG Setup等,确定NG-RAN是否支持小包数据传输。或者通过第五信息中指示的NG-RAN为支持SDT的目标接入网设备,来确定NG-RAN支持小包数据传输。
S304、AMF从SMF接收第六信息。
相应地,SMF向AMF发送第六信息。
其中,第六信息可以用于确定UPF中缓存的UE的下行数据为小包数据。该第六信息可以包括一个指示信息,用于指示UPF中缓存的UE的下行数据为小包数据,该指示信息可以为SMF判决得到的。第六信息或者可以包括下行数据的数据大小,从而AMF可以基于该下行数据的数据大小来确定该下行数据是否为小包数据。SMF和AMF确定下行数据是否为小包数据的方法可参照步骤S104的描述,在此不再赘述。
S306、AMF向NG-RAN发送第四指示。
相应地,NG-RAN从AMF接收第四指示。
其中,第四指示可以用于指示NG-RAN进行小包数据传输。
在图7所示的通信方法中,在接入网设备在终端设备处于非激活态时配置了eDRX周期的情况下,若AMF从NG-RANF接收到第五信息,且从SMF接收到第六信息,则可以向NG-RAN发送第四指示,以使可以通过NG-RAN向UE发送UPF或SMF中缓存的UE的小包数据。如此,可以由核心网设备决策是否进行小包数据传输,在是的情况下,使得在终端设备配置了非激活态eDRX周期的情况下,终端设备维持非激活态并进行数据或者信令的传输,节省了终端设备进行RRC状态切换带来的功耗。
进一步的,请参见图8,图8是本申请实施例提供的第五种通信方法的流程示意图。该通信方法所涉及的通信装置可以包括终端设备、接入网设备、接入和移动性管理功能网元、会话管理功能网元、用户面功能网元等。具体的,可以参照图4的描述,以UE、NG-RAN、AMF、SMF和UPF等功能实体,对核心网侧与接入网侧可以交互终端设备和接入网侧的SDT支持能力的假设下,核心网侧发起的寻呼过程进行举例说明,且以一个UPF进行举例。该通信方法中的UE处于非激活态,且被NG-RAN配置了eDRX周期。在一些可行的示例中,eDRX周期可以为10.24s,或者大于10.24s的时长等,在此不做限定。第五种通信方法可以包含第四种通信方法,在步骤S302之前,还可以包括但不限于如下步骤S300a、步骤S300b以及步骤S301,其中:
S300a、NG-RAN和AMF,在UE注册过程中确定eDRX参数。
其中,eDRX参数可以包括eDRX周期等,在此不做限定。
S300b、AMF向NG-RAN发送UE处于非激活态时的能力信息。
相应地,NG-RAN从AMF接收UE处于非激活态时的能力信息。
其中,UE处于非激活态时的能力信息可以包括UE处于非激活态时的SDT能力等,在此不做限定。
S301、NG-RAN确定将UE释放到非激活态和非激活态时的eDRX配置。
其中,NG-RAN可以在UE的历史使用时段确定是否将UE释放到非激活态,或者可以基于NG-RAN的通信质量确定是否将UE释放到非激活态等,在此不做限定。非激活态时的eDRX配置可以包括eDRX周期等,在此也不做限定。
如图8所示,在步骤S302之后,且在步骤S306之前,还可以包括步骤S303a至步骤S303c,其中:
S303a、AMF向SMF发送第二请求。
相应地,SMF从AMF接收第二请求。
其中,第二请求可以用于请求更新PDU会话。该第二请求和下述的作为第二请求的响应消息的第二响应可以通过AMF和SMF之间进行交互的Namf消息进行传输,例如,第二请求可以为Namf_PDUSession_UpdateSMContext request,第二响应可以为Namf_PDUSession_UpdateSMContext response。
S303b、SMF和UPF进行会话更新。
S303c、SMF向AMF发送第二响应。
相应地,AMF从SMF接收第二响应。
如图8所示,在步骤S306之后,还可以包括步骤S307、NG-RAN将UE释放到非激活态。
在一些可行的示例中,在步骤S304之前,还可以包括:UPF向SMF发送数据通知消息。
相应地,SMF从UPF接收数据通知消息。该步骤可以参照步骤S100a的描述,在此不再赘述。
在一些可行的示例中,在步骤S304之后,且在步骤S306之前,还可以包括:AMF向SMF发送第一响应。
相应地,SMF从AMF接收第一响应。
其中,第一响应可以为第六信息的响应消息。第一响应可以携带有下行数据的缓存时长,可参照步骤 S100c的描述。该第一响应可以用于指示在UPF中缓存的UE的下行数据的缓存时长到达时丢掉该下行数据,从而适时清理缓存数据,避免占用UPF的资源。
在一些可行的示例中,在步骤S304之后,且在步骤S306之前,还可以包括:SMF向UPF发送数据通知响应。
相应地,UPF从SMF接收数据通知响应。
其中,数据通知响应可以为数据通知消息的响应消息。该数据通知响应可以包括缓存时长,用于指示UPF在UE的下行数据的缓存时长到达时丢掉该下行数据。
在一些可行的示例中,在步骤S304之后,且在步骤S306之前,还可以包括:UPF基于缓存时长,对UPF中缓存的UE的下行数据的缓存时间进行计时或倒计时。
在一些可行的示例中,在步骤S306之后,还可以包括:NG-RAN向UE发送第一指示;NG-RAN向AMF或者UPF发送第二指示。
相应地,UE从NG-RAN接收第一指示。AMF从NG-RAN接收第二指示,或者UPF从NG-RAN接收第二指示。其中,第一指示可以用于指示UE进行小包数据传输,该步骤可参照步骤S106和步骤S108的描述,在此不再赘述。
在一些可行的示例中,在NG-RAN向UE发送第一指示之后,且在NG-RAN向AMF或者UPF发送第二指示之前,还可以包括:UE向NG-RAN发送第二信息。
相应地,NG-RAN从UE接收第二信息。其中,第二信息用于确认UE能与核心网设备进行数据传输,或者用于确认UE进行恢复连接。该步骤可参照步骤S107的描述,在此不再赘述。
在一些可行的示例中,在NG-RAN向AMF或者UPF发送第二指示之后,还可以包括:UPF向NG-RAN发送小包数据。
相应地,NG-RAN从UPF接收小包数据。
在一些可行的示例中,在UPF向NG-RAN发送小包数据之后,还可以包括:UE与NG-RAN执行小包数据传输流程。该步骤可以参照步骤S110的描述,在此不再赘述。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图9,图9是本申请实施例提供的一种通信装置的结构示意图。该通信装置可以包括收发单元101和处理单元102。其中,收发单元101可以是具有信号的输入(接收)或者输出(发送)的装置,用于与其他网络设备或者设备中的其他器件进行信号的传输。
处理单元102可以是具有处理功能的装置,可以包括一个或者多个处理器。处理器可以是通用处理器或者专用处理器等。处理器可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对装置(如,宿主节点、中继节点或芯片等)进行控制,执行软件程序,处理软件程序的数据。
该通信装置可以包括终端设备、接入网设备、接入和移动性管理功能网元、会话管理功能网元、用户面功能网元,可以应用于上述图4至图8中至少一个通信方法的实施例。
在第一个实施例中,接入网设备包括:
收发单元101用于从接入和移动性管理功能网元接收第一信息;其中,第一信息携带有用户面功能网元或会话管理功能中缓存的终端设备的下行数据的数据大小,终端设备处于非激活态,且被接入网设备配置了eDRX周期;
处理单元102用于基于下行数据的数据大小,确定下行数据为小包数据;
收发单元101还用于向终端设备发送第一指示;其中,第一指示用于指示终端设备进行小包数据传输;
接入网设备向接入和移动性管理功能网元或者用户面功能网元发送第二指示,其中,第二指示用于指示用户面功能网元向接入网设备发送小包数据。
在第一个实施例的一些可行的示例中,接入网设备的收发单元101还用于从终端设备接收第二信息;其中,第二信息用于确认终端设备能与核心网设备进行数据传输,或者用于确认终端设备进行恢复连接。
在第一个实施例中,接入和移动性管理功能网元,包括:
收发单元101用于从会话管理功能网元接收第三信息,其中,第三信息携带有用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的数据大小,终端设备处于非激活态,且被接入网设备配置了eDRX周期;
收发单元101还用于向接入网设备发送第一信息,其中,第一信息携带有下行数据的数据大小,该下行数据的数据大小可用于确定该下行数据是否为小包数据。
在第一个实施例中,终端设备包括:
收发单元101用于从接入网设备接收第一指示;其中,第一指示用于指示终端设备进行小包数据传输,终端设备处于非激活态,且被接入网设备配置了eDRX周期。
在第一个实施例的一些可行的示例中,终端设备的收发单元101还用于向接入网设备发送第二信息;其中,第二信息用于确认终端设备能与核心网设备进行数据传输,或者用于确认终端设备进行恢复连接。
在第一个实施例中,会话管理功能网元包括:
收发单元101用于向接入和移动性管理功能网元发送第三信息;其中,第三信息携带有用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的数据大小,终端设备处于非激活态,且被接入网设备配置了eDRX周期。
在第一个实施例的一些可行的示例中,eDRX周期大于或等于10.24s。
在第一个实施例的一些可行的示例中,用户面功能网元中包括的收发单元101用于向会话管理功能网元发送数据通知消息。相应地,会话管理功能网元中包括的收发单元101用于从用户面功能网元接收数据通知消息。
在第一个实施例的一些可行的示例中,用户面功能网元中包括的收发单元101用于向会话管理功能网元发送第一响应。相应地,会话管理功能网元中包括的收发单元101用于从用户面功能网元接收第一响应。
在第一个实施例的一些可行的示例中,会话管理功能网元中包括的收发单元101用于向用户面功能网元发送数据通知响应。相应地,用户面功能网元中包括的收发单元101用于从会话管理功能网元接收数据通知响应。
在第一个实施例的一些可行的示例中,用户面功能网元中的处理单元102用于基于缓存时长,对用户面功能网元中缓存的终端设备的下行数据的缓存时长进行计时或倒计时。
在第一个实施例的一些可行的示例中,接入和移动性管理功能网元的收发单元101用于在所述缓存时长到达时,向接入网设备发送第一信息。
在第一个实施例的一些可行的示例中,用户面功能网元中的处理单元102用于向接入网设备发送确定为小包数据的下行数据。
在第二个实施例中,接入网设备包括:
收发单元101用于在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,从用户面功能网元接收下行数据;其中,终端设备处于非激活态,且被接入网设备配置了eDRX周期;
处理单元102用于确定下行数据为小包数据;
收发单元101还用于向终端设备发送第一指示;其中,第一指示用于指示终端设备进行小包数据传输。
在第二个实施例中,用户面功能网元包括:
收发单元101用于从会话管理功能网元接收第三指示;其中,第三指示用于指示在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,向接入网设备发送下行数据,终端设备处于非激活态,且被接入网设备配置的eDRX周期;
收发单元101还用于在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,向接入网设备发送下行数据。
在第二个实施例中,接入和移动性管理功能网元包括:
处理单元102用于获取用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长;
收发单元101用于向会话管理功能网元发送第四信息;其中,第四信息携带有缓存时长。
在第二个实施例的在一些可行的示例中,接入和移动性管理功能网元的处理单元102具体用于基于终端设备的eDRX配置,获取用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长。其中,eDRX配置包括接入网设备配置的eDRX周期。
在第二个实施例的一些可行的示例中,eDRX周期大于或等于10.24s。
在第二个实施例的一些可行的示例中,用户面功能网元中包括的收发单元101用于向会话管理功能网元发送数据通知消息。相应地,会话管理功能网元中包括的收发单元101用于从用户面功能网元接收数据 通知消息。
在第二个实施例的一些可行的示例中,会话管理功能网元中包括的收发单元101用于向接入和移动性管理功能网元发送第一请求。相应地,接入和移动性管理功能网元中包括的收发单元101用于从会话管理功能网元接收第一请求。
在第二个实施例的一些可行的示例中,用户面功能网元中的处理单元102用于基于缓存时长,对用户面功能网元中缓存的终端设备的下行数据的缓存时长进行计时或倒计时。
在第三个实施例中,接入和移动性管理功能网元包括:
收发单元101用于从接入网设备接收第五信息;其中,第五信息携带有接入网设备为终端设备处于非激活态时配置的eDRX周期,第五信息用于确定终端设备和接入网设备支持小包数据传输;
收发单元101还用于从会话管理功能网元接收第六信息;其中,第六信息用于确定用户面功能网元或会话管理网元中缓存的终端设备的下行数据为小包数据;
收发单元101还用于向接入网设备发送第四指示;其中,第四指示用于指示接入网设备进行小包数据传输。
在第三个实施例中的一些可行的示例中,第五信息还携带有终端设备的能力信息。进一步的,第五信息可以包括终端设备支持SDT的能力。接入和移动性管理功能网元的处理单元102用于基于终端设备的能力信息,确定用户面功能网元支持缓存终端设备的小包数据。
在第三个实施例中的一些可行的示例中,第六信息携带有下行数据的数据大小。其中,第六信息可以包括一个指示信息,用于指示用户面功能网元中缓存的终端设备的下行数据为小包数据,该指示信息可以为会话管理功能网元判决得到的。第六信息或者可以包括下行数据的数据大小,从而接入和移动性管理功能网元可以基于该下行数据的数据大小来确定该下行数据是否为小包数据。
在第三个实施例中,接入网设备包括:
收发单元101用于向接入和移动性管理功能网元发送第五信息;其中,第五信息携带有接入网设备为终端设备处于非激活态时配置了eDRX周期,第五信息用于确定终端设备和接入网设备支持小包数据传输;
收发单元101还用于从接入和移动性管理功能网元接收第四指示;其中,第四指示用于指示接入网设备进行小包数据传输。
在第三个实施例的一些可行的示例中,接入网设备的收发单元101还用于向终端设备发送第一指示;向接入和移动性管理功能网元或者用户面功能网元发送第二指示。其中,第一指示用于指示终端设备进行小包数据传输,第二指示用于指示用户面功能网元向接入网设备发送作为小包数据的下行数据。
在第三个实施例的一些可行的示例中,接入网设备的收发单元101还用于从终端设备接收第二信息。其中,第二信息用于确认终端设备能与核心网设备进行数据传输,或者用于确认终端设备进行恢复连接。
在第三个实施例的一些可行的示例中,eDRX周期大于或等于10.24s。
在第三个实施例的一些可行的示例中,用户面功能网元中包括的收发单元101用于向会话管理功能网元发送数据通知消息。相应地,会话管理功能网元中包括的收发单元101用于从用户面功能网元接收数据通知消息。
在第三个实施例的一些可行的示例中,用户面功能网元中包括的收发单元101用于向会话管理功能网元发送第一响应。相应地,会话管理功能网元中包括的收发单元101用于从用户面功能网元接收第一响应。
在第三个实施例的一些可行的示例中,会话管理功能网元中包括的收发单元101用于向用户面功能网元发送数据通知响应。相应地,用户面功能网元中包括的收发单元101用于从会话管理功能网元接收数据通知响应。
在第三个实施例的一些可行的示例中,用户面功能网元中包括的处理单元102用于基于缓存时长,对用户面功能网元中缓存的终端设备的下行数据的缓存时长进行计时或倒计时。
在第三个实施例的一些可行的示例中,接入和移动性管理功能网元中包括的收发单元101用于在所述缓存时长到达时,向接入网设备发送第四指示。
在第三个实施例的一些可行的示例中,用户面功能网元中包括的处理单元102用于向接入网设备发送确定为小包数据的下行数据。
在第三个实施例的一些可行的示例中,接入网设备和接入和移动性管理功能网元中包括的处理单元102用于在终端设备的注册过程中确定eDRX参数。其中,eDRX参数可以包括eDRX周期等,在此不做 限定。
在第三个实施例的一些可行的示例中,接入和移动性管理功能网元中包括的收发单元101用于向接入网设备发送终端设备处于非激活态时的能力信息。相应地,接入网设备中包括的收发单元101用于从接入和移动性管理功能网元接收终端设备处于非激活态时的能力信息。其中,终端设备处于非激活态时的能力信息可以包括UE处于非激活态时的SDT能力等,在此不做限定。
在第三个实施例的一些可行的示例中,接入网设备中包括的处理单元102用于确定将终端设备释放到非激活态和非激活态时的eDRX配置。
在第三个实施例的一些可行的示例中,接入和移动性管理功能网元中包括的收发单元101用于向会话管理功能网元发送第二请求。相应地,会话管理功能网元从接入和移动性管理功能网元中包括的收发单元101接收第二请求。其中,第二请求可以用于请求更新PDU会话。
在第三个实施例的一些可行的示例中,会话管理功能网元和用户面功能网元中包括的处理单元102和收发单元101用于进行会话更新。
在第三个实施例的一些可行的示例中,会话管理功能网元中包括的收发单元101用于向接入和移动性管理功能网元发送第二响应。相应地,接入和移动性管理功能网元中包括的收发单元101从会话管理功能网元接收第二响应。
在第三个实施例的一些可行的示例中,接入网设备中包括的收发单元101用于将终端设备释放到非激活态。
需要说明的是,各个单元的实现还可以对应参照图4至图8中至少一个实施例的相应描述。
请参阅图10,图10是本申请实施例提供的另一种通信装置的结构示意图。如图10所示,该通信装置1000可以包括一个或多个处理器1001,处理器1001也可以称为处理单元,可以实现对应的控制功能。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1001也可以存有指令1003,指令1003可以被处理器1001运行,使得通信装置1000执行上述方法实施例中描述的通信方法。
在另一种可选的设计中,处理器1001中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路,或者是通信接口。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,通信装置1000可以包括电路,该电路可以实现前述通信方法实施例中发送或接收或者通信的功能。
可选地,通信装置1000中可以包括一个或多个存储器1002,其上可以存有指令1004,指令1004可在处理器1001上被运行,使得通信装置1000执行上述方法实施例中描述的通信方法。可选地,存储器中还可以存储有数据。可选地,处理器1001中也可以存储指令和/或数据。处理器1001和存储器1002可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器1002中,或者存储在处理器1001中。
可选地,通信装置1000还可以包括收发器1005和/或天线1006。处理器1001可以称为处理单元,对通信装置1000进行控制。收发器1005可以称为收发单元、收发机、收发电路、收发装置或收发模块等,用于实现收发功能。
可选地,本申请实施例中的通信装置1000可以用于执行本申请实施例中图4至图8中至少一个通信方法中描述的步骤。
一种可能的情况,该通信装置1000可以为终端设备,也可以为终端设备中的装置(例如,芯片,或者芯片***,或者电路),或者是能够和终端设备匹配使用的装置。存储器1002中存储的计算机程序指令被执行时,该收发器1005用于执行上述实施例中收发单元101执行的操作,收发器1005还用于向该通信装置之外的其它通信装置发送信息。上述终端设备还可以用于执行上述图4至图8所示的方法实施例中终端设备执行的各种通信方法,不再赘述。
一种可能的情况,该通信装置1000可以为网络设备,例如,接入网设备或核心网设备,或者核心网 设备中的接入和移动性管理功能网元、会话管理功能网元、用户面功能网元等,或者可以为网络设备中的装置(例如,芯片,或者芯片***,或者电路),或者是能够和网络设备匹配使用的装置。存储器1002中存储的计算机程序指令被执行时,收发器1005用于接收来自该通信装置1000之外的其它通信装置的信息,收发器1005还用于执行上述实施例中收发单元101执行的操作。上述网络设备还可以用于执行上述图4至图8所示的方法实施例中网络设备执行的各种通信方法,不再赘述。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图10的限制通信。通信装置可以是独立的设备或者可以是较大设备的一部分。例如通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选地,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如移动电台的调制解调器(mobile station modem,MSM);
(4)可嵌入在其他设备内的模块;
(5)其他等等。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在一个或多个处理器运行时实现上述任一通信方法中的一个或多个步骤。
本申请实施例还提供了一种计算机程序产品,计算机程序产品用于存储计算机程序。当计算机程序在计算机上运行时,使得计算机或处理器执行上述任一通信方法中的一个或多个步骤。上述所涉及的设备的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在计算机可读取存储介质中。
本申请实施例还公开一种通信***,该***包括终端设备和网络设备,具体描述可以参考上述任一通信方法中的一个或多个步骤。
本申请实施例还提供第一种芯片,包括处理器和存储器,处理器用于从存储器中调用并运行存储器中存储的指令,使得安装有芯片的设备执行上述任一通信方法中的一个或多个步骤。
本申请实施例还提供第二种芯片,包括:输入接口、输出接口和处理电路,其中,输入接口、输出接口与处理电路之间通过内部连接通路相连,处理电路用于执行上述任一通信方法中的一个或多个步骤。
本申请实施例还提供第三种芯片,包括:输入接口、输出接口、处理器,可选的,还包括存储器,其中,输入接口、输出接口、处理器以及存储器之间通过内部连接通路相连,处理器用于执行存储器中的代码,当代码被执行时,处理器用于执行上述任一通信方法中的一个或多个步骤。
本申请实施例还提供一种芯片***,芯片***包括至少一个处理器,存储器和接口电路,存储器、收发器和至少一个处理器通过线路互联,至少一个存储器中存储有指令;指令被处理器执行时,上述任一通信方法中的一个或多个步骤得以实现。
综上所述,通过实施本申请实施例,由接入网设备或核心网设备决策是否进行小包数据传输,在是的情况下,使得在终端设备配置了非激活态eDRX周期的情况下,终端设备维持非激活态并进行数据或者信令的传输,节省了终端设备进行RRC状态切换带来的功耗。
应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是硬盘(hard disk drive,HDD)、固态硬盘(solid-state drive,SSD)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM, SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct ram bus RAM,DR RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
还应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块/单元可以根据实际需要进行合并、划分和删减。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (49)

  1. 一种通信方法,其特征在于,包括:
    接入网设备从接入和移动性管理功能网元接收第一信息;其中,所述第一信息携带有用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的数据大小,所述终端设备处于非激活态,且被所述接入网设备配置了扩展的非连续接收eDRX周期;
    所述接入网设备基于所述下行数据的数据大小,确定所述下行数据为小包数据;
    所述接入网设备向所述终端设备发送第一指示;其中,所述第一指示用于指示所述终端设备进行小包数据传输;
    所述接入网设备向所述接入和移动性管理功能网元或者所述用户面功能网元发送第二指示;其中,所述第二指示用于指示所述用户面功能网元向所述接入网设备发送所述小包数据。
  2. 根据权利要求1所述的通信方法,其特征在于,在所述接入网设备向所述接入和移动性管理功能网元或者所述用户面功能网元发送第二指示之前,还包括:
    所述接入网设备从所述终端设备接收第二信息;其中,所述第二信息用于确认所述终端设备能与核心网设备进行数据传输,或者用于确认所述终端设备进行恢复连接。
  3. 根据权利要求1或2所述的通信方法,其特征在于,所述eDRX周期大于或等于10.24秒。
  4. 一种通信方法,其特征在于,包括:
    接入和移动性管理功能网元从会话管理功能网元接收第三信息;其中,所述第三信息携带有用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的数据大小,所述终端设备处于非激活态,且被接入网设备配置了eDRX周期;
    所述接入和移动性管理功能网元向所述接入网设备发送第一信息;其中,所述第一信息携带有所述下行数据的数据大小。
  5. 根据权利要求4所述的通信方法,其特征在于,在所述接入和移动性管理功能网元向所述接入网设备发送第一信息之后,还包括:
    所述接入和移动性管理功能网元从所述接入网设备接收第二指示;其中,所述第二指示用于指示所述用户面功能网元向所述接入网设备发送作为小包数据的所述下行数据。
  6. 根据权利要求4或5所述的通信方法,其特征在于,所述eDRX周期大于或等于10.24秒。
  7. 一种通信方法,其特征在于,包括:
    在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,接入网设备从所述用户面功能网元接收所述下行数据;其中,所述终端设备处于非激活态,且被所述接入网设备配置了eDRX周期;
    所述接入网设备确定所述下行数据为小包数据;
    所述接入网设备向所述终端设备发送第一指示;其中,所述第一指示用于指示所述终端设备进行小包数据传输。
  8. 根据权利要求7所述的通信方法,其特征在于,所述eDRX周期大于或等于10.24秒。
  9. 一种通信方法,其特征在于,包括:
    用户面功能网元从会话管理功能网元接收第三指示;其中,所述第三指示用于指示在所述用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,向接入网设备发送所述下行数据,所述终端设备处于非激活态,且被所述接入网设备配置了eDRX周期;
    所述用户面功能网元在所述缓存时长到达时,向所述接入网设备发送所述下行数据。
  10. 根据权利要求9所述的通信方法,其特征在于,所述eDRX周期大于或等于10.24秒。
  11. 一种通信方法,其特征在于,包括:
    接入和移动性管理功能网元获取用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长;
    所述接入和移动性管理功能网元向会话管理功能网元发送第四信息;其中,所述第四信息携带有所述缓存时长。
  12. 根据权利要求11所述的通信方法,其特征在于,所述接入和移动性管理功能网元获取用户面功能网元或会话管理功能网元中缓存的所述终端设备的下行数据的缓存时长,包括:
    接入和移动性管理功能网元基于终端设备的eDRX配置,获取用户面功能网元或会话管理功能网元中缓存的所述终端设备的下行数据的缓存时长,所述eDRX配置包括接入网设备配置的eDRX周期。
  13. 根据权利要求12所述的通信方法,其特征在于,所述eDRX周期大于或等于10.24秒。
  14. 一种通信方法,其特征在于,包括:
    接入和移动性管理功能网元从接入网设备接收第五信息;其中,所述第五信息携带有所述接入网设备为终端设备处于非激活态时配置的eDRX周期,所述第五信息用于确定所述终端设备和所述接入网设备支持小包数据传输;
    所述接入和移动性管理功能网元从会话管理功能网元接收第六信息;其中,所述第六信息用于确定所述用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据为小包数据;
    所述接入和移动性管理功能网元向所述接入网设备发送第四指示;其中,所述第四指示用于指示所述接入网设备进行小包数据传输。
  15. 根据权利要求14所述的通信方法,其特征在于,所述第五信息还携带有所述终端设备的能力信息,在所述接入和移动性管理功能网元从接入网设备接收第五信息之后,还包括:
    所述接入和移动性管理功能网元基于所述终端设备的能力信息,确定所述用户面功能网元支持缓存所述终端设备的小包数据。
  16. 根据权利要求14或15所述的通信方法,其特征在于,所述第六信息携带有所述下行数据的数据大小。
  17. 根据权利要求14-16中任一项所述的通信方法,其特征在于,在所述接入和移动性管理功能网元向所述接入网设备发送第四指示之后,还包括:
    所述接入和移动性管理功能网元从所述接入网设备接收第二指示;其中,所述第二指示用于指示所述用户面功能网元向所述接入网设备发送作为小包数据的所述下行数据。
  18. 根据权利要求14-16中任一项所述的通信方法,其特征在于,所述eDRX周期大于或等于10.24秒。
  19. 一种通信方法,其特征在于,包括:
    接入网设备向接入和移动性管理功能网元发送第五信息;其中,所述第五信息携带有所述接入网设备为终端设备处于非激活态时配置的eDRX周期,所述第五信息用于确定所述终端设备和所述接入网设备支持小包数据传输;
    所述接入网设备从所述接入和移动性管理功能网元接收第四指示;其中,所述第四指示用于指示所述接入网设备进行小包数据传输。
  20. 根据权利要求19所述的通信方法,其特征在于,在所述接入网设备从所述接入和移动性管理功能 网元接收第四指示之后,还包括:
    所述接入网设备向所述终端设备发送第一指示;其中,所述第一指示用于指示所述终端设备进行小包数据传输。
  21. 根据权利要求19或20所述的通信方法,其特征在于,在所述接入网设备从所述接入和移动性管理功能网元接收第四指示之后,还包括:
    所述接入网设备向所述接入和移动性管理功能网元或者用户面功能网元发送第二指示;其中,所述第二指示用于指示所述用户面功能网元向所述接入网设备发送作为小包数据的所述下行数据。
  22. 根据权利要求19-21中任一项所述的通信方法,其特征在于,还包括:
    所述接入网设备从所述终端设备接收第二信息;其中,所述第二信息用于确认所述终端设备能与核心网设备进行数据传输,或者用于确认所述终端设备进行恢复连接。
  23. 根据权利要求19-22中任一项所述的通信方法,其特征在于,所述eDRX周期大于或等于10.24秒。
  24. 一种通信装置,其特征在于,包括:
    收发单元,用于从接入和移动性管理功能网元接收第一信息;其中,所述第一信息携带有用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的数据大小,所述终端设备处于非激活态,且被所述接入网设备配置了扩展的非连续接收eDRX周期;
    处理单元,用于基于所述下行数据的数据大小,确定所述下行数据为小包数据;
    所述收发单元,还用于向所述终端设备发送第一指示;其中,所述第一指示用于指示所述终端设备进行小包数据传输;
    所述收发单元,还用于向所述接入和移动性管理功能网元或者所述用户面功能网元发送第二指示;其中,所述第二指示用于指示所述用户面功能网元向所述接入网设备发送所述小包数据。
  25. 根据权利要求24所述的装置,其特征在于,所述收发单元在向所述接入和移动性管理功能网元或者所述用户面功能网元发送第二指示之前,还用于从所述终端设备接收第二信息;其中,所述第二信息用于确认所述终端设备能与核心网设备进行数据传输,或者用于确认所述终端设备进行恢复连接。
  26. 根据权利要求24或25所述的装置,其特征在于,所述eDRX周期大于或等于10.24秒。
  27. 一种通信装置,其特征在于,包括:
    收发单元,用于从会话管理功能网元接收第三信息;其中,所述第三信息携带有用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的数据大小,所述终端设备处于非激活态,且被接入网设备配置了eDRX周期;
    所述收发单元,还用于向所述接入网设备发送第一信息;其中,所述第一信息携带有所述下行数据的数据大小。
  28. 根据权利要求27所述的装置,其特征在于,所述收发单元在向所述接入网设备发送第一信息之后,还用于从所述接入网设备接收第二指示;其中,所述第二指示用于指示所述用户面功能网元向所述接入网设备发送作为小包数据的所述下行数据。
  29. 根据权利要求27或28所述的装置,其特征在于,所述eDRX周期大于或等于10.24秒。
  30. 一种通信装置,其特征在于,包括:
    收发单元,用于在用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,从所述用户面功能网元接收所述下行数据;其中,所述终端设备处于非激活态,且被所述接入网设备配置了eDRX周期;
    处理单元,用于确定所述下行数据为小包数据;
    所述收发单元,还用于向所述终端设备发送第一指示;其中,所述第一指示用于指示所述终端设备进行小包数据传输。
  31. 根据权利要求30所述的装置,其特征在于,所述eDRX周期大于或等于10.24秒。
  32. 一种通信装置,其特征在于,包括:
    收发单元,用于从会话管理功能网元接收第三指示;其中,所述第三指示用于指示在所述用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长到达时,向接入网设备发送所述下行数据,所述终端设备处于非激活态,且被所述接入网设备配置了eDRX周期;
    所述收发单元,还用于在所述缓存时长到达时,向所述接入网设备发送所述下行数据。
  33. 根据权利要求32所述的装置,其特征在于,所述eDRX周期大于或等于10.24秒。
  34. 一种通信装置,其特征在于,包括:
    处理单元,用于获取用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据的缓存时长;
    收发单元,用于向会话管理功能网元发送第四信息;其中,所述第四信息携带有所述缓存时长。
  35. 根据权利要求34所述的装置,其特征在于,处理单元具体用于基于终端设备的eDRX配置,获取用户面功能网元或会话管理功能网元中缓存的所述终端设备的下行数据的缓存时长,所述eDRX配置包括接入网设备配置的eDRX周期。
  36. 根据权利要求35所述的装置,其特征在于,所述eDRX周期大于或等于10.24秒。
  37. 一种通信装置,其特征在于,包括:
    收发单元,用于从接入网设备接收第五信息;其中,所述第五信息携带有所述接入网设备为终端设备处于非激活态时配置的eDRX周期,所述第五信息用于确定所述终端设备和所述接入网设备支持小包数据传输;
    所述收发单元,还用于从会话管理功能网元接收第六信息;其中,所述第六信息用于确定所述用户面功能网元或会话管理功能网元中缓存的终端设备的下行数据为小包数据;
    所述收发单元,还用于向所述接入网设备发送第四指示;其中,所述第四指示用于指示所述接入网设备进行小包数据传输。
  38. 根据权利要求37所述的装置,其特征在于,所述第五信息还携带有所述终端设备的能力信息,处理单元还用于基于所述终端设备的能力信息,确定所述用户面功能网元支持缓存所述终端设备的小包数据。
  39. 根据权利要求37或38所述的装置,其特征在于,所述第六信息携带有所述下行数据的数据大小。
  40. 根据权利要求37-39中任一项所述的装置,其特征在于,收发单元还用于从所述接入网设备接收第二指示;其中,所述第二指示用于指示所述用户面功能网元向所述接入网设备发送作为小包数据的所述下行数据。
  41. 根据权利要求37-39中任一项所述的装置,其特征在于,所述eDRX周期大于或等于10.24秒。
  42. 一种通信装置,其特征在于,包括:
    收发单元,用于向接入和移动性管理功能网元发送第五信息;其中,所述第五信息携带有所述接入网设备为终端设备处于非激活态时配置的eDRX周期,所述第五信息用于确定所述终端设备和所述接入网设备支持小包数据传输;
    所述收发单元,还用于从所述接入和移动性管理功能网元接收第四指示;其中,所述第四指示用于指示所述接入网设备进行小包数据传输。
  43. 根据权利要求42所述的装置,其特征在于,所述收发单元在从所述接入和移动性管理功能网元接收第四指示之后,还用于向所述终端设备发送第一指示;其中,所述第一指示用于指示所述终端设备进行小包数据传输。
  44. 根据权利要求42或43所述的装置,其特征在于,所述收发单元在从所述接入和移动性管理功能网元接收第四指示之后,还用于向所述接入和移动性管理功能网元或者用户面功能网元发送第二指示;其中,所述第二指示用于指示所述用户面功能网元向所述接入网设备发送作为小包数据的所述下行数据。
  45. 根据权利要求42-44中任一项所述的装置,其特征在于,所述收发单元还用于从所述终端设备接收第二信息;其中,所述第二信息用于确认所述终端设备能与核心网设备进行数据传输,或者用于确认所述终端设备进行恢复连接。
  46. 根据权利要求42-45中任一项所述的装置,其特征在于,所述eDRX周期大于或等于10.24秒。
  47. 一种通信装置,其特征在于,包括处理器,所述处理器用于执行存储于存储器中的指令,当所述指令被执行时,实现如权利要求1-23中任一项所述的通信方法。
  48. 根据权利要求47所述的通信装置,其特征在于,还包括所述存储器和收发器中的一项或多项,所述收发器用于收发数据和/或信令。
  49. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在一个或多个处理器上运行时,实现如权利要求1-23中任一项所述的方法。
PCT/CN2023/118516 2022-09-16 2023-09-13 通信方法、装置及计算机可读存储介质 WO2024055985A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211131326.9 2022-09-16
CN202211131326.9A CN117769031A (zh) 2022-09-16 2022-09-16 通信方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2024055985A1 true WO2024055985A1 (zh) 2024-03-21

Family

ID=90274299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118516 WO2024055985A1 (zh) 2022-09-16 2023-09-13 通信方法、装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117769031A (zh)
WO (1) WO2024055985A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913506A (zh) * 2018-09-14 2020-03-24 电信科学技术研究院有限公司 一种下行数据的缓存方法、upf实体及amf实体
WO2021263076A1 (en) * 2020-06-26 2021-12-30 Comcast Cable Communications, Llc Configuration for wireless communication in inactive or idle states
CN114449043A (zh) * 2021-11-30 2022-05-06 华为技术有限公司 通信方法及通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913506A (zh) * 2018-09-14 2020-03-24 电信科学技术研究院有限公司 一种下行数据的缓存方法、upf实体及amf实体
WO2021263076A1 (en) * 2020-06-26 2021-12-30 Comcast Cable Communications, Llc Configuration for wireless communication in inactive or idle states
CN114449043A (zh) * 2021-11-30 2022-05-06 华为技术有限公司 通信方法及通信装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON, MEDIATEK INC, DEUTSCHE TELEKOM: "Discussion on long eDRX value system impact to support RedCap", 3GPP DRAFT; S2-2105803, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. e-meeting; 20210816 - 20210827, 10 August 2021 (2021-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052056063 *
ERICSSON, MEDIATEK INC, DEUTSCHE TELEKOM: "Support for RedCap UE indication and eDRX", 3GPP DRAFT; S2-2105805, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. E (e-meeting); 20210816 - 20210827, 10 August 2021 (2021-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052056065 *
ZTE CORPORATION, SANECHIPS: "Discussion on eDRX for RedCap UE", 3GPP DRAFT; R2-2103039, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210412 - 20210420, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052174563 *

Also Published As

Publication number Publication date
CN117769031A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
US20220248184A1 (en) Communication Method And Apparatus
US11064457B2 (en) Paging policy differentiation in 5G system
WO2019196783A1 (en) Handling qos flow without a mapping data radio bearer
US10616810B2 (en) Method for transmitting buffered data in wireless communication system, and apparatus therefor
US20120289232A1 (en) Service dependent inactivity timer
WO2019154098A1 (zh) 一种通信方法及无线通信装置
WO2021000289A1 (zh) 用于传输小数据的方法及设备
TW202021323A (zh) 一種訊息傳輸方法及裝置、通信設備
JP2019527006A (ja) 報告受信方法及びネットワーク装置、並びに報告実行方法及び基地局
EP3664570B1 (en) Session establishment methods and apparatus
WO2020034920A1 (zh) 处理终端装置无线能力改变的方法和装置
US11272399B2 (en) Data processing method, mobility management device, and terminal device
WO2022001495A1 (zh) 状态转换方法及链接态mtch的指示方法、装置、存储介质、终端、基站
AU2021308253A1 (en) Communication method and communication apparatus
WO2022056806A1 (zh) 一种mbs业务的管理方法及装置、终端设备、网络设备
KR101338488B1 (ko) 푸쉬형 데이터를 위한 무선자원 관리 방법 및 장치
WO2020001256A1 (zh) 一种数据传输方法及装置
EP4017120A1 (en) Access control method and apparatus, and terminal device
WO2021051320A1 (zh) 一种业务数据传输方法及装置、网络设备、终端设备
WO2022006875A1 (zh) 建立mbs业务的方法及装置、终端设备、网络设备
WO2021031035A1 (zh) 一种通信方法及装置
WO2024055985A1 (zh) 通信方法、装置及计算机可读存储介质
WO2019210517A1 (zh) 无线通信方法、通信设备、芯片和***
WO2022205454A1 (zh) 一种指示寻呼的方法及装置、终端设备、网络设备
WO2023160657A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864717

Country of ref document: EP

Kind code of ref document: A1