WO2024055894A1 - 一种编/译码方法及装置 - Google Patents

一种编/译码方法及装置 Download PDF

Info

Publication number
WO2024055894A1
WO2024055894A1 PCT/CN2023/117494 CN2023117494W WO2024055894A1 WO 2024055894 A1 WO2024055894 A1 WO 2024055894A1 CN 2023117494 W CN2023117494 W CN 2023117494W WO 2024055894 A1 WO2024055894 A1 WO 2024055894A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
candidate code
preset candidate
patterns
decoding
Prior art date
Application number
PCT/CN2023/117494
Other languages
English (en)
French (fr)
Inventor
胡建悦
欧松林
黄欣
鹿智萃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024055894A1 publication Critical patent/WO2024055894A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to an encoding/decoding method and device.
  • Turbo codes or low density parity check (LDPC) codes are used for channel coding.
  • the frame structure design has been completed and has been applied on a large scale.
  • the performance and complexity of Turbo codes or LDPC codes need to be further improved. How to improve the performance and complexity of channel coding is an issue worth studying.
  • Embodiments of the present application provide an encoding/decoding method and device to improve channel coding performance and reduce coding complexity.
  • a decoding method is provided.
  • the decoding method is applied to a decoding scenario without a priori information.
  • the execution subject of the method is a receiving device or a chip or circuit applied to the receiving device.
  • the method includes: receiving from The codeword of the satellite communication equipment, the codeword is a codeword obtained by polar code encoding; the codeword is decoded according to M preset candidate code patterns of the polar code, and the M is greater than 1 integer.
  • the receiving device performs the receiving operation according to M preset candidate code patterns of the polar code (optionally, the M preset candidate code patterns may be all preset candidate code patterns of the polar code).
  • the codeword is decoded, and polarization decoding of the received codeword is achieved in a scenario where there is no prior information to assist decoding.
  • decoding the codeword according to M preset candidate code patterns of the polar code includes:
  • the Among the M preset candidate code patterns determine one candidate code pattern; decode the codeword according to the determined candidate code pattern; if the decoding is successful, the process ends; or if the decoding fails, the Among the M preset candidate code patterns, another candidate code pattern is determined; using the other candidate code pattern, continue to decode the codeword until the decoding of the codeword is successful, or Until the decoding of polar codes by the M preset candidate patterns all fails.
  • the receiving device traverses the M preset candidate code patterns of the polar code and performs polarization decoding on the received codeword, achieving decoding of the polar code without prior information to assist decoding. .
  • the method further includes: sorting the M preset candidate code patterns according to the coding performance of the M preset candidate code patterns; wherein, among the sorted M preset candidate code patterns, , select candidate patterns for decoding in order.
  • the coding performance of the M preset candidate code types includes one or more of the following: coding gains of the M preset candidate code types, or coding codes of the M preset candidate code types. Rate.
  • the M preset candidate code patterns of the polar code are sorted according to the coding performance. For example, candidate code patterns with good coding performance are sorted at the front, and candidate code patterns with poor coding performance are sorted at the back. According to the order from front to back of the M preset candidate code patterns, candidate code patterns for decoding are sequentially selected from the M preset candidate code patterns. Based on the fact that when the encoding end performs polarization encoding on the information to be sent, among the M preset candidate code patterns, candidate code patterns with good coding performance will be preferentially selected for encoding. Therefore, the decoding speed can be accelerated by adopting the above design.
  • the method further includes: sorting the M preset candidate code patterns according to the occurrence probabilities of the M preset candidate code patterns or the occurrence probabilities of parameters of the M preset candidate code patterns. ; Wherein, among the M preset candidate code patterns after sorting, the candidate code patterns for decoding are selected in order, and the parameters of the M preset candidate code patterns include one or more of the following: the M The information bit length of the preset candidate code pattern, or the code length of the M preset candidate code patterns.
  • the M preset candidate code patterns are sorted according to the occurrence probabilities of the M preset candidate code patterns or the occurrence probabilities of parameters in the M preset candidate code patterns. Prioritizing candidate code patterns with a high probability of occurrence or candidate code patterns corresponding to parameters with a high probability of occurrence for decoding can speed up decoding.
  • an encoding method is provided.
  • the execution subject of the method is a sending device, or a chip or circuit provided in the sending device,
  • the method includes: determining a first code pattern based on the coding performance of M preset candidate code patterns of the polar code, where M is an integer greater than 1; and polarizing the information to be sent according to the first code pattern.
  • Encoding sending the encoded codeword to the satellite communication equipment.
  • the coding performance of the M preset candidate code types includes one or more of the following: coding gains of the M preset candidate code types, or coding codes of the M preset candidate code types. Rate.
  • the sending device when the sending device performs polar coding on the information to be sent, it selects the first code pattern among the M preset candidate code patterns of the polar code according to the coding performance, and performs polar coding on the information to be sent.
  • the coding performance is a code pattern whose coding gain meets the conditions, and the first code pattern whose coding gain meets the conditions is used to polarize the information to be sent, thereby improving the reliability and anti-interference ability of information transmission.
  • the method further includes: using a low-density parity check LDPC code or a turbo code to encode the code words obtained by the polar coding.
  • the polar code is nested in the information bits of the original LDPC code or Turbo code, which can be as compatible with the original system as possible, and is beneficial to the old system.
  • the impact of old equipment is small, ensuring that the equipment can operate normally after modification.
  • a device in a third aspect, includes a unit or module corresponding to the method described in the first or second aspect.
  • the unit or module can be implemented by a hardware circuit, or by software, or by a hardware circuit. Combined with software implementation.
  • a fourth aspect provides a device, including a processor and an interface circuit.
  • the processor is configured to communicate with other devices through the interface circuit and execute the method described in the first or second aspect.
  • the processor includes one or more.
  • a device including a processor coupled to a memory, and the processor is configured to execute a program stored in the memory to perform the method described in the first aspect or the second aspect.
  • the memory may be located within the device or external to the device.
  • the processor can be one or more.
  • a sixth aspect provides a device, including a processor and a memory; the memory is used to store computer instructions, and when the device is running, the processor executes the computer instructions stored in the memory, so that the device executes the first aspect or The method described in the second aspect.
  • a chip system including: a processor or a circuit for executing the method described in the first aspect or the second aspect.
  • a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium, and when run on a device, the method described in the first or second aspect is executed.
  • a computer program product includes a computer program or instructions.
  • the computer program product includes a computer program or instructions. When the computer program or instructions are run by a device, the method described in the first aspect or the second aspect is executed.
  • a system including a device for executing the method of the first aspect and a device for executing the method of the second aspect.
  • the system may also include satellite communications equipment.
  • Figure 1 is a schematic diagram of the communication system architecture applied in the embodiment of the present application.
  • Figure 2 is a flow chart of decoding provided by an embodiment of the present application.
  • Figure 3 is a flow chart of coding provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of nested coding provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of coding corresponding to nested coding provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of decoding corresponding to nested encoding provided by the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Figure 8 is another structural schematic diagram of the device provided by the embodiment of the present application.
  • Figure 1 is a schematic architectural diagram of a communication system applied in an embodiment of the present application.
  • the communication system 1000 includes a terminal 110, a satellite communication device 120 and a ground station 130.
  • the terminal 110 is a device with wireless transceiver functions.
  • the terminal 110 may be called a terminal device, user equipment (UE), mobile station, mobile terminal, etc.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, Smart furniture, smart offices, smart wearables, smart transportation, smart cities, etc.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc. The embodiments of this application do not limit the specific technology and specific equipment form used by the terminal.
  • Satellite communication equipment 120 is mainly used to provide relay and communication functions.
  • the relay function refers to communication between satellites.
  • the satellite communication device 120 includes a satellite 121 and a satellite 122 .
  • the satellite 121 can provide a signal relay function, receive the signal sent by the satellite 122, and forward the signal to the ground station 130 or the terminal 110.
  • the satellite 122 can provide a signal relay function, receive the signal sent by the satellite 121, and forward the signal to the ground station 130 or the terminal 110.
  • the communication function refers to forwarding signals sent by the ground station 130 to the terminal 110, or forwarding signals sent by the terminal 110 to the ground station 130, etc.
  • the uplink signal sent by the terminal 110 may be forwarded by one or more satellites and sent to the ground station 130 .
  • the downlink signal sent by the ground station 130 may be forwarded by one or more satellites and sent to the terminal 110.
  • the satellite communication device 120 may be a geostationary earth orbit (GEO) satellite, a medium earth orbit (MEO) satellite, an inclined geosynchronous orbit (IGSO) satellite, a low earth orbit (low earth orbit) , LEO) satellites, or satellites in high altitude communication platform (HAPS) systems, etc., are not restricted.
  • GEO geostationary earth orbit
  • IGSO inclined geosynchronous orbit
  • LEO low earth orbit
  • HAPS high altitude communication platform
  • the ground station 130 is used to connect the satellite communication equipment 120 and the core network. On the one hand, it can control the satellite communication equipment 120 to forward uplink signals or downlink signals, and it can also control the orbit and attitude adjustment of the satellite communication equipment 120; on the other hand, it can be used as a wireless communication base station.
  • the ground station 130 can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), or a next-generation base station (next) in the fifth generation (5th generation, 5G) mobile communication system.
  • the next generation base station in the sixth generation (6th generation, 6G) mobile communication system the base station in the future mobile communication system or the access node in the wireless fidelity (wireless fidelity, WiFi) system, etc.; also It can be a module or unit that completes some functions of the base station.
  • it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the base station’s radio resource control (RRC) protocol and packet data convergence protocol (PDCP), and can also complete the service data adaptation protocol (SDAP) function;
  • DU completes the functions of the radio link control (RLC) layer and medium access control (MAC) layer of the base station, and can also complete part of the physical (PHY) layer or all of the physical layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • DU completes the functions of the radio link control (RLC) layer and medium access control (MAC) layer of the base station, and can also complete part of the physical (PHY) layer or all of the physical layer.
  • Functions for specific descriptions of each of the above protocol layers, please refer to the relevant technical specifications of the 3rd generation partnership project (3GPP).
  • the ground station 130 may be a macro base station, a micro base station or an indoor station, or a relay node or a donor node, etc.
  • the embodiments of this application do
  • Terminals and base stations can be in fixed locations or moveable without limitation. Terminals and base stations can be deployed on land, indoors or outdoors, handheld or vehicle-mounted, etc. Alternatively, it can be deployed on the water; or it can be deployed on aircraft, balloons, satellites, etc. in the sky. Satellite communication equipment is deployed in space. Specific satellites fly at an altitude of less than 1,000 kilometers (called low-orbit satellites), or between 1,000 kilometers and 2,000 kilometers (called medium-orbit satellites), or more than 2,000 kilometers (called medium-orbit satellites). called high-orbit satellites), etc. The embodiments of this application do not limit the application scenarios of terminals, satellite communication equipment, and base stations.
  • Figure 1 is only a schematic diagram, and the communication system 1000 may also include other network devices.
  • the communication system 1000 may also include a core network, which is not shown in Figure 1 .
  • the terminal is connected to the satellite communication equipment through wireless means, the satellite communication equipment is connected to the base station through wireless means, and the base station is connected to the core network through wireless or wired means.
  • the core network equipment and the base station can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the base station can be integrated on the same physical device, or the functions and functions of some core network equipment can be integrated on one physical device.
  • Some base station functions. Terminals and terminals, as well as ground stations and ground stations, can be connected through wired or wireless means.
  • the functions of the base station may be performed by modules (such as chips) in the base station, or by a control subsystem that includes the functions of the base station.
  • the subsystem including the base station control function may be a control center in the above application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal may be performed by modules in the terminal (such as chips or modems), or by devices containing terminal functions, etc.
  • the communication system may be a non-terrestrial network (NTN) communication system, a future evolved public land mobile network (PLMN) system, or a future sixth-generation wireless communication system. , or Beidou satellite communication system, etc., are not restricted.
  • LDPC low density parity check
  • Turbo codes Turbo codes
  • the encoding pattern is usually fixed.
  • the above-mentioned fixed code pattern is used to decode the received codeword. Since the performance and complexity of LDPC codes or Turbo codes need to be further improved, it is considered to introduce polar codes for channel coding.
  • Polar codes are good codes that can theoretically reach the Shannon limit and have relatively simple decoding complexity. Therefore, using polar codes for channel coding can improve coding performance and reduce encoding/decoding complexity.
  • the sending device can select one encoding pattern among multiple encoding patterns to encode the user information. For the receiving device, how to decode the received codeword is a current research direction. In one design, the receiving device can perform decoding based on a priori information. For example, the receiving device can select one code pattern among multiple code patterns based on a priori information, and decode the received code word based on the selected code pattern. When the receiving device cannot obtain a priori information to assist decoding, how the receiving device decodes the received codeword is a technical problem to be solved in the embodiments of the present application.
  • the receiving device when the receiving device receives a codeword, the codeword is a codeword encoded by a polar code.
  • the receiving device can obtain M preset candidate pattern patterns of the polar code, where M is an integer greater than 1.
  • the receiving device decodes the received codeword according to the M preset candidate code patterns. For example, select one candidate code pattern from M preset candidate code patterns and decode the received codeword. If the decoding is successful, the decoding ends; otherwise, select another candidate code pattern from M preset candidate code patterns.
  • the candidate code patterns continue to decode the received codeword until the direct decoding succeeds, or until the decoding of the M preset candidate code patterns all fails.
  • the method includes:
  • Step 201 The receiving device receives the codeword from the satellite communication device.
  • the codeword is a codeword obtained by polar code encoding.
  • the sending device can use the polar code to polarize the information to be sent to obtain the codeword. For example, the sending device selects a candidate code pattern among M preset candidate code patterns corresponding to the polar code; the sending device uses the selected candidate code pattern to encode the information to be sent to obtain a code word, and converts the code word Sent to satellite communications equipment. Satellite communication equipment can act as a relay, forwarding the received codewords to the receiving equipment. When receiving the codeword, the receiving device uses the decoding method shown in Figure 2 to decode the received codeword.
  • a codeword information bits + coding bits.
  • the code length describes the length of a codeword, usually represented by N.
  • the information bit describes the length of the original information to be sent, usually represented by k.
  • a pattern is usually represented as (k, N).
  • the sending device selects a candidate code pattern for polarization coding among the M candidate code patterns.
  • the sending device can select a candidate code pattern whose length of information bit k is greater than or equal to x among M candidate code patterns based on the length x of the information bit to be sent.
  • the candidate pattern whose length of information bits k is greater than x preset information can be used to fill the information to be sent, and the information to be sent of length x is filled with length k.
  • code patterns used for polar coding can be further screened based on the coding rate or reliability of the candidate code patterns.
  • Step 202 The receiving device decodes the codeword according to M preset candidate code patterns of the polar code, where M is an integer greater than 1.
  • the receiving device determines a candidate code pattern among the M preset candidate code patterns of the polar code; decodes the received code word according to the determined candidate code pattern; if the decoding is successful, it ends; if If the decoding fails, determine another candidate code pattern among the M preset candidate code patterns; use the determined another candidate code pattern to continue decoding the received code word until the received code word is decoded. until successful, or until all M preset candidate patterns fail to decode the received codeword.
  • the M preset candidate code types of the polar code are respectively candidate code type 1, candidate code type 2, candidate code type 3, (the description of other candidate code types in the middle is omitted), candidate code type M ; The receiving device can first use candidate pattern 1 to decode the received codeword.
  • the process ends. If the decoding fails, the receiving device uses candidate pattern 2 to continue decoding the received codeword, and the cycle continues until the decoding is successful. Or, when all M candidate patterns fail to decode the received codeword, decoding is stopped.
  • the sending device uses polar codes to encode the information to be sent, it can perform cyclic redundancy check (CRC) encoding on the bits corresponding to the information to be sent.
  • CRC cyclic redundancy check
  • the receiving device uses each candidate code pattern to decode the received codeword and obtains the decoding result, it determines whether the decoding result passes the CRC check; if it passes the CRC check, the decoding is considered successful; otherwise, the decoding is considered successful. Code failed.
  • the receiving device can use a decoding algorithm to decode the received codeword.
  • the decoding algorithm can be a belief propagation (BP) decoding algorithm, a sequential cancellation list (SCL) decoding algorithm. Coding algorithms, etc., are not limited.
  • the receiving device sorts the M preset candidate code patterns according to the coding performance of the M preset candidate code patterns of the polar code; among them, among the sorted M preset candidate code patterns, select in order Candidate patterns for decoding.
  • the coding performance of the M preset candidate code patterns includes one or more of the following: coding gains of the M preset candidate code patterns, or coding rates of the M preset candidate code patterns.
  • coding gains of the M preset candidate code patterns or coding rates of the M preset candidate code patterns.
  • embodiments of the present application provide the following three designs:
  • the receiving device can sort the M preset candidate code patterns according to the coding rates of the M preset candidate code patterns.
  • the M candidate pattern patterns include pattern (256, 2048), pattern (512, 2048), and pattern (1024, 2048).
  • the corresponding encoding bit rates are 1/8, 1/4, and 1/2 respectively.
  • candidate code patterns can be sorted according to coding and decoding performance, and code patterns with good coding and decoding performance are prioritized for decoding, that is, code patterns with a lower coding rate are prioritized for decoding.
  • the arrangement order of the above three candidate code patterns may be: code pattern (256, 2048), code pattern (512, 2048), and code pattern (1024, 2048).
  • the receiving device can first use the code pattern (256, 2048) for decoding. If the decoding fails, then use the code pattern (512, 2048) for decoding. In the same way, if the decoding of code pattern (512, 2048) fails, use code pattern (1024, 2048) for decoding.
  • candidate code patterns can be sorted according to information transmission efficiency, and code patterns with high transmission efficiency are decoded first, that is, code patterns with a higher coding rate are decoded first.
  • the arrangement order of the above three candidate code patterns may be: code pattern (1024, 2048), code pattern (512, 2048), code pattern (256, 2048).
  • the receiving device can first use the code pattern (1024, 2048) for decoding. If the decoding fails, then use the code pattern (512, 2048) for decoding. In the same way, if the decoding of code pattern (512, 2048) fails, use code pattern (256, 2048) for decoding.
  • the receiving device uses the coding performance of the M preset candidate code patterns of the polar code to sort the M preset candidate code patterns. No additional data statistics and processing algorithms are needed, which is simple to implement and saves money on the receiving equipment. of power consumption.
  • the receiving device can sort the M preset candidate code patterns according to the coding gains of the M preset candidate code patterns.
  • the coding gain is defined as: under the condition of a certain bit error rate, the difference between the input signal-to-noise ratio required by the non-coding system and the input signal-to-noise ratio required by the system using error correction coding.
  • Coding gain is the core indicator to measure the quality of coding and decoding algorithms. When the decoding algorithm is the same, coding gain is affected by the coding pattern.
  • a simulation system can be used to simulate and determine the coding gains of the M preset candidate code patterns of the polar code in advance. Sort the M preset candidate code patterns according to the coding gain, and deploy the sorted M preset candidate code patterns in the receiving device.
  • the M candidate code patterns include code pattern (256, 2048), code pattern (512, 2048), code pattern (498, 2048), code pattern (525, 2048), code pattern (1024, 2048), etc.
  • the coding gains of the five candidate code types are 6 decibels (dB), 3.5dB, 4dB, 4.5dB, and 2dB respectively.
  • the decoding order of the five candidate code types is code type (256, 2048), pattern(525,048), pattern(498,2048), pattern(512,2048), and pattern(1024,2048).
  • the receiving device sorts the M preset candidate code patterns according to their coding rates and coding gains.
  • the receiving device sorts the M preset candidate code patterns according to the coding rates of the M preset candidate code patterns.
  • the multiple candidate code patterns with the same coding rate can be sorted according to coding gain.
  • the receiving device sorts the M preset candidate code patterns according to the coding gains of the M preset candidate code patterns.
  • the multiple preset candidate code patterns with the same coding gain are sorted according to the coding rate.
  • the receiving device sorts the M preset candidate code patterns according to the occurrence probabilities of the M preset candidate code patterns of the polar code, or the occurrence probabilities of the parameters of the M preset candidate code patterns. Among them, among the sorted M preset candidate code patterns, candidate code patterns for decoding are selected in order.
  • the receiving device sorts the M preset candidate code patterns according to their occurrence probabilities.
  • big data statistics are used to calculate the probability that the transmitting device selects a coding pattern during polar coding, that is, the probability of occurrence of the coding pattern.
  • candidate code patterns with a high probability of occurrence are given priority for decoding.
  • the M candidate pattern patterns include pattern (256, 2048), pattern (512, 2048) and pattern (1024, 2048).
  • the sending device has the highest probability of using code pattern (512, 2048) for encoding, that is, code pattern (512, 2048) has the highest probability of occurrence, and priority is given to using code pattern (512, 2048) for decoding.
  • the occurrence probability of code pattern (1024, 2048) is second, followed by code pattern (1024, 2048) for decoding, code pattern (256, 2048) has the lowest probability of occurrence, and finally code pattern (256, 2048) is used for decoding.
  • AI artificial intelligence
  • an AI model is pre-trained to predict the occurrence probability of each candidate pattern.
  • the input of the AI model includes one or more of the following: information about the sending device, information about the receiving device, or information about candidate code patterns, etc.
  • the output of the AI model is the predicted occurrence probability of the candidate code pattern.
  • the receiving device sorts the M candidate code patterns according to the occurrence probabilities of the parameters of the M preset candidate code patterns.
  • the parameters of the M preset candidate code patterns include one or more of the following: information bit lengths of the M preset candidate code patterns, or code lengths of the M preset candidate code patterns.
  • the receiving device determines the occurrence probability of the information bit length in each candidate code pattern among M preset candidate code patterns.
  • the receiving device sorts the M candidate code patterns according to the probability of occurrence of the information bit lengths in the M candidate code patterns.
  • the receiving device decodes the received codeword based on the sorted M candidate code patterns.
  • the M candidate pattern patterns include pattern (256, 2048), pattern (512, 2048), and pattern (1024, 2048).
  • the three candidate code patterns are sorted according to the occurrence probability of the information bits in the above three candidate code patterns.
  • the occurrence probability of information bit 512 is the highest, the occurrence probability of information bit 1024 is the second, and the occurrence probability of information bit 256 is the lowest.
  • the above three candidate code patterns are sorted and obtained: code pattern (512, 2048), code pattern (1024, 2048), code pattern (256, 2048).
  • the received codeword is decoded according to the three sorted candidate code patterns.
  • the code pattern (512, 2048) is first selected for decoding.
  • the code pattern (1024, 2048) is selected for decoding.
  • the code pattern (1024, 2048) is decoded.
  • the M preset candidate pattern patterns of the polar code include pattern (452, 4096) and pattern (1808, 4096).
  • the sending device uses Unicode encoding to convert the Chinese characters in the information to be sent into binary information. One Chinese character occupies 16 bits.
  • the information bit 452 in the code pattern (452, 4096) can be loaded with 28 Chinese characters, and the information bit 1808 in the code pattern (1808, 4096) can be loaded with 113 Chinese characters.
  • the probability of occurrence of 28 Chinese characters is higher, that is, the probability of occurrence of code pattern (452, 4096) is higher, and the receiving device can give priority to using code pattern (452, 4096) for decoding.
  • the sending device can use big data to count the occurrence probability of information bits in each of the M candidate code patterns.
  • the sending device may use AI methods to predict the occurrence probability of information bits in each candidate type among the M preselected code patterns, etc., which is not limited.
  • the receiving device determines the occurrence probability of the code length in each of the M candidate code patterns.
  • the receiving device sorts the M candidate code patterns according to the occurrence probability of the code length among the M candidate code patterns.
  • the receiving device decodes the received codeword according to the sorted M candidate code patterns.
  • the receiving device uses big data or AI methods to determine the probability of occurrence of the code length among the M candidate code patterns.
  • the M candidate code patterns include code pattern (452, 4096), code pattern (452, 8192), and code pattern (1024, 2048).
  • the occurrence probability of code length 8192 is the highest, the occurrence probability of code length 2048 is the second, and the occurrence probability of code length 4096 is the lowest.
  • the M candidate code patterns are sorted according to the occurrence probability of code length, and we get: code pattern (452, 8192), Code pattern (1024, 2048), code pattern (452, 4096).
  • the receiving device first uses code pattern (452, 8192) for decoding, then uses code pattern (1024, 2048) for decoding, and finally uses code pattern (452, 4096) for decoding.
  • the receiving device may determine the occurrence probability of the information bit and the occurrence probability of the code length in each of the M candidate code patterns.
  • the receiving device sorts the M candidate code patterns according to the information bit occurrence probability and code length occurrence probability of each candidate code pattern.
  • the receiving device sorts the received codewords according to the sorted M candidate code patterns.
  • the receiving device may determine the occurrence probability of each candidate code pattern based on the occurrence probability of the bit information of each candidate code pattern and the occurrence probability of the code length.
  • the same or different weights are set in advance for the occurrence probability of the information bit and the occurrence probability of the code length. According to the occurrence probability and weight of the information bit of each preset code pattern, and the occurrence probability of the code length and Weight determines the occurrence probability of each preset pattern.
  • the weight of the occurrence probability of the information bit is m
  • the weight of the occurrence probability of the code length is n
  • m and n are the same or different
  • m and n are both integers less than 1
  • the sum of m and n is equal to 1
  • the occurrence probability of the candidate code pattern satisfies the following: the occurrence probability of the information bit *m + the occurrence probability of the code length *n.
  • the receiving device sorts the M candidate code patterns according to the occurrence probability of each candidate code pattern among the M candidate code patterns.
  • the receiving device sorts the M candidate code patterns according to the information bit occurrence probability of each of the M candidate code patterns. When the information bit occurrence probabilities of multiple candidate code patterns are the same, the occurrence probabilities of code lengths are used to sort the multiple candidate code patterns. Alternatively, the receiving device may sort the M candidate code patterns according to the code length occurrence probability in each of the M candidate code patterns. When the code length occurrence probabilities of multiple candidate code patterns are the same, the occurrence probabilities of information bits are then used to sort the multiple candidate code patterns.
  • the receiving device sorts the M preset candidate code patterns of the polar code, and decodes the received codewords in sequence according to the sorted M preset candidate code patterns, which can speed up the decoding speed. , reduce decoding delay.
  • the receiving device can use big data statistics, AI prediction, etc. to determine each The occurrence probability of the candidate pattern, or the occurrence probability of the parameters in the candidate pattern.
  • other devices can use big data statistics or AI prediction to determine the probability of occurrence of each candidate code pattern or its parameters, and notify the receiving device without limitation.
  • the base station sends downlink information or downlink signals to the terminal, and the base station uses polar codes to polarize the downlink information or downlink signals.
  • the base station uses big data or AI prediction and other methods to determine the probability of occurrence of the M preset candidate code patterns or their parameters of the polar code, and notifies the terminal.
  • the terminal When the terminal receives the codeword from the base station, it sorts the M preset candidate code patterns according to the occurrence probabilities of the M preset candidate code patterns or their parameters notified by the base station, and sorts the M preset candidate code patterns according to the sorted M preset candidate code patterns. , decode the received codeword.
  • Step 301 The sending device determines the first code pattern based on the coding performance of M preset candidate code patterns of the polar code;
  • the coding performance of the M preset candidate code patterns includes one or more of the following: coding gains of the M preset candidate code patterns, or coding rates of the M preset candidate code patterns.
  • the sending device determines the implementation method of the first code pattern based on the coding performance of the M preset candidate code patterns. Please refer to the description in the following design. Of course, the following designs are only illustrative and are not intended to limit the embodiments of the present application.
  • the sending device determines the first code pattern based on the coding gains of M preset candidate code patterns.
  • the coding gain of each of the M preset candidate code types can be determined through simulation, and the coding gain of each of the M preset candidate code types can be preconfigured in the transmitter in the device.
  • the sending device can simulate and determine the coding gain of each preset candidate code pattern by itself based on M preset candidate code patterns.
  • other devices determine the coding gain of each of the M preset candidate code patterns through simulation, and notify the sending device.
  • the sending device is a terminal and the receiving device is a base station.
  • the receiving device (base station) simulates to obtain the coding gains of M preset candidate code patterns, and notifies the sending device (terminal) of the coding gains of the M preset candidate code patterns.
  • the transmitting device determines the candidate code type whose coding gain satisfies the condition according to the coding gains of the M candidate code types, and the candidate code type whose coding gain satisfies the condition is the first code type.
  • the condition that the coding gain satisfies may be: the candidate code type with the highest coding gain among the M preset candidate code types, or the candidate code type with a coding gain value greater than the first threshold among the M preset candidate code types, or the candidate code type with a coding gain value greater than the second threshold and less than the third threshold among the M candidate code types, and the second threshold is greater than the third threshold.
  • the condition that the coding gain satisfies is preset, specified in the protocol, or notified by other devices, etc., without limitation.
  • the other device may be a base station, a core network element, etc.
  • the sending device determines the first code pattern based on the coding rates of M preset candidate code patterns.
  • the sending device determines the coding rate of M preset candidate code patterns.
  • the process of determining the coding rate of the candidate pattern please refer to the description in decoding.
  • the sending device selects a candidate code pattern whose coding code rate meets the conditions among the M preset candidate code patterns based on the coding code rates of the M preset candidate code patterns.
  • the candidate code pattern whose encoding code rate meets the conditions is the first code pattern.
  • the conditions for the encoding code rate to be met can be: among the M preset candidate code patterns, the candidate code type with the highest encoding code rate; or, among the M preset candidate code patterns, the candidate code type with the lowest encoding code rate; or, M Among the preset candidate code patterns, the candidate code pattern has a coding rate less than the fourth threshold; or, among the M preset candidate code patterns, the coding code rate is greater than the fifth threshold candidate code pattern; or, among the M preset candidates, Among the candidate code patterns, the coding rate is greater than the sixth threshold and less than the seventh threshold, and the seventh threshold is greater than the sixth threshold.
  • the conditions for the encoding bit rate to be met are preset, stipulated in the protocol, or notified by other devices, etc., and are not restricted.
  • the condition that the encoding code rate satisfies is: among the M preset candidate code patterns, the candidate code pattern with the lowest coding code rate is taken as an example.
  • the lower the encoding rate of the code the more redundant information is added during the encoding process, and the higher the reliability of encoding and decoding.
  • the advantage of this design is that the sending device uses the candidate code pattern with the lowest coding rate (that is, the candidate code pattern with the highest reliability) for encoding, thereby improving the reliability of information transmission.
  • the condition that the coding code rate satisfies is: among the M preset candidate code patterns, the candidate code pattern with the highest coding rate is used as an example.
  • the higher the coding rate of the code the higher the efficiency of information transmission and the less redundant information added.
  • the candidate code pattern with the highest coding rate is used for polar coding to improve the efficiency of information transmission.
  • the sending device determines the first code pattern based on the coding gains and coding rates of M preset candidate code patterns.
  • the sending device determines a candidate code pattern that satisfies the conditions for both coding gain and coding rate among M preset candidate code patterns.
  • the one candidate code pattern is the first code pattern.
  • one candidate code pattern is selected as the first code pattern among the multiple candidate code patterns that meet the conditions.
  • the rules for selecting the first code pattern are not limited. For example, among multiple candidate code patterns that all meet the conditions, any candidate code pattern is selected as the first code pattern. Or, among multiple candidate code patterns that all meet the conditions, the first code pattern is selected according to a certain rule, etc., without limitation.
  • the sending device preliminarily screens candidate code patterns whose coding code rates meet the conditions based on the coding code rates of the M preset candidate code patterns.
  • candidate code patterns whose coding gains meet the conditions are screened again among the initially screened candidate code patterns, and the final screening result is used as the first code pattern.
  • the sending device determines the candidate code pattern whose coding code rate meets the condition based on the coding code rates of M preset candidate code patterns.
  • the sending device determines the first code pattern based on the coding gain of the candidate code pattern whose coding rate satisfies the condition. For example, among multiple candidate code patterns whose coding rates satisfy the condition, the candidate code pattern with the highest coding gain is determined to be the first code pattern.
  • the transmitting device preliminarily screens candidate code types whose coding gains meet the conditions according to the coding gains of the M preset candidate code types. Afterwards, according to the coding rate of the candidate code types, the candidate code types whose coding rates meet the conditions are screened again from among the preliminarily screened candidate code types, and the final screening result is used as the first code type. For example, the transmitting device determines the candidate code types whose coding gains meet the conditions according to the coding gains of the M preset candidate code types. When there are multiple candidate code types whose coding gains meet the conditions, the transmitting device determines the first code type according to the coding rates of the multiple candidate code types whose coding gains meet the conditions. For example, among the multiple candidate code types whose coding gains meet the conditions, the candidate code type with the highest coding rate is determined to be the first code type.
  • Step 302 The sending device performs polarization coding on the information to be sent according to the first code pattern
  • Step 303 The sending device sends the encoded codeword to the satellite communication device.
  • the satellite communication device receives the above codeword and forwards the codeword to the receiving device.
  • the sending device is the base station and the receiving device is the terminal.
  • the base station sends downlink signals or downlink information to the terminal, and the downlink signals or downlink information are carried on the downlink channel.
  • the downlink channel may be a physical downlink shared channel (PDSCH) or a physical downlink control channel (PDCCH).
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • the base station uses polar codes to perform channel coding on downlink signals or downlink information to obtain codewords, and sends the codewords to satellite communication equipment, which then forwards the codewords to the terminal.
  • the terminal decodes the received codeword and obtains the downlink signal or downlink information.
  • the sending device is a terminal and the receiving device is a base station.
  • the terminal sends uplink signals or uplink information to the base station, and the uplink signals or uplink information are carried on the uplink channel.
  • the uplink channel may be a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH).
  • the terminal uses the polar code to perform channel coding on the uplink signal or uplink channel to obtain the codeword.
  • the terminal sends the codeword to the satellite communication equipment, and the satellite communication equipment forwards the codeword to the base station.
  • the base station decodes the received codeword and obtains the uplink signal or uplink information.
  • polar codes are used for channel coding. Because polar codes are theoretically proven to be good codes that can reach the Shannon limit and have relatively simple decoding complexity. Therefore, in satellite communication systems, polar codes are used for encoding to improve the anti-interference ability of the entire satellite communication system and improve the communication performance of the satellite communication system.
  • the first solution Reconstruct the entire system and directly use polar coding to replace the original LDPC coding or Turbo coding.
  • the sending device uses polar coding to encode the information to be sent to obtain polar code words.
  • the sending device sends the polarized codeword to the receiving device through forwarding by the satellite communication device.
  • the receiving device performs polarization decoding on the received codeword to obtain the information sent by the sending device.
  • the second solution is to upgrade the original system and use the information bits of the original Turbo code or LDPC code to load the polarization code words.
  • Codewords include information bits and encoding bits.
  • the information bits are the binary bit information corresponding to the information to be sent, and the coding bits are the redundant bits added during the encoding process.
  • the codewords obtained by LDPC, Turbo, or polar code encoding are respectively referred to as LDPC codewords, Turbo codewords, or polar codewords.
  • the polar codeword is loaded into the information bits of the LDPC codeword or Turbo codeword, and the polar codeword is used to replace the information bits of the original LDPC code or Turbo code.
  • the sending device performs polarization encoding on the information to be sent to obtain polarization codewords; and then uses LDPC codes or Turbo codes to encode the polarization-encoded codewords.
  • the sending device forwards the codeword obtained by the nested encoding through the satellite communication device and sends it to the receiving device.
  • the receiving device first performs LDCP or Turbo decoding on the received codeword.
  • the information bits obtained by LDPC or Turbo decoding are then polarized decoded to obtain the information sent by the sending device.
  • nested coding is used to nest the polar code in the information bits of the original LDPC or Turbo code, which can be as compatible with the original system as possible and have less impact on the old equipment, ensuring that after the transformation The equipment can operate normally.
  • the nested encoding method provided by the embodiment of the present application will be described below with reference to the accompanying drawings. See Figure 5.
  • the method includes:
  • Step 501 The sending device obtains the information to be sent and encodes the information to be sent into binary bit information.
  • the sending device uses the first encoding method to convert Chinese characters, symbols, or English information in the information to be sent into binary bit information.
  • the first encoding method includes but is not limited to: Unicode encoding, Chinese internal code specification (GBK) encoding, etc.
  • Step 502 Based on the coding performance, the sending device determines a candidate code pattern that meets the conditions among the M preset candidate code patterns of the polar code, which can be called the first code pattern. For instructions on determining the first code pattern, see Figure 3.
  • Step 503 The sending device preprocesses the binary bit information corresponding to the information to be sent.
  • the preprocessing process includes the following two aspects: first, CRC encoding the binary information corresponding to the information to be sent; second, mapping the CRC encoded information to the information bits in the first code pattern.
  • the first code pattern is (252, 2048), but the CRC-encoded information is only 240 bits.
  • the CRC-encoded information needs to be padded, and the length of the padded information is equal to 252 bits.
  • the main purposes of CRC encoding of binary information corresponding to the information to be sent include: first, the receiving device has a means to determine whether the decoding result is correct when decoding.
  • CA-SCL CRC-aided successful cancellation list
  • Step 504 The sending device performs polarization coding on the information obtained through preprocessing.
  • the sending device performs polarization coding on the information obtained by preprocessing according to the first code pattern determined above.
  • Step 505 The sending device performs rate matching to match the specified code length.
  • Step 506 The sending device performs secondary encoding and performs Turbo or LDPC encoding on the polarized encoded information.
  • the sending device loads the information bits of the Turbo codeword or LDCP codeword into the polarization codeword obtained after polarization encoding, as shown in Figure 4.
  • Step 507 The sending device modulates the Turbo codeword or LDPC codeword on the sending carrier.
  • Step 508 The sending device sends the modulated Turbo codeword or LDPC codeword.
  • the sending device sends the modulated Turbo codeword or LDPC codeword to the satellite communication device.
  • the satellite communication device forwards the Turbo codeword or LDPC codeword to the receiving device.
  • the sending device selects the first code type based on the coding performance of the M candidate code types corresponding to the polar code, and uses the first code type to perform polar coding on the information to be sent.
  • the performance of the coding pattern may include the coding gain of the candidate code pattern, and the sending device selects the candidate code pattern with higher coding gain for polar coding. The higher the coding gain, the stronger the ability to deal with random channel errors, and the higher the decoding accuracy of the receiving device.
  • the method includes:
  • Step 601 The receiving device receives the information sent by the satellite communication device and performs frame synchronization.
  • Step 602 The receiving device determines whether the frame synchronization is successful; if the frame synchronization is successful, the frame header is successfully found and a Turbo codeword or LDPC codeword with a code length of N is received; otherwise, the receiving device continues to search for the frame header.
  • the information sent by the sending device also includes a specific sequence in the header of the nested codewords.
  • the specific sequence and the nested codewords form a frame.
  • the specific sequence is called the frame header, and the nested codewords are called the payload of the frame.
  • the receiving device looks for the specific sequence mentioned above in the received message. If the above-mentioned specific sequence is found, the position of the specific sequence is determined to be the frame header, and the information of the preset length starting from the position of the frame header is the nested codeword.
  • the nested codeword may refer to the nested encoded Turbo code. word or LDPC codeword.
  • Step 603 The receiving device decodes the received Turbo codeword or LDPC codeword and determines the information obtained after decoding.
  • Step 604 The receiving device uses the information obtained after decoding as input for polar code decoding.
  • Step 605 The receiving device decodes the information input by polar code decoding according to the M preset candidate code patterns of the polar code.
  • Step 606 The receiving device determines whether the information bits obtained after polarization decoding can pass the CRC check. If the CRC check can be passed, the decoding result is output; otherwise, the next candidate pattern is used for decoding until the polarization decoding is successful.
  • the receiving device can calculate the coding performance of the M preset candidate code patterns, the occurrence probabilities of the M preset candidate code patterns, or the occurrence probabilities of parameters in the M preset candidate code patterns, etc.
  • M preset candidate patterns are sorted. According to the arrangement order of the M preset candidate code patterns, candidate code patterns for decoding are selected sequentially, thereby speeding up the decoding.
  • the sending device and the receiving device include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIGs 7 and 8 are schematic structural diagrams of possible devices provided by embodiments of the present application. These devices can be used to implement one or more functions in the above method embodiments, such as realizing the functions of the above sending device or receiving device. Therefore, it is possible to achieve the beneficial effects of the above method embodiments.
  • the device 700 includes a processing unit 710 and a transceiver unit 720.
  • Device 700 is used to implement one or more functions in the above method embodiment.
  • the transceiver unit 720 is used to receive codewords from the satellite communication equipment, where the codewords are codewords obtained by polar code encoding; processing Unit 710 is configured to decode the codeword according to M preset candidate code patterns of the polar code, where M is an integer greater than 1.
  • the device 700 is used to implement the decoding method and may be called a decoding device.
  • the processing unit 710 is configured to determine the first code pattern based on the coding performance of M preset candidate code patterns of the polar code, where M is An integer greater than 1; and perform polarization encoding on the information to be sent according to the first code pattern; the transceiver unit 720 is used to send the encoded codeword to the satellite communication device.
  • the device 700 is used to implement an encoding method, it may be called an encoding device.
  • processing unit 710 and the transceiver unit 720 can be obtained directly by referring to the relevant descriptions in the above method embodiments, and will not be described again here.
  • the device 800 includes a processor 810 and an interface circuit 820 .
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 may be a transceiver or an input-output interface.
  • the apparatus 800 may also include a memory 830 for storing instructions executed by the processor 810 or input data required for the processor 810 to run the instructions or data generated after the processor 810 executes the instructions.
  • the processor 810 may be used to implement one or more functions in the above method embodiments. Specifically, the processor 810 can execute instructions in the memory 830, so that the device 800 implements one or more functions in the above method embodiments, such as the functions implemented by the sending device or the receiving device.
  • the processor 810 is used to implement the functions of the processing unit 710
  • the interface circuit 820 is used to implement the functions of the transceiver unit 720 .
  • the above device can realize the function of a receiving device or a sending device.
  • the receiving device is the terminal, and the sending device is the base station.
  • the receiving device is a base station and the sending device is a terminal.
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), and the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas).
  • the information is sent by the terminal to the base station.
  • the base station module implements the functions of the base station in the above method embodiment.
  • the base station module receives information from other modules in the base station (such as radio frequency modules or antennas), and the information is sent by the terminal to the base station; or, the base station module sends information to other modules in the base station (such as radio frequency modules or antennas), and the base station module The information is sent by the base station to the terminal.
  • the base station module here can be a baseband chip of the base station, or it can be a DU or other module.
  • the DU here can be a DU under an open radio access network (open radio access network, O-RAN) architecture.
  • processor in the embodiment of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the base station or terminal. Of course, the processor and the storage medium may also exist as discrete components in the base station or terminal.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another.
  • the computer program or instructions may be transmitted from a website, computer, A server or data center transmits via wired or wireless means to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard drives.
  • the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.
  • “at least one” refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the related objects before and after are a kind of "division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)

Abstract

一种编/译码方法及装置,其中译码方法包括:接收来自卫星通信设备的码字,所述码字是经过极化码编码得到的码字;根据极化码的M个预设候选码型,对所述码字进行译码,所述M为大于1的整数。在没有先验信息辅助译码的场景下,利用该方法可实现对接收码字的极化译码。

Description

一种编/译码方法及装置
相关申请的交叉引用
本申请要求在2022年09月15日提交中国专利局、申请号为202211124987.9、申请名称为“一种编/译码方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种编/译码方法及装置。
背景技术
在卫星通信***中,采用涡轮Turbo码或低密度奇偶校验(low density parity check,LDPC)码进行信道编码,已完成帧结构设计并已大规模应用。Turbo码或LDPC码的性能和复杂度有待进一步改善,如何改善信道编码的性能和复杂度,是一个值得研究的问题。
发明内容
本申请实施例提供一种编/译码方法及装置,以提升信道编码的性能,降低编码复杂度。
第一方面,提供一种译码方法,该译码方法应用于没有先验信息的译码场景,该方法的执行主体为接收设备或应用于接收设备的芯片或电路,该方法包括:接收来自卫星通信设备的码字,所述码字是经过极化码编码得到的码字;根据极化码的M个预设候选码型,对所述码字进行译码,所述M为大于1的整数。
通过上述设计,考虑卫星通信业务和极化码的特点,在引入极化码进行信道编码时,存在多种编码码型。在本申请实施例中,接收设备根据极化码的M个预设候选码型(可选的,该M个预设候选码型可以是极化码的全部预设候选码型),对接收的码字进行译码,在没有先验信息辅助译码的场景下,实现对接收码字的极化译码。
在一种设计中,所述根据极化码的M个预设候选码型,对所述码字进行译码,包括:
在所述M个预设候选码型中,确定一个候选码型;根据所确定的候选码型,对所述码字进行译码;译码成功,则结束流程;或者,译码失败,在所述M个预设候选码型中,确定另一个候选码型;利用所述另一个候选码型,继续对所述码字进行译码,直到对所述码字的译码成功为止,或者直至所述M个预设候选码型对极化码的译码均失败为止。
通过上述设计,接收设备遍历极化码的M个预设候选码型,对接收的码字进行极化译码,实现在没有先验信息辅助译码的前提下,对极化码进行译码。
在一种设计中,还包括:根据所述M个预设候选码型的编码性能,对所述M个预设候选码型进行排序;其中,在排序后的M个预设候选码型中,按顺序选择译码的候选码型。可选的,所述M个预设候选码型的编码性能包括以下一项或多项:所述M个预设候选码型的编码增益、或所述M个预设候选码型的编码码率。
通过上述设计,根据编码性能,对极化码的M个预设候选码型进行排序。例如,编码性能好的候选码型,排序在前面,编码性能差的候选码型,排序在后面。按照M个预设候选码型的由前至后的排列顺序,在M个预设候选码型中依次选择进行译码的候选码型。基于编码端在对待发送信息进行极化编码时,在M个预设候选码型中,会优先选择编码性能好的候选码型进行编码。因此,采用上述设计,可加快译码速度。
在一种设计中,还包括:根据所述M个预设候选码型的出现概率或所述M个预设候选码型的参数的出现概率,对所述M个预设候选码型进行排序;其中,在排序后的M个预设候选码型中,按顺序选择译码的候选码型,所述M个预设候选码型的参数中包括以下一项或多项:所述M个预设候选码型的信息位长度、或所述M个预设候选码型的码长。
通过上述设计,根据M个预设候选码型的出现概率或M个预设候选码型中的参数的出现概率,对M个预设候选码型进行排序。优先选择出现概率高的候选码型,或者出现概率高的参数对应的候选码型进行译码,可加快译码速度。
第二方面,提供一种编码方法,该方法的执行主体为发送设备,或设置于发送设备中的芯片或电路, 该方法包括:根据极化码的M个预设候选码型的编码性能,确定第一码型,所述M为大于1的整数;根据所述第一码型,对待发送的信息进行极化编码;向卫星通信设备发送经过编码得到的码字。可选的,所述M个预设候选码型的编码性能包括以下一项或多项:所述M个预设候选码型的编码增益、或所述M个预设候选码型的编码码率。
通过上述设计,发送设备在对待发送信息进行极化编码时,根据编码性能,在极化码的M个预设候选码型中,选择第一码型,对待发送的信息进行极化编码。例如,所述编码性能为编码增益满足条件的码型,利用编码增益满足条件的第一码型对待发送信息进行极化编码,提高信息传输的可靠性和抗干扰能力。
在一种设计中,在利用极化码编码之后,还包括:利用低密度奇偶校验LDPC码或涡轮Turbo码,对所述极化编码得到的码字进行编码。
通过上述设计,由于在卫星通信***中,原先利用LDPC码或Turbo码进行信道编码,将极化码嵌套在原有的LDPC码或Turbo码的信息位,可尽可能兼容原有***,对老旧设备的影响较小,确保改造后设备能够正常正作。
第三方面,提供一种装置,该装置包括执行上述第一方面或第二方面所描述的方法对应的单元或模块,该单元或模块可以通过硬件电路实现,或者通过软件实现,或者通过硬件电路结合软件实现。
第四方面,提供一种装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述第一方面或第二方面所描述的方法。该处理器包括一个或多个。
第五方面,提供一种装置,包括与存储器耦合的处理器,该处理器用于执行所述存储器中存储的程序,以执行上述第一方面或第二方面描述的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器可以是一个或多个。
第六方面,提供一种装置,包括处理器和存储器;该存储器用于存储计算机指令,当该装置运行时,该处理器执行该存储器存储的计算机指令,以使该装置执行上述第一方面或第二方面描述的方法。
第七方面,提供一种芯片***,包括:处理器或电路,用于执行上述第一方面或第二方面描述的方法。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在装置上运行时,使得上述第一方面或第二方面描述的方法被执行。
第九方面,提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当计算机程序或指令被装置运行时,使得上述第一方面或第二方面描述的方法被执行。
第十方面,提供一种***,包括执行第一方面方法的装置、和执行第二方面方法的装置。可选的,该***还可以包括卫星通信设备。
附图说明
图1为本申请实施例应用的通信***架构示意图;
图2为本申请实施例提供的译码的流程图;
图3为本申请实施例提供的编码的流程图;
图4为本申请实施例提供的嵌套编码的示意图;
图5为本申请实施例提供的嵌套编码对应的编码示意图;
图6为本申请实施例提供的嵌套编码对应的译码示意图;
图7为本申请实施例提供的装置的一结构示意图;
图8为本申请实施例提供的装置的另一结构示意图。
具体实施方式
图1是本申请实施例应用的通信***的架构示意图。如图1所示,该通信***1000包括终端110、卫星通信设备120和地面站130。
终端110是一种具有无线收发功能的设备。例如,终端110可称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、 智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请实施例对终端所采用的具体技术和具体设备形态不做限定。
卫星通信设备120,主要用于提供中继和通信功能。所述中继功能是指卫星之间相互通信。参考图1,卫星通信设备120中包括卫星121和卫星122。卫星121可提供信号中继功能,接收卫星122发送的信号,且将该信号转发给地面站130或终端110。同理,卫星122可提供信号中继功能,接收卫星121发送的信号,且该信号转发给地面站130或终端110。通信功能是指将地面站130发送的信号,转发给终端110,或者将终端110发送的信号,转发给地面站130等。在上行通信过程中,终端110发送的上行信号,可经过一个或多个卫星的转发,发送给地面站130。在下行通信过程中,地面站130发送的下行信号,可经过一个或多个卫星的转发,发送给终端110。卫星通信设备120可以是地球静止轨道(geostationary earth orbit,GEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、倾斜地球同步轨道(inclined geosynchronous orbit,IGSO)卫星、低地球轨道(low earth orbit,LEO)卫星、或高空通信平台(high altitude platform station,HAPS)***中的卫星等,不作限制。本申请实施例对卫星通信设备所采用的具体技术和具体设备形态不作限定。
地面站130用于连接卫星通信设备120和核心网,一方面可控制卫星通信设备120转发上行信号或下行信号,还可控制卫星通信设备120的轨道和姿态调整;另一方面,可作为无线通信基站。地面站130可是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信***中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信***中的下一代基站、未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制(radio resource control,RRC)协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制(radio link control,RLC)层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理(physical,PHY)层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。地面站130可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。本申请实施例对地面站130所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为地面站130的例子进行描述。
终端和基站可以是固定位置,或者可移动的,不作限制。终端和基站可部署在陆地上,包括室内或室外、手持或车载等。或者,可部署在水面上;或者,可部署在空中的飞机、气球和人造卫星上等。卫星通信设备部署在太空中,具体的卫星飞行高度小于1000公里(称为低轨道卫星)、或者飞行高度在1000公里到2000公里之间(称为中轨道卫星)、或者飞行高度大于2000公里(称为高轨道卫星)等。本申请实施例对终端、卫星通信设备和基站的应用场景,不作限制。
图1只是示意图,该通信***1000还可以包括其它网络设备。例如,还可以包括核心网,在图1中未画出。终端通过无线的方式与卫星通信设备相连,卫星通信设备通过无线的方式与基站相连,基站通过无线或有线的方式与核心网相连。核心网设备与基站可以是独立的不同物理设备,也可以将核心网设备的功能与基站的逻辑功能集成在同一个物理设备上,还可以在一个物理设备上集成了部分核心网设备的功能和部分基站的功能。终端与终端之间,以及地面站与地面站之间,可通过有线或无线的方式相连。
在本申请实施例中,基站的功能可以由基站中的模块(如芯片)来执行,或者由包含有基站功能的控制子***来执行。所述包含有基站控制功能的子***可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能可以由终端中的模块(如芯片或调制解调器)执行,或者由包含终端功能的装置执行等。
在本申请实施例中,所述通信***可以是非地面网络(non-terrestrial network,NTN)通信***、未来演进的公共陆地移动网络(public land mobile network,PLMN)***、未来第六代无线通信***,或者北斗卫星通信***等,不作限制。
在卫星通信***中,传统的方式是采用低密度奇偶校验(low density parity check,LDPC)码,或涡轮(Turbo)码进行信道编码。对于LDPC码或Turbo码,所述编码码型通常是固定的。对于接收设备,采用上述固定的码型,对接收的码字进行译码。由于LDPC码或Turbo码的性能和复杂度有待进一步改善,考虑引入极化(polar)码进行信道编码。
极化码是理论上可达香农极限,并且译码复杂度相对简单的好码,因此采用极化码进行信道编码,可提升编码性能,降低编/译码复杂度。考虑卫星业务和极化码的特点,在引入极化码进行信道编码时,存在多种编码码型。发送设备可以在多种编码码型中,选择一种编码码型对用户信息进行编码。对于接收设备,如何对接收的码字进行译码,是当前的一个研究方向。在一种设计中,接收设备可根据先验信息进行译码。例如,接收设备可根据先验信息,在多个码型中,选择一个码型;根据所选择的码型,对接收的码字进行译码。在接收设备不能获得先验信息,以辅助译码时,接收设备如何对接收的码字进行译码,是本申请实施例待解决的技术问题。
在本申请实施例中,接收设备在接收到码字时,该码字是经过极化码编码得到的码字。接收设备可获取极化码的M个预设候选码型,M为大于1的整数。接收设备根据该M个预设候选码型,对接收的码字进行译码。例如,在M个预设候选码型中选择一个候选码型,对接收的码字进行译码,如果译码成功,则结束译码;否则,在M个预设候选码型中选择另一个候选码型继续对接收的码字进行译码,直接译码成功为止,或者直到该M个预设候选码型的译码均失败为止。
下面结合附图对本申请实施例提供的译码方法进行说明,参见图2,该方法包括:
步骤201:接收设备接收来自卫星通信设备的码字,该码字是经过极化码编码得到的码字。
发送设备可利用极化码,对待发送信息进行极化编码,得到码字。例如,发送设备在极化码对应的M个预设候选码型中,选择一个候选码型;发送设备利用所选择的候选码型,对待发送信息进行编码,得到码字,且将该码字发送给卫星通信设备。卫星通信设备可作为中继,将接收的码字转发给接收设备。接收设备在接收到码字时,采用图2所示的译码方法,对接收的码字进行译码。
在编码***中,一个码字=信息位+编码位,信息位指发送设备待发送的原始信息比特,编码位指通过信道编码算法新增加的冗余比特。例如,待发送的原始信息比特,经过极化编码后,得到的码字=待发送的原始信息比特+极化码编码后新增的冗余比特。码长描述一个码字的长度,通常用N表示。信息位描述待发送的原始信息的长度,通常用k表示。一个码型通常表示为(k,N)。
在本申请实施例中,发送设备,在M个候选码型中,选择用于极化编码的候选码型的方式,不作限制。例如,发送设备可根据待发送信息比特的长度x,在M个候选码型中,选择信息位k的长度大于或等于x的候选码型。对于信息位k的长度大于x的候选码型,可利用预设的信息对待发送信息进行填充,将长度为x的待发送信息填充为长度k。在上述初始筛选出的候选码型中,可根据候选码型的编码率或可靠性等,进一步筛选用于极化编码的码型。
步骤202:接收设备根据极化码的M个预设候选码型,对所述码字进行译码,所述M为大于1的整数。
例如,接收设备在极化码的M个预设候选码型中,确定一个候选码型;根据所确定的候选码型,对接收的码字进行译码;如果译码成功,则结束;如果译码失败,则在M个预设候选码型中,确定另一个候选码型;利用所确定的另一个候选码型,继续对接收的码字进行译码,直到对接收的码字译码成功为止,或者直到M个预设候选码型对接收的码字的译码均失败为止。在一种实现方式中,极化码的M个预设候选码型,分别为候选码型1、候选码型2、候选码型3、(中间其它候选码型省略说明)、候选码型M;接收设备可首先利用候选码型1对接收的码字进行译码,译码成功,则结束。译码失败,接收设备利用候选码型2对接收的码字继续进行译码,依次循环,直至译码成功。或者,在M个候选码型对接收码字的译码均失败时,则停止译码。在一种设计中,发送设备对待发送信息利用极化码进行编码时,可对待发送信息对应的比特,进行循环冗余校验(cyclic redundancy check,CRC)编码。接收设备在利用每种候选码型对接收的码字进行译码,得到译码结果时,判断该译码结果是否通过CRC校验;如果通过CRC校验,则认为译码成功;否则认为译码失败。
可选的,接收设备可利用译码算法对接收的码字进行译码,所述译码算法可为置信传播(belief propagation,BP)译码算法,列表连续消除(successive cancellation list,SCL)译码算法等,不作限制。
在本申请实施例中,可考虑对极化码的M个预设候选码型进行排序,以加快译码速度,减少译码 时延。本申请实施例,对极化码的M个预设候选码排序的方案,不作限制。以下示意性的说明两种排序方案。
方案1:接收设备根据极化码的M个预设候选码型的编码性能,对M个预设候选码型进行排序;其中,在排序后的M个预设候选码型中,按顺序选择译码的候选码型。
所述M个预设候选码型的编码性能包括以下一项或多项:所述M个预设候选码型的编码增益,或者,所述M个预设候选码型的编码码率。关于根据M个预设候选码型的编码性能,对M个预设候选码型排序的方式,本申请实施例提供以下三种设计:
在一种设计中,接收设备可根据M个预设候选码型的编码码率,对M个预设候选码型进行排序。例如,M个候选码型中包括码型(256,2048),码型(512,2048),和码型(1024,2048)。其对应的编码码率分别为1/8,1/4,1/2。
由于码率越低,则代码在极化编码时,添加的冗余信息越多,通常来说编译码性能越高,可靠性就越高。在本申请实施例中,可根据编译码性能对候选码型进行排序,优先译码编译码性能好的码型,即优先译码编码码率较低的码型。在上述举例中,上述三个候选码型的排列顺序可为:码型(256,2048),码型(512,2048),和码型(1024,2048)。接收设备可优先利用码型(256,2048)进行译码,译码失败,再利用码型(512,2048)译码。同理,码型(512,2048)译码失败,再利用码型(1024,2048)译码。
或者,由于码率越高,则代表在极化编码时,添加的冗余信息越少,则信息的传输效率越高。在本申请实施例中,可根据信息的传输效率对候选码型进行排序,优先译码传输效率高的码型,即优先译码编码码率较高的码型。在上述举例中,上述三候选码型的排列顺序可为:码型(1024,2048),码型(512,2048),码型(256,2048)。接收设备可优先利用码型(1024,2048)进行译码,译码失败,再利用码型(512,2048)译码。同理,码型(512,2048)译码失败,再利用码型(256,2048)译码。
通过上述设计,接收设备利用极化码的M个预设候选码型的编码性能,对M个预设候选码型进行排序,不需在额外的数据统计和处理算法,实现简单,节省接收设备的功耗。
在另一种设计中,接收设备可根据M个预设候选码型的编码增益,对M个预设候选码型进行排序。编码增益的定义为:在误码率一定的条件下,非编码***需要的输入信噪比与采用了纠错编码的***所需的输入信噪比之间的差值。编码增益是衡量编译码算法好劣的核心指标,在译码算法相同的情况下,编码增益受编码码型的影响。在本申请实施例中,可利用仿真***,预先仿真确定极化码的M个预设候选码型的编码增益。按编码增益,对M个预设候选码型进行排序,且将排序后的M个预设候选码型部署在接收设备中。
举例来说,M个候选码型中包括码型(256,2048),码型(512,2048),码型(498,2048)码型(525,2048),码型(1024,2048)等五种候选码型,该5种候选码型的编码增益分别为6分贝(dB)、3.5dB、4dB、4.5dB、和2dB,则5种候选码型的译码顺序为码型(256,2048),码型(525,048),码型(498,2048),码型(512,2048),和码型(1024,2048)。
在又一种设计中,接收设备根据M个预设候选码型的编码码率和编码增益,对M个预设候选码型进行排序。
例如,接收设备根据M个预设候选码型的编码码率,对M个预设候选码型进行排序。当多个预设候选码型的编码码率相同时,可对该多个编码码率相同的候选码型,按照编码增益进行排序。或者,接收设备根据M个预设候选码型的编码增益,对M个预设候选码型进行排序。当多个预设候选码型的编码增益相同时,对该多个编码增益相同的预设候选码型,按照编码码率进行排序等。
方案2:接收设备根据极化码的M个预设候选码型的出现概率,或者所述M个预设候选码型的参数的出现概率,对所述M个预设候选码型进行排序。其中,在排序后的M个预设候选码型中,按顺序选择译码的候选码型。
在一种设计中,接收设备根据M个预设候选码型的出现概率,对M个预设候选码型进行排序。
例如,利用大数据统计发送设备在极化编码时,选择编码码型的概率,即编码码型的出现概率。优先选择出现概率高的候选码型,进行译码。例如,M个候选码型中包括码型(256,2048),码型(512,2048)和码型(1024,2048)。发送设备利用码型(512,2048)编码的概率最高,即码型(512,2048)的出现概率最高,优先利用码型(512,2048)译码。码型(1024,2048)的出现概率第二,其次利用码型(1024,2048)译码,利用码型(256,2048)的出现概率最低,最后利用码型(256,2048)译码。
或者,利用人工智能(artificial intelligence,AI)方式,预测M个预设候选码型中,每个预设候选码型的出现概率。例如,预先训练一个AI模型,该AI模型用于预测每个候选码型的出现概率。所述AI模型的输入包括以下一项或多项:发送设备的信息、接收设备的信息、或候选码型的信息等,该AI模型的输出为预测的候选码型的出现概率。
在另一种设计中,接收设备根据M个预设候选码型的参数的出现概率,对M个候选码型进行排序。所述M个预设候选码型的参数中包括以下一项或多项:所述M个预设候选码型的信息位长度,或者,所述M个预设候选码型的码长。
在一种实现中,接收设备确定M个预设候选码型中,每个候选码型中信息位长度的出现概率。接收设备根据M个候选码型中信息位长度的出现概率,对M个候选码型排序。接收设备根据排序后的M个候选码型,对接收的码字进行译码。
举例来说,M个候选码型中包括码型(256,2048),码型(512,2048),和码型(1024,2048)。按照上述3个候选码型中信息位的出现概率,对3个候选码型进行排序。信息位512的出现概率最高,信息位1024的出现概率次之,信息位256的出现概率最低,则对上述3个候选码型排序,得到:码型(512,2048),码型(1024,2048),码型(256,2048)。按照排序后的3个候选码型,对接收的码字进行译码。例如,优先选择码型(512,2048)进行译码,在码型(512,2048)译码失败时,再选择码型(1024,2048)译码,在码型(1024,2048)译码失败时,再选择码型(256,2048)译码。
举例来说,极化码的M个预设候选码型中包括码型(452,4096)和码型(1808,4096)。发送设备使用统一码(Unicode)编码,将待发送信息中的汉字转换为二进制信息,一个汉字占用16比特。对于码型(452,4096)中的信息位452可装载28个汉字,对于码型(1808,4096)中的信息位1808可装载113个汉字。例如,通过对发送设备的统计或预测,28个汉字出现的概率更高,即码型(452,4096)出现的概率更高,接收设备可优先使用码型(452,4096)译码。
可选的,发送设备可利用大数据,统计M个候选码型中每个候选码型中信息位的出现概率。或者,发送设备利用AI方式,预测M个预选码型中每个候选型中信息位的出现概率等,不作限定。
在另一种实现中,接收设备确定M个候选码型中,每个候选码型中的码长的出现概率。接收设备根据M个候选码型中码长的出现概率,对M个候选码型进行排序。接收设备按照排序后的M个候选码型,对接收的码字进行译码。
例如,接收设备利用大数据或AI方式,确定M个候选码型中码长的出现概率。沿用上述举例,M个候选码型中包括码型(452,4096),码型(452,8192),和码型(1024,2048)。码长8192的出现概率最高,码长2048的出现概率次之,码长4096的出现概率最低,则对M个候选码型按照码长的出现概率排序,得到:码型(452,8192),码型(1024,2048),码型(452,4096)。接收设备优先利用码型(452,8192)译码,其次利用码型(1024,2048)进行译码,最后利用码型(452,4096)译码。
在又一种实现方式中,接收设备可确定M个候选码型中,每个候选码型中的信息位出现概率和码长出现概率。接收设备根据每个候选码型的信息位出现概率和码长出现概率,对M个候选码型进行排序。接收设备按照排序后的M个候选码型,对接收的码字进行排序。
例如,接收设备可根据每个候选码型的位息位的出现概率和码长的出现概率,确定每个候选码型的出现概率。在一种方案中,预先为信息位的出现概率和码长的出现概率设置相同或不同的权重,根据每个预设码型的信息位的出现概率和权重,以及,码长的出现概率和权重,确定每个预设码型的出现概率。举例来说,信息位的出现概率的权重为m,码长的出现概率的权重为n,m与n相同或不同,m与n均为小于1的整数,m与n两者之和等于1,则候选码型的出现概率满足以下:信息位的出现概率*m+码长的出现概率*n。接收设备根据M个候选码型中每个候选码型的出现概率,对M个候选码型进行排序。
或者,接收设备根据M个候选码型中每个候选码型的信息位出现概率,对M个候选码型进行排序。在多个候选码型的信息位出现概率相同时,再利用码长的出现概率对多个候选码型进行排序。或者,接收设备可根据M个候选码型中每个候选码型中的码长出现概率,对M个候选码型进行排序。在多个候选码型的码长出现概率相同时,再利用信息位出现概率对多个候选码型进行排序。
本申请实施例中,接收设备对极化码的M个预设候选码型进行排序,按照排序后的M个预设候选码型,依次对接收的码字进行译码,可加快译码速度,减少译码时延。
可以理解的是,在本申请实施例中,接收设备可自行利用大数据统计,或者AI预测等,确定每个 候选码型的出现概率,或候选码型中参数的出现概率。或者可由其它设备利用大数据统计,或AI预测等方式,确定每个候选码型或其参数的出现概率,且通知给接收设备,不作限制。例如,基站向终端发送下行信息或下行信号,基站利用极化码对下行信息或下行信号进行极化编码。基站利用大数据或AI预测等方式,确定极化码的M个预设候选码型或其参数的出现概率,且通知终端。终端在接收到基站的码字时,根据基站通知的M个预设候选码型或其参数的出现概率,对M个预设候选码型进行排序,按照排序后的M个预设候选码型,对接收的码字进行译码。
下面结合附图对本申请实施例提供的编码方法进行说明,参见图3,该方法包括:
步骤301:发送设备根据极化码的M个预设候选码型的编码性能,确定第一码型;
所述M个预设候选码型的编码性能包括以下一项或多项:所述M个预设候选码型的编码增益,或所述M个预设候选码型的编码码率。发送设备根据M个预设候选码型的编码性能,确定第一码型的实现方式,参见以下设计中的说明。当然以下设计仅为示例性说明,并不作为对本申请实施例的限制。
在一种设计中,发送设备根据M个预设候选码型的编码增益,确定第一码型。
例如,可通过仿真确定,M个预设候选码型中,每个预设候选码型的编码增益,且将M个预设候选码型中每个候选码型的编码增益,预配置在发送设备中。或者,发送设备根据M个预设候选码型,自行仿真确定,每个预设候选码型的编码增益。或者,由其它设备通过仿真确定M个预设候选码型中每个候选码型的编码增益,且通知发送设备。例如,发送设备为终端,接收设备为基站,接收设备(基站)仿真获得M个预设候选码型的编码增益,将M个预设候选码型的编码增益通知发送设备(终端)。
发送设备根据M个候选码型的编码增益,确定编码增益满足条件的候选码型,编码增益满足条件的候选码型,即为第一码型。编码增益满足的条件可为:M个预设候选码型中,编码增益最高的候选码型,或者,M个预设候选码型中,编码增益的取值大于第一门限的候选码型,或者,M个候选码型中,编码增益的取值大于第二门限,小于第三门限的候选码型等,第二门限大于第三门限。编码增益满足的条件为预设的,或协议规定的,或者其它设备通知的等,不作限制。该其它设备可以为基站、或核心网网元等。
在另一种设计中,发送设备根据M个预设候选码型的编码码率,确定第一码型。
例如,发送设备确定M个预设候选码型的编码码率。确定候选码型的编码码率的过程,可参见译码中的说明。发送设备根据M个预设候选码型的编码码率,在M个预设候选码型中,选择编码码率满足条件的候选码型。该编码码率满足条件的候选码型,即为第一码型。编码码率满足的条件可为:M个预设候选码型中,编码码率最高的候选码型;或者,M个预设候选码型中,编码码率最低的候选码型;或者,M个预设候选码型中,编码码率小于第四门限的候选码型;或者,M个预设候选码型中,编码码率大于第五门限的候选码型;或者,M个预设候选码型中,编码码率大于第六门限,小于第七门限的候选码型,第七门限大于第六门限。编码码率满足的条件为预设的,或协议规定的,或者其它设备通知的等,不作限制。
以编码码率满足的条件为:在M个预设候选码型中,编码码率最低的候选码型,作为示例。前已述,码型的编码码率越低,代表在编码的过程中,添加的冗余信息越多,编译码的可靠性越高。如此设计的好处在于:发送设备利用编码码率最低的候选码型(即可靠性最高的候选码型)进行编码,提高信息传输的可靠性。
以编码码率满足的条件为:在M个预设候选码型中,编码率最高的候选码型,作为示例。码型的编码率越高,代表信息传输的效率越高,添加的冗余信息越少。采用编码码率最高的候选码型进行极化编码,提高信息传输的效率。
在另一种设计中,发送设备根据M个预设候选码型的编码增益和编码码率,确定第一码型。
例如,发送设备在M个预设候选码型中,确定编码增益和编码码率均满足条件的候选码型。上述编码增益和编码码率均满足条件的候选码型的数量为一个时,该一个候选码型即为第一码型。或者,上述编码增益和编码码率均满足条件的候选码型的数量为多个时,在多个均满足条件的候选码型中,选择一个候选码型,作为第一码型。选择第一码型的规则不作限定。比如,在多个均满足条件的候选码型中,任选择一个候选码型,作为第一码型。或者,在多个均满足条件的候选码型中,根据某种规则,选择第一码型等,不作限制。
或者,发送设备根据M个预设候选码型的编码码率,初步筛选编码码率满足条件的候选码型。之 后,根据候选码型的编码增益,在初步筛选的候选码型中,再次筛选编码增益满足条件的候选码型,将最终筛选结果作为第一码型。例如,发送设备根据M个预设候选码型的编码码率,确定编码码率满足条件的候选码型。在编码码率满足条件的候选码型的数量为多个时,发送设备根据该编码码率满足条件的候选码型的编码增益,确定第一码型。例如,在多个编码码率满足条件的候选码型中,确定编码增益最高的候选码型为第一码型。
或者,发送设备根据M个预设候选码型的编码增益,初步筛选编码增益满足条件的候选码型。之后,根据候选码型的编码码率,在初步筛选的候选码型中,再次筛选编码码率满足条件的候选码型,将最终筛选结果作为第一码型。例如,发送设备根据M个预设候选码型的编码增益,确定编码增益满足条件的候选码型。在编码增益满足条件的候选码型的数量为多个时,发送设备根据该编码增益满足条件的多个候选码型的编码码率,确定第一码型。例如,在多个编码增益满足条件的候选码型中,确定编码码率最高的候选码型为第一码型。
步骤302:发送设备根据第一码型,对待发送的信息进行极化编码;
步骤303:发送设备向卫星通信设备发送经过编码得到的码字。
卫星通信设备接收上述码字,将码字转发给接收设备。
在下行通信过程中,发送设备为基站,接收设备为终端。基站向终端发送下行信号或下行信息,下行信号或下行信息承载在下行信道上。下行信道可为物理下行共享信道(physical downlink shared channel,PDSCH)、或物理下行控制信道(physical downlink control channel,PDCCH)。基站利用极化(polar)码对下行信号或下行信息进行信道编码,得到码字,将该码字发送给卫星通信设备,由卫星通信设备将该码字转发给终端。终端对接收的码字进行译码,获得下行信号或下行信息。
在上行通信过程中,发送设备为终端,接收设备为基站,终端向基站发送上行信号或上行信息,上行信号或上行信息承载在上行信道上。上行信道可为物理上行共享信道(physical uplink shared channel,PUSCH)或物理上行控制信道(physical uplink control channel,PUCCH)。终端利用极化码对上行信号或上行信道进行信道编码,得到码字。终端将该码字发送给卫星通信设备,由卫星通信设备将该码字转发给基站。基站对接收的码字进行译码,获得上行信号或上行信息。
发送设备对待发送信息编码的过程,可参考图3中的说明。接收设备对接收的码字译码的过程,可参考图2中的说明。图2所示的译码方法,和图3所示的编码方法,可结合使用,或者各自单独使用,不作限制。
在本申请实施例中,在卫星通信***中,采用极化码进行信道编码。由于极化码是理论上证明可达香农极限,并且译码复杂度相对简单的好码。因此,在卫星通信***中,采用极化码进行编码,提高整个卫星通信***的抗干扰能力,提高卫星通信***的通信性能。
在卫星通信***中,利用极化码进行信道编码的方案,提供以下两种:
第一种方案:对整个***进行重构,直接用极化编码,替代原有的LDPC编码或Turbo编码。
例如,发送设备利用极化编码,对待发送信息进行编码,得到极化码字。发送设备经卫星通信设备的转发,将极化码字发送给接收设备。接收设备对接收的码字,进行极化译码,得到发送设备发送的信息。
第二种方案,对原有***进行升级,利用原有Turbo码或LDPC码的信息位装载极化码字。
码字包括信息位和编码位。其中,信息位为待发送信息对应的二进制比特信息,编码位为在编码过程中,添加的冗余比特。LDPC、Turbo、或极化码编码得到的码字,分别简称为LDPC码字、Turbo码字、或极化码字。参见图4,在第二种方案中,将极化码字装载在LDPC码字或Turbo码字的信息位,用极化码字替换原来的LDPC码或Turbo码的信息位。
例如,发送设备对待发送信息进行极化编码,得到极化码字;之后再利用LDPC码或Turbo码,对所述极化编码后的码字进行编码。发送设备将嵌套编码得到的码字经卫星通信设备的转发,发送给接收设备。接收设备对接收的码字,先进行LDCP或Turbo的译码。对LDPC或Turbo译码获得的信息位,再进行极化译码,得到发送设备发送的信息。
在第二种方案中,采用嵌套编码,将极化码,嵌套在原有的LDPC或Turbo码的信息位,可尽可能兼容原有***,对老旧设备的影响较小,确保改造后设备能够正常正作。
以嵌套编码为例,说明本申请实施例提供的编码方法和译码方法。
下面结合附图对本申请实施例提供的嵌套编码方法进行说明,参见图5,该方法包括:
步骤501:发送设备获取待发送信息,并将待发送信息编码为二进制比特信息。
例如,发送设备利用第一编码方式,将待发送信息中的汉字、符号、或英文等信息转换为二进制比特信息。所述第一编码方式包括但不限于:统一码(Unicode)编码、汉字编码字符集(chinese internal code specification,GBK)编码等。
步骤502:发送设备根据编码性能,在极化码的M个预设候选码型中,确定满足条件的候选码型,可称为第一码型。关于确定第一码型的说明,可参见图3。
步骤503:发送设备对待发送信息对应的二进制比特信息进行预处理。
所述预处理的过程包括以下两方面内容:第一,对待发送信息对应的二进制信息CRC编码;第二,将CRC编码后的信息,映射到第一码型中的信息位。例如,第一码型为(252,2048),但CRC编码后的信息只有240比特。需要对CRC编码后的信息进行填充,填充后信息的长度等于252比特。对填充的方案不作限定。例如,可填充指定序列,或者填充零等。对待发送信息对应的二进制信息CRC编码的目的主要包括:第一,接收设备在译码时,有一个手段决策译码结果是否正确。第二,为了加快译码速度和译码性能,可以使用CRC辅助的连续消除列表(CRC-aided successive cancellation list,CA-SCL)进行译码,对待发送信息对应的二进制信息进行CRC编码,可辅助接收设备译码,获得更好的译码性能。
步骤504:发送设备对预处理获得的信息,进行极化编码。
具体的,发送设备根据前述确定的第一码型,对预处理获得的信息,进行极化编码。
步骤505:发送设备进行速率匹配,匹配指定码长。
由于极化码对编码的基本要求是码长必须满足2的幂次方,即N=2n。但在实际应用中,需要通过速率匹配实现任意码长的极化码。极化码的速率匹配方案主要有三种,分别是打孔(puncture)、缩短(shorten)和重复(repetition)。举个示例说明:例如母码长度为(252,2048),但***中真实需求码型为(252,2000),此时需要将码长2048通过速率匹配到2000。最后真实码型为(252,2000),其中信息位为252,码长2000,码率为252/2000。
步骤506:发送设备进行二次编码,对极化编码后的信息进行Turbo或LDPC编码。
例如,发送设备将极化编码后获得的极化码字,装载在Turbo码字或LDCP码字的信息位等,可参见图4。
步骤507:发送设备将Turbo码字或LDPC码字,调制在发送载波上。
步骤508:发送设备发送调制后的Turbo码字或LDPC码字。
具体的,发送设备将调制后的Turbo码字或LDPC码字,发送给卫星通信设备。由卫星通信设备将所述Turbo码字或LDPC码字,转发给接收设备。
通过上述设计,发送设备根据极化码对应的M个候选码型的编码性能,选择第一码型,且利用第一码型,对待发送的信息进行极化编码。例如,所述编码码型的性能可包括候选码型的编码增益,发送设备选择编码增益较高的候选码型进行极化编码。编码增益越高,应对信道随机错误的能力越强,接收设备译码的准确度越高。
下面结合附图对本申请实施例提供的嵌套编码对应的译码方法进行说明,如图6所示,该方法包括:
步骤601:接收设备接收卫星通信设备发送的信息,并进行帧同步。
步骤602:接收设备判断帧同步是否成功;如果帧同步成功,则成功找到帧头,接收码长为N的Turbo码字或LDPC码字;否则接收设备继续寻找帧头。
可以理解的是,发送设备发送的信息,除包括图4所示的嵌套码字外,该嵌套码字的头部还包括特定序列。该特定序列和嵌套码字组成帧,特定序列称为帧头,嵌套码字称为帧的负载(payload)。接收设备在接收的信息中寻找上述特定序列。若寻找到上述特定序列,则确定该特定序列的位置为帧头,从该帧头的位置开始之后的预设长度的信息为嵌套码字,嵌套码字可指嵌套编码的Turbo码字或LDPC码字。
步骤603:接收设备对接收的Turbo码字或LDPC码字进行译码,确定译码后获得的信息。
步骤604:接收设备将译码后获得的信息,作为极化码译码的输入。
步骤605:接收设备根据极化码的M个预设候选码型,对极化码译码输入的信息进行译码。
步骤606:接收设备判断极化译码后获得的信息比特是否能够通过CRC校验。如果能够通过CRC校验,则输出译码结果;否则继续利用下一个候选码型进行译码,直到极化译码成功。
接收设备根据M个预设候选码型译码的过程,可参见图2中的说明。在本申请实施例中,接收设备可根据M个预设候选码型的编码性能、或M个预设候选码型的出现概率,或M个预设候选码型中参数的出现概率等,对M个预设候选码型进行排序。按照M个预设候选码型的排列顺序,依次选择译码的候选码型,从而加快译码速度。
可以理解的是,为了实现上述实施例中的功能,发送设备和接收设备等包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元以及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图7和图8为本申请的实施例提供的可能的装置的结构示意图。这些装置可以用于实现上述方法实施例中的一个或多个功能,比如实现上述发送设备或接收设备的功能,因此,可能实现上述方法实施例所具备的有益效果。
如图7所示,装置700包括处理单元710和收发单元720。装置700用于实现上述方法实施例中的一个或多个功能。
例如,当装置700用于实现上述图2所示的译码方法时:收发单元720,用于接收来自卫星通信设备的码字,所述码字是经过极化码编码得到的码字;处理单元710,用于根据极化码的M个预设候选码型,对所述码字进行译码,所述M为大于1的整数。在装置700用于实现译码方法,可称为译码装置。
例如,当装置700用于实现上述图3所示的编码方法时:处理单元710,用于根据极化码的M个预设候选码型的编码性能,确定第一码型,所述M为大于1的整数;以及根据所述第一码型,对待发送的信息进行极化编码;收发单元720,用于向卫星通信设备发送经过编码得到的码字。在装置700用于实现编码方法时,可称为编码装置。
有关处理单元710和收发单元720更详细的描述可以直接参考上述方法实施例中相关描述直接得到,这里不加赘述。
如图8所示,装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
处理器810可以用于实现上述方法实施例中的一个或多个功能。具体的,处理器810可执行存储器830中的指令,从而使装置800实现上述方法实施例中的一个或多个功能,比如发送设备或接收设备所实现的功能。
当装置800用于实现图7所示的功能时,处理器810用于实现处理单元710的功能,接口电路820用于实现收发单元720的功能。
上述装置可实现接收设备或发送设备的功能。接收设备为终端,发送设备为基站。或者,接收设备为基站,发送设备为终端。
当上述装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述装置为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (24)

  1. 一种译码方法,其特征在于,所述方法应用于没有先验信息的译码场景,所述方法包括:
    接收来自卫星通信设备的码字,所述码字是经过极化码编码得到的码字;
    根据极化码的M个预设候选码型,对所述码字进行译码,所述M为大于1的整数。
  2. 如权利要求1所述的方法,其特征在于,所述根据极化码的M个预设候选码型,对所述码字进行译码,包括:
    在所述M个预设候选码型中,确定一个候选码型;
    根据所确定的候选码型,对所述码字进行译码;
    译码成功,则结束流程;或者,
    译码失败,在所述M个预设候选码型中,确定另一个候选码型;利用所述另一个候选码型,继续对所述码字进行译码,直到对所述码字的译码成功为止。
  3. 如权利要求1或2所述的方法,其特征在于,还包括:
    根据所述M个预设候选码型的编码性能,对所述M个预设候选码型进行排序;其中,在排序后的M个预设候选码型中,按顺序选择译码的候选码型。
  4. 如权利要求3所述的方法,其特征在于,所述M个预设候选码型的编码性能包括以下一项或多项:所述M个预设候选码型的编码增益、或所述M个预设候选码型的编码码率。
  5. 如权利要求1或2所述的方法,其特征在于,还包括:
    根据所述M个预设候选码型的出现概率或所述M个预设候选码型的参数的出现概率,对所述M个预设候选码型进行排序;其中,在排序后的M个预设候选码型中,按顺序选择译码的候选码型,所述M个预设候选码型的参数中包括以下一项或多项:所述M个预设候选码型的信息位长度、或所述M个预设候选码型的码长。
  6. 一种编码方法,其特征在于,包括:
    根据极化码的M个预设候选码型的编码性能,确定第一码型,所述M为大于1的整数;
    根据所述第一码型,对待发送的信息进行极化编码;
    向卫星通信设备发送经过编码得到的码字。
  7. 如权利要求6所述的方法,其特征在于,所述M个预设候选码型的编码性能包括以下一项或多项:所述M个预设候选码型的编码增益、或所述M个预设候选码型的编码码率。
  8. 如权利要求6或7所述的方法,其特征在于,在利用极化码编码之后,还包括:
    利用低密度奇偶校验LDPC码或涡轮Turbo码,对所述极化编码得到的码字进行编码。
  9. 一种译码装置,其特征在于,所述装置应用于没有先验信息的译码场景,所述装置包括:
    收发单元,用于接收来自卫星通信设备的码字,所述码字是经过极化码编码得到的码字;
    处理单元,用于根据极化码的M个预设候选码型,对所述码字进行译码,所述M为大于1的整数。
  10. 如权利要求9所述的装置,其特征在于,所述处理单元在根据极化码的M个预设候选码型,对所述码字进行译码时,具体用于:
    在所述M个预设候选码型中,确定一个候选码型;
    根据所确定的候选码型,对所述码字进行译码;
    译码成功,则结束流程;或者,
    译码失败,在所述M个预设候选码型中,确定另一个候选码型;利用所述另一个候选码型,继续对所述码字进行译码,直到对所述码字的译码成功为止。
  11. 如权利要求9或10所述的装置,其特征在于,所述处理单元,还用于:
    根据所述M个预设候选码型的编码性能,对所述M个预设候选码型进行排序;其中,在排序后的M个预设候选码型中,按顺序选择译码的候选码型。
  12. 如权利要求11所述的装置,其特征在于,所述M个预设候选码型的编码性能包括以下一项或多项:所述M个预设候选码型的编码增益、或所述M个预设候选码型的编码码率。
  13. 如权利要求9或10所述的装置,其特征在于,所述处理单元,还用于:
    根据所述M个预设候选码型的出现概率或所述M个预设候选码型的参数的出现概率,对所述M个预设候选码型进行排序;其中,在排序后的M个预设候选码型中,按顺序选择译码的候选码型,所述M个预设候选码型的参数中包括以下一项或多项:所述M个预设候选码型的信息位长度、或所述M 个预设候选码型的码长。
  14. 一种编码装置,其特征在于,包括:
    处理单元,用于根据极化码的M个预设候选码型的编码性能,确定第一码型,所述M为大于1的整数;以及,根据所述第一码型,对待发送的信息进行极化编码;
    收发单元,用于向卫星通信设备发送经过编码得到的码字。
  15. 如权利要求14所述的装置,其特征在于,所述M个预设候选码型的编码性能包括以下一项或多项:所述M个预设候选码型的编码增益、或所述M个预设候选码型的编码码率。
  16. 如权利要求14或15所述的装置,其特征在于,在利用极化码编码之后,所述处理单元,还用于:
    利用低密度奇偶校验LDPC码或涡轮Turbo码,对所述极化编码得到的码字进行编码。
  17. 一种译码装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述装置之外的其它装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述装置之外的其它装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至5中任一项所述的方法。
  18. 一种译码装置,其特征在于,包括处理器和存储器,所述处理器和存储器耦合,所述处理器用于实现权利要求1至5中任一项所述的方法。
  19. 一种编码装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述装置之外的其它装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述装置之外的其它装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求6至8中任一项所述的方法。
  20. 一种编码装置,其特征在于,包括处理器和存储器,所述处理器和存储器耦合,所述处理器用于实现权利要求6至8中任一项所述的方法。
  21. 一种通信***,其特征在于,包括:第一通信装置,所述第一通信装置用于实现权利要求1至5中任一项所述的方法;
    第二通信装置,所述第二通信装置用于实现权利要求6至8中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被装置执行时,实现如权利要求1至5中任一项所述的方法,或者实现如权利要求6至8中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,包括计算机程序或指令,当计算机程序或指令被装置运行时,使得权利要求1至5中任一项所述的方法被执行,或者权利要求6至8中任一项所述的方法被执行。
  24. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,使得所述芯片实现权利要求1至5中任一项所述的方法,或者实现权利要求6至8中任一项所述的方法。
PCT/CN2023/117494 2022-09-15 2023-09-07 一种编/译码方法及装置 WO2024055894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211124987.9 2022-09-15
CN202211124987.9A CN117749318A (zh) 2022-09-15 2022-09-15 一种编/译码方法及装置

Publications (1)

Publication Number Publication Date
WO2024055894A1 true WO2024055894A1 (zh) 2024-03-21

Family

ID=90274242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117494 WO2024055894A1 (zh) 2022-09-15 2023-09-07 一种编/译码方法及装置

Country Status (2)

Country Link
CN (1) CN117749318A (zh)
WO (1) WO2024055894A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140019820A1 (en) * 2012-07-11 2014-01-16 The Regents Of The University Of California Ecc polar coding and list decoding methods and codecs
US20140169388A1 (en) * 2012-12-14 2014-06-19 Sungkyunkwan University Research & Business Foundation Packet decoding method and apparatus
WO2018127234A1 (zh) * 2017-01-09 2018-07-12 电信科学技术研究院有限公司 一种极化码编译码方法及装置
CN114172522A (zh) * 2021-10-25 2022-03-11 网络通信与安全紫金山实验室 输出软信息的极化码列表译码方法及***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140019820A1 (en) * 2012-07-11 2014-01-16 The Regents Of The University Of California Ecc polar coding and list decoding methods and codecs
US20140169388A1 (en) * 2012-12-14 2014-06-19 Sungkyunkwan University Research & Business Foundation Packet decoding method and apparatus
WO2018127234A1 (zh) * 2017-01-09 2018-07-12 电信科学技术研究院有限公司 一种极化码编译码方法及装置
CN114172522A (zh) * 2021-10-25 2022-03-11 网络通信与安全紫金山实验室 输出软信息的极化码列表译码方法及***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Analysis of Candidate Code Types for Long Block Length", 3GPP DRAFT; R1-164360 ANALYSIS_CANDIDATE_CODE_TYPES_FOR_LONGK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nanjing, China; 20160523 - 20160527, 14 May 2016 (2016-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051089996 *

Also Published As

Publication number Publication date
CN117749318A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
US20210279584A1 (en) Encoding method and apparatus, and decoding method and apparatus
US11870457B2 (en) Polar code encoding method and apparatus
US11212037B2 (en) Enhanced information sequences for polar codes
US11152959B2 (en) Enhanced information sequences for polar codes
US11159179B2 (en) Enhanced information sequences for polar codes
EP3444984B1 (en) Data transmission method, data receiving method, transmission apparatus, and receiving apparatus
EP4191911A1 (en) Coding method and apparatus and decoding method and apparatus
US11184117B2 (en) Encoding system for incremental redundancy for hybrid ARQ for wireless networks
WO2020156095A1 (zh) 译码的方法和译码装置
US11121823B2 (en) Method and apparatus for hybrid automatic repeat request in non-terrestrial network
WO2024055894A1 (zh) 一种编/译码方法及装置
US11515894B2 (en) Enhanced information sequences for polar codes
CN113055022A (zh) 并行软消除译码方法及相关装置
US11632138B2 (en) UPO compliant information sequences for polar codes
WO2022268064A1 (zh) 数据传输方法及相关装置
WO2022117061A1 (zh) 一种极化码辅助比特的确定方法和装置
WO2023072077A1 (zh) 通信方法及相关装置
WO2024098276A1 (zh) 一种通信方法、通信装置及通信***
WO2022057599A1 (zh) 极化码的编码方法和译码方法、及编码装置和译码装置
US11936400B2 (en) Method and apparatus for encoding and decoding polar code
WO2022171019A1 (zh) 一种编码和译码方法及相关装置
WO2024036634A1 (zh) 编码方法、译码方法及装置
WO2024124476A1 (zh) 级联编码方法、级联译码方法及装置
WO2022111575A1 (zh) 传输数据的方法以及装置
US20240171308A1 (en) Method and device for performing pac code-based hybrid decoding in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864626

Country of ref document: EP

Kind code of ref document: A1