WO2024055821A9 - 显示基板及其制备方法、显示面板 - Google Patents

显示基板及其制备方法、显示面板 Download PDF

Info

Publication number
WO2024055821A9
WO2024055821A9 PCT/CN2023/114195 CN2023114195W WO2024055821A9 WO 2024055821 A9 WO2024055821 A9 WO 2024055821A9 CN 2023114195 W CN2023114195 W CN 2023114195W WO 2024055821 A9 WO2024055821 A9 WO 2024055821A9
Authority
WO
WIPO (PCT)
Prior art keywords
base substrate
blocking
layer
height
substrate
Prior art date
Application number
PCT/CN2023/114195
Other languages
English (en)
French (fr)
Other versions
WO2024055821A1 (zh
Inventor
赵德江
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024055821A1 publication Critical patent/WO2024055821A1/zh
Publication of WO2024055821A9 publication Critical patent/WO2024055821A9/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate and a preparation method thereof, and a display panel.
  • OLED Organic Light-Emitting Diode
  • the purpose of the present disclosure is to overcome the deficiencies of the above-mentioned prior art and to provide a display substrate and a method for preparing the same, and a display panel.
  • a display substrate comprising: a base substrate; a plurality of first blocking structures arranged in an array on one side of the base substrate, wherein the first blocking structures A first region is enclosed; a first electrode layer includes a plurality of first electrodes, the plurality of first electrodes are arranged corresponding to the plurality of first blocking structures, and the first electrode is located in the first region formed corresponding to the first blocking structure; wherein the first blocking structure has a first height in the thickness direction of the substrate, the first electrode has a second height in the thickness direction of the substrate, the first height is greater than the second height, and a separation groove is provided on a surface of the first blocking structure on one side away from the substrate.
  • a ratio of a recessed depth of the separation groove in a thickness direction of the base substrate to the first height is greater than or equal to 0.2 and less than or equal to 0.4.
  • the surface of the first blocking structure on which the separation groove is opened has a first width in its orthographic projection on the substrate, and the opening of the separation groove has a second width in its orthographic projection on the substrate, and a ratio of the second width to the first width is greater than or equal to 0.2 and less than or equal to 0.6.
  • a ratio of the second height to the first height is greater than or equal to 0.4 and less than or equal to 0.7.
  • it also includes: a plurality of second blocking structures, which are distributed in an array on the substrate and arranged corresponding to the plurality of first blocking structures, and the second blocking structures enclose a second area; wherein the first blocking structure is located within the second area enclosed by the corresponding second blocking structure, and there is a gap between the first blocking structure and the corresponding second blocking structure; the second blocking structure has a third height in the thickness direction of the substrate, and the third height is greater than the first height.
  • a ratio of the first height to the third height is greater than or equal to 0.4 and less than or equal to 0.8.
  • the center distance between any two adjacent second blocking structures on the orthographic projection of the substrate is D;
  • the orthographic projection of the first blocking structure on the substrate has a first side and a second side opposite to each other, any normal line of the first side intersects with the first side at a first node and intersects with the second side at a second node, and the distance between the first node and the second node is d1;
  • the orthographic projection of the second blocking structure on the substrate has a third side and a fourth side opposite to each other, any normal line of the third side intersects with the third side at a third node and intersects with the fourth side at a fourth node, and the distance between the third node and the fourth node is d2; wherein d1/D is 0.1-0.3, and d2/D is 0.1 ⁇ 0.3.
  • the second side is located on a side of the first side away from the orthographic projection of the first electrode on the substrate
  • the fourth side is located on a side of the third side away from the orthographic projection of the first electrode on the substrate; any normal line of the second side intersects with the second side at a fifth node and with the third side at a sixth node, and the distance between the fifth node and the sixth node is d3; wherein d3/D is 0.08 to 0.20.
  • the second blocking structure includes a first structure layer and a second structure layer parallel to the base substrate, the first structure layer is located at any position of the second structure layer on a side away from the base substrate, and the orthographic projection of the first structure layer on the base substrate is located within the orthographic projection of the second structure layer on the base substrate;
  • the first blocking structure includes a third structure layer and a fourth structure layer parallel to the base substrate, the third structure layer is located at any position of the fourth structure layer away from the base substrate, and the orthographic projection of the third structure layer on the base substrate is located within the orthographic projection of the fourth structure layer on the base substrate.
  • the first structural layer has and only has a first intersection with a first tangent plane perpendicular to the base substrate
  • the second structural layer has and only has a second intersection with a second tangent plane perpendicular to the base substrate
  • the first tangent plane is parallel to the second tangent plane and the first tangent plane and the second tangent plane are both located on the same side of the center of the orthographic projection of the first structural layer on the base substrate
  • a line segment connecting the first intersection and the second intersection has a first angle with the base substrate, and the first angle is greater than or equal to 20° and less than or equal to 60°.
  • it further includes: a plurality of auxiliary electrodes, which are arranged corresponding to the plurality of second blocking structures, and the auxiliary electrodes cover the corresponding second blocking structures.
  • the thickness of the auxiliary electrode is
  • the material of the second blocking structure is a resin material, and the viscosity of the resin material is 20 to 40 cps.
  • a center distance between orthographic projections of any two adjacent second blocking structures on the substrate is less than or equal to 10 ⁇ m.
  • it further includes: a plurality of cushion layers, The electrodes are arranged correspondingly, and the pad layer is located between the first electrode and the substrate; wherein the first blocking structure and the first electrode are both located on the surface of the pad layer away from the substrate, and the first height and the second height both include the thickness of the pad layer in the thickness direction of the substrate; or, the pad layer is located in the first area formed corresponding to the first blocking structure, the second height includes the thickness of the pad layer in the thickness direction of the substrate, and the first height does not include the thickness of the pad layer in the thickness direction of the substrate.
  • a display panel comprising: the display substrate described in any embodiment of the present disclosure; a light-emitting layer, comprising a plurality of light-emitting structures, the plurality of light-emitting structures corresponding one-to-one to the plurality of first electrodes, and the light-emitting structures covering the corresponding first electrodes; a second electrode layer, covering the light-emitting layer and the plurality of first blocking structures, the portion of the second electrode layer located in the second blocking structure extending to the second blocking structure and connected to the auxiliary electrode.
  • a first organic layer located between the first electrode layer and the light-emitting layer, the first organic layer includes a first organic structure corresponding to the multiple first electrodes one by one, and the first organic structure covers the corresponding first electrodes; a second organic layer, located between the light-emitting layer and the second electrode layer, the second organic layer includes a second organic structure corresponding to the multiple first electrodes one by one, and the second organic structure covers the corresponding light-emitting structure; wherein at least one of the light-emitting layer, the first organic layer, and the second organic layer is formed by an inkjet process.
  • a method for preparing a display substrate is also provided, which is used to prepare the display substrate described in any embodiment of the present disclosure, and the method includes: providing a base substrate; forming a first electrode layer on one side of the base substrate, wherein the first electrode layer includes a plurality of first electrodes; forming a plurality of first blocking structures on the base substrate, the plurality of first blocking structures correspond one-to-one to the plurality of first electrodes, and the first electrodes are located in a first area surrounded by the first blocking structures, the first blocking structures have a first height in the thickness direction of the base substrate, the first electrodes have a second height in the thickness direction of the base substrate, the first height is greater than the second height, and the first blocking structure has a separation groove on a surface on a side facing away from the base substrate.
  • a method for preparing a display substrate comprising: providing a base substrate; forming a first electrode layer on one side of the base substrate, wherein the first electrode layer comprises a plurality of first electrodes; forming a plurality of first blocking structures on the base substrate, wherein the plurality of first blocking structures correspond one-to-one to the plurality of first electrodes, and the first electrodes are located in a first region surrounded by the first blocking structures, the first blocking structures have a first height in a thickness direction of the base substrate, the first electrodes have a second height in the thickness direction of the base substrate, the first height is greater than the second height, and a surface of the first blocking structure on a side away from the base substrate has a separation groove; forming a plurality of second blocking structures on the base substrate, wherein the plurality of second blocking structures correspond one-to-one to the plurality of first blocking structures, the first blocking structures are located
  • the display substrate provided by the present disclosure includes a first electrode layer including a plurality of first electrodes, each of which is correspondingly arranged in a first area surrounded by a first blocking structure, and the height of the first blocking structure is higher than the height of the first electrode, so that the ink ejected by the printing device forms a corresponding film layer on the first electrode in the first area.
  • a separation groove is arranged on the first blocking structure, and the excess ink will overflow the area surrounded by the first blocking structure.
  • the separation groove on the first blocking structure will cut the overflowing ink droplets, and the overflowing ink droplets can be separated from the ink droplets on the first electrode layer, thereby effectively controlling the morphology of the ink after drying, thereby realizing ultra-high ppi production by the solution method, and solving the problem that the morphology of the ink after molding is difficult to control.
  • FIG1 is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • FIG2 is a cross-sectional view of a sub-pixel along the AA direction in FIG1 ;
  • FIG3 is a cross-sectional view along the AA direction in FIG1 according to another embodiment of the present disclosure.
  • FIG4 is a partial enlarged view of the second blocking structure in FIG3 ;
  • FIG5 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • FIG6 is a schematic diagram of a structure of forming a first electrode according to an embodiment of the present disclosure.
  • FIG7 is a schematic structural diagram of a first blocking structure formed according to an embodiment of the present disclosure.
  • FIG8 is a schematic structural diagram of forming a second blocking structure according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a structure for forming an auxiliary electrode according to an embodiment of the present disclosure.
  • FIG1 is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure
  • FIG2 is a cross-sectional view of a sub-pixel in FIG1 along the AA direction.
  • the display substrate may include a base substrate 10 and a plurality of first blocking structures 20 and a first electrode layer formed on the base substrate 10, wherein the plurality of first blocking structures 20 are distributed in an array on one side of the base substrate 10, and the first blocking structures 20 enclose a first region
  • the first electrode layer includes a plurality of first electrodes 30, and the plurality of first electrodes 30 are arranged corresponding to the plurality of first blocking structures 20, and the first electrodes 30 are located in the first region formed by the corresponding first blocking structures 20; wherein the first blocking structure 20 has a first height h1 in the thickness direction of the base substrate 10, and the first electrode 30 has a second height h2 in the thickness direction of the base substrate 10, the first height h1 is greater than the second height h2, and a separation groove 201 is provided on
  • the display substrate provided by the present disclosure has a first electrode layer including a plurality of first electrodes 30, each of which is disposed in a first region surrounded by a first blocking structure 20, and the height of the first blocking structure 20 is higher than the height of the first electrode 30, so that the printing device can spray
  • the ink forms a corresponding film layer on the first electrode 30 in the first area.
  • the first barrier structure 20 is provided with a separation groove 201, and the excess ink will overflow the area surrounded by the first barrier structure 20.
  • the separation groove 201 on the first barrier structure 20 will cut the overflowing ink droplets, and the overflowing ink droplets can be separated from the ink droplets on the first electrode layer, thereby effectively controlling the morphology of the ink after drying, thereby realizing ultra-high ppi production by the solution method, and solving the problem that the morphology of the ink after molding is difficult to control.
  • each first blocking structure 20 and each first electrode 30 are arrayed on the base substrate 10, and the first blocking structure 20 and the first electrode 30 may have a one-to-one correspondence.
  • the first electrode 30 is located in the first area surrounded by the first blocking structure 20 corresponding thereto.
  • the first blocking structure 20 circumferentially surrounds the first electrode 30 corresponding thereto, and the first height h1 of the first blocking structure 20 in the thickness direction is greater than the second height h2 of the first electrode 30 in the thickness direction, thereby forming a receiving space for the structural layer of the sub-pixel on the first electrode 30, and the ink ejected by the printing device is formed in the receiving space to form a display sub-pixel.
  • the height of a certain structure described in the present disclosure in the thickness direction of the substrate 10 can be understood as the maximum distance between each discrete point on the surface of the structure away from the substrate 10 and the substrate 10 along the thickness direction of the substrate 10.
  • the first blocking structure 20 has a separation groove 201 on the surface facing away from the base substrate 10. It can be understood that the separation groove 201 surrounds the first electrode 30 corresponding thereto. After the printing device ejects ink droplets, the excess ink will overflow from the accommodation space surrounded by the first blocking structure 20.
  • the separation groove 201 can separate the overflowed ink from the effective ink in the accommodation space at this time, so that the edge of the ink is modified by the separation groove 201, so that the effective ink forming the structure of the display sub-pixel is effectively cut from the overflowed excess ink.
  • the separation groove 201 of the present disclosure may have different morphologies.
  • the cross-sectional structure of the separation groove 201 along the thickness direction of the base substrate 10 may be rectangular, trapezoidal, inverted trapezoidal, etc.
  • the first electrode 30 is located in the first area surrounded by the first blocking structure 20, and the first electrode 30 should be against the inner wall of the first blocking structure 20, so that there is no gap between the inner wall of the first blocking structure 20 and the contact surface of the first electrode 30 located therein, so that the ink sprayed by the printing device is only formed on the first electrode 30 to form a corresponding film layer.
  • the ratio of the recessed depth h4 of the separation groove 201 in the thickness direction of the base substrate 10 to the first height h1 is greater than or equal to 0.2 and less than or equal to 0.4, that is, the ratio of the depth h4 of the separation groove 201 to the height of the first blocking structure 20 is 0.2 to 0.4, for example, it can be 0.2, 0.3, 0.4, etc.
  • the depth h4 of the separation groove 201 and the height of the first blocking structure 20 have the above-mentioned proportional relationship, which can ensure the modification effect of the separation groove 201 on the ink edge and can separate the excess ink from the effective ink formed on the first electrode 30.
  • the orthographic projection of the surface of the first blocking structure 20 where the separation groove 201 is provided on the base substrate 10 has a first width L1
  • the orthographic projection of the opening of the separation groove 201 on the base substrate 10 has a second width L2
  • the ratio of the second width L2 to the first width L1 is greater than or equal to 0.2 and less than or equal to 0.6.
  • the ratio of the second width L2 to the first width L1 can be, for example, 0.2, 0.3, 0.4, 0.5, 0.6, etc. It can be understood that the second width L2 reflects the opening width of the separation groove 201, and the first width L1 reflects the surface width of the opening groove provided in the first blocking structure 20.
  • the width of the separation groove 201 also affects the modification effect of the separation groove 201 on the ink edge.
  • the second width L2 and the first width L1 have the above-mentioned proportional relationship, which can prevent the separation groove 201 from being too narrow and losing or reducing the modification effect on the ink edge while being compatible with the preparation process.
  • the width of the orthographic projection of a certain structure of the present disclosure on the substrate 10 can be understood as the distance difference between the two side edges of the orthographic projection of the structure on the substrate 10 and the center of the orthographic projection of the first electrode 30 located in the enclosed area of the structure on the substrate 10.
  • the ratio of the second height h2 to the first height h1 is greater than or equal to 0.4 and less than or equal to 0.7.
  • the ratio of the second height h2 to the first height h1 may be, for example, 0.4, 0.5, 0.6, 0.7, etc. It can be understood that the height difference between the second height h2 and the first height h1 determines the volume of ink that can be accommodated.
  • the second height h2 and the first height h1 have the above-mentioned proportional relationship, so that the formed accommodation space can match the volume of ink ejected by the printing device, so that a film layer structure of a display sub-pixel can be formed on the first electrode 30.
  • the display substrate of the present disclosure may further include a plurality of pad layers 40, and the plurality of pad layers 40 are arranged corresponding to the plurality of first electrodes 30.
  • one pad layer 40 may correspond to one first electrode 30.
  • the pad layer 40 is located between the first electrode 30 and the base substrate 10, that is, the pad layer 40 is located on the base substrate 10, and the first electrode 30 is located on the pad layer 40.
  • the first blocking structure 20 and the first electrode 30 are both located on the surface of the pad layer 40 away from the base substrate 10. Accordingly, the first height h1 and the second height h2 both include the thickness of the pad layer 40 in the thickness direction of the base substrate 10.
  • the pad layer 40 is located in the first region corresponding to the formation of the first blocking structure 20, and accordingly, the second height h2 includes the thickness of the pad layer 40 in the thickness direction of the base substrate 10, and the first height h1 does not include the thickness of the pad layer 40 in the thickness direction of the base substrate 10.
  • the display substrate of the present disclosure may further include a planarization layer PLN.
  • the planarization layer PLN may be first formed on one side of the base substrate 10 , and then a pad layer 40 and a first electrode 30 may be formed on the planarization layer PLN.
  • the display substrate can be used to form an OLED device
  • the first electrode 30 on the display substrate can be an anode
  • the pad layer 40 is an anode pad layer.
  • the ink ejected by the printing device forms a light-emitting functional layer of the OLED device on the anode.
  • the first electrode 30 can also be a cathode, which is not limited in the present disclosure.
  • Figure 3 is a cross-sectional view along the AA direction in Figure 1 according to another embodiment of the present disclosure.
  • the display substrate may further include a plurality of second blocking structures 50, and the plurality of second blocking structures 50 are distributed in an array on the base substrate 10 and are arranged corresponding to the plurality of first blocking structures 20, and the second blocking structures 50 enclose a second area; wherein the first blocking structure 20 is located in the second area enclosed by the corresponding second blocking structure 50, and a gap 60 is provided between the first blocking structure 20 and the corresponding second blocking structure 50; the second blocking structure 50 has a third height h3 in the thickness direction of the base substrate 10, and the third height h3 is higher than the first height h1.
  • the second blocking structure 50 is arranged correspondingly to the first blocking structure 20.
  • one second blocking structure 50 corresponds to one first blocking structure 20, that is, the second blocking structure 50 and the first blocking structure 20 are in a one-to-one correspondence.
  • the corresponding arrangement may also have other corresponding relationships.
  • the first blocking structure 20 is located in the second area corresponding to the second blocking structure 50.
  • the second blocking structure 50 surrounds the first blocking structure 20 in a circumferential direction, thereby forming a blocking area in the circumferential direction of the first blocking structure 20.
  • the first area surrounded by the first blocking structure 20 is used to form a display sub-pixel.
  • the gap 60 between the second blocking structure 50 and the first blocking structure 20 forms a spacing groove, and the portion of the ink ejected by the printing device within the first area surrounded by the first blocking structure 20 is used to form the corresponding film layer of the display sub-pixel, and the ink overflowing the first blocking structure 20 will flow into the spacing groove and be limited in the spacing groove by the second blocking structure 50, thereby preventing the overflowed excess ink from forming crosstalk with other sub-pixels.
  • the third height h3 of the second blocking structure 50 in the thickness direction of the base substrate 10 is greater than the first height h1 of the first blocking structure 20 in the thickness direction of the base substrate 10.
  • the ratio of the first height h1 to the third height h3 can be greater than or equal to 0.4 and less than or equal to 0.8, for example, it can be 0.4, 0.5, 0.6, 0.7, 0.8, etc.
  • the height of the first blocking structure 20 and the height of the second blocking structure 50 have the above-mentioned proportional relationship.
  • the height of the second blocking structure 50 should be higher than the height of the display sub-pixel formed, so as to form an isolation effect on the display sub-pixel.
  • the slope of the second blocking structure 50 can be reduced, and the auxiliary electrode and the second electrode formed on the second blocking structure 50 can be prevented from being broken.
  • the material forming the second blocking structure 50 needs to have a certain viscosity so that the formed second blocking structure 50 meets the height requirement.
  • the viscosity of the material forming the second blocking structure 50 can be 20-40 cps, so that the height of the formed second blocking structure 50 can be between 2 and 2.5 um.
  • the material of the second blocking structure 50 can be, for example, a resin material, and the resin material is an acrylic system, which has a high viscosity.
  • the second blocking structure 50 can also be prepared by other materials.
  • the center distance between the orthographic projections of any two adjacent second blocking structures 50 on the substrate 10 is D;
  • the orthographic projection of the first blocking structure 20 on the substrate 10 has a first side and a second side opposite to each other, any normal line of the first side intersects with the first side at a first node and intersects with the second side at a second node, and the distance between the first node and the second node is d1;
  • the orthographic projection of the second blocking structure 50 on the substrate 10 has a third side and a fourth side opposite to each other, any normal line of the third side intersects with the third side at a third node and intersects with the fourth side at a fourth node, and the distance between the third node and the fourth node is d2; wherein d1/D is 0.1 to 0.3, and d2/D is 0.1 to 0.3, for example, it can be 0.1, 0.15, 0.2, 0.25, 0.3, etc.
  • the distance D reflects the width of the display sub-pixel
  • the distance d1 between the first node and the second node represents the width of the first blocking structure 20.
  • the width of the first blocking structure 20 and the width of the sub-pixel are set to have the above-mentioned proportional relationship. In the case of realizing an ultra-high ppi pixel structure, the structural stability of the first blocking structure 20 can be fully improved to avoid its breakage due to too narrow width.
  • the distance d2 between the third node and the fourth node represents the width of the second blocking structure 50.
  • the structural stability of the second blocking structure 50 can also be improved to avoid the breakage of the second blocking structure 50.
  • the center distance D of the orthographic projection of any two adjacent second blocking structures 50 on the substrate 10 is less than or equal to 10 ⁇ m. Accordingly, the width of the first blocking structure 20 and the width of the second blocking structure 50 can both be 1 to 2 ⁇ m, thereby forming an ultra-high ppi pixel structure.
  • the ratio of the distance d1 to the distance d2 may be 0.8-1.2, for example, 0.8, 0.9, 1.0, 1.1, 1.2, etc. That is, the width of the first barrier structure 20 may be slightly larger than or equal to the width of the second barrier structure 50, or may be the same as or slightly smaller than the width of the second barrier structure 50.
  • the second side is located on a side of the first side away from the orthographic projection of the corresponding first electrode 30 on the substrate 10
  • the fourth side is located on a side of the third side away from the orthographic projection of the corresponding first electrode 30 on the substrate 10 that is, the second side is the orthographic projection formed by the outer side of the first blocking structure 20, the first side is the orthographic projection formed by the inner side of the first blocking structure 20, the fourth side is the orthographic projection formed by the outer side of the second blocking structure 50, and the third side is the orthographic projection formed by the inner side of the second blocking structure 50.
  • the distance between the fifth node and the sixth node reflects the width of the gap 60 between the first blocking structure 20 and the second blocking structure 50. It can be understood that the width of the gap 60 determines the accommodating space of the spacing groove.
  • the width of the gap 60 has the above-mentioned proportional relationship with the pixel width, which provides a space that can accommodate more than ink while occupying less pixel space, which is conducive to realizing a high ppi pixel structure.
  • FIG. 4 is a partial enlarged view of the second blocking structure in FIG. 3.
  • the second blocking structure 50 may include a first A structure layer 510 and a second structure layer 520, the first structure layer 510 is located at any position on the side of the second structure layer 520 away from the base substrate 10, and the orthographic projection of the first structure layer 510 on the base substrate 10 is located within the orthographic projection of the second structure layer 520 on the base substrate 10.
  • the first structure layer 510 and the second structure layer 520 can be understood as the cross-sectional structure of the second blocking structure 50 on a plane parallel to the base substrate 10.
  • the orthographic projection of the first structure layer 510 on the base substrate 10 is located within the orthographic projection of the second structure layer 520 on the base substrate 10, indicating that the cross-sectional area of the second blocking structure 50 on a plane parallel to the base substrate 10 is gradual, and the cross-sectional area gradually decreases in the direction away from the base substrate 10.
  • the second blocking structure 50 is a structure that is narrow at the top and wide at the bottom in the thickness direction of the base substrate 10, thereby improving the structural stability of the second blocking structure 50, and the edge position of the second blocking structure 50 is not prone to fracture.
  • the first blocking structure 20 may have a structure similar to the second blocking structure 50.
  • the first blocking structure 20 may include a third structure layer and a fourth structure layer parallel to the base substrate 10.
  • the third structure layer is located at any position of the fourth structure layer away from the base substrate 10.
  • the orthographic projection of the third structure layer on the base substrate 10 is located within the orthographic projection of the fourth structure layer on the base substrate 10, so that the first blocking structure 20 is a structure narrow at the top and wide at the bottom, so that the edge position of the first blocking structure 20 is not easy to break.
  • the cross section of the second blocking structure 50 on the plane perpendicular to the base substrate 10 and the cross section of the first blocking structure 20 on the plane of the base substrate 10 may both be trapezoidal.
  • the cross-sectional structure of the first blocking structure 20 and the second blocking structure 50 in the thickness direction of the base substrate 10 may also be rectangular, inverted trapezoidal, etc.
  • the first structure layer 510 has and only has a first intersection with a first tangent plane perpendicular to the base substrate 10
  • the second structure layer 520 has and only has a second intersection with a second tangent plane perpendicular to the base substrate 10
  • the first tangent plane is parallel to the second tangent plane, and both the first tangent plane and the second tangent plane are located on the same side of the center of the orthographic projection of the first structure layer 510 on the base substrate 10
  • a line segment connecting the first intersection and the second intersection has a first angle ⁇ with the base substrate 10, and the first angle ⁇ is less than 65° and greater than 20°.
  • the first tangent plane has only the first intersection with the first structure layer 510, indicating that the first tangent plane is tangent to the first structure layer 510, and the first intersection is the tangent point between the first tangent plane and the first structure layer 510.
  • the second tangent plane is tangent to the second structure layer 520, and the second intersection is the tangent point between the second tangent plane and the second structure layer 520.
  • the first angle ⁇ between the line segment connecting the first intersection and the second intersection and the base substrate 10 is the angle between the outer wall of the second blocking structure 50 and the base substrate 10. In other words, That is, the slope of the outer wall of the second blocking structure 50.
  • the first angle ⁇ is greater than or equal to 20° and less than or equal to 60°, so as to ensure that the slope of the second blocking structure 50 is relatively gentle, thereby ensuring that the auxiliary electrode and the second electrode formed on the second blocking structure 50 are not easily broken.
  • the display substrate may further include a plurality of auxiliary electrodes 501, and the plurality of auxiliary electrodes 501 are arranged corresponding to the plurality of second blocking structures 50, and the auxiliary electrodes 501 may cover the corresponding second blocking structures 50.
  • the auxiliary electrode 501 may be connected to the second electrode in the sub-pixel, which may reduce the impedance of the second electrode layer on the one hand, and further reduce the slope of the second blocking structure 50 on the other hand, so that in the process step of forming the display sub-pixel, it is beneficial to evaporate and form the second electrode of the sub-pixel.
  • the thickness of the auxiliary electrode 501 is For example, it can be wait.
  • FIG5 is a schematic diagram of the structure of a display panel according to an embodiment of the present disclosure.
  • the display panel may include a display substrate as described in any of the above embodiments of the present disclosure, a light-emitting layer EML, and a second electrode layer, wherein the light-emitting layer EML may include a plurality of light-emitting structures, the plurality of light-emitting structures correspond to a plurality of first electrodes 30 one by one, and the light-emitting structures cover the corresponding first electrodes 30; the second electrode layer covers the light-emitting layer EML and a plurality of first blocking structures 20, and the portion of the second electrode layer located in the second blocking structure 50 extends to the second blocking structure 50 and is connected to the auxiliary electrode 501.
  • the light-emitting layer EML may include a plurality of light-emitting structures, the plurality of light-emitting structures correspond to a plurality of first electrodes 30 one by one, and the light-emitting structures cover the corresponding
  • the light-emitting layer EML may be an organic electroluminescent layer
  • the first electrode 30 may be an anode
  • the second electrode 70 may be a cathode
  • the auxiliary electrode 501 is an auxiliary cathode
  • the cathodes are connected as a whole by the auxiliary cathode to form a cathode layer.
  • a certain voltage is applied between the cathode layer and the anode layer to provide a certain driving current for the light-emitting layer EML to drive the light-emitting layer EML to emit light.
  • the auxiliary cathode covers the second blocking structure 50, which can reduce the impedance of the cathode layer on the one hand, and further reduce the slope of the second blocking structure 50 on the other hand, thereby preventing the cathode from being broken during the evaporation process.
  • the material of the anode layer may include a transparent conductive material or a semi-transparent conductive material, such as ITO, Ag, NiO, Al or graphene.
  • the material of the cathode layer may include a metal or a combination of metals, such as one of Al, Mg, Ca, Ba, Na, Li, K and Ag or any combination thereof.
  • the display panel may further include a first organic layer and a second organic layer, wherein the first organic layer is located between the first electrode layer and the light-emitting layer EML, the first organic layer includes a first organic structure corresponding to a plurality of first electrodes 30 one by one, and the first organic structure covers the corresponding first electrode 30; the second organic layer is located between the light-emitting layer EML and the second electrode layer, the second organic layer includes a second organic structure corresponding to a plurality of first electrodes 30 one by one, and the second organic structure covers the corresponding light-emitting structure.
  • At least one of the light-emitting layer EML, the first organic layer, and the second organic layer is formed by an inkjet process.
  • the first organic layer is located between the organic electroluminescent layer and the substrate, the second organic layer is located on the side of the organic electroluminescent layer away from the substrate, the first organic layer may include a hole injection layer HIL and a hole transport layer HTL, and the second organic layer may include an electron transport layer ETL and an electron injection layer EIL.
  • the specific structures of the hole injection layer HIL, the hole transport layer HTL, the electron transport layer ETL, and the electron injection layer EIL are not described in detail here.
  • Adjacent light emitting functional layers may share one or more of the hole injection layer HIL, the hole transport layer HTL, the electron transport layer ETL, and the electron injection layer EIL.
  • the present disclosure also provides a method for preparing a display substrate, which is used to prepare the display substrate described in any of the above embodiments.
  • the method may include the following steps:
  • a first electrode layer on one side of the base substrate 10, wherein the first electrode layer includes a plurality of first electrodes 30.
  • a planarization layer may be formed on the base substrate 10, and then a pad layer 40 may be formed on the planarization layer by a coating, exposure and development process.
  • a first electrode layer is then formed on the pad layer 40 by a sputtering process, and then each discrete first electrode 30 is formed by a patterning process.
  • the structure of the first electrode layer may be described in the above-mentioned embodiment, and will not be described in detail here.
  • first blocking structures 20 formed on the base substrate 10, wherein the plurality of first blocking structures 20 correspond to the plurality of first electrodes 30 one by one, and the first electrodes 30 are located in a first region surrounded by the first blocking structures 20, the first blocking structures 20 have a first height h1 in the thickness direction of the base substrate 10, the first electrodes 30 have a second height h2 in the thickness direction of the base substrate 10, the first height h1 is greater than the second height h2, and the first blocking structures 20 have a separation groove 201 on a side surface facing away from the base substrate 10. As shown in FIG.
  • a plurality of first blocking structures 20 can be formed on the base substrate 10 by a glue coating process, wherein the first blocking structures 20 are arranged on the base substrate 10.
  • the orthographic projection of the first blocking structure 20 may be a circle, a rectangle, an ellipse, etc.
  • the orthographic projection of the first blocking structure 20 on the base substrate 10 is a circle, which can reduce the difficulty of the process.
  • the height of the first blocking structure 20 is greater than that of the first electrode 30 , so that various functional film layers of the display sub-pixel can be formed in the first region where the first blocking structure 20 is formed and on the first electrode 30 .
  • each film layer of the display sub-pixel of the present disclosure can be formed by an inkjet printing process.
  • the separation groove 201 can be used to modify the edge of the ink sprayed by the printing device, so that the effective ink located on the first electrode 30 is separated from the excess ink overflowing the first blocking structure 20, thereby effectively controlling the morphology of the ink after drying, so that when the ultra-high ppi display panel is made by the solution method, the film layer thickness of the display sub-pixel can be effectively controlled to be uniformly distributed, solving the problem of the difficulty in controlling the morphology of the ink after molding in the related art.
  • the separation groove 201 and the first blocking structure 20 please refer to the introduction of the above embodiments, which will not be described in detail here.
  • the preparation method may further include:
  • S140 Form a plurality of second blocking structures 50 on the base substrate 10, wherein, as shown in FIG8 , the plurality of second blocking structures 50 are arranged one-to-one corresponding to the plurality of first blocking structures 20, and the first blocking structures 20 are located in a second area enclosed by the corresponding second blocking structures 50, a gap 60 is provided between the first blocking structures 20 and the corresponding second blocking structures 50, and the second blocking structures 50 have a third height h3 in the thickness direction of the base substrate 10, and the third height h3 is greater than the first height h1.
  • a second blocking structure 50 corresponding to each first blocking structure 20 can be formed on the base substrate 10 by a coating and developing process, and the second blocking structure 50 surrounds the first blocking structure 20 located therein in the circumferential direction, so that the second blocking structure can isolate the display sub-pixel located therein from the adjacent display sub-pixel.
  • a gap 60 is provided between the second blocking structure 50 and the first blocking structure 20 located therein to form a spacing groove. In the inkjet process, the ink overflowing from the first blocking structure 20 flows into the spacing groove and is blocked by the second blocking structure 50 to avoid crosstalk with other sub-pixels.
  • an auxiliary electrode layer can be formed on the second blocking structure 50 by a sputtering process, and then patterned by an exposure display to obtain auxiliary electrodes covering the second blocking structure 50. Electrode 501.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板及其制备方法、显示面板,显示基板包括衬底基板(10)和位于衬底基板(10)上的多个第一阻挡结构(20)和第一电极层,多个第一阻挡结构(20)在衬底基板(10)的一侧阵列分布,第一阻挡结构(20)围成第一区域;第一电极层包括多个第一电极(30),多个第一电极(30)与多个第一阻挡结构(20)对应设置,第一电极(30)位于对应第一阻挡结构(20)形成的第一区域内;其中,第一阻挡结构(20)在衬底基板(10)的厚度方向上具有第一高度(h1),第一电极(30)在衬底基板(10)的厚度方向上具有第二高度(h2),第一高度(h1)大于第二高度(h2),且第一阻挡结构(20)背离衬底基板(10)的一侧表面具有分隔槽(201)。第一阻挡结构(20)上的分隔槽(201)会对溢出的墨滴进行切割,可以将溢出的墨滴与第一电极层上的墨滴进行分离,由此可以有效控制干燥后的墨水形貌。

Description

显示基板及其制备方法、显示面板
交叉引用
本公开要求于2022年9月14日提交的申请号为202211115722.2名称为“显示基板及其制备方法、显示面板”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及显示技术领域,具体而言,涉及一种显示基板及其制备方法、显示面板。
背景技术
OLED(Organic Light-Emitting Diode,OLED)区别于传统的LCD产品,无需外部背光源驱动,其基本发光原理为,电流流过EL发光材料,产生电致发光。因此OLED显示装置具有更轻、更薄,可视角度更大的优势。
相关技术中,使用溶液法实现超高ppi的制作是业界的一个难题,一方面是因为墨滴越小,吐出墨滴的设备就要越精密,而且,墨滴的均一性也很难控制,同时,由于墨滴变小后,墨滴的体积和表面积比发生了很大的变化,墨水的干燥效应明显增强,使得墨水干燥后的成膜形貌变的难以控制。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于克服上述现有技术的不足,提供一种显示基板及其制备方法、显示面板。
根据本公开的一个方面,提供一种显示基板,包括:衬底基板;多个第一阻挡结构,在所述衬底基板的一侧阵列分布,所述第一阻挡结构 围成第一区域;第一电极层,包括多个第一电极,所述多个第一电极与所述多个第一阻挡结构对应设置,所述第一电极位于对应所述第一阻挡结构形成的所述第一区域内;其中,所述第一阻挡结构在所述衬底基板的厚度方向上具有第一高度,所述第一电极在所述衬底基板的厚度方向上具有第二高度,所述第一高度大于所述第二高度,且所述第一阻挡结构背离所述衬底基板的一侧表面具有分隔槽。
在本公开的示例性实施例中,所述分隔槽在所述衬底基板的厚度方向上的凹陷深度与所述第一高度的比值大于等于0.2且小于等于0.4。
在本公开的示例性实施例中,所述第一阻挡结构开设所述分隔槽的表面在所述衬底基板的正投影具有第一宽度,所述分隔槽的开口在所述衬底基板的正投影具有第二宽度,所述第二宽度与所述第一宽度的比值大于等于0.2且小于等于0.6。
在本公开的示例性实施例中,所述第二高度与所述第一高度之比大于等于0.4且小于等于0.7。
在本公开的示例性实施例中,还包括:多个第二阻挡结构,在所述衬底基板上阵列分布且与所述多个第一阻挡结构对应设置,所述第二阻挡结构围成第二区域;其中,所述第一阻挡结构位于对应所述第二阻挡结构围成的所述第二区域内,且所述第一阻挡结构与对应所述第二阻挡结构之间具有间隙;所述第二阻挡结构在所述衬底基板的厚度方向上具有第三高度,且所述第三高度大于所述第一高度。
在本公开的示例性实施例中,所述第一高度与所述第三高度之比大于等于0.4且小于等于0.8。
在本公开的示例性实施例中,任意相邻的两个第二阻挡结构在所述衬底基板的正投影的中心距为D;所述第一阻挡结构在所述衬底基板的正投影具有相对的第一侧边和第二侧边,所述第一侧边的任一法线与所述第一侧边相交于第一节点且与所述第二侧边相交于第二节点,所述第一节点与所述第二节点的距离为d1;所述第二阻挡结构在所述衬底基板的正投影具有相对的第三侧边和第四侧边,所述第三侧边的任一法线与所述第三侧边相交于第三节点且与所述第四侧边相交于第四节点,所述第三节点与所述第四节点的距离为d2;其中,d1/D为0.1~0.3,d2/D为 0.1~0.3。
在本公开的示例性实施例中,所述第二侧边位于所述第一侧边远离对应所述第一电极在所述衬底基板的正投影的一侧,所述第四侧边位于所述第三侧边远离对应所述第一电极在所述衬底基板的正投影的一侧;所述第二侧边的任一法线与所述第二侧边相交于第五节点且与所述第三侧边相交第六节点,所述第五节点与所述第六节点的距离为d3;其中,d3/D为0.08~0.20。
在本公开的示例性实施例中,所述第二阻挡结构包括平行于所述衬底基板的第一结构层和第二结构层,所述第一结构层位于所述第二结构层远离所述衬底基板一侧的任意位置,所述第一结构层在所述衬底基板的正投影位于所述第二结构层在所述衬底基板的正投影内;所述第一阻挡结构包括平行于所述衬底基板的第三结构层和第四结构层,所述第三结构层位于所述第四结构层远离所述衬底基板的任意位置,所述第三结构层在所述衬底基板的正投影位于所述第四结构层在所述衬底基板的正投影内。
在本公开的示例性实施例中,所述第一结构层与垂直于所述衬底基板的第一切平面有且仅有第一交点,所述第二结构层与垂直于所述衬底基板的第二切平面有且仅有第二交点,所述第一切平面平行于所述第二切平面且所述第一切平面和所述第二切平面均位于所述第一结构层在所述衬底基板的正投影的中心的同一侧,连接所述第一交点与所述第二交点的线段与所述衬底基板之间具有第一夹角,所述第一夹角大于等于20°且小于等于60°。
在本公开的示例性实施例中,还包括:多个辅助电极,与所述多个第二阻挡结构对应设置,所述辅助电极覆盖对应所述第二阻挡结构。
在本公开的示例性实施例中,所述辅助电极的厚度为
在本公开的示例性实施例中,所述第二阻挡结构的材料为树脂材料,且所述树脂材料的粘度为20~40cps。
在本公开的示例性实施例中,任意相邻的两个第二阻挡结构在衬底基板的正投影的中心距小于等于10μm。
在本公开的示例性实施例中,还包括:多个垫层,与多个所述第一 电极对应设置,所述垫层位于所述第一电极与所述衬底基板之间;其中,所述第一阻挡结构与所述第一电极均位于所述垫层背离所述衬底基板一侧的表面上,所述第一高度和所述第二高度均包括所述垫层在所述衬底基板的厚度方向上的厚度;或者,所述垫层位于对应所述第一阻挡结构形成的所述第一区域内,所述第二高度包括所述垫层在所述衬底基板的厚度方向上的厚度,且所述第一高度不包括所述垫层在所述衬底基板的厚度方向上的厚度。
根据本公开的第二方面,还提供一种显示面板,包括:本公开任意实施例所述的显示基板;发光层,包括多个发光结构,所述多个发光结构与所述多个第一电极一一对应,且所述发光结构覆盖对应所述第一电极;第二电极层,覆盖所述发光层和所述多个第一阻挡结构,所述第二电极层位于所述第二阻挡结构内的部分延伸至所述第二阻挡结构处且连接所述辅助电极。
在本公开的示例性实施例中,还包括:第一有机层,位于所述第一电极层和所述发光层之间,所述第一有机层包括与所述多个第一电极一一对应的第一有机结构,所述第一有机结构覆盖对应所述第一电极;第二有机层,位于所述发光层和所述第二电极层之间,所述第二有机层包括与所述多个第一电极一一对应的第二有机结构,所述第二有机结构覆盖对应所述发光结构;其中,所述发光层、所述第一有机层、所述第二有机层中的至少一个通过喷墨工艺形成。
根据本公开的第三方面,还提供一种显示基板的制备方法,用于制备本公开任意实施例所述的显示基板,所述方法包括:提供一衬底基板;在所述衬底基板的一侧形成第一电极层,其中,所述第一电极层包括多个第一电极;在所述衬底基板上形成多个第一阻挡结构,所述多个第一阻挡结构与所述多个第一电极一一对应,且所述第一电极位于所述第一阻挡结构围成的第一区域内,所述第一阻挡结构在所述衬底基板的厚度方向上具有第一高度,所述第一电极在所述衬底基板的厚度方向上具有第二高度,所述第一高度大于所述第二高度,且所述第一阻挡结构背离所述衬底基板的一侧表面具有分隔槽。
根据本公开的第三方面,还提供一种显示基板的制备方法,用于制 备本公开任意实施例所述的显示基板,所述方法包括:提供一衬底基板;在所述衬底基板的一侧形成第一电极层,其中,所述第一电极层包括多个第一电极;在所述衬底基板上形成多个第一阻挡结构,所述多个第一阻挡结构与所述多个第一电极一一对应,且所述第一电极位于所述第一阻挡结构围成的第一区域内,所述第一阻挡结构在所述衬底基板的厚度方向上具有第一高度,所述第一电极在所述衬底基板的厚度方向上具有第二高度,所述第一高度大于所述第二高度,且所述第一阻挡结构背离所述衬底基板的一侧表面具有分隔槽;在所述衬底基板上形成多个第二阻挡结构,其中,所述多个第二阻挡结构与所述多个第一阻挡结构一一对应设置,且所述第一阻挡结构位于对应所述第二阻挡结构围成的第二区域内,所述第一阻挡结构与对应所述第二阻挡结构之间具有间隙,所述第二阻挡结构在所述衬底基板的厚度方向上具有第三高度,且所述第三高度大于所述第一高度。
本公开提供的显示基板,第一电极层包括多个第一电极,每一第一电极对应设置于一个第一阻挡结构围成的第一区域内,并且第一阻挡结构的高度要高于第一电极的高度,从而打印设备喷出的墨水在第一区域内的第一电极上形成对应膜层。第一阻挡结构上设置有分隔槽,多余的墨水会溢出第一阻挡结构围成的区域,第一阻挡结构上的分隔槽会对溢出的墨滴进行切割,可以将溢出的墨滴与第一电极层上的墨滴进行分离,由此可以有效控制干燥后的墨水形貌,从而实现溶液法的超高ppi制作,解决其墨水成型后形貌难以控制的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开一种实施方式的显示基板的结构示意图;
图2为图1中一个子像素沿AA方向的剖视图;
图3为根据本公开另一种实施方式的沿图1中AA方向的剖视图;
图4为图3中第二阻挡结构的局部放大图;
图5为根据本公开一种实施方式的显示面板的结构示意图;
图6为根据本公开一种实施方式形成第一电极的结构示意图;
图7为根据本公开一种实施方式形成第一阻挡结构的结构示意图;
图8为根据本公开一种实施方式形成第二阻挡结构的结构示意图;
图9为根据本公开一种实施方式形成辅助电极的结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
图1为根据本公开一种实施方式的显示基板的结构示意图,图2为图1中一个子像素沿AA方向的剖视图,如图1、图2所示,该显示基板可以包括衬底基板10以及形成于衬底基板10上的多个第一阻挡结构20和第一电极层,其中,多个第一阻挡结构20在衬底基板10的一侧阵列分布,第一阻挡结构20围成第一区域;第一电极层包括多个第一电极30,多个第一电极30与多个第一阻挡结构20对应设置,第一电极30位于对应第一阻挡结构20形成的第一区域内;其中,第一阻挡结构20在衬底基板10的厚度方向上具有第一高度h1,第一电极30在衬底基板10的厚度方向上具有第二高度h2,第一高度h1大于第二高度h2,且第一阻挡结构20背离衬底基板10的一侧表面具有分隔槽201。
本公开提供的显示基板,第一电极层包括多个第一电极30,每一第一电极30对应设置于一个第一阻挡结构20围成的第一区域内,并且第一阻挡结构20的高度要高于第一电极30的高度,从而打印设备喷出的 墨水在第一区域内的第一电极30上形成对应膜层。第一阻挡结构20上设置有分隔槽201,多余的墨水会溢出第一阻挡结构20围成的区域,第一阻挡结构20上的分隔槽201会对溢出的墨滴进行切割,可以将溢出的墨滴与第一电极层上的墨滴进行分离,由此可以有效控制干燥后的墨水形貌,从而实现溶液法的超高ppi制作,解决其墨水成型后形貌难以控制的问题。
如图1所示,在示例性实施例中,各第一阻挡结构20、各第一电极30均在衬底基板10上阵列分布,第一阻挡结构20和第一电极30可以具有一一对应关系。第一电极30位于与其对应的第一阻挡结构20围成的第一区域内,换言之,第一阻挡结构20在周向围绕与其对应的第一电极30,并且第一阻挡结构20在厚度方向上的第一高度h1要大于第一电极30在厚度方向上的第二高度h2,从而在第一电极30上形成容纳子像素的结构层的容纳空间,打印设备喷出的墨水在该容纳空间内成型而形成显示子像素。
值得注意的是,本公开所述的某一结构在衬底基板10的厚度方向上的高度,可以理解为,该结构背离衬底基板10的表面上的各离散点沿衬底基板10的厚度方向距离衬底基板10的最大距离。
第一阻挡结构20背离衬底基板10的表面具有分隔槽201,可以理解的,该分隔槽201围绕于与其对应的第一电极30。在打印设备喷出墨滴后,多余的墨水会溢出第一阻挡结构20为围成的容纳空间,分隔槽201此时能够将溢出的墨水与容纳空间内的有效墨水进行分离,从而通过该分隔槽201对墨水的边缘进行修饰,使得形成显示子像素的结构的有效墨水与溢出的多余墨水进行有效切割。
可以理解的,本公开分隔槽201可以具有不同形貌。例如,分隔槽201沿衬底基板10的厚度方向上的剖面结构可以为矩形、梯形、倒梯形等。
可以理解的,第一电极30位于第一阻挡结构20所围成的第一区域内,并且,第一电极30应该与第一阻挡结构20的内壁相抵,使得第一阻挡结构20的内壁与位于其内的第一电极30的接触面之间没有空隙,这样打印设备喷出的墨水仅在第一电极30上成型而形成相应的膜层。
如图2所示,在示例性实施例中,分隔槽201在衬底基板10的厚度方向上的凹陷深度h4与第一高度h1的比值大于等于0.2且小于等于0.4,即分隔槽201的深度h4与第一阻挡结构20的高度的比值为0.2~0.4,例如可以为0.2,0.3,0.4等。分隔槽201的深度h4与第一阻挡结构20的高度具有上述比例关系,可以保证分隔槽201对墨水边缘的修饰效果,能够将多余的墨水与形成在第一电极30上的有效墨水进行分离。
如图2所示,在示例性实施例中,第一阻挡结构20开设分隔槽201的表面在衬底基板10的正投影具有第一宽度L1,分隔槽201的开口在衬底基板10的正投影具有第二宽度L2,第二宽度L2与第一宽度L1的比值大于等于0.2且小于等于0.6。其中,第二宽度L2与第一宽度L1之比例如可以为0.2,0.3,0.4,0.5,0.6等。可以理解的,第二宽度L2反映了分隔槽201的开口宽度,第一宽度L1反映了第一阻挡结构20中开设开口槽的表面宽度,分隔槽201的宽度同样影响着分隔槽201对于墨水边缘的修饰效果,第二宽度L2与第一宽度L1具有上述比例关系,在兼容制备工艺的同时可以避免分隔槽201过窄而丧失或降低对于墨水边缘的修饰作用。
应该理解的,本公开某一结构在衬底基板10的正投影的宽度,可以理解为,该结构在衬底基板10的正投影具有的两个侧边与位于该结构围设区域内的第一电极30在衬底基板10的正投影的中心之间的距离差。
如图2所示,在示例性实施例中,第二高度h2与第一高度h1之比大于等于0.4且小于等于0.7。第二高度h2与第一高度h1之比例如可以为0.4,0.5,0.6,0.7等。可以理解的,第二高度h2与第一高度h1之间的高度差决定了所能容纳的墨水的体积,第二高度h2与第一高度h1具有上述的比例关系,可以使得所形成的容纳空间能够与打印设备喷出的墨水的体积相匹配,以能够在第一电极30上形成显示子像素的膜层结构。
此外,本公开显示基板还可以包括多个垫层40,多个垫层40与多个第一电极30对应设置,例如,一个垫层40可以对应一个第一电极30。垫层40位于第一电极30与衬底基板10之间,即垫层40位于衬底基板10上,且第一电极30位于垫层40上。在本公开的一些实施例中,第一阻挡结构20与第一电极30均位于垫层40背离衬底基板10一侧的表面 上,相应地,第一高度h1和第二高度h2均包括垫层40在衬底基板10的厚度方向上的厚度。在本公开的另一些实施例中,垫层40位于对应第一阻挡结构20形成的第一区域内,相应地,第二高度h2包括了垫层40在衬底基板10的厚度方向上的厚度,且第一高度h1不包括垫层40在衬底基板10的厚度方向上的厚度。
在示例性实施例中,本公开显示基板还可以包括平坦化层PLN,可以在衬底基板10的一侧先形成平坦化层PLN,然后在平坦化层PLN上形成垫层40以及在垫层40上形成第一电极30。
在示例性实施例中,显示基板可用于形成OLED器件,显示基板上的第一电极30可以为阳极,相应地,上述的垫层40即为阳极垫层。打印设备喷出的墨水在阳极上形成OLED器件的发光功能层。当然,在其他实施例中,第一电极30也可以为阴极,本公开对此不作限定。
图3为根据本公开另一种实施方式的沿图1中AA方向的剖视图,如图1、图3所示,在示例性实施例中,该显示基板还可以包括多个第二阻挡结构50,多个第二阻挡结构50在衬底基板10上阵列分布且与多个第一阻挡结构20对应设置,第二阻挡结构50围成第二区域;其中,第一阻挡结构20位于对应第二阻挡结构50围成的第二区域内,且第一阻挡结构20与对应第二阻挡结构50之间具有间隙60;第二阻挡结构50在衬底基板10的厚度方向上具有第三高度h3,第三高度h3高于第一高度h1。
其中,第二阻挡结构50与第一阻挡结构20对应设置,例如可以为,一个第二阻挡结构50对应一个第一阻挡结构20,即第二阻挡结构50与第一阻挡结构20为一一对应关系。当然,在其他实施例中,对应设置还可以具有其他的对应关系。
第一阻挡结构20位于对应第二阻挡结构50围成的第二区域内,换言之,第二阻挡结构50周向围绕于第一阻挡结构20,从而在第一阻挡结构20的周向形成阻挡区。如上所述,第一阻挡结构20围成的第一区域用于形成一个显示子像素,通过在第一阻挡结构20的***设置第二阻挡结构50,可以通过第二阻挡结构50将显示子像素与相邻的显示子像 素进行隔离。具体而言,第二阻挡结构50与第一阻挡结构20之间的间隙60形成间隔沟,打印设备喷出的墨水在第一阻挡结构20围成的第一区域内的部分用于形成显示子像素的相应膜层,溢出第一阻挡结构20的墨水会流入该间隔沟,并且被第二阻挡结构50限位在该间隔沟内,由此可以避免溢出的多余墨水与其他的子像素形成串扰。
第二阻挡结构50在衬底基板10的厚度方向上具有的第三高度h3要大于第一阻挡结构20在衬底基板10的厚度方向上具有的第一高度h1。在示例性实施例中,第一高度h1与第三高度h3的比值可以大于等于0.4且小于等于0.8,例如可以为0.4,0.5,0.6,0.7,0.8等。第一阻挡结构20的高度与第二阻挡结构50的高度之间具有上述的比例关系,一方面第二阻挡结构50的高度要能够高于所形成的显示子像素的高度,对显示子像素形成隔离作用。另一方面,通过限制第二阻挡结构50的高度可以减缓第二阻挡结构50的坡度,可以防止形成在第二阻挡结构50上的辅助电极以及第二电极发生断裂。
此外,形成第二阻挡结构50的材料需要具有一定的粘度,以使得所形成的第二阻挡结构50满足高度要求。示例性的,形成的第二阻挡结构50的材料的粘度可以为20~40cps,从而可以使得所形成的第二阻挡结构50的高度在2~2.5um之间。第二阻挡结构50的材料例如可以为树脂材料,树脂材料是丙烯酸体系,其具有较高的粘度。当然,在其他实施例中,第二阻挡结构50还可以通过其他的材料制备得到。
如图1、图3所述,在示例性实施例中,任意相邻的两个第二阻挡结构50在衬底基板10的正投影的中心距为D;第一阻挡结构20在衬底基板10的正投影具有相对的第一侧边和第二侧边,第一侧边的任一法线与第一侧边相交于第一节点且与第二侧边相交于第二节点,第一节点与第二节点的距离为d1;第二阻挡结构50在衬底基板10的正投影具有相对的第三侧边和第四侧边,第三侧边的任一法线与第三侧边相交于第三节点且与第四侧边相交于第四节点,第三节点与第四节点的距离为d2;其中,d1/D为0.1~0.3,d2/D为0.1~0.3,例如可以为0.1,0.15,0.2,0.25,0.3等。距离D反映了显示子像素的宽度,第一节点与第二节点之间的距离d1表征了第一阻挡结构20的宽度,通过将第一阻挡结构20 的宽度与子像素的宽度设置为具有上述的比例关系,在实现超高ppi像素结构的情况下,能够充分提高第一阻挡结构20的结构稳固性,避免其因宽度太窄而断裂。同样地,第三节点与第四节点的距离d2表征了第二阻挡结构50的宽度,通过将第二阻挡结构50的宽度与子像素的宽度设置为具有上述的比例关系,在实现超高ppi像素结构的同时,还能够提高第二阻挡结构50的结构稳固性,避免第二阻挡结构50断裂。例如,在一实施例中,任意相邻的两个第二阻挡结构50在衬底基板10的正投影的中心距D小于等于10μm,相应地,第一阻挡结构20的宽度、第二阻挡结构50的宽度均可以为1~2um,由此而形成超高ppi的像素结构。
此外,距离d1与距离d2的比值可以为0.8~1.2,例如可以为0.8,0.9,1.0,1.1,1.2等。即第一阻挡结构20的宽度可以略大于第二阻挡结构50的宽度相同,或者可以与第二阻挡结构50的宽度相同,或者可以略小于第二阻挡结构50的宽度。
如图3所示,在示例性实施例中,第二侧边位于第一侧边远离对应第一电极30在衬底基板10的正投影的一侧,第四侧边位于第三侧边远离对应第一电极30在衬底基板10的正投影的一侧,即第二侧边为第一阻挡结构20的外侧边所形成的正投影,第一侧边为第一阻挡结构20的内侧边所形成的正投影,第四侧边为第二阻挡结构50的外侧边形成的正投影,第三侧边为第二阻挡结构50的内侧边形成的正投影。其中,第二侧边的任一法线与第二侧边相交于第五节点且与第三侧边相交第六节点,第五节点与第六节点的距离为d3,d3/D可以为0.08~0.20,例如可以为0.08,0.10,0.14,0.18,0.20等。第五节点与第六节点的距离反映了第一阻挡结构20与第二阻挡结构50的间隙60的宽度,可以理解的,间隙60的宽度决定了间隔沟的容纳空间,间隙60宽度与像素宽度具有上述比例关系,在提供能够容纳多于墨水的空间的同时且占用较少的像素空间,有利于实现高ppi像素结构。
可以理解的,本公开第一阻挡结构20和第二阻挡结构50均可以具有不同的形貌。图4为图3中第二阻挡结构的局部放大图,如图4所示,在示例性实施例中,第二阻挡结构50可以包括平行于衬底基板10的第 一结构层510和第二结构层520,第一结构层510位于第二结构层520远离衬底基板10一侧的任意位置,第一结构层510在衬底基板10的正投影位于第二结构层520在衬底基板10的正投影内。其中,第一结构层510、第二结构层520可以理解为第二阻挡结构50在平行于衬底基板10的平面上的截面结构。第一结构层510在衬底基板10的正投影位于第二结构层520在衬底基板10的正投影内,表明第二阻挡结构50在平行于衬底基板10的平面上的截面积是渐变的,并且是沿远离衬底基板10的方向截面积逐渐减小,换言之,第二阻挡结构50在沿衬底基板10的厚度方向上为上窄下宽的结构,由此可以提高第二阻挡结构50的结构稳定性,第二阻挡结构50的边缘位置不容易出现断裂现象。同样地,第一阻挡结构20可以具有第二阻挡结构50类似的结构,具体而言,第一阻挡结构20可以包括平行于衬底基板10的第三结构层和第四结构层,第三结构层位于第四结构层远离衬底基板10的任意位置,第三结构层在衬底基板10的正投影位于第四结构层在衬底基板10的正投影内,使得第一阻挡结构20为上窄下宽的结构,使得第一阻挡结构20的边缘位置不易断裂。在一具体实施方式中,第二阻挡结构50在垂直于衬底基板10的平面上的截面、第一阻挡结构20在衬底基板10的平面上的截面均可以为梯形。当然,在其他实施例中,第一阻挡结构20和第二阻挡结构50在沿衬底基板10的厚度方向上的剖面结构还可以为矩形、倒梯形等。
如图4所示,在示例性实施例中,第一结构层510与垂直于衬底基板10的第一切平面有且仅有第一交点,第二结构层520与垂直于衬底基板10的第二切平面有且仅有第二交点,第一切平面平行于第二切平面且第一切平面和第二切平面均位于第一结构层510在衬底基板10的正投影的中心的同一侧,连接第一交点与第二交点的线段与衬底基板10之间具有第一夹角α,第一夹角α小于65°且大于20°。其中,第一切平面与第一结构层510仅有第一交点,表明该第一切平面与第一结构层510相切,第一交点为该第一切平面与第一结构层510的切点。同样地,第二切平面与第二结构层520相切,第二交点为第二切平面与第二结构层520的切点。连接第一交点和第二交点的线段与衬底基板10之间的第一夹角α即为第二阻挡结构50的外侧壁与衬底基板10之间的夹角,换言之, 即为第二阻挡结构50的外侧壁的坡度。第一夹角α大于等于20°且小于等于60°,是要保证第二阻挡结构50的坡度较缓,由此可以保证形成在第二阻挡结构50上的辅助电极和第二电极不易断裂。
如图3所示,在示例性实施例中,该显示基板还可以包括多个辅助电极501,多个辅助电极501与多个第二阻挡结构50对应设置,辅助电极501可以覆盖对应的第二阻挡结构50。其中,通过在第二阻挡结构50上设置辅助电极501,该辅助电极501可以与子像素中的第二电极相连接,一方面可以减小第二电极层的阻抗,另一方面,该辅助电极501可以进一步减小第二阻挡结构50的坡度,这样可以在形成显示子像素的工艺步骤中,有利于蒸镀形成子像素的第二电极。在示例性实施例中,辅助电极501的厚度为例如可以为 等。
图5为根据本公开一种实施方式的显示面板的结构示意图,如图5所示,该显示面板可以包括本公开上述任意实施例所述的显示基板以及发光层EML和第二电极层,其中,发光层EML可以包括多个发光结构,多个发光结构与多个第一电极30一一对应,且发光结构覆盖对应的第一电极30;第二电极层覆盖发光层EML和多个第一阻挡结构20,第二电极层位于第二阻挡结构50内的部分延伸至第二阻挡结构50处且连接辅助电极501。举例而言,发光层EML可以为有机电致发光层,第一电极30可以为阳极,第二电极70可以为阴极,辅助电极501即为辅助阴极,通过辅助阴极将各阴极连接位为一个整体而形成阴极层。通过在阴极层和阳极层之间施加一定的电压,为发光层EML提供一定的驱动电流而驱动发光层EML发光。辅助阴极覆盖第二阻挡结构50,一方面可以减小阴极层的阻抗,另一方面辅助阴极可以进一步减小第二阻挡结构50的坡度,从而可以防止蒸镀工艺中形成的阴极断裂。本示例性实施例中,阳极层的材料可以包括透明导电材料或者半透明导电材料,例如:ITO、Ag、NiO、Al或者石墨烯。阴极层的材料可以包括金属或者金属的组合物,例如:Al、Mg、Ca、Ba、Na、Li、K和Ag中之一或者其任意组合物。
如图5所示,在示例性实施例中,显示面板还可以包括第一有机层和第二有机层,其中,第一有机层位于第一电极层和发光层EML之间,第一有机层包括与多个第一电极30一一对应的第一有机结构,第一有机结构覆盖对应第一电极30;第二有机层位于发光层EML和第二电极层之间,第二有机层包括与多个第一电极30一一对应的第二有机结构,第二有机结构覆盖对应发光结构。其中,发光层EML、第一有机层、第二有机层中的至少一个通过喷墨工艺形成。第一有机层位于有机电致发光层与基板之间,第二有机层位于有机电致发光层背离基板的一侧,第一有机层可以包括空穴注入层HIL和空穴传输层HTL,第二有机层可以包括电子传输层ETL和电子注入层EIL。空穴注入层HIL、空穴传输层HTL、电子传输层ETL和电子注入层EIL的具体结构在此不再详述。相邻的发光功能层可共用空穴注入层HIL、空穴传输层HTL、电子传输层ETL和电子注入层EIL中的一个或多个。
本公开还提供一种显示基板的制备方法,用于制备上述任意实施例所述的显示基板,该制备方法可以包括如下步骤:
S110、提供一衬底基板10。
S120、在衬底基板10的一侧形成第一电极层,其中,第一电极层包括多个第一电极30。其中,如图6所示,可以在衬底基板10上形成平坦化层,然后通过涂胶、曝光和显影工艺,在平坦化层上形成垫层40。再通过溅射工艺在垫层40上形成第一电极层,然后通过构图工艺形成各离散的第一电极30。有关第一电极层的结构可以参数上述实施例的介绍,此处不再详述。
S130、在衬底基板10上形成多个第一阻挡结构20,多个第一阻挡结构20与多个第一电极30一一对应,且第一电极30位于第一阻挡结构20围成的第一区域内,第一阻挡结构20在衬底基板10的厚度方向上具有第一高度h1,第一电极30在衬底基板10的厚度方向上具有第二高度h2,第一高度h1大于第二高度h2,且第一阻挡结构20背离衬底基板10的一侧表面具有分隔槽201。如图7所示,可以通过涂胶显示工艺在衬底基板10上形成多个第一阻挡结构20,第一阻挡结构20在衬底基板10 的正投影可以为圆形、矩形、椭圆形等。在一具体实施例中,第一阻挡结构20在衬底基板10的正投影为圆形,可以降低工艺难度。
第一阻挡结构20的高度大于第一电极30的高度,以能够在第一阻挡结构20形成的第一区域内且在第一电极30上形成显示子像素的各功能膜层。
如上述实施例所述,本公开显示子像素的各膜层可通过喷墨打印工艺形成。通过在第一阻挡结构20背离衬底基板10一侧的表面形成分隔槽201,可以通过该分隔槽201对打印设备喷出的墨水进行边缘修饰,使得位于第一电极30上的有效墨水与溢出第一阻挡结构20的多于墨水进行分离,由此可以有效控制干燥后的墨水形貌,从而在溶液法制作超高ppi显示面板时能够有效控制显示子像素的膜层厚度均匀分布,解决相关技术中墨水成型后形貌难以控制的问题。有关分隔槽201、第一阻挡结构20的具体结构请参见上述实施例的介绍,此处不再详述。
在示例性实施例中,该制备方法还可以包括:
S140、在衬底基板10上形成多个第二阻挡结构50,其中,如图8所示,多个第二阻挡结构50与多个第一阻挡结构20一一对应设置,且第一阻挡结构20位于对应第二阻挡结构50围成的第二区域内,第一阻挡结构20与对应第二阻挡结构50之间具有间隙60,第二阻挡结构50在衬底基板10的厚度方向上具有第三高度h3,且第三高度h3大于第一高度h1。
示例性的,可以通过涂胶、显影工艺在衬底基板10上形成与各第一阻挡结构20一一对应的第二阻挡结构50,第二阻挡结构50在周向围绕位于其内的第一阻挡结构20,从而第二阻挡结构能够将位于其内的显示子像素与相邻的显示子像素进行隔离。第二阻挡结构50与位于其内的第一阻挡结构20之间具有间隙60,以形成间隔沟,在喷墨工艺中,溢出第一阻挡结构20的墨水流入该间隔沟内,并通过第二阻挡结构50进行阻挡,以避免与其他子像素串扰。
S150、在第二阻挡结构50上形成辅助电极501。
如图9所示,可以通过溅射工艺在第二阻挡结构50上形成辅助电极层,然后通过曝光显示进行图形化而得到各覆盖第二阻挡结构50的辅助 电极501。
有关第二阻挡结构50、间隔沟以及辅助电极501的具体结构可参见上述实施例的介绍,此处不再详述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (19)

  1. 一种显示基板,其中,包括:
    衬底基板;
    多个第一阻挡结构,在所述衬底基板的一侧阵列分布,所述第一阻挡结构围成第一区域;
    第一电极层,包括多个第一电极,所述多个第一电极与所述多个第一阻挡结构对应设置,所述第一电极位于对应所述第一阻挡结构形成的所述第一区域内;
    其中,所述第一阻挡结构在所述衬底基板的厚度方向上具有第一高度,所述第一电极在所述衬底基板的厚度方向上具有第二高度,所述第一高度大于所述第二高度,且所述第一阻挡结构背离所述衬底基板的一侧表面具有分隔槽。
  2. 根据权利要求1所述的显示基板,其中,所述分隔槽在所述衬底基板的厚度方向上的凹陷深度与所述第一高度的比值大于等于0.2且小于等于0.4。
  3. 根据权利要求1所述的显示基板,其中,所述第一阻挡结构开设所述分隔槽的表面在所述衬底基板的正投影具有第一宽度,所述分隔槽的开口在所述衬底基板的正投影具有第二宽度,所述第二宽度与所述第一宽度的比值大于等于0.2且小于等于0.6。
  4. 根据权利要求1所述的显示基板,其中,所述第二高度与所述第一高度之比大于等于0.4且小于等于0.7。
  5. 根据权利要求1所述的显示基板,其中,还包括:
    多个第二阻挡结构,在所述衬底基板上阵列分布且与所述多个第一阻挡结构对应设置,所述第二阻挡结构围成第二区域;
    其中,所述第一阻挡结构位于对应所述第二阻挡结构围成的所述第二区域内,且所述第一阻挡结构与对应所述第二阻挡结构之间具有间隙;
    所述第二阻挡结构在所述衬底基板的厚度方向上具有第三高度,且所述第三高度大于所述第一高度。
  6. 根据权利要求5所述的显示基板,其中,所述第一高度与所述第三高度之比大于等于0.4且小于等于0.8。
  7. 根据权利要求5所述的显示基板,其中,任意相邻的两个第二阻挡结构在所述衬底基板的正投影的中心距为D;
    所述第一阻挡结构在所述衬底基板的正投影具有相对的第一侧边和第二侧边,所述第一侧边的任一法线与所述第一侧边相交于第一节点且与所述第二侧边相交于第二节点,所述第一节点与所述第二节点的距离为d1;
    所述第二阻挡结构在所述衬底基板的正投影具有相对的第三侧边和第四侧边,所述第三侧边的任一法线与所述第三侧边相交于第三节点且与所述第四侧边相交于第四节点,所述第三节点与所述第四节点的距离为d2;
    其中,d1/D为0.1~0.3,d2/D为0.1~0.3。
  8. 根据权利要求5所述的显示基板,其中,所述第二侧边位于所述第一侧边远离对应所述第一电极在所述衬底基板的正投影的一侧,所述第四侧边位于所述第三侧边远离对应所述第一电极在所述衬底基板的正投影的一侧;
    所述第二侧边的任一法线与所述第二侧边相交于第五节点且与所述第三侧边相交第六节点,所述第五节点与所述第六节点的距离为d3;
    其中,d3/D为0.08~0.20。
  9. 根据权利要求5所述的显示基板,其中,所述第二阻挡结构包括平行于所述衬底基板的第一结构层和第二结构层,所述第一结构层位于所述第二结构层远离所述衬底基板一侧的任意位置,所述第一结构层在所述衬底基板的正投影位于所述第二结构层在所述衬底基板的正投影内;
    所述第一阻挡结构包括平行于所述衬底基板的第三结构层和第四结构层,所述第三结构层位于所述第四结构层远离所述衬底基板的任意位置,所述第三结构层在所述衬底基板的正投影位于所述第四结构层在所述衬底基板的正投影内。
  10. 根据权利要求9所述的显示基板,其中,所述第一结构层与垂直于所述衬底基板的第一切平面有且仅有第一交点,所述第二结构层与垂直于所述衬底基板的第二切平面有且仅有第二交点,所述第一切平面平行于所述第二切平面且所述第一切平面和所述第二切平面均位于所述 第一结构层在所述衬底基板的正投影的中心的同一侧,连接所述第一交点与所述第二交点的线段与所述衬底基板之间具有第一夹角,所述第一夹角大于等于20°且小于等于60°。
  11. 根据权利要求5所述的显示基板,其中,还包括:
    多个辅助电极,与所述多个第二阻挡结构对应设置,所述辅助电极覆盖对应所述第二阻挡结构。
  12. 根据权利要求11所述的显示基板,其中,所述辅助电极的厚度为
  13. 根据权利要求5所述的显示基板,其中,所述第二阻挡结构的材料为树脂材料,且所述树脂材料的粘度为20~40cps。
  14. 根据权利要求5所述的显示基板,其中,任意相邻的两个第二阻挡结构在衬底基板的正投影的中心距小于等于10μm。
  15. 根据权利要求1-14任一项所述的显示基板,其中,还包括:
    多个垫层,与多个所述第一电极对应设置,所述垫层位于所述第一电极与所述衬底基板之间;
    其中,所述第一阻挡结构与所述第一电极均位于所述垫层背离所述衬底基板一侧的表面上,所述第一高度和所述第二高度均包括所述垫层在所述衬底基板的厚度方向上的厚度;或者,
    所述垫层位于对应所述第一阻挡结构形成的所述第一区域内,所述第二高度包括所述垫层在所述衬底基板的厚度方向上的厚度,且所述第一高度不包括所述垫层在所述衬底基板的厚度方向上的厚度。
  16. 一种显示面板,其中,包括:
    权利要求1-15任一项所述的显示基板;
    发光层,包括多个发光结构,所述多个发光结构与所述多个第一电极一一对应,且所述发光结构覆盖对应所述第一电极;
    第二电极层,覆盖所述发光层和所述多个第一阻挡结构,所述第二电极层位于所述第二阻挡结构内的部分延伸至所述第二阻挡结构处且连接所述辅助电极。
  17. 根据权利要求16所述的显示面板,其中,还包括:
    第一有机层,位于所述第一电极层和所述发光层之间,所述第一有 机层包括与所述多个第一电极一一对应的第一有机结构,所述第一有机结构覆盖对应所述第一电极;
    第二有机层,位于所述发光层和所述第二电极层之间,所述第二有机层包括与所述多个第一电极一一对应的第二有机结构,所述第二有机结构覆盖对应所述发光结构;
    其中,所述发光层、所述第一有机层、所述第二有机层中的至少一个通过喷墨工艺形成。
  18. 一种显示基板的制备方法,其中,用于制备权利要求1-15任一项所述的显示基板,所述方法包括:
    提供一衬底基板;
    在所述衬底基板的一侧形成第一电极层,其中,所述第一电极层包括多个第一电极;
    在所述衬底基板上形成多个第一阻挡结构,所述多个第一阻挡结构与所述多个第一电极一一对应,且所述第一电极位于所述第一阻挡结构围成的第一区域内,所述第一阻挡结构在所述衬底基板的厚度方向上具有第一高度,所述第一电极在所述衬底基板的厚度方向上具有第二高度,所述第一高度大于所述第二高度,且所述第一阻挡结构背离所述衬底基板的一侧表面具有分隔槽。
  19. 一种显示基板的制备方法,其中,用于制备权利要求5所述的显示基板,所述方法包括:
    提供一衬底基板;
    在所述衬底基板的一侧形成第一电极层,其中,所述第一电极层包括多个第一电极;
    在所述衬底基板上形成多个第一阻挡结构,所述多个第一阻挡结构与所述多个第一电极一一对应,且所述第一电极位于所述第一阻挡结构围成的第一区域内,所述第一阻挡结构在所述衬底基板的厚度方向上具有第一高度,所述第一电极在所述衬底基板的厚度方向上具有第二高度,所述第一高度大于所述第二高度,且所述第一阻挡结构背离所述衬底基板的一侧表面具有分隔槽;
    在所述衬底基板上形成多个第二阻挡结构,其中,所述多个第二阻 挡结构与所述多个第一阻挡结构一一对应设置,且所述第一阻挡结构位于对应所述第二阻挡结构围成的第二区域内,所述第一阻挡结构与对应所述第二阻挡结构之间具有间隙,所述第二阻挡结构在所述衬底基板的厚度方向上具有第三高度,且所述第三高度大于所述第一高度。
PCT/CN2023/114195 2022-09-14 2023-08-22 显示基板及其制备方法、显示面板 WO2024055821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211115722.2 2022-09-14
CN202211115722.2A CN115360315A (zh) 2022-09-14 2022-09-14 显示基板及其制备方法、显示面板

Publications (2)

Publication Number Publication Date
WO2024055821A1 WO2024055821A1 (zh) 2024-03-21
WO2024055821A9 true WO2024055821A9 (zh) 2024-05-16

Family

ID=84006268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114195 WO2024055821A1 (zh) 2022-09-14 2023-08-22 显示基板及其制备方法、显示面板

Country Status (2)

Country Link
CN (1) CN115360315A (zh)
WO (1) WO2024055821A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115360315A (zh) * 2022-09-14 2022-11-18 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102387145B1 (ko) * 2015-05-22 2022-04-15 삼성디스플레이 주식회사 발광 표시 장치의 제조 방법 및 이를 이용한 발광 표시 장치
CN109887961A (zh) * 2019-02-15 2019-06-14 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板和显示装置
CN110544713B (zh) * 2019-09-09 2022-08-26 合肥京东方卓印科技有限公司 显示面板及其制作方法
CN112331697B (zh) * 2019-12-30 2022-03-18 广东聚华印刷显示技术有限公司 显示面板及其制备方法
CN111403442B (zh) * 2020-03-23 2024-03-05 苏州星烁纳米科技有限公司 一种显示基板及其制备方法、显示装置
CN111524947B (zh) * 2020-04-28 2023-02-03 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN113540188B (zh) * 2021-06-29 2024-05-14 上海天马微电子有限公司 显示基板和显示面板
CN115360315A (zh) * 2022-09-14 2022-11-18 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板

Also Published As

Publication number Publication date
WO2024055821A1 (zh) 2024-03-21
CN115360315A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
US10886492B2 (en) Array substrate and display panel comprising fracture opening for blocking carrier transportation between adjacent sub-pixels
US11545529B2 (en) Organic light emitting diode (OLED) substrate and manufacturing method thereof, display device
US10504973B2 (en) OLED display panel and manufacturing method and display device thereof
CN110931653B (zh) 显示面板及其制备方法
US9373814B2 (en) Organic light-emitting diode (OLED) display panel, pixel define layer (PDL) and preparation method thereof
US7733010B2 (en) Organic electroluminescent device and its method of manufacture
WO2016145965A1 (zh) 像素界定层及其制作方法以及相应的发光显示器
WO2016101452A1 (zh) 显示基板及其制作方法、显示装置
CN106449717B (zh) 有机电致发光器件基板、显示装置及制造方法
WO2018232806A1 (zh) Oled显示面板及其制备方法、显示装置
US20180108839A1 (en) Groove structure for printing coating process and manufacturing method thereof
CN107331681B (zh) 一种显示基板及其制作方法、显示器件
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
CN109524437B (zh) Oled结构及其制备方法、显示面板以及电子设备
WO2024055821A9 (zh) 显示基板及其制备方法、显示面板
CN112670332A (zh) 像素单元及其制作方法和显示装置
WO2021073194A1 (zh) 掩膜版、掩膜版的制作方法和显示面板的制作方法
US9748525B2 (en) Light-emitting device having reduced in-plane variation
US11374072B2 (en) Display panel with quantom dot and manufacturing method thereof
KR20060061880A (ko) 유기전계발광표시장치 및 그 제조방법
WO2020224134A1 (zh) 被动式电致有机发光二极管的基板、制造方法和剥离板
CN101000948A (zh) 像素结构及包括该像素结构的有机发光器件
WO2021072924A1 (zh) 显示面板及其制备方法
CN110690352A (zh) 显示面板及其制备方法
US20230106276A1 (en) Organic light-emitting diode substrate and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864554

Country of ref document: EP

Kind code of ref document: A1