WO2024055556A1 - 一种柔性手术器械及其柔性器械 - Google Patents

一种柔性手术器械及其柔性器械 Download PDF

Info

Publication number
WO2024055556A1
WO2024055556A1 PCT/CN2023/083643 CN2023083643W WO2024055556A1 WO 2024055556 A1 WO2024055556 A1 WO 2024055556A1 CN 2023083643 W CN2023083643 W CN 2023083643W WO 2024055556 A1 WO2024055556 A1 WO 2024055556A1
Authority
WO
WIPO (PCT)
Prior art keywords
instrument
flexible
terminal
drive
driving
Prior art date
Application number
PCT/CN2023/083643
Other languages
English (en)
French (fr)
Inventor
江维
武文杰
卢天伟
Original Assignee
北京云力境安科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京云力境安科技有限公司 filed Critical 北京云力境安科技有限公司
Publication of WO2024055556A1 publication Critical patent/WO2024055556A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00305Constructional details of the flexible means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/0034Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means adapted to be inserted through a working channel of an endoscope

Definitions

  • the present application relates to the technical field of medical devices, and specifically to a flexible surgical instrument and its flexible instruments.
  • Diseases of natural orifices such as the digestive system, urinary system, and respiratory system are common major chronic diseases.
  • Diseases such as gastric cancer, esophageal cancer, colorectal cancer, bladder cancer, and lung cancer have high morbidity and mortality rates and seriously endanger human health.
  • Diagnosis and treatment using flexible endoscopy with related surgical instruments has become a mainstream treatment method, which has the characteristics of small trauma, small bleeding volume, and low complication rate.
  • the purpose of this application is to provide a flexible surgical instrument, a flexible instrument and an instrument delivery unit thereof, which can achieve effective storage of the actuator unit body of the flexible instrument through optimized configuration, and have a reasonable structural design on the basis of meeting the functional requirements of avoiding cross-contamination. reliable.
  • the instrument delivery unit provided by the embodiment of the present application is used for conveying and storing an actuator unit with a flexible body, and includes a housing and an instrument storage.
  • the housing has an internal accommodation space and its The side wall is provided with an instrument outlet, and at least part of the instrument storage is built into the housing and can rotate and move axially relative to the housing; the outer peripheral surface of the instrument storage is provided with a spiral receiving groove for winding Flexible body that houses the actuator unit.
  • the housing is in a cylindrical shape with one end open, one end of the instrument storage is placed in the housing, and the other end is configured with a transport drive interface adapted to the instrument drive device.
  • a protective tube is fixedly provided on the outer surface of the outer periphery of the instrument outlet, and the outer shell includes a fixing portion.
  • An embodiment of the present application also provides a flexible instrument, which includes the instrument delivery unit as described above, and also includes an actuator unit and a transmission unit, wherein the actuator unit includes an actuator and a flexible body, and the flexible body includes an inner and outer
  • the driving wire and the sleeve are nested, and the distal end of the driving wire is equipped with the actuator;
  • the transmission unit is connected to the instrument storage of the instrument delivery unit, and the transmission unit is configured to drive the instrument
  • a transport drive interface adapted to the device is used to drive the instrument storage to rotate and move axially relative to the housing.
  • the transmission unit is also configured with an execution drive interface adapted to the instrument drive device to drive the drive wire of the actuator unit to move. .
  • the transmission unit includes a transmission base plate fixedly connected to the instrument storage, and an execution transmission assembly and a rotation transmission assembly disposed on the transmission base plate; the transport drive interface is located on the transmission base plate.
  • the execution drive interface includes a first execution drive interface and a second execution drive interface, the execution transmission assembly is adapted to the first execution drive interface to push out or retract the drive wire, the rotation transmission assembly and The second executive drive interface is adapted to twist the drive wire.
  • the execution transmission assembly includes a traction member and a first drive shaft.
  • the first drive shaft is inserted into the transmission base plate and can be transmission connected with the instrument driving device through the first execution drive interface.
  • the traction member is connected to the first drive shaft, the proximal end of the drive wire is connected to the traction member, and is configured such that the drive wire can be pushed out or retracted along a predetermined trajectory driven by the traction member , and the driving wire has rotational freedom relative to the pulling member.
  • a first terminal is embedded in the outer peripheral surface of the pulling member, and the first terminal includes a fourth through hole; the driving wire is inserted into the fourth through hole of the first terminal, so The body of the driving wire is provided with two limiting blocks, and they are respectively located at the fourth through-hole of the first terminal. On both ends of the hole, there is a radial gap between the drive wire and the fourth through hole of the first terminal, and the size of each limiting block is larger than the size of the fourth through hole.
  • a first constraining member is fixedly provided on the transmission substrate, and a constraining cavity that can accommodate a driving wire is opened in the first constraining member to drive the driving wire to push out or retract along a predetermined trajectory.
  • the first restraining member and the restraining cavity opened thereon are arc-shaped, and the first restraining member includes a guide segment and a retaining segment connected in sequence, and the guide segment has a connection with the traction member.
  • the arc-shaped outer peripheral surfaces are arranged opposite to the arc-shaped inner walls, and the constraint cavity on the inner wall of the guide section is an open cavity, and the constraint cavity on the holding section is a closed cavity.
  • the execution transmission assembly includes a first drive shaft, a meshing bevel gear set, a first terminal and a screw rod, the driving gear of the bevel gear set is connected to the first drive shaft, and the screw rod Connected to the passive gear of the bevel gear set; one end of the first terminal clamps and fixes the proximal end of the drive wire, and the other end of the first terminal is equipped with a nut adapted to the screw rod.
  • the first terminal drives the driving wire to push out or retract.
  • the rotary transmission assembly includes a rotary shaft, a second terminal, a bevel gear set and a second drive shaft.
  • the second drive shaft is inserted into the transmission base plate and can be driven by the second execution
  • the driving interface is transmission connected with the instrument driving device; the driving wheel of the bevel gear set is connected with the second drive shaft, the rotating shaft is connected with the driven wheel of the bevel gear set; the drive wire is connected with the second drive shaft.
  • the terminal is fixed, the second terminal is arranged on the rotating shaft, and is configured such that the second terminal can rotate driven by the rotating shaft, and the second terminal has an edge along the rotating shaft relative to the rotating shaft. The degree of freedom of sliding in the pulling direction of the drive wire.
  • the second terminal is embedded in the middle mounting hole of the rotating shaft, and the two terminals have a specifically matching rectangular cross-section.
  • the driving wire can extend to the first constraining member through the mounting hole. in the constraint cavity.
  • a second constraint is fixedly provided on the transmission base plate, and one end of the second constraint is opposite to the retaining section end of the first constraint along the axial direction of the rotation axis, and Axial ends on both sides of the rotation shaft are pivotally connected to the second constraining member and the first constraining member respectively.
  • a third through hole is formed on the second restraining member, and the diameter of the third through hole of the second restraining member is adapted to the size of the sleeve of the actuator unit to fix the sleeve.
  • the instrument storage device is provided with a through opening, and the flexible body of the actuator unit extends through the through opening of the instrument storage device to transition to the spiral receiving groove on its outer surface.
  • the present invention also provides a flexible surgical instrument, which includes a flexible instrument and an instrument driving device capable of outputting driving force to the flexible instrument.
  • the flexible instrument adopts the aforementioned flexible instrument.
  • the present invention proposes a storage and transportation implementation solution for an actuator unit with a flexible body.
  • the housing of the instrument delivery unit has an internal accommodation space and an instrument outlet is provided on its side wall.
  • the outer peripheral surface of the instrument storage is provided with a spiral accommodation groove to wrap around and accommodate the flexible body of the actuator unit, and the instrument storage can be opposite to each other. Rotation and axial movement of the housing.
  • the flexible body wrapped around the spiral receiving groove can be continuously transported through the instrument outlet.
  • the elastic deformation energy based on the spiral winding deformation reserve is released, which can effectively overcome the resistance formed when entering the flexible endoscope and assist in providing good delivery capabilities.
  • the housing is cylindrical with one end open, one end of the instrument storage is placed in the housing, and the other end is equipped with a transport drive interface for adapting to the instrument drive device.
  • the driving force is transmitted through the conveying drive interface, and automatic conveying or storage operations can be realized according to different application scenarios.
  • the flexible instrument provided includes a transmission unit to drive the corresponding operation of the actuator through the driving wire of the actuator unit.
  • the transmission unit is connected to the instrument storage and is configured to be useful.
  • the pulling and twisting operations of the driving wire can be realized through an execution driving interface adapted to the instrument driving device.
  • the execution transmission assembly includes a traction member and a first drive shaft, and the first drive shaft insert can transmit with the instrument drive device through the first execution drive interface.
  • Connection; the traction piece is connected to the first driving shaft, the proximal end of the driving wire is connected to the traction piece, and is configured such that the driving wire can be pushed out or retracted along a predetermined trajectory driven by the traction piece, and the driving wire has a Rotational freedom.
  • the rotation transmission assembly includes a rotation shaft, a second terminal, a bevel gear set and a second drive shaft.
  • the second drive shaft can be drive connected with the instrument drive device through the second execution drive interface; the driving wheel of the bevel gear set is connected with the third drive shaft.
  • the two drive shafts are connected, and the rotating shaft is connected to the driven wheel of the bevel gear set; the driving wire is fixed to the second terminal, and the second terminal is arranged on the rotating shaft and is configured such that the second terminal can rotate driven by the rotating shaft, and
  • the second terminal has a degree of freedom to slide in the pulling direction of the drive wire relative to the rotation axis.
  • Figure 1 is a schematic diagram of an application state of the flexible instrument according to the embodiment of the present application.
  • Figure 2 is a schematic diagram of the overall structure of the flexible device according to the embodiment of the present application.
  • Figure 3 is an exploded view of the assembly of the flexible device shown in Figure 2;
  • Figure 4 is a schematic diagram of a partially cutaway view of the flexible instrument shown in Figure 2;
  • Figure 5 is a schematic diagram of an actuator unit provided by an embodiment of the present application.
  • Figure 6 is a cross-sectional view along line A-A of Figure 2;
  • Figure 7 is a schematic diagram of the overall structure of the transmission unit provided by the embodiment of the present application.
  • Figure 8 shows a schematic diagram of the assembly relationship between the transmission unit and the instrument storage according to the embodiment of the present application
  • Figure 9 is a schematic diagram of the assembly relationship between the transmission unit and the instrument storage from another perspective
  • Figure 10 is a schematic diagram of the assembly relationship of the execution transmission assembly according to the embodiment of the present application.
  • FIG 11 is an enlarged schematic diagram of part I of Figure 6;
  • FIG12 is a schematic diagram of another execution transmission assembly provided in an embodiment of the present application.
  • Figure 13 is a schematic diagram of the assembly relationship of the rotation transmission assembly according to the embodiment of the present application.
  • Figure 14 is an enlarged schematic diagram of Part II of Figure 6;
  • Figure 15 is a schematic diagram of the power supply and signal source introduction paths in the embodiment of the present application.
  • Figure 16 is a schematic diagram of the internal structure of the instrument driving device according to the embodiment of the present application.
  • Figure 17 is a schematic diagram of the connection mechanism on the instrument driving device side shown in Figure 16
  • Figure 18 is a schematic diagram of the assembly relationship between the drive substrate and the instrument storage according to the embodiment of the present application.
  • Figure 19 is a partial cross-sectional view along line B-B of Figure 17;
  • Figure 20 is a schematic diagram of the assembly relationship between the first active transmission plate and the second active transmission plate in the embodiment of the present application;
  • Figure 21 is a schematic diagram of the assembly relationship between the transmission substrate and the transmission unit in the embodiment of the present application.
  • Figure 22 is a schematic diagram of the transmission relationship of the first driving member in the embodiment of the present application.
  • Fig. 23 is an axial cross-sectional view of Fig. 16.
  • Figure 1 is a schematic diagram of the overall structure of the flexible operating instrument according to the embodiment of the present application.
  • the flexible surgical instrument includes a flexible instrument 10 and an instrument driving device 20.
  • the flexible instrument 10 is equipped with an actuator unit 12 for diagnosis and auxiliary diagnosis and treatment.
  • the instrument driving device 20 can provide driving force to the flexible instrument 10 to realize the flexible instrument. The conveying operation and the rotation or opening and closing of the actuator.
  • FIG. 2 is a schematic diagram of the flexible device according to an embodiment of the present application
  • FIG. 3 is an exploded assembly view of the flexible device 10 shown in FIG. 2 .
  • the flexible instrument 10 includes an instrument delivery unit 11, an actuator unit 12 built in the instrument delivery unit 11, and a transmission unit 13 for transmitting the driving force of the movement of the actuator.
  • the instrument transport unit 11 includes a housing 111 and an instrument storage 112. Driven by the transmission unit 13, the instrument storage 112 can rotate relative to the housing 111; in this embodiment, the housing 111 is cylindrical with one end open. And part of the instrument storage 112 is placed in the housing 111. After the assembly is completed, the housing 111 remains in a relatively fixed state. In other implementations, the instrument reservoir may be entirely housed within the housing (not shown).
  • the flexible body (driving wire 121 and sleeve 123) of the actuator unit 12 is wrapped around the outer periphery of the instrument storage 112, and can be extended through the instrument outlet 1111 opened on the side wall of the housing 111; here, a protective guard is provided on the outside of the instrument outlet 1111. Tube 113, this protective tube is fixed on the housing 111, so that the actuator unit 12 extending out of the housing 111 protects a stable posture.
  • the instrument storage 112 rotates, execution The flexible body of the actuator unit 12 is continuously transported through the instrument outlet 1111; similarly, when the instrument storage 112 moves in reverse, the flexible body can be retracted into the housing and wrapped around the instrument storage 112 to realize the retraction and retraction of the actuator unit 12.
  • Storage Specifically, the outer shell 111 and the instrument storage 112 in the non-use state form a relatively closed space for storing the flexible instrument body.
  • the outer peripheral surface of the instrument storage 112 can be provided with a spiral receiving groove 1121.
  • Figure 4 is a partial cross-section of the flexible instrument shown in Figure 2 Schematic diagram of the formation. The flexible body of the actuator unit 12 that is retracted into the housing is placed in the spiral receiving groove 1121 of the instrument storage 112 to avoid messy or knotted wires.
  • the instrument storage 112 can also move axially relative to the housing 111. That is to say, when the instrument storage 112 rotates, it moves synchronously in the axial direction. In this way, the part where the flexible body of the actuator unit 12 breaks away from the spiral receiving groove 1121 can be kept roughly aligned with the instrument outlet 1111 in two dimensions, and the retracting and retracting operation can be performed smoothly. Smooth execution.
  • the actuator unit 12 can be selected according to specific applications, such as but not limited to clamp-type, electrocoagulation-type, basket-type, injection-type, guidance-type, sensor-type flexible instruments, etc.
  • the clamp-type flexible instrument includes a tissue clamping device with a degree of freedom of clamping and a hemostatic device with a degree of rotational freedom
  • the electrocoagulation and resection type flexible instrument includes a clamping degree of freedom and a degree of freedom for tissue electrocution and electrocoagulation.
  • basket type flexible instruments include a push degree of freedom for pushing out and retracting the basket
  • injection type flexible instruments include a pushing degree of freedom for pushing out and retracting needles
  • guidance type For coaxial instrument guidance, there is no degree of freedom
  • sensor-type flexible instruments can include image sensor instruments, position sensor instruments or shape sensor instruments, etc.
  • FIG. 5 is a schematic diagram of an actuator unit 12 provided in an embodiment of the present application.
  • the actuator 122 located at the distal end can be moved, such as but not limited to opening and closing the actuator and pushing the actuator; similarly, by twisting the driving wire 121, the actuator 122 located at the distal end can also be moved. the rotational movement of the actuator 122.
  • proximal end and distal end used in this article are defined from the perspective of the operator of the surgical instrument. That is, the end of the drive wire 121 that is close to the operator is the “proximal end”. The other end closest to the patient should be called the “distal end.” It should be understood that the use of the above directional words is only used to clearly describe the technical solution, and does not constitute a substantial limitation on the flexible surgical instrument claimed in this application.
  • FIG. 1 is a cross-sectional view along line A-A in Figure 2
  • Figure 7 is a schematic diagram of the overall structure of the transmission unit provided by the embodiment of the present application.
  • the transmission unit 13 includes a transmission base plate 133.
  • the execution transmission assembly 131 and the rotation transmission assembly 132 are arranged on the transmission base plate 133, and can be assembled and fixed with the instrument storage 112 of the instrument delivery unit 11 through the transmission base plate 133.
  • Figures 8 and 9 together. The two figures respectively show the assembly relationship between the transmission unit and the instrument storage from different perspectives. The overall structure is relatively compact and the assembly process is good.
  • the execution transmission assembly 131 includes a first terminal 1312 , a traction member 1313 and a first drive shaft 1311 .
  • the traction member 1313 is connected to the first drive shaft 1311.
  • the first drive shaft 1311 is inserted and installed on the transmission base plate 133 to rotate under the driving force of the instrument driving device 20 and drive the traction member 1313 to swing around its rotation center. .
  • the first terminal 1312 is fixed on the pulling member 1313 and can follow when the pulling member 1313 rotates.
  • the proximal end of the driving wire 121 is connected to the first terminal 1312 and is configured such that the driving wire 121 can be pushed out or retracted along a predetermined trajectory driven by the first terminal 1312, and the driving wire 121 can rotate relative to the first terminal 1312. It can be understood that within the swing range of the pulling member 1313, the pulling stroke requirement of the first terminal 1312 needs to be met, that is, the push-out or retract displacement required by the actuator 122 located at the distal end.
  • FIG. 10 is a schematic diagram of the assembly relationship of the execution transmission assembly according to the embodiment of the present application
  • FIG. 11 is an enlarged schematic diagram of part I of FIG. 6 .
  • the first terminal 1312 is embedded in the traction member 1313.
  • the traction member 1313 has an installation groove 13131 adapted to the first terminal 1312 on its outer peripheral surface, and the outer peripheral surface is an arc surface.
  • the outer peripheral surface of the traction member 1313 is not limited to that shown in the figure.
  • the arc shape shown in; at the same time, the first terminal can also be completely disposed inside the pulling piece, instead of being limited to being embedded on the outer peripheral surface of the pulling piece 1313 (not shown in the figure).
  • the driving wire 121 is inserted into the fourth through hole 13121 of the first terminal 1312, and two limiting blocks 1211 are provided on the body of the driving wire 121, respectively located at both ends of the fourth through hole 13121.
  • the size of the limiting block 1211 is larger than the size of the fourth through hole 13121.
  • the driving wire 121 has a degree of rotational freedom relative to the first terminal.
  • the driving wire rotates driven by the rotation transmission assembly 132 , it can rotate relative to the fourth through hole 13121 and has no operational interference with the first terminal side.
  • the first terminal and the traction part can be of an integrated structure, that is, the functional structure of the first terminal can be integrated on the traction part; in comparison, the two adopt a split structure as shown in the figure. It has better processing technology.
  • the transmission base plate 133 serves as a basic component for transmission connection with the driving side, and a first restraining member 1315 is fixed thereon.
  • the first restraining member 1315 is provided with a restraining cavity 13151, and the driving wire 121 is placed in the restraining cavity 13151. Driven by the first terminal 1312, the driving wire 121 can be pushed out or retracted on the predetermined trajectory constructed by the constraint cavity 13151.
  • the first restraining member 1315 and the restraining cavity 13151 formed thereon are generally arc-shaped.
  • the first restraining member 1315 includes a guide segment C and a retaining segment D that are connected in sequence.
  • the guide segment C has an arc-shaped inner wall that matches the arc-shaped outer peripheral surface of the traction member 1313.
  • the constraint cavity 13151 on the inner wall of the guide section C is an open cavity, and the constraint cavity 13151 on the holding section D is a closed cavity.
  • the displacement guide of the pulling member 1313 can be established through the arc-shaped inner wall, and at the same time, the guide The open lumen on section C and the closed lumen on retaining section D jointly establish a predetermined trajectory for guiding the driving wire 121 .
  • the first terminal 1312a, the meshing bevel gear set 1311a and the screw rod 1313a can also be used to push out or retract the driving wire 121.
  • Figure 12 is a schematic diagram of another execution transmission assembly provided by an embodiment of the present application. In order to clearly illustrate the differences and connections with the embodiment described in FIG. 6 , the same functional components or structures are illustrated with the same symbols.
  • the driving gear of the bevel gear set 1311a can be driven by the first drive shaft 1311 to drive the driven gear to rotate, and the screw rod 1313a and the driven gear rotate coaxially; at the same time, one end of the first terminal 1312a is clamped
  • the proximal end of the driving wire 121 is fixed, and the other end of the first terminal 1312a is equipped with a nut (not shown in the figure) adapted to the screw rod 1313a.
  • the nut is fixed on the first terminal 1312a and can be attached to the screw rod 1313a.
  • the rotation moves along its axial direction, thereby driving the driving wire 121 through the first terminal 1312a to push out or retract.
  • the embodiment depicted in Figure 12 can also be configured to construct a constrained cavity for a predetermined trajectory.
  • the rotation transmission assembly 132 in this embodiment includes a rotation shaft 1321 , a second terminal 1322 , a bevel gear set 1323 and a second drive shaft 1324 .
  • the driving wheel of the bevel gear set 1323 is connected to the second drive shaft 1324.
  • the second drive shaft 1324 is inserted and installed on the transmission base plate 133 to rotate under the driving force of the instrument drive device 20 and passes through the bevel gear set 1323.
  • the rotating shaft 1321 is driven to rotate around its rotation center.
  • the second terminal 1322 is provided on the rotating shaft 1321.
  • the driving wire 121 is fixed by the second terminal 1322 and can follow the rotation of the rotating shaft 1321. And it is configured such that the second terminal 1322 can rotate driven by the rotating shaft 1321, and the second terminal 1322 can slide relative to the rotating shaft 1321 along the pulling direction of the driving wire 121.
  • the sliding stroke of the second terminal 1322 also needs to meet the pulling stroke requirement of the first terminal 1312.
  • Figure 13 is a schematic diagram of the assembly relationship of the rotation transmission assembly according to the embodiment of the present application. This figure is a view formed by radial sectioning from the position of the second terminal 1322.
  • Figure 14 is an enlarged schematic diagram of Part II of Figure 6 .
  • the second terminal 1322 is embedded in the rotating shaft 1321. Specifically, a mounting hole 13211 is opened in the middle of the rotating shaft 1321, and the driving wire 121 can extend into the restraining cavity of the first restraining member through the mounting hole 13211.
  • the second terminal 1322 fixedly connected to the driving wire 121 is inserted into the mounting hole 13211, and both have matching rectangular cross-sections. In this way, when the rotating shaft 1321 rotates, the second terminal 1322 can rotate synchronously to drive the driving wire 121 to twist; at the same time, the second terminal 1322 has sliding freedom relative to the rotating shaft 1321, that is, the second terminal 1322 can slide relative to the rotating shaft 1321. 1321 moves axially. When the driving wire is pulled by the execution transmission assembly 131, it can rotate relative to the mounting hole 13211 without interfering with the rotation axis side.
  • the cross-sectional form of the second terminal 1322 and the mounting hole 13211 can also adopt other structures, such as, but not limited to, other polygons or shapes with circumferential limiting planes, as long as the second terminal can be installed.
  • the functional requirements of sliding in the hole and being able to rotate synchronously with the rotating axis are within the scope of protection requested by this application.
  • a second restraining member 1325 is fixedly provided on the transmission base plate 133. As shown in FIGS. 6 and 7, along the axial direction of the rotation shaft 1321, one end of the second restraining member 1325 is connected to the first restraining member 1315 to maintain section D. The ends are arranged oppositely, and the second restraining member 1325 and the first restraining member 1315 respectively provide shaft end support, so that the shaft ends on both sides of the rotating shaft 1321 can obtain a reliable pivot adaptation relationship to meet the functional requirements of relative rotation.
  • the second restraining member 1325 is provided with a third through hole 13251.
  • the instrument storage 112 of the instrument delivery unit 11 is provided with a passage opening 1122, and the passage opening 1122 is opened obliquely so that the actuator unit 12
  • the flexible body extends and transitions into the spiral receiving groove 1121 on its outer surface.
  • the diameter of the third through hole 13251 can be adapted to the size of the flexible body sleeve 123 of the actuator unit 12 to reliably fix the pipe end of the sleeve 123 .
  • the flexible instrument 10 provided in this embodiment also includes a docking unit 14 for connecting with external devices, such as, but not limited to, power and signal source connections and waterway connections.
  • a docking unit 14 for connecting with external devices, such as, but not limited to, power and signal source connections and waterway connections.
  • the top of the housing 111 is provided with an electrical interface 141 and a water interface 142 that communicate with the interior.
  • the housing 111 is fixedly provided with an axially extending guide tube 15 .
  • the electrical interface 141 can introduce power and signal sources into the instrument, and the water interface 142 can introduce external water sources into the instrument, enter the actuator unit 12 through the guide tube 15 in the middle of the housing 111, and then be connected to the remote actuator.
  • Figure 15 is a schematic diagram of the introduction path of power supply and signal source.
  • the first restraining member 1315 is provided with a first internal channel 13152, and the first internal channel 13152 is connected with the mounting hole 13211 of the rotating shaft.
  • the cable introduced from the electrical interface 141 goes down through the guide tube, enters the mounting hole 13211 of the rotating shaft through the first internal channel 13152 of the first restraining member 1315, and is connected to the remote execution through the sleeve 123 of the actuator unit 12.
  • device For example, but not limited to, it is used to realize the power supply of the remote actuator, and the interactive transmission of signals with the remote actuator.
  • the second restraining member 1325 is also provided with a second internal channel 13252, and the second internal channel 13252 is connected with the third through hole 13251.
  • the water pipe connection introduced by the water interface 142 can also be passed through the guide pipe Descending, enters the third through hole 13251 through the second internal channel 13252 of the second restraining member 1325, and is connected to the actuator located at the distal end through the sleeve 123 of the actuator unit 12. For example, but not limited to, it is used to realize the perfusion of flushing liquid, etc.
  • a detachable connection mechanism is provided between the flexible instrument 10 and the instrument driving device 20, specifically including an instrument storage 112 and a transmission unit 13 (execution transmission assembly 131, rotation transmission assembly 132)
  • the detachable connection with the instrument driving device 20 satisfies the functional requirement of transmitting corresponding driving force on the basis of rapid assembly operation.
  • FIG. 16 is a schematic diagram of the internal structure of the instrument driving device 20 according to the embodiment of the present application
  • FIG. 17 is a schematic diagram of the connection mechanism on the side of the instrument driving device shown in FIG. 16 .
  • an interface component 24 for outputting power is disposed on the top of the instrument driving device 20 .
  • the driving base plate 241 serves as an interface connection for outputting the driving force of the first driving component 21 and is used to transmit power to the instrument storage 112 ;
  • the first active transmission plate 242 serves as an interface connector for outputting the driving force of the second driving component 22, that is, the first execution drive interface, to transmit power to the first driving shaft 1311 for pulling the driving wire;
  • the transmission plate 243 serves as an interface connection for outputting the driving force of the third driving component 23, that is, the second execution driving interface, to transmit power to the second driving shaft 1324 for twisting the driving wire.
  • the execution drive interface on the instrument side it can be the first and second drive shafts, or it can be the first and second passive transmission disks connected to the corresponding drive shafts as described below. In the specific implementation, it is determined according to the overall design requirements of the product. From the perspective of driving force transmission, as long as reliable power transmission can be achieved, it is within the scope of protection claimed by this application.
  • FIG. 18 shows a schematic diagram of the assembly relationship between the driving substrate and the instrument storage 112 .
  • the driving base plate 241 is arranged opposite to the transmission base plate 133.
  • the driving base plate 241 is provided with a buckle 244, and the transmission base plate 133 is provided with a corresponding slot 1331. After assembly, the buckle 244 is placed in the slot 1331 to form a circumferential rotation limit.
  • the card slot 1331 serves as a transmission drive interface for the transmission unit and the instrument drive device to establish a transmission connection relationship.
  • the slot 1331 for the buckle 244 to be adapted to establish a circumferential rotation limiting pair is not limited to being disposed on the transmission base plate.
  • the card slot can also be configured on the instrument storage, or the adapter card slot can be jointly formed on the transmission base plate and the instrument storage.
  • the matching buckles 244 and the slots 1331 are arranged in two groups, and are arranged symmetrically, so that the force is relatively balanced. It is understood that in other specific implementations, other complex arrays set at circumferential intervals may also be configured.
  • the buckle 244 can move in the radial direction relative to the driving base plate 241, that is, the buckle 244 can also slide in the buckle groove 1331.
  • the buckle 244 has a hook portion 2441 formed by extending from the body, and the outer end; correspondingly Specifically, a bayonet 1123 adapted to the hook head 2441 is provided on the side wall of the instrument storage 112 . In this way, when the buckle 244 is in the extended working position, the hook head 2441 can be inserted into the bayonet 1123 to limit the instrument storage device 112 from being detached.
  • the instrument storage 112 when the instrument storage 112 is driven to rotate, it can be synchronously driven to extend or retract in the axial direction through the matching buckle 244 and the groove 1331 .
  • the functional requirement of synchronous axial movement can also be achieved through other structural forms.
  • a button 245 is provided on the outside of the buckle 244, and a return spring 246 is provided on the inside of the buckle 244.
  • the return spring 246 can be pre-compressed and disposed between the buckle 244 and the driving base plate 241, so that the buckle 244 Reliably maintains extended working position.
  • Figure 19 is a partial cross-sectional view along line B-B of Figure 17.
  • the operator applies force to the button 245, the buckle 244 slides inward along the slot 1331, the return spring 246 further deforms, and the hook head 2441 comes out of the bayonet 1123, and the flexible instrument 10 can be removed.
  • the top of the extended end of the hook head 2441 has a guide surface 2442, and the guide surface 2442 extends downward.
  • the lower edge of the instrument storage 112 axially presses against the guide surface 2442 of the hook head 2441, and generates a radially inward component force acting on the buckle 244, and the buckle 244 moves inward under this force.
  • the return spring 246 is further deformed under pressure.
  • the return spring 246 releases its elastic deformation energy and pushes the hook.
  • the head 2441 extends into the bayonet 1123 to quickly complete the assembly operation between the two.
  • the return spring can also be implemented in other structural forms, such as, but not limited to, a return member made based on the properties of rubber material, or a return member with an elastic sheet structure.
  • a sleeve 247 is provided on the outer periphery of the driving base plate 241, and the sleeve 247 includes a shielding section 2471 extending axially upward.
  • the driving base plate 241 and the buckle 244 thereon can be built into the cavity formed by the blocking section 2471; at the same time, the blocking section 2471 is provided with two through holes 2472, which are arranged diametrically opposite to the two buttons 245. So that the push rod of the button 245 is fixedly connected to the body of the buckle 244 through the through hole 2472.
  • the operability of the buttons can also be taken into account.
  • the driving base plate 241 is drivingly connected to the first driving component 21 through the sleeve 247 and the connecting sleeve 248 .
  • the driving base plate 241 can also be directly connected to the first driving component 21 in transmission, or can also be connected in transmission to the first driving component 21 through the sleeve 247.
  • an electronic identification component can also be configured between the flexible instrument 10 and the instrument driving device 20 for the system to identify the type of instrument currently connected.
  • the electronic identification component may include a signal generator 161 configured on one side of the flexible instrument and a signal receiver 162 configured on the instrument driving device side.
  • the signal generator 161 may be disposed on the instrument storage side.
  • the outer peripheral surface of the device 112, and accordingly the signal receiver 162 can be disposed on the inner wall of the sleeve 247 (not shown in the figure), using radio frequency signal identification.
  • the installation detection component 17 can be configured on the side of the instrument driving device. As shown in FIGS. 16 and 17 , the installation detection component 17 can be a micro switch and is arranged on the top surface of the buckle 244 . When the flexible instrument is installed on the driving device, the flexible instrument generates a signal by squeezing the micro switch, thereby realizing the installation status detection.
  • the electronic identification components and installation detection components can be in the form of other devices, which can be selected according to actual product design requirements and are not limited to the device types and configuration positions shown in the figure.
  • Figure 20 shows a schematic diagram of the assembly relationship between the first driving transmission plate 242 and the second driving transmission plate 243.
  • Figure 21 further shows Schematic diagram of the assembly relationship between the transmission base plate and the transmission unit.
  • the bottom of the transmission base plate 133 is provided with a first passive transmission disk 134 and a second passive transmission disk 135 .
  • the first passive transmission disk 134 is fixedly connected to the shaft end of the first drive shaft 1311 and is adaptively connected to the first active transmission disk 242;
  • the second passive transmission disk 135 is fixedly connected to the shaft end of the second drive shaft 1324 and is connected to the shaft end of the second drive shaft 1324.
  • the second driving transmission plate 243 is adapted and connected.
  • the driving base plate 241 is provided with a first through hole 2411 and a second through hole 2412, so that the first driving transmission disk 242 and the second driving transmission disk 243 are adapted to the matching passive transmission disk through the two through holes.
  • the second driving component 22 is fixedly installed on the first flange 251, and its output shaft is connected to the first driving transmission plate 242 through the first flange 251.
  • the third driving component 23 is fixedly installed on the second flange 252, and The output shaft is connected to the second driving transmission plate 243 through the second flange 252, and is arranged sequentially along the axial direction as a whole, which can reduce the space occupation in the radial dimension.
  • the detachable connection mechanism of this embodiment further has axial adaptability.
  • the first flange 251 and the second flange 252 can be respectively fixed on the corresponding sliding bracket 253, and the two sliding brackets 253 can respectively be axially displaced relative to the fixed slide rail 254.
  • the sliding bracket 253 and the sliding rail 254 that are adapted to the first flange 251 are shown in FIG. 20 . That is to say, the sliding bracket 253 has a degree of freedom that can be axially displaced relative to the slide rail 254 to adaptively adjust the axial relative position.
  • an elastic return member 255 can be provided at the bottom of each sliding bracket 253 to provide a restoring force to the sliding bracket 253 so that a reliable connection is established between the corresponding active and passive transmission disks.
  • the slide rail 254 is a relatively fixed structural member, and a corresponding fixed connection method can be configured according to the internal space, such as but not limited to being fixedly provided on the connecting sleeve 248 as shown in the figure.
  • the first passive transmission plate 134 has a first recess 1341
  • the second passive transmission plate 135 has a second recess 1351
  • the first active transmission plate 242 has a third recess 1351.
  • the matching outer diameters of the active transmission plate and the passive transmission plate are approximately the same.
  • the recessed portion is formed radially inwardly from the outer peripheral surface of the passive transmission plate, and the convex portion is formed by axially extending from the top surface of the active transmission plate. , after assembly, the convex part on the active transmission plate fits into the concave part on the passive transmission plate. It has the characteristics of compact structure and high connection reliability.
  • the number of matching convex and concave portions on each transmission path can be determined according to the overall design requirements of the product, and is not limited to the two groups shown in the figure.
  • Figure 22 shows a schematic diagram of the transmission relationship of the first driving component.
  • Figure 23 is an axial cross-sectional view of Figure 16. The specific cross-section position passes through the first driving component and the output The centerline of the shaft.
  • the output shaft of the first driving component 21 is coaxially fixed with the screw rod 261, and the screw rod 261 is used as the basic transmission component of the two power transmission paths. As shown in the figure, a driving pulley 263 and a nut 262 are arranged on the screw rod 261 at intervals.
  • the driving pulley 263 is fixedly arranged on the screw rod 261 and transmits the rotational driving force to the driven pulley 264 through the belt.
  • the driven pulley 264 is arranged on the output shaft 265.
  • the driven pulley 264 is fixedly provided on the first sleeve 266, which is pivotally connected to the fixed structure through the bearing 269.
  • the outer surface of the output shaft 265 has an axially arranged key 2651.
  • the inner surface of a sleeve 266 has a keyway 2661 that matches the key. Based on the pulley transmission mechanism, driven by the first sleeve 266, the output shaft 265 can rotate synchronously, and the output shaft 265 and the first sleeve 266 can move axially relative to each other.
  • the nut 262 is threadedly adapted to the screw rod 261 and is connected to the output shaft 265 through the connecting piece 267.
  • the nut 262 is fixedly mounted on one end of the connecting piece 267, and the output shaft 265 is pivotally connected on the other end of the connecting piece 267, with an axial limiter between them.
  • a thrust bearing 2681 is provided at the shaft end of the output shaft 265
  • a bearing fixing seat 268 is fixedly provided on the connecting piece 267
  • the bearing fixing seat 268 and the thrust bearing 2681 are axially limited. Based on the matching relationship between the screw rod and the nut, the output shaft 265 can be driven to reciprocate along the axial direction.
  • the driving force output by the output shaft of the first driving component 21 synchronously drives the output shaft 265 to rotate and move axially through the two transmission paths, and drives the driving substrate 241 to rotate and axially move through the connecting sleeve 248 fixed on the output shaft 265. move.
  • This compound motion uses rotation as the main component of flexible equipment delivery. Movement, axial movement is an auxiliary movement to ensure that the flexible body of the actuator unit 12 and the instrument storage 112 maintain alignment through the opening 1122.
  • the fixed structure for pivotally adapting to the first sleeve 266 and the related structure for keeping the housing 111 relatively fixed can be implemented in different ways.
  • the above-mentioned fixing structure is integrally provided on the cover 27 of the instrument driving device 20 , and the side wall 271 of the cover 27 extends upward to the side of the shell 111 of the flexible instrument 10 .
  • the outer peripheral surface of the housing 111 is provided with a socket 1112, and can be mounted on the side wall 271 through the socket 1112.
  • the housing 111 is fixed on the side wall 271 using threaded fasteners based on different assembly sizes.
  • the socket 1112 as a fixing part of the housing 111 can also be implemented in other forms, such as but not limited to only through threaded fasteners.
  • the fixed plate 272 that is pivotally adapted to the first sleeve 266, as shown in Figures 16 and 23, the fixed plate 272 is fixed on the side wall 271, thereby forming a second sleeve for installing the bearing 269. 273.
  • the second sleeve 273 and the fixed plate 272 may adopt an integrated structure.
  • a guide sleeve 274 can be disposed on the outer periphery of the connecting sleeve 248.
  • the guide sleeve 274 is fixed on the side wall 271, and an axial movement adaptation is formed between the connecting sleeve 248 and the guide sleeve 274.
  • the pair provides guide support within the axial movement range of the connecting sleeve 248 to ensure that the relevant structure has good operating performance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种柔性手术器械及柔性器械(10),该柔性器械(10)的器械输送单元(11)用于具有柔性本体的执行器单元(12)的输送和收纳,包括外壳(111)和器械储存器(112),外壳(111)具有内部容纳空间且其侧壁开设有器械出口(1111),至少部分器械储存器(112)内置于外壳(111)中,且可相对于外壳(111)转动和轴向移动;器械储存器(112)的外周表面设置有螺旋容纳槽(1121),以缠绕收纳执行器单元(12)的柔性本体。通过优化配置能实现柔性器械(10)的执行器单元(12)本体的高效输送收纳,规避污染或交叉感染,结构设计集成可靠,同时有效解决医护协同操作难度大的临床问题。

Description

一种柔性手术器械及其柔性器械
本申请要求于2022年09月14日提交中国专利局的申请号为202211117678.9、发明名称为“一种柔性手术器械、柔性器械及其器械输送单元”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种医疗器械技术领域,具体涉及一种柔性手术器械及其柔性器械。
背景技术
消化***、泌尿***、呼吸***等自然腔道疾病是常见重大慢性病,如胃癌、食管癌、大肠癌、膀胱癌、肺癌等疾病发病率和死亡率高,严重危害人体健康。以软式内镜配合相关手术器械进行诊断和治疗已成为主流治疗手段,具有创伤小、出血量小,并发症发生率低的特点。
众所周知,与常规大切口手术不同的是,经人体腔道介入手术的操作空间常常狭小,通常需要依赖柔性器械进行诊疗操作。现有的柔性器械种类丰富,例如但不限于夹钳类、电凝电切类、注射类、引导类等,能够满足狭窄环境下的不同操作需求。目前的手术器械大多基于人工操作设计,为满足腔道介入需求,现有柔性器械设计为柔性细长类器械,使用过程中需要医护人员配合、操作复杂;另外,柔性细长的器械容易与污物接触,存在污染风险,且在器械收回过程中也会存在交叉感染的可能。
有鉴于此,亟待针对柔性手术器械进行优化设计,以克服上述缺陷。
发明内容
本申请的目的在于提供一种柔性手术器械、柔性器械及其器械输送单元,通过优化配置能够实现柔性器械的执行器单元本体的有效收纳,在满足规避交叉污染的功能要求基础上,结构设计合理可靠。
本申请实施例提供的器械输送单元,用于具有柔性本体的执行器单元的输送和收纳,包括外壳和器械储存器,所述外壳具有内部容纳空间且其 侧壁开设有器械出口,至少部分所述器械储存器内置于所述外壳中,且可相对于所述外壳转动和轴向移动;所述器械储存器的外周表面设置有螺旋容纳槽,以缠绕收纳执行器单元的柔性本体。
可选地,所述外壳为一端敞口的圆筒状,所述器械储存器的一端置于所述外壳中,另一端配置有用于与器械驱动装置适配的输送驱动接口。
可选地,所述器械出口外周的所述外壳表面固定设置有护管,且所述外壳包括固定部。
本申请实施例还提供一种柔性器械,包括如前所述的器械输送单元,还包括执行器单元和传动单元,其中,所述执行器单元包括执行器和柔性本体,所述柔性本体包括内外嵌套设置的驱动丝和套管,所述驱动丝的远端配置有所述执行器;所述传动单元与所述器械输送单元的器械储存器相连,所述传动单元配置有用于与器械驱动装置适配的输送驱动接口,以带动所述器械储存器相对于所述外壳转动和轴向移动。
可选地,所述传动单元还配置有用于与器械驱动装置适配的执行驱动接口,以带动所述执行器单元的驱动丝运动。。
可选地,所述传动单元包括与所述器械储存器固定连接的传动基板,和设置在所述传动基板上的执行传动组件和旋转传动组件;所述输送驱动接口位于在所述传动基板上,所述执行驱动接口包括第一执行驱动接口和第二执行驱动接口,所述执行传动组件与所述第一执行驱动接口适配,以推出或收回所述驱动丝,所述旋转传动组件与所述第二执行驱动接口适配,以扭转所述驱动丝。
可选地,所述执行传动组件包括牵引件和第一驱动轴,所述第一驱动轴插装设置在所述传动基板上,并可通过所述第一执行驱动接口与器械驱动装置传动连接;所述牵引件与第一驱动轴连接,所述驱动丝的近端与所述牵引件相连接,并配置为:所述驱动丝可在所述牵引件的带动下沿预定轨迹推出或收回,且所述驱动丝相对于所述牵引件具有转动自由度。
可选地,所述牵引件的外周表面嵌装设置有第一端子,所述第一端子包括第四贯通孔;所述驱动丝穿装在所述第一端子的第四贯通孔中,所述驱动丝的本体上设置有两个限位块,且分别位于所述第一端子的第四贯通 孔两端侧;所述驱动丝与所述第一端子的第四贯通孔之间具有径向间隙,且每个所述限位块的尺寸大于所述第四贯通孔的尺寸。
可选地,所述传动基板上固定设置有第一约束件,所述第一约束件上开设有可容纳驱动丝的约束腔,以带动所述驱动丝沿预定轨迹推出或收回。
可选地,所述第一约束件及其上开设的约束腔均呈弧状,且所述第一约束件包括顺次连接的导向段和保持段,所述导向段具有与所述牵引件的圆弧状外周表面相对设置的圆弧状内壁,且所述导向段的内壁上的约束腔为开放腔道,所述保持段上的约束腔为封闭腔道。
可选地,所述执行传动组件包括第一驱动轴、相啮合的锥齿轮组、第一端子和丝杆,所述锥齿轮组的主动齿轮与所述第一驱动轴连接,所述丝杆与所述锥齿轮组的被动齿轮连接;所述第一端子的一端夹持固定所述驱动丝的近端,所述第一端子的另一端配置有与所述丝杆适配的螺母,以通过第一端子带动驱动丝实现推出或收回。
可选地,所述旋转传动组件包括旋转轴、第二端子、锥齿轮组和第二驱动轴,所述第二驱动轴插装设置在所述传动基板上,并可通过所述第二执行驱动接口与器械驱动装置传动连接;所述锥齿轮组的主动轮与所述第二驱动轴连接,所述旋转轴与所述锥齿轮组的被动轮连接;所述驱动丝与所述第二端子固定,所述第二端子设置在所述旋转轴上,并配置为:所述第二端子可在所述旋转轴的带动下转动,且所述第二端子相对于所述旋转轴具有沿驱动丝的牵拉方向滑动的自由度。
可选地,所述第二端子嵌装在所述旋转轴的中部安装孔中,且两者具体相适配的矩形截面,所述驱动丝可经由所述安装孔延伸至第一约束件的约束腔中。
可选地,所述传动基板上固定设置有第二约束件,沿所述旋转轴的轴向,所述第二约束件的一端与所述第一约束件的保持段端部相对设置,且所述旋转轴的两侧轴端分别与所述第二约束件和所述第一约束件枢接。
可选地,所述第二约束件上开设有第三贯通孔,所述第二约束件的第三贯通孔的孔径与所述执行器单元的套管尺寸适配,以固定所述套管的管 端;所述器械储存器上开设有通过口,所述执行器单元的柔性本体通过所述器械储存器的通过口延伸过渡至其外表面的螺旋容纳槽中。
本发明还提供一种柔性手术器械,包括柔性器械和可输出驱动力至所述柔性器械的器械驱动装置,所述柔性器械采用如前所述的柔性器械。
与现有技术相比,本发明针对具有柔性本体的执行器单元提出了收纳输送实现方案。具体地,该器械输送单元的外壳具有内部容纳空间且其侧壁开设有器械出口,器械储存器的外周表面设置有螺旋容纳槽,以缠绕收纳执行器单元的柔性本体,且器械储存器可相对于外壳转动和轴向移动。应用本方案,具有下述有益技术效果:
首先,随着器械储存器的转动,缠绕收纳于螺旋容纳槽的柔性本体可通过器械出口连续输送。执行器输送过程中,基于螺旋缠绕形变储备的弹性变形能得以释放,可有效克服进入软式内镜中形成的阻力,辅助提供良好输送能力。
其次,器械储存器反向运动,则柔性本体可收回至外壳内并螺旋缠绕在器械储存器上,一方面,对于自身刚度不高的柔性本体,本方案通过结构约束使得柔性本体有序排布,规避本体之间相互挤压和破坏;同时,执行器单元的收回及收纳不占用径向尺寸空间,结构较为紧凑合理,便于临床使用操作,可进一步解决目前柔性器械单人操作难,存在交叉感染的临床问题。
第三,在本发明的可选方案中,该外壳为一端敞口的圆筒状,器械储存器的一端置于外壳中,另一端配置有用于与器械驱动装置适配的输送驱动接口。这样,通过输送驱动接口传递驱动力,可根据不同应用场景实现自动输送或收纳操作。
第四,在本发明的另一可选方案中,所提供的柔性器械包括传动单元,以通过执行器单元的驱动丝带动执行器相应的操作,该传动单元与器械储存器相连,且配置有用于与器械驱动装置适配的执行驱动接口,例如但不限于,可实现驱动丝的牵拉和扭转操作。
第五,在本发明的又一可选方案中,执行传动组件包括牵引件和第一驱动轴,该第一驱动轴插装可通过第一执行驱动接口与器械驱动装置传动 连接;牵引件与第一驱动轴连接,驱动丝的近端与牵引件相连接,并配置为:驱动丝可在牵引件的带动下沿预定轨迹推出或收回,且驱动丝相对于牵引件具有转动自由度。进一步地,旋转传动组件包括旋转轴、第二端子、锥齿轮组和第二驱动轴,该第二驱动轴可通过第二执行驱动接口与器械驱动装置传动连接;锥齿轮组的主动轮与第二驱动轴连接,旋转轴与锥齿轮组的被动轮连接;驱动丝与第二端子固定,第二端子设置在旋转轴上,并配置为:第二端子可在旋转轴的带动下转动,且第二端子相对于旋转轴具有沿驱动丝的牵拉方向滑动的自由度。如此设置,在执行传动组件的带动下,执行器单元的驱动丝推出或收回时,基于该第二端子与旋转轴之间滑动自由度,旋转传动侧无动作干涉;同样地,在旋转传动组件的带动下,执行器单元的驱动丝扭转时,基于该驱动丝近端与牵引件之间的转动自由度,执行传动侧也无动作干涉。
附图说明
图1为本申请实施方式所述柔性器械的一种应用状态示意图;
图2为本申请实施方式所述柔性器械的整体结构示意图;
图3为图2中所示柔性器械的装配***图;
图4为图2中所示柔性器械局部剖切形成的示意图;
图5为本申请实施方式提供的一种执行器单元的示意图;
图6为图2的A-A剖视图;
图7为本申请实施方式提供的传动单元的整体结构示意图;
图8示出了本申请实施方式所述传动单元与器械储存器的装配关系示意图;
图9为另一视角形成的传动单元与器械储存器的装配关系示意图;
图10为本申请实施方式所述执行传动组件的装配关系示意图;
图11为图6的Ⅰ部放大示意图;
图12为本申请实施方式提供的另一种执行传动组件的示意图;
图13为本申请实施方式所述旋转传动组件的装配关系示意图;
图14为图6的Ⅱ部放大示意图;
图15为本申请实施方式中所述电源和信号源引入路径示意图;
图16为本申请实施方式所述器械驱动装置的内部构成示意图;
图17为图16中所示器械驱动装置侧的连接机构示意图
图18为本申请实施方式所述驱动基板与器械储存器的组装关系示意图;
图19为图17的B-B局部剖视图;
图20为本申请实施方式中所述第一主动传动盘和第二主动传动盘的组装关系示意图;
图21为本申请实施方式中所述传动基板与传动单元的组装关系示意图;
图22为本申请实施方式中所述第一驱动件的传动关系示意图;
图23为图16的轴向剖视图。
图中:
柔性器械10、器械输送单元11、外壳111、器械出口1111、插口1112、
器械储存器112、螺旋容纳槽1121、通过口1122、卡口1123、护管113、执行器单元12、驱动丝121、限位块1211、执行器122、套管123、传动单元13、执行传动组件131、第一驱动轴1311、第一端子1312、第四贯通孔13121、牵引件1313、安装槽13131、第一约束件1315、约束腔13151、第一内部通道13152、锥齿轮组1311a、第一端子1312a、丝杆1313a、旋转传动组件132、旋转轴1321、安装孔13211、第二端子1322、锥齿轮组1323、第二驱动轴1324、第二约束件1325、第三贯通孔13251、第二内部通道13252、传动基板133、卡槽1331、第一被动传动盘134、第一凹部1341、第二被动传动盘135、第二凹部1351、对接单元14、电接口141、水接口142、引导管15、信号发生器161、信号接收器162、安装检测组件17;
器械驱动装置20、第一驱动部件21、第二驱动部件22、第三驱动部
件23、接口部件24、驱动基板241、第一贯通孔2411、第二贯通孔2412、第一主动传动盘242、第一凸部2421、第二主动传动盘243、第二凸部2431、卡扣244、勾头部2441、引导面2442、按钮245、复位弹簧246、套筒247、 遮挡段2471、穿装孔2472、连接套248、第一法兰251、第二法兰252、滑动支架253、滑轨254、复位件255、丝杆261、螺母262、主动带轮263、从动带轮264、输出轴265、键2651、第一轴套266、键槽2661、连接件267、轴承固定座268、推力轴承2681、轴承269、罩壳27、侧壁271、固定盘272、第二轴套273、导向套274。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
不失一般性,本实施方式提供一种柔性手术器械,以有效解决较长细软器械操作复杂,不易收纳用容易污染的问题。请参见图1,该图为本申请实施方式所述柔性操作器械的整体结构示意图。
该柔性手术器械包括柔性器械10和器械驱动装置20,其中,柔性器械10中配置有用于诊疗和辅助诊疗的执行器单元12,器械驱动装置20可提供驱动力至柔性器械10,以实现柔性器械的输送操作和执行器的旋转或开闭等操作。
请一并参见图2和图3,其中,图2为本申请实施方式所述柔性器械的示意图,图3为图2中所示柔性器械10的装配***图。
该柔性器械10包括器械输送单元11、内置于器械输送单元11中的执行器单元12和用于传递执行器运动驱动力的传动单元13。
其中,器械输送单元11包括外壳111和器械储存器112,在传动单元13的带动下,器械储存器112可相对于外壳111转动;本实施方案中,外壳111为一端敞口的圆筒状,且部分器械储存器112置于外壳111中,组装完成后,外壳111保持相对固定的状态。在其他具体实现中,器械储存器也可完全置于外壳中(图中未示出)。
其中,执行器单元12的柔性本体(驱动丝121及套管123)缠绕在器械储存器112外周,且可经由外壳111侧壁开设的器械出口1111伸出;这里,器械出口1111外侧设置有护管113,该护管固定在外壳111上,以便伸出外壳111的执行器单元12保护稳定的姿态。随着器械储存器112的转动,执行 器单元12的柔性本体通过器械出口1111连续输送;同理,器械储存器112反向运动时,则柔性本体可收回至外壳内并缠绕在器械储存器112上,实现执行器单元12的收回及收纳。具体来说,非使用状态下的外壳111和器械储存器112形成相对封闭的空间,用于柔性器械本体的收纳。
为了执行器单元12的柔性本体能够有序缠绕排布,器械储存器112的外周表面可设置有螺旋容纳槽1121,请一并参见图4,该图为图2中所示柔性器械局部剖切形成的示意图。收回至外壳内的执行器单元12的柔性本体,置于器械储存器112的螺旋容纳槽1121内,可避免出线乱或打结的情形。
在传动单元13的带动下,器械储存器112还可相对于外壳111轴向移动。也就是说,器械储存器112转动时同步轴向移动,这样,执行器单元12柔性本体脱离螺旋容纳槽1121的部位,能够在两个维度上保持与器械出口1111大致对中,收放操作得以顺畅执行。
在具体实现中,执行器单元12可以根据具体应用进行选择,例如但不限于,夹钳类、电凝电切类、网篮类、注射类、引导类、传感器类柔性器械等。其中,夹钳类柔性器械包括一个夹持自由度的组织夹取器和夹持旋转自由度的止血器;电凝电切类柔性器械包括一个用于组织电切电凝的夹持自由度和包含一个圈套器械的推拉自由度;网篮类柔性器械包括一个用于网篮的推出和收回的推送自由度;注射类柔性器械包括一个用于针头的推出和收回的推送自由度;引导类用于同轴器械引导,不具备自由度;传感器类柔性器械可以包括图像传感器械、位置传感器械或者形状传感器械等。
基于执行器单元12的上述功能需要,可通过牵拉或扭转执行器单元12的驱动丝121近端实现。请参见图5,该图为本申请实施方式提供的一种执行器单元12的示意图。
具体地,通过牵拉驱动丝121可以使得位于远端的执行器122运动,例如但不限于包括执行器的开合以及执行器的推送;同理,通过扭转驱动丝121也可以实现位于远端的执行器122的旋转运动。
本文中所使用的方位词“近端”和“远端”,是以手术器械操作人员的视角定义的,也即,该驱动丝121的近操作人员的一端为“近端”,相对 应地近患者的另一端为“远端”。应当理解,上述方位词的使用仅用于清楚描述技术方案,且对于本申请请求保护的柔性手术器械并未构成实质性的限制。
对于执行器单元12的驱动丝121的牵拉和扭转,基于器械驱动装置20侧输出的驱动力实现,具体通过传动单元13的执行传动组件131和旋转传动组件132传递驱动力。请一并参见图2、图3、图6和图7,其中,图6为图2的A-A剖视图,图7为本申请实施方式提供的传动单元的整体结构示意图。
如图3所示,该传动单元13包括传动基板133,执行传动组件131和旋转传动组件132设置在该传动基板133上,并可通过传动基板133与器械输送单元11的器械储存器112组装固定。请一并参见图8和图9,两图分别从不同视角示出了传动单元与器械储存器的装配关系。整体结构较为紧凑,且组装工艺性较好。
如图6所示,执行传动组件131包括第一端子1312、牵引件1313和第一驱动轴1311。
其中,牵引件1313与第一驱动轴1311连接,第一驱动轴1311插装设置在传动基板133上,以在器械驱动装置20的驱动力作用下转动,并带动牵引件1313绕其转动中心摆动。
其中,第一端子1312固定在牵引件1313上,并可在牵引件1313转动时随动。驱动丝121的近端与第一端子1312相连接,并配置为:驱动丝121可在第一端子1312的带动下沿预定轨迹推出或收回,且驱动丝121可相对于第一端子1312旋转。可以理解的是,该牵引件1313摆动幅度范围内,需要满足第一端子1312的牵拉行程要求,也即位于远端的执行器122所需的推出或收回位移量。
请一并参见图10和图11,其中,图10为本申请实施方式所述执行传动组件的装配关系示意图,图11为图6的Ⅰ部放大示意图。
第一端子1312嵌装在牵引件1313中,具体地,牵引件1313的外周表面开设有适配于第一端子1312的安装槽13131,该外周表面为圆弧面。在其他具体实现中,根据实际产品设计要求,牵引件1313的外周表面非局限于图 中所示的圆弧状;同时,该第一端子也可完全设置在牵引件内部,而非局限于嵌装在牵引件1313的外周表面上(图中未示出)。
本实施方案中,驱动丝121穿装在第一端子1312的第四贯通孔13121中,且驱动丝121本体上设置有两个限位块1211,分别位于第四贯通孔13121两端侧,该限位块1211的尺寸大于第四贯通孔13121的尺寸。牵引件1313正反向转动时,基于第一端子1312与相应侧限位块1211之间的限位关系,可实现驱动丝121的推出和收回,满足术中的具体操作要求。
同时,驱动丝121与第一端子1312的第四贯通孔13121之间具有径向间隙,也即驱动丝121相对于第一端子具备转动自由度,当驱动丝在旋转传动组件132的带动下转动时,可相对于第四贯通孔13121转动,与第一端子侧无动作干涉。在其他具体应用中,第一端子与牵引件可以为一体式结构,也即第一端子的功能结构可以集成于牵引件上;相比较而言,两者采用如图所示的分体式结构,具有较好加工工艺性。
其中,传动基板133作为与驱动侧传动连接的基础构件,其上固定设置有第一约束件1315,该第一约束件1315上开设有约束腔13151,驱动丝121置于约束腔13151中。在第一端子1312的带动下,驱动丝121可在该约束腔13151构建的预定轨迹上推出或收回。
为了充分利用外壳内部空间,第一约束件1315及其上开设的约束腔13151大致呈弧状。同时,该第一约束件1315包括顺次连接的导向段C和保持段D,如图6所示,导向段C具有与牵引件1313的圆弧状外周表面适配的圆弧状内壁,该导向段C内壁上的约束腔13151为开放腔道,该保持段D上的约束腔13151为封闭腔道;这样,一方面可通过圆弧状内壁建立牵引件1313的位移导向,同时,由导向段C上的开放腔道及保持段D上的封闭腔道共同建立引导驱动丝121的预定轨迹。
当然,在其他具体实现中,也可以采用第一端子1312a、相啮合的锥齿轮组1311a和丝杆1313a,实现驱动丝121推出或收回。请参见图12,该图为本申请实施方式提供的另一种执行传动组件的示意图。为了清楚示明与图6所描述实施方案的区别和联系,相同功能构成或结构以同一标记进行示意。
如图12所示,该锥齿轮组1311a的主动齿轮可在第一驱动轴1311带动下,带动被动齿轮转动,丝杆1313a与被动齿轮同轴转动;与此同时,第一端子1312a一端夹持固定驱动丝121的近端,第一端子1312a的另一端配置有与丝杆1313a适配的螺母(图中未示出),这里,螺母固定在第一端子1312a上,并可随丝杆1313a的转动沿其轴向移动,从而通过第一端子1312a带动驱动丝121实现推出或收回。应当理解,图12所描述的实施方案同样可配置用于构建预定轨迹的约束腔。
再如图3和图6所示,本实施方案中旋转传动组件132包括旋转轴1321、第二端子1322、锥齿轮组1323和第二驱动轴1324。
其中,锥齿轮组1323的主动轮与第二驱动轴1324连接,第二驱动轴1324插装设置在传动基板133上,以在器械驱动装置20的驱动力作用下转动,并通过锥齿轮组1323带动旋转轴1321绕其转动中心转动。
其中,第二端子1322设置在该旋转轴1321上,驱动丝121由第二端子1322固定,并可在旋转轴1321转动时随动。并配置为:第二端子1322可在旋转轴1321的带动下转动,且第二端子1322可沿驱动丝121的牵拉方向相对于旋转轴1321滑动。这里,该第二端子1322的滑动行程,同样需要满足第一端子1312的牵拉行程要求。
请一并参见图13和图14,其中,图13为本申请实施方式所述旋转传动组件的装配关系示意图,该图为自第二端子1322所在位置处径向剖切后形成的视图,图14为图6的Ⅱ部放大示意图。
第二端子1322嵌装在旋转轴1321中,具体地,旋转轴1321的中部开设有安装孔13211,驱动丝121可经由该安装孔13211延伸至第一约束件的约束腔中。本实施方案中,与驱动丝121固定连接的第二端子1322插装在该安装孔13211中,且两者具有相适配的矩形截面。这样,当旋转轴1321转动时,第二端子1322可同步转动带动驱动丝121扭转;同时,第二端子1322相对于旋转轴1321具有滑动自由度,也即,第二端子1322可相对于旋转轴1321轴向运动,当驱动丝在执行传动组件131的带动下牵拉时,可相对于安装孔13211转动,与旋转轴侧无动作干涉。
在其他具体实现中,第二端子1322与该安装孔13211的截面形式也可以采用其他结构,例如但不限于,其他多边形或者具有周向限位平面的形态,只要能够满足该第二端子在安装孔内滑动且可随旋转轴同步转动的功能需要,均在本申请请求保护的范围内。
其中,传动基板133上固定设置有第二约束件1325,再如图6和图7所示,沿旋转轴1321的轴向,该第二约束件1325一端与第一约束件1315保持段D的端部相对设置,且第二约束件1325与第一约束件1315分别提供轴端支撑,旋转轴1321的两侧轴端得以获得可靠的枢接适配关系,满足相对转动的功能需要。
这里,第二约束件1325上开设有第三贯通孔13251,相对应地,器械输送单元11的器械储存器112上开设有通过口1122,且该通过口1122斜向开设,以便执行器单元12柔性本体延伸过渡至其外表面的螺旋容纳槽1121中。第三贯通孔13251的孔径可以与执行器单元12的柔性本体套管123尺寸适配,以可靠固定套管123的管端。
另外,本实施方式提供的柔性器械10还包括对接单元14,用于与外部装置连接,例如但不限于实现电源和信号源连接以及水路连接。请参见图2和图4,外壳111的顶端配置有与内部连通的电接口141和水接口142,外壳111固定设置有轴向延伸形成的引导管15。该电接口141可将电源和信号源引入器械内部,水接口142可将外部水源引入器械内部,通过外壳111中部的引导管15进入执行器单元12,进而连接至远端执行器。
对于电源和信号源的引入,请一并参见图7和图15,其中,图15为电源和信号源引入路径示意图。
第一约束件1315上开设有第一内部通道13152,第一内部通道13152与旋转轴的安装孔13211连通。电接口141引入的缆线,经由引导管下行,并通过第一约束件1315的第一内部通道13152进入旋转轴的安装孔13211内,并通过执行器单元12的套管123连接至远端执行器。例如但不限于,用于实现远端执行器的供电,以及与远端执行器之间的信号交互传输等。
第二约束件1325上还开设有第二内部通道13252,第二内部通道13252与第三贯通孔13251连通。水接口142引入的水路接管,同样可经由引导管 下行,并通过第二约束件1325的第二内部通道13252进入第三贯通孔13251内,并通过执行器单元12的套管123连接至位于远端的执行器。例如但不限于,用于实现冲洗液的灌注等。
为了便于整机快速组装,本实施方案中,柔性器械10与器械驱动装置20之间设置有可拆卸连接机构,具体包括器械储存器112和传动单元13(执行传动组件131、旋转传动组件132)与器械驱动装置20之间的可拆卸连接,在快速组装操作的基础上,同时满足传递相应驱动力的功能需要。
请参见图16和图17,其中,图16为本申请实施方式所述器械驱动装置20的内部构成示意图,图17为图16中所示器械驱动装置侧的连接机构示意图。
如图所示,在器械驱动装置20的顶部配置有输出动力的接口部件24,其中,驱动基板241作为输出第一驱动部件21的驱动力的接口连接件,用于传递动力至器械储存器112;第一主动传动盘242作为输出第二驱动部件22的驱动力的接口连接件,也即第一执行驱动接口,以传递动力至第一驱动轴1311,用于牵拉驱动丝;第二主动传动盘243作为输出第三驱动部件23的驱动力的接口连接件,也即第二执行驱动接口,以传递动力至第二驱动轴1324,用于扭转驱动丝。
可以理解的是,作为器械侧的执行驱动接口,可以为第一、二驱动轴,也可以为下文所描述的与相应驱动轴相连的第一、二被动传动盘。在具体实现中,根据产品总体设计要求进行确定,从驱动力传递的角度来说,只要能够实现可靠的动力传输均在本申请请求保护的范围内。
请一并参见图8、图9和图18,其中,图18示出了驱动基板与器械储存器112的组装关系示意图。
驱动基板241与传动基板133相对设置,驱动基板241上设置有卡扣244,传动基板133上相应设置有卡槽1331,组装后,该卡扣244置于卡槽1331中,形成周向转动限位副。这里,卡槽1331作为传动单元与器械驱动装置适配的输送驱动接口,建立传动连接关系。当驱动基板241在第一驱动部件21驱动下转动时,可基于该周向转动限位副带动传动基板133同步转动,进而带动与传动基板133固定的器械储存器112转动,以输送执行器单元12。
可以理解的是,用于卡扣244适配建立周向转动限位副的卡槽1331,非局限于配置在传动基板上。在其他具体实现中,该卡槽还可以配置在器械储存器上,或者在传动基板和器械储存器上共同形成该适配卡槽。
本实施方案中,相适配的卡扣244和卡槽1331设置为两组,且采用对称布置方式,受力较为均衡。可以理解的是,在其他具体实现中,也可以配置为周向间隔设置的其他复数组。
进一步地,卡扣244可相对于驱动基板241沿径向移动,也即卡扣244还可在卡槽1331滑动,该卡扣244具有自本体外伸形成的勾头部2441,外端;相应地,器械储存器112的侧壁上设置有与该勾头部2441适配的卡口1123。这样,卡扣244处于外伸工作位时,该勾头部2441可插装在卡口1123中,限制器械储存器112脱离。
由此,带动器械储存器112转动时,可通过相适配的卡扣244和卡槽1331同步带动轴向伸出或收回。在其他具体实现中,还可以通过其他结构形式达成同步轴向移动的功能需要。
为了提高可操作性,卡扣244的外侧设置有按钮245,卡扣244的内侧设置有复位弹簧246,该复位弹簧246可以预压缩设置在卡扣244与驱动基板241之间,以便卡扣244可靠地保持在外伸工作位。请一并参见图19,该图为图17的B-B局部剖视图。
拆卸时,操作者施加作用力于按钮245,卡扣244沿着卡槽1331向内滑动,复位弹簧246进一步形变,勾头部2441自卡口1123脱出,即可将柔性器械10拆下。
其中,勾头部2441外伸端的顶部具有引导面2442,该引导面2442向下延伸形成。实际组装时,器械储存器112的下沿轴向压抵勾头部2441的引导面2442,并产生作用于卡扣244的径向向内的分力,卡扣244在该作用力下向内滑动;与此同时,复位弹簧246受压进一步形变,随着器械储存器112轴向移动,至其上的卡口1123与勾头部2441对中时,复位弹簧246释放弹性变形能,推动勾头部2441伸入卡口1123内,快速完成两者之间的组装操作。
可以理解的是,在其他具体实现中,该复位弹簧还可以采用其他结构形式实现,例如但不限于采用基于橡胶材料特性制成的复位件,或者采用弹片结构的复位件。
进一步地,为了避免卡合结构外露可能产生的影响,本实施方案中,驱动基板241的外周设置有套筒247,该套筒247包括轴向向上延伸的遮挡段2471。驱动基板241及其上的卡扣244可内置于遮挡段2471围合形成的空腔内;同时,遮挡段2471上开设有两个穿装孔2472,分别与两个按钮245径向相对设置,以便按钮245的推杆通过该穿装孔2472与卡扣244本体固定连接。在有效遮挡卡合结构的基础上,同时可兼顾按钮的可操作性。
这里,驱动基板241通过套筒247和连接套248与第一驱动部件21传动连接。当然,在其他实现中,驱动基板241也可直接与第一驱动部件21传动连接,或者还可以通过套筒247与第一驱动部件21传动连接。
另外,在柔性器械10与器械驱动装置20之间还可以配置电子识别组件,用于***识别当前接入的器械类型。再如图17所示,该电子识别组件可以包括配置在柔性器械一侧的信号发生器161和配置在器械驱动装置一侧的信号接收器162,具体地,信号发生器161可设置在器械储存器112的外周表面,相应地信号接收器162可设置在套筒247的内壁(图中未示出),采用射频信号识别。
此外,为了实时监测安装状态,可以在器械驱动装置一侧配置安装检测组件17。再如图16和图17所示,该安装检测组件17可以采用微动开关,并设置在卡扣244的顶面。当柔性器械安装至驱动装置上时,柔性器械通过挤压微动开关产生一个信号,从而实现安装状态检测。
需要说明的是,电子识别组件和安装检测组件可以采用其他器件形式,具体可根据实际产品设计要求进行选定,而非局限于图中所示的器件类型及配置位置。
请一并参见图9、图17、图18、图20和图21,其中,图20示出了第一主动传动盘242和第二主动传动盘243的组装关系示意图,图21进一步示出了传动基板与传动单元的组装关系示意图。
本实施方案中,设置有两组传动连接的主动传动盘和被动传动盘,其中,传动基板133的底部设置有第一被动传动盘134和第二被动传动盘135。第一被动传动盘134固定连接在第一驱动轴1311的轴端,并与第一主动传动盘242适配连接;第二被动传动盘135固定连接在第二驱动轴1324的轴端,并与第二主动传动盘243适配连接。
相应地,驱动基板241开设有第一贯通孔2411和第二贯通孔2412,以便第一主动传动盘242和第二主动传动盘243分别通过两个贯通孔与相适配的被动传动盘适配。同时,第二驱动部件22固定设置在第一法兰251,且其输出轴通过第一法兰251与第一主动传动盘242相连,第三驱动部件23固定设置在第二法兰252,且其输出轴通过第二法兰252与第二主动传动盘243相连,整体上沿轴向依次设置,可减小径向尺寸的空间占用。
为了进一步匹配不同对接侧轴向对接行程,本实施方案的可拆卸连接机构进一步具有轴向可适应性。该第一法兰251和第二法兰252可分别固定在相应的滑动支架253上,两个滑动支架253可分别相对于固定设置的滑轨254轴向位移。这里,为了简化图示,图20中仅示出了与第一法兰251相适配的滑动支架253和滑轨254。也就是说,滑动支架253具有可相对于滑轨254轴向相对位移的自由度,以适应性调整轴向相对位置。
相应地,在每个滑动支架253的底部可设置弹性复位件255,以提供复位作用力至滑动支架253,使得相应的主动、被动传动盘之间建立可靠的连接。可以理解的是,滑轨254为相对固定的结构件,具体可根据内部空间配置相应的固定连接方式,例如但不限于图中所示的固定设置在连接套248上。
如图9所示,第一被动传动盘134上具有第一凹部1341,第二被动传动盘135上具有第二凹部1351;如图17和图18所示,第一主动传动盘242上具有第一凸部2421,第二主动传动盘243上具有第二凸部2431,可分别与相应被动传动盘上的凹部适配构建形成周向限位副。这样,第二驱动部件22和第三驱动部件23分别启动时,可分别上述相适配主、被动传动盘将动力传递至传动单元的驱动轴,用于实现执行器单元的牵拉和扭转操作。
本实施方案中,相适配的主动传动盘与被动传动盘的外径尺寸大致相同,凹部自被动传动盘的外周表面径向内凹形成,凸部自主动传动盘的顶面轴向延伸形成,组装后,主动传动盘上的凸部与被动传动盘上的凹部嵌合。具有结构紧凑、连接可靠性高的特点。在其他具体实现中,每个传动路径上,相适配的凸、凹部的配置数量可以根据产品总体设计要求进行确定,而非局限于图中所示的两组。
另外,本实施方案的器械储存器112转动及轴向位移,由第一驱动部件21提供驱动力,并分别通过两个动力传递路径实现。请一并参见图16、图22和图23,其中,图22示出了第一驱动件的传动关系示意图,图23为图16的轴向剖视图,具体剖切位置通过第一驱动部件及输出轴的中心线。
该第一驱动部件21的输出轴与丝杆261同轴固定,并以丝杆261作为两个动力传递路径的基础传动构件。如图所示,丝杆261上间隔设置有主动带轮263和螺母262。
其中,主动带轮263固定设置在丝杆261上,并通过皮带将转动驱动力传递至从动带轮264,从动带轮264设置在输出轴265上。具体地,从动带轮264固定设置在第一轴套266上,该第一轴套266通过轴承269枢接在固定结构上,输出轴265外表面上具有轴向设置的键2651,该第一轴套266内表面上具有与该键相适配的键槽2661。基于带轮传动机构,在第一轴套266的带动下,输出轴265可同步转动,且输出轴265与第一轴套266之间可轴向相对移动。
其中,螺母262与丝杆261螺纹适配,并通过连接件267与输出轴265相连。该螺母262固定设置在连接件267的一端,输出轴265枢接在连接件267的另一端枢接,且两者之间具有轴向限位。具体地,输出轴265的轴端设置有推力轴承2681,连接件267上固定设置有轴承固定座268,且轴承固定座268与推力轴承2681的轴向限位。基于丝杆与螺母的适配关系,可带动输出轴265沿轴向往复移动。
由此,第一驱动部件21输出轴输出的驱动力,通过两个传递路径同步带动输出轴265转动及轴向移动,并通过固定在输出轴265上连接套248带动驱动基板241转动及轴向移动。该复合运动以旋转运动为柔性器械输送的主 运动,轴向移动为保障执行器单元12柔性本体与器械储存器112通过口1122保持对准的辅助运动。
需要说明的是,用于与第一轴套266枢接适配的固定结构,以及用于外壳111保持相对固定的相关结构,可以采用不同方式实现。本实施方案中,将上述固定结构集成设置在器械驱动装置20的罩壳27上,该罩壳27的侧壁271向上延伸至柔性器械10的外壳111旁侧。
其中,对于柔性器械10外壳111的固定,请一并参见图1和图16。外壳111的外周表面设置插口1112,并可通过插口1112套装在侧壁271上,基于不同的组装尺寸利用螺纹紧固件将外壳111固定在侧壁271上。应当理解,插口1112作为外壳111的固定部,还可以采用其他形式实现,例如但不限于仅通过螺纹紧固件实现。
对于与第一轴套266枢接适配的固定盘272,如图16、图23所示,该固定盘272固定于侧壁271上,以此固定形成用于安装轴承269的第二轴套273。当然,在其他具体实现中,该第二轴套273与固定盘272可采用一体式结构。
进一步的,为了提高轴向移动的稳定性,可以在连接套248的外周配置导向套274,该导向套274固定于侧壁271上,连接套248与导向套274之间形成轴向移动适配副,在连接套248的轴向移动行程范围内提供导向支撑,确保相关结构具有良好的作动性能。
本文所使用的序数词“第一”和“第二”,仅用于在描述技术方案中相同功能的构成或结构。可以理解的是,上述序数词“第一”和“第二”的使用,对本申请请求保护的技术方案未构成理解上的限制。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

  1. 一种柔性器械,其特征在于,包括:
    器械输送单元,包括外壳和器械储存器,所述外壳具有内部容纳空间且其侧壁开设有器械出口;至少部分所述器械储存器内置于所述外壳中,且可相对于所述外壳转动和轴向移动;所述器械储存器的外周表面设置有螺旋容纳槽,以缠绕收纳执行器单元的柔性本体;
    执行器单元,包括执行器和柔性本体,所述柔性本体包括内外嵌套设置的驱动丝和套管,所述驱动丝的远端配置有所述执行器;
    传动单元,与所述器械输送单元的器械储存器相连,所述传动单元配置有用于与器械驱动装置适配的输送驱动接口,以带动所述器械储存器相对于所述外壳转动和轴向移动;
    其中,所述传动单元包括与所述器械储存器固定连接的传动基板,和设置在所述传动基板上的执行传动组件和旋转传动组件;所述传动基板上设置有执行驱动接口,所述执行驱动接口包括第一执行驱动接口和第二执行驱动接口,所述执行传动组件与所述第一执行驱动接口适配,以推出或收回所述驱动丝,所述旋转传动组件与所述第二执行驱动接口适配,以扭转所述驱动丝;
    所述执行传动组件包括牵引件和第一驱动轴,所述第一驱动轴插装设置在所述传动基板上,并可通过所述第一执行驱动接口与器械驱动装置传动连接;所述牵引件与第一驱动轴连接,所述驱动丝的近端与所述牵引件相连接,并配置为:所述驱动丝可在所述牵引件的带动下沿预定轨迹推出或收回,且所述驱动丝相对于所述牵引件具有转动自由度;
    所述牵引件的外周表面嵌装设置有第一端子,所述第一端子包括第四贯通孔;所述驱动丝穿装在所述第一端子的第四贯通孔中,所述驱动丝的本体上设置有两个限位块,且分别位于所述第一端子的第四贯通孔两端侧;所述驱动丝与所述第一端子的第四贯通孔之间具有径向间隙,且每个所述限位块的尺寸大于所述第四贯通孔的尺寸。
  2. 根据权利要求1所述的柔性器械,其特征在于,所述传动基板上固定设置有第一约束件,所述第一约束件上开设有可容纳驱动丝的约束腔,以带动所述驱动丝沿预定轨迹推出或收回。
  3. 根据权利要求2所述的柔性器械,其特征在于,所述第一约束件及其上开设的约束腔均呈弧状,且所述第一约束件包括顺次连接的导向段和保持段,所述导向段具有与所述牵引件的圆弧状外周表面相对设置的圆弧状内壁,且所述导向段的内壁上的约束腔为开放腔道,所述保持段上的约束腔为封闭腔道。
  4. 根据权利要求1所述的柔性器械,其特征在于,所述执行传动组件包括第一驱动轴、相啮合的锥齿轮组、第一端子和丝杆,所述锥齿轮组的主动齿轮与所述第一驱动轴连接,所述丝杆与所述锥齿轮组的被动齿轮连接;所述第一端子的一端夹持固定所述驱动丝的近端,所述第一端子的另一端配置有与所述丝杆适配的螺母,以通过第一端子带动驱动丝实现推出或收回。
  5. 根据权利要求2或3所述的柔性器械,其特征在于,所述旋转传动组件包括旋转轴、第二端子、锥齿轮组和第二驱动轴,所述第二驱动轴插装设置在所述传动基板上,并可通过所述第二执行驱动接口与器械驱动装置传动连接;所述锥齿轮组的主动轮与所述第二驱动轴连接,所述旋转轴与所述锥齿轮组的被动轮连接;所述驱动丝与所述第二端子固定,所述第二端子设置在所述旋转轴上,并配置为:所述第二端子可在所述旋转轴的带动下转动,且所述第二端子相对于所述旋转轴具有沿驱动丝的牵拉方向滑动的自由度。
  6. 根据权利要求5所述的柔性器械,其特征在于,所述第二端子嵌装在所述旋转轴的中部安装孔中,且两者具体相适配的矩形截面,所述驱动丝可经由所述安装孔延伸至第一约束件的约束腔中。
  7. 根据权利要求6所述的柔性器械,其特征在于,所述传动基板上固定设置有第二约束件,沿所述旋转轴的轴向,所述第二约束件的一端与所述第一约束件的保持段端部相对设置,且所述旋转轴的两侧轴端分别与所述第二约束件和所述第一约束件枢接。
  8. 根据权利要求7所述的柔性器械,其特征在于,所述第二约束件上开设有第三贯通孔,所述第二约束件的第三贯通孔的孔径与所述执行器单元的套管尺寸适配,以固定所述套管的管端;所述器械储存器上开设有通过口,所述执行器单元的柔性本体通过所述器械储存器的通过口延伸过渡至其外表面的螺旋容纳槽中。
  9. 根据权利要求1所述的柔性器械,其特征在于,所述外壳为一端敞口的圆筒状,所述器械储存器的一端置于所述外壳中,另一端配置有用于与器械驱动装置适配的输送驱动接口。
  10. 根据权利要求1或9所述的柔性器械,其特征在于,所述器械出口外周的所述外壳表面固定设置有护管,且所述外壳包括固定部。
  11. 一种柔性手术器械,其特征在于,包括柔性器械和可输出驱动力至所述柔性器械的器械驱动装置,所述柔性器械采用如权利要求1至10中任一项所述的柔性器械。
PCT/CN2023/083643 2022-09-14 2023-03-24 一种柔性手术器械及其柔性器械 WO2024055556A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211117678.9A CN115363648B (zh) 2022-09-14 2022-09-14 一种柔性手术器械、柔性器械及其器械输送单元
CN202211117678.9 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024055556A1 true WO2024055556A1 (zh) 2024-03-21

Family

ID=84071911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083643 WO2024055556A1 (zh) 2022-09-14 2023-03-24 一种柔性手术器械及其柔性器械

Country Status (2)

Country Link
CN (1) CN115363648B (zh)
WO (1) WO2024055556A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115192200B (zh) * 2022-09-14 2023-01-13 北京云力境安科技有限公司 一种手术机器人***及柔性手术器械
CN115363648B (zh) * 2022-09-14 2023-03-10 北京云力境安科技有限公司 一种柔性手术器械、柔性器械及其器械输送单元
CN115363649B (zh) * 2022-09-14 2023-02-17 北京云力境安科技有限公司 一种柔性手术器械及其器械驱动装置
CN117770739B (zh) * 2024-02-27 2024-05-31 北京云力境安科技有限公司 一种器械输送及介入装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040153062A1 (en) * 2003-02-04 2004-08-05 Mcginley Shawn E. Surgical navigation instrument useful in marking anatomical structures
US20050203382A1 (en) * 2004-02-23 2005-09-15 Assaf Govari Robotically guided catheter
CN108601604A (zh) * 2016-05-17 2018-09-28 科瑞欧医疗有限公司 用于外科手术器械的控制装置
CN109303610A (zh) * 2017-07-27 2019-02-05 赛诺微医疗科技(北京)有限公司 手术器械夹持机构、末端执行器及采用其的手术机械臂
CN111281544A (zh) * 2020-02-26 2020-06-16 陕西中医药大学 体内医疗器械自动引导机器人***及其自动引导方法
CN111887994A (zh) * 2020-07-16 2020-11-06 安徽航天生物科技股份有限公司 基于闭环反馈的软性内窥镜手术机器人***及其控制方法
CN113813050A (zh) * 2021-09-29 2021-12-21 深圳市精锋医疗科技有限公司 外科手术器械和手术机器人
CN216360328U (zh) * 2021-12-23 2022-04-22 成都拟合未来科技有限公司 绕线装置及其构成的拉力器械
CN114870203A (zh) * 2022-04-28 2022-08-09 上海微创医疗机器人(集团)股份有限公司 柔性器械、盘绕装置、手术器械及手术机器人
CN115192200A (zh) * 2022-09-14 2022-10-18 北京云力境安科技有限公司 一种手术机器人***及柔性手术器械
CN115363649A (zh) * 2022-09-14 2022-11-22 北京云力境安科技有限公司 一种柔性手术器械及其器械驱动装置
CN115363648A (zh) * 2022-09-14 2022-11-22 北京云力境安科技有限公司 一种柔性手术器械、柔性器械及其器械输送单元

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104224325B (zh) * 2014-10-11 2016-08-24 天津工业大学 一种用于微创手术机器人的钢丝绳传动直线伸缩机构
JP6805261B2 (ja) * 2016-02-05 2020-12-23 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 外科手術装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040153062A1 (en) * 2003-02-04 2004-08-05 Mcginley Shawn E. Surgical navigation instrument useful in marking anatomical structures
US20050203382A1 (en) * 2004-02-23 2005-09-15 Assaf Govari Robotically guided catheter
CN108601604A (zh) * 2016-05-17 2018-09-28 科瑞欧医疗有限公司 用于外科手术器械的控制装置
CN109303610A (zh) * 2017-07-27 2019-02-05 赛诺微医疗科技(北京)有限公司 手术器械夹持机构、末端执行器及采用其的手术机械臂
CN111281544A (zh) * 2020-02-26 2020-06-16 陕西中医药大学 体内医疗器械自动引导机器人***及其自动引导方法
CN111887994A (zh) * 2020-07-16 2020-11-06 安徽航天生物科技股份有限公司 基于闭环反馈的软性内窥镜手术机器人***及其控制方法
CN113813050A (zh) * 2021-09-29 2021-12-21 深圳市精锋医疗科技有限公司 外科手术器械和手术机器人
CN216360328U (zh) * 2021-12-23 2022-04-22 成都拟合未来科技有限公司 绕线装置及其构成的拉力器械
CN114870203A (zh) * 2022-04-28 2022-08-09 上海微创医疗机器人(集团)股份有限公司 柔性器械、盘绕装置、手术器械及手术机器人
CN115192200A (zh) * 2022-09-14 2022-10-18 北京云力境安科技有限公司 一种手术机器人***及柔性手术器械
CN115363649A (zh) * 2022-09-14 2022-11-22 北京云力境安科技有限公司 一种柔性手术器械及其器械驱动装置
CN115363648A (zh) * 2022-09-14 2022-11-22 北京云力境安科技有限公司 一种柔性手术器械、柔性器械及其器械输送单元

Also Published As

Publication number Publication date
CN115363648A (zh) 2022-11-22
CN115363648B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2024055556A1 (zh) 一种柔性手术器械及其柔性器械
WO2024055555A1 (zh) 一种柔性手术器械及其器械驱动装置
WO2024055557A1 (zh) 一种手术机器人***及柔性手术器械
EP2158932B1 (en) Guidewire catheter
US20130096378A1 (en) Systems And Methods For Controlling Balloon Catheters
US9186050B2 (en) Medical treatment endoscope with a positioning mechanism
US7582054B2 (en) Endoscope treatment tool insertion-extraction system
CN115414129B (zh) 一种柔性手术器械、柔性器械及其器械输送单元
US11819628B2 (en) Catheter holder and catheter set
JP2010506669A (ja) 光学外科用デバイスおよびその使用方法
US20150011933A1 (en) Insertion portion rigidity changeable catheter with balloon
CN114795068B (zh) 一种内窥镜手柄的可抛弃段、内窥镜手柄及内窥镜
US20090281388A1 (en) Endoscope cover and cover-type endoscope
WO2019065581A1 (ja) 内視鏡
US20150313447A1 (en) Insertion instrument and endoscope
US20220265126A1 (en) Overtube and medical device using this overtube
CN110051391B (zh) 一种内窥镜手术器械
CN114947702A (zh) 一种内窥镜手柄的可抛弃段、内窥镜手柄及内窥镜
US20220079419A1 (en) Endoscopic device and methods of use thereof
CN210631250U (zh) 一种内窥镜手术器械
CN217927000U (zh) 一种柔性手术器械及其连接机构
WO2020026336A1 (ja) 内視鏡システムおよび曲針デリバリー方法
US20240032779A1 (en) Endoscope and endoscope transportation unit
WO2019017114A1 (ja) 内視鏡
CN117770739B (zh) 一种器械输送及介入装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864299

Country of ref document: EP

Kind code of ref document: A1