WO2024055304A1 - 电池和用电装置 - Google Patents

电池和用电装置 Download PDF

Info

Publication number
WO2024055304A1
WO2024055304A1 PCT/CN2022/119401 CN2022119401W WO2024055304A1 WO 2024055304 A1 WO2024055304 A1 WO 2024055304A1 CN 2022119401 W CN2022119401 W CN 2022119401W WO 2024055304 A1 WO2024055304 A1 WO 2024055304A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
bracket
output part
assembly
end cover
Prior art date
Application number
PCT/CN2022/119401
Other languages
English (en)
French (fr)
Inventor
程启
李全坤
王红
刘江
唐代春
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/119401 priority Critical patent/WO2024055304A1/zh
Publication of WO2024055304A1 publication Critical patent/WO2024055304A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery and an electrical device.
  • Embodiments of the present application provide a battery and a power device, which can improve the energy density of the battery.
  • a battery including: a battery module, including a plurality of electrically connected battery cells, the casing of each of the plurality of battery cells is made of insulating material; and the casing is provided with a cavity. , the cavity is used to accommodate the battery module, and the shell is made of insulating material.
  • the casing of the battery cell and the casing of the battery are both made of insulating material, which can reduce the number of insulating components between the battery cell and the casing, reduce the weight of the battery, and thereby increase the energy density of the battery.
  • the casing is provided with a first opening
  • the battery further includes: a first end cover component, which is disposed at the first end of the battery module in the first direction, and the first end cover component covers the first The opening, the first direction is the length direction of the battery; the first end cover assembly is provided with electrode terminals, and the electrode terminals are electrically connected to the output part of the battery module.
  • a first end cover assembly is provided at the first end of the battery module in the first direction to encapsulate the battery module in the cavity of the casing and reduce the damage of the battery cells when the battery is subjected to vibration and impact. Risk of damage.
  • the first end cover assembly includes: a first insulating end cover provided with a first opening for receiving an electrode terminal; the electrode terminal passes through the first opening and is electrically connected to the output part.
  • the end cap in the first end cap assembly is made of insulating material, which is beneficial to eliminating the insulation structure between the electrode terminal and the end cap and the insulation structure between the end cap and the battery module, so that further Improve battery energy density.
  • the first end cap assembly further includes: a sealing ring for sealing the gap between the electrode terminal and the first opening.
  • the arrangement of the sealing ring improves the sealing performance of the battery, thereby improving the safety of the battery.
  • the battery further includes: an adapter, through which the output part and the electrode terminal are electrically connected.
  • the arrangement of the adapter can realize the electrical connection between the output part of the battery module and the electrode terminal.
  • the adapter includes a first part and a second part, the first part is arranged opposite to the first insulating end cover, and the second part extends from one end of the first part in the second direction toward the battery module,
  • the electrode terminal is connected to the first part, the second part is connected to the output part, and the second direction is the thickness direction of the battery.
  • the first part is provided with a second opening, and the electrode terminal is connected to the first part in the second opening.
  • the casing is provided with a second opening
  • the battery further includes: a second end cover assembly, which is disposed at the second end of the battery module in the first direction and covers the second opening, and the second end cover assembly
  • the cover assembly is made of insulating material.
  • the second end cover assembly is made of insulating material, which is beneficial to eliminate the insulating structure between the end cover and the battery module, thereby further improving the energy density of the battery.
  • the second end cap assembly includes a second insulating end cap and two protrusions, the second insulating end cap is opposite to the first insulating end cap, and the two protrusions are opposite along the second direction. And are connected to the second insulating end cover respectively; wherein, the projection of the two protrusions on the plane of the second insulating end cap is located in the second insulating end cap, so that the two protrusions can be embedded in the second opening, and the second The direction is the thickness direction of the battery.
  • the second insulating end cover and the two protrusions are integrally formed.
  • the second insulating end cover and the two protrusions are integrally formed, which can reduce the manufacturing process of the battery.
  • the second insulating end cap and the two protrusions are made of the same material.
  • the battery further includes: a bracket assembly for supporting the electrode output parts of the plurality of battery cells.
  • the bracket assembly by arranging the bracket assembly to support the electrode output portion of the battery cell, the risk of tearing at the connection of the battery cells can be reduced.
  • the size of the bracket component is larger than the size of the battery module
  • the second direction is the thickness direction of the battery
  • the third direction is the width direction of the battery.
  • the battery can be subjected to When there is a vibration or impact, the bracket component first contacts the outer casing to act as a buffer and reduce damage to the battery cells.
  • the bracket assembly divides the cavity into multiple sub-cavities, and each of the multiple sub-cavities is used to accommodate multiple battery cells stacked in the second direction.
  • a row of battery cells is arranged, the first direction is the length direction of the battery, and the second direction is the thickness direction of the battery.
  • the bracket component is made of insulating material.
  • the bracket assembly is made of insulating material, which can avoid short circuit between the battery cells and the outer shell caused by the contact between the bracket assembly and the outer shell.
  • the bracket component is fixedly connected to the housing.
  • the bracket assembly is integrally formed with the housing.
  • bracket component and the casing are integrally formed, which can reduce the manufacturing process of the battery.
  • the shell is provided with a glue injection hole at a corresponding position of the bracket assembly, and the glue injection hole is used to introduce structural glue between the shell and the bracket assembly, so that the shell and the bracket assembly are fixedly connected.
  • the shell is provided with glue injection holes at corresponding positions of the bracket assembly, so that the bracket assembly can be assembled with the battery module first, and then assembled into the shell together with the battery module, which can improve the relationship between the battery module and the bracket. Connection stability between components.
  • the casing is provided with a third opening in a third direction, and the third opening is used to guide multiple battery cells to be assembled into the cavity;
  • the battery also includes: a cover body, which covers the third opening. Three openings, cover made of insulating material.
  • the casing is provided with a third opening in the third direction, so that the battery module can be assembled into the cavity of the casing along the third opening.
  • the cover covers the third opening, so that the battery module can be packaged in the cavity. inside the cavity to protect the battery module.
  • the bracket assembly includes: a first bracket, disposed between a first battery cell and a second battery cell electrically connected in a first direction among the plurality of battery cells, the first bracket is arranged There is a first accommodation space.
  • the first accommodation space is used to accommodate the first electrode output part of the first battery cell and the second electrode output part of the second battery cell.
  • the first electrode output part and the second electrode output part are electrically connected.
  • the first direction is the length direction of the battery.
  • a first bracket is disposed between the electrically connected first battery cell and the second battery cell, and the connection portion of the first battery cell and the second battery cell is disposed on the first bracket.
  • the connection of the battery cells can be better fixed to prevent the connection from shaking, thereby reducing the risk of tearing of the connection and improving the stability of the electrical connection of the battery.
  • the first accommodation space passes through the first bracket in the first direction
  • the first bracket includes: a bracket body; a first fixing piece, which is stacked with the bracket body in the second direction. is the thickness direction of the battery; wherein, the first fixing part is fixedly connected to the bracket body, and a first accommodation space is formed between the bracket body and the first fixing part.
  • a first accommodation space that limits the displacement of the first electrode output part and the second electrode output part in the second direction can be formed, so that the first accommodation space can be formed. Reduce the risk of tearing at the connection between the first electrode output part and the second electrode output part.
  • the first bracket is provided with a glue filling channel, and the glue filling channel is used to introduce structural glue between the first and second electrode output parts and the first bracket.
  • a glue filling channel is provided on the first bracket, and the structural glue is introduced between the connected first and second electrode output parts and the first bracket, so that the first electrode output part can be
  • the second electrode output part is fixedly connected to the first bracket to enhance the rigidity between the battery module and the first bracket.
  • the bracket assembly further includes: a second bracket provided at the first end of the battery module in the first direction, and the second bracket is provided with a third bracket penetrating the second bracket in the first direction.
  • Two accommodation spaces the second accommodation space is used to accommodate the output part of the battery module, the output part is electrically connected to the electrode terminal, and the first direction is the length direction of the battery.
  • the battery module further includes: a third battery cell and a fourth battery cell stacked along the second direction, and the third battery cell and the fourth battery cell are located in the battery module. At the second end of the first direction, the third electrode output part of the third battery cell and the fourth electrode output part of the fourth battery cell are electrically connected.
  • the first direction is the length direction of the battery
  • the third electrode output part of the third battery cell is connected to the fourth electrode output part of the fourth battery cell.
  • a third accommodation space will then be enclosed to form a third accommodation space, and a third bracket is provided in the third accommodation space to support the third electrode output part and the fourth electrode output part, so that the third electrode output part and the fourth electrode output part can be lowered risk of tearing between them and improve the stability of the electrical connection of the battery.
  • the battery cell is a bag-shaped battery cell, and the casing of the battery cell includes a metal plastic film.
  • the battery cells are configured as bag-shaped battery cells, which can reduce the weight of the battery and increase the energy density.
  • the casing of the battery cell includes a metal plastic film, which can improve the rigidity of the battery cell.
  • an electrical device including: the battery in the first aspect and any possible implementation of the first aspect, the battery being used to provide electrical energy to the electrical device.
  • FIG. 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • Figure 2 shows a schematic exploded view of the battery according to the embodiment of the present application.
  • Figure 3 shows another schematic exploded view of the battery according to the embodiment of the present application.
  • FIG. 4 is a schematic exploded view of the first end cap assembly in FIG. 3 .
  • FIG. 5 is a schematic structural diagram of the adapter in FIG. 3 .
  • FIG. 6 is a front view of the second end cap assembly in FIG. 3 .
  • FIG. 7 is a partial front view of the battery shown in FIG. 3 .
  • FIG. 8 is a partial top view of the battery shown in FIG. 3 .
  • FIG. 9 shows a schematic assembly diagram of the housing and bracket assembly provided by the embodiment of the present application.
  • Figure 10 shows yet another schematic explosion view of the battery according to the embodiment of the present application.
  • Figure 11 shows another schematic explosion view of the battery according to the embodiment of the present application.
  • Figure 12 shows a schematic structural diagram of the battery according to the embodiment of the present application.
  • Figure 13 shows a schematic structural diagram of the first bracket according to the embodiment of the present application.
  • Figure 14 shows a partial front view of the battery according to the embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • Multiple appearing in this application refers to more than two (including two). Similarly, “multiple groups” refers to two or more groups (including two groups), and “multiple tablets” refers to two or more tablets. (Includes two pieces).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, rectangular battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector that is not coated with the positive electrode active material layer protrudes from the current collector that is coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector that is not coated with the negative electrode active material layer protrudes from the current collector that is coated with the negative electrode active material layer.
  • the current collector coated with the negative active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the diaphragm can be PP or PE, etc.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • embodiments of the present application provide a battery.
  • a battery module whose shell is made of insulating material is assembled into an insulating shell, which can reduce the weight of the battery and increase the energy density of the battery.
  • batteries such as mobile phones, portable devices, laptops, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spacecraft, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 80 , a controller 60 and a battery 100 may be disposed inside the vehicle 1 .
  • the controller 60 is used to control the battery 100 to provide power to the motor 80 .
  • the battery 100 may be provided at the bottom, front or rear of the vehicle 1 .
  • the battery 100 can be used to supply power to the vehicle 1 .
  • the battery 100 can be used as an operating power source for the vehicle 1 and for the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 100 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • FIG. 2 shows a schematic exploded view of the battery 100 according to the embodiment of the present application.
  • the battery 100 includes: a battery module 110, including a plurality of electrically connected battery cells, the casing of each of the plurality of battery cells is made of insulating material; and a casing 120, which is provided with a cavity. 123, used to accommodate the battery module 110, and the shell 120 is made of insulating material.
  • the casing of the battery cell is made of insulating material
  • at least the outer surface of the battery cell is made of insulating material
  • at least the inner surface of the casing 120 is made of insulating material
  • the housing 120 may be made of plastic material.
  • multiple battery cells may be connected in series, that is, the positive electrode output part of one battery cell is connected to the negative electrode output part of another battery cell.
  • multiple battery cells may also be connected in parallel, that is, the positive electrode output parts of multiple battery cells are connected together, and the negative electrode output parts of multiple battery cells are connected together.
  • the plurality of battery cells can also be connected in a mixed connection, that is, some of the battery cells are first connected in parallel and then connected in series with another part of the battery cells that are connected in parallel, or some of the battery cells are first connected in series and then connected in series with another part. battery cells are connected in parallel.
  • the battery cells may be connected by welding, for example, ultrasonic welding or laser welding.
  • the battery cells can also be connected through other means such as conductive glue.
  • the battery cells can be connected directly or through a connector. The embodiment of the present application does not place any limitation on the connection method between the battery cells.
  • the casing of the battery cell and the casing of the battery are both made of insulating material, which can avoid short circuits caused by contact between the battery cell and the casing.
  • the insulation structure between the battery cell and the casing can be eliminated. , which can reduce the weight of the battery and thereby increase the energy density of the battery.
  • the electrode output part in this application can refer to the part where the tabs penetrate the outer packaging of the battery cell as described above, or can also be understood as the electrical connection piece that is electrically connected to the tabs outside the outer packaging of the battery cell.
  • the application examples do not limit this.
  • FIG. 3 shows another schematic exploded view of the battery 100 according to the embodiment of the present application.
  • the housing 120 is provided with a first opening 121.
  • the battery 100 also includes: a first end cover assembly 130, which is disposed at the first end 1101 of the battery module 110 in the first direction X.
  • the first end cover assembly 130 covers the first opening 121, the first end cover assembly 130 is provided with an electrode terminal 150, and the electrode terminal 150 is electrically connected to the output part of the battery module 110.
  • the first direction X is the length direction of the battery 100
  • the second direction Z is the thickness direction of the battery 100
  • the third direction Y is the width direction of the battery 100 .
  • the output part of the battery module 110 refers to the electrode output part of the battery module 110 that is not connected to other electrode output parts. It usually refers to the unconnected part of the battery cell located at the end of the battery module 110 along the first direction X.
  • the electrode output portion is connected to the electrode output portions of other battery cells.
  • the output part of the battery module 110 may include a positive electrode output part and a negative electrode output part.
  • the positive electrode output part and the negative electrode output part may be located at the same end of the battery module 110 in the first direction X, or may be located at different ends of the battery module 110 in the first direction X. Taking FIG. 3 as an example, the output part of the battery module 110 includes a positive electrode output part 1103 and a negative electrode output part 1104.
  • the positive electrode output part 1103 and the negative electrode output part 1104 are located in the same direction of the battery module 110 in the first direction X.
  • the end, that is, the first end 1101, the electrode terminal 150 also located at the first end 1101 includes a positive electrode terminal 151 and a negative electrode terminal 152, wherein the positive electrode output part 1103 is electrically connected to the positive electrode terminal 151, and the negative electrode output 1104 and the negative electrode terminal 152 are electrically connected.
  • a first end cover assembly 130 is provided at the first end 1101 of the battery module 110 in the first direction Risk of battery cell damage during shock and shock.
  • FIG. 4 is a schematic exploded view of the first end cap assembly 130 in FIG. 3 .
  • the first end cover assembly 130 includes: a first insulating end cover 131, which is provided with a first opening 1311 for receiving the electrode terminal 150.
  • the electrode terminal 150 passes through the first opening 1311 and the battery module.
  • the output part of 110 is electrically connected.
  • the first insulating end cap 131 is provided with a first opening 1311a and a first opening 1311b.
  • the first opening 1311a is used to accommodate the positive electrode terminal 151
  • the first opening 1311b is used to accommodate the negative electrode terminal. 152.
  • the end caps in the first end cap assembly 130 are made of insulating material, which is beneficial to eliminating the insulation structure between the electrode terminal 150 and the end cap and the insulation structure between the end cap and the battery module, thereby The energy density of the battery 100 can be further improved.
  • the first end cap assembly 130 further includes a sealing ring 132 for sealing the gap between the electrode terminal 150 and the first opening 1311 .
  • the first end cap assembly 130 includes a first sealing ring 132a and a second sealing ring 132b.
  • the first sealing ring 132a is used to seal the gap between the positive electrode terminal 151 and the first opening 1311a.
  • the second sealing ring 132b It is used to seal the gap between the negative electrode terminal 152 and the first opening 1311b.
  • the provision of the sealing ring 132 improves the sealing performance of the battery 100, thereby improving the safety of the battery 100.
  • the first end cover assembly 130 further includes: a conductive block 133 disposed around the first opening 1311 on a side of the first insulating end cover 131 away from the battery module 110 , and an electrode terminal. 150 is fixedly connected to the first insulating end cover 131 through the conductive block 133 .
  • the first end cap assembly 130 includes a first conductive block 133a and a second conductive block 133b.
  • the positive electrode terminal 151 is fixedly connected to the first insulating end cover 131 through the first conductive block 133a, and the negative electrode terminal 152 passes through
  • the second conductive block 133b is fixedly connected to the first insulating end cover 131 .
  • the arrangement of the conductive block 133 can not only firmly connect the electrode terminal 150 to the first insulating end cover 131, but also increase the area of the electrode terminal 150, thereby making the overcurrent capability stronger.
  • the battery 100 further includes an adapter 160 , through which the output part of the battery module 110 and the electrode terminal 150 are electrically connected.
  • the battery 100 includes a first adapter 161 and a second adapter 162.
  • the positive electrode output part 1103 and the positive electrode terminal 151 are electrically connected through the first adapter 161, and the negative electrode output part 1104 and the negative electrode terminal 152 are electrically connected through The second adapter 162 is electrically connected.
  • the adapter 160 is provided to realize the electrical connection between the output part of the battery module 110 and the electrode terminal 150 .
  • FIG. 5 is a schematic structural diagram of the adapter 160 in FIG. 3 .
  • the adapter 160 includes a first part 1601 and a second part 1602 .
  • the first part 1601 is arranged opposite to the first insulating end cover 131 .
  • the second part 1602 extends from one end of the first part 1601 in the second direction Z. Extending toward the battery module 110 , the electrode terminal 150 is connected to the first portion 1601 and the second portion 1602 is connected to the output of the battery module 110 .
  • the first part 1601 is provided with a second opening 1601a, and the electrode terminal 150 is connected to the first part 1601 in the second opening 1601a.
  • the adapter 160 may include two second parts 1602 , and the second opening 1601 is disposed between the two second parts 1602 . It should be understood that FIG. 5 only illustrates a structure of the adapter 160. The structure of the adapter 160 can be flexibly designed according to needs, and the embodiments of the present application are not limited thereto.
  • the housing 120 is provided with a second opening 122
  • the battery 100 further includes: a second end cover assembly 140 , which is disposed at the second end 1102 of the battery module 110 in the first direction X and covers Closing the second opening 122, the second end cover component 140 is made of insulating material.
  • the second end cover assembly 140 and the first end cover assembly 130 are arranged oppositely along the first direction X, and respectively cover the two openings oppositely arranged along the first direction Within the cavity 123 of the housing 120 .
  • the positive electrode output part 1103 and the negative electrode output part 1104 of the battery module 110 are provided at the same end of the battery module 110 in the first direction X, and the battery cells located at the other end of the battery module 110
  • the electrode output part is connected, which makes the first end cover assembly 130 and the second end cover assembly 140 asymmetrical, that is, the first end cover assembly 130 is provided with the electrode terminal 150, while the second end cover assembly 140 is not provided with an electrode terminal.
  • the second end cover assembly 140 is made of an insulating material, which is beneficial to eliminating the insulation structure between the end cover and the battery module 110 , thereby further improving the energy density of the battery 100 .
  • FIG. 6 is a front view of the second end cap assembly 140 in FIG. 3 .
  • the second end cap assembly 140 includes a second insulating end cap 141 and two protrusions.
  • the two protrusions include a first protrusion 142 and a second protrusion 143 .
  • the second insulating end cover 141 is arranged opposite to the first insulating end cover 131 .
  • the two protrusions are arranged opposite to each other along the second direction Z and are respectively connected to the second insulating end cover 141 .
  • the projection of the two protrusions on the plane where the second insulating end cap 141 is located is located in the second insulating end cap 141 , so that the two protrusions can be embedded in the second opening 122 .
  • the second insulating end cover 141 is integrally formed with the two protrusions.
  • the second insulating end cover 141 and the two protrusions are integrally formed, which can reduce the manufacturing process of the battery 100 .
  • the second insulating end cap 141 and the two protrusions are made of the same material.
  • the second insulating end cap 141 and the two protrusions are made of plastic material.
  • the battery 100 further includes a bracket assembly 170 for supporting the electrode output parts of a plurality of battery cells.
  • bracket assembly 170 to support the electrode output portion of the battery cell, the risk of tearing at the battery cell connection can be reduced.
  • FIG. 7 is a partial front view of the battery 100 shown in FIG. 3 .
  • FIG. 8 is a partial top view of the battery 100 shown in FIG. 3 .
  • the size of the bracket assembly 170 is H1 and the size of the battery module 110 is H2, where H1 is larger than H2.
  • H2 may be the maximum size of the battery module 110 in the third direction Z.
  • the size of the bracket assembly 170 is W1 and the size of the battery module 110 is W2, where W1 is larger than W2.
  • the size H1 of the bracket assembly 170 is set to be larger than the size H2 of the battery module 110
  • the size W1 of the bracket assembly 170 is set to be larger than the size of the battery.
  • the size W2 of the module 110 allows the bracket assembly 170 to first contact the housing 120 when the battery 100 is subjected to vibration and shock, thereby acting as a buffer and reducing damage to the battery cells.
  • FIG. 9 shows a schematic assembly diagram of the housing 120 and the bracket assembly 170 provided by the embodiment of the present application.
  • a row of battery cells are stacked along the second direction Z in the body.
  • a plurality of battery cells are arranged in at least one row along the first direction , which allows multiple brackets to separate different rows of battery cells in different sub-cavities 1231 of the housing 120 .
  • the bracket component 170 may be made of insulating material.
  • the bracket component 170 is made of plastic material.
  • the bracket assembly 170 is made of insulating material, which can avoid short circuit between the battery cells and the case 120 caused by the contact between the bracket assembly 170 and the housing 120 .
  • the bracket assembly 170 is fixedly connected to the housing 120 .
  • the bracket assembly 170 may be fixedly connected to the housing 120.
  • bracket assembly 170 may be integrally formed with housing 120 .
  • the bracket assembly 170 and the housing 120 are first fixedly connected through structural glue. In this case, the bracket assembly 170 divides the cavity 123 of the housing 120 into a plurality of sub-cavities 1231, and the plurality of battery cells of the battery module 110 can be assembled into the plurality of sub-cavities 1231.
  • the bracket assembly 170 is first assembled with the battery module 110 and then assembled together into the cavity 123 of the housing 120 .
  • the bracket assembly 170 and the housing 120 can be fixedly connected through structural glue.
  • a glue injection hole may be provided on the housing 120 , and the structural glue is introduced between the bracket assembly 170 and the housing 120 through the glue injection hole.
  • FIG. 10 shows another schematic exploded view of the battery 100 according to the embodiment of the present application.
  • the bracket component 170 is fixedly connected to the housing 120 .
  • the bracket component 170 and the housing 120 are integrally formed.
  • the housing 120 is provided with a third opening 124 in the third direction Y.
  • the third opening 124 is used to guide the assembly of multiple battery cells into the multiple sub-cavities 1231 .
  • the battery 100 also includes a cover 125 that covers the third opening 124.
  • the cover 125 is made of insulating material.
  • bracket component 170 and the housing 120 are made of the same material.
  • the bracket component 170 and the housing are both made of plastic material.
  • the bracket assembly 170 and the housing 120 are integrally formed, which can reduce the manufacturing process of the battery 100; in addition, the housing 120 is provided with a third opening 124 in the third direction Y, so that the battery module 110 can move along the third direction Y.
  • the opening 124 is assembled into the cavity 123 of the housing 120 , and the cover 125 covers the third opening 124 , so that the battery module 110 can be packaged in the cavity 123 , thereby protecting the battery module 110 .
  • FIG. 11 shows another schematic exploded view of the battery 100 according to the embodiment of the present application.
  • the bracket assembly 170 is first assembled with the battery module 110 and then assembled together into the cavity 123 of the housing 120 .
  • the shell 120 is provided with a glue injection hole 126 at a corresponding position of the bracket assembly 170 .
  • the glue injection hole 126 is used to introduce structural glue between the shell 120 and the bracket assembly 170 , so that the shell 120 and the bracket assembly 170 are fixedly connected.
  • the shell 120 is provided with glue injection holes 126 at corresponding positions of the bracket assembly 170, so that the bracket assembly 170 can be assembled with the battery module 110 first, and then assembled into the shell together with the battery module 110.
  • the connection stability between the battery module 110 and the bracket assembly 170 is improved.
  • the embodiment provided in Figure 10 and the embodiment provided in Figure 11 can also be combined.
  • the bracket assembly 170 and the housing 120 can be integrally formed as shown in FIG. 10
  • the housing 120 can also be provided with a glue injection hole 126 as shown in FIG. 11 at the corresponding position of the bracket assembly 170
  • the battery module 110 After being assembled to the battery module 110 , structural glue is injected through the glue injection hole 126 to further strengthen the strength between the bracket assembly 170 and the housing 120 .
  • the housing 120 shown in FIG. 11 may also be provided with a third opening 124 in the third direction Y, and the battery module 110 can be assembled into the cavity 123 of the housing 120 along the third opening 124 .
  • FIG. 12 shows a schematic structural diagram of the battery 100 according to the embodiment of the present application.
  • the battery module 110 includes a first battery cell 111 and a second battery cell 112 electrically connected along the first direction X.
  • the first electrode output part 111a of the first battery cell 111 and the second battery cell The second electrode output part 112a of the cell 112 is electrically connected;
  • the bracket assembly 170 includes a first bracket 171, which is disposed between the first battery cell 111 and the second battery cell 112.
  • the first bracket 171 is provided with a first receiving space. 1711, the first accommodation space 1711 is used to accommodate the first electrode output part 111a and the second electrode output part 112a.
  • the first bracket 171 is provided between the electrically connected first battery cell 111 and the second battery cell 112, and the connection portion of the first battery cell 111 and the second battery cell 112 is provided In the first accommodating space 1711 of the first bracket 171 , the connection point of the battery cells can be better fixed to prevent the connection point from shaking, thereby reducing the risk of tearing the connection point and improving the electrical connection stability of the battery 100 .
  • the first electrode output part 111a and the second electrode output part 112a may be connected by welding, and then the first accommodation space 1711 may penetrate the first bracket in the first direction X. That is, the first electrode output part 111a and the second electrode output part 112a are welded first, and then the connected first electrode output part 111a and the second electrode output part 112a are assembled into the first accommodation space 1711.
  • Figure 13 shows a schematic structural diagram of the first bracket 171 according to the embodiment of the present application.
  • the first bracket 171 includes a bracket body 1712 and a first fixing part 1713 .
  • the first fixing part 1713 and the bracket body 1712 are stacked in the second direction Z.
  • the first fixing part 1713 is fixedly connected to the bracket body 1712, and a first receiving space 1711 is formed between the bracket body 1712 and the first fixing part 1713.
  • the bracket body 1712 may be a plate-shaped structure, that is, the bracket body 1712 may be a hexahedron.
  • the bracket body 1712 is a rectangular parallelepiped with six flat surfaces.
  • the bracket body 1712 is a hexahedron with some uneven surfaces.
  • the first fixing part 1713 is fixedly connected to the bracket body 1712, which may mean that the first fixing part 1713 is fixedly connected to the bracket body 1712 before the first bracket 171 is assembled with the battery module 110; it may also refer to the fixed connection between the first bracket 171 and the bracket body 1712. After the battery module 110 is assembled, the first fixing member 1713 is fixedly connected to the bracket body 1712 .
  • the bracket body 1712 and the first fixing part 1713 by stacking the bracket body 1712 and the first fixing part 1713 in the second direction Z, a structure that limits the displacement of the first electrode output part 111a and the second electrode output part 112a in the second direction Z can be formed.
  • the first accommodation space 1711 can reduce the risk of tearing at the connection between the first electrode output part 111a and the second electrode output part 112a.
  • the first bracket 171 may also include a second fixing part, which is stacked with the bracket body 1712 in the second direction Z, and the bracket body 1712 is disposed between the first fixing part 1713 and the second fixing part.
  • the second fixing part is fixedly connected to the bracket body 1712, and a second accommodation space is formed between the second fixing part and the bracket body 1712. The second accommodating space is used to accommodate the electrode output portions of two electrically connected battery cells stacked with the first electrode cell and the second battery cell along the second direction Z.
  • the first bracket 171 is also provided with a glue filling channel 1714, which is used to introduce structural glue into the first electrode output part 111a, the second electrode output part 112a and the third electrode output part 111a. between one bracket 171.
  • a glue filling channel 1714 is provided on the first bracket 171, and the structural glue is introduced between the connected first electrode output part 111a and the second electrode output part 112a and the first bracket 171, so that the The first electrode output part 111a and the second electrode output part 112a are fixedly connected to the first bracket 171 to enhance the rigidity between the battery module 110 and the first bracket 171.
  • the glue channel 1714 is provided on the first fixing member 1713 .
  • the glue filling channel 1714 can also be provided on the bracket body 1712.
  • the bracket body 1712 has a cavity.
  • the bracket body 1712 includes two side walls distributed along the first direction X and two support walls distributed along the second direction Z.
  • the glue filling channel 1714 is provided on at least one side wall of the bracket body. and at least one supporting wall for introducing structural glue between at least one of the first battery cell 111 and the second battery cell 112 and the first bracket 171 to connect the at least one battery cell. Fixedly connected to the first bracket 171 .
  • the glue channel 1714 is provided on two side walls and two support walls.
  • the bracket assembly 170 further includes a second bracket 172 disposed at the first end 1101 of the battery module 110 in the first direction X.
  • the second bracket 172 is disposed in the first direction X.
  • a second accommodation space passes through the second bracket 172 .
  • the second accommodation space is used to accommodate the output part of the battery module 110 .
  • the output part of the battery module 110 is electrically connected to the electrode terminal 150 .
  • the output part of the battery module 110 includes a positive electrode output part 1103 and a negative electrode output part 1104.
  • the positive electrode output part 1103 and the negative electrode output part 1104 are located on the battery module 110 in the first direction.
  • the second bracket 172 is provided with two second accommodation spaces, and the two second accommodation spaces are respectively used to accommodate the positive electrode output part 1103 and the negative electrode output part 1104.
  • the structure of the second bracket 172 may refer to the description of the first bracket 171 , and for the sake of simplicity, it will not be described again here.
  • FIG. 14 shows a front view of the battery 100 according to the embodiment of the present application.
  • the battery module 110 includes a third battery cell 113 and a fourth battery cell 114 stacked along the second direction Z.
  • the third battery cell 113 and the fourth battery cell 114 are located in the battery module.
  • the bracket assembly 170 also includes a third bracket 173, which is disposed in the third accommodation space enclosed by the third electrode output part 113a and the fourth electrode output part 114a, and is used to support the third electrode output part 113a and the fourth electrode output part. 114a.
  • the third battery cell 113 and the fourth battery cell 114 are stacked along the second direction Z, the third electrode output part 113a of the third battery cell 113 and the fourth battery cell 114 After the fourth electrode output part 114a is connected, it will enclose a third accommodation space.
  • the third accommodation space can be lowered. The risk of tearing between the three-electrode output part 113a and the fourth electrode output part 114a improves the electrical connection stability of the battery 100.
  • the third bracket 173 may be integrally formed with the second end cap assembly 140 .
  • the third bracket 173 and the second end cover assembly 140 are made of the same material.
  • the third bracket 173 and the second end cap assembly 140 are independent components.
  • the third bracket 173 penetrates the second end cover assembly 140 in the third direction Y.
  • the materials of the third bracket 173 and the second end cover assembly 140 may be the same or different.
  • the third electrode output part 113a and the fourth electrode output part 114a may be directly connected, or may be connected through the connector 180 as shown in FIG. 3 .
  • the battery cells in the embodiments of the present application are bag-shaped battery cells.
  • the battery cells in the embodiments of the present application are soft-pack battery cells.
  • the electrode assembly of the soft-packed battery cell is contained in the packaging bag, and the edges of the packaging bag can be connected through heat-pressure sealing to form a sealing part.
  • the electrode output part extends to the outside of the packaging bag to realize charging and discharging of the battery cell.
  • the casing of the battery cell may include a metal plastic film.
  • the battery cells are configured as bag-shaped battery cells, which can reduce the weight of the battery and increase the energy density.
  • the casing of the battery cell includes a metal plastic film, which can improve the rigidity of the battery cell.
  • the electrical device may include the battery 100 in the various embodiments described above to provide electrical energy to the electrical device.
  • the electrical device may be a vehicle, ship or spacecraft.
  • the battery 100 of the aforementioned embodiment in an electrical device and configuring the battery cell casing and the battery casing to be made of insulating materials, short circuits caused by contact between the battery cells and the casing can be avoided; secondly, the battery cell can be eliminated
  • the insulation structure between the body and the casing can reduce the weight of the battery, thereby increasing the energy density of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

电池(100)和用电装置,电池(100)包括电池模组(110)和外壳(120),电池模组(110)包括电连接的多个电池单体,多个电池单体中每个电池单体的壳体均为绝缘材质,外壳(120)设置有空腔(123),空腔(123)用于容纳电池模组(110),外壳(120)为绝缘材质。

Description

电池和用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池和用电装置。
背景技术
在电池技术的发展中,电池的能量密度是一项不可忽视的设计因素,因此,如何提高电池的能量密度,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种电池和用电装置,能够提高电池的能量密度。
第一方面,提供了一种电池,包括:电池模组,包括电连接的多个电池单体,多个电池单体中每个电池单体的壳体为绝缘材质;外壳,设置有空腔,空腔用于容纳电池模组,外壳为绝缘材质。
在该实施例中,将电池单体的壳体和电池的外壳均设置为绝缘材质,可以减少电池单体与外壳之间的绝缘部件,能够减轻电池的重量,从而提高电池的能量密度。
在一种可能的实现方式中,外壳设置有第一开口,电池还包括:第一端盖组件,设置在电池模组在第一方向的第一端部,第一端盖组件盖合第一开口,第一方向为电池的长度方向;第一端盖组件上设置有电极端子,电极端子和电池模组的输出部电连接。
在该实施例中,在电池模组在第一方向的第一端部设置第一端盖组件,以将电池模组封装在外壳的空腔内,降低在电池受到震动冲击时电池 单体被损坏的风险。
在一种可能的实现方式中,第一端盖组件包括:第一绝缘端盖,设置有用于容纳电极端子的第一开孔;电极端子穿过第一开孔与输出部电连接。
在该实施例中,将第一端盖组件中的端盖设置为绝缘材质,有利于取消电极端子与端盖之间的绝缘结构以及端盖与电池模组之间的绝缘结构,从而可以进一步提高电池的能量密度。
在一种可能的实现方式中,第一端盖组件还包括:密封圈,用于密封电极端子与第一开孔之间的间隙。
在该实施例中,密封圈的设置提高电池的密封性,从而可以提高电池的安全性。
在一种可能的实现方式中,电池还包括:转接件,输出部与电极端子通过转接件电连接。
在该实施例中,转接件的设置可以实现电池模组的输出部与电极端子之间的电连接。
在一种可能的实现方式中,转接件包括第一部分和第二部分,第一部分与第一绝缘端盖相对设置,第二部分从第一部分在第二方向上的一端朝向电池模组延伸,电极端子与第一部分连接,第二部分与输出部连接,第二方向为电池的厚度方向。
在一种可能的实现方式中,第一部分设置有第二开孔,电极端子在第二开孔内与第一部分连接。
在一种可能的实现方式中,外壳设置有第二开口,电池还包括:第二端盖组件,设置在电池模组在第一方向的第二端部且盖合第二开口,第二端盖组件为绝缘材质。
在该实施例中,将第二端盖组件设置成绝缘材质,有利于取消端盖 与电池模组之间的绝缘结构,从而可以进一步提高电池的能量密度。
在一种可能的实现方式中,第二端盖组件包括第二绝缘端盖和两个凸部,第二绝缘端盖与第一绝缘端盖相对设置,两个凸部沿第二方向相对设置且分别与第二绝缘端盖连接;其中,两个凸部在第二绝缘端盖所在平面的投影位于第二绝缘端盖内,以使得两个凸部能够嵌入至第二开口内,第二方向为电池的厚度方向。
在一种可能的实现方式中,第二绝缘端盖和两个凸部一体成型。
在该实施例中,将第二绝缘端盖与两个凸部一体成型,可以降低电池的制作工序。
在一种可能的实现方式中,第二绝缘端盖和两个凸部的材质相同。
在一种可能的实现方式中,电池还包括:支架组件,用于支撑多个电池单体的电极输出部。
在该实施例中,通过设置支架组件以支撑电池单体的电极输出部,可以降低电池单体连接处的撕裂风险。
在一种可能的实现方式中,在第二方向和第三方向上,支架组件的尺寸大于电池模组的尺寸,第二方向为电池的厚度方向,第三方向为电池的宽度方向。
在该实施例中,在第二方向上,将支架组件的尺寸设置成大于电池模组的尺寸,以及在第三方向上,将支架组件的尺寸设置成大于电池模组的尺寸,可以在电池受到震动冲击时,支架组件先与外壳接触,起到缓冲作用,降低电池单体的损坏。
在一种可能的实现方式中,在第一方向上,支架组件将空腔分隔成多个子空腔,多个子空腔中每个子空腔用于容纳多个电池单体中沿第二方向堆叠设置的一列电池单体,第一方向为电池的长度方向,第二方向为电池的厚度方向。
在一种可能的实现方式中,支架组件为绝缘材质。
在该实施例中,将支架组件设置成绝缘材质,可以避免支架组件与外壳接触所引起的电池单体与外壳之间的短路。
在一种可能的实现方式中,支架组件与外壳固定连接。
在一种可能的实现方式中,支架组件与外壳一体成型。
在该实施例中,支架组件与外壳一体成型,能够减少电池的制作工序。
在一种可能的实现方式中,外壳在支架组件的对应位置处设置有注胶孔,注胶孔用于将结构胶导入至外壳与支架组件之间,以使得外壳与支架组件固定连接。
在该实施例中,外壳在支架组件的对应位置处设置注胶孔,使得支架组件能够先与电池模组装配在一起,然后再与电池模组一起装配入壳,能够提高电池模组与支架组件之间的连接稳定性。
在一种可能的实现方式中,外壳在第三方向上设置有第三开口,第三开口用于引导多个电池单体装配至空腔内;.电池还包括:盖体,盖体盖合第三开口,盖体为绝缘材质。
在该实施例中,外壳在第三方向上设置有第三开口,使得电池模组能够沿着第三开口装配至外壳的空腔内,盖体盖合第三开口,能够将电池模组封装在空腔内,从而可以保护电池模组。
在一种可能的实现方式中,支架组件包括:第一支架,设置在多个电池单体中沿第一方向电连接的第一电池单体和第二电池单体之间,第一支架设置有第一容纳空间,第一容纳空间用于容纳第一电池单体的第一电极输出部和第二电池单体的第二电极输出部,第一电极输出部和第二电极输出部电连接,第一方向为电池的长度方向。
在该实施例中,在电连接的第一电池单体和第二电池单体之间设置 第一支架,并使第一电池单体和第二电池单体的连接部设置在第一支架的第一容纳空间内,可以较好地固定电池单体的连接处,防止连接处的晃动,从而可以降低连接处撕裂的风险,提高电池的电连接稳定性。
在一种可能的实现方式中,第一容纳空间在第一方向上贯通第一支架,第一支架包括:支架本体;第一固定件,与支架本体在第二方向上堆叠设置,第二方向为电池的厚度方向;其中,第一固定件与支架本体固定连接,支架本体与第一固定件之间形成第一容纳空间。
在实施例中,通过在第二方向上堆叠设置的支架本体和第一固定件,可以形成在第二方向上限制第一电极输出部和第二电极输出部位移的第一容纳空间,从而可以降低第一电极输出部和第二电极输出部连接处的撕裂风险。
在一种可能的实现方式中,第一支架设置有灌胶通道,灌胶通道用于将结构胶导入至第一电极输出部和第二电极输出部与第一支架之间。
在该实施例中,在第一支架上设置灌胶通道,将结构胶导入至连接后的第一电极输出部和第二电极输出部与第一支架之间,从而可以将第一电极输出部和第二电极输出部与第一支架固定连接,加强电池模组与第一支架之间的刚度。
在一种可能的实现方式中,支架组件还包括:第二支架,设置在电池模组在第一方向上的第一端部,第二支架设置有在第一方向上贯通第二支架的第二容纳空间,第二容纳空间用于容纳电池模组的输出部,输出部与电极端子电连接,第一方向为电池的长度方向。
在一种可能的实现方式中,电池模组还包括:沿第二方向堆叠设置的第三电池单体和第四电池单体,第三电池单体和第四电池单***于电池模组在第一方向的第二端部,第三电池单体的第三电极输出部和第四电池单体的第四电极输出部电连接,第一方向为电池的长度方向,第二方向为 电池的厚度方向;支架组件还包括:第三支架,设置于第三电极输出部和第四电极输出部围合形成的第三容纳空间内,用于支撑第三电极输出部和第四电极输出部。
在该实施例中,由于第三电池单体与第四电池单体沿第二方向堆叠设置,故第三电池单体的第三电极输出部与第四电池单体的第四电极输出部连接之后会围合形成第三容纳空间,通过在第三容纳空间内设置第三支架,以支撑第三电极输出部和第四电极输出部,从而可以降低第三电极输出部和第四电极输出部之间的撕裂风险,提高电池的电连接稳定性。
在一种可能的实现方式中,电池单体为袋状电池单体,电池单体的壳体包括金属塑膜。
在该实施例中,将电池单体设置为袋状电池单体,可以降低电池的重量,提高能量密度。另外,电池单体的壳体包括金属塑膜,可以提高电池单体的刚度。
第二方面,提供了一种用电装置,包括:第一方面以及第一方面中任一种可能的实现方式中的电池,该电池用于为用电装置提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图。
图2示出了本申请实施例的电池的一种示意性***图。
图3示出了本申请实施例的电池的另一种示意性***图。
图4为图3中的第一端盖组件的示意性***图。
图5为图3中的转接件的示意性结构图。
图6为图3中第二端盖组件的主视图。
图7为图3所示的电池的局部主视图。
图8为图3所示的电池的局部俯视图。
图9示出了本申请实施例提供的外壳与支架组件的一种示意性装配图。
图10示出了本申请实施例的电池的再一种示意性爆照图。
图11示出了本申请实施例的电池的又一示意性爆照图。
图12示出了本申请实施例的电池的一种示意性结构图。
图13示出了本申请实施例的第一支架的示意性结构图。
图14示出了本申请实施例的电池的一种局部主视图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。 正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP或PE等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
节能减排是新能源产业可持续发展的关键。在这种情况下,用电装置由于其节能环保的优势成为新能源产业可持续发展的重要组成部分。而对于用电装置而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的安全性外,还需要考虑其他的设计因素。其中,能量密度是一项不可忽视的因素,因此,如何提高电池的能量密度,是电池技术中一个亟待解决的技术问题。
有鉴于此,本申请实施例提供了一种电池,将壳体为绝缘材质的电池模组装配至绝缘外壳内,能够减轻电池的重量,提高电池的能量密度。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描 述的用电装置,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达80,控制器60以及电池100,控制器60用来控制电池100为马达80的供电。例如,在车辆1的底部或车头或车尾可以设置电池100。电池100可以用于车辆1的供电,例如,电池100可以作为车辆1的操作电源,用于车辆1的电路***,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池100不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
图2示出了本申请实施例的电池100的一种示意性***图。如图2所示,电池100包括:电池模组110,包括电连接的多个电池单体,多个电池单体中每个电池单体的壳体为绝缘材质;外壳120,设置有空腔123,用于容纳电池模组110,外壳120为绝缘材质。
需要解释的是,电池单体的壳体为绝缘材质至少包括电池单体的外表面为绝缘材质,而外壳120为绝缘材质至少包括外壳120的内表面为绝缘材质。可选地,外壳120可以是塑胶材质。
可选地,多个电池单体可以串联连接,即一个电池单体的正电极输出部和另一个电池单体的负电极输出部连接。可选地,多个电池单体也可以并联连接,即多个电池单体的正电极输出部连接在一起,且多个电池单体的负电极输出部连接在一起。可选地,该多个电池单体还可以混联连接,即其中一部分电池单体先并联,再与另一部分并联的电池单体串联,或者其中一部分电池单体先串联,再与另一部分串联的电池单体并联。
在一种实施例中,电池单体之间可以通过焊接连接,例如,超声波焊接或者激光焊接。在其他实施例中,电池单体之间也可以通过导电胶等其他方式连接。可选地,电池单体之间可以直接连接,也可以通过一个连接件连接,本申请实施例对电池单体之间的连接方式不作任何限定。
在该实施例中,将电池单体的壳体和电池的外壳均设置为绝缘材质,可以避免电池单体与外壳接触所引起的短路;其次,可以取消电池单体与外壳之间的绝缘结构,能够减轻电池的重量,从而提高电池的能量密度。
本申请中的电极输出部可以是指上文中所描述的极耳穿出电池单体外包装的部分,也可以理解成在电池单体的外包装外部与极耳电连接的电连接片,本申请实施例对此不作限定。
图3示出了本申请实施例的电池100的另一种示意性***图。如图3所示,外壳120设置有第一开口121,电池100还包括:第一端盖组件130,设置在电池模组110在第一方向X的第一端部1101,第一端盖组件130盖合第一开口121,第一端盖组件130设置有电极端子150,电极端子150与电池模组110的输出部电连接。
为了便于描述,此处先对各个方向进行定义。第一方向X为电池100的长度方向,第二方向Z为电池100的厚度方向,第三方向Y为电池100的宽度方向。
电池模组110的输出部是指电池模组110中未与其他电极输出部连接的电极输出部,通常是指位于电池模组110沿第一方向X的端部设置的电池单体的未与其他电池单体的电极输出部连接的电极输出部。可选地,该电池模组110的输出部可以包括正电极输出部和负电极输出部。该正电极输出部和负电极输出部可以位于电池模组110在第一方向X的同一端部,也可以位于电池模组110在第一方向X的不同端部。以图3为例,电池模组110的输出部包括正电极输出部1103和负电极输出部1104,该正电极 输出部1103和负电极输出部1104位于电池模组110在第一方向X的同一端部,即第一端部1101,同样位于第一端部1101的电极端子150包括正电极端子151和负电极端子152,其中,正电极输出部1103与正电极端子151电连接,负电极输出部1104和负电极端子152电连接。
在该实施例中,在电池模组110在第一方向X的第一端部1101设置第一端盖组件130,以将电池模组110封装在外壳120的空腔123内,降低在电池受到震动冲击时电池单体被损坏的风险。
图4为图3中的第一端盖组件130的示意性***图。如图4所示,该第一端盖组件130包括:第一绝缘端盖131,设置有用于容纳电极端子150的第一开孔1311,电极端子150穿过第一开孔1311与电池模组110的输出部电连接。例如,第一绝缘端盖131上设置有第一开孔1311a和第一开孔1311b,该第一开孔1311a用于容纳正电极端子151,而该第一开孔1311b用于容纳负电极端子152。
在该实施例中,将第一端盖组件130中的端盖设置为绝缘材质,有利于取消电极端子150与端盖之间的绝缘结构以及端盖与电池模组之间的绝缘结构,从而可以进一步提高电池100的能量密度。
如图4所示,该第一端盖组件130还包括:密封圈132,用于密封电极端子150与第一开孔1311之间的间隙。例如,该第一端盖组件130包括第一密封圈132a和第二密封圈132b,第一密封圈132a用于密封正电极端子151与第一开孔1311a之间的间隙,第二密封圈132b用于密封负电极端子152与第一开孔1311b之间的间隙。
在该实施例中,密封圈132的设置提高电池100的密封性,从而可以提高电池100的安全性。
可选地,如图4所示,该第一端盖组件130还包括:导电块133,围绕第一开孔1311设置在第一绝缘端盖131的远离电池模组110的一侧, 电极端子150通过该导电块133与第一绝缘端盖131固定连接。例如,该第一端盖组件130包括第一导电块133a和第二导电块133b,该正电极端子151通过该第一导电块133a与第一绝缘端盖131固定连接,该负电极端子152通过该第二导电块133b与第一绝缘端盖131固定连接。
在该实施例中,导电块133的设置既可以将电极端子150与第一绝缘端盖131固定连接,又可以增大电极端子150的面积,从而使得过流能力更强。
可选地,如图3所示,电池100还包括:转接件160,电池模组110的输出部与电极端子150通过转接件160电连接。例如,电池100包括第一转接件161和第二转接件162,正电极输出部1103与正电极端子151通过第一转接件161电连接,负电极输出部1104与负电极端子152通过第二转接件162电连接。
在该实施例中,转接件160的设置可以实现电池模组110的输出部与电极端子150之间的电连接。
图5为图3中的转接件160的示意性结构图。如图5所示,该转接件160包括第一部分1601和第二部分1602,第一部分1601与第一绝缘端盖131相对设置,第二部分1602从第一部分1601在第二方向Z上的一端朝向电池模组110延伸,电极端子150与第一部分1601连接,第二部分1602与电池模组110的输出部连接。
进一步地,如图5所示,该第一部分1601设置有第二开孔1601a,电极端子150在第二开孔1601a内与第一部分1601连接。可选地,如图5所示,转接件160可以包括两个第二部分1602,第二开口1601设置在两个第二部分1602之间。应理解,图5只是示意了一种转接件160的结构,转接件160的结构可以根据需要灵活设计,本申请实施例应不限于此。
可选地,如图3所示,外壳120设置有第二开口122,电池100还 包括:第二端盖组件140,设置在电池模组110在第一方向X的第二端部1102且盖合第二开口122,第二端盖组件140为绝缘材质。
换句话说,第二端盖组件140和第一端盖组件130沿第一方向X相对设置,并且分别盖合外壳120在第一方向X相对设置的两个开口,以使得电池模组110封装在外壳120的空腔123内。
可选地,电池模组110的正电极输出部1103和负电极输出部1104设置在电池模组110在第一方向X的同一端部,而位于电池模组110的另一端部的电池单体的电极输出部连接,这就使得第一端盖组件130和第二端盖组件140不对称,即第一端盖组件130设置电极端子150,而第二端盖组件140不设置电极端子。
在该实施例中,将第二端盖组件140设置成绝缘材质,有利于取消端盖与电池模组110之间的绝缘结构,从而可以进一步提高电池100的能量密度。
图6为图3中第二端盖组件140的主视图。如图6所示,该第二端盖组件140包括第二绝缘端盖141和两个凸部,例如,该两个凸部包括第一凸部142和第二凸部143。第二绝缘端盖141与第一绝缘端盖131相对设置,该两个凸部沿第二方向Z相对设置且分别与第二绝缘端盖141连接。如图6所示,两个凸部在第二绝缘端盖141所在平面的投影位于第二绝缘端盖141内,以使得两个凸部能够嵌入至第二开口122内。
可选地,在本申请实施例中,第二绝缘端盖141与两个凸部一体成型。
在该实施例中,将第二绝缘端盖141与两个凸部一体成型,可以降低电池100的制作工序。
可选地,在本申请实施例中,第二绝缘端盖141与两个凸部的材质相同。例如,该第二绝缘端盖141与两个凸部均为塑胶材质。
可选地,如图3所示,电池100还包括:支架组件170,用于支撑多个电池单体的电极输出部。
在该实施例中,通过设置支架组件170以支撑电池单体的电极输出部,可以降低电池单体连接处的撕裂风险。
图7为图3所示的电池100的局部主视图。图8为图3所示的电池100的局部俯视图。可选地,如图7所示,在第二方向Z上,支架组件170的尺寸为H1,电池模组110的尺寸为H2,其中,H1大于H2。应理解,H2可以是电池模组110在第三方向Z上的最大尺寸。可选地,如图8所示,在第三方向Y上,支架组件170的尺寸为W1,电池模组110的尺寸为W2,其中,W1大于W2。
在该实施例中,在第二方向Z上,将支架组件170的尺寸H1设置成大于电池模组110的尺寸H2,以及在第三方向Y上,将支架组件170的尺寸W1设置成大于电池模组110的尺寸W2,可以在电池100受到震动冲击时,支架组件170先与外壳120接触,起到缓冲作用,降低电池单体的损坏。
图9示出了本申请实施例提供的外壳120与支架组件170的一种示意性装配图。如图9所示,在第一方向X上,支架组件170将外壳120的空腔123分隔成多个子空腔1231,该多个子空腔1231中每个子空腔1231用于容纳多个电池单体中沿第二方向Z堆叠设置的一列电池单体。例如,多个电池单体沿第一方向X呈至少一排设置,相邻的两列电池单体之间设置一个支架,多个电池单体在第一方向X的两端也分别设置一个支架,这就使得多个支架将不同列电池单体分隔在外壳120的不同子空腔1231内。
可选地,在本申请实施例中,支架组件170可以是绝缘材质。例如,该支架组件170为塑胶材质。
在该实施例中,将支架组件170设置成绝缘材质,可以避免支架组件170与外壳120接触所引起的电池单体与外壳120之间的短路。
可选地,在本申请实施例中,支架组件170与外壳120固定连接。
可选地,在一种实施例中,在电池模组110装配至外壳120的空腔123之前,支架组件170可以与外壳120固定连接。例如,支架组件170可以与外壳120一体成型。再例如,支架组件170与外壳120通过结构胶先固定连接。在此情况下,支架组件170将外壳120的空腔123分隔成多个子空腔1231,电池模组110的多个电池单体可以装配至多个子空腔1231内。
可选地,在其他实施例中,在电池模组110装配至外壳120的空腔123之前,支架组件170先与电池模组110装配成型,然后再一起装配至外壳120的空腔123内。支架组件170与外壳120之间可以通过结构胶固定连接。例如,可以在外壳120上设置注胶孔,结构胶通过注胶孔导入至支架组件170与外壳120之间。
图10示出了本申请实施例的电池100的另一种示意性爆照图。如图10所示,在电池模组110装配至外壳120的空腔123之前,支架组件170与外壳120固定连接,例如,支架组件170与外壳120一体成型。可选地,如图10所示,外壳120在第三方向Y上设置有第三开口124,第三开口124用于引导多个电池单体装配至多个子空腔1231内。电池100还包括盖体125,盖体125盖合第三开口124,盖体125为绝缘材质。
可选地,支架组件170与外壳120的材质相同,例如,支架组件170与外壳均为塑胶材质。
在该实施例中,支架组件170与外壳120一体成型,能够减少电池100的制作工序;另外,外壳120在第三方向Y上设置有第三开口124,使得电池模组110能够沿着第三开口124装配至外壳120的空腔123内, 盖体125盖合第三开口124,能够将电池模组110封装在空腔123内,从而可以保护电池模组110。
图11示出了本申请实施例的电池100的再一示意性爆照图。如图11所示,在电池模组110装配至外壳120的空腔123之前,支架组件170先与电池模组110装配成型,然后再一起装配至外壳120的空腔123内。外壳120在支架组件170的对应位置处设置有注胶孔126,该注胶孔126用于将结构胶导入至外壳120与支架组件170之间,以使得外壳120与支架组件170固定连接。
在该实施例中,外壳120在支架组件170的对应位置处设置注胶孔126,使得支架组件170能够先与电池模组110装配在一起,然后再与电池模组110一起装配入壳,能够提高电池模组110与支架组件170之间的连接稳定性。
在其他实施例中,图10所提供的实施例与图11所提供的实施例也可以结合。例如,可以采用图10所示的支架组件170与外壳120一体成型结构,并且外壳120在支架组件170的对应位置处也可以设置如图11所示的注胶孔126,在将电池模组110装配至电池模组110之后,再通过注胶孔126注入结构胶,进一步加强支架组件170与外壳120之间的强度。再例如,图11所示的外壳120在第三方向Y上也可以设置第三开口124,电池模组110能够沿着第三开口124装配至外壳120的空腔123内。
图12示出了本申请实施例的电池100的一种示意性结构图。如图12所示,电池模组110包括沿第一方向X电连接的第一电池单体111和第二电池单体112,第一电池单体111的第一电极输出部111a与第二电池单体112的第二电极输出部112a电连接;支架组件170包括第一支架171,设置在第一电池单体111和第二电池单体112之间,第一支架171设置有第一容纳空间1711,该第一容纳空间1711用于容纳第一电极输出部 111a和第二电极输出部112a。
在该实施例中,在电连接的第一电池单体111和第二电池单体112之间设置第一支架171,并使第一电池单体111和第二电池单体112的连接部设置在第一支架171的第一容纳空间1711内,可以较好地固定电池单体的连接处,防止连接处的晃动,从而可以降低连接处撕裂的风险,提高电池100的电连接稳定性。
可选地,第一电极输出部111a和第二电极输出部112a可以通过焊接的方式连接,那么第一容纳空间1711在第一方向X上可以贯通第一支架。即先将第一电极输出部111a与第二电极输出部112a焊接,然后再将连接后的第一电极输出部111a与第二电极输出部112a装配至第一容纳空间1711。
图13示出了本申请实施例的第一支架171的示意性结构图。如图13所示,第一支架171包括支架本体1712和第一固定件1713,第一固定件1713与支架本体1712在第二方向Z上堆叠设置。第一固定件1713与支架本体1712固定连接,支架本体1712与第一固定件1713之间形成第一容纳空间1711。
可选地,支架本体1712可以为板状结构,即支架本体1712为六面体。例如,支架本体1712为六面均为平面的长方体。再例如,支架本体1712为部分面不平整的六面体。
第一固定件1713与支架本体1712固定连接,可以是指在第一支架171与电池模组110装配之前,第一固定件1713与支架本体1712固定连接;也可以是指在第一支架171与电池模组110装配之后,第一固定件1713与支架本体1712固定连接。
在该实施例中,通过在第二方向Z上堆叠设置的支架本体1712和第一固定件1713,可以形成在第二方向Z上限制第一电极输出部111a 和第二电极输出部112a位移的第一容纳空间1711,从而可以降低第一电极输出部111a和第二电极输出部112a连接处的撕裂风险。
上文提到,电池模组110中的多个电池单体可以沿第一方向X呈多排设置,那么多个电池单体中属于同一列但不同排的相邻电池单体可以共用一个第一支架171。例如,电池模组110中的多个电池单体沿第一方向X呈两排设置。第一支架171还可以包括第二固定件,该第二固定件与支架本体1712在第二方向Z上堆叠设置,支架本体1712设置在第一固定件1713与第二固定件之间。第二固定件与支架本体1712固定连接,且第二固定件与支架本体1712之间形成第二容纳空间。该第二容纳空间用于容纳与第一电极单体和第二电池单体沿第二方向Z堆叠设置的两个电连接的电池单体的电极输出部。
可选地,如图13所示,该第一支架171还设置有灌胶通道1714,该灌胶通道1714用于将结构胶导入至第一电极输出部111a和第二电极输出部112a与第一支架171之间。
在该实施例中,在第一支架171上设置灌胶通道1714,将结构胶导入至连接后的第一电极输出部111a和第二电极输出部112a与第一支架171之间,从而可以将第一电极输出部111a和第二电极输出部112a与第一支架171固定连接,加强电池模组110与第一支架171之间的刚度。
可选地,灌胶通道1714设置在第一固定件1713上。可选地,灌胶通道1714还可以设置在支架本体1712上。例如,支架本体1712具有空腔,支架本体1712包括沿第一方向X分布的两个侧壁和沿第二方向Z分布的两个支撑壁,灌胶通道1714设置在支架本体的至少一个侧壁和至少一个支撑壁上,用于将结构胶导入至第一电池单体111和第二电池单体112中的至少一个电池单体与第一支架171之间,以将该至少一个电池单体与第一支架171固定连接。可选地,灌胶通道1714设置在两个侧壁和 两个支撑壁上。
可选地,如图3所示,支架组件170还包括第二支架172,设置在电池模组110在第一方向X上的第一端部1101,第二支架172设置有在第一方向X上贯通第二支架172的第二容纳空间,该第二容纳空间用于容纳电池模组110的输出部,该电池模组110的输出部与电极端子150电连接。
可选地,如图3所示,电池模组110的输出部包括正电极输出部1103和负电极输出部1104,正电极输出部1103和负电极输出部1104位于电池模组110在第一方向X的同一端部,例如,第一端部1101。该第二支架172设置有两个第二容纳空间,该两个第二容纳空间分别用于容纳正电极输出部1103和负电极输出部1104。
应理解,第二支架172的结构可以参考第一支架171的描述,为了简洁,此处不再赘述。
图14示出了本申请实施例的电池100的一种主视图。如图14所示,电池模组110包括沿第二方向Z堆叠设置的第三电池单体113和第四电池单体114,第三电池单体113和第四电池单体114位于电池模组110在第一方向X的第二端部1102,第三电池单体113的第三电极输出部113a与第四电池单体114的第四电极输出部114a电连接。支架组件170还包括第三支架173,设置在第三电极输出部113a和第四电极输出部114a围合形成的第三容纳空间内,用于支撑第三电极输出部113a和第四电极输出部114a。
在该实施例中,由于第三电池单体113与第四电池单体114沿第二方向Z堆叠设置,故第三电池单体113的第三电极输出部113a与第四电池单体114的第四电极输出部114a连接之后会围合形成第三容纳空间,通过在第三容纳空间内设置第三支架173,以支撑第三电极输出部113a和第 四电极输出部114a,从而可以降低第三电极输出部113a和第四电极输出部114a之间的撕裂风险,提高电池100的电连接稳定性。
可选地,在一种实施例中,该第三支架173可以与第二端盖组件140一体成型。可选地,第三支架173与第二端盖组件140的材质相同。
可选地,在其他实施例中,该第三支架173与第二端盖组件140为独立的部件。换言之,第三支架173在第三方向Y上贯通第二端盖组件140。在此情况下,第三支架173与第二端盖组件140的材质可以相同,也可以不同。
可选地,第三电极输出部113a和第四电极输出部114a可以直接连接,也可以通过如图3所示的连接件180连接。
可选地,本申请实施例中的电池单体为袋状电池单体。换句话说,本申请实施例中的电池单体为软包电池单体。通常,软包电池单体的电极组件收容在包装袋内,而包装袋的边缘可通过热压密封连接,从而形成密封部,电极输出部延伸到包装袋的外部,实现电池单体的充放电。可选地,电池单体的壳体可以包括金属塑膜。
在该实施例中,将电池单体设置为袋状电池单体,可以降低电池的重量,提高能量密度。另外,电池单体的壳体包括金属塑膜,可以提高电池单体的刚度。
本申请一个实施例还提供了一种用电装置,用电装置可以包括前述各种实施例中的电池100,以用于为用电装置提供电能。可选地,用电装置可以为车辆、船舶或航天器。
通过在用电装置中设置前述实施例的电池100,将电池单体的壳体和电池的外壳均设置为绝缘材质,可以避免电池单体与外壳接触所引起的短路;其次,可以取消电池单体与外壳之间的绝缘结构,能够减轻电池的重量,从而提高电池的能量密度。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (26)

  1. 一种电池(100),其特征在于,包括:
    电池模组(110),包括电连接的多个电池单体,所述多个电池单体中每个电池单体的壳体为绝缘材质;
    外壳(120),设置有空腔(123),所述空腔(123)用于容纳所述电池模组(110),所述外壳(120)为绝缘材质。
  2. 根据权利要求1所述的电池(100),其特征在于,所述外壳(120)设置有第一开口(121),所述电池(100)还包括:
    第一端盖组件(130),设置在所述电池模组(110)在第一方向(X)的第一端部(1101),所述第一端盖组件(130)盖合所述第一开口(121),所述第一方向(X)为所述电池(100)的长度方向;
    所述第一端盖组件(130)上设置有电极端子(150),所述电极端子(150)和所述电池模组(110)的输出部电连接。
  3. 根据权利要求2所述的电池(100),其特征在于,所述第一端盖组件(130)包括:
    第一绝缘端盖(131),设置有用于容纳所述电极端子(150)的第一开孔(1311);
    所述电极端子(150)穿过所述第一开孔(1311)与所述输出部电连接。
  4. 根据权利要求3所述的电池(100),其特征在于,所述第一端盖组件(130)还包括:
    密封圈(132),用于密封所述电极端子(150)与所述第一开孔(1311)之间的间隙。
  5. 根据权利要求3或4所述的电池(100),其特征在于,所述电池(100)还包括:
    转接件(160),所述输出部与所述电极端子(150)通过所述转接件(160)电连接。
  6. 根据权利要求5所述的电池(100),其特征在于,所述转接件(160)包括第一部分(1601)和第二部分(1602),所述第一部分(1601)与所述第一绝缘端盖(131)相对设置,所述第二部分(1602)从所述第一部分(1601)在第二方向(Z)上的一端朝向所述电池模组(110)延伸,所述电极端子(150)与所述第一部分(1601)连接,所述第二部分(1602)与所述输出部连接,所述第二方向(Z)为所述电池(100)的厚度方向。
  7. 根据权利要求6所述的电池(100),其特征在于,所述第一部分(1601)设置有第二开孔,所述电极端子(150)在所述第二开孔内与所述第一部分(1601)连接。
  8. 根据权利要求3至7中任一项所述的电池(100),其特征在于,所述外壳(120)设置有第二开口(122),所述电池(100)还包括:
    第二端盖组件(140),设置在所述电池模组(110)在所述第一方向(X)的第二端部(1102)且盖合所述第二开口(122),所述第二端盖组件(140)为绝缘材质。
  9. 根据权利要求8所述的电池(100),其特征在于,所述第二端盖组件(140)包括第二绝缘端盖(141)和两个凸部,所述第二绝缘端盖(141)与所述第一绝缘端盖(131)相对设置,所述两个凸部沿第二方向(Z)相对设置且分别与所述第二绝缘端盖(141)连接;
    其中,所述两个凸部在所述第二绝缘端盖(141)所在平面的投影位于所述第二绝缘端盖(141)内,以使得所述两个凸部能够嵌入至所述第二开口(122)内,所述第二方向(Z)为所述电池(100)的厚度方向。
  10. 根据权利要求9所述的电池(100),其特征在于,所述第二绝缘端盖(141)和所述两个凸部一体成型。
  11. 根据权利要求10所述的电池(100),其特征在于,所述第二绝缘端盖(141)和所述两个凸部的材质相同。
  12. 根据权利要求1至11中任一项所述的电池(100),其特征在于,所述电池(100)还包括:
    支架组件(170),用于支撑所述多个电池单体的电极输出部。
  13. 根据权利要求12所述的电池(100),其特征在于,在第二方向(Z)和第三方向(Y)上,所述支架组件(170)的尺寸大于所述电池模组(110)的尺寸,所述第二方向(Z)为所述电池(100)的厚度方向,所述第三方向(Y)为所述电池(100)的宽度方向。
  14. 根据权利要求12或13所述的电池(100),其特征在于,在第一方向(X)上,所述支架组件(170)将所述空腔(123)分隔成多个子空腔(1231),所述多个子空腔(1231)中每个子空腔(1231)用于容纳所述多个电池单体中沿第二方向(Z)堆叠设置的一列电池单体,所述第一方向(X)为所述电池(100)的长度方向,所述第二方向(Z)为所述电池(100)的厚度方向。
  15. 根据权利要求12至14任一项所述的电池(100),其特征在于,所述支架组件(170)为绝缘材质。
  16. 根据权利要求12至15中任一项所述的电池(100),其特征在于,所述支架组件(170)与所述外壳(120)固定连接。
  17. 根据权利要求16所述的电池(100),其特征在于,所述支架组件(170)与所述外壳(120)一体成型。
  18. 根据权利要求16或17所述的电池(100),其特征在于,所述外壳(120)在所述支架组件(170)的对应位置处设置有注胶孔(126),所述注胶孔(126)用于将结构胶导入至所述外壳(120)与所述支架组件(170)之间,以使得所述外壳(120)与所述支架组件(170)固定连接。
  19. 根据权利要求16至18中任一项所述的电池(100),其特征在于,所述外壳(120)在所述第三方向(Y)上设置有第三开口(124),所述第三开口(124)用于引导所述多个电池单体装配至所述空腔(123)内;.
    所述电池(100)还包括:盖体(125),所述盖体(125)盖合所述第三开口(124),所述盖体(125)为绝缘材质。
  20. 根据权利要求12至19中任一项所述的电池(100),其特征在于,所述支架组件(170)包括:
    第一支架(171),设置在所述多个电池单体中沿第一方向(X)电连接的第一电池单体(111)和第二电池单体(112)之间,所述第一支架(171)设置有第一容纳空间(1711),所述第一容纳空间(1711)用于容纳所述第一电池单体(111)的第一电极输出部(111a)和所述第二电池单体(112)的第二电极输出部(112a),所述第一电极输出部(111a)和所述第二电极输出部(112a)电连接,所述第一方向(X)为所述电池(100)的长度方向。
  21. 根据权利要求20所述的电池(100),其特征在于,所述第一容纳空间(1711)在所述第一方向(X)上贯通所述第一支架(171),所述第一支架(171)包括:
    支架本体(1712);
    第一固定件(1713),与所述支架本体(1712)在第二方向(Z)上堆叠设置,所述第二方向(Z)为所述电池(100)的厚度方向;
    其中,所述第一固定件(1713)与所述支架本体(1712)固定连接,所述支架本体(1712)与所述第一固定件(1713)之间形成所述第一容纳空间(1711)。
  22. 根据权利要求20或21所述的电池(100),其特征在于,所述第一支架(171)设置有灌胶通道(1714),所述灌胶通道(1714)用于将结构胶导入至所述第一电极输出部(111a)和所述第二电极输出部(112a)与所述第一支架(171)之间。
  23. 根据权利要求12至22中任一项所述的电池(100),其特征在于,所述支架组件(170)还包括:
    第二支架(172),设置在所述电池模组(110)在第一方向(X)上的第一端部(1101),所述第二支架(172)设置有在第一方向(X)上贯通所述第二支架(172)的第二容纳空间,所述第二容纳空间用于容纳所述电池模组(110)的输出部,所述输出部与电极端子(150)电连接,所述第一方向(X)为所述电池(100)的长度方向。
  24. 根据权利要求12至23中任一项所述的电池(100),其特征在于,所述电池模组(110)还包括:
    沿第二方向(Z)堆叠设置的第三电池单体(113)和第四电池单体(114),所述第三电池单体(113)和所述第四电池单体(114)位于所述电池模组(110)在第一方向(X)的第二端部(1102),所述第三电池单体(113)的第三电极输出部(113a)和所述第四电池单体(114)的第四电极输出部(114a)电连接,所述第一方向(X)为所述电池(100)的长度方向,所述第二方向(Z)为所述电池(100)的厚度方向;
    所述支架组件(170)还包括:
    第三支架(173),设置于所述第三电极输出部(113a)和所述第四电极输出部(114a)围合形成的第三容纳空间内,用于支撑所述第三电极输出部(113a)和所述第四电极输出部(114a)。
  25. 根据权利要求1至24中任一项所述的电池(100),其特征在于,所述电池单体为袋状电池单体,所述电池单体的壳体包括金属塑膜。
  26. 一种用电装置,其特征在于,包括如权利要求1至25中任一项所述的电池(100),所述电池(100)用于为所述用电装置提供电能。
PCT/CN2022/119401 2022-09-16 2022-09-16 电池和用电装置 WO2024055304A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119401 WO2024055304A1 (zh) 2022-09-16 2022-09-16 电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119401 WO2024055304A1 (zh) 2022-09-16 2022-09-16 电池和用电装置

Publications (1)

Publication Number Publication Date
WO2024055304A1 true WO2024055304A1 (zh) 2024-03-21

Family

ID=90274048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119401 WO2024055304A1 (zh) 2022-09-16 2022-09-16 电池和用电装置

Country Status (1)

Country Link
WO (1) WO2024055304A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200295406A1 (en) * 2019-03-14 2020-09-17 Medtronic, Inc. Lithium-ion battery
CN112838325A (zh) * 2019-11-22 2021-05-25 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN112952244A (zh) * 2019-11-22 2021-06-11 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN215771333U (zh) * 2021-08-26 2022-02-08 比亚迪股份有限公司 单体电池、电池模组及动力电池包

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200295406A1 (en) * 2019-03-14 2020-09-17 Medtronic, Inc. Lithium-ion battery
CN112838325A (zh) * 2019-11-22 2021-05-25 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN112952244A (zh) * 2019-11-22 2021-06-11 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN215771333U (zh) * 2021-08-26 2022-02-08 比亚迪股份有限公司 单体电池、电池模组及动力电池包

Similar Documents

Publication Publication Date Title
WO2023186034A1 (zh) 端盖、电池单体、电池及用电设备
CN116583998A (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
US20230395952A1 (en) Battery cell, battery and electrical device
US20240154218A1 (en) Battery cell, battery, and electrical apparatus
WO2022246839A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
US20230335837A1 (en) Battery cell, battery and device using battery cell as power source
WO2023246152A1 (zh) 电池单体、电池及用电装置
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023082155A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2024055304A1 (zh) 电池和用电装置
JP7483045B2 (ja) 電池セル及びその製造方法並びに製造システム、電池及び電力消費装置
CN116508197A (zh) 电池单体、电池、用电设备以及制备电池单体的方法和装置
WO2024055236A1 (zh) 电池、用电装置和电池的制备方法
CN218939866U (zh) 电池和用电装置
WO2023225903A1 (zh) 电池单体、电池以及用电装置
WO2023092459A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2024012127A1 (zh) 电池单体、电池及用电装置
WO2024087047A1 (zh) 电池单体、电池和用电设备
EP4318755A1 (en) Battery, electric device, and method and device for preparing battery
WO2024103201A1 (zh) 端盖组件、电池单体、电池和用电装置
WO2023133806A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2024020847A1 (zh) 电池单体、电池和用电设备
CN218586037U (zh) 电池单体、电池以及用电装置
WO2024092607A1 (zh) 电池单体、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958494

Country of ref document: EP

Kind code of ref document: A1