WO2024053653A1 - Photovoltaic power generation system, control method for same, program, and power storage control apparatus - Google Patents

Photovoltaic power generation system, control method for same, program, and power storage control apparatus Download PDF

Info

Publication number
WO2024053653A1
WO2024053653A1 PCT/JP2023/032427 JP2023032427W WO2024053653A1 WO 2024053653 A1 WO2024053653 A1 WO 2024053653A1 JP 2023032427 W JP2023032427 W JP 2023032427W WO 2024053653 A1 WO2024053653 A1 WO 2024053653A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
generated
storage device
threshold value
power generation
Prior art date
Application number
PCT/JP2023/032427
Other languages
French (fr)
Japanese (ja)
Inventor
賢次 玉光
浩規 杉山
晃司 星野
和子 直井
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022141133A external-priority patent/JP2024036723A/en
Priority claimed from JP2022168021A external-priority patent/JP2024060641A/en
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Publication of WO2024053653A1 publication Critical patent/WO2024053653A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the present disclosure relates to power storage and output control of power generated by a solar power generation system.
  • a solar power generation system uses a solar power generation panel that generates electricity by receiving sunlight as a power generation device.
  • a power generation device generates electricity according to the amount of solar radiation or the amount of sunlight, and can obtain generated power according to the amount of solar radiation or the amount of sunlight.
  • Solar radiation is the amount of radiant energy from the sun that reaches the photovoltaic panels.
  • the amount of sunlight is the amount of sunlight irradiating the photovoltaic panel.
  • the generated power is affected by the amount of solar radiation or sunlight, and a decrease or fluctuation in the amount of solar radiation or sunlight received by the solar power generation panel, such as on cloudy or rainy days, affects the generated power. Even if generated power obtained in a weak power range is supplied to a power conditioner, a power supply output that can withstand practical use cannot be obtained due to power consumption in the internal circuit of the power conditioner.
  • this charging circuit includes a switch that is closed when the capacitor is charged and opened when the capacitor is discharged. Therefore, even if the solar power generation panel generates power when the capacitor is discharged, the generated power cannot be charged to the capacitor, and if the capacitor cannot be charged, the generated power cannot be used. Therefore, there is a problem that the conversion efficiency of the generated power is reduced.
  • this threshold is set to a high level, the amount of stored power will increase, but the amount of generated power sent to the power conditioner will decrease, and the number of charging and discharging cycles of the capacitor used in the power storage device will increase, increasing the load on the capacitor. do.
  • mode switching will occur frequently in weak power ranges where the amount of solar radiation received by the solar power generation panel is unstable, such as on cloudy or rainy days, and the power consumption due to this mode switching will increase.
  • the inventors of the present invention have discovered that it is possible to increase the recovery efficiency of generated power below a threshold by controlling a power storage device attached to a solar power generation panel that recovers power generation output below a threshold, and to increase the utilization efficiency of the stored power.
  • the findings were found to be beneficial in increasing system efficiency.
  • the purpose of the present disclosure is to increase the recovery rate or utilization rate of generated power below a threshold value obtained from a power generation device such as a solar power generation panel, and to increase power conversion efficiency.
  • one aspect of the solar power generation system of the present disclosure includes a power generation device that generates power according to the amount of solar radiation, a power storage device, and a power generation device that generates power when the power generated by the power generation device is less than a threshold value.
  • a second output mode includes a second output mode in which, when the power is reached, the discharge power of the power storage device and the power generated by the power generation device that is less than the threshold value are added and the result is supplied to the second power conversion unit.
  • the threshold value may be a power value at which the conversion efficiency of the first power conversion unit significantly decreases in the first output mode, or a power value greater than or equal to the power value.
  • the power supplied to the second power converter may be power that has a sufficiently high conversion efficiency of the second power converter used in the second output mode. good.
  • the power storage device may be connected to the power generation device via at least a diode, and may be separated from the first power conversion unit via the diode.
  • a first switch opens and closes between the power generation device and the first power converter, a second switch opens and closes the charging circuit, and a third switch opens and closes the discharge circuit. If the generated power is above the threshold value, the first switch is closed; if the generated power is less than the threshold value, the first switch is opened, and the second switch is closed, and the generated power is less than the threshold value.
  • the power storage device may be charged with the generated power, and when the charging voltage reaches a predetermined value, the control unit may close the third switch to discharge the power storage device.
  • the function of the third switch may be realized by a DC-DC converter included in the second power conversion section.
  • the two or more power generation devices generate power according to the amount of solar radiation
  • the two or more first power conversion units convert the generated power above the threshold value into power
  • the power conversion unit converts the generated power below the threshold value into power.
  • the power storage device includes two or more power separation units that separate the generated power of each power generation device into generated power equal to or higher than a threshold value and generated power less than the threshold value, and the power separation unit and a power recovery unit that adds up and recovers the generated power that is less than the threshold and is separated by the threshold value.
  • the power generation device generates power according to the amount of solar radiation; a step of executing a first output mode in which the generated power is supplied to a first power conversion unit from the first power converter, and a step of executing a charging mode in which the power storage device is charged with the generated power if the generated power is less than a threshold value; When the charging voltage of the power storage device reaches a predetermined value, executing a second output mode in which the discharged power of the power storage device is added to the generated power of the power generation device that is less than a threshold value and is supplied to a second power conversion unit. including.
  • the second switch is opened and the second switch is closed to charge the power storage device with generated power below a threshold value, and when the charging voltage of the power storage device reaches a predetermined value, the third switch is closed to charge the power storage device. and a step of discharging.
  • two or more power generation devices generate power according to the amount of solar radiation
  • two or more first power conversion units convert the generated power equal to or higher than the threshold value
  • a second The power conversion section converts the generated power below the threshold into power
  • two or more power separation sections separate the generated power of each power generation device into the generated power equal to or more than the threshold and the generated power less than the threshold.
  • the program causes a computer to execute the program, and if the generated power is equal to or greater than a threshold value, the generated power is transmitted from the power generation device to the first power conversion unit. a function of executing a first output mode that supplies a power, a function of executing a charging mode of charging a power storage device with the generated power if the generated power is less than a threshold value, and a function of causing the charging voltage of the power storage device to reach a predetermined value.
  • the computer is caused to execute a second output mode that adds the discharged power of the power storage device and the generated power of the power generation device that is less than the threshold value and supplies the result to the second power conversion unit.
  • a first switch has a function of opening and closing between the power generation device and the first power converter
  • a second switch has a function of opening and closing a charging circuit
  • a third switch has a function of opening and closing a charging circuit.
  • This program is a program to be executed by a computer, and has a function to acquire power generation information representing the power generated from two or more power generation devices that generate power according to the amount of solar radiation, and a power separation section to generate power from each power generation device.
  • the computer may be caused to perform a function of summing up the generated power that is less than a threshold value and supplying this summed power to the second power conversion section.
  • one aspect of the power storage control device of the present disclosure includes a power generation device that generates power according to the amount of solar radiation, a power storage device, and, if the generated power is less than a threshold value, the power storage device
  • a power storage control device for a solar power generation system comprising a charging circuit for charging power generated by the device and a discharging circuit for discharging the power storage device, the power storage control device for controlling whether the generated power is above a threshold value or less than a threshold value.
  • a generated power monitoring unit that monitors; a stored power monitoring unit that monitors whether the charging voltage of the power storage device has reached a predetermined value; and a stored power monitoring unit that monitors whether the charging voltage of the power storage device has reached a predetermined value;
  • a first output mode for supplying is executed, and if the generated power is less than a threshold value, a charging mode is executed for charging the power storage device with the generated power that is less than the threshold value, and the charging voltage of the power storage device reaches a predetermined value.
  • the control unit includes a control unit that executes a second output mode that adds the discharged power of the power storage device and the generated power of the power generation device that is less than the threshold value and supplies the result to the second power conversion unit.
  • a first switch that opens and closes between the power generation device and the first power converter, a second switch that opens and closes the charging circuit, and a third switch that opens and closes the discharge circuit.
  • the control unit closes the first switch when the generated power is equal to or higher than a threshold value, opens the first switch when the generated power is less than the threshold value, and closes the first switch, and closes the first switch when the generated power is less than the threshold value.
  • This power storage control device for a solar power generation system includes a power storage device together with two or more power generation devices that generate power according to the amount of solar radiation, and the power storage device divides the power generated by each power generation device into a power that is equal to or more than a threshold value and a power that is less than the threshold value.
  • the power generation unit may include two or more power separation units that separate the generated power into two or more generated power, and a power recovery unit that adds up the generated power that is less than the threshold value separated by the power separation unit and supplies it to the second power conversion unit. .
  • any of the following effects can be obtained.
  • the generated power from the power generation device is equal to or higher than the threshold value
  • AC output can be extracted from the first power converter with high efficiency, and even if the generated power is less than the threshold value.
  • the generated power below the threshold can be efficiently converted into AC output at the second power conversion section and taken out, making the solar power generation system highly efficient.
  • the total power which is the sum of the discharge power of the power storage device and the generated power below the threshold, can be adjusted to a constant power and supplied to the second power conversion unit, so if the total power is not used Compared to this, the discharge speed of the power storage device can be delayed, and this delay can reduce the number of charge/discharge cycles of the power storage device, and as a result, the durability of the power storage device can be increased.
  • FIG. 1 is a diagram showing a solar power generation system according to a first embodiment.
  • FIG. 2 is a diagram showing the relationship between the transition of the voltage Vc between the terminals of the power storage device and the ON/OFF state of SW16-3.
  • FIG. 3 is a flowchart showing the control sequence of the solar power generation system.
  • FIG. 4 is a diagram showing an example of a control sequence of the solar power generation system.
  • FIG. 5 is a diagram showing an operation table of the solar power generation system.
  • FIG. 7 is a diagram showing the transition of the generated power below the threshold value
  • B in FIG. 7 is a diagram showing the recovery of the generated power below the threshold value.
  • FIG. 8 is a diagram showing a solar power generation system according to the second embodiment.
  • FIG. 9 is a diagram showing a solar power generation system according to the third embodiment.
  • A, B, and C in FIG. 10 are diagrams showing the transition of the power generated by each solar power generation panel, and D in FIG. 10 is a diagram showing the sum of the power generated below the threshold value.
  • a in Figure 11 is a table showing "power loss per storage element" quoted from the November 2015 issue of Mechanical Design published by Nikkan Kogyo Shimbun.
  • FIG. 1 shows a solar power generation system 2 (hereinafter simply referred to as "power generation system 2") according to a first embodiment.
  • the configuration shown in FIG. 1 is an example, and the present disclosure is not limited to such a configuration.
  • This power generation system 2 includes a solar power generation panel 4 (hereinafter simply referred to as “power generation panel 4"), a first power conditioner 6-1 (hereinafter referred to as “power conditioner 6-1”), and a second power conditioner. 6-2 (hereinafter referred to as “power conditioner 6-2”), a power storage device 8, a controller 10, and the like.
  • the power generation panel 4 is an example of the power generation device of the present disclosure.
  • the power generation panel 4 generates power according to at least the amount of solar radiation (or the amount of sunlight), and the generated power S corresponding to the amount of solar radiation is obtained from the power generation panel 4.
  • This generated power S is an example of the amount of power generated from the power generation device.
  • a wattmeter 12 is connected to the power generation panel 4 as a means for monitoring the generated power.
  • the wattmeter 12 constantly measures the generated power S of the power generation panel 4 and provides the controller 10 with information on the measured generated power.
  • the controller 10 acquires the generated power information from the wattmeter 12, determines whether the generated power S of the power generation panel 4 is greater than or equal to the threshold value Sth, or less than the threshold value Sth, and generates a control output.
  • the power conditioner 6-1 is an example of the first power conversion unit of the present disclosure, and is a power conversion means that supports a case where generated power equal to or greater than the threshold value Sth is obtained (first output mode described later).
  • the power conditioner 6-1 and the power generation panel 4 are connected through a first circuit section 14-1 (hereinafter referred to as “circuit section 14-1").
  • This circuit section 14-1 includes a first switch 16-1 (hereinafter referred to as "SW16-1").
  • SW16-1 The opening and closing of this SW 16-1 is controlled by the controller 10.
  • This SW16-1 is composed of opening/closing means such as a semiconductor switch and a relay.
  • a threshold value Sth is set for the generated power S as an opening/closing condition for this SW 16-1.
  • This threshold value Sth is, for example, a lower limit power value corresponding to the generated power S that allows the power conditioner 6-1 to convert the generated power S from the power generation panel 4 into stable and sufficiently high efficiency power. Regarding this threshold Sth, it may be a power value at which the conversion efficiency of the power conditioner 6-1 is significantly reduced in the first output mode, or a power value greater than or equal to this power value.
  • SW16-1 is closed and the first output mode is entered.
  • This first output mode is an operation mode in which generated power S is supplied from the power generation panel 4 to the power conditioner 6-1.
  • the power conditioner 6-1 converts the generated power S received from the circuit section 14-1, and generates, for example, an AC output (for example, an AC voltage of 200 V) to load the loads 18-1, 18-2, ... or output to a system not shown.
  • the power conditioner 6-2 is an example of the power conversion unit of the present disclosure, and is a power conversion means that supports a case where generated power less than the threshold value Sth is obtained (second output mode described later).
  • the power conditioner 6-2 and power generation panel 4 are connected to a second circuit section 14-2 (hereinafter referred to as “circuit section 14-2") and a third circuit section 14-3 (hereinafter referred to as “circuit section 14-3"). ) are connected through.
  • the circuit section 14-2 includes a second switch 16-2 (hereinafter referred to as "SW16-2").
  • the circuit section 14-3 includes a third switch 16-3 (hereinafter referred to as "SW16-3").
  • the opening and closing of SW16-2 and SW16-3 is controlled by controller 10.
  • the SWs 16-2 and 16-2 are composed of opening/closing means such as semiconductor switches and relays.
  • the power storage device 8 is an example of the power storage device of the present disclosure.
  • the power storage device 8 stores generated power S that is less than the threshold value Sth.
  • This power storage device 8 is provided with a plurality of power storage device cells connected in series in correspondence with the generated voltage of the power generation panel 4.
  • various electrochemical capacitors such as electric double layer capacitors and lithium ion capacitors, and secondary batteries such as lithium ion batteries can be used as this power storage device cell, but it is preferable that the amount of stored power is exactly proportional to the voltage.
  • Electrochemical capacitors, and more particularly electric double layer capacitors with excellent charge/discharge cycle life, are suitable.
  • the power storage device 8 and the power generation panel 4 are connected through the circuit section 14-2, and the power storage device 8 and the power conditioner 6-2 are connected through the circuit section 14-3.
  • the circuit parts 14-1 and 14-2 are shared at the output end of the power generation panel 4, and the circuit parts 14-2 and 14-3 are shared at the input end (anode end) of the power storage device 8.
  • the circuit section 14-2 is an example of the charging circuit of the present disclosure.
  • This circuit section 14-2 includes a SW 16-2.
  • the opening and closing of this SW 16-2 is controlled by the controller 10.
  • a charging mode is set in which power is supplied to the power storage device 8 through the power storage device 8.
  • This charging mode is an operation mode in which the generated power S from the power generation panel 4 is supplied to the power storage device 8 through the circuit section 14-2, and the power storage device 8 is charged with the generated power S that is less than the threshold value Sth. In this charging mode, power storage device 8 is charged with generated power that is less than threshold value Sth.
  • the circuit section 14-3 is an example of the discharge circuit of the present disclosure.
  • This circuit section 14-3 includes a SW 16-3.
  • the opening and closing of this SW 16-3 is controlled by the controller 10.
  • SW16-3 is composed of opening/closing means such as a semiconductor switch and a relay.
  • the switching conditions for SW16-3 include the device terminal voltage Vc of the power storage device 8 (hereinafter simply referred to as "terminal voltage Vc"), and the upper limit voltage VcH and lower limit voltage VcL ( ⁇ VcH) is set.
  • the inter-terminal voltage Vc is an example of the charging voltage of the present disclosure.
  • the upper limit voltage VcH is an example of a predetermined value of the present disclosure as an opening/closing condition for the SW 16-3 that opens and closes depending on the stored power of the power storage device 8, and represents a predetermined voltage value with respect to the inter-terminal voltage Vc.
  • the lower limit voltage VcL is an example of a predetermined value of the present disclosure as an opening/closing condition for the SW 16-3 that opens and closes depending on the stored power of the power storage device 8, and represents a predetermined voltage value with respect to the inter-terminal voltage Vc.
  • the second output mode is entered.
  • both of the circuit sections 14-2 and 14-3 are made conductive, and both the charging mode and the discharging mode of the electricity storage device 8 are maintained, and the discharge power of the electricity storage device 8 is adjusted to the threshold value from the power generation panel 4.
  • This is an operation mode in which generated power S less than Sth is supplied to the power conditioner 6-2.
  • the power value Sc is a power value at which the conversion efficiency of the power conditioner 6-2 is sufficiently high, and is set to a power value sufficiently higher than at least the threshold value Sth.
  • the inconvenience caused when the conversion efficiency of the power conditioner 6-2 is set to a low power value, that is, the significance of high efficiency recovery by the power storage device 8, is not lost, and the power value When Sc is set to a value lower than the threshold value Sth, the discharging function of the power storage device 8 is not impaired, and inconveniences such as the power storage device 8 going from a fully charged state to an overcharged state can also be avoided.
  • the power conditioner 6-2 receives the generated power received from the circuit units 14-2 and 14-3 and the discharged power of the power storage device 8, converts these powers, and converts the power to a value less than the threshold Sth. Even if the generated power S of the power generation panel 4 is at the generated power of can do.
  • the power conditioner 6-1 corresponding to the first output mode includes a maximum power point tracking control unit (MPPT) 20 (hereinafter referred to as "MPPT20"), a first DC-DC converter 22- 1, a first inverter 24-1, etc.
  • MPPT20 maximum power point tracking control unit 20
  • first DC-DC converter 22- 1 DC-DC converter 22- 1
  • first inverter 24-1 etc.
  • the MPPT 20 performs control to automatically find the optimal product of voltage V and current I (maximum power point or optimal operating point) that maximizes the power generation output of the power generation panel 4, and automatically calculates the product by this maximum power point tracking control. Obtain maximum power generation output.
  • the DC-DC converter 22-1 converts the DC power obtained by the MPPT 20 and the DC power obtained by the circuit section 14-1 side into DC power of a predetermined DC voltage.
  • the inverter 24-1 is an example of orthogonal transformation means of the present disclosure. This inverter 24-1 receives DC power from the DC-DC converter 22-1 and converts it into predetermined AC power compatible with the grid, for example, the rated AC power of 200V as described above.
  • the power conditioner 6-2 corresponding to the second output mode includes a second DC-DC converter 22-2, a second inverter 24-2, and the like.
  • the DC-DC converter 22-2 receives DC power from the circuit section 14-3 obtained by constant power control, and converts this DC power into DC power of a predetermined DC voltage.
  • the inverter 24-2 is an example of orthogonal transformation means.
  • This inverter 24-2 receives DC power from the DC-DC converter 22-2, converts it into AC power compatible with the grid, for example, AC power with an AC voltage of 200 V, and merges this AC power into the grid.
  • This controller 10 is an example of the power storage control device of the present disclosure.
  • This controller 10 includes a computer, and controls the opening/closing of any one or more of the SWs 16-1, 16-2, and 16-3 using the generated power information of the power generation panel 4, the amount of stored power information of the power storage device 8, and the like.
  • This controller 10 includes a control section 26, SW drive sections 28-1, 28-2, 28-3, an information presentation section 30, an operation input section 32, and the like.
  • the control unit 26 is an example of a control unit according to the present disclosure, and is also an example of a switch control unit according to the present disclosure. Further, the control unit 26 is an example of a control means such as a generated power monitoring unit, a stored power monitoring unit, a switch, etc. of the present disclosure.
  • This control unit 26 includes a processor (not shown), a storage unit, an input/output unit, etc., acquires generated power information and terminal voltage information of the power storage device 8, executes information processing, and SW drive units 28-1, 28- 2, 28-3, etc.
  • the processor uses an OS (Operating System), a power storage control program, a database, etc. in a storage unit to execute information processing and control such as storing, reading, and calculating information.
  • the storage unit includes storage elements such as ROM (Read-Only Memory) and RAM (Random-Access Memory), stores power storage control programs and databases, and is used for arithmetic processing by the processor.
  • the RAM constitutes a work area for information processing.
  • SW drive section 28-1 opens and closes the SW 16-1 under the control of the control section 26
  • the SW drive section 28-2 opens and closes the SW 16-2 under the control of the control section 26
  • the SW drive section 28-3 opens and closes the SW 16-1 under the control of the control section 26.
  • SW16-3 is opened and closed under the control of
  • the information presentation unit 30 presents information such as control information on a display element such as an LCD (Liquid Crystal Display).
  • a display element such as an LCD (Liquid Crystal Display).
  • the operation input unit 32 is capable of inputting control information and the like using an input device such as a touch panel under the control of the control unit 26.
  • FIG. 2 shows the relationship between the transition of the inter-terminal voltage Vc due to charging and discharging of the power storage device 8 and the ON and OFF states of SW 16-3.
  • the inter-terminal voltage Vc indicates the transition of charging and discharging of the power storage device 8
  • VcH indicates the upper limit voltage of the inter-terminal voltage Vc
  • VcL indicates the lower limit voltage of the inter-terminal voltage Vc.
  • control unit 26 controls a) a generated power information acquisition unit, b) a generated power monitoring unit, c) a generated power threshold determination unit, d) an inter-terminal voltage information acquisition unit of the power storage device 8, e ) A terminal-to-terminal voltage monitoring section, f) a terminal-to-terminal voltage Vc threshold determination section, g) an SW control section, and other control functions are realized.
  • the generated power information acquisition unit always acquires generated power information of the power generation panel 4 from the wattmeter 12 (at least while the power generation system 2 is in operation) under the control of the control unit 26. This generated power information is stored in a database in the storage section of the control section 26.
  • the generated power monitoring unit constantly monitors the generated power information acquired from the wattmeter 12 under the control of the control unit 26.
  • Threshold Determining Unit for Generated Power A threshold Sth for the generated power S of the power generation panel 4 is set in the control unit 26 .
  • the generated power threshold determination unit under the control of the control unit 26, compares the generated power S represented by the generated power information acquired from the wattmeter 12 described above with a threshold value Sth, and determines whether the generated power S is greater than or equal to the threshold value Sth. and outputs control information for opening and closing the SWs 16-1 and 16-2 as a result of the determination.
  • Inter-terminal voltage information acquisition unit The inter-terminal voltage information acquisition unit of the electricity storage device 8 always acquires inter-terminal voltage information from the electricity storage device 8 under the control of the control unit 26 (at least while the power generation system 2 is in operation).
  • This inter-terminal voltage information is the voltage between the terminals of the electricity storage device 8, and represents the charging voltage or the voltage due to the residual charge after discharging.
  • This inter-terminal voltage information is stored in a database in the storage section of the control section 26.
  • Inter-terminal voltage monitoring unit monitors the transition of the inter-terminal voltage Vc, that is, the charging state of the electricity storage device 8, from the inter-terminal voltage information.
  • Upper limit voltage VcH (V) and lower limit voltage VcL (V) are set in the control unit 26 as threshold values for inter-terminal voltage Vc.
  • Upper limit voltage VcH is, for example, a full charge voltage of power storage device 8
  • lower limit voltage VcL is, for example, a discharge management voltage.
  • the threshold determination unit for the inter-terminal voltage Vc compares the inter-terminal voltage Vc with the upper limit voltage VcH or the lower limit voltage VcL, and determines whether the inter-terminal voltage Vc is greater than or equal to the upper limit voltage VcH or less than the lower limit voltage VcL (V). As a result of the determination, control information for opening and closing the SW 16-3 is output.
  • the SW control unit opens SW16-3 under the control of the control unit 26, Cut off electricity. In other words, power storage device 8 is in a charging state.
  • the power storage device 8 When the generated power S of the power generation panel 4 is less than the threshold value Sth and Vc ⁇ VcL, the power storage device 8 is in charging mode. The generated power that is less than the threshold value Sth is supplied to the power storage device 8 through the circuit section 14-2, and the power storage device 8 is charged.
  • the control sequence of the power generation system 2 includes opening/closing control (main circuit switching control) of the circuit units 14-1 and 14-2 based on the threshold determination of the generated power S, and circuit unit 14 based on the inter-terminal voltage threshold determination of the power storage device 8. -3 opening/closing control (charging/discharging control of power storage device 8) is included, and these opening/closing controls are executed in parallel processing.
  • FIG. 3 shows the control sequence of the power generation system 2.
  • This control sequence is an example of the control method, program, or operation procedure of power storage control of the present disclosure.
  • F is a step, and the number attached to F is an example of the order of steps.
  • This control sequence includes acquisition of generated power information (F101), monitoring of generated power S (F102), acquisition of terminal voltage information of the electricity storage device 8 (F103), and monitoring of terminal voltage Vc (F104).
  • Main circuit switching control (F105) includes threshold determination of generated power S (F107), switching of SW16-1 and SW16-2 (F108), first output mode (F109), output to load or grid (F110) , SW16-1, SW16-2 switching (F111), and charging mode (F112).
  • Charging and discharging control (F106) of the power storage device 8 includes determining the state of SW16-3 (F113), determining the terminal voltage Vc (F114), switching SW16-3 (F115), charging standby mode (F116), terminal These include determination of voltage Vc (F117), switching of SW16-3 (F118), second output mode (F119), output to load or grid (F120), and charging mode (F121).
  • the control unit 26 acquires power generation information of the power generation panel 4 from the wattmeter 12 during operation (F101), monitors the power generation S (F102), and performs charging from the power storage device 8.
  • the inter-terminal voltage Vc representing the voltage is acquired (F103), and this inter-terminal voltage Vc is monitored (F104).
  • F105 main circuit switching control
  • F106 charging/discharging control of the electricity storage device 8
  • the power conditioner 6-1 converts the generated power S from the power generation panel 4 into AC power, and supplies this AC power to the loads 18-1, 18-2, . . . or the grid (F110).
  • this charging mode generated power S that is less than the threshold value Sth is supplied from the power generation panel 4 to the power storage device 8 through the circuit section 14-2 to charge the power storage device 8.
  • the control unit 26 determines the threshold value of the inter-terminal voltage Vc to determine whether the power storage device 8 has completed discharging (F114). . If Vc ⁇ VcL (YES in F114), the power storage device 8 has completed discharging, so the control unit 26 controls SW16-3 to be OFF (F115), and sets the charging standby mode (F116). In this charge standby mode, Vc ⁇ VcL, and the standby state is maintained until the charge mode is restarted.
  • the discharge power of the power storage device 8 is the power stored in the power storage device 8 .
  • the power conditioner 6-2 converts these input powers from the circuit section 14-3 into AC power, and supplies this AC power to the loads 18-1, 18-2, ... or the grid (F120). .
  • the control unit 26 executes the charging mode in order to continue charging the power storage device 8 (F121). In this charging mode, the generated power S that is equal to or less than the threshold value Sth is charged to the power storage device 8 through the circuit section 14-2.
  • FIG. 4 shows the terminal voltage Vc (B) of the power storage device 8, the open/closed state of the SW 16 (C), and the power conditioner 6-2 when the control sequence of the power generation system 2 is executed with the change in the generated power S (A).
  • Vc the terminal voltage
  • C the open/closed state of the SW 16
  • E the power conditioner 6-2 when the control sequence of the power generation system 2 is executed with the change in the generated power S (A).
  • An example of the transition of the output (D) and the operation mode (E) is shown.
  • This control sequence is an example of the control method, program, or power storage control of the present disclosure.
  • a in FIG. 4 shows the transition of the generated power S.
  • the generated power S which had been maintained at or above the threshold value Sth, decreases to less than the threshold value Sth at time t1, continues to be less than the threshold value Sth, and then reaches or exceeds the threshold value Sth at time t12.
  • FIG. 4 shows the transition of the inter-terminal voltage Vc (charge/discharge state) of the electricity storage device 8.
  • Charging and discharging of this power storage device 8 depends on the generated power S, and in this example, charging starts at time t1 when the generated power S, which has been maintained above the threshold value Sth, becomes less than the threshold value Sth, and at time t2, the upper limit voltage VcH reaches and starts discharging.
  • the lower limit voltage VcL is reached at time t3, charging is started again, and the upper limit voltage VcH is reached at time t4.
  • FIG. 4 shows the open and closed states of SW16-1, 16-2, and 16-3 in section C1 to section C13.
  • the opening/closing conditions of SW16-1, 16-2, 16-3 and ON or OFF of SW16-1, 16-2, 16-3 are as follows.
  • the section C1 is a power region in which generated power S greater than or equal to the threshold value Sth is obtained.
  • the power S generated by the power generation panel 4 is supplied from the circuit section 14-1 to the power conditioner 6-1, and an AC output is obtained from the power conditioner 6-1.
  • Section C13 is a power region equal to or higher than the threshold value Sth transferred from section C12, and in this region, the generated power S of the power generation panel 4 is supplied from the circuit section 14-1 to the power conditioner 6-1, and the power conditioner 6 AC output can be obtained from -1.
  • Section C1 First output mode E1 Sections C2, C4, C6, C8, C10: Charging mode Ec Sections C3, C5, C7, C9, C11: Second output mode E2 (discharge area) Section C12: first output mode E1 and second output mode E2 Section C13: First output mode E1
  • this constant power value is set to a power value that makes the efficiency of the power conditioner 6-2 sufficiently high.
  • FIG. 5 shows an operation table of the power generation system 2 in which the operating states shown in FIG. 4 are organized.
  • the generated power S, inter-terminal voltage Vc, SW16-1, 16-2, and 16-3 are listed in the item column, and the status of the sections C1 to C13 is shown.
  • the power storage device 8 is shown charging at 2 kW, discharging at 5 kW, charging at 1 kW, discharging at 5 kW, charging at 0.5 kW, and discharging at 5 kW.
  • Tloss shown on the time axis t is a loss time in which the generated power S of the power generation panel 4 does not contribute to charging the power storage device 8 or supplying it to the power conditioner 6-2. In other words, it represents a period in which the generated power S is not utilized.
  • the power storage device 8 is shown charging at 2 kW and then discharging, charging at 1 kW and then discharging, charging at 0.5 kW, and discharging at 5 kW.
  • the discharge power of the power storage device 8 since the sum of the discharge power of the power storage device 8 and the power generated by the power generation panel 4 is controlled to be 5 kW, for example, the discharge power of the power storage device 8 becomes smaller and the discharge time becomes longer. Therefore, there is no loss time as described above, and the number of charge/discharge cycles as described above is reduced.
  • the generated power S whose conversion efficiency of the power conditioner 6-1 is higher than the sufficiently high threshold value Sth can be extracted as an AC output with high efficiency through normal power conversion.
  • the generated power S is stored in the power storage device 8, and when the terminal voltage Vc reaches the upper limit voltage VcH, the power storage device 8 is discharged, and this discharged power and the threshold Sth are To efficiently convert the generated power S which is less than a threshold value Sth with low conversion efficiency into AC output and take it out by adding up the generated power S and supplying it to the power conditioner 6-2 to perform power conversion. Can be done.
  • the power storage The discharge rate of the device 8 can be slowed down, thereby reducing the number of charge/discharge cycles of the power storage device 8, and as a result, deterioration of the power storage device 8 can be suppressed and durability can be increased.
  • a threshold value Sth is set for the generated power S of the power generation panel 4, and when the generated power S is equal to or greater than the threshold value Sth, SW16-1 is controlled to be ON, and the generated power S equal to or greater than the threshold value Sth is supplied to the power conditioner 6-1.
  • the first output mode AC output can be extracted through normal power conversion.
  • the weak generated power S that is less than the threshold value Sth is also supplied to the power conditioner 6-2 through the circuit sections 14-2 and 14-3, As in the single output mode, AC output can be taken out by power conversion by the power conditioner 6-2, increasing the recovery rate or utilization rate of the generated power S that is less than the threshold value Sth of the power generation panel 4, and improving the overall power generation system 2. power conversion efficiency can be increased.
  • the threshold value Sth that corresponds to this fluctuation can be set, so it is possible to realize a power generation system 2 that can obtain highly efficient conversion output in accordance with the weather conditions.
  • FIG. 7 shows a case where the generated power S that is less than the threshold value Sth is processed in the second output mode of the power generation system 2 (this disclosure mode).
  • the power storage device 8 In the second output mode of the power generation system 2, the power storage device 8 is charged with the generated power S that is less than the threshold value Sth through the circuit section 14-2, and when the terminal voltage Vc reaches the upper limit voltage VcH or more, the power storage device 8 is discharged, and this discharged power is added to the generated power S that is less than the threshold value Sth to perform power conversion.
  • a directional element is installed in the circuit section 14-2 to impart directionality to the generated power S below the threshold value Sth, and the circuit section 14-2, 14-3 and the circuit section 14- This is a configuration that is separated from 1.
  • FIG. 8 shows a power generation system 2 according to the second embodiment.
  • the configuration shown in FIG. 8 is an example, and the present disclosure is not limited to such a configuration.
  • parts common to those in FIG. 1 are given the same reference numerals.
  • a diode 34 is installed in the circuit section 14-2 in series with the SW 16-2. This diode 34 is in the forward direction from the power generation panel 4 to the power storage device 8 or the power conditioner 6-2. On the other hand, the diode 34 of the circuit section 14-2 is in the opposite direction to the circuit section 14-1, separating the circuit section 14-2 and the circuit section 14-1.
  • any of the following effects can be obtained. (1) Since the diode 34 is installed, when SW 16-2 becomes conductive, a voltage lowered by the forward voltage drop Vf of the diode 34 can be applied to the power storage device 8.
  • circuit section 14-2 can be separated from the circuit section 14-1 by the diode 34, and interference between the circuit section 14-2 and the circuit section 14-1 can be avoided.
  • FIG. 9 shows a power generation system 2 according to a third embodiment.
  • the configuration shown in FIG. 9 is an example, and the present disclosure is not limited to such a configuration.
  • common parts with those in FIG. 1 are given common symbols.
  • This power generation system 2 is an example of the solar power generation system of the present disclosure.
  • This power generation system 2 includes three sets of power generation panels 4-1, 4-2, 4-3, power separation units 106-1, 106-2, 106-3, power recovery unit 108, controller 10, and first power conditioner.
  • 206-11, 206-12, 206-13 hereinafter referred to as "power conditioners 206-11, 206-12, 206-13"
  • second power conditioners 206-2 hereinafter referred to as "power conditioners 206-11, 206-12, 206-13"). 206-2).
  • Each power generation panel 4-1, 4-2, 4-3 is an example of two or more power generation devices of the present disclosure.
  • Each power generation panel 4-1, 4-2, 4-3 generates power according to the amount of solar radiation, and generated power S corresponding to the amount of solar radiation is obtained from each power generation panel 4-1, 4-2, 4-3.
  • Each power generation S varies depending on the location and weather conditions of the power generation panels 4-1, 4-2, 4-3, but to simplify the explanation, each power generation panel 4-1, 4-2, 4- This will be explained using the generated power S obtained from 3.
  • This generated power S is an example of the amount of power generated from each power generation panel 4-1, 4-2, and 4-3.
  • Power separation units 106-1, 106-2, 106-3 constitute part of a power storage device for storing generated power below a threshold value.
  • Each power separation section 106-1, 106-2, 106-3 individually receives generated power S from each power generation panel 4-1, 4-2, 4-3.
  • a threshold value Sth is set as a standard for separating this generated power S.
  • the generated power S from each power generation panel 4-1, 4-2, 4-3 is equal to or higher than the threshold value Sth, and the generated power S is equal to or higher than the threshold value Sth.
  • the generated power S is divided into less than
  • the power separation section 106-1 includes a first switch 16-11 (hereinafter simply referred to as "SW16-11”) in the first circuit section 14-11, a diode 118-1 and a second switch in the second circuit section 14-12.
  • the generated power S that is greater than or equal to the threshold value Sth is supplied to the power conditioner 206-11, whereas the generated power S that is less than the threshold value Sth is supplied to the power recovery section 108, and from this power recovery section 108, the power conditioner 206-11 is supplied to the power conditioner 206-11. -2.
  • the generated power S of each power generation panel 4-1, 4-2, and 4-3 is separated into the generated power S that is equal to or higher than the threshold value Sth, and the generated power S that is less than the threshold value Sth, and the generated power S that is equal to or higher than the threshold value Sth. is supplied to the corresponding power conditioners 206-11, 206-12, and 206-13, and generated power S less than the threshold value Sth is supplied to the power conditioner 206-2.
  • the power recovery unit 108 constitutes a power recovery unit that is part of a power storage device that stores generated power S that is less than the threshold value Sth.
  • an upper limit voltage VcH is set as an upper threshold voltage
  • a lower limit voltage VcL is set as a lower threshold voltage.
  • a third switch 16-43 (hereinafter simply referred to as "SW16-43") is installed in the third circuit section 14-43 together with the power storage device 8.
  • the power storage device 8 receives the generated power S of which one or more of the power generation panels 4-1, 4-2, 4-3 is less than the threshold value Sth, and charges the generated power S.
  • the electricity storage device 8 discharges, and this discharged power is summed up with the generated power S less than the threshold value Sth from the corresponding power generation panels 4-1, 4-2, and 4-3, and this total power P1 is The power is supplied to the power conditioner 206-2.
  • This power storage device 8 constitutes the power storage device of the present disclosure together with the power separation units 106-1, 106-2, and 106-3, and charges and collects the generated power S that is less than the threshold value Sth to store power.
  • the inter-terminal voltage Vc is an example of the terminal voltage of the power storage device, and its voltage level represents the charging state or discharging state of the power storage device 8.
  • a plurality of power storage device cells connected in series are installed in this power storage device 8 in correspondence with the power generation voltages of the power generation panels 4-1, 4-2, and 4-3.
  • various electrochemical capacitors such as electric double layer capacitors and lithium ion capacitors, and secondary batteries such as lithium ion batteries can be used for this power storage device cell, but electrochemical capacitors whose storage amount is precisely proportional to voltage
  • an electric double layer capacitor having an excellent charge/discharge cycle life is suitable.
  • other power storage devices with different characteristics may be connected in series to the power storage device 8.
  • the controller 10 is an example of a control unit of the present disclosure.
  • This controller 10 is composed of, for example, a computer.
  • the controller 10 acquires generated power information from each of the wattmeters 12-1, 12-2, and 12-3, and uses the generated power information as control information to control the power separation units 106-1, 106-2, and 106-3. Power separation control and power recovery control using the power storage device 8 by the power recovery unit 108 are performed.
  • the power separation control always acquires generated power information from the wattmeters 12-1, 12-2, and 12-3, and the generated power S of the power generation panels 4-1, 4-2, and 4-3 is equal to or higher than the threshold value Sth. Monitor whether or not. If S ⁇ Sth or more, turn on one or more of the applicable SW16-11, SW16-21, SW16-31, and turn on any of the applicable SW16-12, 16-22, 16-32. Or control two or more to OFF. If S ⁇ Sth, any or more of the corresponding SW16-11, 16-21, 16-31 is controlled OFF, and any of the corresponding SW16-12, 16-22, 16-32 is controlled to OFF. or two or more are controlled to be ON. Thereby, the generated power S obtained from any one or more of the power generation panels 4-1, 4-2, and 4-3 is separated into the generated power S that is greater than or equal to the threshold value Sth and the generated power S that is less than the threshold value Sth.
  • the wattmeter 12-1 measures the generated power S of the power generation panel 4-1 and obtains generated power information indicating the amount of the generated power S.
  • the wattmeter 12-2 measures the generated power S of the power generation panel 4-2 and obtains generated power information indicating the amount of the generated power S.
  • the wattmeter 12-3 measures the generated power S from the power generation panel 4-3 and obtains generated power information indicating the amount of the generated power S. Therefore, the controller 10 is always provided with generated power information representing the generated power S from the wattmeters 12-1, 12-2, and 12-3.
  • a threshold value Sth is set in the controller 10 for the generated power S.
  • This threshold value Sth is a power value representing the open or close (OFF/ON) condition of the SWs 16-11, 16-12, 16-21, 16-22, 16-31, and 16-32.
  • this threshold value Sth is such that at least each power conditioner 206-11, 206-12, 206-13 is stable when receiving the generated power S from the power generation panels 4-1, 4-2, 4-3. Any lower limit power value may be used as long as it corresponds to the generated power S that allows power conversion with sufficiently high efficiency.
  • SW16-11, 16-12, 16-21, 16-22, 16-31, 16-32 Each of the SWs 16-11, 16-12, 16-21, 16-22, 16-31, and 16-32 is configured with an opening/closing means such as a semiconductor switch or a relay that can be controlled by the controller 10.
  • Diode 118-1 is connected in series to SW 16-12, and is in the forward direction from power generation panel 4-1 to power storage device 8 or power conditioner 206-2. Therefore, diode 118-1 is in the opposite direction from power storage device 8 or power conditioner 206-2 to power generation panel 4-1 or power conditioner 206-11.
  • the diode 118-2 is connected in series to the SW 16-22, and is in the forward direction from the power generation panel 4-2 to the power storage device 8 or the power conditioner 206-2. Therefore, diode 118-2 is in the opposite direction from power storage device 8 or power conditioner 206-2 to power generation panel 4-2 or power conditioner 206-12.
  • the diode 118-3 is connected in series to the SW 16-32, and is in the forward direction from the power generation panel 4-3 to the power storage device 8 or the power conditioner 206-2. Therefore, diode 118-3 is in the opposite direction from power storage device 8 or power conditioner 206-2 to power generation panel 4-3 or power conditioner 206-13.
  • the power storage device 8 is separated from the power conditioners 206-11, 206-12, 206-13 and the power generation panels 4-1, 4-2, 4-3 by the diodes 118-1, 118-2, 118-3. has been done.
  • the forward drop voltage Vf of the diodes 118-1, 118-2, and 118-3 is reduced from the generated power S that is less than the threshold value Sth. A voltage that has been reduced by the amount is applied to the electricity storage device 8 .
  • the third circuit section 14-43 can be separated from the circuit sections 14-11, 14-21, and 14-31 by diodes 118-1, 118-2, and 118-3. Interference with 31 can be avoided.
  • Each of the power conditioners 206-11, 206-12, and 206-13 is an example of a first power conversion unit of the present disclosure that converts the generated power S that is equal to or higher than the threshold value Sth.
  • each of the power conditioners 206-11, 206-12, and 206-13 constitutes a dedicated first power conversion section that corresponds to the generated power S that is equal to or greater than the threshold value Sth.
  • the power conditioner 206-11 includes a first maximum power point tracking control unit (MPPT) as a means for receiving the generated power S equal to or higher than the threshold value Sth from the power separation unit 106-1 and converting it into power.
  • MPPT maximum power point tracking control unit
  • 224-1 hereinafter referred to as "MPPT 224-1"
  • first DC-DC converter 226-1 a first DC-DC converter 226-1
  • first inverter 228-1 and the like.
  • MPPT224-1 performs control to automatically find the optimal product of voltage V and current I (maximum power point or optimal operating point) that maximizes the power generation output of power generation panel 4-1, and performs this maximum power point tracking control. automatically obtains maximum power generation output.
  • the DC-DC converter 226-1 converts the DC power obtained by the MPPT 224-1 and the DC power obtained by the circuit section 14-11 side into DC power of a predetermined DC voltage.
  • the inverter 228-1 is an example of orthogonal transformation means of the present disclosure. This inverter 228-1 receives DC power from the DC-DC converter 226-1 and converts it into predetermined AC power compatible with the grid, for example, AC power with a rating of 200V.
  • the configuration of this power conditioner 206-11 is the same for power conditioners 206-12 and 206-13.
  • the power conditioner 206-12 includes a second MPPT 224-2 and a second DC-DC converter 226 as means for receiving the generated power S equal to or higher than the threshold value Sth from the power separation unit 106-2 and converting the power.
  • -2, a second inverter 228-2 and the like are included, and the power conditioner 206-13 also includes a means for receiving the generated power S from the power separation unit 106-3 and converting it into power.
  • the power conditioners 206-11, 206-12, and 206-13 that have received the generated power S equal to or higher than the threshold value Sth are provided with a predetermined AC power that is compatible with the grid, for example, an AC power with a rated value of 200V, and this AC power is supplied to the loads 18-1, 18-2, . . . and a system not shown.
  • the power conditioner 206-2 is an example of the second power conversion unit of the present disclosure that converts the generated power S that is less than the threshold value Sth.
  • the power conditioner 206-2 constitutes a second power conversion section dedicated to the generated power S that is less than the threshold value Sth.
  • This power conditioner 206-2 receives the generated power S that is less than the threshold value Sth from the power recovery unit 108 and the discharged power of the power storage device 8, converts these powers, and generates, for example, an AC voltage of 200 V with high efficiency to supply the load. 18-1, 18-2, . . . or can be output to a system not shown.
  • the power conditioner 206-2 includes a fourth DC-DC converter 226-4 and a fourth inverter 228-4, and unlike the other power conditioners 206-11 to 206-13, Since the generated power S which is adjusted to a constant power and is less than the threshold value Sth is received, the above-mentioned MPPT is not installed.
  • the DC-DC converter 226-4 receives DC power obtained by constant power control from the circuit section 14-43 side, and converts this DC power into DC power of a predetermined DC voltage.
  • the inverter 228-4 is an example of orthogonal transformation means.
  • This inverter 228-4 receives DC power from the DC-DC converter 226-4, converts it into predetermined AC power that is compatible with the grid, such as the already mentioned AC power with a rated 200V, and transfers this AC power to the grid. merge with.
  • the controller 10 is an example of a control device of the present disclosure.
  • This controller 10 has the same configuration as the previously described controller 10 (FIG. 1), and is equipped with a computer as a control unit, and includes information on the generated power of the power generation panels 4-1, 4-2, and 4-3, and information on the power generation of the power storage device 8.
  • the controller 10 includes an information presentation section, and the information presentation section presents information such as control information on a display element such as an LCD (Liquid Crystal Display) under the control of the control section.
  • a display element such as an LCD (Liquid Crystal Display)
  • the controller 10 includes an operation input section, and this operation input section is capable of inputting control information and the like using an input device such as a touch panel.
  • the control unit included in the controller 10 executes a control program and performs a) a generated power information acquisition unit, b) a generated power monitoring unit, c) a generated power threshold determination unit, and d) an inter-terminal voltage information acquisition unit of the electricity storage device 8. , e) terminal-to-terminal voltage monitoring section, f) threshold value determination section for terminal-to-terminal voltage Vc, g) SW control section for power separation control, h) SW control section for power recovery control, etc. do.
  • the generated power information acquisition unit constantly (at least while the power generation system 2 is in operation) obtains information from the power meters 12-1, 12-2, and 12-3 to the power generation panel 4-1, under the control of the control unit. Obtain the generated power information of 4-2 and 4-3. This generated power information is stored in a database in the storage unit.
  • the generated power monitoring unit constantly monitors the generated power information obtained from the wattmeters 12-1, 12-2, and 12-3 under the control of the control unit.
  • Threshold Determining Unit for Generated Power A threshold Sth for the generated power S of the power generation panels 4-1, 4-2, and 4-3 is set in the controller 10.
  • the generated power threshold determination unit under the control of the control unit, compares the generated power S represented by the generated power information acquired from the previously described wattmeters 12-1, 12-2, and 12-3 with the threshold value Sth, and determines the generated power. Determines whether power S is greater than or equal to threshold Sth or less than threshold value Sth, and outputs control information for opening and closing SW16-11, 16-12, 16-21, 16-22, 16-31, and 16-32 as a result of the determination. .
  • Inter-terminal voltage information acquisition unit The inter-terminal voltage information acquisition unit of the electricity storage device 8 always acquires inter-terminal voltage information from the electricity storage device 8 (at least while the power generation system 2 is in operation) under the control of the control unit.
  • This inter-terminal voltage information is the voltage between the terminals of the electricity storage device 8, and represents the charging voltage or the voltage due to the residual charge after discharging.
  • This inter-terminal voltage information is stored in a database in the storage section.
  • Inter-terminal voltage monitoring unit monitors the transition of the inter-terminal voltage Vc, that is, the charging state of the electricity storage device 8, from the inter-terminal voltage information.
  • Threshold Determination Unit for Inter-Terminal Voltage Vc Upper limit voltage VcH (V) and lower limit voltage VcL (V) are set in the controller 10 as threshold values for inter-terminal voltage Vc.
  • Upper limit voltage VcH is, for example, a full charge voltage of power storage device 8
  • lower limit voltage VcL is, for example, a discharge management voltage.
  • the inter-terminal voltage Vc threshold determination unit compares the inter-terminal voltage Vc with the upper limit voltage VcH or the lower limit voltage VcL, and determines whether the inter-terminal voltage Vc is greater than or equal to the upper limit voltage VcH or less than the lower limit voltage VcL (V). is determined, and control information for opening and closing the SW 16-43 is output as the determination result.
  • SW control unit for power separation control selects one or two of the SWs 16-11, 16-21, and 16-31 depending on whether the generated power S obtained from the power generation panels 4-1, 4-2, and 4-3 is greater than or equal to the threshold value Sth.
  • the above is closed (ON) control, and corresponding to closed SW16-11, 16-21, 16-31, one or more of SW16-12, 16-22, 16-32 is opened (OFF) It's also control.
  • SW16-11:SW16-12, SW16-21:SW16-22, and SW16-31:SW16-32 are in a synchronized and contradictory relationship.
  • the SW control unit controls the corresponding SW16-11, 16-21 under the control of the control unit. , 16-31. At this time, the drive output of the SW drive section makes one or more of the corresponding SWs 16-11, 16-21, and 16-31 conductive.
  • OFF insulation
  • One or more of SW16-12, 16-22, and 16-32 to which the drive output of the SW drive section corresponds is cut off.
  • a control output for opening the corresponding SW 16-11, 16-21, 16-31 is output, and one or more of the corresponding SW 16-11, 16-21, 16-31 is opened.
  • SW control unit for power recovery control This SW control section opens and closes SW16-43 under control of the control section. If the generated power S of any one or more of the power generation panels 4-1, 4-2, 4-3 is less than the threshold value Sth (kW) and the voltage Vc between the terminals of the electricity storage device 8 is less than or equal to the lower limit voltage VcL, SW The control section opens SW16-43 under the control of the control section. At this time, power storage device 8 is in charging mode.
  • the SW control section If the generated power S of any one or more of the power generation panels 4-1, 4-2, 4-3 is less than the threshold value Sth and the voltage Vc between the terminals of the electricity storage device 8 exceeds the upper limit voltage VcH, the SW control section , the SW16-43 is made conductive under the control of the control section. At this time, power storage device 8 is in a discharge state. At the same time, any one or more of SW16-12, 16-22, 16-32 is in a conductive state, so the power generated by one or more of the corresponding power generation panels 4-1, 4-2, 4-3 S is supplied to the DC-DC converter 226-4 of the power conditioner 206-2 through the circuit section 14-43. At this time, the converted output from the power conditioner 206-2 is supplied to the loads 18-1, 18-2, etc.
  • the first output mode is when the generated power S of any one or more of the power generation panels 4-1, 4-2, 4-3 is equal to or higher than the threshold value Sth.
  • the generated power S of the power generation panels 4-1, 4-2, and 4-3 passes through one or more of the circuit sections 14-11, 14-21, and 14-31 to the power conditioners 206-11, 206-12, and 206. -13 or more.
  • Charging Mode The charging mode is when the generated power S of any one or more of the power generation panels 4-1, 4-2, 4-3 is less than the threshold value Sth. Power generated by power generation panels 4-1, 4-2, and 4-3 is supplied to power storage device 8 through one or more of circuit sections 14-12, 14-22, and 14-32.
  • the power storage Device 8 is charged.
  • Second output mode (including discharge mode)
  • power storage device 8 switches to discharge mode and becomes second output mode.
  • the discharged power of power storage device 8 is supplied to power conditioner 206-2.
  • generated power S that is less than the threshold value Sth is supplied to the power conditioner 206-2 through any one or more of the circuit sections 14-12, 14-22, and 14-32.
  • a in FIG. 10 shows an example of the change in the generated power S of the power generation panel 4-1
  • B in FIG. 10 shows an example of the change in the power generated S in the power generation panel 4-2
  • C in FIG. An example of the transition of the generated power S of the power generation panel 4-3 is shown.
  • the generated power S of the power generation panel 4-1 maintains the threshold value Sth or more until reaching time t1 (A1), and decreases to less than the threshold value Sth in the interval from time t1 to time t4 ( A2), and has increased above the threshold Sth from time t4 (A3).
  • the generated power S of the power generation panel 4-2 maintains the threshold value Sth or more until reaching time t2 (B1), and decreases to less than the threshold value Sth in the interval from time t2 to time t5 ( B2), and has increased above the threshold Sth from time t5 (B3).
  • the generated power S of the power generation panel 4-3 maintains the threshold value Sth or more until reaching time t3 (C1), and decreases to less than the threshold value Sth in the interval from time t3 to time t6 ( C2), and has increased above the threshold Sth from time t6 (C3).
  • the generated power S of each of the power generation panels 4-1, 4-2, and 4-3 is separated by the corresponding power separation unit 106-1, 106-2, and 106-3 into the generated power S that is equal to or higher than the threshold value Sth and the generated power S that is less than the threshold value Sth. It is separated into S.
  • the D in FIG. 10 illustrates the recovered power Sm obtained by the power recovery unit 108. That is, the generated power S that is less than the threshold value Sth is recovered by the power recovery unit 108, and the recovered power Sm is obtained from the generated power S that is less than the threshold value Sth in the power recovery unit 108, and is supplied to the power conditioner 206-2.
  • the power recovered by the power recovery unit 108 is as follows.
  • the recovered power Sm shown by the broken line is an example representing virtual power for explaining the generated power S that is less than one threshold value Sth or the added power of the generated power S that is less than two or more threshold values Sth, and the present disclosure applies to this virtual power. It is not limited.
  • Time t2 to time t3 Recovery power Sm of each generated power S of power generation panel 4-1 and power generation panel 4-2
  • Time t3 to time t4 Recovery power Sm of each generated power S of power generation panel 4-1, power generation panel 4-2, and power generation panel 4-3
  • Time t4 to time t5 Recovery power Sm of each generated power S of power generation panel 4-2 and power generation panel 4-3
  • the recovered power Sm of the power recovery unit 108 is supplied to the power conditioner 206-2 and converted to specified AC power. Similar to the power conditioners 206-11 to 206-13, this AC power can be supplied to the loads 18-1, 18-2, . . . and a system not shown.
  • the generated power S of each power generation panel 4-1, 4-2, 4-3 can be separated into the generated power S above the threshold value Sth and the generated power S below the threshold value Sth, and the generated power S above the threshold value Sth is dedicated Power can be converted with high efficiency using one or more of the power conditioners 206-11, 206-12, 206-13, and the generated power S below the threshold Sth can be converted into electric power with high efficiency by the dedicated power conditioner 206-2. Can be converted. Therefore, both the generated power S that is equal to or greater than the threshold value Sth and the generated power S that is less than the threshold value Sth can be efficiently converted into alternating current output and extracted, and the efficiency of the solar power generation system can be improved.
  • the generated power S having a sufficiently high conversion efficiency threshold Sth or more from one or more of the power conditioners 206-11, 206-12, and 206-13 is converted to high efficiency through normal power conversion.
  • AC output can be taken out.
  • the generated power S is stored in the power storage device 8, and when the terminal voltage Vc reaches the upper limit voltage VcH, the power storage device 8 is discharged, and this discharged power and the threshold Sth are To efficiently convert the generated power S which is less than a threshold value Sth with low conversion efficiency into an AC output and take it out by adding the generated power S that is less than the threshold value Sth and supplying it to the power conditioner 206-2 to perform power conversion. Can be done.
  • the frequency of temporary suspension of the power conversion function of the power conditioner 206-2 can be reduced, and as a result, even in the second output mode, any one or more of the power generation panels 4-1, 4-2, 4-3 It is possible to reduce the loss of weakly generated power from the AC power source, and increase the total amount of AC output.
  • the power storage The discharge rate of the device 8 can be slowed down, thereby reducing the number of charge/discharge cycles of the power storage device 8, and as a result, deterioration of the power storage device 8 can be suppressed and durability can be increased.
  • the weak generated power S that is less than the threshold Sth is also supplied to the power conditioner 206-2, and as in the first output mode, the power conditioner 206 AC output can be taken out by the power conversion of -2, and the recovery rate or utilization rate of the generated power S that is less than the threshold value Sth obtained from any one or more of the power generation panels 4-1, 4-2, 4-3. It is possible to increase the overall power conversion efficiency of the power generation system 2.
  • the threshold value Sth that corresponds to this fluctuation can be set, so it is possible to realize a power generation system 2 that can obtain highly efficient conversion output in accordance with the weather conditions.
  • the generated power S less than the threshold value Sth is in the second output mode of the power generation system 2
  • the generated power S less than the threshold value Sth is
  • the power storage device 8 is charged through 106-1 and the terminal voltage Vc reaches the upper limit voltage VcH or higher
  • the power storage device 8 is discharged, and the discharged power and the generated power S that is less than the threshold Sth are summed.
  • the combined power is supplied to the power conditioner 206-2 to perform power conversion.
  • the generated power S can be prevented from decreasing to 0, and the generated power S that is less than the threshold value Sth can be continuously converted into AC output and extracted.
  • This power generation system 2 can be configured as a commercial photovoltaic power generation system that uses MPPT to generate power with optimal generated power (VI characteristic conditions).
  • MPPT to generate power with optimal generated power
  • a plurality of such power generation panels 4-1, 4-2, and 4-3 are installed and a plurality of power converters are used. This is because, as the power generation system 2 becomes larger, the solar radiation conditions of the power generation panels 4-1, 4-2, and 4-3 may differ. Controlling this with one MPPT deteriorates the generated power conversion efficiency, so the purpose is to improve this.
  • each of the power separation units 106-1, 106-2, 106-3 Although it is possible to recover weak power by installing power storage devices 8 in the area, an increase in the number of installed power storage devices 8 will worsen economic efficiency. Therefore, in the power generation system 2 of the present disclosure, the power recovery unit 108 including one power storage device 8 can be used to improve economic efficiency and power generation efficiency. In other words, unifying the power recovery unit 108 including the power storage device 8 is economical and beneficial.
  • the generated power S obtained from any one or more of the power generation panels 4-1, 4-2, 4-3 at the same time is also generated by the power conditioner 206. -2, the discharge of the stored power of the power storage device 8 is reduced, which greatly contributes to improving the life of the power storage device 8.
  • Example 1 is a power generation system 2 that uses an electric double layer capacitor as the electricity storage device 8.
  • Electric double layer capacitors have a lower internal resistance than lithium ion batteries, and the power loss at 1 (A) due to this resistance is small, and the ratio of power loss based on the power loss of lithium ion batteries is abnormally small. was confirmed.
  • Fig. 11A shows a table showing "power loss per power storage element" quoted from Machine Design November 2015 issue (Machine Design November 2015 issue, published by Nikkan Kogyo Shimbun).
  • Chapter 3 Safely using lithium-ion batteries - Part 1 Charging/discharging evaluation and internal resistance evaluation (T&C Technical Hiromichi Shimoda)
  • Figure 9 B is from the November 2015 issue of Mechanical Design published by Nikkan Kogyo Shimbun. I quote the graph showing the "internal resistance measurement results.”
  • the resistance of the lithium ion battery is as high as 246 [m ⁇ ], whereas the resistance of the electric double layer capacitor is extremely low at 11 to 0.3 [m ⁇ ], indicating that the power loss is significantly lower.
  • lithium ion batteries tend to have an increase in internal resistance when the battery capacity decreases due to discharge, and are affected by this, but such a phenomenon has not been reported for electric double layer capacitors. It has not been.
  • the power generation system 2 that uses an electric double layer capacitor as the power storage device 8 it is possible to provide a system in which power loss is significantly improved, and the recovery rate of weak power can be increased.
  • Example 1 According to the first embodiment, one of the following effects can be obtained. (1) According to the electricity storage device 8 using this electric double layer capacitor, it is possible to speed up the charging and discharging of the generated power S that is less than the threshold value Sth obtained from the power generation panel 4, and it is also possible to suppress power loss, and to The conversion efficiency can be increased.
  • a threshold value Sth1 for the generated power S is set as the opening/closing condition for SW16-1
  • a threshold value Sth2 for the generated power S is set as the opening/closing condition for SW16-2, and if Sth2>Sth1, SW16-1 opens/closes. Before doing so, control SW16-2 to ON state.
  • the power storage device 8 can be charged before the generated power S reaches the threshold Sth1, the power storage device 8 can be charged in the first output mode, and the AC generated power S obtained from the power generation panel 4 is less than the threshold Sth1. Can speed up conversion to output.
  • the charging mode Ec can be absorbed into the first output mode in the section C2 of C in FIG. 4, and the efficiency of the power generated by the power generation panel 4 can be increased.
  • This third embodiment has a configuration in which the opening/closing function of the SW 16-3 in the power generation system 2 (FIG. 1) according to the first embodiment is replaced by the input voltage control function of the DC-DC converter 22-2.
  • Example 3 ⁇ Effects of Example 3> According to this third embodiment, one of the following effects can be obtained.
  • the power generation system 2 can be simplified because the SW 16-3, which is independent from the DC-DC converter 22-2, can be removed and its control can be omitted.
  • the controller 10 may be integrated into the power conditioner 6-1 or the power conditioner 6-2, or the SWs 16-1, 16-2, and 16-3 may have a determination function, etc. may be added, and the controller 10 does not have to be configured independently from the power conditioners 6-1 and 6-2.
  • a plurality of power generation panels 4 may be installed and the same processing as in the above embodiment may be performed.
  • the amount of solar radiation that represents the amount of radiant energy that the power generation panel 4 receives from the sun is exemplified with respect to the solar power generation of the power generation system 2.
  • the amount of sunlight representing the amount of irradiation may be used.
  • a power conditioner with a rated output that has a high power conversion efficiency is used when a high amount of power generation can be obtained, such as on a sunny day.
  • the conversion efficiency of generated power is significantly reduced during weak power conditions such as on rainy days, cloudy days, and in the morning and evening.
  • the generated power below the threshold value at which the conversion efficiency of the power conditioner decreases is stored in the electricity storage device, and when the terminal voltage reaches the upper limit voltage, the generated power below the threshold value is generated using this discharged power. Since the power is raised and supplied to the power conditioner as power with high conversion efficiency, it is possible to efficiently convert generated power in the weak power range, which is said to have low conversion efficiency, into AC output. When discharging a power storage device, this discharged power is added to the generated power below the threshold and supplied to the power conditioner, resulting in a reduction in the discharge power of the power storage device and the number of charge/discharge cycles of the power storage device. This provides excellent effects such as extending the expected life of the power storage device.
  • the present disclosure it is possible to combine the generated power collected in the power storage device and the generated power below the threshold value and use it for power conversion, increasing the recovery efficiency or utilization rate of the generated power in the weak power range, and It is possible to increase the conversion efficiency and increase the output of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The present invention includes a power generation apparatus (power generation panel 4), a power storage apparatus (power storage device 8), a charging circuit (circuit unit 14-2) that, if the generated power is below a threshold value, charges the power storage apparatus with the generated power, and a discharging circuit (14-3) that discharges the power storage apparatus if the charging voltage of the power storage apparatus reaches a prescribed value, wherein there are: a first output mode for supplying generated power from the power generation apparatus to a first power conversion unit (power conditioner 6-1) if the generated power is the threshold value or higher; a charging mode for charging the power storage apparatus with the generated power if the generated power is below the threshold value; and a second output mode in which, when the charging voltage has reached a prescribed value, the discharged power of the power storage apparatus and the generated power below the threshold value of the power generation apparatus are added and supplied to a second power conversion unit (power conditioner 6-2).

Description

太陽光発電システム、その制御方法、プログラムおよび蓄電制御装置Solar power generation system, its control method, program, and power storage control device
 本開示は、太陽光発電システムの発電電力の蓄電および出力制御に関する。
The present disclosure relates to power storage and output control of power generated by a solar power generation system.
 太陽光発電システムは、太陽光を受けて発電する太陽光発電パネルを発電装置に用いている。斯かる発電装置は日射量または日照量に応じて発電し、日射量また日照量に応じた発電電力が得られる。日射量は太陽光発電パネルに到達した太陽の放射エネルギー量である。日照量は太陽光発電パネルに対する太陽の照射量である。つまり、発電電力が日射量または日照量の影響を受け、曇天や雨天など、太陽光発電パネルが受ける日射量または日照量の低下や変動が発電電力に影響する。微弱電力域で得られる発電電力をパワーコンディショナに供給しても、パワーコンディショナの内部回路での消費電力により実用に耐える給電出力を得ることができない。 A solar power generation system uses a solar power generation panel that generates electricity by receiving sunlight as a power generation device. Such a power generation device generates electricity according to the amount of solar radiation or the amount of sunlight, and can obtain generated power according to the amount of solar radiation or the amount of sunlight. Solar radiation is the amount of radiant energy from the sun that reaches the photovoltaic panels. The amount of sunlight is the amount of sunlight irradiating the photovoltaic panel. In other words, the generated power is affected by the amount of solar radiation or sunlight, and a decrease or fluctuation in the amount of solar radiation or sunlight received by the solar power generation panel, such as on cloudy or rainy days, affects the generated power. Even if generated power obtained in a weak power range is supplied to a power conditioner, a power supply output that can withstand practical use cannot be obtained due to power consumption in the internal circuit of the power conditioner.
 このような太陽光発電システムに関し、太陽光発電パネルの発電電力定値以下の場合には、発電電力をキャパシタに回収し、この回収電力を変換して負荷や系統に出力するシステムが知られている(たとえば、特許文献1)。
Regarding such solar power generation systems, there is a known system in which when the power generated by the solar power generation panel is below a fixed value, the generated power is collected in a capacitor, and this collected power is converted and output to the load or grid. (For example, Patent Document 1).
特開2018-129980号公報JP2018-129980A
 ところで、太陽光発電パネルが受ける日射量が低下して発電電力が低下すると、パワーコンディショナの電力変換動作が不安定になり、このような動作状態を継続させることはシステムの動作上、好ましくない。このため、発電電力が閾値以下の場合、その発電電力をキャパシタに蓄電し、この蓄電電力を適時に使用することが合理的である。しかしながら、この充電回路はスイッチを備えており、このスイッチをキャパシタの充電時に閉じ、放電時には開く構成である。このため、キャパシタの放電時には太陽光発電パネルに発電電力が得られていても、この発電電力をキャパシタに充電することができないし、キャパシタに充電できなければその発電電力を利用することができず、このため発電電力の変換効率を低下させてしまうという課題がある。 By the way, when the amount of solar radiation received by the solar power generation panels decreases and the generated power decreases, the power conversion operation of the power conditioner becomes unstable, and it is not desirable for the system to continue in such an operating state. . Therefore, when the generated power is below a threshold value, it is reasonable to store the generated power in a capacitor and use this stored power in a timely manner. However, this charging circuit includes a switch that is closed when the capacitor is charged and opened when the capacitor is discharged. Therefore, even if the solar power generation panel generates power when the capacitor is discharged, the generated power cannot be charged to the capacitor, and if the capacitor cannot be charged, the generated power cannot be used. Therefore, there is a problem that the conversion efficiency of the generated power is reduced.
 しかも、キャパシタの放電時、システムを通常回路に切り換えて発電電力の電力変換を行う場合、切り換えに伴うタイムラグを生じ、発電電力=0の時間が頻発するという課題がある。 Moreover, when the system is switched to a normal circuit and the generated power is converted into power when the capacitor is discharged, there is a problem in that a time lag occurs due to the switching, and periods in which the generated power is 0 occur frequently.
 太陽光発電パネルの発電電力をパワーコンディショナに供給する出力モードと、発電電力をキャパシタに蓄電する蓄電モードとを切り換える場合には、両者を切り換えるための閾値の設定が不可欠である。この閾値を高レベル化すれば、蓄電電力量が増大するものの、パワーコンディショナに向ける発電電力量は減少するし、蓄電装置に用いられるキャパシタの充放電サイクル回数が多くなり、キャパシタの負担が増大する。 When switching between the output mode in which the power generated by the solar power generation panel is supplied to the power conditioner and the power storage mode in which the generated power is stored in the capacitor, it is essential to set a threshold value for switching between the two. If this threshold is set to a high level, the amount of stored power will increase, but the amount of generated power sent to the power conditioner will decrease, and the number of charging and discharging cycles of the capacitor used in the power storage device will increase, increasing the load on the capacitor. do.
 閾値を低レベル化すれば、曇天や雨天など、太陽光発電パネルが受ける日射量が不安定になる微弱電力域でモード切換えが頻発し、このモード切換えによる消費電力が増大するという課題もある。 If the threshold value is lowered, mode switching will occur frequently in weak power ranges where the amount of solar radiation received by the solar power generation panel is unstable, such as on cloudy or rainy days, and the power consumption due to this mode switching will increase.
 本件発明者らは、太陽光発電パネルに併設した閾値以下の発電出力を回収する蓄電装置の制御によって閾値以下の発電電力の回収効率を高め、その蓄電電力の利用効率を高めることが太陽光発電システム効率を高める上で有益であるとの知見を得た。 The inventors of the present invention have discovered that it is possible to increase the recovery efficiency of generated power below a threshold by controlling a power storage device attached to a solar power generation panel that recovers power generation output below a threshold, and to increase the utilization efficiency of the stored power. The findings were found to be beneficial in increasing system efficiency.
 そこで、本開示の目的は、太陽光発電パネルなどの発電装置から得られる閾値以下の発電電力の回収率ないし利用率を高め、電力変換効率を高めることにある。 Therefore, the purpose of the present disclosure is to increase the recovery rate or utilization rate of generated power below a threshold value obtained from a power generation device such as a solar power generation panel, and to increase power conversion efficiency.
 上記目的を達成するため、本開示の太陽光発電システムの一側面によれば、日射量に応じて発電する発電装置と、蓄電装置と、前記発電装置の発電電力が閾値未満であれば、この発電電力で前記蓄電装置を充電する充電回路と、前記蓄電装置の充電電圧が所定値に到達すれば、前記蓄電装置を放電させる放電回路とを含み、前記発電電力が閾値以上であれば、前記発電装置から第一電力変換部に前記発電電力を供給する第一出力モード、前記発電電力が閾値未満であれば、この発電電力で前記蓄電装置を充電する充電モード、前記充電電圧が所定値に到達したとき、前記蓄電装置の放電電力と前記発電装置の閾値未満の発電電力を加算して第二電力変換部に供給させる第二出力モードを含む。 In order to achieve the above object, one aspect of the solar power generation system of the present disclosure includes a power generation device that generates power according to the amount of solar radiation, a power storage device, and a power generation device that generates power when the power generated by the power generation device is less than a threshold value. a charging circuit that charges the power storage device with the generated power; and a discharge circuit that discharges the power storage device when the charging voltage of the power storage device reaches a predetermined value; a first output mode in which the generated power is supplied from the power generation device to the first power conversion unit; a charging mode in which the power storage device is charged with the generated power if the generated power is less than a threshold; and a charging mode in which the power storage device is charged with the generated power; A second output mode includes a second output mode in which, when the power is reached, the discharge power of the power storage device and the power generated by the power generation device that is less than the threshold value are added and the result is supplied to the second power conversion unit.
 この太陽光発電システムにおいて、前記閾値は、前記第一出力モードで前記第一電力変換部の変換効率が顕著に低下する電力値または該電力値以上の電力値であってもよい。 In this solar power generation system, the threshold value may be a power value at which the conversion efficiency of the first power conversion unit significantly decreases in the first output mode, or a power value greater than or equal to the power value.
 この太陽光発電システムの前記第二出力モードにおいて、前記第二電力変換部へ供給する電力は、前記第二出力モードで用いられる前記第二電力変換部の変換効率が十分高い電力であってもよい。 In the second output mode of this solar power generation system, the power supplied to the second power converter may be power that has a sufficiently high conversion efficiency of the second power converter used in the second output mode. good.
 この太陽光発電システムにおいて、前記蓄電装置が、少なくともダイオードを介して前記発電装置に接続され、かつ、前記ダイオードを介して前記第一電力変換部と分離されていてもよい。 In this solar power generation system, the power storage device may be connected to the power generation device via at least a diode, and may be separated from the first power conversion unit via the diode.
 この太陽光発電システムにおいて、前記発電装置と前記第一電力変換部の間を開閉する第一のスイッチと、前記充電回路を開閉する第二のスイッチと、前記放電回路を開閉する第三のスイッチと、前記発電電力が閾値以上であれば、前記第一のスイッチを閉じ、前記発電電力が閾値未満であれば、前記第一のスイッチを開き、かつ前記第二のスイッチを閉じて閾値未満の発電電力で前記蓄電装置を充電し、この充電電圧が所定値に到達したとき、前記第三のスイッチを閉じて前記蓄電装置を放電させる制御部とを含んでもよい。 In this solar power generation system, a first switch opens and closes between the power generation device and the first power converter, a second switch opens and closes the charging circuit, and a third switch opens and closes the discharge circuit. If the generated power is above the threshold value, the first switch is closed; if the generated power is less than the threshold value, the first switch is opened, and the second switch is closed, and the generated power is less than the threshold value. The power storage device may be charged with the generated power, and when the charging voltage reaches a predetermined value, the control unit may close the third switch to discharge the power storage device.
 この太陽光発電システムにおいて、前記第三のスイッチの機能が前記第二電力変換部に含まれるDC-DCコンバータで実現してもよい。 In this solar power generation system, the function of the third switch may be realized by a DC-DC converter included in the second power conversion section.
 この太陽光発電システムにおいて、日射量に応じて発電する二以上の前記発電装置と、閾値以上の発電電力を電力変換する二以上の第一電力変換部と、前記閾値未満の発電電力を電力変換する第二電力変換部とを含み、前記蓄電装置が、各発電装置の発電電力を閾値以上の発電電力と、閾値未満の発電電力とに分離する二以上の電力分離部と、前記電力分離部で分離された前記閾値未満の発電電力を合算し回収する電力回収部とを含んでもよい。 In this solar power generation system, the two or more power generation devices generate power according to the amount of solar radiation, the two or more first power conversion units convert the generated power above the threshold value into power, and the power conversion unit converts the generated power below the threshold value into power. the power storage device includes two or more power separation units that separate the generated power of each power generation device into generated power equal to or higher than a threshold value and generated power less than the threshold value, and the power separation unit and a power recovery unit that adds up and recovers the generated power that is less than the threshold and is separated by the threshold value.
 上記目的を達成するため、本開示の太陽光発電システムの制御方法の一側面によれば、発電装置が、日射量に応じて発電する工程と、発電電力が閾値以上であれば、前記発電装置から第一電力変換部に前記発電電力を供給する第一出力モードを実行する工程と、前記発電電力が閾値未満であれば、前記発電電力で蓄電装置を充電する充電モードを実行する工程と、前記蓄電装置の充電電圧が所定値に到達したとき、前記蓄電装置の放電電力を前記発電装置の閾値未満の発電電力に加算して第二電力変換部に供給させる第二出力モードを実行する工程とを含む。 In order to achieve the above object, according to one aspect of the method for controlling a solar power generation system of the present disclosure, the power generation device generates power according to the amount of solar radiation; a step of executing a first output mode in which the generated power is supplied to a first power conversion unit from the first power converter, and a step of executing a charging mode in which the power storage device is charged with the generated power if the generated power is less than a threshold value; When the charging voltage of the power storage device reaches a predetermined value, executing a second output mode in which the discharged power of the power storage device is added to the generated power of the power generation device that is less than a threshold value and is supplied to a second power conversion unit. including.
 この太陽光発電システムの制御方法において、第一のスイッチが、前記発電装置と前記第一電力変換部の間を開閉する工程と、第二のスイッチが、充電回路を開閉する工程と、第三のスイッチが、放電回路を開閉する工程と、制御部が、前記発電電力が閾値以上であれば、前記第一のスイッチを閉じ、前記発電電力が閾値未満であれば、前記第一のスイッチを開き、かつ前記第二のスイッチを閉じて前記蓄電装置を閾値未満の発電電力で充電させ、前記蓄電装置の充電電圧が所定値に到達したとき、前記第三のスイッチを閉じて前記蓄電装置を放電させる工程とを含む。 In this method for controlling a solar power generation system, a step in which a first switch opens and closes between the power generation device and the first power converter, a step in which a second switch opens and closes a charging circuit, and a third step in which a second switch opens and closes a charging circuit. a step in which the switch opens and closes the discharge circuit; and a control unit closes the first switch if the generated power is above a threshold value, and closes the first switch if the generated power is less than the threshold value. the second switch is opened and the second switch is closed to charge the power storage device with generated power below a threshold value, and when the charging voltage of the power storage device reaches a predetermined value, the third switch is closed to charge the power storage device. and a step of discharging.
 この太陽光発電システムの制御方法において、二以上の発電装置が日射量に応じて発電する工程と、二以上の第一電力変換部が前記閾値以上の発電電力を電力変換する工程と、第二電力変換部が、前記閾値未満の発電電力を電力変換する工程と、蓄電装置において、二以上の電力分離部が、各発電装置の発電電力を閾値以上の発電電力と、閾値未満の発電電力とに分離する工程と、前記蓄電装置が前記閾値未満の発電電力を蓄電装置に蓄電する工程と、前記蓄電装置の端子電圧が所定値以上に到達したとき、前記蓄電装置を放電させ、該放電電力と前記電力分離部で分離された前記閾値未満の発電電力を合算し、この合算電力を前記第二電力変換部に供給する工程とを含んでもよい。 In this solar power generation system control method, two or more power generation devices generate power according to the amount of solar radiation, two or more first power conversion units convert the generated power equal to or higher than the threshold value, and a second The power conversion section converts the generated power below the threshold into power, and in the power storage device, two or more power separation sections separate the generated power of each power generation device into the generated power equal to or more than the threshold and the generated power less than the threshold. a step of separating power generated by the power storage device into a power storage device that is less than the threshold value; and a step of discharging the power storage device when the terminal voltage of the power storage device reaches a predetermined value or higher, and discharging the discharged power. and the step of summing up the generated power below the threshold value separated by the power separation section, and supplying this summed power to the second power conversion section.
 上記目的を達成するため、本開示のプログラムの一側面によれば、コンピュータに実行させるためのプログラムであって、発電電力が閾値以上であれば、発電装置から第一電力変換部に前記発電電力を供給する第一出力モードを実行させる機能と、前記発電電力が閾値未満であれば、前記発電電力で蓄電装置を充電する充電モードを実行させる機能と、前記蓄電装置の充電電圧が所定値に到達したとき、前記蓄電装置の放電電力と前記発電装置の閾値未満の発電電力を加算して第二電力変換部に供給させる第二出力モードを実行させる機能とを前記コンピュータに実行させる。 In order to achieve the above object, according to one aspect of the program of the present disclosure, the program causes a computer to execute the program, and if the generated power is equal to or greater than a threshold value, the generated power is transmitted from the power generation device to the first power conversion unit. a function of executing a first output mode that supplies a power, a function of executing a charging mode of charging a power storage device with the generated power if the generated power is less than a threshold value, and a function of causing the charging voltage of the power storage device to reach a predetermined value. When the power is reached, the computer is caused to execute a second output mode that adds the discharged power of the power storage device and the generated power of the power generation device that is less than the threshold value and supplies the result to the second power conversion unit.
 このプログラムにおいて、第一のスイッチに、前記発電装置と前記第一電力変換部の間を開閉させる機能と、第二のスイッチに、充電回路を開閉させる機能と、第三のスイッチに、放電回路を開閉させる機能と、前記発電電力が閾値以上であれば、前記第一のスイッチを閉じ、前記発電電力が閾値未満であれば、前記第一のスイッチを開き、かつ前記第二のスイッチを閉じて前記蓄電装置を閾値未満の発電電力で充電させ、前記蓄電装置の充電電圧が所定値に到達したとき、前記第三のスイッチを閉じて前記蓄電装置を放電させる機能とを前記コンピュータに実行させてもよい。 In this program, a first switch has a function of opening and closing between the power generation device and the first power converter, a second switch has a function of opening and closing a charging circuit, and a third switch has a function of opening and closing a charging circuit. a function of opening and closing, and if the generated power is above a threshold value, the first switch is closed; if the generated power is less than the threshold value, the first switch is opened and the second switch is closed; causing the computer to execute a function of charging the power storage device with generated power less than a threshold value and, when the charging voltage of the power storage device reaches a predetermined value, closing the third switch and discharging the power storage device. It's okay.
 このプログラムにおいて、コンピュータに実行させるためのプログラムであって、日射量に応じて発電する二以上の発電装置から発電電力を表す発電電力情報を取得する機能と、電力分離部に各発電装置の発電電力を閾値以上の発電電力と、閾値未満の発電電力とに分離させ、前記閾値以上の発電電力を二以上の第一電力変換部に供給させる機能と、電力回収部が、前記閾値未満の発電電力を蓄電装置に供給させ、該発電電力を蓄電させる機能と、前記蓄電装置の端子電圧が所定値以上に到達したとき、前記蓄電装置を放電させ、該放電電力と前記電力分離部で分離された閾値未満の前記発電電力を合算させ、この合算電力を前記第二電力変換部に供給する機能とを前記コンピュータに実行させてもよい。 This program is a program to be executed by a computer, and has a function to acquire power generation information representing the power generated from two or more power generation devices that generate power according to the amount of solar radiation, and a power separation section to generate power from each power generation device. A function of separating electric power into generated power equal to or more than a threshold value and generated power less than the threshold value, and supplying the generated power equal to or more than the threshold value to two or more first power conversion units; A function for supplying electric power to a power storage device and storing the generated power, and when a terminal voltage of the power storage device reaches a predetermined value or more, discharging the power storage device and separating the discharged power from the power separation unit. The computer may be caused to perform a function of summing up the generated power that is less than a threshold value and supplying this summed power to the second power conversion section.
 上記目的を達成するため、本開示の蓄電制御装置の一側面によれば、日射量に応じて発電する発電装置と、蓄電装置と、発電電力が閾値未満であれば、前記蓄電装置に前記発電装置の発電電力を充電させる充電回路と、前記蓄電装置を放電させる放電回路とを備えた太陽光発電システムの蓄電制御装置であって、前記発電電力が閾値以上であるか閾値未満であるかを監視する発電電力監視部と、前記蓄電装置の充電電圧が所定値に到達したかを監視する蓄電電力監視部と、前記発電電力が閾値以上であれば、第一電力変換部に前記発電電力を供給する第一出力モードを実行し、前記発電電力が閾値未満であれば、閾値未満の前記発電電力で前記蓄電装置を充電する充電モードを実行し、前記蓄電装置の充電電圧が所定値に到達したとき、該蓄電装置の放電電力と前記発電装置の閾値未満の発電電力を加算して第二電力変換部に供給させる第二出力モードを実行する制御部とを含む。 In order to achieve the above object, one aspect of the power storage control device of the present disclosure includes a power generation device that generates power according to the amount of solar radiation, a power storage device, and, if the generated power is less than a threshold value, the power storage device A power storage control device for a solar power generation system comprising a charging circuit for charging power generated by the device and a discharging circuit for discharging the power storage device, the power storage control device for controlling whether the generated power is above a threshold value or less than a threshold value. a generated power monitoring unit that monitors; a stored power monitoring unit that monitors whether the charging voltage of the power storage device has reached a predetermined value; and a stored power monitoring unit that monitors whether the charging voltage of the power storage device has reached a predetermined value; A first output mode for supplying is executed, and if the generated power is less than a threshold value, a charging mode is executed for charging the power storage device with the generated power that is less than the threshold value, and the charging voltage of the power storage device reaches a predetermined value. The control unit includes a control unit that executes a second output mode that adds the discharged power of the power storage device and the generated power of the power generation device that is less than the threshold value and supplies the result to the second power conversion unit.
 この蓄電制御装置において、前記発電装置と前記第一電力変換部の間を開閉する第一のスイッチと、前記充電回路を開閉する第二のスイッチと、前記放電回路を開閉する第三のスイッチとを含み、前記制御部が、前記発電電力が閾値以上であれば、前記第一のスイッチを閉じ、前記発電電力が閾値未満であれば、前記第一のスイッチを開き、かつ前記第二のスイッチを閉じて前記蓄電装置を閾値未満の発電電力で充電させ、前記蓄電装置の充電電圧が所定値に到達したとき、前記第三のスイッチを閉じて前記蓄電装置を放電させるスイッチ制御部を含んでもよい。 In this power storage control device, a first switch that opens and closes between the power generation device and the first power converter, a second switch that opens and closes the charging circuit, and a third switch that opens and closes the discharge circuit. The control unit closes the first switch when the generated power is equal to or higher than a threshold value, opens the first switch when the generated power is less than the threshold value, and closes the first switch, and closes the first switch when the generated power is less than the threshold value. may include a switch control unit that closes the power storage device to charge the power storage device with generated power below a threshold value, and closes the third switch to discharge the power storage device when the charging voltage of the power storage device reaches a predetermined value. good.
 この太陽光発電システムの蓄電制御装置において、日射量に応じて発電する二以上の発電装置とともに蓄電装置を含み、前記蓄電装置が、各発電装置の発電電力を閾値以上の発電電力と、閾値未満の発電電力とに分離する二以上の電力分離部と、前記電力分離部で分離された前記閾値未満の発電電力を合算して前記第二電力変換部に供給する電力回収部とを含んでもよい。
This power storage control device for a solar power generation system includes a power storage device together with two or more power generation devices that generate power according to the amount of solar radiation, and the power storage device divides the power generated by each power generation device into a power that is equal to or more than a threshold value and a power that is less than the threshold value. The power generation unit may include two or more power separation units that separate the generated power into two or more generated power, and a power recovery unit that adds up the generated power that is less than the threshold value separated by the power separation unit and supplies it to the second power conversion unit. .
 本開示によれば、次の何れかの効果が得られる。
 (1) 発電装置から閾値以上の発電電力が得られる場合には高効率で第一電力変換部から交流出力を取り出すことができるとともに、発電電力が閾値未満の場合であっても、閾値未満の発電電力で蓄電装置の充放電機能を利用することにより、閾値未満の発電電力を第二電力変換部で効率よく交流出力に変換して取り出すことができ、太陽光発電システムの高効率化を実現できる。
According to the present disclosure, any of the following effects can be obtained.
(1) When the generated power from the power generation device is equal to or higher than the threshold value, AC output can be extracted from the first power converter with high efficiency, and even if the generated power is less than the threshold value, By using the charging/discharging function of the power storage device with the generated power, the generated power below the threshold can be efficiently converted into AC output at the second power conversion section and taken out, making the solar power generation system highly efficient. can.
 (2) 発電電力が閾値未満の場合、この発電電力で蓄電装置を充電し、この充電電圧が所定値に到達したとき蓄電装置を放電させ、この放電電力と閾値未満の発電電力を合算し、この合算電力を第二電力変換部に供給することができるので、閾値未満の発電電力をロスすることなく、効率よく交流出力に変換して取り出すことができる。 (2) If the generated power is less than the threshold, charge the power storage device with this generated power, discharge the power storage device when the charging voltage reaches a predetermined value, add up this discharged power and the generated power below the threshold, Since this combined power can be supplied to the second power conversion section, the generated power below the threshold value can be efficiently converted into AC output and taken out without loss.
 (3) 発電電力が閾値未満の場合にも第二電力変換部の停止を防止でき、または仮に第二電力変換部の停止が生じても、その停止期間を短くできるので、交流出力を増加させることができる。 (3) It is possible to prevent the second power converter from stopping even if the generated power is less than the threshold, or even if the second power converter does stop, the period of stoppage can be shortened, increasing AC output. be able to.
 (4) 発電電力が閾値未満の場合、蓄電装置の放電電力と閾値未満の発電電力を合算した合算電力を一定電力に調整して第二電力変換部に供給できるので、合算電力を用いない場合に比較し、蓄電装置の放電速度を遅延させることができ、この遅延により蓄電装置の充放電サイクル数を低減でき、結果として蓄電装置の耐久性を高めることができる。 (4) If the generated power is less than the threshold, the total power, which is the sum of the discharge power of the power storage device and the generated power below the threshold, can be adjusted to a constant power and supplied to the second power conversion unit, so if the total power is not used Compared to this, the discharge speed of the power storage device can be delayed, and this delay can reduce the number of charge/discharge cycles of the power storage device, and as a result, the durability of the power storage device can be increased.
 (5) 曇天や雨天など、日射量レベルが変動しても、この変動に対応した閾値を設定できるので、気象条件に応じた太陽光発電システムを実現できる。 (5) Even if the solar radiation level fluctuates due to cloudy or rainy weather, it is possible to set a threshold that corresponds to this fluctuation, making it possible to realize a solar power generation system that adapts to the weather conditions.
 そして、本発明の他の目的、特徴および利点は、添付図面および各実施の形態を参照することにより、一層明確になるであろう。
Other objects, features, and advantages of the present invention will become clearer by referring to the accompanying drawings and embodiments.
図1は、第一の実施の形態に係る太陽光発電システムを示す図である。FIG. 1 is a diagram showing a solar power generation system according to a first embodiment. 図2は、蓄電デバイスの端子間電圧Vcの推移とSW16-3のON、OFFの関係を示す図である。FIG. 2 is a diagram showing the relationship between the transition of the voltage Vc between the terminals of the power storage device and the ON/OFF state of SW16-3. 図3は、太陽光発電システムの制御シーケンスを示すフローチャートである。FIG. 3 is a flowchart showing the control sequence of the solar power generation system. 図4は、太陽光発電システムの制御シーケンスの一例を示す図である。FIG. 4 is a diagram showing an example of a control sequence of the solar power generation system. 図5は、太陽光発電システムの動作テーブルを示す図である。FIG. 5 is a diagram showing an operation table of the solar power generation system. 図6のAは、蓄電デバイス8の放電時(SW16-2=OFFの場合)の蓄電デバイス8の充放電プロファイルを示す図であり、図6のBは、SW16-2=ONの場合の蓄電デバイス8の充放電プロファイルを示す図である。A of FIG. 6 is a diagram showing the charging/discharging profile of the power storage device 8 when the power storage device 8 is discharging (when SW16-2=OFF), and B of FIG. 3 is a diagram showing a charge/discharge profile of device 8. FIG. 図7のAは、閾値未満の発電電力の推移を示す図であり、図7のBは、閾値未満の発電電力の回収を表す図である。A in FIG. 7 is a diagram showing the transition of the generated power below the threshold value, and B in FIG. 7 is a diagram showing the recovery of the generated power below the threshold value. 図8は、第二の実施の形態に係る太陽光発電システムを示す図である。FIG. 8 is a diagram showing a solar power generation system according to the second embodiment. 図9は、第三の実施の形態に係る太陽光発電システムを示す図である。FIG. 9 is a diagram showing a solar power generation system according to the third embodiment. 図10のA、BおよびCは、各太陽光発電パネルの発電電力の推移を示す図であり、図10のDは、閾値未満の発電電力の合算を示す図である。A, B, and C in FIG. 10 are diagrams showing the transition of the power generated by each solar power generation panel, and D in FIG. 10 is a diagram showing the sum of the power generated below the threshold value. 図11のAは、日刊工業新聞社発行の機械設計2015年11月号より引用した「蓄電素子一本当たりの電力損失」を示すテーブル(日刊工業新聞社発行の機械設計2015年11月号、第3章リチウムイオン電池を安全に使う―その1 充放電評価と内部抵抗評価 ティ・アンド・シー・テクニカル 下田 洋道)であり、図11のBは日刊工業新聞社発行の機械設計2015年11月号より引用した「内部抵抗の測定結果」を示すグラフである。A in Figure 11 is a table showing "power loss per storage element" quoted from the November 2015 issue of Mechanical Design published by Nikkan Kogyo Shimbun. Chapter 3: Safely using lithium-ion batteries - Part 1 Charging/discharging evaluation and internal resistance evaluation T&C Technical Hiromichi Shimoda), and B in Figure 11 is from Mechanical Design 2015 11 published by Nikkan Kogyo Shimbun. This is a graph showing "internal resistance measurement results" quoted from the monthly issue.
〔第一の実施の形態〕
 図1は、第一の実施の形態に係る太陽光発電システム2(以下単に「発電システム2」と称する)を示している。図1に示す構成は一例であり、本開示が斯かる構成に限定されるものではない。
[First embodiment]
FIG. 1 shows a solar power generation system 2 (hereinafter simply referred to as "power generation system 2") according to a first embodiment. The configuration shown in FIG. 1 is an example, and the present disclosure is not limited to such a configuration.
<発電システム2>
 この発電システム2は、太陽光発電パネル4(以下単に「発電パネル4」と称する)、第一パワーコンディショナ6-1(以下「パワーコンディショナ6-1」と称する)、第二パワーコンディショナ6-2(以下「パワーコンディショナ6-2」と称する)、蓄電デバイス8、コントローラ10などを備えている。
<Power generation system 2>
This power generation system 2 includes a solar power generation panel 4 (hereinafter simply referred to as "power generation panel 4"), a first power conditioner 6-1 (hereinafter referred to as "power conditioner 6-1"), and a second power conditioner. 6-2 (hereinafter referred to as "power conditioner 6-2"), a power storage device 8, a controller 10, and the like.
 発電パネル4は本開示の発電装置の一例である。この発電パネル4は、少なくとも日射量(または日照量)に応じて発電し、日射量に応じた発電電力Sが発電パネル4から得られる。この発電電力Sは発電装置から得られる発電量の一例である。この発電パネル4には、発電電力の監視手段として電力計12が接続されている。電力計12は、常時、発電パネル4の発電電力Sを計測し、計測した発電電力情報をコントローラ10に提供する。コントローラ10は、電力計12からの発電電力情報を取得し、発電パネル4の発電電力Sが閾値Sth以上か閾値Sth未満かを判断し、制御出力を生成する。 The power generation panel 4 is an example of the power generation device of the present disclosure. The power generation panel 4 generates power according to at least the amount of solar radiation (or the amount of sunlight), and the generated power S corresponding to the amount of solar radiation is obtained from the power generation panel 4. This generated power S is an example of the amount of power generated from the power generation device. A wattmeter 12 is connected to the power generation panel 4 as a means for monitoring the generated power. The wattmeter 12 constantly measures the generated power S of the power generation panel 4 and provides the controller 10 with information on the measured generated power. The controller 10 acquires the generated power information from the wattmeter 12, determines whether the generated power S of the power generation panel 4 is greater than or equal to the threshold value Sth, or less than the threshold value Sth, and generates a control output.
 パワーコンディショナ6-1は本開示の第一電力変換部の一例であり、閾値Sth以上の発電電力が得られる場合(後述の第一出力モード)に対応する電力変換手段である。このパワーコンディショナ6-1と発電パネル4は第一回路部14-1(以下「回路部14-1」と称する)で接続されている。この回路部14-1には第一スイッチ16-1(以下、「SW16-1」と称する)が含まれている。このSW16-1の開閉はコントローラ10によって制御される。このSW16-1は半導体スイッチ、リレーなどの開閉手段で構成される。このSW16-1の開閉条件として、発電電力Sに対して閾値Sthが設定される。この閾値Sthはたとえば、パワーコンディショナ6-1が発電パネル4からの発電電力Sを以て安定した十分高い効率で電力変換が可能な発電電力Sに相当する下限電力値である。このこの閾値Sthに関し、第一出力モードでパワーコンディショナ6-1の変換効率が検挙に低下する電力値またはこの電力値以上の電力値であってもよい。 The power conditioner 6-1 is an example of the first power conversion unit of the present disclosure, and is a power conversion means that supports a case where generated power equal to or greater than the threshold value Sth is obtained (first output mode described later). The power conditioner 6-1 and the power generation panel 4 are connected through a first circuit section 14-1 (hereinafter referred to as "circuit section 14-1"). This circuit section 14-1 includes a first switch 16-1 (hereinafter referred to as "SW16-1"). The opening and closing of this SW 16-1 is controlled by the controller 10. This SW16-1 is composed of opening/closing means such as a semiconductor switch and a relay. A threshold value Sth is set for the generated power S as an opening/closing condition for this SW 16-1. This threshold value Sth is, for example, a lower limit power value corresponding to the generated power S that allows the power conditioner 6-1 to convert the generated power S from the power generation panel 4 into stable and sufficiently high efficiency power. Regarding this threshold Sth, it may be a power value at which the conversion efficiency of the power conditioner 6-1 is significantly reduced in the first output mode, or a power value greater than or equal to this power value.
 発電電力Sが閾値Sth以上であれば(たとえば、日射量が高い、晴天時などの場合)、SW16-1が閉じられ、第一出力モードとなる。この第一出力モードは、発電パネル4から発電電力Sをパワーコンディショナ6-1に供給する動作モードである。このとき、パワーコンディショナ6-1は、回路部14-1から受けた発電電力Sを変換し、たとえば、交流出力(たとえば、交流電圧200V)を生成して負荷18-1、18-2、・・・に供給し、または図示しない系統に出力する。 If the generated power S is equal to or greater than the threshold value Sth (for example, in the case of high solar radiation or clear weather), SW16-1 is closed and the first output mode is entered. This first output mode is an operation mode in which generated power S is supplied from the power generation panel 4 to the power conditioner 6-1. At this time, the power conditioner 6-1 converts the generated power S received from the circuit section 14-1, and generates, for example, an AC output (for example, an AC voltage of 200 V) to load the loads 18-1, 18-2, ... or output to a system not shown.
 パワーコンディショナ6-2は本開示の電力変換部の一例であり、閾値Sth未満の発電電力が得られる場合(後述の第二出力モード)に対応する電力変換手段である。このパワーコンディショナ6-2と発電パネル4は第二回路部14-2(以下「回路部14-2」と称する)および第三回路部14-3(以下「回路部14-3」と称する)を介して接続されている。回路部14-2には第二スイッチ16-2(以下、「SW16-2」と称する)が含まれている。回路部14-3には第三スイッチ16-3(以下、「SW16-3」と称する)が含まれている。SW16-2、16-3の開閉はコントローラ10によって制御される。このSW16-2、16-2は半導体スイッチ、リレーなどの開閉手段で構成される。 The power conditioner 6-2 is an example of the power conversion unit of the present disclosure, and is a power conversion means that supports a case where generated power less than the threshold value Sth is obtained (second output mode described later). The power conditioner 6-2 and power generation panel 4 are connected to a second circuit section 14-2 (hereinafter referred to as "circuit section 14-2") and a third circuit section 14-3 (hereinafter referred to as "circuit section 14-3"). ) are connected through. The circuit section 14-2 includes a second switch 16-2 (hereinafter referred to as "SW16-2"). The circuit section 14-3 includes a third switch 16-3 (hereinafter referred to as "SW16-3"). The opening and closing of SW16-2 and SW16-3 is controlled by controller 10. The SWs 16-2 and 16-2 are composed of opening/closing means such as semiconductor switches and relays.
 蓄電デバイス8は本開示の蓄電装置の一例である。蓄電デバイス8は閾値Sth未満の発電電力Sを蓄電させる。この蓄電デバイス8には発電パネル4の発電電圧に対応させて直列接続された複数の蓄電デバイスセルが設置されている。この蓄電デバイスセルにはたとえば、電気二重層キャパシタやリチウムイオンキャパシタなどの各種電気化学キャパシタやリチウムイオン電池などの二次電池が利用可能であるが、好適には蓄電量が電圧に正確に比例する電気化学キャパシタ、さらには、充放電サイクル寿命が優れる電気二重層キャパシタが好適である。 The power storage device 8 is an example of the power storage device of the present disclosure. The power storage device 8 stores generated power S that is less than the threshold value Sth. This power storage device 8 is provided with a plurality of power storage device cells connected in series in correspondence with the generated voltage of the power generation panel 4. For example, various electrochemical capacitors such as electric double layer capacitors and lithium ion capacitors, and secondary batteries such as lithium ion batteries can be used as this power storage device cell, but it is preferable that the amount of stored power is exactly proportional to the voltage. Electrochemical capacitors, and more particularly electric double layer capacitors with excellent charge/discharge cycle life, are suitable.
 蓄電デバイス8と発電パネル4は回路部14-2を介して接続され、蓄電デバイス8とパワーコンディショナ6-2は回路部14-3を介して接続されている。回路部14-1、14-2は発電パネル4の出力端で共通化され、回路部14-2、14-3は蓄電デバイス8の入力端(陽極端)で共通化されている。 The power storage device 8 and the power generation panel 4 are connected through the circuit section 14-2, and the power storage device 8 and the power conditioner 6-2 are connected through the circuit section 14-3. The circuit parts 14-1 and 14-2 are shared at the output end of the power generation panel 4, and the circuit parts 14-2 and 14-3 are shared at the input end (anode end) of the power storage device 8.
 回路部14-2は本開示の充電回路の一例である。この回路部14-2にはSW16-2が含まれている。このSW16-2の開閉はコントローラ10によって制御される。この実施の形態では、SW16-2の開閉はSW16-1の開閉と連動し、SW16-1=ONのとき、SW16-2=OFF、SW16-1=OFFのとき、SW16-2=ONの関係にある。 The circuit section 14-2 is an example of the charging circuit of the present disclosure. This circuit section 14-2 includes a SW 16-2. The opening and closing of this SW 16-2 is controlled by the controller 10. In this embodiment, the opening and closing of SW16-2 is linked to the opening and closing of SW16-1, and when SW16-1=ON, SW16-2=OFF, and when SW16-1=OFF, SW16-2=ON. It is in.
 発電電力Sが閾値Sth未満であれば(たとえば、日射量が低い、曇天などの場合)、SW16-2が閉じられ(SW16-2=ON)、発電パネル4の発電電力が回路部14-2を通して蓄電デバイス8に供給される充電モードとなる。この充電モードは、発電パネル4からの発電電力Sが回路部14-2を通して蓄電デバイス8に供給され、閾値Sth未満の発電電力Sを蓄電デバイス8に充電させる動作モードである。この充電モードにおいて、閾値Sth未満の発電電力が蓄電デバイス8に充電される。 If the generated power S is less than the threshold value Sth (for example, in the case of low solar radiation or cloudy weather), SW16-2 is closed (SW16-2=ON), and the generated power of the power generation panel 4 is transferred to the circuit section 14-2. A charging mode is set in which power is supplied to the power storage device 8 through the power storage device 8. This charging mode is an operation mode in which the generated power S from the power generation panel 4 is supplied to the power storage device 8 through the circuit section 14-2, and the power storage device 8 is charged with the generated power S that is less than the threshold value Sth. In this charging mode, power storage device 8 is charged with generated power that is less than threshold value Sth.
 回路部14-3は本開示の放電回路の一例である。この回路部14-3にはSW16-3が含まれている。このSW16-3の開閉はコントローラ10によって制御される。SW16-3はSW16-1と同様に半導体スイッチ、リレーなどの開閉手段で構成される。 The circuit section 14-3 is an example of the discharge circuit of the present disclosure. This circuit section 14-3 includes a SW 16-3. The opening and closing of this SW 16-3 is controlled by the controller 10. Like SW16-1, SW16-3 is composed of opening/closing means such as a semiconductor switch and a relay.
 SW16-3の開閉条件として、蓄電デバイス8のデバイス端子間電圧Vc(以下単に「端子間電圧Vc」と称する)、この端子間電圧Vcに対し、所定電圧として上限電圧VcHと下限電圧VcL(<VcH)が設定されている。端子間電圧Vcは本開示の充電電圧の一例である。また、上限電圧VcHは、蓄電デバイス8の蓄電電力に応じて開閉するSW16-3の開閉条件として本開示の所定値の一例であり、端子間電圧Vcに対する所定電圧値を表す。また、下限電圧VcLは、蓄電デバイス8の蓄電電力に応じて開閉するSW16-3の開閉条件として本開示の所定値の一例であり、端子間電圧Vcに対する所定電圧値を表す。 The switching conditions for SW16-3 include the device terminal voltage Vc of the power storage device 8 (hereinafter simply referred to as "terminal voltage Vc"), and the upper limit voltage VcH and lower limit voltage VcL (< VcH) is set. The inter-terminal voltage Vc is an example of the charging voltage of the present disclosure. Further, the upper limit voltage VcH is an example of a predetermined value of the present disclosure as an opening/closing condition for the SW 16-3 that opens and closes depending on the stored power of the power storage device 8, and represents a predetermined voltage value with respect to the inter-terminal voltage Vc. Further, the lower limit voltage VcL is an example of a predetermined value of the present disclosure as an opening/closing condition for the SW 16-3 that opens and closes depending on the stored power of the power storage device 8, and represents a predetermined voltage value with respect to the inter-terminal voltage Vc.
 発電電力Sが閾値Sth未満で、SW16-2=ON、SW16-3=ONの場合、第二出力モードとなる。この第二出力モードは、回路部14-2、14-3の双方を導通させ、蓄電デバイス8の充電モードと放電モードの双方を維持し、蓄電デバイス8の放電電力、発電パネル4からの閾値Sth未満の発電電力Sをパワーコンディショナ6-2に供給する動作モードである。 When the generated power S is less than the threshold value Sth and SW16-2=ON and SW16-3=ON, the second output mode is entered. In this second output mode, both of the circuit sections 14-2 and 14-3 are made conductive, and both the charging mode and the discharging mode of the electricity storage device 8 are maintained, and the discharge power of the electricity storage device 8 is adjusted to the threshold value from the power generation panel 4. This is an operation mode in which generated power S less than Sth is supplied to the power conditioner 6-2.
 第二出力モードでは、SW16-2=ONで、回路部14-2を通して発電パネル4と蓄電デバイス8が接続され、SW16-3=ONで、蓄電デバイス8とパワーコンディショナ6-2が回路部14-3を通して接続され、このとき、回路部14-2、14-3を通して発電パネル4とパワーコンディショナ6-2が直結される。すなわち、蓄電デバイス8が放電状態に維持されながら、発電パネル4からの発電電力Sも合流してパワーコンディショナ6-2に供給される。このとき、パワーコンディショナ6-2の制御により一定の電力値Scでパワーコンディショナ6-2に供給される。電力値Scはパワーコンディショナ6-2の変換効率が十分高い電力値であり、かつ、少なくとも閾値Sthよりも十分高い電力値に設定する。このように、電力値Scを設定すれば、パワーコンディショナ6-2の変換効率が低い電力値に設定した場合の不都合、つまり蓄電デバイス8による高効率回収の意義を損なうことがないし、電力値Scを閾値Sthより低い値に設定した場合の蓄電デバイス8の放電機能を損なうこともないし、または、蓄電デバイス8を満充電状態からさらに過充電状態にするなどの不都合も回避できる。 In the second output mode, when SW16-2=ON, the power generation panel 4 and the power storage device 8 are connected through the circuit section 14-2, and when SW16-3=ON, the power storage device 8 and the power conditioner 6-2 are connected to the circuit section. At this time, the power generation panel 4 and the power conditioner 6-2 are directly connected through the circuit portions 14-2 and 14-3. That is, while the power storage device 8 is maintained in a discharged state, the generated power S from the power generation panel 4 is also combined and supplied to the power conditioner 6-2. At this time, a constant power value Sc is supplied to the power conditioner 6-2 under the control of the power conditioner 6-2. The power value Sc is a power value at which the conversion efficiency of the power conditioner 6-2 is sufficiently high, and is set to a power value sufficiently higher than at least the threshold value Sth. In this way, by setting the power value Sc, the inconvenience caused when the conversion efficiency of the power conditioner 6-2 is set to a low power value, that is, the significance of high efficiency recovery by the power storage device 8, is not lost, and the power value When Sc is set to a value lower than the threshold value Sth, the discharging function of the power storage device 8 is not impaired, and inconveniences such as the power storage device 8 going from a fully charged state to an overcharged state can also be avoided.
 したがって、第二出力モードにおいて、パワーコンディショナ6-2には回路部14-2、14-3から受けた発電電力および蓄電デバイス8の放電電力を受け、これらの電力を変換し、閾値Sth未満の発電電力にある発電パネル4の発電電力Sであっても高効率でたとえば、交流電圧200Vを生成して負荷18-1、18-2、・・・に供給し、または図示しない系統に出力することができる。 Therefore, in the second output mode, the power conditioner 6-2 receives the generated power received from the circuit units 14-2 and 14-3 and the discharged power of the power storage device 8, converts these powers, and converts the power to a value less than the threshold Sth. Even if the generated power S of the power generation panel 4 is at the generated power of can do.
<パワーコンディショナ6-1、6-2>
 第一出力モードに対応するパワーコンディショナ6-1には、最大電力点追従制御部(MPPT:Maximum Power Point Tracking )20(以下、「MPPT20」と称する)、第一のDC-DCコンバータ22-1、第一のインバータ24-1などが含まれる。
<Power conditioner 6-1, 6-2>
The power conditioner 6-1 corresponding to the first output mode includes a maximum power point tracking control unit (MPPT) 20 (hereinafter referred to as "MPPT20"), a first DC-DC converter 22- 1, a first inverter 24-1, etc.
 MPPT20は、発電パネル4の発電出力が最大になる最適な電圧Vと電流Iの積(最大電力点または最適動作点)を自動的に求める制御を行い、この最大電力点追従制御により自動的に最大の発電出力を得る。 The MPPT 20 performs control to automatically find the optimal product of voltage V and current I (maximum power point or optimal operating point) that maximizes the power generation output of the power generation panel 4, and automatically calculates the product by this maximum power point tracking control. Obtain maximum power generation output.
 DC-DCコンバータ22-1は、第一出力モードにおいて、MPPT20で得られた直流電力、回路部14-1側で得られる直流電力を既定直流電圧の直流電力に変換する。 In the first output mode, the DC-DC converter 22-1 converts the DC power obtained by the MPPT 20 and the DC power obtained by the circuit section 14-1 side into DC power of a predetermined DC voltage.
 インバータ24-1は、本開示の直交変換手段の一例である。このインバータ24-1は、DC-DCコンバータ22-1から直流電力を受け、これらを系統に適合する既定の交流電力、既述のたとえば、定格200Vの交流電力に変換する。 The inverter 24-1 is an example of orthogonal transformation means of the present disclosure. This inverter 24-1 receives DC power from the DC-DC converter 22-1 and converts it into predetermined AC power compatible with the grid, for example, the rated AC power of 200V as described above.
 第二出力モードに対応するパワーコンディショナ6-2には第二のDC-DCコンバータ22-2、第二のインバータ24-2などが含まれる。 The power conditioner 6-2 corresponding to the second output mode includes a second DC-DC converter 22-2, a second inverter 24-2, and the like.
 DC-DCコンバータ22-2は、第二出力モードにおいて、定電力制御により得られる回路部14-3側から直流電力を受け、この直流電力を既定直流電圧の直流電力に変換する。 In the second output mode, the DC-DC converter 22-2 receives DC power from the circuit section 14-3 obtained by constant power control, and converts this DC power into DC power of a predetermined DC voltage.
 インバータ24-2は、同様に直交変換手段の一例である。このインバータ24-2は、DC-DCコンバータ22-2から直流電力を受け、これらを系統に適合する交流電力、たとえば、交流電圧200Vの交流電力に変換し、この交流電力を系統に合流させる。 Similarly, the inverter 24-2 is an example of orthogonal transformation means. This inverter 24-2 receives DC power from the DC-DC converter 22-2, converts it into AC power compatible with the grid, for example, AC power with an AC voltage of 200 V, and merges this AC power into the grid.
<コントローラ10>
 このコントローラ10は本開示の蓄電制御装置の一例である。このコントローラ10はコンピュータを備え、発電パネル4の発電電力情報、蓄電デバイス8の蓄電量情報などを用いてSW16-1、16-2、16-3の何れかまたは二以上の開閉制御を行う。
<Controller 10>
This controller 10 is an example of the power storage control device of the present disclosure. This controller 10 includes a computer, and controls the opening/closing of any one or more of the SWs 16-1, 16-2, and 16-3 using the generated power information of the power generation panel 4, the amount of stored power information of the power storage device 8, and the like.
 このコントローラ10は、制御部26、SW駆動部28-1、28-2、28-3、情報提示部30、操作入力部32などを備えている。制御部26は本開示の制御部の一例であるとともに、本開示のスイッチ制御部の一例である。また、この制御部26は本開示の発電電力監視部、蓄電電力監視部、スイッチなどの制御手段の一例である。この制御部26は図示しないプロセッサ、記憶部、入出力部などを備え、発電電力情報や蓄電デバイス8の端子間電圧情報を取得して情報処理を実行し、SW駆動部28-1、28-2、28-3などを制御する。プロセッサは、記憶部にあるOS(Operating System)、蓄電制御プログラム、データベースなどを用いて、情報の格納、読出しまたは演算などの情報処理や制御を実行する。記憶部はROM(Read-Only Memory)、RAM(Random-Access Memory)などの記憶素子を備え、蓄電制御プログラムやデータベースを格納してプロセッサによる演算処理などに用いられる。RAMは情報処理のワークエリアを構成する。 This controller 10 includes a control section 26, SW drive sections 28-1, 28-2, 28-3, an information presentation section 30, an operation input section 32, and the like. The control unit 26 is an example of a control unit according to the present disclosure, and is also an example of a switch control unit according to the present disclosure. Further, the control unit 26 is an example of a control means such as a generated power monitoring unit, a stored power monitoring unit, a switch, etc. of the present disclosure. This control unit 26 includes a processor (not shown), a storage unit, an input/output unit, etc., acquires generated power information and terminal voltage information of the power storage device 8, executes information processing, and SW drive units 28-1, 28- 2, 28-3, etc. The processor uses an OS (Operating System), a power storage control program, a database, etc. in a storage unit to execute information processing and control such as storing, reading, and calculating information. The storage unit includes storage elements such as ROM (Read-Only Memory) and RAM (Random-Access Memory), stores power storage control programs and databases, and is used for arithmetic processing by the processor. The RAM constitutes a work area for information processing.
 SW駆動部28-1は制御部26の制御によりSW16-1を開閉し、SW駆動部28-2は制御部26の制御によりSW16-2を開閉し、SW駆動部28-3は制御部26の制御によりSW16-3を開閉する。 The SW drive section 28-1 opens and closes the SW 16-1 under the control of the control section 26, the SW drive section 28-2 opens and closes the SW 16-2 under the control of the control section 26, and the SW drive section 28-3 opens and closes the SW 16-1 under the control of the control section 26. SW16-3 is opened and closed under the control of
 情報提示部30は制御部26の制御によりたとえば、LCD(Liquid Crystal Display)などの表示素子に制御情報などの情報提示を行う。 Under the control of the control unit 26, the information presentation unit 30 presents information such as control information on a display element such as an LCD (Liquid Crystal Display).
 操作入力部32は制御部26の制御によりタッチパネルなどの入力機器を用いて制御情報などの操作によって入力が可能である。 The operation input unit 32 is capable of inputting control information and the like using an input device such as a touch panel under the control of the control unit 26.
<蓄電デバイス8の充放電とSW16-3のONまたはOFF>
 図2は、蓄電デバイス8の充電および放電による端子間電圧Vcの推移とSW16-3のONとOFFの関係を示している。図2において、端子間電圧Vcは蓄電デバイス8の充電および放電の推移、VcHは端子間電圧Vcの上限電圧、VcLは端子間電圧Vcの下限電圧を示している。
<Charging/discharging of power storage device 8 and turning ON or OFF of SW16-3>
FIG. 2 shows the relationship between the transition of the inter-terminal voltage Vc due to charging and discharging of the power storage device 8 and the ON and OFF states of SW 16-3. In FIG. 2, the inter-terminal voltage Vc indicates the transition of charging and discharging of the power storage device 8, VcH indicates the upper limit voltage of the inter-terminal voltage Vc, and VcL indicates the lower limit voltage of the inter-terminal voltage Vc.
 端子間電圧Vcが充電によって上昇している場合、Vc≧VcHで、SW16-3=ONとなり、端子間電圧Vcが放電によって下降している場合には、Vc<VcLで、SW16-3=OFFになる。この場合、充電時定数と放電時定数が異なる。端子間電圧Vcの推移は充電と放電の推移が異なるとともに、SW16-3のONとOFFの間には所定の電圧差が設定される。つまり、端子間電圧Vcが放電によって下降する場合、Vc≦VcHからVc=VcLの範囲でSW16-3=ONを維持する。つまり、このようなSW16-3の開閉にはヒステリシスが設定されており、蓄電デバイス8の充放電による端子間電圧Vcの変動でSW16-3がチャタリングするのを防止できる。 When the voltage between terminals Vc is increasing due to charging, when Vc≧VcH, SW16-3=ON; when the voltage between terminals Vc is decreasing due to discharging, when Vc<VcL, SW16-3 is OFF. become. In this case, the charging time constant and the discharging time constant are different. The transition of the inter-terminal voltage Vc differs between charging and discharging, and a predetermined voltage difference is set between ON and OFF of SW16-3. That is, when the inter-terminal voltage Vc decreases due to discharge, SW16-3=ON is maintained in the range from Vc≦VcH to Vc=VcL. In other words, hysteresis is set in the opening and closing of the SW 16-3, and it is possible to prevent the SW 16-3 from chattering due to fluctuations in the inter-terminal voltage Vc due to charging and discharging of the power storage device 8.
<制御部26による制御機能>
 制御部26は、蓄電制御プログラムの実行により、a)発電電力情報取得部、b)発電電力監視部、c)発電電力の閾値判定部、d)蓄電デバイス8の端子間電圧情報取得部、e)端子間電圧監視部、f)端子間電圧Vcの閾値判定部、g)SW制御部などの制御機能を実現する。
<Control function by control unit 26>
By executing the power storage control program, the control unit 26 controls a) a generated power information acquisition unit, b) a generated power monitoring unit, c) a generated power threshold determination unit, d) an inter-terminal voltage information acquisition unit of the power storage device 8, e ) A terminal-to-terminal voltage monitoring section, f) a terminal-to-terminal voltage Vc threshold determination section, g) an SW control section, and other control functions are realized.
 a)発電電力情報取得部
 発電電力情報取得部は、制御部26の制御により常時(少なくとも発電システム2の動作中)、電力計12から発電パネル4の発電電力情報を取得する。この発電電力情報は、制御部26の記憶部にあるデータベースに格納する。
a) Generated power information acquisition unit The generated power information acquisition unit always acquires generated power information of the power generation panel 4 from the wattmeter 12 (at least while the power generation system 2 is in operation) under the control of the control unit 26. This generated power information is stored in a database in the storage section of the control section 26.
 b)発電電力監視部
 発電電力監視部は、制御部26の制御により常時、電力計12から取得した発電電力情報を監視する。
b) Generated Power Monitoring Unit The generated power monitoring unit constantly monitors the generated power information acquired from the wattmeter 12 under the control of the control unit 26.
 c)発電電力の閾値判定部
 制御部26には発電パネル4の発電電力Sに対する閾値Sthが設定されている。発電電力の閾値判定部は、制御部26の制御により、既述の電力計12から取得した発電電力情報が表す発電電力Sと閾値Sthとを対比し、発電電力Sが閾値Sth以上か未満かを判定し、その判定結果としてSW16-1、16-2を開閉するための制御情報を出力する。
c) Threshold Determining Unit for Generated Power A threshold Sth for the generated power S of the power generation panel 4 is set in the control unit 26 . The generated power threshold determination unit, under the control of the control unit 26, compares the generated power S represented by the generated power information acquired from the wattmeter 12 described above with a threshold value Sth, and determines whether the generated power S is greater than or equal to the threshold value Sth. and outputs control information for opening and closing the SWs 16-1 and 16-2 as a result of the determination.
 d)端子間電圧情報取得部
 蓄電デバイス8の端子間電圧情報取得部は、制御部26の制御により、常時(少なくとも発電システム2の動作中)、蓄電デバイス8から端子間電圧情報を取得する。この端子間電圧情報は、蓄電デバイス8の端子間の電圧であり、充電電圧または放電後の残留電荷による電圧を表す。この端子間電圧情報は、制御部26の記憶部にあるデータベースに格納する。
d) Inter-terminal voltage information acquisition unit The inter-terminal voltage information acquisition unit of the electricity storage device 8 always acquires inter-terminal voltage information from the electricity storage device 8 under the control of the control unit 26 (at least while the power generation system 2 is in operation). This inter-terminal voltage information is the voltage between the terminals of the electricity storage device 8, and represents the charging voltage or the voltage due to the residual charge after discharging. This inter-terminal voltage information is stored in a database in the storage section of the control section 26.
 e)端子間電圧監視部
 端子間電圧監視部は、端子間電圧情報から端子間電圧Vcの推移、つまり、蓄電デバイス8の充電状態を監視する。
e) Inter-terminal voltage monitoring unit The inter-terminal voltage monitoring unit monitors the transition of the inter-terminal voltage Vc, that is, the charging state of the electricity storage device 8, from the inter-terminal voltage information.
 f)端子間電圧Vcの閾値判定部
 制御部26には端子間電圧Vcに対する閾値として上限電圧VcH(V)および下限電圧VcL(V)が設定されている。上限電圧VcHはたとえば、蓄電デバイス8の満充電電圧であり、下限電圧VcLはたとえば、放電管理電圧である。
f) Threshold Determination Unit for Inter-Terminal Voltage Vc Upper limit voltage VcH (V) and lower limit voltage VcL (V) are set in the control unit 26 as threshold values for inter-terminal voltage Vc. Upper limit voltage VcH is, for example, a full charge voltage of power storage device 8, and lower limit voltage VcL is, for example, a discharge management voltage.
 端子間電圧Vcの閾値判定部は制御部26の制御により、端子間電圧Vcと上限電圧VcHまたは下限電圧VcLとを対比し、端子間電圧Vcが上限電圧VcH以上か下限電圧VcL(V)以下かを判定し、その判定結果としてSW16-3を開閉するための制御情報を出力する。 Under the control of the control unit 26, the threshold determination unit for the inter-terminal voltage Vc compares the inter-terminal voltage Vc with the upper limit voltage VcH or the lower limit voltage VcL, and determines whether the inter-terminal voltage Vc is greater than or equal to the upper limit voltage VcH or less than the lower limit voltage VcL (V). As a result of the determination, control information for opening and closing the SW 16-3 is output.
 g)SW制御部
 発電パネル4の発電電力Sが閾値Sth以上であれば、SW制御部は、制御部26の制御によりSW16-1を導通させるための制御出力を出力する。このとき、SW駆動部28-1の駆動出力によりSW16-1が、SW16-1=ONに制御される。
g) SW Control Unit If the generated power S of the power generation panel 4 is equal to or greater than the threshold value Sth, the SW control unit outputs a control output for making the SW 16-1 conductive under the control of the control unit 26. At this time, SW16-1 is controlled by the drive output of SW driving section 28-1 so that SW16-1=ON.
 発電パネル4の発電電力Sが閾値Sth未満であれば、SW制御部は、制御部26の制御によりSW16-1を遮断し、SW16-2を導通させるための制御出力を出力する。このとき、SW駆動部28-1の駆動出力が解除されてSW16-1が、SW16-1=OFFに制御されるとともに、SW駆動部28-2の駆動出力によりSW16-2が、SW16-2=ONに制御される。 If the generated power S of the power generation panel 4 is less than the threshold value Sth, the SW control section outputs a control output to cut off the SW 16-1 and make the SW 16-2 conductive under the control of the control section 26. At this time, the drive output of the SW drive unit 28-1 is canceled and SW16-1 is controlled so that SW16-1=OFF, and the drive output of the SW drive unit 28-2 causes SW16-2 to switch to SW16-2. = ON.
 発電パネル4の発電電力Sが閾値Sth(kW)未満で、蓄電デバイス8の端子間電圧Vcが下限電圧VcL以下であれば、SW制御部は、制御部26の制御によりSW16-3を開き、通電を遮断する。つまり、蓄電デバイス8が充電状態となる。 If the generated power S of the power generation panel 4 is less than the threshold Sth (kW) and the inter-terminal voltage Vc of the electricity storage device 8 is equal to or lower than the lower limit voltage VcL, the SW control unit opens SW16-3 under the control of the control unit 26, Cut off electricity. In other words, power storage device 8 is in a charging state.
 発電パネル4の発電電力Sが閾値Sth未満で、蓄電デバイス8の端子間電圧Vcが上限電圧VcH以上になれば、SW制御部は、制御部26の制御によりSW16-3を閉じ、導通させる。このとき、蓄電デバイス8はSW16-3を介して放電状態となる。同時に、SW16-2=ONが維持されているので、発電パネル4の発電電力Sが回路部14-2、14-3を通してパワーコンディショナ6-2のDC-DCコンバータ22-2に供給される。 When the generated power S of the power generation panel 4 is less than the threshold value Sth and the inter-terminal voltage Vc of the electricity storage device 8 becomes equal to or higher than the upper limit voltage VcH, the SW control section closes the SW 16-3 under the control of the control section 26 to make it conductive. At this time, power storage device 8 enters a discharge state via SW 16-3. At the same time, since SW16-2=ON is maintained, the generated power S of the power generation panel 4 is supplied to the DC-DC converter 22-2 of the power conditioner 6-2 through the circuit sections 14-2 and 14-3. .
<SW16-1、16-2、16-3の開閉と発電システム2の出力関係>
 1)SW16-1=ON、SW16-2=OFF(第一出力モード)
 発電パネル4の発電電力Sが閾値Sth以上の場合であり、第一出力モードである。発電パネル4の発電電力Sが回路部14-1を通してパワーコンディショナ6-1に供給される。
<Relationship between opening/closing of SW16-1, 16-2, and 16-3 and output of power generation system 2>
1) SW16-1=ON, SW16-2=OFF (first output mode)
This is a case in which the generated power S of the power generation panel 4 is greater than or equal to the threshold value Sth, and the mode is the first output mode. Power generated by the power generation panel 4 is supplied to the power conditioner 6-1 through the circuit section 14-1.
 2)SW16-1=OFF、SW16-2=ON、SW16-3=OFF(充電モード)
 発電パネル4の発電電力Sが閾値Sth未満の場合であり、発電パネル4とパワーコンディショナ6-1から回路部14-1で遮断される。
2) SW16-1=OFF, SW16-2=ON, SW16-3=OFF (charging mode)
This is a case where the generated power S of the power generation panel 4 is less than the threshold value Sth, and the power generation panel 4 and the power conditioner 6-1 are cut off by the circuit section 14-1.
 発電パネル4の発電電力Sが閾値Sth未満であって、Vc≦VcLの場合、蓄電デバイス8の充電モードである。閾値Sth未満の発電電力が回路部14-2を通して蓄電デバイス8に供給され、蓄電デバイス8が充電される。 When the generated power S of the power generation panel 4 is less than the threshold value Sth and Vc≦VcL, the power storage device 8 is in charging mode. The generated power that is less than the threshold value Sth is supplied to the power storage device 8 through the circuit section 14-2, and the power storage device 8 is charged.
 3)SW16-1=OFF,SW16-2=ON、SW16-3=ON(第二出力モード)、Vc≧VcHとなり、蓄電デバイス8の放電モードに切り換わり、第二出力モードとなる。蓄電デバイス8の放電電力はパワーコンディショナ6-2に供給される。同時に、閾値Sth未満の発電電力Sが回路部14-2、14-3を通してパワーコンディショナ6-2に供給される。 3) SW16-1=OFF, SW16-2=ON, SW16-3=ON (second output mode), Vc≧VcH, the power storage device 8 switches to the discharge mode, and becomes the second output mode. Discharged power from power storage device 8 is supplied to power conditioner 6-2. At the same time, generated power S that is less than the threshold value Sth is supplied to the power conditioner 6-2 through the circuit sections 14-2 and 14-3.
<発電システム2の制御シーケンス>
発電システム2の制御シーケンスには発電電力Sの閾値判定に基づく回路部14-1、14-2の開閉制御(主回路切換え制御)と、蓄電デバイス8の端子間電圧閾値判定に基づく回路部14-3の開閉制御(蓄電デバイス8の充放電制御)が含まれ、これら開閉制御は並行処理で実行される。
<Control sequence of power generation system 2>
The control sequence of the power generation system 2 includes opening/closing control (main circuit switching control) of the circuit units 14-1 and 14-2 based on the threshold determination of the generated power S, and circuit unit 14 based on the inter-terminal voltage threshold determination of the power storage device 8. -3 opening/closing control (charging/discharging control of power storage device 8) is included, and these opening/closing controls are executed in parallel processing.
 図3は、発電システム2の制御シーケンスを示している。この制御シーケンスは本開示の制御方法、プログラムまたは蓄電制御の動作手順の一例である。この制御シーケンスにおいて、Fは工程、Fに付した番号は工程順の一例である。 FIG. 3 shows the control sequence of the power generation system 2. This control sequence is an example of the control method, program, or operation procedure of power storage control of the present disclosure. In this control sequence, F is a step, and the number attached to F is an example of the order of steps.
 この制御シーケンスには、発電電力情報の取得(F101)、発電電力Sの監視(F102)、蓄電デバイス8の端子間電圧情報の取得(F103)、端子間電圧Vcの監視(F104)が含まれる。主回路切換え制御(F105)には、発電電力Sの閾値判定(F107)、SW16-1、SW16-2の切換え(F108)、第一出力モード(F109)、負荷または系統への出力(F110)、SW16-1、SW16-2の切換え(F111)、充電モード(F112)が含まれる。蓄電デバイス8の充放電制御(F106)には、SW16-3の状態判定(F113)、端子間電圧Vcの判定(F114)、SW16-3の切換え(F115)、充電待機モード(F116)、端子間電圧Vcの判定(F117)、SW16-3の切換え(F118)、第二出力モード(F119)、負荷または系統への出力(F120)、充電モード(F121)が含まれる。 This control sequence includes acquisition of generated power information (F101), monitoring of generated power S (F102), acquisition of terminal voltage information of the electricity storage device 8 (F103), and monitoring of terminal voltage Vc (F104). . Main circuit switching control (F105) includes threshold determination of generated power S (F107), switching of SW16-1 and SW16-2 (F108), first output mode (F109), output to load or grid (F110) , SW16-1, SW16-2 switching (F111), and charging mode (F112). Charging and discharging control (F106) of the power storage device 8 includes determining the state of SW16-3 (F113), determining the terminal voltage Vc (F114), switching SW16-3 (F115), charging standby mode (F116), terminal These include determination of voltage Vc (F117), switching of SW16-3 (F118), second output mode (F119), output to load or grid (F120), and charging mode (F121).
 発電システム2を動作させると、制御部26は、動作中、電力計12から発電パネル4の発電電力情報を取得し(F101)、発電電力Sを監視する(F102)とともに、蓄電デバイス8から充電電圧を表す端子間電圧Vcを取得し(F103)、この端子間電圧Vcを監視する(F104)。この端子間電圧Vcの監視(F104)に続いて主回路切換え制御(F105)、蓄電デバイス8の充放電制御(F106)に遷移する。 When the power generation system 2 is operated, the control unit 26 acquires power generation information of the power generation panel 4 from the wattmeter 12 during operation (F101), monitors the power generation S (F102), and performs charging from the power storage device 8. The inter-terminal voltage Vc representing the voltage is acquired (F103), and this inter-terminal voltage Vc is monitored (F104). Following this monitoring of the inter-terminal voltage Vc (F104), a transition is made to main circuit switching control (F105) and charging/discharging control of the electricity storage device 8 (F106).
 主回路切換え制御(F105)では、制御部26が発電電力Sの閾値判定を行う(F107)。S≧Sthであれば(F107のYES)、制御部26はSW16-1=ON、SW16-2=OFFに制御し(F108)、第一出力モードを実行する(F109)。この第一出力モードでは、閾値Sth以上の発電電力Sを発電パネル4から回路部14-1を通してパワーコンディショナ6-1に供給する。パワーコンディショナ6-1は、発電パネル4からの発電電力Sを交流電力に変換し、この交流電力を負荷18-1、18-2、・・・または系統に供給する(F110)。 In the main circuit switching control (F105), the control unit 26 performs a threshold value determination of the generated power S (F107). If S≧Sth (YES in F107), the control unit 26 controls SW16-1=ON and SW16-2=OFF (F108), and executes the first output mode (F109). In this first output mode, generated power S equal to or higher than the threshold value Sth is supplied from the power generation panel 4 to the power conditioner 6-1 through the circuit section 14-1. The power conditioner 6-1 converts the generated power S from the power generation panel 4 into AC power, and supplies this AC power to the loads 18-1, 18-2, . . . or the grid (F110).
 F107の判定において、S≧Sthでない場合(F107のNO)、制御部26はSW16-1=OFF、SW16-2=ONに制御し(F111)、充電モードを実行する(F112)。この充電モードでは、閾値Sth未満の発電電力Sを発電パネル4から回路部14-2を通して蓄電デバイス8に供給し、充電する。 In the determination of F107, if S≧Sth is not satisfied (NO in F107), the control unit 26 controls SW16-1=OFF and SW16-2=ON (F111), and executes the charging mode (F112). In this charging mode, generated power S that is less than the threshold value Sth is supplied from the power generation panel 4 to the power storage device 8 through the circuit section 14-2 to charge the power storage device 8.
 蓄電デバイス8の充放電制御(F106)では、蓄電デバイス8が充電中か放電中かの判定として、制御部26は、SW16-3=ONであるかを判定する(F113)。 In the charge/discharge control of the power storage device 8 (F106), the control unit 26 determines whether SW16-3=ON to determine whether the power storage device 8 is being charged or discharged (F113).
 SW16-3=ONであれば(F113のYES)、蓄電デバイス8が放電中であるので、制御部26は蓄電デバイス8の放電完了の判定として、端子間電圧Vcの閾値判定を行う(F114)。Vc≦VcLであれば(F114のYES)、蓄電デバイス8は放電を完了しているので、制御部26はSW16-3=OFFに制御し(F115)、充電待機モードにする(F116)。この充電待機モードはVc≦VcLで、充電モード再開まで待機状態を維持する。 If SW16-3=ON (YES in F113), the power storage device 8 is discharging, so the control unit 26 determines the threshold value of the inter-terminal voltage Vc to determine whether the power storage device 8 has completed discharging (F114). . If Vc≦VcL (YES in F114), the power storage device 8 has completed discharging, so the control unit 26 controls SW16-3 to be OFF (F115), and sets the charging standby mode (F116). In this charge standby mode, Vc≦VcL, and the standby state is maintained until the charge mode is restarted.
 F113において、SW16-3=ONでなければ(F113のNO)、蓄電デバイス8が充電または放電待機中であるので、充電完了の判定として制御部26は端子間電圧Vcの閾値判定を行う(F117)。Vc≧VcHであれば(F117のYES)、蓄電デバイス8が充電を完了しているので、制御部26はSW16-3=ONに制御し(F118)、蓄電デバイス8の放電を開始するとともに第二出力モードを実行する(F119)。この第二出力モードでは、蓄電デバイス8の放電電力とともに、同時刻の閾値Sth以下の発電電力Sを発電パネル4から回路部14-2、14-3を通して、パワーコンディショナ6-2に供給する。蓄電デバイス8の放電電力は、蓄電デバイス8の蓄電電力である。パワーコンディショナ6-2は、回路部14-3からのこれらの入力電力を交流電力に変換し、この交流電力を負荷18-1、18-2、・・・または系統に供給する(F120)。 In F113, if SW16-3 is not ON (NO in F113), the power storage device 8 is waiting for charging or discharging, so the control unit 26 performs a threshold value determination of the inter-terminal voltage Vc as a determination of completion of charging (F117 ). If Vc≧VcH (YES in F117), the power storage device 8 has completed charging, so the control unit 26 controls SW16-3=ON (F118), starts discharging the power storage device 8, and Execute two output mode (F119). In this second output mode, together with the discharge power of the power storage device 8, the generated power S that is less than the threshold value Sth at the same time is supplied from the power generation panel 4 to the power conditioner 6-2 through the circuit sections 14-2 and 14-3. . The discharge power of the power storage device 8 is the power stored in the power storage device 8 . The power conditioner 6-2 converts these input powers from the circuit section 14-3 into AC power, and supplies this AC power to the loads 18-1, 18-2, ... or the grid (F120). .
 F114において、Vc≦VcLでなければ(F114のNO)、蓄電デバイス8の放電を継続し、制御部26は第二出力モードを実行する(F119)。 In F114, if Vc≦VcL (NO in F114), the power storage device 8 continues discharging, and the control unit 26 executes the second output mode (F119).
 F117において、Vc≧VcHでなければ(F117のNO)、蓄電デバイス8の充電を継続するため、制御部26は充電モードを実行する(F121)。この充電モードでは、閾値Sth以下の発電電力Sが回路部14-2を通して蓄電デバイス8に充電される。 In F117, if Vc≧VcH does not hold (NO in F117), the control unit 26 executes the charging mode in order to continue charging the power storage device 8 (F121). In this charging mode, the generated power S that is equal to or less than the threshold value Sth is charged to the power storage device 8 through the circuit section 14-2.
<制御シーケンス実行時の発電システム2の状態>
 図4は、発電電力Sの推移(A)で発電システム2の制御シーケンスを実行した場合の蓄電デバイス8の端子間電圧Vc(B)、SW16の開閉状態(C)、パワーコンディショナ6-2の出力(D)、動作モード(E)の推移の一例を示している。この制御シーケンスは本開示の制御方法、プログラムまたは蓄電制御の一例である。
<Status of power generation system 2 when executing control sequence>
FIG. 4 shows the terminal voltage Vc (B) of the power storage device 8, the open/closed state of the SW 16 (C), and the power conditioner 6-2 when the control sequence of the power generation system 2 is executed with the change in the generated power S (A). An example of the transition of the output (D) and the operation mode (E) is shown. This control sequence is an example of the control method, program, or power storage control of the present disclosure.
 図4のAは、発電電力Sの推移を示している。この例では閾値Sth以上を維持していた発電電力Sが時点t1で閾値Sth未満に低下し、閾値Sth未満を継続した後、時点t12で閾値Sth以上に推移している。 A in FIG. 4 shows the transition of the generated power S. In this example, the generated power S, which had been maintained at or above the threshold value Sth, decreases to less than the threshold value Sth at time t1, continues to be less than the threshold value Sth, and then reaches or exceeds the threshold value Sth at time t12.
 図4のBは、蓄電デバイス8の端子間電圧Vc(充放電状態)の推移を示している。この蓄電デバイス8の充放電は発電電力Sに依存し、この例では閾値Sth以上を維持していた発電電力Sが閾値Sth未満になった時点t1で充電を開始し、時点t2で上限電圧VcHに到達し、放電を開始する。時点t3で下限電圧VcLに達し、再び充電を開始し、時点t4で上限電圧VcHに到達している。 B in FIG. 4 shows the transition of the inter-terminal voltage Vc (charge/discharge state) of the electricity storage device 8. Charging and discharging of this power storage device 8 depends on the generated power S, and in this example, charging starts at time t1 when the generated power S, which has been maintained above the threshold value Sth, becomes less than the threshold value Sth, and at time t2, the upper limit voltage VcH reaches and starts discharging. The lower limit voltage VcL is reached at time t3, charging is started again, and the upper limit voltage VcH is reached at time t4.
 図4のCは、区間C1~区間C13のSW16-1、16-2、16-3の開閉状態を示している。区間C1~区間C13において、SW16-1、16-2、16-3の開閉条件と、SW16-1、16-2、16-3のONまたはOFFは以下の通りである。 C in FIG. 4 shows the open and closed states of SW16-1, 16-2, and 16-3 in section C1 to section C13. In the section C1 to section C13, the opening/closing conditions of SW16-1, 16-2, 16-3 and ON or OFF of SW16-1, 16-2, 16-3 are as follows.
 区間C1(~t1: S≧Sth): SW16-1=ON、SW16-2=OFF
 区間C2(t1~t2: S<Sth、Vc<VcH): SW16-1=OFF、SW16-2=ON、SW16-3=OFF
 区間C3(t2~t3: Vc≧VcL): SW16-3=ON
 区間C4(t3~t4: Vc<VcH): SW16-3=OFF
 区間C5(t4~t5: Vc≧VcL): SW16-3=ON
 区間C6(t6~t7: Vc<VcH): SW16-3=OFF
 区間C7(t7~t8: Vc≧VcL): SW16-3=ON
 区間C8(t8~t9: Vc<VcH): SW16-3=OFF
 区間C9(t9~t10: Vc≧VcL): SW16-3=ON
 区間C10(t10~t11: Vc<VcH): SW16-3=OFF
 区間C11(t11~t12: Vc≧VcL): SW16-3=ON
 区間C12(t12~t13: S≧Sth,Vc≧VcL): SW16-1=ON、SW16-2=OFF
 区間C13(t13~: Vc<VcL、S≧Sth): SW16-3=OFF、SW16-1=ON
Section C1 (~t1: S≧Sth): SW16-1=ON, SW16-2=OFF
Section C2 (t1 to t2: S<Sth, Vc<VcH): SW16-1=OFF, SW16-2=ON, SW16-3=OFF
Section C3 (t2 to t3: Vc≧VcL): SW16-3=ON
Section C4 (t3 to t4: Vc<VcH): SW16-3=OFF
Section C5 (t4 to t5: Vc≧VcL): SW16-3=ON
Section C6 (t6 to t7: Vc<VcH): SW16-3=OFF
Section C7 (t7 to t8: Vc≧VcL): SW16-3=ON
Section C8 (t8 to t9: Vc<VcH): SW16-3=OFF
Section C9 (t9 to t10: Vc≧VcL): SW16-3=ON
Section C10 (t10 to t11: Vc<VcH): SW16-3=OFF
Section C11 (t11 to t12: Vc≧VcL): SW16-3=ON
Section C12 (t12 to t13: S≧Sth, Vc≧VcL): SW16-1=ON, SW16-2=OFF
Section C13 (t13~: Vc<VcL, S≧Sth): SW16-3=OFF, SW16-1=ON
 図4のDは、区間C1~C12の交流出力を示している。
 区間C1は閾値Sth以上の発電電力Sが得られる電力領域である。この領域では、発電パネル4の発電電力Sが回路部14-1からパワーコンディショナ6-1に供給され、このパワーコンディショナ6-1から交流出力が得られる。
D in FIG. 4 shows the AC output in sections C1 to C12.
The section C1 is a power region in which generated power S greater than or equal to the threshold value Sth is obtained. In this region, the power S generated by the power generation panel 4 is supplied from the circuit section 14-1 to the power conditioner 6-1, and an AC output is obtained from the power conditioner 6-1.
 区間C2からC11は閾値Sth未満の電力領域である。この領域では、SW16-3=ONのとき、蓄電デバイス8の放電電力で底上げされた閾値Sth未満の発電電力Sが蓄電デバイス8の放電電力で底上げされた回路部14-2、14-3を通してパワーコンディショナ6-2に供給され、このパワーコンディショナ6-2から交流出力が得られる。 The section C2 to C11 is a power region below the threshold Sth. In this region, when SW16-3=ON, the generated power S that is less than the threshold Sth raised by the discharge power of the power storage device 8 is passed through the circuit parts 14-2 and 14-3 whose power is raised by the discharge power of the power storage device 8. The power is supplied to the power conditioner 6-2, and an AC output is obtained from the power conditioner 6-2.
 区間C13は区間C12から移行した閾値Sth以上の電力領域であり、この領域では、発電パネル4の発電電力Sが回路部14-1からパワーコンディショナ6-1に供給され、このパワーコンディショナ6-1から交流出力が得られる。 Section C13 is a power region equal to or higher than the threshold value Sth transferred from section C12, and in this region, the generated power S of the power generation panel 4 is supplied from the circuit section 14-1 to the power conditioner 6-1, and the power conditioner 6 AC output can be obtained from -1.
 図4のEは、動作モードのステータスを示している。
 区間C1:第一出力モードE1
 区間C2、C4、C6、C8、C10:充電モードEc
 区間C3、C5、C7、C9、C11:第二出力モードE2(放電領域)
 区間C12:第一出力モードE1および第二出力モードE2
 区間C13:第一出力モードE1
E in FIG. 4 shows the status of the operating mode.
Section C1: First output mode E1
Sections C2, C4, C6, C8, C10: Charging mode Ec
Sections C3, C5, C7, C9, C11: Second output mode E2 (discharge area)
Section C12: first output mode E1 and second output mode E2
Section C13: First output mode E1
 なお、発電システム2の制御において、充電モードから第一出力モードに切り換えられても、蓄電デバイス8の放電は下限電圧VcLに到達するまで継続させる。 Note that in controlling the power generation system 2, even if the charging mode is switched to the first output mode, the discharging of the power storage device 8 is continued until the lower limit voltage VcL is reached.
 この発電システム2におけるパワーコンディショナ6-2には、パワーコンディショナ6-2の制御により、発電パネル4からの閾値Sthよりも充分大きい一定電力が流れ込む制御をするものとする。これは蓄電デバイス8が過充電状態になることを防止するためである。また、この一定電力値はパワーコンディショナ6-2の効率が充分高くなる電力値に設定する。 It is assumed that the power conditioner 6-2 in this power generation system 2 is controlled so that a constant electric power that is sufficiently larger than the threshold value Sth from the power generation panel 4 flows into the power conditioner 6-2. This is to prevent the power storage device 8 from becoming overcharged. Further, this constant power value is set to a power value that makes the efficiency of the power conditioner 6-2 sufficiently high.
 図5は、図4に示す動作状態を整理した発電システム2の動作テーブルを示している。この動作テーブルでは、項目欄に発電電力S、端子間電圧Vc、SW16-1、16-2、16-3を取り、区間C1~C13のステータスを示している。 FIG. 5 shows an operation table of the power generation system 2 in which the operating states shown in FIG. 4 are organized. In this operation table, the generated power S, inter-terminal voltage Vc, SW16-1, 16-2, and 16-3 are listed in the item column, and the status of the sections C1 to C13 is shown.
<蓄電デバイス8の充放電プロファイル>
 この充放電プロファイルは、SW16-2=ONまたはSW16-2=OFFの場合において、蓄電デバイス8の放電電力の大小、放電時間の長短、充放電サイクル数(単位時間あたりの放電回数)を比較している。
<Charging and discharging profile of electricity storage device 8>
This charge/discharge profile compares the magnitude of the discharge power of the power storage device 8, the length of the discharge time, and the number of charge/discharge cycles (the number of discharges per unit time) when SW16-2=ON or SW16-2=OFF. ing.
 図6のAは、蓄電デバイス8の放電時にSW16-2=OFFの場合の放電プロファイルを示している。蓄電デバイス8は、2kWで充電し、5kWで放電の後、1kWで充電し、5kWで放電の後、0.5kWで充電し、5kWで放電する状態を示している。時間軸tに示す、tlossは、発電パネル4の発電電力Sが蓄電デバイス8への充電やパワーコンディショナ6-2への供給に寄与しないロスタイムである。つまり、発電電力Sが活用されない期間を表している。 A in FIG. 6 shows a discharge profile when SW16-2=OFF during discharge of the power storage device 8. The power storage device 8 is shown charging at 2 kW, discharging at 5 kW, charging at 1 kW, discharging at 5 kW, charging at 0.5 kW, and discharging at 5 kW. Tloss shown on the time axis t is a loss time in which the generated power S of the power generation panel 4 does not contribute to charging the power storage device 8 or supplying it to the power conditioner 6-2. In other words, it represents a period in which the generated power S is not utilized.
 これに対し、図6のBは、本開示に係る、蓄電デバイス8の放電時にSW16-2=ONの場合の充放電プロファイルを示している。蓄電デバイス8は、2kWで充電の後、放電し、1kWで充電した後、放電し、0.5kWで充電し、5kWで放電する状態を示している。 On the other hand, B in FIG. 6 shows a charging/discharging profile when SW16-2=ON during discharging of the power storage device 8 according to the present disclosure. The power storage device 8 is shown charging at 2 kW and then discharging, charging at 1 kW and then discharging, charging at 0.5 kW, and discharging at 5 kW.
 この場合、蓄電デバイス8の放電電力と発電パネル4の発電電力Sの和がたとえば、5kWになるように制御するので、蓄電デバイス8の放電電力は小さくなり、放電時間が長くなる。したがって、既述のロスタイムはなく、既述の充放電サイクル数が減少する。 In this case, since the sum of the discharge power of the power storage device 8 and the power generated by the power generation panel 4 is controlled to be 5 kW, for example, the discharge power of the power storage device 8 becomes smaller and the discharge time becomes longer. Therefore, there is no loss time as described above, and the number of charge/discharge cycles as described above is reduced.
<第一の実施の形態の効果>
 この第一の実施の形態によれば、次の何れかの効果が得られる。
<Effects of the first embodiment>
According to this first embodiment, any of the following effects can be obtained.
 (1) 第一出力モードでは、パワーコンディショナ6-1の変換効率が十分高い閾値Sth以上の発電電力Sを通常の電力変換により高効率で交流出力を取り出すことができる。 (1) In the first output mode, the generated power S whose conversion efficiency of the power conditioner 6-1 is higher than the sufficiently high threshold value Sth can be extracted as an AC output with high efficiency through normal power conversion.
 (2) 閾値Sth未満の発電電力Sは、この発電電力Sを蓄電デバイス8に蓄電し、端子間電圧Vcが上限電圧VcHに到達したとき、蓄電デバイス8を放電させ、この放電電力と閾値Sth未満の発電電力Sを加算して、パワーコンディショナ6-2に供給して電力変換を行うことができ、変換効率が低い閾値Sth未満の発電電力Sを効率よく交流出力に変換して取り出すことができる。 (2) When the generated power S is less than the threshold Sth, the generated power S is stored in the power storage device 8, and when the terminal voltage Vc reaches the upper limit voltage VcH, the power storage device 8 is discharged, and this discharged power and the threshold Sth are To efficiently convert the generated power S which is less than a threshold value Sth with low conversion efficiency into AC output and take it out by adding up the generated power S and supplying it to the power conditioner 6-2 to perform power conversion. Can be done.
 (3) 閾値Sth未満の発電電力Sが得られているとき、この発電電力Sを回路部14-2により蓄電デバイス8に充電し、端子間電圧Vcが上限電圧VcHに到達することを監視し、端子間電圧Vcが上限電圧VcHに到達したとき、回路部14-3を通して放電させる。このとき、SW16-2=ONであれば、充電電力が放電するとき、この放電電力と閾値Sth未満の発電電力Sを加算し、回路部14-3を通してパワーコンディショナ6-2に供給する。この結果、パワーコンディショナ6-2の電力変換機能の一時停止を防止でき、その結果、第二出力モードにおいても発電パネル4からの微弱発電電力のロスを低減でき、交流出力総量を増加させることができる。 (3) When the generated power S is less than the threshold Sth, the circuit unit 14-2 charges the generated power S to the power storage device 8, and monitors whether the terminal voltage Vc reaches the upper limit voltage VcH. , when the inter-terminal voltage Vc reaches the upper limit voltage VcH, it is discharged through the circuit section 14-3. At this time, if SW16-2=ON, when the charging power is discharged, this discharged power and the generated power S that is less than the threshold value Sth are added and supplied to the power conditioner 6-2 through the circuit section 14-3. As a result, it is possible to prevent the power conversion function of the power conditioner 6-2 from temporarily stopping, and as a result, even in the second output mode, the loss of weakly generated power from the power generation panel 4 can be reduced, and the total amount of AC output can be increased. Can be done.
 (4) 蓄電デバイス8の放電電力と閾値Sth未満の発電電力Sを合算した合算電力がパワーコンディショナ6-2に供給されるので、このような合算電力を用いない場合と比較して、蓄電デバイス8の放電速度を遅くでき、このため蓄電デバイス8の充放電サイクル数を減少させ、その結果、蓄電デバイス8の劣化を抑制でき、耐久性を高めることができる。 (4) Since the total power that is the sum of the discharge power of the power storage device 8 and the generated power S that is less than the threshold value Sth is supplied to the power conditioner 6-2, the power storage The discharge rate of the device 8 can be slowed down, thereby reducing the number of charge/discharge cycles of the power storage device 8, and as a result, deterioration of the power storage device 8 can be suppressed and durability can be increased.
 (5) SW16-1、SW16-2の頻繁な切り換えを低減でき、SW16-1、SW16-2に切換え手段としてリレーを用いた場合、その損耗を抑制でき、部品寿命を延ばすことができる。 (5) Frequent switching of SW16-1 and SW16-2 can be reduced, and when relays are used as switching means for SW16-1 and SW16-2, wear and tear can be suppressed and the life of the parts can be extended.
 (6) 発電パネル4の発電電力Sに閾値Sthを設定し、閾値Sth以上の発電電力SではSW16-1=ONに制御し、閾値Sth以上の発電電力Sをパワーコンディショナ6-1に供給し、第一出力モードの実行により、通常の電力変換によって交流出力を取り出すことができる。 (6) A threshold value Sth is set for the generated power S of the power generation panel 4, and when the generated power S is equal to or greater than the threshold value Sth, SW16-1 is controlled to be ON, and the generated power S equal to or greater than the threshold value Sth is supplied to the power conditioner 6-1. However, by executing the first output mode, AC output can be extracted through normal power conversion.
 (7) 閾値Sth未満の発電電力Sについては、SW16-1=OFF、SW16-2=ONに制御し、充電モードの実行により、微弱電力である閾値Sth未満の発電電力Sを蓄電デバイス8に効率よく回収して蓄電することができる。 (7) Regarding the generated power S that is less than the threshold value Sth, control SW16-1 = OFF and SW16-2 = ON, and by executing the charging mode, the generated power S that is less than the threshold value Sth, which is weak power, is transferred to the power storage device 8. Electricity can be efficiently collected and stored.
 (8) 発電電力Sが閾値Sth未満で、端子間電圧Vcが上限電圧VcH以上であれば蓄電デバイス8の蓄電電力を放電させ、この放電電力をパワーコンディショナ6-2に供給し、第二出力モードの実行により、電力変換によって交流出力を取り出すことができる。 (8) If the generated power S is less than the threshold Sth and the inter-terminal voltage Vc is equal to or higher than the upper limit voltage VcH, the stored power of the power storage device 8 is discharged, this discharged power is supplied to the power conditioner 6-2, and the second By executing the output mode, AC output can be obtained through power conversion.
 (9) 第二出力モードでは、蓄電デバイス8からの放電電力に加え、閾値Sth未満の微弱な発電電力Sも回路部14-2、14-3を通してパワーコンディショナ6-2に供給され、第一出力モードと同様にパワーコンディショナ6-2の電力変換によって交流出力を取り出すことができ、発電パネル4の閾値Sth未満の発電電力Sの回収率ないし利用率を高め、発電システム2の総合的な電力変換効率を高めることができる。 (9) In the second output mode, in addition to the discharge power from the electricity storage device 8, the weak generated power S that is less than the threshold value Sth is also supplied to the power conditioner 6-2 through the circuit sections 14-2 and 14-3, As in the single output mode, AC output can be taken out by power conversion by the power conditioner 6-2, increasing the recovery rate or utilization rate of the generated power S that is less than the threshold value Sth of the power generation panel 4, and improving the overall power generation system 2. power conversion efficiency can be increased.
 (10) 曇天や雨天など、日射量レベルが変動しても、この変動に対応した閾値Sthを設定できるので、気象条件に適合して高効率の変換出力が得られる発電システム2を実現できる。 (10) Even if the solar radiation level fluctuates due to cloudy or rainy weather, the threshold value Sth that corresponds to this fluctuation can be set, so it is possible to realize a power generation system 2 that can obtain highly efficient conversion output in accordance with the weather conditions.
 (11) 図7のAは、発電パネル4から得られる閾値Sth未満の発電電力Sの推移を示している(従前モード)。このような閾値Sth未満の微弱な発電電力Sをパワーコンディショナ6-1に供給すると、頻繁に出力電力が電力=0に低下するため、正常な電力変換を得ることができない。 (11) A in FIG. 7 shows the transition of the generated power S that is less than the threshold value Sth obtained from the power generation panel 4 (conventional mode). If such weak generated power S, which is less than the threshold value Sth, is supplied to the power conditioner 6-1, the output power frequently decreases to power=0, making it impossible to obtain normal power conversion.
 図7のBは、閾値Sth未満の発電電力Sが発電システム2の第二出力モードで処理された場合を示している(本開示モード)。この発電システム2の第二出力モードでは、閾値Sth未満の発電電力Sが回路部14-2を通して蓄電デバイス8に充電され、この端子間電圧Vcが上限電圧VcH以上に到達したとき、この蓄電デバイス8を放電させ、この放電電力を閾値Sth未満の発電電力Sに加算して電力変換を行う。この結果、パワーコンディショナ6-2の出力が電力=0に低下することを回避でき、閾値Sth未満の発電電力Sを連続して交流出力に変換し、取り出すことができる。 B in FIG. 7 shows a case where the generated power S that is less than the threshold value Sth is processed in the second output mode of the power generation system 2 (this disclosure mode). In the second output mode of the power generation system 2, the power storage device 8 is charged with the generated power S that is less than the threshold value Sth through the circuit section 14-2, and when the terminal voltage Vc reaches the upper limit voltage VcH or more, the power storage device 8 is discharged, and this discharged power is added to the generated power S that is less than the threshold value Sth to perform power conversion. As a result, the output of the power conditioner 6-2 can be prevented from decreasing to power=0, and the generated power S that is less than the threshold value Sth can be continuously converted into AC output and taken out.
〔第二の実施の形態〕
 第二の実施の形態では、回路部14-2に方向性素子を設置し、閾値Sth未満の発電電力Sに方向性を付与するとともに、回路部14-2、14-3と回路部14-1とを分離した構成である。
[Second embodiment]
In the second embodiment, a directional element is installed in the circuit section 14-2 to impart directionality to the generated power S below the threshold value Sth, and the circuit section 14-2, 14-3 and the circuit section 14- This is a configuration that is separated from 1.
 図8は、第二の実施の形態に係る発電システム2を示している。図8示す構成は一例であり、斯かる構成に本開示が限定されるものではない。図8において、図1と共通部分には同一符号を付してある。 FIG. 8 shows a power generation system 2 according to the second embodiment. The configuration shown in FIG. 8 is an example, and the present disclosure is not limited to such a configuration. In FIG. 8, parts common to those in FIG. 1 are given the same reference numerals.
 この実施の形態では、回路部14-2にSW16-2と直列にダイオード34が設置されている。このダイオード34は発電パネル4から蓄電デバイス8またはパワーコンディショナ6-2に対して順方向である。これに対し、回路部14-2は回路部14-1に対し、ダイオード34は逆方向であり、回路部14-2と回路部14-1を分離している。 In this embodiment, a diode 34 is installed in the circuit section 14-2 in series with the SW 16-2. This diode 34 is in the forward direction from the power generation panel 4 to the power storage device 8 or the power conditioner 6-2. On the other hand, the diode 34 of the circuit section 14-2 is in the opposite direction to the circuit section 14-1, separating the circuit section 14-2 and the circuit section 14-1.
<第二の実施の形態の効果>
 この第二の実施の形態によれば、次の何れかの効果が得られる。
 (1) ダイオード34が設置されているので、SW16-2が導通したとき、ダイオード34の順方向降下電圧Vfだけ低下した電圧を蓄電デバイス8に加えることができる。
<Effects of the second embodiment>
According to this second embodiment, any of the following effects can be obtained.
(1) Since the diode 34 is installed, when SW 16-2 becomes conductive, a voltage lowered by the forward voltage drop Vf of the diode 34 can be applied to the power storage device 8.
 (2) 回路部14-2はダイオード34により回路部14-1から分離でき、回路部14-2と回路部14-1との干渉を回避できる。 (2) The circuit section 14-2 can be separated from the circuit section 14-1 by the diode 34, and interference between the circuit section 14-2 and the circuit section 14-1 can be avoided.
〔第三の実施の形態〕
 図9は、第三の実施の形態に係る発電システム2を示している。図9に示す構成は一例であり、本開示が斯かる構成に限定されるものではない。図9において図1と共通部分には共通符号を付してある。
[Third embodiment]
FIG. 9 shows a power generation system 2 according to a third embodiment. The configuration shown in FIG. 9 is an example, and the present disclosure is not limited to such a configuration. In FIG. 9, common parts with those in FIG. 1 are given common symbols.
<発電システム2>
 この発電システム2は本開示の太陽光発電システムの一例である。この発電システム2は三組の発電パネル4-1、4-2、4-3、電力分離部106-1、106-2、106-3、電力回収部108、コントローラ10、第一パワーコンディショナ206-11、206-12、206-13(以下「パワーコンディショナ206-11、206-12、206-13」と称する)とともに一組の第二パワーコンディショナ206-2(以下「パワーコンディショナ206-2」と称する)を備えている。
<Power generation system 2>
This power generation system 2 is an example of the solar power generation system of the present disclosure. This power generation system 2 includes three sets of power generation panels 4-1, 4-2, 4-3, power separation units 106-1, 106-2, 106-3, power recovery unit 108, controller 10, and first power conditioner. 206-11, 206-12, 206-13 (hereinafter referred to as "power conditioners 206-11, 206-12, 206-13") and a set of second power conditioners 206-2 (hereinafter referred to as "power conditioners 206-11, 206-12, 206-13"). 206-2).
<発電パネル4-1、4-2、4-3>
 各発電パネル4-1、4-2、4-3は、本開示の二以上の発電装置の一例である。各発電パネル4-1、4-2、4-3は日射量に応じて発電し、各発電パネル4-1、4-2、4-3から日射量に応じた発電電力Sが得られる。各発電電力Sは、発電パネル4-1、4-2、4-3の立地条件、気象条件によって変化するが、説明を簡略化するため、各発電パネル4-1、4-2、4-3から得られる発電電力Sを以て説明する。この発電電力Sは各発電パネル4-1、4-2、4-3から得られる発電量の一例である。
<Power generation panels 4-1, 4-2, 4-3>
Each power generation panel 4-1, 4-2, 4-3 is an example of two or more power generation devices of the present disclosure. Each power generation panel 4-1, 4-2, 4-3 generates power according to the amount of solar radiation, and generated power S corresponding to the amount of solar radiation is obtained from each power generation panel 4-1, 4-2, 4-3. Each power generation S varies depending on the location and weather conditions of the power generation panels 4-1, 4-2, 4-3, but to simplify the explanation, each power generation panel 4-1, 4-2, 4- This will be explained using the generated power S obtained from 3. This generated power S is an example of the amount of power generated from each power generation panel 4-1, 4-2, and 4-3.
<電力分離部106-1、106-2、106-3>
 電力分離部106-1、106-2、106-3は、閾値以下の発電電力を蓄電するための蓄電装置の一部を構成する。
<Power separation units 106-1, 106-2, 106-3>
Power separation units 106-1, 106-2, and 106-3 constitute part of a power storage device for storing generated power below a threshold value.
 各電力分離部106-1、106-2、106-3は、各発電パネル4-1、4-2、4-3から個別に発電電力Sを受ける。この発電電力Sを分離するための基準として閾値Sthが設定されている。各電力分離部106-1、106-2、106-3によれば、各発電パネル4-1、4-2、4-3からの発電電力Sが閾値Sth以上の発電電力Sと、閾値Sth未満の発電電力Sに分離される。 Each power separation section 106-1, 106-2, 106-3 individually receives generated power S from each power generation panel 4-1, 4-2, 4-3. A threshold value Sth is set as a standard for separating this generated power S. According to each power separation unit 106-1, 106-2, 106-3, the generated power S from each power generation panel 4-1, 4-2, 4-3 is equal to or higher than the threshold value Sth, and the generated power S is equal to or higher than the threshold value Sth. The generated power S is divided into less than
 電力分離部106-1には、第一回路部14-11に第一スイッチ16-11(以下、単に「SW16-11」と称する)、第二回路部14-12にダイオード118-1および第二スイッチ16-12(以下、単に「SW16-12」と称する)が設置されている。S≧Sthであれば、SW16-11=ON(閉)、SW16-12=OFF(開)、S<Sthであれば、SW16-11=OFF、SW16-12=ONに制御する。したがって、閾値Sth以上の発電電力Sはパワーコンディショナ206-11に供給されるのに対し、閾値Sth未満の発電電力Sは電力回収部108に供給され、この電力回収部108からパワーコンディショナ206-2に供給される。 The power separation section 106-1 includes a first switch 16-11 (hereinafter simply referred to as "SW16-11") in the first circuit section 14-11, a diode 118-1 and a second switch in the second circuit section 14-12. Two switches 16-12 (hereinafter simply referred to as "SW16-12") are installed. If S≧Sth, SW16-11=ON (closed) and SW16-12=OFF (open); if S<Sth, SW16-11=OFF and SW16-12=ON. Therefore, the generated power S that is greater than or equal to the threshold value Sth is supplied to the power conditioner 206-11, whereas the generated power S that is less than the threshold value Sth is supplied to the power recovery section 108, and from this power recovery section 108, the power conditioner 206-11 is supplied to the power conditioner 206-11. -2.
 電力分離部106-2には、回路部14-21に第一スイッチ16-21(以下、単に「SW16-21」と称する)、第二回路部14-22にダイオード118-2および第二スイッチ16-22(以下、単に「SW16-22」と称する)が設置されている。S≧Sthであれば、SW16-21=ON、SW16-22=OFF、S<Sthであれば、SW16-21=OFF、SW16-22=ONに制御する。したがって、閾値Sth以上の発電電力Sはパワーコンディショナ206-12に供給されるのに対し、閾値Sth未満の発電電力Sは電力回収部108に供給され、この電力回収部108からパワーコンディショナ206-2に供給される。 The power separation section 106-2 includes a first switch 16-21 (hereinafter simply referred to as "SW16-21") in the circuit section 14-21, and a diode 118-2 and a second switch in the second circuit section 14-22. 16-22 (hereinafter simply referred to as "SW16-22") is installed. If S≧Sth, SW16-21=ON and SW16-22=OFF; if S<Sth, SW16-21=OFF and SW16-22=ON. Therefore, the generated power S that is greater than or equal to the threshold value Sth is supplied to the power conditioner 206-12, whereas the generated power S that is less than the threshold value Sth is supplied to the power recovery unit 108, and from this power recovery unit 108, the power conditioner 206-12 -2.
 電力分離部106-3には、回路部14-31に第一スイッチ16-31(以下、単に「SW16-31」と称する)、回路部14-32にダイオード118-3および第二スイッチ16-32(以下、単に「SW16-32」と称する)が設置されている。S≧Sthであれば、SW16-31=ON、SW16-32=OFF、S<Sthであれば、SW16-31=OFF、SW16-32=ONに制御する。したがって、閾値Sth以上の発電電力Sはパワーコンディショナ206-13に供給されるのに対し、閾値Sth未満の発電電力Sは電力回収部108に供給され、この電力回収部108からパワーコンディショナ206-2に供給される。 The power separation section 106-3 includes a first switch 16-31 (hereinafter simply referred to as "SW16-31") in the circuit section 14-31, a diode 118-3 and a second switch 16- in the circuit section 14-32. 32 (hereinafter simply referred to as "SW16-32") is installed. If S≧Sth, SW16-31=ON and SW16-32=OFF; if S<Sth, SW16-31=OFF and SW16-32=ON. Therefore, generated power S that is equal to or greater than the threshold value Sth is supplied to the power conditioner 206-13, whereas generated power S that is less than the threshold value Sth is supplied to the power recovery unit 108, and from this power recovery unit 108 to the power conditioner 206-13. -2.
 したがって、各発電パネル4-1、4-2、4-3の発電電力Sは、閾値Sth以上の発電電力Sと、閾値Sth未満の発電電力Sとに分離され、閾値Sth以上の発電電力Sが該当するパワーコンディショナ206-11、206-12、206-13に供給され、閾値Sth未満の発電電力Sがパワーコンディショナ206-2に供給される。 Therefore, the generated power S of each power generation panel 4-1, 4-2, and 4-3 is separated into the generated power S that is equal to or higher than the threshold value Sth, and the generated power S that is less than the threshold value Sth, and the generated power S that is equal to or higher than the threshold value Sth. is supplied to the corresponding power conditioners 206-11, 206-12, and 206-13, and generated power S less than the threshold value Sth is supplied to the power conditioner 206-2.
<電力回収部108>
 電力回収部108は、閾値Sth未満の発電電力Sを蓄電する蓄電装置の一部である電力回収部を構成している。蓄電デバイス8の端子間電圧Vcに対し、上限閾値電圧として上限電圧VcH、下限閾値電圧として下限電圧VcLが設定されている。
<Power recovery unit 108>
The power recovery unit 108 constitutes a power recovery unit that is part of a power storage device that stores generated power S that is less than the threshold value Sth. With respect to the inter-terminal voltage Vc of the power storage device 8, an upper limit voltage VcH is set as an upper threshold voltage, and a lower limit voltage VcL is set as a lower threshold voltage.
 この実施の形態に係る電力回収部108には、蓄電デバイス8とともに第三回路部14-43に第三スイッチ16-43(以下、単に「SW16-43」と称する)が設置されている。Vc<VcHの場合、SW16-43=OFF(充電モード)、Vc≧VcHの場合、SW16-43=ON(放電モード)となる。充電モードでは、蓄電デバイス8が、発電パネル4-1、4-2、4-3の何れかまたは二以上が閾値Sth未満の発電電力Sを受け、この発電電力Sを充電する。放電モードでは、蓄電デバイス8が放電し、この放電電力と、該当する発電パネル4-1、4-2、4-3からの閾値Sth未満の発電電力Sとを合算し、この合算電力P1がパワーコンディショナ206-2に供給される。 In the power recovery section 108 according to this embodiment, a third switch 16-43 (hereinafter simply referred to as "SW16-43") is installed in the third circuit section 14-43 together with the power storage device 8. When Vc<VcH, SW16-43=OFF (charging mode), and when Vc≧VcH, SW16-43=ON (discharging mode). In the charging mode, the power storage device 8 receives the generated power S of which one or more of the power generation panels 4-1, 4-2, 4-3 is less than the threshold value Sth, and charges the generated power S. In the discharge mode, the electricity storage device 8 discharges, and this discharged power is summed up with the generated power S less than the threshold value Sth from the corresponding power generation panels 4-1, 4-2, and 4-3, and this total power P1 is The power is supplied to the power conditioner 206-2.
<蓄電デバイス8>
 この蓄電デバイス8は、電力分離部106-1、106-2、106-3とともに、本開示の蓄電装置を構成し、閾値Sth未満の発電電力Sを充電して回収して蓄電する。端子間電圧Vcは蓄電装置の端子電圧の一例であり、その電圧レベルが蓄電デバイス8の充電状態または放電状態を表す。
<Electricity storage device 8>
This power storage device 8 constitutes the power storage device of the present disclosure together with the power separation units 106-1, 106-2, and 106-3, and charges and collects the generated power S that is less than the threshold value Sth to store power. The inter-terminal voltage Vc is an example of the terminal voltage of the power storage device, and its voltage level represents the charging state or discharging state of the power storage device 8.
 この蓄電デバイス8には発電パネル4-1、4-2、4-3の発電電圧に対応させて直列接続された複数の蓄電デバイスセルが設置されている。この蓄電デバイスセルにはたとえば、電気二重層キャパシタやリチウムイオンキャパシタなどの各種電気化学キャパシタやリチウムイオン電池などの二次電池が利用可能であるが、蓄電量が電圧に正確に比例する電気化学キャパシタ、さらには、充放電サイクル寿命が優れる電気二重層キャパシタが好適である。また、蓄電デバイス8には同一の蓄電デバイスに代えてたとえば、特性の異なる他の蓄電デバイスを直列に接続してもよい。 A plurality of power storage device cells connected in series are installed in this power storage device 8 in correspondence with the power generation voltages of the power generation panels 4-1, 4-2, and 4-3. For example, various electrochemical capacitors such as electric double layer capacitors and lithium ion capacitors, and secondary batteries such as lithium ion batteries can be used for this power storage device cell, but electrochemical capacitors whose storage amount is precisely proportional to voltage Further, an electric double layer capacitor having an excellent charge/discharge cycle life is suitable. Further, instead of the same power storage device, for example, other power storage devices with different characteristics may be connected in series to the power storage device 8.
<コントローラ10>
 コントローラ10は、本開示の制御部の一例である。このコントローラ10はたとえば、コンピュータで構成される。コントローラ10は、各電力計12-1、12-2、12-3から発電電力情報を取得し、発電電力情報を制御情報に用いて電力分離部106-1、106-2、106-3による電力分離制御と、電力回収部108による蓄電デバイス8を用いた電力回収制御を行う。
<Controller 10>
The controller 10 is an example of a control unit of the present disclosure. This controller 10 is composed of, for example, a computer. The controller 10 acquires generated power information from each of the wattmeters 12-1, 12-2, and 12-3, and uses the generated power information as control information to control the power separation units 106-1, 106-2, and 106-3. Power separation control and power recovery control using the power storage device 8 by the power recovery unit 108 are performed.
 電力分離制御は常時、電力計12-1、12-2、12-3から発電電力情報を取得し、発電パネル4-1、4-2、4-3の発電電力Sが閾値Sth以上であるか否かを監視する。S≧Sth以上であれば、該当するSW16-11、SW16-21、SW16-31の何れかまたは二以上をONに制御し、かつ該当するSW16-12、16-22、16-32の何れかまたは二以上をOFFに制御する。また、S<Sthであれば、該当するSW16-11、16-21、16-31の何れかまたは二以上をOFFに制御し、かつ該当するSW16-12、16-22、16-32の何れかまたは二以上をONに制御する。これにより、発電パネル4-1、4-2、4-3の何れかまたは二以上から得られる閾値Sth以上の発電電力Sと閾値Sth未満の発電電力Sとに分離される。 The power separation control always acquires generated power information from the wattmeters 12-1, 12-2, and 12-3, and the generated power S of the power generation panels 4-1, 4-2, and 4-3 is equal to or higher than the threshold value Sth. Monitor whether or not. If S≧Sth or more, turn on one or more of the applicable SW16-11, SW16-21, SW16-31, and turn on any of the applicable SW16-12, 16-22, 16-32. Or control two or more to OFF. If S<Sth, any or more of the corresponding SW16-11, 16-21, 16-31 is controlled OFF, and any of the corresponding SW16-12, 16-22, 16-32 is controlled to OFF. or two or more are controlled to be ON. Thereby, the generated power S obtained from any one or more of the power generation panels 4-1, 4-2, and 4-3 is separated into the generated power S that is greater than or equal to the threshold value Sth and the generated power S that is less than the threshold value Sth.
 電力回収制御は、蓄電デバイス8の端子間電圧Vcを常時監視し、端子間電圧Vcが電圧閾値である上限電圧VcH以上かを判定する。Vc<VcHであれば、SW16-43=OFF、Vc≧VcHであれば、SW16-43=ONに制御する。 The power recovery control constantly monitors the inter-terminal voltage Vc of the electricity storage device 8 and determines whether the inter-terminal voltage Vc is equal to or higher than the upper limit voltage VcH, which is a voltage threshold. If Vc<VcH, SW16-43=OFF; if Vc≧VcH, SW16-43=ON.
<電力計12-1、12-2、12-3>
 電力計12-1は、発電パネル4-1の発電電力Sを計測し、この発電電力Sの多寡を表す発電電力情報を取得する。電力計12-2は、発電パネル4-2の発電電力Sを計測し、この発電電力Sの多寡を表す発電電力情報を取得する。また、電力計12-3は、発電パネル4-3から発電電力Sを計測し、この発電電力Sの多寡を表す発電電力情報を取得する。したがって、コントローラ10には常時、電力計12-1、12-2、12-3から発電電力Sを表す発電電力情報が提供される。
<Watt meter 12-1, 12-2, 12-3>
The wattmeter 12-1 measures the generated power S of the power generation panel 4-1 and obtains generated power information indicating the amount of the generated power S. The wattmeter 12-2 measures the generated power S of the power generation panel 4-2 and obtains generated power information indicating the amount of the generated power S. Further, the wattmeter 12-3 measures the generated power S from the power generation panel 4-3 and obtains generated power information indicating the amount of the generated power S. Therefore, the controller 10 is always provided with generated power information representing the generated power S from the wattmeters 12-1, 12-2, and 12-3.
<閾値Sth>
 コントローラ10には、発電電力Sに対して閾値Sthが設定される。この閾値Sthは、SW16-11、16-12、16-21、16-22、16-31、16-32の開または閉(OFF/ON)条件を表す電力値である。つまり、この閾値Sthはたとえば、発電パネル4-1、4-2、4-3から発電電力Sを受けた際、少なくとも、各パワーコンディショナ206-11、206-12、206-13が安定で十分高い効率で電力変換が可能な発電電力Sに相当する下限電力値であればよい。
<Threshold value Sth>
A threshold value Sth is set in the controller 10 for the generated power S. This threshold value Sth is a power value representing the open or close (OFF/ON) condition of the SWs 16-11, 16-12, 16-21, 16-22, 16-31, and 16-32. In other words, this threshold value Sth is such that at least each power conditioner 206-11, 206-12, 206-13 is stable when receiving the generated power S from the power generation panels 4-1, 4-2, 4-3. Any lower limit power value may be used as long as it corresponds to the generated power S that allows power conversion with sufficiently high efficiency.
<SW16-11、16-12、16-21、16-22、16-31、16-32>
 各SW16-11、16-12、16-21、16-22、16-31、16-32は、コントローラ10で制御可能なたとえば、半導体スイッチ、リレーなどの開閉手段で構成される。
<SW16-11, 16-12, 16-21, 16-22, 16-31, 16-32>
Each of the SWs 16-11, 16-12, 16-21, 16-22, 16-31, and 16-32 is configured with an opening/closing means such as a semiconductor switch or a relay that can be controlled by the controller 10.
<ダイオード118-1、118-2、118-3>
 ダイオード118-1は、SW16-12に直列に接続されており、発電パネル4-1から蓄電デバイス8またはパワーコンディショナ206-2に対して順方向である。したがって、ダイオード118-1は、蓄電デバイス8またはパワーコンディショナ206-2から発電パネル4-1またはパワーコンディショナ206-11に対して逆方向である。
<Diode 118-1, 118-2, 118-3>
Diode 118-1 is connected in series to SW 16-12, and is in the forward direction from power generation panel 4-1 to power storage device 8 or power conditioner 206-2. Therefore, diode 118-1 is in the opposite direction from power storage device 8 or power conditioner 206-2 to power generation panel 4-1 or power conditioner 206-11.
 ダイオード118-2は、SW16-22に直列に接続されており、発電パネル4-2から蓄電デバイス8またはパワーコンディショナ206-2に対して順方向である。したがって、ダイオード118-2は、蓄電デバイス8またはパワーコンディショナ206-2から発電パネル4-2またはパワーコンディショナ206-12に対して逆方向である。 The diode 118-2 is connected in series to the SW 16-22, and is in the forward direction from the power generation panel 4-2 to the power storage device 8 or the power conditioner 206-2. Therefore, diode 118-2 is in the opposite direction from power storage device 8 or power conditioner 206-2 to power generation panel 4-2 or power conditioner 206-12.
 ダイオード118-3は、SW16-32に直列に接続されており、発電パネル4-3から蓄電デバイス8またはパワーコンディショナ206-2に対して順方向である。したがって、ダイオード118-3は、蓄電デバイス8またはパワーコンディショナ206-2から発電パネル4-3またはパワーコンディショナ206-13に対して逆方向である。 The diode 118-3 is connected in series to the SW 16-32, and is in the forward direction from the power generation panel 4-3 to the power storage device 8 or the power conditioner 206-2. Therefore, diode 118-3 is in the opposite direction from power storage device 8 or power conditioner 206-2 to power generation panel 4-3 or power conditioner 206-13.
 したがって、蓄電デバイス8は、ダイオード118-1、118-2、118-3によってパワーコンディショナ206-11、206-12、206-13および発電パネル4-1、4-2、4-3と分離されている。 Therefore, the power storage device 8 is separated from the power conditioners 206-11, 206-12, 206-13 and the power generation panels 4-1, 4-2, 4-3 by the diodes 118-1, 118-2, 118-3. has been done.
 そして、SW16-12、SW16-22、SW16-32の何れかまたは二以上が導通したとき、閾値Sth未満の発電電力Sからダイオード118-1、118-2、118-3の順方向降下電圧Vfだけ低下した電圧が蓄電デバイス8に加えられる。 When any one or more of SW16-12, SW16-22, and SW16-32 becomes conductive, the forward drop voltage Vf of the diodes 118-1, 118-2, and 118-3 is reduced from the generated power S that is less than the threshold value Sth. A voltage that has been reduced by the amount is applied to the electricity storage device 8 .
 第三回路部14-43は回路部14-11、14-21、14-31からダイオード118-1、118-2、118-3で分離でき、回路部14-11、14-21、14-31との干渉を回避できる。 The third circuit section 14-43 can be separated from the circuit sections 14-11, 14-21, and 14-31 by diodes 118-1, 118-2, and 118-3. Interference with 31 can be avoided.
 <パワーコンディショナ206-11、206-12、206-13>
 各パワーコンディショナ206-11、206-12、206-13は閾値Sth以上の発電電力Sを電力変換する本開示の第一電力変換部の一例である。つまり、各パワーコンディショナ206-11、206-12、206-13は、閾値Sth以上の発電電力Sに対応する専用の第一電力変換部を構成している。
<Power conditioner 206-11, 206-12, 206-13>
Each of the power conditioners 206-11, 206-12, and 206-13 is an example of a first power conversion unit of the present disclosure that converts the generated power S that is equal to or higher than the threshold value Sth. In other words, each of the power conditioners 206-11, 206-12, and 206-13 constitutes a dedicated first power conversion section that corresponds to the generated power S that is equal to or greater than the threshold value Sth.
 パワーコンディショナ206-11には電力分離部106-1からの閾値Sth以上の発電電力Sを受けて電力変換するための手段として、第一の最大電力点追従制御部(MPPT:Maximum Power Point Tracking)224-1(以下、「MPPT224-1」と称する)、第一のDC-DCコンバータ226-1、第一のインバータ228-1などが含まれている。 The power conditioner 206-11 includes a first maximum power point tracking control unit (MPPT) as a means for receiving the generated power S equal to or higher than the threshold value Sth from the power separation unit 106-1 and converting it into power. ) 224-1 (hereinafter referred to as "MPPT 224-1"), a first DC-DC converter 226-1, a first inverter 228-1, and the like.
 MPPT224-1は、発電パネル4-1の発電出力が最大になる最適な電圧Vと電流Iの積(最大電力点または最適動作点)を自動的に求める制御を行い、この最大電力点追従制御により自動的に最大の発電出力を得る。 MPPT224-1 performs control to automatically find the optimal product of voltage V and current I (maximum power point or optimal operating point) that maximizes the power generation output of power generation panel 4-1, and performs this maximum power point tracking control. automatically obtains maximum power generation output.
 DC-DCコンバータ226-1は、MPPT224-1で得られた直流電力、回路部14-11側で得られる直流電力を既定直流電圧の直流電力に変換する。 The DC-DC converter 226-1 converts the DC power obtained by the MPPT 224-1 and the DC power obtained by the circuit section 14-11 side into DC power of a predetermined DC voltage.
 インバータ228-1は、本開示の直交変換手段の一例である。このインバータ228-1は、DC-DCコンバータ226-1から直流電力を受け、これらを系統に適合する既定の交流電力たとえば、定格200Vの交流電力に変換する。 The inverter 228-1 is an example of orthogonal transformation means of the present disclosure. This inverter 228-1 receives DC power from the DC-DC converter 226-1 and converts it into predetermined AC power compatible with the grid, for example, AC power with a rating of 200V.
 このパワーコンディショナ206-11が備える構成は、パワーコンディショナ206-12、206-13についても同様である。パワーコンディショナ206-12には、電力分離部106-2からの閾値Sth以上の発電電力Sを受けて電力変換するための手段として、第二のMPPT224-2、第二のDC-DCコンバータ226-2、第二のインバータ228-2などが含まれており、またパワーコンディショナ206-13にも電力分離部106-3からの閾値Sth以上の発電電力Sを受けて電力変換するための手段として、第三のMPPT224-3、第三のDC-DCコンバータ226-3、第三のインバータ228-3などが含まれている。 The configuration of this power conditioner 206-11 is the same for power conditioners 206-12 and 206-13. The power conditioner 206-12 includes a second MPPT 224-2 and a second DC-DC converter 226 as means for receiving the generated power S equal to or higher than the threshold value Sth from the power separation unit 106-2 and converting the power. -2, a second inverter 228-2 and the like are included, and the power conditioner 206-13 also includes a means for receiving the generated power S from the power separation unit 106-3 and converting it into power. This includes a third MPPT 224-3, a third DC-DC converter 226-3, a third inverter 228-3, and the like.
 したがって、閾値Sth以上の発電電力Sを受けたパワーコンディショナ206-11、206-12、206-13には系統に適合する既定の交流電力たとえば、定格200Vの交流電力が得られ、この交流電力が負荷18-1、18-2、・・・・や図示しない系統に給電される。 Therefore, the power conditioners 206-11, 206-12, and 206-13 that have received the generated power S equal to or higher than the threshold value Sth are provided with a predetermined AC power that is compatible with the grid, for example, an AC power with a rated value of 200V, and this AC power is supplied to the loads 18-1, 18-2, . . . and a system not shown.
<パワーコンディショナ206-2>
 パワーコンディショナ206-2は、閾値Sth未満の発電電力Sを電力変換する本開示の第二電力変換部の一例である。つまり、パワーコンディショナ206-2は、閾値Sth未満の発電電力Sに対応する専用の第二電力変換部を構成している。このパワーコンディショナ206-2は電力回収部108から閾値Sth未満の発電電力S、蓄電デバイス8の放電電力を受け、これらの電力を変換してたとえば、高効率で交流電圧200Vを生成して負荷18-1、18-2、・・・に供給し、または図示しない系統に出力することができる。
<Power conditioner 206-2>
The power conditioner 206-2 is an example of the second power conversion unit of the present disclosure that converts the generated power S that is less than the threshold value Sth. In other words, the power conditioner 206-2 constitutes a second power conversion section dedicated to the generated power S that is less than the threshold value Sth. This power conditioner 206-2 receives the generated power S that is less than the threshold value Sth from the power recovery unit 108 and the discharged power of the power storage device 8, converts these powers, and generates, for example, an AC voltage of 200 V with high efficiency to supply the load. 18-1, 18-2, . . . or can be output to a system not shown.
 この実施の形態に係るパワーコンディショナ206-2には第四のDC-DCコンバータ226-4および第四のインバータ228-4を備え、他のパワーコンディショナ206-11~206-13と異なり、一定電力に調整された閾値Sth未満の発電電力Sを受けるので、既述のMPPTの設置はない。 The power conditioner 206-2 according to this embodiment includes a fourth DC-DC converter 226-4 and a fourth inverter 228-4, and unlike the other power conditioners 206-11 to 206-13, Since the generated power S which is adjusted to a constant power and is less than the threshold value Sth is received, the above-mentioned MPPT is not installed.
 DC-DCコンバータ226-4は、回路部14-43側からの定電力制御により得られる直流電力を受け、この直流電力を既定直流電圧の直流電力に変換する。 The DC-DC converter 226-4 receives DC power obtained by constant power control from the circuit section 14-43 side, and converts this DC power into DC power of a predetermined DC voltage.
 インバータ228-4は、同様に直交変換手段の一例である。このインバータ228-4は、DC-DCコンバータ226-4から直流電力を受け、これらを系統に適合する既定の交流電力、既述のたとえば、定格200Vの交流電力に変換し、この交流電力を系統に合流させる。 Similarly, the inverter 228-4 is an example of orthogonal transformation means. This inverter 228-4 receives DC power from the DC-DC converter 226-4, converts it into predetermined AC power that is compatible with the grid, such as the already mentioned AC power with a rated 200V, and transfers this AC power to the grid. merge with.
<コントローラ10>
 コントローラ10は本開示の制御装置の一例である。このコントローラ10は、既述のコントローラ10(図1)と同様の構成であり、制御部としてコンピュータを備え、発電パネル4-1、4-2、4-3の発電電力情報、蓄電デバイス8の蓄電量情報などを用いて、電力分離制御としてSW16-11、16-12、16-21、16-22、16-31、16-32の切換制御と、電力回収制御としてSW16-43の開閉制御を行う。したがって、このコントローラ10にはSW16-11、16-12、16-21、SW16-22、16-31、16-32を個別に開閉制御するためのSW駆動部が設置されている。
<Controller 10>
The controller 10 is an example of a control device of the present disclosure. This controller 10 has the same configuration as the previously described controller 10 (FIG. 1), and is equipped with a computer as a control unit, and includes information on the generated power of the power generation panels 4-1, 4-2, and 4-3, and information on the power generation of the power storage device 8. Switching control of SW16-11, 16-12, 16-21, 16-22, 16-31, 16-32 as power separation control and opening/closing control of SW16-43 as power recovery control using stored power information etc. I do. Therefore, this controller 10 is provided with an SW drive section for individually controlling the opening and closing of SW16-11, 16-12, 16-21, SW16-22, 16-31, and 16-32.
 コントローラ10は情報提示部を備え、この情報提示部は制御部の制御によりたとえば、LCD(Liquid Crystal Display)などの表示素子に制御情報などの情報提示を行う。 The controller 10 includes an information presentation section, and the information presentation section presents information such as control information on a display element such as an LCD (Liquid Crystal Display) under the control of the control section.
 コントローラ10は操作入力部を備え、この操作入力部はタッチパネルなどの入力機器を用いて制御情報などの操作によって入力が可能である。 The controller 10 includes an operation input section, and this operation input section is capable of inputting control information and the like using an input device such as a touch panel.
<コントローラ10の制御機能>
 コントローラ10に含まれる制御部は、制御プログラムを実行し、a)発電電力情報取得部、b)発電電力監視部、c)発電電力の閾値判定部、d)蓄電デバイス8の端子間電圧情報取得部、e)端子間電圧監視部、f)端子間電圧Vcの閾値判定部、g)電力分離制御のためのSW制御部、h)電力回収制御のためのSW制御部などの制御機能を実現する。
<Control function of controller 10>
The control unit included in the controller 10 executes a control program and performs a) a generated power information acquisition unit, b) a generated power monitoring unit, c) a generated power threshold determination unit, and d) an inter-terminal voltage information acquisition unit of the electricity storage device 8. , e) terminal-to-terminal voltage monitoring section, f) threshold value determination section for terminal-to-terminal voltage Vc, g) SW control section for power separation control, h) SW control section for power recovery control, etc. do.
 a)発電電力情報取得部
 発電電力情報取得部は、制御部の制御により常時(少なくとも発電システム2の動作中)、電力計12-1、12-2、12-3から発電パネル4-1、4-2、4-3の発電電力情報を取得する。この発電電力情報は、記憶部にあるデータベースに格納する。
a) Generated power information acquisition unit The generated power information acquisition unit constantly (at least while the power generation system 2 is in operation) obtains information from the power meters 12-1, 12-2, and 12-3 to the power generation panel 4-1, under the control of the control unit. Obtain the generated power information of 4-2 and 4-3. This generated power information is stored in a database in the storage unit.
 b)発電電力監視部
 発電電力監視部は、制御部の制御により常時、電力計12-1、12-2、12-3から取得した発電電力情報を監視する。
b) Generated Power Monitoring Unit The generated power monitoring unit constantly monitors the generated power information obtained from the wattmeters 12-1, 12-2, and 12-3 under the control of the control unit.
 c)発電電力の閾値判定部
 コントローラ10には発電パネル4-1、4-2、4-3の発電電力Sに対する閾値Sthが設定されている。発電電力の閾値判定部は、制御部の制御により、既述の電力計12-1、12-2、12-3から取得した発電電力情報が表す発電電力Sと閾値Sthとを対比し、発電電力Sが閾値Sth以上か未満かを判定し、その判定結果としてSW16-11、16-12、16-21、16-22、16-31、16-32を開閉するための制御情報を出力する。
c) Threshold Determining Unit for Generated Power A threshold Sth for the generated power S of the power generation panels 4-1, 4-2, and 4-3 is set in the controller 10. The generated power threshold determination unit, under the control of the control unit, compares the generated power S represented by the generated power information acquired from the previously described wattmeters 12-1, 12-2, and 12-3 with the threshold value Sth, and determines the generated power. Determines whether power S is greater than or equal to threshold Sth or less than threshold value Sth, and outputs control information for opening and closing SW16-11, 16-12, 16-21, 16-22, 16-31, and 16-32 as a result of the determination. .
 d)端子間電圧情報取得部
 蓄電デバイス8の端子間電圧情報取得部は、制御部の制御により、常時(少なくとも発電システム2の動作中)、蓄電デバイス8から端子間電圧情報を取得する。この端子間電圧情報は、蓄電デバイス8の端子間の電圧であり、充電電圧または放電後の残留電荷による電圧を表す。この端子間電圧情報は、記憶部にあるデータベースに格納する。
d) Inter-terminal voltage information acquisition unit The inter-terminal voltage information acquisition unit of the electricity storage device 8 always acquires inter-terminal voltage information from the electricity storage device 8 (at least while the power generation system 2 is in operation) under the control of the control unit. This inter-terminal voltage information is the voltage between the terminals of the electricity storage device 8, and represents the charging voltage or the voltage due to the residual charge after discharging. This inter-terminal voltage information is stored in a database in the storage section.
 e)端子間電圧監視部
 端子間電圧監視部は、端子間電圧情報から端子間電圧Vcの推移、つまり、蓄電デバイス8の充電状態を監視する。
e) Inter-terminal voltage monitoring unit The inter-terminal voltage monitoring unit monitors the transition of the inter-terminal voltage Vc, that is, the charging state of the electricity storage device 8, from the inter-terminal voltage information.
 f)端子間電圧Vcの閾値判定部
 コントローラ10には端子間電圧Vcに対する閾値として上限電圧VcH(V)および下限電圧VcL(V)が設定されている。上限電圧VcHはたとえば、蓄電デバイス8の満充電電圧であり、下限電圧VcLはたとえば、放電管理電圧である。
f) Threshold Determination Unit for Inter-Terminal Voltage Vc Upper limit voltage VcH (V) and lower limit voltage VcL (V) are set in the controller 10 as threshold values for inter-terminal voltage Vc. Upper limit voltage VcH is, for example, a full charge voltage of power storage device 8, and lower limit voltage VcL is, for example, a discharge management voltage.
 端子間電圧Vcの閾値判定部はコントローラ10の制御により、端子間電圧Vcと上限電圧VcHまたは下限電圧VcLとを対比し、端子間電圧Vcが上限電圧VcH以上か下限電圧VcL(V)以下かを判定し、その判定結果としてSW16-43を開閉するための制御情報を出力する。 Under the control of the controller 10, the inter-terminal voltage Vc threshold determination unit compares the inter-terminal voltage Vc with the upper limit voltage VcH or the lower limit voltage VcL, and determines whether the inter-terminal voltage Vc is greater than or equal to the upper limit voltage VcH or less than the lower limit voltage VcL (V). is determined, and control information for opening and closing the SW 16-43 is output as the determination result.
 g)電力分離制御のためのSW制御部(電力分離制御部)
 SW制御部は、発電パネル4-1、4-2、4-3から得られる発電電力Sが閾値Sth以上か未満かに応じてSW16-11、16-21、16-31の何れかまたは二以上を閉じる(ON)制御であり、閉じられたSW16-11、16-21、16-31に対応してSW16-12、16-22、16-32の何れかまたは二以上を開く(OFF)制御でもある。つまり、SW16-11:SW16-12、SW16-21:SW16-22、SW16-31:SW16-32が同期して相反する関係である。
g) SW control unit for power separation control (power separation control unit)
The SW control unit selects one or two of the SWs 16-11, 16-21, and 16-31 depending on whether the generated power S obtained from the power generation panels 4-1, 4-2, and 4-3 is greater than or equal to the threshold value Sth. The above is closed (ON) control, and corresponding to closed SW16-11, 16-21, 16-31, one or more of SW16-12, 16-22, 16-32 is opened (OFF) It's also control. In other words, SW16-11:SW16-12, SW16-21:SW16-22, and SW16-31:SW16-32 are in a synchronized and contradictory relationship.
 発電パネル4-1、4-2、4-3の何れかまたは二以上の発電電力Sが閾値Sth以上であれば、SW制御部は、制御部の制御により該当するSW16-11、16-21、16-31を導通させるための制御出力を出力する。このとき、SW駆動部の駆動出力が該当するSW16-11、16-21、16-31の何れかまたは二以上を導通させる。 If the generated power S of any one or more of the power generation panels 4-1, 4-2, 4-3 is equal to or greater than the threshold value Sth, the SW control unit controls the corresponding SW16-11, 16-21 under the control of the control unit. , 16-31. At this time, the drive output of the SW drive section makes one or more of the corresponding SWs 16-11, 16-21, and 16-31 conductive.
 このとき、SW制御部は、制御部の制御により該当するSW16-12、16-22、16-32を遮断(OFF=絶縁)させるための制御出力を出力する。SW駆動部の駆動出力が該当するSW16-12、16-22、16-32の何れかまたは二以上を遮断させる。このとき、該当するSW16-11、16-21、16-31を開くための制御出力を出力し、該当するSW16-11、16-21、16-31の何れかまたは二以上が開かれる。 At this time, the SW control section outputs a control output to cut off (OFF = insulation) the corresponding SWs 16-12, 16-22, and 16-32 under the control of the control section. One or more of SW16-12, 16-22, and 16-32 to which the drive output of the SW drive section corresponds is cut off. At this time, a control output for opening the corresponding SW 16-11, 16-21, 16-31 is output, and one or more of the corresponding SW 16-11, 16-21, 16-31 is opened.
 h)電力回収制御のためのSW制御部(電力回収制御部)
 このSW制御部は、制御部の制御によりSW16-43を開閉する。発電パネル4-1、4-2、4-3の何れかまたは二以上の発電電力Sが閾値Sth(kW)未満で、蓄電デバイス8の端子間電圧Vcが下限電圧VcL以下であれば、SW制御部は、制御部の制御によりSW16-43を開く。このとき、蓄電デバイス8は充電モードである。
h) SW control unit for power recovery control (power recovery control unit)
This SW control section opens and closes SW16-43 under control of the control section. If the generated power S of any one or more of the power generation panels 4-1, 4-2, 4-3 is less than the threshold value Sth (kW) and the voltage Vc between the terminals of the electricity storage device 8 is less than or equal to the lower limit voltage VcL, SW The control section opens SW16-43 under the control of the control section. At this time, power storage device 8 is in charging mode.
 発電パネル4-1、4-2、4-3の何れかまたは二以上の発電電力Sが閾値Sth未満で、蓄電デバイス8の端子間電圧Vcが上限電圧VcH以上になれば、SW制御部は、制御部の制御によりSW16-43を導通する。このとき、蓄電デバイス8は放電状態となる。同時に、SW16-12、16-22、16-32の何れかまたは二以上が導通状態であるので、該当する発電パネル4-1、4-2、4-3の何れかまたは二以上の発電電力Sが回路部14-43を通してパワーコンディショナ206-2のDC-DCコンバータ226-4に供給される。このとき、パワーコンディショナ206-2から変換出力が負荷18-1、18-2などに供給される。 If the generated power S of any one or more of the power generation panels 4-1, 4-2, 4-3 is less than the threshold value Sth and the voltage Vc between the terminals of the electricity storage device 8 exceeds the upper limit voltage VcH, the SW control section , the SW16-43 is made conductive under the control of the control section. At this time, power storage device 8 is in a discharge state. At the same time, any one or more of SW16-12, 16-22, 16-32 is in a conductive state, so the power generated by one or more of the corresponding power generation panels 4-1, 4-2, 4-3 S is supplied to the DC-DC converter 226-4 of the power conditioner 206-2 through the circuit section 14-43. At this time, the converted output from the power conditioner 206-2 is supplied to the loads 18-1, 18-2, etc.
<SW16-11、16-12、16-21、16-22、16-31、16-32の開閉、SW16-43の開閉、電力分離部106-1、106-2、106-3の電力分離出力、電力回収部108の電力回収出力>
 1)第一出力モード
 第一出力モードは、発電パネル4-1、4-2、4-3の何れかまたは二以上の発電電力Sが閾値Sth以上の場合である。発電パネル4-1、4-2、4-3の発電電力Sが回路部14-11、14-21、14-31の何れかまたは二以上を通してパワーコンディショナ206-11、206-12、206-13の何れかまたは二以上に供給される。
<Opening/closing of SW16-11, 16-12, 16-21, 16-22, 16-31, 16-32, opening/closing of SW16-43, power separation of power separation parts 106-1, 106-2, 106-3 Output, power recovery output of the power recovery unit 108>
1) First Output Mode The first output mode is when the generated power S of any one or more of the power generation panels 4-1, 4-2, 4-3 is equal to or higher than the threshold value Sth. The generated power S of the power generation panels 4-1, 4-2, and 4-3 passes through one or more of the circuit sections 14-11, 14-21, and 14-31 to the power conditioners 206-11, 206-12, and 206. -13 or more.
 2)充電モード
 充電モードは、発電パネル4-1、4-2、4-3の何れかまたは二以上の発電電力Sが閾値Sth未満の場合である。発電パネル4-1、4-2、4-3の発電電力Sが回路部14-12、14-22、14-32の何れかまたは二以上を通して蓄電デバイス8に供給される。
2) Charging Mode The charging mode is when the generated power S of any one or more of the power generation panels 4-1, 4-2, 4-3 is less than the threshold value Sth. Power generated by power generation panels 4-1, 4-2, and 4-3 is supplied to power storage device 8 through one or more of circuit sections 14-12, 14-22, and 14-32.
 このとき、発電パネル4-1、4-2、4-3の何れかまたは二以上の発電電力Sが閾値Sth未満であって、蓄電デバイス8の端子間電圧VcがVc<VcHの場合、蓄電デバイス8が充電される。 At this time, if the generated power S of any one or more of the power generation panels 4-1, 4-2, 4-3 is less than the threshold value Sth and the voltage Vc between the terminals of the power storage device 8 is Vc<VcH, the power storage Device 8 is charged.
 3)第二出力モード(放電モードを含む)
 蓄電デバイス8の端子間電圧VcがVc≧VcHのとき、SW16-43=ONで、蓄電デバイス8が放電モードに切り換わり、第二出力モードとなる。蓄電デバイス8の放電電力はパワーコンディショナ206-2に供給される。同時に、閾値Sth未満の発電電力Sが回路部14-12、14-22、14-32の何れかまたは二以上を通してパワーコンディショナ206-2に供給される。
3) Second output mode (including discharge mode)
When voltage Vc between terminals of power storage device 8 is Vc≧VcH, SW16-43=ON, power storage device 8 switches to discharge mode and becomes second output mode. The discharged power of power storage device 8 is supplied to power conditioner 206-2. At the same time, generated power S that is less than the threshold value Sth is supplied to the power conditioner 206-2 through any one or more of the circuit sections 14-12, 14-22, and 14-32.
<発電システム2における電力回収部108の出力制御> <Output control of power recovery unit 108 in power generation system 2>
 図10のAは、発電パネル4-1の発電電力Sの推移の一例を示し、図10のBは、発電パネル4-2の発電電力Sの推移の一例を示し、図10のCは、発電パネル4-3の発電電力Sの推移の一例を示している。 A in FIG. 10 shows an example of the change in the generated power S of the power generation panel 4-1, B in FIG. 10 shows an example of the change in the power generated S in the power generation panel 4-2, and C in FIG. An example of the transition of the generated power S of the power generation panel 4-3 is shown.
 発電パネル4-1の発電電力Sは図10のAに示すように、時点t1に到達前まで閾値Sth以上を維持し(A1)、時点t1から時点t4の区間で閾値Sth未満に低下し(A2)、時点t4から閾値Sth以上に上昇している(A3)。 As shown in A of FIG. 10, the generated power S of the power generation panel 4-1 maintains the threshold value Sth or more until reaching time t1 (A1), and decreases to less than the threshold value Sth in the interval from time t1 to time t4 ( A2), and has increased above the threshold Sth from time t4 (A3).
 発電パネル4-2の発電電力Sは図10のBに示すように、時点t2に到達前まで閾値Sth以上を維持し(B1)、時点t2から時点t5の区間で閾値Sth未満に低下し(B2)、時点t5から閾値Sth以上に上昇している(B3)。 As shown in B of FIG. 10, the generated power S of the power generation panel 4-2 maintains the threshold value Sth or more until reaching time t2 (B1), and decreases to less than the threshold value Sth in the interval from time t2 to time t5 ( B2), and has increased above the threshold Sth from time t5 (B3).
 発電パネル4-3の発電電力Sは図10のCに示すように、時点t3に到達前まで閾値Sth以上を維持し(C1)、時点t3から時点t6の区間で閾値Sth未満に低下し(C2)、時点t6から閾値Sth以上に上昇している(C3)。 As shown in C of FIG. 10, the generated power S of the power generation panel 4-3 maintains the threshold value Sth or more until reaching time t3 (C1), and decreases to less than the threshold value Sth in the interval from time t3 to time t6 ( C2), and has increased above the threshold Sth from time t6 (C3).
 発電パネル4-1、4-2、4-3の各発電電力Sは対応する電力分離部106-1、106-2、106-3によって閾値Sth以上の発電電力Sと閾値Sth未満の発電電力Sに分離される。 The generated power S of each of the power generation panels 4-1, 4-2, and 4-3 is separated by the corresponding power separation unit 106-1, 106-2, and 106-3 into the generated power S that is equal to or higher than the threshold value Sth and the generated power S that is less than the threshold value Sth. It is separated into S.
 図10のDは、電力回収部108に得られる回収電力Smを例示している。つまり、閾値Sth未満の発電電力Sは電力回収部108に回収され、この電力回収部108では閾値Sth未満の発電電力Sから回収電力Smが得られ、パワーコンディショナ206-2に供給される。この場合、電力回収部108の回収電力は以下の通りである。破線で示す回収電力Smは一つの閾値Sth未満の発電電力Sまたは二以上の閾値Sth未満の発電電力Sの加算電力を説明するための仮想電力を表す例示であり、本開示がこの仮想電力に限定されるものではない。 D in FIG. 10 illustrates the recovered power Sm obtained by the power recovery unit 108. That is, the generated power S that is less than the threshold value Sth is recovered by the power recovery unit 108, and the recovered power Sm is obtained from the generated power S that is less than the threshold value Sth in the power recovery unit 108, and is supplied to the power conditioner 206-2. In this case, the power recovered by the power recovery unit 108 is as follows. The recovered power Sm shown by the broken line is an example representing virtual power for explaining the generated power S that is less than one threshold value Sth or the added power of the generated power S that is less than two or more threshold values Sth, and the present disclosure applies to this virtual power. It is not limited.
 時点t1~時点t2: 発電パネル4-1の発電電力S(=回収電力Sm)
 時点t2~時点t3: 発電パネル4-1および発電パネル4-2の各発電電力Sの回収電力Sm
 時点t3~時点t4: 発電パネル4-1、発電パネル4-2および発電パネル4-3の各発電電力Sの回収電力Sm
 時点t4~時点t5: 発電パネル4-2および発電パネル4-3の各発電電力Sの回収電力Sm
 時点t5~時点t6: 発電パネル4-3の発電電力S(=回収電力Sm)
Time t1 to time t2: Generated power S of power generation panel 4-1 (=recovered power Sm)
Time t2 to time t3: Recovery power Sm of each generated power S of power generation panel 4-1 and power generation panel 4-2
Time t3 to time t4: Recovery power Sm of each generated power S of power generation panel 4-1, power generation panel 4-2, and power generation panel 4-3
Time t4 to time t5: Recovery power Sm of each generated power S of power generation panel 4-2 and power generation panel 4-3
Time t5 to time t6: Generated power S of power generation panel 4-3 (=recovered power Sm)
 したがって、電力回収部108の回収電力Smはパワーコンディショナ206-2に供給され、規定の交流電力に変換される。この交流電力はパワーコンディショナ206-11~206-13と同様に負荷18-1、18-2、・・・や図示しない系統に供給することができる。 Therefore, the recovered power Sm of the power recovery unit 108 is supplied to the power conditioner 206-2 and converted to specified AC power. Similar to the power conditioners 206-11 to 206-13, this AC power can be supplied to the loads 18-1, 18-2, . . . and a system not shown.
<第三の実施の形態の効果>
 この第三の実施の形態によれば、次の何れかの効果が得られる。
<Effects of the third embodiment>
According to this third embodiment, one of the following effects can be obtained.
 (1) 発電パネル4-1、4-2、4-3の各発電電力Sを閾値Sth以上の発電電力Sと閾値Sth未満の発電電力Sに分離でき、閾値Sth以上の発電電力Sは専用のパワーコンディショナ206-11、206-12、206-13の何れかまたは二以上を以て高効率で電力変換でき、閾値Sth未満の発電電力Sは専用のパワーコンディショナ206-2によって高効率で電力変換できる。したがって、閾値Sth以上の発電電力S、閾値Sth未満の発電電力Sの双方を効率よく交流出力に変換して取り出すことができ、太陽光発電システムの高効率化を図ることができる。つまり、第一出力モードでは、パワーコンディショナ206-11、206-12、206-13の何れかまたは二以上から変換効率が十分高い閾値Sth以上の発電電力Sを通常の電力変換により高効率で交流出力を取り出すことができる。 (1) The generated power S of each power generation panel 4-1, 4-2, 4-3 can be separated into the generated power S above the threshold value Sth and the generated power S below the threshold value Sth, and the generated power S above the threshold value Sth is dedicated Power can be converted with high efficiency using one or more of the power conditioners 206-11, 206-12, 206-13, and the generated power S below the threshold Sth can be converted into electric power with high efficiency by the dedicated power conditioner 206-2. Can be converted. Therefore, both the generated power S that is equal to or greater than the threshold value Sth and the generated power S that is less than the threshold value Sth can be efficiently converted into alternating current output and extracted, and the efficiency of the solar power generation system can be improved. In other words, in the first output mode, the generated power S having a sufficiently high conversion efficiency threshold Sth or more from one or more of the power conditioners 206-11, 206-12, and 206-13 is converted to high efficiency through normal power conversion. AC output can be taken out.
 (2) 閾値Sth未満の発電電力Sは、この発電電力Sを蓄電デバイス8に蓄電し、端子間電圧Vcが上限電圧VcHに到達したとき、蓄電デバイス8を放電させ、この放電電力と閾値Sth未満の発電電力Sを加算して、パワーコンディショナ206-2に供給して電力変換を行うことができ、変換効率が低い閾値Sth未満の発電電力Sを効率よく交流出力に変換して取り出すことができる。 (2) When the generated power S is less than the threshold Sth, the generated power S is stored in the power storage device 8, and when the terminal voltage Vc reaches the upper limit voltage VcH, the power storage device 8 is discharged, and this discharged power and the threshold Sth are To efficiently convert the generated power S which is less than a threshold value Sth with low conversion efficiency into an AC output and take it out by adding the generated power S that is less than the threshold value Sth and supplying it to the power conditioner 206-2 to perform power conversion. Can be done.
 (3) 発電パネル4-1、4-2、4-3の何れかまたは二以上から閾値Sth未満の発電電力Sが得られている場合には、電力分離部106-1、106-2、106-3の何れかまたは二以上を通して蓄電デバイス8に充電し、端子間電圧Vcが上限電圧VcHに到達することを監視し、端子間電圧Vcが上限電圧VcHに到達したとき、回路部14-43を通して放電させる。蓄電デバイス8を放電するとき、この放電電力と発電パネル4-1、4-2、4-3の何れかまたは二以上の閾値Sth未満の発電電力Sが電力回収部108を以て合算され、この合算電力がパワーコンディショナ206-2に供給される。この結果、パワーコンディショナ206-2の電力変換機能の一時停止の頻度を軽減でき、その結果、第二出力モードにおいても発電パネル4-1、4-2、4-3の何れかまたは二以上からの微弱発電電力のロスを低減でき、交流出力総量を増加させることができる。 (3) If the generated power S less than the threshold value Sth is obtained from one or more of the power generation panels 4-1, 4-2, 4-3, the power separation unit 106-1, 106-2, The power storage device 8 is charged through one or more of the terminals 106-3, and the inter-terminal voltage Vc reaches the upper limit voltage VcH. When the inter-terminal voltage Vc reaches the upper limit voltage VcH, the circuit unit 14- 43. When discharging the electricity storage device 8, this discharged power and the generated power S that is less than the threshold value Sth of any one or more of the power generation panels 4-1, 4-2, 4-3 are summed up by the power recovery unit 108, and this sum is calculated by the power recovery unit 108. Electric power is supplied to power conditioner 206-2. As a result, the frequency of temporary suspension of the power conversion function of the power conditioner 206-2 can be reduced, and as a result, even in the second output mode, any one or more of the power generation panels 4-1, 4-2, 4-3 It is possible to reduce the loss of weakly generated power from the AC power source, and increase the total amount of AC output.
 (4) 蓄電デバイス8の放電電力と閾値Sth未満の発電電力Sを合算した合算電力がパワーコンディショナ206-2に供給されるので、このような合算電力を用いない場合と比較して、蓄電デバイス8の放電速度を遅くでき、このため蓄電デバイス8の充放電サイクル数を減少させ、その結果、蓄電デバイス8の劣化を抑制でき、耐久性を高めることができる。 (4) Since the total power that is the sum of the discharge power of the power storage device 8 and the generated power S that is less than the threshold value Sth is supplied to the power conditioner 206-2, the power storage The discharge rate of the device 8 can be slowed down, thereby reducing the number of charge/discharge cycles of the power storage device 8, and as a result, deterioration of the power storage device 8 can be suppressed and durability can be increased.
 (5) SW16-11、16-12、16-21、16-22、16-31、16-32、16-43の頻繁な切り換えを抑制でき、SW切換え手段としてリレーを用いた場合、その損耗を抑制でき、部品寿命を延ばすことができる。 (5) Frequent switching of SW16-11, 16-12, 16-21, 16-22, 16-31, 16-32, 16-43 can be suppressed, and when relays are used as SW switching means, their wear and tear can be suppressed and the life of parts can be extended.
 (6) 第二出力モードでは、蓄電デバイス8からの放電電力に加え、閾値Sth未満の微弱な発電電力Sもパワーコンディショナ206-2に供給され、第一出力モードと同様にパワーコンディショナ206-2の電力変換によって交流出力を取り出すことができ、発電パネル4-1、4-2、4-3の何れかまたは二以上から得られる閾値Sth未満の発電電力Sの回収率ないし利用率を高め、発電システム2の総合的な電力変換効率を高めることができる。 (6) In the second output mode, in addition to the discharge power from the power storage device 8, the weak generated power S that is less than the threshold Sth is also supplied to the power conditioner 206-2, and as in the first output mode, the power conditioner 206 AC output can be taken out by the power conversion of -2, and the recovery rate or utilization rate of the generated power S that is less than the threshold value Sth obtained from any one or more of the power generation panels 4-1, 4-2, 4-3. It is possible to increase the overall power conversion efficiency of the power generation system 2.
 (7) 曇天や雨天など、日射量レベルが変動しても、この変動に対応した閾値Sthを設定できるので、気象条件に適合して高効率の変換出力が得られる発電システム2を実現できる。 (7) Even if the solar radiation level fluctuates due to cloudy or rainy weather, the threshold value Sth that corresponds to this fluctuation can be set, so it is possible to realize a power generation system 2 that can obtain highly efficient conversion output in accordance with the weather conditions.
 (8) 図7のAに示したように、たとえば、発電パネル4-1から得られる閾値Sth未満の微弱な発電電力Sがパワーコンディショナ206-11に供給されると、頻繁に出力電力が電力=0に低下するため、正常な電力変換を得ることができない。 (8) As shown in A of FIG. 7, for example, when weak generated power S obtained from the power generation panel 4-1 and less than the threshold value Sth is supplied to the power conditioner 206-11, the output power frequently decreases. Since the power decreases to 0, normal power conversion cannot be obtained.
 これに対し、図7のBに示したように、この実施の形態においても、閾値Sth未満の発電電力Sが発電システム2の第二出力モードでは、閾値Sth未満の発電電力Sが電力分離部106-1を通して蓄電デバイス8に充電され、この端子間電圧Vcが上限電圧VcH以上に到達したとき、この蓄電デバイス8を放電させ、この放電電力と閾値Sth未満の発電電力Sを合算し、この合算電力をパワーコンディショナ206-2に供給して電力変換を行う。この結果、発電電力S=0に低下することを回避でき、閾値Sth未満の発電電力Sを連続して交流出力に変換し、取り出すことができる。 On the other hand, as shown in FIG. 7B, even in this embodiment, when the generated power S less than the threshold value Sth is in the second output mode of the power generation system 2, the generated power S less than the threshold value Sth is When the power storage device 8 is charged through 106-1 and the terminal voltage Vc reaches the upper limit voltage VcH or higher, the power storage device 8 is discharged, and the discharged power and the generated power S that is less than the threshold Sth are summed. The combined power is supplied to the power conditioner 206-2 to perform power conversion. As a result, the generated power S can be prevented from decreasing to 0, and the generated power S that is less than the threshold value Sth can be continuously converted into AC output and extracted.
 (9) この発電システム2は、MPPTを用いて最適な発電電力(V-I特性条件)で発電する事業用太陽光発電システムとして構成できる。このような複数の発電パネル4-1、4-2、4-3が設置され、複数の電力変換装置を利用することが一般的である。これは、発電システム2が大規模になればなるほど、各発電パネル4-1、4-2、4-3の日射状況が異なる場合がある。これをひとつのMPPTで制御することは、発電電力変換効率を悪化させるので、これを改善するためである。このような複数の発電パネル4-1、4-2、4-3とそれに対応する複数の変換装置を利用する場合には、各電力分離部106-1、106-2、106-3のそれぞれに蓄電デバイス8を設置して微弱電力を回収することは可能であるが、蓄電デバイス8の設置数の増加は経済性を悪化させることになる。そこで、本開示の発電システム2ではひとつの蓄電デバイス8を含む電力回収部108を用いて経済性を高めつつ、発電効率を高めることができる。つまり、蓄電デバイス8を含む電力回収部108の単一化は経済性に優れ、有益である。 (9) This power generation system 2 can be configured as a commercial photovoltaic power generation system that uses MPPT to generate power with optimal generated power (VI characteristic conditions). Generally, a plurality of such power generation panels 4-1, 4-2, and 4-3 are installed and a plurality of power converters are used. This is because, as the power generation system 2 becomes larger, the solar radiation conditions of the power generation panels 4-1, 4-2, and 4-3 may differ. Controlling this with one MPPT deteriorates the generated power conversion efficiency, so the purpose is to improve this. When using such a plurality of power generation panels 4-1, 4-2, 4-3 and a plurality of corresponding conversion devices, each of the power separation units 106-1, 106-2, 106-3 Although it is possible to recover weak power by installing power storage devices 8 in the area, an increase in the number of installed power storage devices 8 will worsen economic efficiency. Therefore, in the power generation system 2 of the present disclosure, the power recovery unit 108 including one power storage device 8 can be used to improve economic efficiency and power generation efficiency. In other words, unifying the power recovery unit 108 including the power storage device 8 is economical and beneficial.
 (10) 蓄電デバイス8の蓄電電力の放電電力に加えて、同時刻における各発電パネル4-1、4-2、4-3の何れかまたは二以上から得られる発電電力Sもパワーコンディショナ206-2に供給されるので、蓄電デバイス8の蓄電電力の放電が軽減され、蓄電デバイス8の寿命向上に大きく寄与する。 (10) In addition to the discharge power of the stored power of the power storage device 8, the generated power S obtained from any one or more of the power generation panels 4-1, 4-2, 4-3 at the same time is also generated by the power conditioner 206. -2, the discharge of the stored power of the power storage device 8 is reduced, which greatly contributes to improving the life of the power storage device 8.
 実施例1は蓄電デバイス8に電気二重層キャパシタを用いた発電システム2である。電気二重層キャパシタはリチウムイオン電池に比較し、内部抵抗が小さく、この抵抗による1(A)での電力損失が小さく、リチウムイオン電池の電力損失を基準にした電力損失の割合が異常に小さいことが確認された。 Example 1 is a power generation system 2 that uses an electric double layer capacitor as the electricity storage device 8. Electric double layer capacitors have a lower internal resistance than lithium ion batteries, and the power loss at 1 (A) due to this resistance is small, and the ratio of power loss based on the power loss of lithium ion batteries is abnormally small. was confirmed.
 この実施例1について、図11のAに機械設計2015年11月号より引用した「蓄電素子1本当たりの電力損失」を示すテーブル(日刊工業新聞社発行の機械設計2015年11月号、第3章リチウムイオン電池を安全に使う―その1 充放電評価と内部抵抗評価 ティ・アンド・シー・テクニカル 下田 洋道)、図9のBに日刊工業新聞社発行の機械設計2015年11月号より引用した「内部抵抗の測定結果」を示すグラフを引用する。 Regarding this Example 1, Fig. 11A shows a table showing "power loss per power storage element" quoted from Machine Design November 2015 issue (Machine Design November 2015 issue, published by Nikkan Kogyo Shimbun). Chapter 3: Safely using lithium-ion batteries - Part 1 Charging/discharging evaluation and internal resistance evaluation (T&C Technical Hiromichi Shimoda), Figure 9 B is from the November 2015 issue of Mechanical Design published by Nikkan Kogyo Shimbun. I quote the graph showing the "internal resistance measurement results."
 図11のAによれば、リチウムイオン電池では抵抗が246[mΩ]と高いのに対し、電気二重層キャパシタでは11~0.3[mΩ]と極めて低く、電力損失が大幅に低いことがわかる。また、図11のBによれば、リチウムイオン電池では放電により電池容量が低下すると内部抵抗が増加する傾向があり、この影響を受けることになるが、電気二重層キャパシタには斯かる現象は報告されていない。 According to A in Figure 11, the resistance of the lithium ion battery is as high as 246 [mΩ], whereas the resistance of the electric double layer capacitor is extremely low at 11 to 0.3 [mΩ], indicating that the power loss is significantly lower. . Furthermore, according to B in Figure 11, lithium ion batteries tend to have an increase in internal resistance when the battery capacity decreases due to discharge, and are affected by this, but such a phenomenon has not been reported for electric double layer capacitors. It has not been.
 したがって、蓄電デバイス8に電気二重層キャパシタを用いた発電システム2によれば、電力損失が大幅に改善されたシステムを提供でき、微弱電力の回収率を高めることができる。 Therefore, according to the power generation system 2 that uses an electric double layer capacitor as the power storage device 8, it is possible to provide a system in which power loss is significantly improved, and the recovery rate of weak power can be increased.
<実施例1の効果>
 この実施例1によれば、次の何れかの効果が得られる。
 (1) この電気二重層キャパシタを用いた蓄電デバイス8によれば、発電パネル4から得られる閾値Sth未満の発電電力Sの充放電を迅速化できるとともに、電力損失を抑制することができ、電力の変換効率を高めることができる。
<Effects of Example 1>
According to the first embodiment, one of the following effects can be obtained.
(1) According to the electricity storage device 8 using this electric double layer capacitor, it is possible to speed up the charging and discharging of the generated power S that is less than the threshold value Sth obtained from the power generation panel 4, and it is also possible to suppress power loss, and to The conversion efficiency can be increased.
 (2) この電気二重層キャパシタを用いた蓄電デバイス8によれば、発電パネル4から得られる閾値Sth未満の発電電力Sの回収効率を高めることができる。 (2) According to the electricity storage device 8 using this electric double layer capacitor, the recovery efficiency of the generated power S that is less than the threshold value Sth obtained from the power generation panel 4 can be increased.
 (3) この電気二重層キャパシタを用いた蓄電デバイス8によれば、従前の発電システム2に比較し、閾値Sth未満の発電電力Sの回収効率を10%以上高めることができた。
(3) According to the electricity storage device 8 using this electric double layer capacitor, compared to the conventional power generation system 2, the recovery efficiency of the generated power S below the threshold value Sth could be increased by 10% or more.
 この実施例2は、SW16-1の開閉条件として発電電力Sに対する閾値Sth1と、SW16-2の開閉条件として発電電力Sに対する閾値Sth2を設定し、Sth2>Sth1とすれば、SW16-1が開閉する前にSW16-2をON状態に制御する。 In this second embodiment, a threshold value Sth1 for the generated power S is set as the opening/closing condition for SW16-1, and a threshold value Sth2 for the generated power S is set as the opening/closing condition for SW16-2, and if Sth2>Sth1, SW16-1 opens/closes. Before doing so, control SW16-2 to ON state.
<実施例2の効果>
 この実施例2によれば、次の何れかの効果が得られる。
 (1) 蓄電デバイス8を発電電力Sが閾値Sth1に到達前に充電することができ、第一出力モードで蓄電デバイス8を充電でき、発電パネル4から得られる閾値Sth1未満の発電電力Sの交流出力への変換を迅速化できる。
<Effects of Example 2>
According to this second embodiment, one of the following effects can be obtained.
(1) The power storage device 8 can be charged before the generated power S reaches the threshold Sth1, the power storage device 8 can be charged in the first output mode, and the AC generated power S obtained from the power generation panel 4 is less than the threshold Sth1. Can speed up conversion to output.
 (2) 図4のCの区間C2で充電モードEcを第一出力モードに吸収でき、発電パネル4の発電電力の高効率化を図ることができる。
(2) The charging mode Ec can be absorbed into the first output mode in the section C2 of C in FIG. 4, and the efficiency of the power generated by the power generation panel 4 can be increased.
 この実施例3は、第一の実施の形態に係る発電システム2(図1)において、SW16-3の開閉機能はDC-DCコンバータ22-2の入力電圧制御機能で代用した構成である。 This third embodiment has a configuration in which the opening/closing function of the SW 16-3 in the power generation system 2 (FIG. 1) according to the first embodiment is replaced by the input voltage control function of the DC-DC converter 22-2.
<実施例3の効果>
 この実施例3によれば、次の何れかの効果が得られる。
 (1) DC-DCコンバータ22-2から独立したSW16-3を除くことができ、その制御を省略できるなど、発電システム2の簡略化を図ることができる。
<Effects of Example 3>
According to this third embodiment, one of the following effects can be obtained.
(1) The power generation system 2 can be simplified because the SW 16-3, which is independent from the DC-DC converter 22-2, can be removed and its control can be omitted.
 (2) SW16-3の開閉による遅延や電力損失を削減できる。 (2) Delays and power losses due to opening and closing of SW16-3 can be reduced.
〔他の実施の形態〕
 (1) 発電システム2において、コントローラ10はパワーコンディショナ6-1またはパワーコンディショナ6-2に一体化してもよいし、機能的にSW16-1、16-2、16-3に判定機能などを付加してもよいし、コントローラ10がパワーコンディショナ6-1、6-2と独立した構成でなくてもよい。
[Other embodiments]
(1) In the power generation system 2, the controller 10 may be integrated into the power conditioner 6-1 or the power conditioner 6-2, or the SWs 16-1, 16-2, and 16-3 may have a determination function, etc. may be added, and the controller 10 does not have to be configured independently from the power conditioners 6-1 and 6-2.
 (2) 発電システム2において、複数の発電パネル4を設置し、上記実施の形態と同様の処理を行ってもよい。 (2) In the power generation system 2, a plurality of power generation panels 4 may be installed and the same processing as in the above embodiment may be performed.
 (3) 上記実施の形態または実施例では、発電システム2の太陽光発電に関し、発電パネル4が太陽から受ける放射エネルギー量を表す日射量を例示しているが、発電パネル4が受ける太陽からの照射量を表す日照量であってもよい。 (3) In the above embodiments or examples, the amount of solar radiation that represents the amount of radiant energy that the power generation panel 4 receives from the sun is exemplified with respect to the solar power generation of the power generation system 2. The amount of sunlight representing the amount of irradiation may be used.
 以上説明したように、本開示の最も好ましい実施の形態について説明した。本開示は、上記記載に限定されるものではない。特許請求の範囲に記載され、または本開示を実施するための形態に開示された本開示の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本開示の範囲に含まれることは言うまでもない。
As described above, the most preferred embodiment of the present disclosure has been described. The present disclosure is not limited to the above description. Various modifications and changes can be made by those skilled in the art based on the gist of the present disclosure described in the claims or disclosed in the detailed description. It goes without saying that such modifications and changes are included within the scope of the present disclosure.
一般的な太陽光発電システムでは、晴天時のように高い発電量が得られるとき、電力の変換効率が高くなる定格出力のパワーコンディショナが用いられる。このようなパワーコンディショナを備えた太陽光発電システムでは、雨天、曇天、朝夕のような微弱電力時の発電電力の変換効率の低下が著しい。 In a typical solar power generation system, a power conditioner with a rated output that has a high power conversion efficiency is used when a high amount of power generation can be obtained, such as on a sunny day. In a solar power generation system equipped with such a power conditioner, the conversion efficiency of generated power is significantly reduced during weak power conditions such as on rainy days, cloudy days, and in the morning and evening.
 これに対し、本開示によれば、パワーコンディショナの変換効率が低下する閾値以下の発電電力は蓄電デバイスに蓄電し、端子間電圧が上限電圧に到達したとき、この放電電力で閾値以下の発電電力を底上げして変換効率の高い電力としてパワーコンディショナに供給するので、変換効率が低いと言われていた微弱電力域の発電電力を効率よく交流出力に変換できる。蓄電デバイスを放電させるとき、この放電電力を閾値未満の発電電力に加算してパワーコンディショナに供給するので、結果的に蓄電デバイスの放電電力の緩和と蓄電デバイスの充放電サイクル数の低減を図ることができ、蓄電デバイスの期待寿命を延長することができるなど、優れた効果が得られる。 In contrast, according to the present disclosure, the generated power below the threshold value at which the conversion efficiency of the power conditioner decreases is stored in the electricity storage device, and when the terminal voltage reaches the upper limit voltage, the generated power below the threshold value is generated using this discharged power. Since the power is raised and supplied to the power conditioner as power with high conversion efficiency, it is possible to efficiently convert generated power in the weak power range, which is said to have low conversion efficiency, into AC output. When discharging a power storage device, this discharged power is added to the generated power below the threshold and supplied to the power conditioner, resulting in a reduction in the discharge power of the power storage device and the number of charge/discharge cycles of the power storage device. This provides excellent effects such as extending the expected life of the power storage device.
 また、本開示によれば、蓄電装置に回収された発電電力と閾値未満の発電電力を合算して電力変換に向けることができ、微弱電力域の発電電力の回収効率ないし利用率を高め、電力変換効率を高め、システムの高出力化を図ることができる。
Further, according to the present disclosure, it is possible to combine the generated power collected in the power storage device and the generated power below the threshold value and use it for power conversion, increasing the recovery efficiency or utilization rate of the generated power in the weak power range, and It is possible to increase the conversion efficiency and increase the output of the system.
 2 太陽光発電システム
 4、4-1、4-2、4-3 太陽光発電パネル
 6-1、206-11、206-12、206-13 第一パワーコンディショナ
 6-2、206-2、 第二パワーコンディショナ
 8 蓄電デバイス
 10 コントローラ
 12、12-1、12-2、12-3 電力計
 14-1、14-11、14-21、14-31 第一回路部
 14-2、14-12、14-22、14-32 第二回路部
 14-3、14-43 第三回路部
 16-1、16-11、16-21、16-31 第一スイッチ
 16-2、16-12、16-22、16-32 第二スイッチ
 16-3、16-43 第三スイッチ
 18-1、18-2 負荷
 20、224-1、224-2、224-3 最大電力点追従制御部(MPPT)
 22-1、22-2 DC-DCコンバータ
 24-1、24-2、228-1、228-2、228-3、228-4 インバータ
 26 制御部
 28-1、28-2、28-3 SW駆動部
 30 情報提示部
 32 操作入力部
 34 ダイオード
 106-1、106-2、106-3 電力分離部
 108 電力回収部
 118-1、118-2、118-3 ダイオード
 226-1、226-2、226-3、226-4 DC-DCコンバータ
2 Solar power generation system 4, 4-1, 4-2, 4-3 Solar power generation panel 6-1, 206-11, 206-12, 206-13 First power conditioner 6-2, 206-2, Second power conditioner 8 Energy storage device 10 Controller 12, 12-1, 12-2, 12-3 Power meter 14-1, 14-11, 14-21, 14-31 First circuit section 14-2, 14- 12, 14-22, 14-32 Second circuit section 14-3, 14-43 Third circuit section 16-1, 16-11, 16-21, 16-31 First switch 16-2, 16-12, 16-22, 16-32 Second switch 16-3, 16-43 Third switch 18-1, 18-2 Load 20, 224-1, 224-2, 224-3 Maximum power point tracking control section (MPPT)
22-1, 22-2 DC-DC converter 24-1, 24-2, 228-1, 228-2, 228-3, 228-4 Inverter 26 Control section 28-1, 28-2, 28-3 SW Drive section 30 Information presentation section 32 Operation input section 34 Diode 106-1, 106-2, 106-3 Power separation section 108 Power recovery section 118-1, 118-2, 118-3 Diode 226-1, 226-2, 226-3, 226-4 DC-DC converter

Claims (16)

  1.  日射量に応じて発電する発電装置と、
     蓄電装置と、
     前記発電装置の発電電力が閾値未満であれば、この発電電力で前記蓄電装置を充電する充電回路と、
     前記蓄電装置の充電電圧が所定値に到達すれば、前記蓄電装置を放電させる放電回路と、
     を含み、
     前記発電電力が閾値以上であれば、前記発電装置から第一電力変換部に前記発電電力を供給する第一出力モード、
     前記発電電力が閾値未満であれば、この発電電力で前記蓄電装置を充電する充電モード、
     前記充電電圧が所定値に到達したとき、前記蓄電装置の放電電力と前記発電装置の閾値未満の発電電力を加算して第二電力変換部に供給させる第二出力モードを含む、太陽光発電システム。
    A power generation device that generates electricity according to the amount of solar radiation,
    A power storage device;
    a charging circuit that charges the power storage device with the generated power if the generated power of the power generation device is less than a threshold;
    a discharge circuit that discharges the power storage device when the charging voltage of the power storage device reaches a predetermined value;
    including;
    a first output mode in which the generated power is supplied from the power generation device to a first power conversion unit if the generated power is equal to or greater than a threshold;
    If the generated power is less than a threshold, a charging mode in which the power storage device is charged with the generated power;
    A solar power generation system including a second output mode in which when the charging voltage reaches a predetermined value, the discharged power of the power storage device and the generated power of the power generation device that is less than a threshold value are added together and the sum is supplied to a second power conversion unit. .
  2.  前記閾値は、前記第一出力モードで前記第一電力変換部の変換効率が顕著に低下する電力値または該電力値以上の電力値である、請求項1に記載の太陽光発電システム。 The solar power generation system according to claim 1, wherein the threshold value is a power value at which the conversion efficiency of the first power conversion unit significantly decreases in the first output mode or a power value greater than or equal to the power value.
  3.  前記第二出力モードにおいて、前記第二電力変換部へ供給する電力は、前記第二出力モードで用いられる前記第二電力変換部の変換効率が十分高い電力である、請求項1または請求項2に記載の太陽光発電システム。 In the second output mode, the power supplied to the second power conversion unit is power that has a sufficiently high conversion efficiency of the second power conversion unit used in the second output mode. Solar power generation system described in.
  4.  前記蓄電装置が、少なくともダイオードを介して前記発電装置に接続され、かつ、前記ダイオードを介して前記第一電力変換部と分離されている、請求項1に記載の太陽光発電システム。 The solar power generation system according to claim 1, wherein the power storage device is connected to the power generation device via at least a diode, and is separated from the first power conversion unit via the diode.
  5.  前記発電装置と前記第一電力変換部の間を開閉する第一のスイッチと、
     前記充電回路を開閉する第二のスイッチと、
     前記放電回路を開閉する第三のスイッチと、
     前記発電電力が閾値以上であれば、前記第一のスイッチを閉じ、前記発電電力が閾値未満であれば、前記第一のスイッチを開き、かつ前記第二のスイッチを閉じて閾値未満の発電電力で前記蓄電装置を充電し、この充電電圧が所定値に到達したとき、前記第三のスイッチを閉じて前記蓄電装置を放電させる制御部と、
     を含む、請求項1に記載の太陽光発電システム。
    a first switch that opens and closes between the power generator and the first power converter;
    a second switch that opens and closes the charging circuit;
    a third switch that opens and closes the discharge circuit;
    If the generated power is above the threshold, the first switch is closed, and if the generated power is less than the threshold, the first switch is opened and the second switch is closed to reduce the generated power below the threshold. a control unit that charges the power storage device with a controller and closes the third switch to discharge the power storage device when the charging voltage reaches a predetermined value;
    The solar power generation system according to claim 1, comprising:
  6.  前記第三のスイッチの機能が前記第二電力変換部に含まれるDC-DCコンバータで実現される請求項5に記載の太陽光発電システム。 The solar power generation system according to claim 5, wherein the function of the third switch is realized by a DC-DC converter included in the second power conversion section.
  7.  日射量に応じて発電する二以上の前記発電装置と、
     閾値以上の発電電力を電力変換する二以上の第一電力変換部と、
     前記閾値未満の発電電力を電力変換する第二電力変換部と、
    を含み、
     前記蓄電装置が、
     各発電装置の発電電力を閾値以上の発電電力と、閾値未満の発電電力とに分離する二以上の電力分離部と、
     前記電力分離部で分離された前記閾値未満の発電電力を合算し回収する電力回収部と、
     を含む、請求項1に記載の太陽光発電システム。
    two or more of the power generation devices that generate power according to the amount of solar radiation;
    two or more first power conversion units that convert generated power equal to or higher than a threshold;
    a second power conversion unit that converts the generated power below the threshold;
    including;
    The power storage device is
    two or more power separation units that separate the power generated by each power generation device into power generated above a threshold value and power generated below the threshold;
    a power recovery unit that adds up and recovers the generated power that is less than the threshold value separated by the power separation unit;
    The solar power generation system according to claim 1, comprising:
  8.  発電装置が、日射量に応じて発電する工程と、
     発電電力が閾値以上であれば、前記発電装置から第一電力変換部に前記発電電力を供給する第一出力モードを実行する工程と、
     前記発電電力が閾値未満であれば、前記発電電力で蓄電装置を充電する充電モードを実行する工程と、
     前記蓄電装置の充電電圧が所定値に到達したとき、前記蓄電装置の放電電力を前記発電装置の閾値未満の発電電力に加算して第二電力変換部に供給させる第二出力モードを実行する工程と、
     を含む、太陽光発電システムの制御方法。
    A process in which the power generation device generates electricity according to the amount of solar radiation;
    If the generated power is equal to or higher than a threshold, executing a first output mode in which the generated power is supplied from the power generation device to a first power conversion unit;
    If the generated power is less than a threshold, executing a charging mode for charging a power storage device with the generated power;
    When the charging voltage of the power storage device reaches a predetermined value, executing a second output mode in which the discharged power of the power storage device is added to the generated power of the power generation device that is less than a threshold value and is supplied to a second power conversion unit. and,
    A method of controlling a solar power generation system, including:
  9.  第一のスイッチが、前記発電装置と前記第一電力変換部の間を開閉する工程と、
     第二のスイッチが、充電回路を開閉する工程と、
     第三のスイッチが、放電回路を開閉する工程と、
     制御部が、前記発電電力が閾値以上であれば、前記第一のスイッチを閉じ、前記発電電力が閾値未満であれば、前記第一のスイッチを開き、かつ前記第二のスイッチを閉じて前記蓄電装置を閾値未満の発電電力で充電させ、前記蓄電装置の充電電圧が所定値に到達したとき、前記第三のスイッチを閉じて前記蓄電装置を放電させる工程と、
     を含む、請求項8に記載の太陽光発電システムの制御方法。
    a step in which a first switch opens and closes between the power generation device and the first power conversion section;
    a second switch opening and closing the charging circuit;
    a third switch opening and closing the discharge circuit;
    The control unit closes the first switch if the generated power is equal to or greater than a threshold value, opens the first switch if the generated power is less than the threshold value, and closes the second switch to charging the power storage device with generated power that is less than a threshold, and when the charging voltage of the power storage device reaches a predetermined value, closing the third switch and discharging the power storage device;
    The method for controlling a solar power generation system according to claim 8, comprising:
  10.  二以上の発電装置が日射量に応じて発電する工程と、
     二以上の第一電力変換部が前記閾値以上の発電電力を電力変換する工程と、
     第二電力変換部が、前記閾値未満の発電電力を電力変換する工程と、
     蓄電装置において、二以上の電力分離部が、各発電装置の発電電力を閾値以上の発電電力と、閾値未満の発電電力とに分離する工程と、
     前記蓄電装置が前記閾値未満の発電電力を蓄電装置に蓄電する工程と、
     前記蓄電装置の端子電圧が所定値以上に到達したとき、前記蓄電装置を放電させ、該放電電力と前記電力分離部で分離された前記閾値未満の発電電力を合算し、この合算電力を前記第二電力変換部に供給する工程と、
    を含む、請求項8に記載の太陽光発電システムの制御方法。
    A process in which two or more power generation devices generate electricity according to the amount of solar radiation;
    a step in which two or more first power conversion units convert the generated power of the threshold value or more;
    a step in which the second power conversion unit converts the generated power that is less than the threshold;
    In the power storage device, two or more power separation units separate the generated power of each power generation device into generated power above a threshold value and generated power below the threshold value;
    a step in which the power storage device stores generated power that is less than the threshold value in the power storage device;
    When the terminal voltage of the power storage device reaches a predetermined value or more, the power storage device is discharged, the discharged power and the generated power that is less than the threshold value separated by the power separation section are summed, and this total power is A step of supplying the power to two power conversion units;
    The method for controlling a solar power generation system according to claim 8, comprising:
  11.  コンピュータに実行させるためのプログラムであって、
     発電電力が閾値以上であれば、発電装置から第一電力変換部に前記発電電力を供給する第一出力モードを実行させる機能と、
     前記発電電力が閾値未満であれば、前記発電電力で蓄電装置を充電する充電モードを実行させる機能と、
     前記蓄電装置の充電電圧が所定値に到達したとき、前記蓄電装置の放電電力と前記発電装置の閾値未満の発電電力を加算して第二電力変換部に供給させる第二出力モードを実行させる機能と、
     を前記コンピュータに実行させるためのプログラム。
    A program to be executed by a computer,
    a function of executing a first output mode in which the generated power is supplied from the power generation device to the first power conversion unit if the generated power is equal to or higher than a threshold;
    If the generated power is less than a threshold value, a function of executing a charging mode in which a power storage device is charged with the generated power;
    A function of executing a second output mode in which when the charging voltage of the power storage device reaches a predetermined value, the discharged power of the power storage device and the generated power of the power generation device that is less than a threshold value are added and the result is supplied to a second power conversion unit. and,
    A program for causing the computer to execute.
  12.  第一のスイッチに、前記発電装置と前記第一電力変換部の間を開閉させる機能と、
     第二のスイッチに、充電回路を開閉させる機能と、
     第三のスイッチに、放電回路を開閉させる機能と、
     前記発電電力が閾値以上であれば、前記第一のスイッチを閉じ、前記発電電力が閾値未満であれば、前記第一のスイッチを開き、かつ前記第二のスイッチを閉じて前記蓄電装置を閾値未満の発電電力で充電させ、前記蓄電装置の充電電圧が所定値に到達したとき、前記第三のスイッチを閉じて前記蓄電装置を放電させる機能と、
     を前記コンピュータに実行させるための請求項11に記載のプログラム。
    A first switch has a function of opening and closing between the power generation device and the first power conversion section;
    The second switch has the function of opening and closing the charging circuit,
    The third switch has the function of opening and closing the discharge circuit,
    If the generated power is above the threshold value, the first switch is closed; if the generated power is less than the threshold value, the first switch is opened and the second switch is closed to control the power storage device to the threshold value. a function of discharging the power storage device by closing the third switch when the charging voltage of the power storage device reaches a predetermined value;
    The program according to claim 11, for causing the computer to execute.
  13.  コンピュータに実行させるためのプログラムであって、
     日射量に応じて発電する二以上の発電装置から発電電力を表す発電電力情報を取得する機能と、
     電力分離部に各発電装置の発電電力を閾値以上の発電電力と、閾値未満の発電電力とに分離させ、前記閾値以上の発電電力を二以上の第一電力変換部に供給させる機能と、
     電力回収部が、前記閾値未満の発電電力を蓄電装置に供給させ、該発電電力を蓄電させる機能と、
     前記蓄電装置の端子電圧が所定値以上に到達したとき、前記蓄電装置を放電させ、該放電電力と前記電力分離部で分離された閾値未満の前記発電電力を合算させ、この合算電力を前記第二電力変換部に供給する機能と、
     を前記コンピュータに実行させるための請求項11に記載のプログラム。
    A program to be executed by a computer,
    A function to acquire power generation information representing power generated from two or more power generation devices that generate power according to the amount of solar radiation;
    a function of causing a power separation unit to separate the generated power of each power generation device into generated power equal to or higher than a threshold value and generated power equal to or less than a threshold value, and to supply the generated power equal to or higher than the threshold value to two or more first power conversion units;
    a function in which the power recovery unit supplies generated power that is less than the threshold to a power storage device and stores the generated power;
    When the terminal voltage of the power storage device reaches a predetermined value or higher, the power storage device is discharged, the discharged power and the generated power that is less than the threshold value separated by the power separation section are combined, and this total power is A function of supplying power to two power converters;
    The program according to claim 11, for causing the computer to execute.
  14.  日射量に応じて発電する発電装置と、蓄電装置と、発電電力が閾値未満であれば、前記蓄電装置に前記発電装置の発電電力を充電させる充電回路と、前記蓄電装置を放電させる放電回路とを備えた太陽光発電システムの蓄電制御装置であって、
     前記発電電力が閾値以上であるか閾値未満であるかを監視する発電電力監視部と、
     前記蓄電装置の充電電圧が所定値に到達したかを監視する蓄電電力監視部と、
    前記発電電力が閾値以上であれば、第一電力変換部に前記発電電力を供給する第一出力モードを実行し、前記発電電力が閾値未満であれば、閾値未満の前記発電電力で前記蓄電装置を充電する充電モードを実行し、前記蓄電装置の充電電圧が所定値に到達したとき、該蓄電装置の放電電力と前記発電装置の閾値未満の発電電力を加算して第二電力変換部に供給させる第二出力モードを実行する制御部と、
     を含む、太陽光発電システムの蓄電制御装置。
    a power generation device that generates power according to the amount of solar radiation; a power storage device; a charging circuit that charges the power storage device with the power generated by the power generation device if the generated power is less than a threshold; and a discharge circuit that discharges the power storage device. A power storage control device for a solar power generation system, comprising:
    a generated power monitoring unit that monitors whether the generated power is greater than or equal to a threshold value or less than a threshold value;
    a stored power monitoring unit that monitors whether the charging voltage of the power storage device has reached a predetermined value;
    If the generated power is greater than or equal to the threshold, a first output mode is executed to supply the generated power to a first power converter, and if the generated power is less than the threshold, the power storage device is operated with the generated power that is less than the threshold. When the charging voltage of the power storage device reaches a predetermined value, the discharged power of the power storage device and the generated power of the power generation device that is less than a threshold are added and the resulting power is supplied to a second power conversion unit. a control unit that executes a second output mode;
    A power storage control device for a solar power generation system, including:
  15.  前記発電装置と前記第一電力変換部の間を開閉する第一のスイッチと、
     前記充電回路を開閉する第二のスイッチと、
     前記放電回路を開閉する第三のスイッチと、
     を含み、
     前記制御部が、前記発電電力が閾値以上であれば、前記第一のスイッチを閉じ、前記発電電力が閾値未満であれば、前記第一のスイッチを開き、かつ前記第二のスイッチを閉じて前記蓄電装置を閾値未満の発電電力で充電させ、前記蓄電装置の充電電圧が所定値に到達したとき、前記第三のスイッチを閉じて前記蓄電装置を放電させるスイッチ制御部を含む、請求項14に記載の太陽光発電システムの蓄電制御装置。
    a first switch that opens and closes between the power generator and the first power converter;
    a second switch that opens and closes the charging circuit;
    a third switch that opens and closes the discharge circuit;
    including;
    The control unit closes the first switch if the generated power is at least a threshold value, and opens the first switch and closes the second switch if the generated power is less than the threshold value. 14 . The power storage device according to claim 14 , further comprising a switch control unit that charges the power storage device with generated power that is less than a threshold value, and closes the third switch to discharge the power storage device when the charging voltage of the power storage device reaches a predetermined value. The power storage control device for the solar power generation system described in .
  16.  日射量に応じて発電する二以上の発電装置とともに蓄電装置を含み、
     前記蓄電装置が、各発電装置の発電電力を閾値以上の発電電力と、閾値未満の発電電力とに分離する二以上の電力分離部と、
     前記電力分離部で分離された前記閾値未満の発電電力を合算して前記第二電力変換部に供給する電力回収部と、
    を含む、請求項14に記載の太陽光発電システムの蓄電制御装置。
    It includes a power storage device along with two or more power generation devices that generate electricity according to the amount of solar radiation,
    two or more power separation units in which the power storage device separates the power generated by each power generation device into power generated above a threshold value and power generated below the threshold;
    a power recovery unit that adds up the generated power that is less than the threshold value separated by the power separation unit and supplies the sum to the second power conversion unit;
    The power storage control device for a solar power generation system according to claim 14, comprising:
PCT/JP2023/032427 2022-09-06 2023-09-05 Photovoltaic power generation system, control method for same, program, and power storage control apparatus WO2024053653A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022141133A JP2024036723A (en) 2022-09-06 2022-09-06 Solar power generation system, its control method, program, and power storage control device
JP2022-141133 2022-09-06
JP2022-168021 2022-10-20
JP2022168021A JP2024060641A (en) 2022-10-20 2022-10-20 Photovoltaic power generation system, control method thereof, program and control device

Publications (1)

Publication Number Publication Date
WO2024053653A1 true WO2024053653A1 (en) 2024-03-14

Family

ID=90191182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032427 WO2024053653A1 (en) 2022-09-06 2023-09-05 Photovoltaic power generation system, control method for same, program, and power storage control apparatus

Country Status (1)

Country Link
WO (1) WO2024053653A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153038U (en) * 2009-06-11 2009-08-20 ソーラーシリコンテクノロジー株式会社 Satellite system photovoltaic power generation equipment
JP2013078194A (en) * 2011-09-30 2013-04-25 Sanyo Electric Co Ltd Power supply system
JP2014050199A (en) * 2012-08-30 2014-03-17 Panasonic Corp Power control unit, junction box, power regulator, power generating system, and power control method
JP2014103819A (en) * 2012-11-22 2014-06-05 Nemoto Denko Co Ltd Charging device, charging method, power supply system and residual stored power amount measuring method thereof
JP2018129980A (en) * 2017-02-10 2018-08-16 国立大学法人東京農工大学 Photovoltaic power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153038U (en) * 2009-06-11 2009-08-20 ソーラーシリコンテクノロジー株式会社 Satellite system photovoltaic power generation equipment
JP2013078194A (en) * 2011-09-30 2013-04-25 Sanyo Electric Co Ltd Power supply system
JP2014050199A (en) * 2012-08-30 2014-03-17 Panasonic Corp Power control unit, junction box, power regulator, power generating system, and power control method
JP2014103819A (en) * 2012-11-22 2014-06-05 Nemoto Denko Co Ltd Charging device, charging method, power supply system and residual stored power amount measuring method thereof
JP2018129980A (en) * 2017-02-10 2018-08-16 国立大学法人東京農工大学 Photovoltaic power generation system

Similar Documents

Publication Publication Date Title
JP5449334B2 (en) Control apparatus and control method
KR101369692B1 (en) Energy storage system and controlling method of the same
KR101084216B1 (en) Energy storage system and method for controlling thereof
JP5265639B2 (en) Apartment house energy storage system, integrated power management system and control method therefor
EP2587623B1 (en) Dc power distribution system
JP2011135763A (en) Energy storage system and method of controlling the same
KR20130104771A (en) Energy storage system and control method thereof
JP2011109901A5 (en)
JP2011109901A (en) Power control system and grid-connected energy storage system with the same
CN105071415B (en) Microgrid energy adjusting method and system
KR20120027782A (en) Apparatus and method of tracking maximum power point, and operating method of grid connected power storage system using the same
EP2662943A1 (en) Dc power supply system
JP6463519B2 (en) Power control apparatus and control method thereof
CN114928102B (en) Distributed energy storage photovoltaic intelligent power generation system
JP2002218654A (en) Photovoltaic power generation system
JP2012200060A (en) Feeding control system and feeding control method
WO2024053653A1 (en) Photovoltaic power generation system, control method for same, program, and power storage control apparatus
US20230327473A1 (en) Power conversion system
CN115885446A (en) Energy system and charge-discharge control method
US10700540B2 (en) DC power supply system
US20220014018A1 (en) Dc power supply and distribution system
JP2024036723A (en) Solar power generation system, its control method, program, and power storage control device
JP2024060641A (en) Photovoltaic power generation system, control method thereof, program and control device
KR20170020579A (en) System for Solar cell Power and method for controlling the same
WO2024100716A1 (en) Frequency stabilization system and frequency stabilization method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863191

Country of ref document: EP

Kind code of ref document: A1