WO2024053601A1 - Reverse input cutoff clutch and actuator using same - Google Patents

Reverse input cutoff clutch and actuator using same Download PDF

Info

Publication number
WO2024053601A1
WO2024053601A1 PCT/JP2023/032226 JP2023032226W WO2024053601A1 WO 2024053601 A1 WO2024053601 A1 WO 2024053601A1 JP 2023032226 W JP2023032226 W JP 2023032226W WO 2024053601 A1 WO2024053601 A1 WO 2024053601A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
shaft
spacer
input
reverse input
Prior art date
Application number
PCT/JP2023/032226
Other languages
French (fr)
Japanese (ja)
Inventor
声一 高田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2024053601A1 publication Critical patent/WO2024053601A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/08Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/08Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action
    • F16D41/10Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action with self-actuated reversing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/02Automatic clutches actuated entirely mechanically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D63/00Brakes not otherwise provided for; Brakes combining more than one of the types of groups F16D49/00 - F16D61/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H35/00Gearings or mechanisms with other special functional features

Definitions

  • the present invention provides a reverse input cutoff clutch that transmits rotation of an input side member to an output side member when input torque is applied, and prevents the input side member from rotating in response to reverse input torque;
  • the present invention relates to an actuator incorporating a cutoff clutch.
  • electromagnetic brakes as emergency stop mechanisms (hereinafter also referred to as "brakes").
  • the electromagnetic brake uses the attraction force of the electromagnet to pull the armature toward the brake spring, compresses the brake spring, and releases the brake plate attached to the output shaft so that it cannot rotate relative to the output shaft but can move in the axial direction. The brake is released.
  • the attraction force of the electromagnet disappears, so the brake spring presses the brake plate against the fixed member via the armature, and the friction force between the armature and the brake plate and between the brake plate and the fixed member causes the output shaft to It is designed to apply the brakes.
  • an auxiliary power source such as a battery even during a power outage, the brake is released and the output shaft can be moved manually.
  • the reverse input cutoff clutch described in Patent Document 1 is arranged between an input side member and an output side member that rotate around the same axis, and transmits the rotation of the input side member to the output side member with a slight angular delay.
  • a fixed outer ring having a cylindrical surface on the inner circumferential side is arranged radially outward of the output side member, and a plurality of cam surfaces are provided on the outer circumferential surface of the output side member, and the inner circumferential cylinder of the fixed outer ring is
  • a wedge-shaped space that gradually becomes narrower on both sides in the circumferential direction is formed between the surface and each cam surface of the output side member, and a pair of rollers and a spring that pushes the rollers into the narrow part of the wedge-shaped space are installed in each of these wedge-shaped spaces.
  • a retainer having column parts inserted into both circumferential sides of each wedge-shaped space is connected to the input side member so as to rotate together with the input side member.
  • each roller is pushed into the narrow part of the wedge-shaped space by the elasticity of the spring, so even if reverse input torque is applied to the output side member, the rollers on the rear side in the rotational direction are connected to the fixed outer ring and output side member. By engaging with the side member, the output side member is locked, and neither the output side member nor the input side member rotates.
  • the actuator can be arranged in the order of reducer - brake (reverse input cutoff clutch) - motor - rotation sensor, and the structure in which the motor and rotation sensor are directly connected can be used as a brake. This makes it possible to integrate with actuators that do not have
  • the reverse input cutoff clutch of Patent Document 1 does not have a mechanism to release the function of locking the output side member against reverse input torque (hereinafter referred to as the "reverse input cutoff function"), and the If the side member cannot be moved, the output side member cannot be moved manually or the like, so it cannot be used as an actuator for robots.
  • a plurality of cam surfaces are provided on the outer circumferential surface of the output side member, and a pair of rollers is provided in the wedge-shaped space between each of these cam surfaces and the inner circumferential cylindrical surface of the fixed outer ring, and the roller is moved to the narrow part of the wedge-shaped space.
  • the structure incorporates a push-in spring, complicated machining (forming the cam surface) is required when producing the output side member, and it is time-consuming to assemble small parts such as rollers and springs into multiple wedge-shaped spaces during assembly. The problem is that it takes a lot of time.
  • the rollers and the members that come into contact with the rollers must be made of materials with high surface hardness, such as hardened steel to prevent impressions and wear. It is difficult to reduce the overall weight.
  • an object of the present invention is to provide a reverse input cutoff clutch that can cancel the reverse input cutoff function as needed, is easy to manufacture and assemble parts, and is easy to reduce weight, and an actuator using the same. shall be.
  • the reverse input cutoff clutch of the present invention has an input shaft and an output shaft disposed on the same axis, and a cylindrical eccentric cam having an eccentric axis parallel to the axis on the output shaft.
  • a cylindrical cam receiver having the same axis as that of the input shaft; a circular eccentric hole having the same axis as the eccentric cam in the cam receiver; While inserting the cam, a cylindrical spacer is slidably fitted between the inner peripheral surface of the eccentric hole of the cam receiver and the outer peripheral surface of the eccentric cam, and the spacer is rotated between the spacer and the fixed member.
  • a swivel support mechanism is provided that supports the cam holder so as to be able to rotate and revolve, and when an input torque is applied to the input shaft, a cam holder rotates together with the input shaft and is fitted into an eccentric hole of the cam holder.
  • the eccentric cam and the output shaft rotate together, and when a reverse input torque is applied to the output shaft, a moving force is generated in the spacer, preventing the spacer from rotating.
  • the output shaft is in a locked state, and the output shaft and the eccentric cam are rotatably connected to the input shaft and the cam receiver, so that when a reverse input torque is applied to the output shaft.
  • a configuration (configuration 1) was adopted in which a coupling mechanism was provided to prevent the output shaft from locking.
  • the present invention can be used as an actuator for robots that require an emergency stop function and a function to move an axis without driving power.
  • the rotation support mechanism includes a flange-like connecting portion provided at one end of the spacer, and a flat connecting member sandwiched in the axial direction between the connecting portion of the spacer and the fixing member, and the A first uneven fitting portion extending in the radial direction of the spacer and slidably fitting into each other is provided on mutually opposing surfaces in the axial direction of the connecting portion of the connecting member and the spacer, and A second uneven fitting portion is provided on the axially opposing surface of the crankshaft, which extends in a direction perpendicular to the first uneven fitting portion and slidably fits into each other (a so-called double slider crank of an Oldham shaft joint). (configuration 2).
  • the coupling mechanism may include a flange portion inserted into the cam receiver at a position adjacent to the eccentric cam on the output shaft; It is possible to adopt a structure in which a screw hole is provided that penetrates in the radial direction, and a screw inserted into the screw hole is tightened and pressed against the flange portion of the output shaft (Structure 3).
  • a screw hole is provided that penetrates in the radial direction, and a screw inserted into the screw hole is tightened and pressed against the flange portion of the output shaft (Structure 3).
  • a ratchet tooth-shaped rotary operating portion extending in the circumferential direction with the slope starting from is provided, and the opening of the cover member and the screw hole are aligned by operating the rotary operating portion from outside the cover member.
  • the opening of the cover member and the screw hole may be aligned by driving a motor shaft connected to the input shaft (configuration 5).
  • the coupling mechanism has a structure different from the structure 3 above, in which the output shaft is passed through the inside of the input shaft and protrudes from the end surface of the input shaft, and the outer circumferential surface of the protrusion from the input shaft end surface of the output shaft is formed.
  • a male thread and an axial groove are provided, and an annular fixing plate having a protrusion on the inner periphery that is inserted into the axial groove is fitted onto the protrusion of the output shaft so as to be movable in the axial direction, and the male thread and the screw
  • An annular rotary plate to be coupled is mounted on an axially outer side of the fixed plate, and an elastic member is provided for urging the fixed plate toward the rotary plate, and the input shaft and the fixed plate face each other in the axial direction. is provided with a third uneven fitting portion, and by rotating the rotary plate in a predetermined direction, the fixed plate is moved axially inward by the rotary plate against the biasing force of the elastic member. It is also possible to adopt a configuration in which the output shaft is integrally rotatably connected to the input shaft via the fixing plate with the concave-convex fitting portions in the fitted state (Structure 6).
  • a motor shaft is connected to each of the input shaft and the output shaft with a clearance in the rotational direction, and the rotational clearance angle between the motor shaft and the input shaft is ⁇ MI , and the rotational clearance angle between the motor shaft and the output shaft is
  • ⁇ MO is the rotational clearance angle between the cam receiver and the spacer
  • ⁇ RS is the rotational clearance angle between the eccentric cam and the spacer
  • ⁇ CS is the rotational clearance angle between the eccentric cam and the spacer
  • each rotation gap angle is set to be ⁇ MI + ⁇ RS ⁇ ⁇ MO + ⁇ CS , so that the motor shaft is not driven.
  • the output shaft and the eccentric cam are connected to the input shaft and the cam holder so that they can rotate together, when a reverse input torque is applied to the output shaft, from the relationship ⁇ RS ⁇ ⁇ CS , the direction of the input shaft and cam holder will change. Since the rotation is transmitted to the spacer earlier than (or at the same time) than to the output shaft and the eccentric cam, the output shaft rotates without locking.
  • At least one component of the components constituting the swing support mechanism is made of resin (configuration 8). ).
  • the actuator of the present invention has a reverse input cutoff clutch according to any one of the above configurations 1 to 8 incorporated between the reducer and the output side of the motor, and a rotation sensor is provided on the input side of the motor (configuration 9). Since this configuration does not consume power, it can save power compared to a configuration that incorporates an electromagnetic brake, and since there is no wiring, it can be easily attached to a robot or the like. Furthermore, the structure in which the motor and rotation sensor are directly connected can be unified with an actuator without a brake.
  • the reverse input cutoff clutch of the present invention connects the output shaft with the input shaft as necessary to release the reverse input cutoff function, and rotates the output shaft together with the input shaft using reverse input torque. Therefore, it can be used in a robot actuator that requires an emergency stop function and a function to move an axis without driving power.
  • there is no complicated processing required when manufacturing parts, making manufacturing and assembly easier, and the use of resin, etc. for the parts makes it possible to reduce the weight of the entire clutch. can.
  • the actuator of the present invention incorporates the reverse input cutoff clutch configured as described above, it can save power compared to an actuator incorporating an electromagnetic brake, and can be easily attached to a robot or the like. Furthermore, the structure in which the motor and rotation sensor are directly connected can be unified with an actuator without a brake.
  • Exploded perspective view of the swing support mechanism in Figure 5 A partially longitudinal sectional front view of an actuator incorporating the reverse input cutoff clutch of the first embodiment
  • a partially vertical front view of an actuator incorporating the reverse input cutoff clutch of the second embodiment (input shaft and output shaft of the reverse input cutoff clutch are connected)
  • Exploded perspective view of Figure 9 Vertical front view of the reverse input cutoff clutch of the third embodiment Cross-sectional view along line XII-XII in Figure 11
  • a vertical sectional front view showing a modification of the reverse input cutoff clutch shown in FIG. 11 A vertical sectional front view showing another modification of the reverse input cutoff clutch shown in FIG.
  • FIG. 11 A partially vertical front view of an actuator incorporating a reverse input cutoff clutch according to the third embodiment
  • FIG. 16 An enlarged cross-sectional view illustrating the initial operation when driving the motor shaft, corresponding to FIG. 17
  • FIGS. 1, 2, and 3A show a reverse input cutoff clutch according to a first embodiment.
  • this reverse input cutoff clutch is integrally formed with a cylindrical input shaft 1 with one end closed, and a flange portion 1a on the other end side of the input shaft 1.
  • a cylindrical cam receiver 2 an output shaft 3 whose one end is slidably fitted into the inner periphery of the input shaft 1; a cylindrical eccentric cam 4 integrally formed in the axial center of the output shaft 3; A coupling mechanism 5 that connects the cam receiver 2 and the output shaft 3 so that they can rotate together; and a cylindrical spacer 6 that is slidably fitted between the inner circumferential surface of the cam receiver 2 and the outer circumferential surface of the eccentric cam 4.
  • a cylindrical housing 7 serving as a fixing member and a cover member that covers the eccentric cam 4 and the spacer 6, and a rotation support mechanism 8 that supports the spacer 6 between the spacer 6 and the housing 7 so that it cannot rotate on its axis but can rotate around the revolution.
  • a cylindrical housing 7 serving as a fixing member and a cover member that covers the eccentric cam 4 and the spacer 6
  • a rotation support mechanism 8 that supports the spacer 6 between the spacer 6 and the housing 7 so that it cannot rotate on its axis but can rotate around the revolution.
  • the input shaft 1 and the output shaft 3 are arranged on the same axis, and the cam receiver 2 integrated with the input shaft 1 also has the same axis as the input shaft 1.
  • the eccentric cam 4 integrated with the output shaft 3 has an eccentric axis parallel to the axis of the output shaft 3.
  • the cam receiver 2 is formed with a circular eccentric hole 2a that has the same axis as the eccentric cam 4 and into which the eccentric cam 4 and the spacer 6 are inserted.
  • the housing 7 has a lid part 7a that slidably supports the other end of the output shaft 3 on the other end side, and a flange part 7b that has a plurality of holes for mounting to an external member (not shown) on one end side.
  • a lid 9 is fitted into the inner periphery of one end to prevent the cam receiver 2 from coming off and to slidably support the input shaft 1.
  • a sliding bearing or a rolling bearing may be incorporated between the lid 9 and the input shaft 1 and between the lid portion 7a of the housing 7 and the output shaft 3.
  • an opening 7c for connecting the cam receiver 2 and the output shaft 3 is provided at one location in the circumferential direction in the axial center of the housing 7, and the opening 7c is covered with an opening cover 10. .
  • a part of the swing support mechanism 8 is constructed at a position sandwiched in the axial direction between the lid part 7a of the housing 7 and the inward flange-shaped connecting part 6a provided at one end of the spacer 6.
  • a disc-shaped connecting member 11 is arranged.
  • the swing support mechanism 8 is provided with a first uneven fitting portion extending in the radial direction of the spacer 6 and slidably fitting into each other on the axially opposing surfaces of the connecting member 11 and the connecting portion 6a of the spacer 6.
  • a second uneven fitting part is provided on the axially opposing surfaces of the connecting member 11 and the lid part 7a of the housing 7, extending in a direction perpendicular to the first uneven fitting part and slidably fitting into each other. (equivalent to the double slider crank mechanism of the Oldham shaft joint).
  • the first uneven fitting portion includes a recess 6b formed to extend in the radial direction on the outer surface of the connecting portion 6a of the spacer 6 (a surface facing the connecting member 11 in the axial direction), and a recess 6b of the connecting member 11.
  • the convex portion 11a is formed on the inner surface (the surface facing the connecting portion 6a of the spacer 6 in the axial direction) and is slidably fitted into the concave portion 6b of the spacer 6.
  • the second uneven fitting portion is a convex portion formed on the outer surface of the connecting member 11 (the surface facing the lid portion 7a of the housing 7 in the axial direction) so as to extend in a direction perpendicular to the convex portion 11a on the inner surface. portion 11b, and a recess 7d formed on the inner surface of the lid portion 7a of the housing 7 (the surface facing the connecting member 11 in the axial direction), into which the convex portion 11b on the outer surface of the connecting member 11 is slidably fitted. Become.
  • the spacer 6 is supported by the rotation support mechanism 8 so as to be non-rotatable but rotatable relative to the housing 7, which is a fixed member.
  • the connecting portion 6a of the spacer 6 and the connecting member 11 have center holes 6c and 11c, respectively, through which the output shaft 3 is passed. 11 is formed in a size that does not interfere with the output shaft 3 when it moves in parallel.
  • the coupling mechanism 5 includes a flange portion 3a that is inserted into the inside of the cam receiver 2 at a position adjacent to the eccentric cam 4 on the output shaft 3, and a flange portion 3a that is inserted into the cam receiver 2 from its outer peripheral surface toward the flange portion 3a of the output shaft 3.
  • a plurality of screw holes 2b passing through the radial direction are provided, and the screws 12 screwed into the screw holes 2b are tightened and pressed against the flange portion 3a of the output shaft 3, thereby connecting the cam receiver 2 (and input shaft 1) to the output shaft. 3 (and eccentric cam 4) so as to be integrally rotatable.
  • a plurality of ratchet tooth-shaped rotary operating portions 2c are provided that extend in the circumferential direction with the peripheral edge of the screw hole 2b as the starting point of the inclined surface. As will be described later, the opening 7c of the housing 7 and the screw hole 2b of the cam receiver 2 are aligned.
  • This reverse input cutoff clutch has the above-mentioned configuration, and normally, as shown in FIG. It is kept unconnected.
  • the output shaft 3 can be rotated together with the input shaft 1 by applying a reverse input torque. That is, when it is necessary to move the input side from the output side, as shown in FIG. Operate the operation part 2c to rotate the cam receiver 2, align the circumferential position of the screw hole 2b of the cam receiver 2 with the opening 7c of the housing 7, as shown in FIG. Tighten the screw 12 to press the tip of the screw 12 against the outer peripheral surface of the flange portion 3a of the output shaft 3.
  • the cam receiver 2 (and the input shaft 1) and the output shaft 3 (and the eccentric cam 4) are connected to be able to rotate together, so when a reverse input torque is applied to the output shaft 3, the input torque is applied to the input shaft 1.
  • the input shaft 1 and the output shaft 3 rotate by the same mechanism as when the When the emergency work etc. is completed, loosen the screw 12 and separate it from the flange part 3a of the output shaft 3 (release the connection between the cam receiver 2 and the output shaft 3), attach the opening cover 10, and return to the normal state. I'll put it back.
  • the screw 12 may have a hexagonal socket and be operated with a hexagonal wrench.
  • this reverse input cutoff clutch is equipped with a reverse input cutoff function and a mechanism to release the reverse input cutoff function, so it can be used in robots that require an emergency stop function and the ability to move axes without driving power. It can also be used as an actuator.
  • the structure does not require complicated machining such as forming cam surfaces during manufacturing, making it easier to manufacture parts and ensure dimensional accuracy. It is easy to assemble, has a small number of parts, and is easy to assemble. Furthermore, since the surface pressure generated on the parts that lock against reverse input torque, that is, the parts (spacer 6, connecting member 11, housing 7) constituting the swing support mechanism 8, is small, at least one of the parts is made of resin. It is also possible to reduce the weight of the entire clutch by using soft metal or the like.
  • the swing support mechanism 8 of this modification includes a recess 6b of the spacer 6 that constitutes the first and second uneven fitting parts, projections 11a and 11b on both sides of the connecting member 11, and a recess in the lid 7a of the housing 7. 7d, in addition to those shown in FIGS. 1 and 2, a plurality of them are formed extending in parallel on both sides.
  • the parts that receive the load torque are distributed, making it easier to reduce weight by using resin or soft metal for each part, and increase the torque load capacity if the material of each part is not changed. be able to.
  • each convex portion 11a on the inner surface of the connecting member 11 and the surface portion of the portion between each concave portion 6b of the spacer 6 are formed to have a triangular cross-section.
  • the outer surface of the eccentric cam 4 (the surface facing the connecting portion 6a of the spacer 6 in the axial direction), the outer surface of the flange portion 3a of the output shaft 3 (the surface facing the flange portion 1a of the input shaft 1 in the axial direction), and the lid.
  • Annular protrusions 4a, 3b, and 9a each having a triangular cross section are formed on the inner side surface (the surface facing the cam receiver 2 in the axial direction) at the outer peripheral edge thereof.
  • one end of the output shaft 3 is slidably fitted into the inner periphery of the cylindrical input shaft 1 and supported.
  • the input shaft may be formed into a cylindrical shape, and the other end of the input shaft may be slidably fitted and supported on the inner periphery of the input shaft.
  • FIG. 7 shows an actuator incorporating a modified reverse input cutoff clutch of the first embodiment.
  • This actuator is for a robot in which a reverse input cutoff clutch 20 is incorporated between a speed reducer 21 and the output side of a motor 22, and a rotation sensor (encoder) 23 is provided on the input side of the motor 22.
  • the configuration of the reverse input cutoff clutch 20 differs from that of the first embodiment described above (FIGS. 1 to 4A and 4B) in that the housing 7 has a flange portion 7b as in the first embodiment. The only points are that there is no output shaft 3, and that one end of the output shaft 3 protrudes from one end of the input shaft 1.
  • the input shaft 1 of the reverse input cutoff clutch 20 is connected to the motor shaft 24 of the motor 22 so as to be integrally rotatable with a key 25, and the output shaft 3 is connected to the input side of the speed reducer 21.
  • the motor shaft 24 passes through the rotation sensor 23, and a rotary plate 26 is attached to a protrusion of the motor shaft 24 from the rotation sensor 23.
  • This actuator has the above configuration, and by incorporating the reverse input cutoff clutch 20, it can save power compared to the one incorporating an electromagnetic brake, and can be easily installed on a robot, improving the controllability of the robot. It can also be improved. Furthermore, since there is no risk of wear particles having an adverse effect on the operation of the reducer 21 and rotation sensor 23, the motor 22 and rotation sensor 23 can be directly connected, and the structure can be unified (standardized) with an actuator without a brake. .
  • the reverse input cutoff function of the reverse input cutoff clutch 20 is released in order to move the robot from the output side. 3, by manually rotating the rotating plate 26 and rotating the motor shaft 24, input shaft 1, and cam receiver 2 together, the opening 7c of the housing 7 and the screw of the cam receiver 2 are connected.
  • the hole 2b can be easily aligned.
  • FIG. 8 to 10 show a robot actuator incorporating the reverse input cutoff clutch 30 of the second embodiment.
  • the basic configuration of this actuator is the same as that shown in FIG. It is set up. What is different from that shown in FIG. 7 is that the reverse input cutoff clutch 30 employs a coupling mechanism 31 having a different configuration from that of the first embodiment, and that the coupling mechanism 31 is operated. Therefore, the motor shaft 24 is hollow. Therefore, below, the differences will be explained, and the explanation of other configurations will be omitted.
  • the reverse input cutoff clutch 30 of this actuator extends the input shaft 1 toward one end, passes it through the inside of the motor shaft 24, and protrudes from the end surface of the motor shaft 24, and extends the output shaft 3 toward one end so that the input shaft 1 and protrudes from the end face of the input shaft 1, and a coupling mechanism 31 is provided between the protrusion of the input shaft 1 from the end face of the motor shaft 24 and the protrusion of the output shaft 3 from the end face of the input shaft 1. ing.
  • the coupling mechanism 31 is provided with a thread 3c and a plurality of axial grooves 3d on the outer circumferential surface of one end of the output shaft 3 including a protrusion from the end surface of the input shaft 1;
  • An annular fixing plate 32 having a protrusion 32a on the inner circumference that is inserted into the fixing plate 3d is fitted onto the outside so as to be movable in the axial direction, and an annular rotary plate 33 that is threadedly connected to the male screw 3c is attached to the outside of the fixing plate 32 in the axial direction.
  • a coil spring 34 is provided between the motor shaft 24 and the fixed plate 32 as an elastic member that urges the fixed plate 32 toward the rotating plate 33, so that the input shaft 1 and the fixed plate 32 are axially opposed to each other.
  • a third uneven fitting portion is provided on the surface.
  • the third concave-convex fitting portion is composed of a plurality of recesses 1b provided on one end surface of the input shaft 1 and a plurality of convex portions 32b provided on the other side of the fixed plate 32.
  • a pin 35 is attached to one end of the output shaft 3 to prevent the rotating plate 33 from coming off.
  • the rotary plate 33 retreats to near one end of the output shaft 3, the fixed plate 32 does not come into contact with the input shaft 1, and the input shaft 1 and output shaft 3 are connected. It is kept in a state where it is not.
  • the rotating plate 33 is rotated in a predetermined direction from the state shown in FIG. 32b fits into the concave portion 1b of the input shaft 1 (the third uneven fitting portion is in the fitted state), and the input shaft 1 and the output shaft 3 are connected to be integrally rotatable via the fixed plate 32.
  • the state shown in FIG. 8 can be obtained. Furthermore, if the rotary plate 33 is rotated in the opposite direction from the state shown in FIG.
  • the fixed plate 32 is separated from the input shaft 1 by the biasing force of the coil spring 34 (the connection between the input shaft 1 and the output shaft 3 is released). , return to normal state.
  • the rotary plate 33 may be replaced with a hexagonal nut and rotated with a hexagonal wrench.
  • this reverse input cutoff clutch 30 also has the same function as that of the first embodiment, and an actuator incorporating this can also exhibit the same effects as shown in FIG. 7.
  • FIG. 11 and 12 show a reverse input cutoff clutch 40 of a third embodiment.
  • This reverse input cutoff clutch 40 is based on the reverse input cutoff clutch 20 of the first embodiment incorporated in the actuator shown in FIG.
  • the configuration is such that the wiring can be passed through the output shaft 3 and not exposed to the outside of the robot. Therefore, in the following, differences from the first embodiment shown in FIG. 7 will be explained, and explanations of other configurations will be omitted.
  • the reverse input cutoff clutch 40 of this third embodiment differs from that of the first embodiment in the position of the coupling mechanism 41. That is, the coupling mechanism 41 is provided with a screw hole 1c that penetrates the input shaft 1 in the radial direction from its outer peripheral surface toward the output shaft 3, and the screw 12 screwed into the screw hole 1c is tightened to connect the output shaft 3. By pressing against the flat outer peripheral surface of the D-cut portion 3e, the input shaft 1 (and cam receiver 2) and the output shaft 3 (and eccentric cam 4) are connected so as to be integrally rotatable.
  • the coupling mechanism 41 By providing the coupling mechanism 41 at the above position, the flange portion 3a of the output shaft 3 of the first embodiment is eliminated, and the cam receiver 2 is made thinner than the first embodiment. A hollow output shaft 3 with a large diameter can be incorporated. Note that due to the change in the position of the coupling mechanism 41, the opening 7c of the housing 7 and the opening lid 10 of the first embodiment are also omitted.
  • the output shaft 3 does not pass through the input shaft 1, and the input shaft 1 is provided with an input screw hole 1d so as to be aligned with the screw hole 1c of the coupling mechanism 41 in the axial direction.
  • an input shaft member such as a motor shaft inserted into the inner periphery of one end of the input shaft 1.
  • rollers with a retainer 43 are incorporated between the housing 7 and the cam receiver 2, allowing the cam receiver 2 and the input shaft 1 to rotate freely.
  • a supporting roller bearing is formed, and the output shaft 3 is rotatably supported by a rolling bearing 44 incorporated between the cover portion 7a of the housing 7 and the output shaft 3, and these points are also different from the first embodiment. It is different from the form.
  • FIGS. 11 and 12 show modified examples of the reverse input cutoff clutch 40 shown in FIGS. 11 and 12 above, respectively.
  • the modification shown in FIG. 13 incorporates rollers with cages 43 not only between the housing 7 and the cam receiver 2, but also between the cam receiver 2 and the spacer 6, and between the spacer 6 and the eccentric cam 4.
  • a roller bearing is formed so that the rotation of the input shaft 1 is transmitted to the output shaft 3 more efficiently.
  • ball bearings are installed at the location of the roller bearing between the housing 7 and the cam receiver 2 in FIG. 44' and position the cam receiver 2 and output shaft 3 in the axial direction with respect to the housing 7, the axial space between the cam receiver 2, the housing 7, the spacer 6, and the output shaft 3 is secured. This is intended to reduce sliding torque.
  • FIG. 15 shows a robot actuator incorporating the reverse input cutoff clutch 40 (example shown in FIGS. 11 and 12) of the third embodiment.
  • the basic configuration of this actuator is the same as that shown in FIG. It is set up.
  • the motor shaft 24 of the motor 22 is hollow as shown in FIGS. 8 to 10.
  • connection between the input shaft 1 and the motor shaft 24 of the reverse input cutoff clutch 40 is not a key connection as shown in FIG. 7, but as explained based on FIG. This is done by tightening the input screw 42 screwed into the input screw hole 1d of the input shaft 1 while the output side end of the input shaft 1 is inserted.
  • annular joint member 45 that covers the input shaft 1 of the reverse input cutoff clutch 40 is provided between the reverse input cutoff clutch 40 and the motor 22, and a plurality of windows are formed in the circumferential direction of the joint member 45.
  • the screw 12 of the coupling mechanism 41 and the input screw 42 can be operated from 45a.
  • the rotary plate 26 attached to the protrusion from the rotation sensor 23 of the motor shaft 24 is manually rotated to rotate the motor shaft 24 and the input shaft 1 together.
  • the window 45a of the joint member 45 and the screw hole 1c of the input shaft 1 can be easily aligned.
  • a single bolt 46 is screwed into the rotation sensor 23 from the outer surface of the reducer 21, passing through the reducer 21, the housing 7 of the reverse input cutoff clutch 40, the joint member 45, and the motor 22. , these members are connected, and this point also differs from that shown in FIG.
  • the wiring can be passed through the motor shaft 24 and the output shaft 3 and not exposed to the outside of the robot. .
  • FIG. 16 shows a robot actuator incorporating the reverse input cutoff clutch 50 of the fourth embodiment.
  • the basic configuration of this actuator is the same as that shown in FIG. A rotation sensor 23 is provided on the input side.
  • the method of operating the coupling mechanism 41 between the input shaft 1 and the output shaft 3 of the reverse input cutoff clutch 50 and the screw 12 thereof is also the same as that shown in FIG. 15.
  • this actuator differs between this actuator and the one shown in FIG. 15 will be explained.
  • this actuator has the following points: No roller bearing is formed between the housing 7 of the reverse input cutoff clutch 50 and the cam receiver 2, and the input shaft for connecting the motor shaft 24 and the input shaft 1 of the reverse input cutoff clutch 50. This differs from the one shown in FIG. 15 in that the input screw hole of the shaft 1 and the input screw 42 are not provided.
  • the motor shaft 24 is connected to each of the input shaft 1 and output shaft 3 of the reverse input cutoff clutch 50 with a gap in the rotational direction. That is, as shown in FIGS. 16 and 17, the outer periphery of the output end of the motor shaft 24 is cut in a D shape, and the inner periphery of the input shaft 1 and the output shaft 3 into which the output end of the motor shaft 24 is inserted are cut. Flat engagement surfaces 1e and 3f are formed on the inner periphery, respectively, to face the cut surface 24a on the outer periphery of the motor shaft 24.
  • ⁇ RS is the rotational clearance angle between the eccentric cam 4 and the spacer 6
  • ⁇ CS is set so that ⁇ RS ⁇ CS and ⁇ CS ⁇ MO .
  • each rotational clearance angle is set as described above, and when the motor shaft 24 is driven, from the relationship ⁇ MI + ⁇ RS ⁇ ⁇ MO + ⁇ CS , the input shaft 1 and cam receiver 2 are Rotation is transmitted from the motor shaft 24 to the spacer 6, causing the spacer 6 to revolve, and then rotation is transmitted directly from the motor shaft 24 to the output shaft 3, causing the output shaft 3 to rotate.
  • a reverse input torque is applied to the output shaft 3
  • rotation is first transmitted from the output shaft 3 and the eccentric cam 4 to the spacer 6 due to the relationship ⁇ CS ⁇ ⁇ MO , and the rotation of the spacer 6 is By preventing the movement, the output shaft 3 becomes locked.
  • the output shaft 3 and the eccentric cam 4 are coupled to the input shaft 1 and the cam receiver 2 so as to be integrally rotatable, and when a reverse input torque is applied to the output shaft 3, From the relationship ⁇ RS ⁇ ⁇ CS , rotation is transmitted from the input shaft 1 and cam receiver 2 to the spacer 6 earlier (or at the same time) than from the output shaft 3 and eccentric cam 4, so the output shaft 3 is locked. It will rotate without any movement.
  • first to third uneven fitting portions may each have a concave portion and a convex portion opposite to those in the embodiment.
  • connection mechanism of the reverse input cutoff clutch is not limited to those of the above-mentioned embodiments, but any mechanism capable of connecting the output shaft and the eccentric cam to the input shaft and the cam receiver so as to be integrally rotatable can be used. good.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
  • Braking Arrangements (AREA)

Abstract

This reverse input cutoff clutch is configured in a manner such that in response to reverse input torque during normal operation, an output shaft (3) stops rotating as a result of a moving force acting on a spacer (6) and a revolution/rotation operation of the spacer (6) being impeded, and during emergency operation, a cam receiver (2) and an output shaft (3) are connected by tightening a screw (12) screwed into the cam receiver (2), which integrally rotates with an input shaft (1), and pressing the same against the flange part (3a) of the output shaft (3), making it possible to apply a reverse input torque and for the output shaft (3) to integrally rotate with the input shaft (1).

Description

逆入力遮断クラッチおよびそれを用いたアクチュエータReverse input cutoff clutch and actuator using it
 本発明は、入力トルクが加えられたときは入力側部材の回転を出力側部材に伝達し、逆入力トルクに対しては入力側部材が回転しないようにする逆入力遮断クラッチと、その逆入力遮断クラッチを組み込んだアクチュエータに関する。 The present invention provides a reverse input cutoff clutch that transmits rotation of an input side member to an output side member when input torque is applied, and prevents the input side member from rotating in response to reverse input torque; The present invention relates to an actuator incorporating a cutoff clutch.
 産業用のロボットは、JIS B 8433-1(2015)における「5.5.2非常停止」、「5.13駆動用動力なしの移動」の項で、非常停止機能を持たなければならないことや、非常時または異常状態で駆動用動力なしで軸が動かせるように設計しなければならないことが規定されている。 According to JIS B 8433-1 (2015), "5.5.2 Emergency stop" and "5.13 Movement without driving power", industrial robots must have an emergency stop function, It is stipulated that the design must be such that the shaft can be moved without driving power under abnormal conditions.
 このため、ロボットの関節部を動かすアクチュエータには、非常停止機構(以下、「ブレーキ」とも称する。)として電磁ブレーキを組み込んだものが多い。その電磁ブレーキは、一般に、ロボットの通常運転時には、電磁石の吸引力でアーマチュアを引き寄せてブレーキばねを圧縮し、出力軸に相対回転不可かつ軸方向移動可能に取り付けたブレーキ板を解放することにより、ブレーキ解除状態となっている。また、停電時には、電磁石の吸引力がなくなるので、ブレーキばねがアーマチュアを介してブレーキ板を固定部材に押し付け、アーマチュアとブレーキ板との間およびブレーキ板と固定部材との間の摩擦力で出力軸にブレーキをかけるようになっている。そして、停電時でもバッテリ等の補助電源から電力を供給することにより、ブレーキ解除状態となって出力軸を手動で動かせるようになる。 For this reason, many actuators that move the joints of robots incorporate electromagnetic brakes as emergency stop mechanisms (hereinafter also referred to as "brakes"). Generally, during normal operation of the robot, the electromagnetic brake uses the attraction force of the electromagnet to pull the armature toward the brake spring, compresses the brake spring, and releases the brake plate attached to the output shaft so that it cannot rotate relative to the output shaft but can move in the axial direction. The brake is released. In addition, during a power outage, the attraction force of the electromagnet disappears, so the brake spring presses the brake plate against the fixed member via the armature, and the friction force between the armature and the brake plate and between the brake plate and the fixed member causes the output shaft to It is designed to apply the brakes. By supplying power from an auxiliary power source such as a battery even during a power outage, the brake is released and the output shaft can be moved manually.
 ところが、上記のような電磁ブレーキを組み込んだアクチュエータを使用しているロボットでは、稼働中は常時電磁ブレーキに通電してブレーキ解除状態としている必要があるので、電力消費が多くなるという問題がある。また、アクチュエータ毎に電磁ブレーキ用の配線が必要となるので、ロボットの関節数が多くなると配線数も多くなり、構造が複雑になるという難点もある。 However, in a robot that uses an actuator incorporating an electromagnetic brake as described above, there is a problem that power consumption increases because it is necessary to constantly energize the electromagnetic brake to release the brake during operation. Furthermore, since wiring for the electromagnetic brake is required for each actuator, there is also the problem that as the number of joints of the robot increases, the number of wiring also increases, making the structure complex.
 さらに、停電時に出力軸にブレーキをかける際には、アーマチュアとブレーキ板の間およびブレーキ板と固定部材の間で摩擦粉が発生し、この摩擦粉がアクチュエータに組み込まれた減速機や回転センサ(エンコーダ)の動作に悪影響を及ぼすおそれがある。摩耗粉から減速機および回転センサを保護するために、アクチュエータを構成する各部を、減速機-モータ-ブレーキ(電磁ブレーキ)-回転センサの順で配置することも提案されているが、その配列を採用した場合には、ブレーキが不要で減速機-モータ-回転センサの順で配置されたアクチュエータとは、モータと回転センサの間の接続構造を統一できなくなくなる。 Furthermore, when applying the brake to the output shaft during a power outage, friction powder is generated between the armature and the brake plate and between the brake plate and the fixed member. may have an adverse effect on the operation of the In order to protect the reducer and rotation sensor from wear particles, it has been proposed to arrange the parts that make up the actuator in the order of reducer - motor - brake (electromagnetic brake) - rotation sensor. If adopted, the connection structure between the motor and the rotation sensor cannot be unified with an actuator that does not require a brake and is arranged in the order of reducer, motor, and rotation sensor.
 これに対し、例えば特許文献1で提案されているようなロック式の逆入力遮断クラッチを非常停止機構としてアクチュエータに組み込むことも考えられる。 On the other hand, it is also conceivable to incorporate a lock-type reverse input cutoff clutch, such as that proposed in Patent Document 1, into the actuator as an emergency stop mechanism.
 上記特許文献1に記載された逆入力遮断クラッチは、同一軸心のまわりに回転する入力側部材と出力側部材との間に、入力側部材の回転を僅かな角度遅れをもって出力側部材に伝達するトルク伝達手段を設け、内周側に円筒面を有する固定外輪を出力側部材の径方向外側に配し、出力側部材の外周面に複数のカム面を設けて、固定外輪の内周円筒面と出力側部材の各カム面との間に周方向両側で次第に狭小となる楔形空間を形成し、これらの各楔形空間に一対のローラとそのローラを楔形空間の狭小部へ押し込むばねを組み込むとともに、各楔形空間の周方向両側に挿入される柱部を有する保持器を、入力側部材と一体回転するように連結したものである。 The reverse input cutoff clutch described in Patent Document 1 is arranged between an input side member and an output side member that rotate around the same axis, and transmits the rotation of the input side member to the output side member with a slight angular delay. A fixed outer ring having a cylindrical surface on the inner circumferential side is arranged radially outward of the output side member, and a plurality of cam surfaces are provided on the outer circumferential surface of the output side member, and the inner circumferential cylinder of the fixed outer ring is A wedge-shaped space that gradually becomes narrower on both sides in the circumferential direction is formed between the surface and each cam surface of the output side member, and a pair of rollers and a spring that pushes the rollers into the narrow part of the wedge-shaped space are installed in each of these wedge-shaped spaces. In addition, a retainer having column parts inserted into both circumferential sides of each wedge-shaped space is connected to the input side member so as to rotate together with the input side member.
 この逆入力遮断クラッチでは、各ローラがばねの弾力で楔形空間の狭小部に押し込まれているので、出力側部材に逆入力トルクが加えられても、回転方向後側のローラが固定外輪および出力側部材に係合することにより出力側部材がロックされ、出力側部材も入力側部材も回転はしない。 In this reverse input cutoff clutch, each roller is pushed into the narrow part of the wedge-shaped space by the elasticity of the spring, so even if reverse input torque is applied to the output side member, the rollers on the rear side in the rotational direction are connected to the fixed outer ring and output side member. By engaging with the side member, the output side member is locked, and neither the output side member nor the input side member rotates.
 一方、入力側部材に入力トルクが加えられたときは、入力側部材と一体に回転する保持器の柱部が回転方向後側のローラをばねの弾力に抗して楔形空間の広大側へ押し出すことにより、そのローラと固定外輪および出力側部材との係合が解除されて出力側部材がロック状態から解放された後、トルク伝達手段によって入力側部材から出力側部材に回転が伝達されるようになる。 On the other hand, when input torque is applied to the input side member, the pillar part of the cage that rotates together with the input side member pushes the roller on the rear side in the rotational direction to the larger side of the wedge-shaped space against the elasticity of the spring. As a result, after the roller is disengaged from the fixed outer ring and the output side member and the output side member is released from the locked state, rotation is transmitted from the input side member to the output side member by the torque transmission means. become.
 この逆入力遮断クラッチを電磁ブレーキに代えてアクチュエータに組み込めば、電力消費がなくなるし、配線も不要となる。また、摩耗粉の発生がなくなるため、アクチュエータを減速機-ブレーキ(逆入力遮断クラッチ)-モータ-回転センサの順で配置した構造とすることができ、モータと回転センサを直接接続した構造をブレーキのないアクチュエータと統一できるようになる。 If this reverse input cutoff clutch is incorporated into the actuator instead of the electromagnetic brake, power consumption will be eliminated and no wiring will be required. In addition, since no wear particles are generated, the actuator can be arranged in the order of reducer - brake (reverse input cutoff clutch) - motor - rotation sensor, and the structure in which the motor and rotation sensor are directly connected can be used as a brake. This makes it possible to integrate with actuators that do not have
特開平2-271116号公報Japanese Unexamined Patent Publication No. 2-271116
 しかしながら、上記特許文献1の逆入力遮断クラッチは、逆入力トルクに対して出力側部材をロックする機能(以下、「逆入力遮断機能」と称する。)を解除する機構がなく、停電等で入力側部材が動かせなくなった場合に手動等で出力側部材を動かすことができないので、ロボット用のアクチュエータには使用できない。 However, the reverse input cutoff clutch of Patent Document 1 does not have a mechanism to release the function of locking the output side member against reverse input torque (hereinafter referred to as the "reverse input cutoff function"), and the If the side member cannot be moved, the output side member cannot be moved manually or the like, so it cannot be used as an actuator for robots.
 また、出力側部材の外周面に複数のカム面を設けて、これらの各カム面と固定外輪の内周円筒面との間の楔形空間に一対のローラとそのローラを楔形空間の狭小部へ押し込むばねを組み込んだ構造なので、出力側部材を製作する際に複雑な加工(カム面の形成)が必要になるし、組立時に複数の楔形空間へ小型部品となるローラやばねを組み込むのに手間がかかるという難点がある。 In addition, a plurality of cam surfaces are provided on the outer circumferential surface of the output side member, and a pair of rollers is provided in the wedge-shaped space between each of these cam surfaces and the inner circumferential cylindrical surface of the fixed outer ring, and the roller is moved to the narrow part of the wedge-shaped space. Since the structure incorporates a push-in spring, complicated machining (forming the cam surface) is required when producing the output side member, and it is time-consuming to assemble small parts such as rollers and springs into multiple wedge-shaped spaces during assembly. The problem is that it takes a lot of time.
 さらに、逆入力トルクに対して出力側部材がロックしている状態では、出力側部材のカム面と固定外輪の内周円筒面との間に線接触状態で噛み込んでいるローラに大きな接触圧が作用するので、ローラやローラと接触する部材は、圧痕や摩耗を防ぐために焼き入れ処理を行った鋼材等、表面硬度の高い材料で形成する必要があり、その材質を樹脂等に代えてクラッチ全体の軽量化を図ることは困難である。 Furthermore, when the output side member is locked against reverse input torque, a large contact pressure is applied to the roller that is in line contact between the cam surface of the output side member and the inner cylindrical surface of the fixed outer ring. Therefore, the rollers and the members that come into contact with the rollers must be made of materials with high surface hardness, such as hardened steel to prevent impressions and wear. It is difficult to reduce the overall weight.
 そこで、本発明は、必要に応じて逆入力遮断機能を解除でき、かつ部品の製作および組立が行いやすく、軽量化も容易な逆入力遮断クラッチと、それを用いたアクチュエータを提供することを課題とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a reverse input cutoff clutch that can cancel the reverse input cutoff function as needed, is easy to manufacture and assemble parts, and is easy to reduce weight, and an actuator using the same. shall be.
 上記の課題を解決するために、本発明の逆入力遮断クラッチは、入力軸と出力軸とを同一軸線上に配し、前記出力軸にその軸線と平行な偏心軸線を有する円筒状の偏心カムを設け、前記入力軸にその軸線と同一の軸線を有する円筒状のカム受けを設け、前記カム受けに前記偏心カムと同一軸線を有する円形の偏心穴を形成して、この偏心穴に前記偏心カムを挿入するとともに、前記カム受けの偏心穴の内周面と前記偏心カムの外周面との間に円筒状のスペーサを摺動可能に嵌め込み、前記スペーサと固定部材との間にスペーサを自転不能かつ公転旋回可能に支持する旋回支持機構を設けて、前記入力軸に入力トルクが加えられたときは、前記入力軸と一体にカム受けが回転し、前記カム受けの偏心穴に嵌め込まれたスペーサが公転旋回することにより、前記偏心カムと出力軸が一体に回転し、前記出力軸に逆入力トルクが加えられたときは、前記スペーサに移動力が生じてスペーサの公転旋回運動が妨げられることにより、前記出力軸がロック状態となるようにし、さらに、前記出力軸および偏心カムを前記入力軸およびカム受けと一体回転可能に連結して、前記出力軸に逆入力トルクが加えられたときに出力軸をロックさせないようにする連結機構を設けた構成(構成1)を採用した。 In order to solve the above problems, the reverse input cutoff clutch of the present invention has an input shaft and an output shaft disposed on the same axis, and a cylindrical eccentric cam having an eccentric axis parallel to the axis on the output shaft. a cylindrical cam receiver having the same axis as that of the input shaft; a circular eccentric hole having the same axis as the eccentric cam in the cam receiver; While inserting the cam, a cylindrical spacer is slidably fitted between the inner peripheral surface of the eccentric hole of the cam receiver and the outer peripheral surface of the eccentric cam, and the spacer is rotated between the spacer and the fixed member. A swivel support mechanism is provided that supports the cam holder so as to be able to rotate and revolve, and when an input torque is applied to the input shaft, a cam holder rotates together with the input shaft and is fitted into an eccentric hole of the cam holder. As the spacer revolves, the eccentric cam and the output shaft rotate together, and when a reverse input torque is applied to the output shaft, a moving force is generated in the spacer, preventing the spacer from rotating. By doing so, the output shaft is in a locked state, and the output shaft and the eccentric cam are rotatably connected to the input shaft and the cam receiver, so that when a reverse input torque is applied to the output shaft. A configuration (configuration 1) was adopted in which a coupling mechanism was provided to prevent the output shaft from locking.
 すなわち、入力軸に入力トルクが加えられたときは、その回転を出力軸に伝達し、出力軸に逆入力トルクが加えられたときは、出力軸をロックさせて入力軸が回転しないようにすることができ、しかも、必要に応じて連結機構で出力軸を入力軸と連結すれば、逆入力遮断機能が解除され、逆入力トルクを加えて出力軸を入力軸と一体に回転させることが可能となる構成とすることにより、非常停止機能および駆動用動力なしで軸を動かす機能が必要とされるロボットのアクチュエータに使用可能なものとしたのである。 In other words, when input torque is applied to the input shaft, that rotation is transmitted to the output shaft, and when reverse input torque is applied to the output shaft, the output shaft is locked to prevent the input shaft from rotating. Moreover, if the output shaft is connected to the input shaft using a coupling mechanism if necessary, the reverse input cutoff function is canceled and the output shaft can be rotated together with the input shaft by applying reverse input torque. By adopting the following configuration, the present invention can be used as an actuator for robots that require an emergency stop function and a function to move an axis without driving power.
 また、上記の構成1によれば、製作時に従来のロック式の逆入力遮断クラッチにおけるカム面形成のような複雑な加工が不要となるので、部品の製作や寸法精度の確保が容易になるし、従来のクラッチに複数組み込まれている小型のローラおよびばねがないので、部品点数が少なく組立も容易である。さらに、逆入力トルクに対してロックする部品は従来のクラッチよりも面圧が小さくなるので、その部品の材質に樹脂等を採用してクラッチ全体の軽量化を図ることも可能になる。 In addition, according to configuration 1 above, complicated machining such as cam surface formation in conventional locking type reverse input cutoff clutches is not required during manufacturing, making it easier to manufacture parts and ensure dimensional accuracy. Since there are no small rollers and springs that are incorporated into conventional clutches, the number of parts is small and assembly is easy. Furthermore, since the surface pressure of the parts that lock against reverse input torque is lower than that of conventional clutches, it is also possible to reduce the weight of the entire clutch by using resin or the like as the material for these parts.
 上記構成1において、前記旋回支持機構としては、前記スペーサの一端にフランジ状の連結部を設けて、前記スペーサの連結部と固定部材とに軸方向で挟まれる平板状の連結部材を設け、前記連結部材とスペーサの連結部の互いの軸方向対向面に、スペーサの径方向に延びて互いに摺動可能に嵌合する第1の凹凸嵌合部を設けるとともに、前記連結部材と固定部材の互いの軸方向対向面に、前記第1の凹凸嵌合部と直交する方向に延び、互いに摺動可能に嵌合する第2の凹凸嵌合部を設けたもの(いわゆるオルダム軸継手のダブルスライダクランク機構に相当するもの)を採用することができる(構成2)。 In the above configuration 1, the rotation support mechanism includes a flange-like connecting portion provided at one end of the spacer, and a flat connecting member sandwiched in the axial direction between the connecting portion of the spacer and the fixing member, and the A first uneven fitting portion extending in the radial direction of the spacer and slidably fitting into each other is provided on mutually opposing surfaces in the axial direction of the connecting portion of the connecting member and the spacer, and A second uneven fitting portion is provided on the axially opposing surface of the crankshaft, which extends in a direction perpendicular to the first uneven fitting portion and slidably fits into each other (a so-called double slider crank of an Oldham shaft joint). (configuration 2).
 また、前記連結機構としては、前記出力軸に前記偏心カムと隣接する位置で前記カム受けの内側に挿入されるフランジ部を設け、前記カム受けにその外周面から前記出力軸のフランジ部に向かって径方向に貫通するねじ孔を設け、前記ねじ孔にねじ込まれたねじを締め込んで前記出力軸のフランジ部に押し付けるものを採用することができる(構成3)。そして、このねじによる連結機構を採用する際に、前記カム受けが前記ねじの操作を行うための開口を有するカバー部材に覆われている場合は、前記カム受けの外周に前記ねじ孔の周縁部を傾斜面の起点として周方向に延びるラチェット歯状の回転操作部を設け、前記カバー部材の外方から前記回転操作部を操作することにより、前記カバー部材の開口と前記ねじ孔の位置合わせを行えるようにするか(構成4)、あるいは、前記入力軸に連結されたモータ軸の駆動により、前記カバー部材の開口と前記ねじ孔の位置合わせを行えるようにするとよい(構成5)。 The coupling mechanism may include a flange portion inserted into the cam receiver at a position adjacent to the eccentric cam on the output shaft; It is possible to adopt a structure in which a screw hole is provided that penetrates in the radial direction, and a screw inserted into the screw hole is tightened and pressed against the flange portion of the output shaft (Structure 3). When adopting this screw-based connection mechanism, if the cam receiver is covered with a cover member having an opening for operating the screw, the outer periphery of the cam receiver is provided with a peripheral edge of the screw hole. A ratchet tooth-shaped rotary operating portion extending in the circumferential direction with the slope starting from is provided, and the opening of the cover member and the screw hole are aligned by operating the rotary operating portion from outside the cover member. Alternatively, the opening of the cover member and the screw hole may be aligned by driving a motor shaft connected to the input shaft (configuration 5).
 また、前記連結機構は、上記構成3と異なる構造として、前記出力軸を前記入力軸の内部に通して入力軸の端面から突出させ、前記出力軸の入力軸端面からの突出部の外周面におねじおよび軸方向溝を設け、前記出力軸の突出部に、前記軸方向溝に挿入される突起を内周に有する環状の固定板を軸方向移動可能に外嵌し、前記おねじとねじ結合する環状の回転板を前記固定板よりも軸方向外側に装着するとともに、前記固定板を回転板に向けて付勢する弾性部材を設け、前記入力軸と固定板の互いの軸方向対向面に第3の凹凸嵌合部を設けて、前記回転板を所定方向に回転させることにより、前記回転板で固定板を弾性部材の付勢力に抗して軸方向内側へ移動させ、前記第3の凹凸嵌合部を嵌合状態として、前記固定板を介して前記出力軸を入力軸と一体回転可能に連結するものを採用することもできる(構成6)。 Further, the coupling mechanism has a structure different from the structure 3 above, in which the output shaft is passed through the inside of the input shaft and protrudes from the end surface of the input shaft, and the outer circumferential surface of the protrusion from the input shaft end surface of the output shaft is formed. A male thread and an axial groove are provided, and an annular fixing plate having a protrusion on the inner periphery that is inserted into the axial groove is fitted onto the protrusion of the output shaft so as to be movable in the axial direction, and the male thread and the screw An annular rotary plate to be coupled is mounted on an axially outer side of the fixed plate, and an elastic member is provided for urging the fixed plate toward the rotary plate, and the input shaft and the fixed plate face each other in the axial direction. is provided with a third uneven fitting portion, and by rotating the rotary plate in a predetermined direction, the fixed plate is moved axially inward by the rotary plate against the biasing force of the elastic member. It is also possible to adopt a configuration in which the output shaft is integrally rotatably connected to the input shaft via the fixing plate with the concave-convex fitting portions in the fitted state (Structure 6).
 また、前記入力軸と出力軸のそれぞれに回転方向隙間をもってモータ軸が連結されており、前記モータ軸と入力軸との回転隙間角度をθMI、前記モータ軸と出力軸との回転隙間角度をθMOとし、前記カム受けとスペーサとの回転隙間角度をθRS、前記偏心カムとスペーサとの回転隙間角度をθCSとするとき、θMO>θMIかつθRS≦θCSかつθCS<θMOとなるように設定されている構成を採用することもできる(構成7)。ここで、「回転隙間角度」とは、回転方向隙間の回転方向角度のことをいう(以下同じ)。 Further, a motor shaft is connected to each of the input shaft and the output shaft with a clearance in the rotational direction, and the rotational clearance angle between the motor shaft and the input shaft is θ MI , and the rotational clearance angle between the motor shaft and the output shaft is When θ MO is the rotational clearance angle between the cam receiver and the spacer, θ RS is the rotational clearance angle between the eccentric cam and the spacer, and θ CS is the rotational clearance angle between the eccentric cam and the spacer, θ MO > θ MI and θ RS ≦θ CS and θ CS < It is also possible to adopt a configuration in which θ MO is set (Configuration 7). Here, the "rotational gap angle" refers to the rotational direction angle of the rotational direction gap (the same applies hereinafter).
 この構成7では、モータ軸が入力軸と出力軸の両方に連結されているが、各回転隙間角度がθMI+θRS<θMO+θCSとなるように設定されているので、モータ軸が駆動されたときは、最初に入力軸およびカム受けの方からスペーサに回転が伝達されてスペーサが公転旋回し、その後にモータ軸から直接出力軸に回転が伝達されて、出力軸が回転するようになる。一方、出力軸に逆入力トルクが加えられたときは、θCS<θMOの関係から、最初に出力軸および偏心カムの方からスペーサに回転が伝達され、スペーサの公転旋回運動が妨げられることにより出力軸がロック状態となる。そして、出力軸および偏心カムを入力軸およびカム受けと一体回転可能に連結すると、出力軸に逆入力トルクが加えられたときに、θRS≦θCSの関係から、入力軸およびカム受けの方から出力軸および偏心カムの方よりも早く(または同時に)スペーサに回転が伝達されるので、出力軸はロックすることなく回転するようになる。 In this configuration 7, the motor shaft is connected to both the input shaft and the output shaft, but each rotation gap angle is set to be θ MI + θ RS < θ MO + θ CS , so that the motor shaft is not driven. When this occurs, rotation is first transmitted from the input shaft and cam receiver to the spacer, causing the spacer to revolve, and then rotation is transmitted directly from the motor shaft to the output shaft, causing the output shaft to rotate. Become. On the other hand, when a reverse input torque is applied to the output shaft, rotation is first transmitted from the output shaft and eccentric cam to the spacer due to the relationship θ CS < θ MO , and the orbiting movement of the spacer is hindered. The output shaft becomes locked. If the output shaft and the eccentric cam are connected to the input shaft and the cam holder so that they can rotate together, when a reverse input torque is applied to the output shaft, from the relationship θ RS ≦ θ CS , the direction of the input shaft and cam holder will change. Since the rotation is transmitted to the spacer earlier than (or at the same time) than to the output shaft and the eccentric cam, the output shaft rotates without locking.
 また、上記構成1乃至7のいずれにおいても、上述のようにクラッチ全体の軽量化を図る場合は、前記旋回支持機構を構成する部品のうち、少なくとも1つの部品を樹脂製とするとよい(構成8)。 Furthermore, in any of the above configurations 1 to 7, if the weight of the entire clutch is to be reduced as described above, it is preferable that at least one component of the components constituting the swing support mechanism is made of resin (configuration 8). ).
 そして、本発明のアクチュエータは、上記構成1乃至8のいずれかの逆入力遮断クラッチを減速機とモータの出力側の間に組み込み、前記モータの入力側に回転センサを設けたものである(構成9)。この構成では、電力を消費しないので、電磁ブレーキを組み込んだものに比べて省電力化できるし、配線がないため、ロボット等への取付けも容易に行える。また、モータと回転センサを直接接続した構造を、ブレーキのないアクチュエータと統一することもできる。 The actuator of the present invention has a reverse input cutoff clutch according to any one of the above configurations 1 to 8 incorporated between the reducer and the output side of the motor, and a rotation sensor is provided on the input side of the motor (configuration 9). Since this configuration does not consume power, it can save power compared to a configuration that incorporates an electromagnetic brake, and since there is no wiring, it can be easily attached to a robot or the like. Furthermore, the structure in which the motor and rotation sensor are directly connected can be unified with an actuator without a brake.
 本発明の逆入力遮断クラッチは、上述したように、必要に応じて出力軸を入力軸と連結して逆入力遮断機能を解除し、逆入力トルクにより出力軸を入力軸と一体に回転させることができるようにしたものであるから、非常停止機能および駆動用動力なしで軸を動かす機能が必要とされるロボットのアクチュエータに使用することができる。そして、従来のロック式のものに比べると、部品製作時の複雑な加工がなく、製作および組立を容易に行えるし、部品の材質に樹脂等を採用してクラッチ全体の軽量化を図ることもできる。 As described above, the reverse input cutoff clutch of the present invention connects the output shaft with the input shaft as necessary to release the reverse input cutoff function, and rotates the output shaft together with the input shaft using reverse input torque. Therefore, it can be used in a robot actuator that requires an emergency stop function and a function to move an axis without driving power. In addition, compared to conventional lock-type clutches, there is no complicated processing required when manufacturing parts, making manufacturing and assembly easier, and the use of resin, etc. for the parts makes it possible to reduce the weight of the entire clutch. can.
 また、本発明のアクチュエータは、上記構成の逆入力遮断クラッチを組み込んだものであるから、電磁ブレーキを組み込んだものに比べて省電力化できるし、ロボット等への取付けも容易に行える。また、モータと回転センサを直接接続した構造を、ブレーキのないアクチュエータと統一することもできる。 Furthermore, since the actuator of the present invention incorporates the reverse input cutoff clutch configured as described above, it can save power compared to an actuator incorporating an electromagnetic brake, and can be easily attached to a robot or the like. Furthermore, the structure in which the motor and rotation sensor are directly connected can be unified with an actuator without a brake.
第1実施形態の逆入力遮断クラッチの縦断正面図Vertical front view of the reverse input cutoff clutch of the first embodiment 図1の分解斜視図Exploded perspective view of Figure 1 図1のIII-III線に沿った断面図Cross-sectional view along line III-III in Figure 1 図3Aに対応してクラッチ動作を説明する断面図A sectional view illustrating clutch operation corresponding to FIG. 3A 図1のIV-IV線に沿った断面における連結機構の連結作業の説明図An explanatory diagram of the connection work of the connection mechanism in a cross section taken along the IV-IV line in Figure 1 図1のIV-IV線に沿った断面における連結機構の連結作業の説明図An explanatory diagram of the connection work of the connection mechanism in a cross section taken along the IV-IV line in Figure 1 図1の旋回支持機構を変形した例を示す縦断正面図A vertical sectional front view showing a modified example of the swing support mechanism in Figure 1. 図5の旋回支持機構の分解斜視図Exploded perspective view of the swing support mechanism in Figure 5 第1実施形態の逆入力遮断クラッチを組み込んだアクチュエータの一部縦断正面図A partially longitudinal sectional front view of an actuator incorporating the reverse input cutoff clutch of the first embodiment 第2実施形態の逆入力遮断クラッチを組み込んだアクチュエータの一部縦断正面図(逆入力遮断クラッチの入力軸と出力軸を連結した状態)A partially vertical front view of an actuator incorporating the reverse input cutoff clutch of the second embodiment (input shaft and output shaft of the reverse input cutoff clutch are connected) 図8のアクチュエータの要部を拡大して示す一部縦断正面図(逆入力遮断クラッチの入力軸と出力軸が連結されてない状態)A partially longitudinal front view showing an enlarged view of the main parts of the actuator in Figure 8 (input shaft and output shaft of the reverse input cutoff clutch are not connected) 図9の分解斜視図Exploded perspective view of Figure 9 第3実施形態の逆入力遮断クラッチの縦断正面図Vertical front view of the reverse input cutoff clutch of the third embodiment 図11のXII-XII線に沿った断面図Cross-sectional view along line XII-XII in Figure 11 図11の逆入力遮断クラッチの変形例を示す縦断正面図A vertical sectional front view showing a modification of the reverse input cutoff clutch shown in FIG. 11 図11の逆入力遮断クラッチの別の変形例を示す縦断正面図A vertical sectional front view showing another modification of the reverse input cutoff clutch shown in FIG. 11 第3実施形態の逆入力遮断クラッチを組み込んだアクチュエータの一部縦断正面図A partially vertical front view of an actuator incorporating a reverse input cutoff clutch according to the third embodiment 第4実施形態の逆入力遮断クラッチを組み込んだアクチュエータの一部縦断正面図A partially vertical front view of an actuator incorporating a reverse input cutoff clutch of the fourth embodiment 図16のXVII-XVII線に沿った断面図Cross-sectional view along line XVII-XVII in Figure 16 図17に対応してモータ軸駆動時の初期動作を説明する拡大断面図An enlarged cross-sectional view illustrating the initial operation when driving the motor shaft, corresponding to FIG. 17
 以下、図面に基づき、本発明の実施形態を説明する。図1乃至図4A、図4Bは第1実施形態の逆入力遮断クラッチを示す。この逆入力遮断クラッチは、図1、図2および図3Aに示すように、一端が塞がれた円筒状の入力軸1と、入力軸1の他端側のフランジ部1aに一体形成される円筒状のカム受け2と、入力軸1の内周に一端部を摺動可能に嵌め込まれる出力軸3と、出力軸3の軸方向中央部に一体形成される円筒状の偏心カム4と、カム受け2と出力軸3とを一体回転可能に連結する連結機構5と、カム受け2の内周面と偏心カム4の外周面との間に摺動可能に嵌め込まれる円筒状のスペーサ6と、偏心カム4およびスペーサ6を覆う固定部材およびカバー部材としての円筒状のハウジング7と、スペーサ6とハウジング7との間でスペーサ6を自転不能かつ公転旋回可能に支持する旋回支持機構8とで基本的に構成されている。 Hereinafter, embodiments of the present invention will be described based on the drawings. 1 to 4A and 4B show a reverse input cutoff clutch according to a first embodiment. As shown in FIGS. 1, 2, and 3A, this reverse input cutoff clutch is integrally formed with a cylindrical input shaft 1 with one end closed, and a flange portion 1a on the other end side of the input shaft 1. a cylindrical cam receiver 2; an output shaft 3 whose one end is slidably fitted into the inner periphery of the input shaft 1; a cylindrical eccentric cam 4 integrally formed in the axial center of the output shaft 3; A coupling mechanism 5 that connects the cam receiver 2 and the output shaft 3 so that they can rotate together; and a cylindrical spacer 6 that is slidably fitted between the inner circumferential surface of the cam receiver 2 and the outer circumferential surface of the eccentric cam 4. , a cylindrical housing 7 serving as a fixing member and a cover member that covers the eccentric cam 4 and the spacer 6, and a rotation support mechanism 8 that supports the spacer 6 between the spacer 6 and the housing 7 so that it cannot rotate on its axis but can rotate around the revolution. Basically configured.
 入力軸1と出力軸3は同一軸線上に配されており、入力軸1と一体のカム受け2も入力軸1の軸線と同一の軸線を有している。一方、出力軸3と一体の偏心カム4は出力軸3の軸線と平行な偏心軸線を有している。そして、カム受け2には、偏心カム4と同一軸線を有し、偏心カム4およびスペーサ6が挿入される円形の偏心穴2aが形成されている。 The input shaft 1 and the output shaft 3 are arranged on the same axis, and the cam receiver 2 integrated with the input shaft 1 also has the same axis as the input shaft 1. On the other hand, the eccentric cam 4 integrated with the output shaft 3 has an eccentric axis parallel to the axis of the output shaft 3. The cam receiver 2 is formed with a circular eccentric hole 2a that has the same axis as the eccentric cam 4 and into which the eccentric cam 4 and the spacer 6 are inserted.
 ハウジング7は、他端側に出力軸3の他端部を摺動自在に支持する蓋部7aを、一端側に図示省略した外部部材への取付用孔が複数あけられたフランジ部7bをそれぞれ有し、一端部の内周にはカム受け2を抜け止めし、入力軸1を摺動自在に支持する蓋9が嵌め込まれている。なお、蓋9と入力軸1との間、およびハウジング7の蓋部7aと出力軸3との間には、滑り軸受や転がり軸受を組み込んでもよい。転がり軸受を組み込めば、逆入力遮断クラッチの空転トルク(負荷しないときの回転トルク)を小さくすることができる。 The housing 7 has a lid part 7a that slidably supports the other end of the output shaft 3 on the other end side, and a flange part 7b that has a plurality of holes for mounting to an external member (not shown) on one end side. A lid 9 is fitted into the inner periphery of one end to prevent the cam receiver 2 from coming off and to slidably support the input shaft 1. Note that a sliding bearing or a rolling bearing may be incorporated between the lid 9 and the input shaft 1 and between the lid portion 7a of the housing 7 and the output shaft 3. By incorporating a rolling bearing, the idle torque (rotational torque when no load is applied) of the reverse input cutoff clutch can be reduced.
 また、ハウジング7の軸方向中央部にはカム受け2と出力軸3の連結作業を行うための開口7cが周方向の一箇所に設けられ、その開口7cが開口蓋10で塞がれている。そして、このハウジング7の蓋部7aとスペーサ6の一端に設けられた内向きフランジ状の連結部6aとに軸方向で挟まれる位置には、後述するように旋回支持機構8の一部を構成する円板状の連結部材11が配されている。 Further, an opening 7c for connecting the cam receiver 2 and the output shaft 3 is provided at one location in the circumferential direction in the axial center of the housing 7, and the opening 7c is covered with an opening cover 10. . A part of the swing support mechanism 8 is constructed at a position sandwiched in the axial direction between the lid part 7a of the housing 7 and the inward flange-shaped connecting part 6a provided at one end of the spacer 6. A disc-shaped connecting member 11 is arranged.
 旋回支持機構8は、連結部材11とスペーサ6の連結部6aの互いの軸方向対向面に、スペーサ6の径方向に延びて互いに摺動可能に嵌合する第1の凹凸嵌合部を設けるとともに、連結部材11とハウジング7の蓋部7aの互いの軸方向対向面に、第1の凹凸嵌合部と直交する方向に延び、互いに摺動可能に嵌合する第2の凹凸嵌合部を設けたもの(オルダム軸継手のダブルスライダクランク機構に相当するもの)である。 The swing support mechanism 8 is provided with a first uneven fitting portion extending in the radial direction of the spacer 6 and slidably fitting into each other on the axially opposing surfaces of the connecting member 11 and the connecting portion 6a of the spacer 6. In addition, a second uneven fitting part is provided on the axially opposing surfaces of the connecting member 11 and the lid part 7a of the housing 7, extending in a direction perpendicular to the first uneven fitting part and slidably fitting into each other. (equivalent to the double slider crank mechanism of the Oldham shaft joint).
 ここで、第1の凹凸嵌合部は、スペーサ6の連結部6aの外側面(連結部材11との軸方向対向面)に径方向に延びるように形成された凹部6bと、連結部材11の内側面(スペーサ6の連結部6aとの軸方向対向面)に形成され、スペーサ6の凹部6bに摺動可能に嵌まり込む凸部11aとからなる。 Here, the first uneven fitting portion includes a recess 6b formed to extend in the radial direction on the outer surface of the connecting portion 6a of the spacer 6 (a surface facing the connecting member 11 in the axial direction), and a recess 6b of the connecting member 11. The convex portion 11a is formed on the inner surface (the surface facing the connecting portion 6a of the spacer 6 in the axial direction) and is slidably fitted into the concave portion 6b of the spacer 6.
 また、第2の凹凸嵌合部は、連結部材11の外側面(ハウジング7の蓋部7aとの軸方向対向面)に内側面の凸部11aと直交する方向に延びるように形成された凸部11bと、ハウジング7の蓋部7aの内側面(連結部材11との軸方向対向面)に形成され、連結部材11の外側面の凸部11bが摺動可能に嵌まり込む凹部7dとからなる。 The second uneven fitting portion is a convex portion formed on the outer surface of the connecting member 11 (the surface facing the lid portion 7a of the housing 7 in the axial direction) so as to extend in a direction perpendicular to the convex portion 11a on the inner surface. portion 11b, and a recess 7d formed on the inner surface of the lid portion 7a of the housing 7 (the surface facing the connecting member 11 in the axial direction), into which the convex portion 11b on the outer surface of the connecting member 11 is slidably fitted. Become.
 この旋回支持機構8により、スペーサ6が前述のように固定部材であるハウジング7に対して自転不能かつ公転旋回可能に支持されている。なお、スペーサ6の連結部6aおよび連結部材11にはそれぞれ出力軸3を通す中心孔6c、11cがあけられており、その中心孔6c、11cは、いずれもスペーサ6が公転旋回すると同時に連結部材11が平行移動するときに出力軸3と干渉しない大きさに形成されている。 As described above, the spacer 6 is supported by the rotation support mechanism 8 so as to be non-rotatable but rotatable relative to the housing 7, which is a fixed member. Note that the connecting portion 6a of the spacer 6 and the connecting member 11 have center holes 6c and 11c, respectively, through which the output shaft 3 is passed. 11 is formed in a size that does not interfere with the output shaft 3 when it moves in parallel.
 連結機構5は、出力軸3に偏心カム4と隣接する位置でカム受け2の内側に挿入されるフランジ部3aを設け、カム受け2にその外周面から出力軸3のフランジ部3aに向かって径方向に貫通するねじ孔2bを複数設け、そのねじ孔2bにねじ込まれたねじ12を締め込んで出力軸3のフランジ部3aに押し付けることにより、カム受け2(および入力軸1)と出力軸3(および偏心カム4)とを一体回転可能に連結するものである。 The coupling mechanism 5 includes a flange portion 3a that is inserted into the inside of the cam receiver 2 at a position adjacent to the eccentric cam 4 on the output shaft 3, and a flange portion 3a that is inserted into the cam receiver 2 from its outer peripheral surface toward the flange portion 3a of the output shaft 3. A plurality of screw holes 2b passing through the radial direction are provided, and the screws 12 screwed into the screw holes 2b are tightened and pressed against the flange portion 3a of the output shaft 3, thereby connecting the cam receiver 2 (and input shaft 1) to the output shaft. 3 (and eccentric cam 4) so as to be integrally rotatable.
 ここで、カム受け2の外周には、ねじ孔2bの周縁部を傾斜面の起点として周方向に延びるラチェット歯状の回転操作部2cが複数設けられており、この回転操作部2cを利用して後述するようにハウジング7の開口7cとカム受け2のねじ孔2bの位置合わせが行われるようになっている。 Here, on the outer periphery of the cam receiver 2, a plurality of ratchet tooth-shaped rotary operating portions 2c are provided that extend in the circumferential direction with the peripheral edge of the screw hole 2b as the starting point of the inclined surface. As will be described later, the opening 7c of the housing 7 and the screw hole 2b of the cam receiver 2 are aligned.
 この逆入力遮断クラッチは、上記の構成であり、通常は、図1に示すように、連結機構5のねじ12が出力軸3のフランジ部3aと接触せず、カム受け2と出力軸3が連結されていない状態で保持されている。 This reverse input cutoff clutch has the above-mentioned configuration, and normally, as shown in FIG. It is kept unconnected.
 そして、図1および図3Aに示す通常状態で入力軸1に左回りの入力トルクが加えられたときには、図3Bに示すように、入力軸1と一体にカム受け2が偶力回転し、カム受け2の偏心穴2aに摺動可能に嵌め込まれたスペーサ6が連結部材11に案内されて右方へ移動すると同時に、連結部材11がハウジング7の蓋部7aに案内されて上方へ移動することにより、スペーサ6はハウジング7に対して自転することなく左回りに公転旋回する。そして、このスペーサ6の公転旋回に伴って、スペーサ6内周に摺動可能に嵌めこまれた偏心カム4が偏心回転し、偏心カム4と一体の出力軸3が回転する。 When a counterclockwise input torque is applied to the input shaft 1 in the normal state shown in FIGS. 1 and 3A, the cam receiver 2 rotates together with the input shaft 1 as a couple, as shown in FIG. 3B, and the cam The spacer 6 slidably fitted into the eccentric hole 2a of the receiver 2 is guided by the connecting member 11 and moves to the right, and at the same time, the connecting member 11 is guided by the lid 7a of the housing 7 and moves upward. As a result, the spacer 6 revolves counterclockwise with respect to the housing 7 without rotating. As the spacer 6 revolves, the eccentric cam 4 slidably fitted into the inner periphery of the spacer 6 rotates eccentrically, and the output shaft 3 integral with the eccentric cam 4 rotates.
 一方、出力軸3に逆入力トルクが加えられたときは、出力軸3と一体の偏心カム4からスペーサ6に伝達される接線力が周方向位置によって異なり、スペーサ6に移動力が発生するため、連結部材11は内側面の凸部11aがスペーサ6の凹部6bの方向と異なる方向に力を受けて摺動できなくなる。すなわち、スペーサ6は移動力の発生により公転旋回運動を妨げられ、これにより、出力軸3はロック状態となって回転せず、カム受け2および入力軸1も回転しない。 On the other hand, when a reverse input torque is applied to the output shaft 3, the tangential force transmitted from the eccentric cam 4 integrated with the output shaft 3 to the spacer 6 varies depending on the circumferential position, and a moving force is generated in the spacer 6. , the convex portion 11a on the inner surface of the connecting member 11 receives a force in a direction different from the direction of the concave portion 6b of the spacer 6, and becomes unable to slide. That is, the spacer 6 is prevented from rotating and rotating due to the generation of the moving force, and as a result, the output shaft 3 is locked and does not rotate, and the cam receiver 2 and the input shaft 1 also do not rotate.
 また、非常時等には、連結機構5でカム受け2と出力軸3を連結することにより、逆入力トルクを加えて出力軸3を入力軸1と一体に回転させることもできる。すなわち、出力側から入力側を動かすことが必要となったときは、図4Aに示すように、ハウジング7の開口蓋10を取り外し、ハウジング7の外方からドライバー13でカム受け2の外周の回転操作部2cを操作してカム受け2を回転させ、図4Bに示すように、カム受け2のねじ孔2bの周方向位置をハウジング7の開口7cに合わせたうえで、ドライバー13で連結機構5のねじ12を締め込んで、ねじ12の先端部を出力軸3のフランジ部3aの外周面に押し付ける。これにより、カム受け2(および入力軸1)と出力軸3(および偏心カム4)とが一体回転可能に連結されるので、出力軸3に逆入力トルクを加えると、入力軸1に入力トルクを加えたときと同様のメカニズムで入力軸1および出力軸3が回転する。そして、非常時における作業等が完了すれば、ねじ12を緩めて出力軸3のフランジ部3aから離し(カム受け2と出力軸3の連結を解除し)、開口蓋10を取り付けて通常状態に戻しておく。なお、ねじ12は六角穴つきのものとし、六角レンチで操作するようにしてもよい。 Furthermore, in an emergency, by connecting the cam receiver 2 and the output shaft 3 with the connection mechanism 5, the output shaft 3 can be rotated together with the input shaft 1 by applying a reverse input torque. That is, when it is necessary to move the input side from the output side, as shown in FIG. Operate the operation part 2c to rotate the cam receiver 2, align the circumferential position of the screw hole 2b of the cam receiver 2 with the opening 7c of the housing 7, as shown in FIG. Tighten the screw 12 to press the tip of the screw 12 against the outer peripheral surface of the flange portion 3a of the output shaft 3. As a result, the cam receiver 2 (and the input shaft 1) and the output shaft 3 (and the eccentric cam 4) are connected to be able to rotate together, so when a reverse input torque is applied to the output shaft 3, the input torque is applied to the input shaft 1. The input shaft 1 and the output shaft 3 rotate by the same mechanism as when the When the emergency work etc. is completed, loosen the screw 12 and separate it from the flange part 3a of the output shaft 3 (release the connection between the cam receiver 2 and the output shaft 3), attach the opening cover 10, and return to the normal state. I'll put it back. Note that the screw 12 may have a hexagonal socket and be operated with a hexagonal wrench.
 この逆入力遮断クラッチは、上述のように逆入力遮断機能とその逆入力遮断機能を解除する機構を備えているので、非常停止機能および駆動用動力なしで軸を動かす機能が必要とされるロボットのアクチュエータにも使用することができる。 As mentioned above, this reverse input cutoff clutch is equipped with a reverse input cutoff function and a mechanism to release the reverse input cutoff function, so it can be used in robots that require an emergency stop function and the ability to move axes without driving power. It can also be used as an actuator.
 また、その構成は、小型のローラやばねを複数組み込んだ従来のロック式のものに比べて、製作時にカム面形成のような複雑な加工がないため、部品の製作や寸法精度の確保がしやすいし、部品点数が少なく組立も容易である。さらに、逆入力トルクに対してロックする部品すなわち旋回支持機構8を構成する各部品(スペーサ6、連結部材11、ハウジング7)に生じる面圧が小さいので、そのうちの少なくとも一つの部品の材質に樹脂や軟質金属等を採用して、クラッチ全体の軽量化を図ることもできる。 In addition, compared to conventional locking types that incorporate multiple small rollers and springs, the structure does not require complicated machining such as forming cam surfaces during manufacturing, making it easier to manufacture parts and ensure dimensional accuracy. It is easy to assemble, has a small number of parts, and is easy to assemble. Furthermore, since the surface pressure generated on the parts that lock against reverse input torque, that is, the parts (spacer 6, connecting member 11, housing 7) constituting the swing support mechanism 8, is small, at least one of the parts is made of resin. It is also possible to reduce the weight of the entire clutch by using soft metal or the like.
 図5および図6は旋回支持機構8の変形例を示す。この変形例の旋回支持機構8は、第1および第2の凹凸嵌合部を構成するスペーサ6の凹部6b、連結部材11の両側面の凸部11a、11bおよびハウジング7の蓋部7aの凹部7dとして、それぞれ図1および図2に示したものに加えてその両側で平行に延びるものが複数形成されている。これにより、負荷トルクを受ける部位が分散されるので、各部品の材質に樹脂や軟質金属を採用して軽量化を図りやすいものとなり、各部品の材質を変えない場合はトルク負荷容量を大きくすることができる。 5 and 6 show a modification of the swing support mechanism 8. The swing support mechanism 8 of this modification includes a recess 6b of the spacer 6 that constitutes the first and second uneven fitting parts, projections 11a and 11b on both sides of the connecting member 11, and a recess in the lid 7a of the housing 7. 7d, in addition to those shown in FIGS. 1 and 2, a plurality of them are formed extending in parallel on both sides. As a result, the parts that receive the load torque are distributed, making it easier to reduce weight by using resin or soft metal for each part, and increase the torque load capacity if the material of each part is not changed. be able to.
 さらに、この変形例では、連結部材11における内側面の各凸部11aの先端部およびスペーサ6の各凹部6b間の部位の表面部を断面三角形状に形成している。また、偏心カム4の外側面(スペーサ6の連結部6aとの軸方向対向面)、出力軸3のフランジ部3aの外側面(入力軸1のフランジ部1aとの軸方向対向面)および蓋9の内側面(カム受け2との軸方向対向面)には、それぞれの外周縁部に断面三角形状の環状突部4a、3b、9aが形成されている。これは、軸方向で対向して摺動する部位どうしの間には摩耗粉の発生を防止するための潤滑剤が配されるので、その潤滑剤によって各摺動部位が互いに吸着されることを防止するためである。その摺動部位どうしの接触面積を互いに対向する面積の50%以下とすれば、クラッチ動作をより安定したものとすることができる。 Furthermore, in this modification, the tip of each convex portion 11a on the inner surface of the connecting member 11 and the surface portion of the portion between each concave portion 6b of the spacer 6 are formed to have a triangular cross-section. Also, the outer surface of the eccentric cam 4 (the surface facing the connecting portion 6a of the spacer 6 in the axial direction), the outer surface of the flange portion 3a of the output shaft 3 (the surface facing the flange portion 1a of the input shaft 1 in the axial direction), and the lid. Annular protrusions 4a, 3b, and 9a each having a triangular cross section are formed on the inner side surface (the surface facing the cam receiver 2 in the axial direction) at the outer peripheral edge thereof. This is because a lubricant is placed between the sliding parts facing each other in the axial direction to prevent the generation of wear particles, so the lubricant prevents the sliding parts from attracting each other. This is to prevent this. If the contact area between the sliding parts is 50% or less of the area where the sliding parts face each other, the clutch operation can be made more stable.
 なお、上述した第1実施形態では、出力軸3の一端部を円筒状の入力軸1の内周に摺動可能に嵌め込んで支持するようにしたが、これと逆に、出力軸の一端部を円筒状に形成して、その内周に入力軸の他端部を摺動可能に嵌め込んで支持するようにしてもよい。 In the first embodiment described above, one end of the output shaft 3 is slidably fitted into the inner periphery of the cylindrical input shaft 1 and supported. The input shaft may be formed into a cylindrical shape, and the other end of the input shaft may be slidably fitted and supported on the inner periphery of the input shaft.
 図7は、第1実施形態の逆入力遮断クラッチを変形して組み込んだアクチュエータを示す。このアクチュエータは、逆入力遮断クラッチ20を減速機21とモータ22の出力側の間に組み込み、モータ22の入力側に回転センサ(エンコーダ)23を設けたロボット用のものである。その逆入力遮断クラッチ20の構成において、上述した第1実施形態のもの(図1乃至図4A、図4Bのもの)と異なっているのは、ハウジング7に第1実施形態のようなフランジ部7bがない点、および出力軸3の一端部が入力軸1の一端から突出している点のみである。 FIG. 7 shows an actuator incorporating a modified reverse input cutoff clutch of the first embodiment. This actuator is for a robot in which a reverse input cutoff clutch 20 is incorporated between a speed reducer 21 and the output side of a motor 22, and a rotation sensor (encoder) 23 is provided on the input side of the motor 22. The configuration of the reverse input cutoff clutch 20 differs from that of the first embodiment described above (FIGS. 1 to 4A and 4B) in that the housing 7 has a flange portion 7b as in the first embodiment. The only points are that there is no output shaft 3, and that one end of the output shaft 3 protrudes from one end of the input shaft 1.
 また、逆入力遮断クラッチ20の入力軸1はモータ22のモータ軸24にキー25で一体回転可能に連結されており、出力軸3は減速機21の入力側に連結されている。そのモータ軸24は回転センサ23を貫通しており、モータ軸24の回転センサ23からの突出部に回転板26が取り付けられている。 Further, the input shaft 1 of the reverse input cutoff clutch 20 is connected to the motor shaft 24 of the motor 22 so as to be integrally rotatable with a key 25, and the output shaft 3 is connected to the input side of the speed reducer 21. The motor shaft 24 passes through the rotation sensor 23, and a rotary plate 26 is attached to a protrusion of the motor shaft 24 from the rotation sensor 23.
 このアクチュエータは、上記の構成であり、逆入力遮断クラッチ20を組み込んだことにより、電磁ブレーキを組み込んだものに比べて省電力化できるし、ロボットへの取付けも容易に行え、ロボットのコントロール性を向上させることもできる。また、摩耗粉が減速機21や回転センサ23の動作に悪影響を及ぼすおそれがないので、モータ22と回転センサ23を直接接続でき、その構造をブレーキのないアクチュエータと統一(標準化)することもできる。 This actuator has the above configuration, and by incorporating the reverse input cutoff clutch 20, it can save power compared to the one incorporating an electromagnetic brake, and can be easily installed on a robot, improving the controllability of the robot. It can also be improved. Furthermore, since there is no risk of wear particles having an adverse effect on the operation of the reducer 21 and rotation sensor 23, the motor 22 and rotation sensor 23 can be directly connected, and the structure can be unified (standardized) with an actuator without a brake. .
 また、停電等の非常時または異常状態で、出力側からロボットを動かすために逆入力遮断クラッチ20の逆入力遮断機能を解除する、具体的な作業としては連結機構5でカム受け2と出力軸3とを連結する際には、回転板26を手動で回転操作して、モータ軸24、入力軸1およびカム受け2を一体に回転させることにより、ハウジング7の開口7cとカム受け2のねじ孔2bの位置合わせを簡単に行うことができる。 In addition, in an emergency or abnormal condition such as a power outage, the reverse input cutoff function of the reverse input cutoff clutch 20 is released in order to move the robot from the output side. 3, by manually rotating the rotating plate 26 and rotating the motor shaft 24, input shaft 1, and cam receiver 2 together, the opening 7c of the housing 7 and the screw of the cam receiver 2 are connected. The hole 2b can be easily aligned.
 そして、このアクチュエータを使用したロボットでは、逆入力遮断クラッチ20の逆入力遮断機能を解除することにより、ロボットアーム側からロボット全体を動かしてティーチングするダイレクトティーチング(ロボット教示方法の一つ)も可能となる。 In addition, in a robot using this actuator, by releasing the reverse input cutoff function of the reverse input cutoff clutch 20, direct teaching (one of the robot teaching methods) in which teaching is performed by moving the entire robot from the robot arm side is also possible. Become.
 図8乃至図10は、第2実施形態の逆入力遮断クラッチ30を組み込んだロボット用アクチュエータを示す。このアクチュエータの基本的な構成は、図7に示したものと同じであり、逆入力遮断クラッチ30を減速機21とモータ22の出力側の間に組み込み、モータ22の入力側に回転センサ23を設けている。図7に示したものと異なっているのは、逆入力遮断クラッチ30が、第1実施形態のものとは別の構成の連結機構31を採用している点、およびその連結機構31を操作するためにモータ軸24を中空としている点である。したがって、以下では、その相違点について説明し、それ以外の構成については説明を省略する。 8 to 10 show a robot actuator incorporating the reverse input cutoff clutch 30 of the second embodiment. The basic configuration of this actuator is the same as that shown in FIG. It is set up. What is different from that shown in FIG. 7 is that the reverse input cutoff clutch 30 employs a coupling mechanism 31 having a different configuration from that of the first embodiment, and that the coupling mechanism 31 is operated. Therefore, the motor shaft 24 is hollow. Therefore, below, the differences will be explained, and the explanation of other configurations will be omitted.
 このアクチュエータの逆入力遮断クラッチ30は、入力軸1を一端側へ延長してモータ軸24の内部に通し、モータ軸24の端面から突出させるとともに、出力軸3を一端側へ延長して入力軸1の内部に通し、入力軸1の端面から突出させ、その入力軸1のモータ軸24端面からの突出部と出力軸3の入力軸1端面からの突出部との間に連結機構31を設けている。 The reverse input cutoff clutch 30 of this actuator extends the input shaft 1 toward one end, passes it through the inside of the motor shaft 24, and protrudes from the end surface of the motor shaft 24, and extends the output shaft 3 toward one end so that the input shaft 1 and protrudes from the end face of the input shaft 1, and a coupling mechanism 31 is provided between the protrusion of the input shaft 1 from the end face of the motor shaft 24 and the protrusion of the output shaft 3 from the end face of the input shaft 1. ing.
 連結機構31は、出力軸3の入力軸1端面からの突出部を含む一端部の外周面におねじ3cおよび複数の軸方向溝3dを設け、その出力軸3の突出部に、軸方向溝3dに挿入される突起32aを内周に有する環状の固定板32を軸方向移動可能に外嵌し、おねじ3cとねじ結合する環状の回転板33を固定板32よりも軸方向外側に装着するとともに、モータ軸24と固定板32との間に固定板32を回転板33に向けて付勢する弾性部材としてのコイルばね34を設け、入力軸1と固定板32の互いの軸方向対向面に第3の凹凸嵌合部を設けたものである。その第3の凹凸嵌合部は、入力軸1の一端面に設けられた複数の凹部1bと、固定板32の他側面に設けられた複数の凸部32bとで構成される。また、出力軸3の一端部には回転板33を抜け止めするピン35が取り付けられている。 The coupling mechanism 31 is provided with a thread 3c and a plurality of axial grooves 3d on the outer circumferential surface of one end of the output shaft 3 including a protrusion from the end surface of the input shaft 1; An annular fixing plate 32 having a protrusion 32a on the inner circumference that is inserted into the fixing plate 3d is fitted onto the outside so as to be movable in the axial direction, and an annular rotary plate 33 that is threadedly connected to the male screw 3c is attached to the outside of the fixing plate 32 in the axial direction. At the same time, a coil spring 34 is provided between the motor shaft 24 and the fixed plate 32 as an elastic member that urges the fixed plate 32 toward the rotating plate 33, so that the input shaft 1 and the fixed plate 32 are axially opposed to each other. A third uneven fitting portion is provided on the surface. The third concave-convex fitting portion is composed of a plurality of recesses 1b provided on one end surface of the input shaft 1 and a plurality of convex portions 32b provided on the other side of the fixed plate 32. Further, a pin 35 is attached to one end of the output shaft 3 to prevent the rotating plate 33 from coming off.
 そして、通常時は、図9に示すように、回転板33が出力軸3の一端近傍に後退して、固定板32が入力軸1と接触せず、入力軸1と出力軸3が連結されていない状態で保持されている。この図9の状態から、回転板33を所定方向に回転させると、回転板33が固定板32をコイルばね34の付勢力に抗して軸方向内側へ移動させ、固定板32の各凸部32bが入力軸1の凹部1bに嵌まり込んで(第3の凹凸嵌合部が嵌合状態となって)、固定板32を介して入力軸1と出力軸3とが一体回転可能に連結され、図8の状態とすることができる。また、図8の状態から、回転板33を逆方向に回転させれば、コイルばね34の付勢力によって固定板32が入力軸1から離れ(入力軸1と出力軸3の連結が解除され)、通常状態に戻る。なお、回転板33は六角ナットに変更して、六角レンチで回転操作するようにしてもよい。 Under normal conditions, as shown in FIG. 9, the rotary plate 33 retreats to near one end of the output shaft 3, the fixed plate 32 does not come into contact with the input shaft 1, and the input shaft 1 and output shaft 3 are connected. It is kept in a state where it is not. When the rotating plate 33 is rotated in a predetermined direction from the state shown in FIG. 32b fits into the concave portion 1b of the input shaft 1 (the third uneven fitting portion is in the fitted state), and the input shaft 1 and the output shaft 3 are connected to be integrally rotatable via the fixed plate 32. The state shown in FIG. 8 can be obtained. Furthermore, if the rotary plate 33 is rotated in the opposite direction from the state shown in FIG. 8, the fixed plate 32 is separated from the input shaft 1 by the biasing force of the coil spring 34 (the connection between the input shaft 1 and the output shaft 3 is released). , return to normal state. Note that the rotary plate 33 may be replaced with a hexagonal nut and rotated with a hexagonal wrench.
 したがって、通常時は、入力トルクに対して入力軸1の回転を出力軸3に伝達し、逆入力トルクに対しては出力軸3をロックさせて入力軸1が回転しないようにし、非常時には、連結機構31で出力軸3を入力軸1と連結して、逆入力トルクが加えられたときも出力軸3をロックさせないようにする(逆入力遮断機能を解除する)ことができる。 Therefore, in normal times, the rotation of input shaft 1 is transmitted to output shaft 3 in response to input torque, and in response to reverse input torque, output shaft 3 is locked to prevent input shaft 1 from rotating, and in an emergency, By connecting the output shaft 3 to the input shaft 1 using the connecting mechanism 31, it is possible to prevent the output shaft 3 from being locked even when reverse input torque is applied (reverse input cutoff function is canceled).
 すなわち、この逆入力遮断クラッチ30も第1実施形態のものと同じ機能を有し、これを組み込んだアクチュエータも図7に示したものと同様の効果を発揮することができる。 That is, this reverse input cutoff clutch 30 also has the same function as that of the first embodiment, and an actuator incorporating this can also exhibit the same effects as shown in FIG. 7.
 図11および図12は第3実施形態の逆入力遮断クラッチ40を示す。この逆入力遮断クラッチ40は、図7に示したアクチュエータに組み込まれた第1実施形態の逆入力遮断クラッチ20をベースとして、第1実施形態よりも大径かつ中空の出力軸3を組み込むことにより、ロボットのアクチュエータに使用される場合に、その配線を出力軸3に通してロボットの外部に出さないようにできる構成としたものである。したがって、以下では、図7の第1実施形態のものとの相違点について説明し、それ以外の構成については説明を省略する。 11 and 12 show a reverse input cutoff clutch 40 of a third embodiment. This reverse input cutoff clutch 40 is based on the reverse input cutoff clutch 20 of the first embodiment incorporated in the actuator shown in FIG. When used as an actuator for a robot, the configuration is such that the wiring can be passed through the output shaft 3 and not exposed to the outside of the robot. Therefore, in the following, differences from the first embodiment shown in FIG. 7 will be explained, and explanations of other configurations will be omitted.
 この第3実施形態の逆入力遮断クラッチ40は、連結機構41の位置が第1実施形態のものと異なっている。すなわち、連結機構41は、入力軸1にその外周面から出力軸3に向かって径方向に貫通するねじ孔1cを設け、そのねじ孔1cにねじ込まれたねじ12を締め込んで出力軸3のDカット部3eの外周平坦面に押し付けることにより、入力軸1(およびカム受け2)と出力軸3(および偏心カム4)とを一体回転可能に連結するものとなっている。 The reverse input cutoff clutch 40 of this third embodiment differs from that of the first embodiment in the position of the coupling mechanism 41. That is, the coupling mechanism 41 is provided with a screw hole 1c that penetrates the input shaft 1 in the radial direction from its outer peripheral surface toward the output shaft 3, and the screw 12 screwed into the screw hole 1c is tightened to connect the output shaft 3. By pressing against the flat outer peripheral surface of the D-cut portion 3e, the input shaft 1 (and cam receiver 2) and the output shaft 3 (and eccentric cam 4) are connected so as to be integrally rotatable.
 そして、上記の位置に連結機構41を設けることにより、第1実施形態の出力軸3のフランジ部3aをなくすとともに、カム受け2を第1実施形態よりも薄くして、第1実施形態よりも大径で中空の出力軸3を組み込めるようにしている。なお、連結機構41の位置の変更に伴い、第1実施形態のハウジング7の開口7cおよび開口蓋10も省略されている。 By providing the coupling mechanism 41 at the above position, the flange portion 3a of the output shaft 3 of the first embodiment is eliminated, and the cam receiver 2 is made thinner than the first embodiment. A hollow output shaft 3 with a large diameter can be incorporated. Note that due to the change in the position of the coupling mechanism 41, the opening 7c of the housing 7 and the opening lid 10 of the first embodiment are also omitted.
 また、この第3実施形態では、出力軸3は入力軸1を貫通しておらず、入力軸1には連結機構41のねじ孔1cと軸方向で並ぶように入力用ねじ孔1dがあけられ、その入力用ねじ孔1dにねじ込まれた入力用ねじ42の締め込みにより、入力軸1がその一端側の内周に挿入されるモータ軸等の入力用軸部材(図示省略)と一体回転可能に連結されるようになっている。さらに、第1実施形態のハウジング7に嵌め込まれた蓋9の代わりに、ハウジング7とカム受け2との間に保持器付きころ43が組み込まれて、カム受け2および入力軸1を回転自在に支持するころ軸受が形成されるとともに、ハウジング7の蓋部7aと出力軸3との間に組み込まれた転がり軸受44によって出力軸3が回転自在に支持されており、これらの点も第1実施形態とは異なっている。 Further, in the third embodiment, the output shaft 3 does not pass through the input shaft 1, and the input shaft 1 is provided with an input screw hole 1d so as to be aligned with the screw hole 1c of the coupling mechanism 41 in the axial direction. By tightening the input screw 42 screwed into the input screw hole 1d, the input shaft 1 can rotate integrally with an input shaft member (not shown) such as a motor shaft inserted into the inner periphery of one end of the input shaft 1. It is now connected to. Furthermore, instead of the lid 9 fitted into the housing 7 of the first embodiment, rollers with a retainer 43 are incorporated between the housing 7 and the cam receiver 2, allowing the cam receiver 2 and the input shaft 1 to rotate freely. A supporting roller bearing is formed, and the output shaft 3 is rotatably supported by a rolling bearing 44 incorporated between the cover portion 7a of the housing 7 and the output shaft 3, and these points are also different from the first embodiment. It is different from the form.
 図13および図14は、それぞれ上記図11、12に示した逆入力遮断クラッチ40の変形例を示す。図13の変形例は、ハウジング7とカム受け2との間だけでなく、カム受け2とスペーサ6との間、およびスペーサ6と偏心カム4との間にも保持器付きころ43を組み込んでころ軸受を形成し、入力軸1の回転がより効率よく出力軸3に伝達されるようにしたものである。 13 and 14 show modified examples of the reverse input cutoff clutch 40 shown in FIGS. 11 and 12 above, respectively. The modification shown in FIG. 13 incorporates rollers with cages 43 not only between the housing 7 and the cam receiver 2, but also between the cam receiver 2 and the spacer 6, and between the spacer 6 and the eccentric cam 4. A roller bearing is formed so that the rotation of the input shaft 1 is transmitted to the output shaft 3 more efficiently.
 そして、図14の変形例は、図13のハウジング7とカム受け2との間のころ軸受の位置およびハウジング7の蓋部7aと出力軸3との間の転がり軸受44の位置にそれぞれ玉軸受44’を組み込んで、ハウジング7に対してカム受け2および出力軸3を軸方向に位置決めすることにより、カム受け2とハウジング7、スペーサ6および出力軸3との間の軸方向スペースを確保して、摺動トルクの低減を図ったものである。 In the modification shown in FIG. 14, ball bearings are installed at the location of the roller bearing between the housing 7 and the cam receiver 2 in FIG. 44' and position the cam receiver 2 and output shaft 3 in the axial direction with respect to the housing 7, the axial space between the cam receiver 2, the housing 7, the spacer 6, and the output shaft 3 is secured. This is intended to reduce sliding torque.
 図15は第3実施形態の逆入力遮断クラッチ40(図11、12の例)を組み込んだロボット用アクチュエータを示す。このアクチュエータの基本的な構成は、図7に示したものと同じであり、逆入力遮断クラッチ40を減速機21とモータ22の出力側の間に組み込み、モータ22の入力側に回転センサ23を設けている。ただし、モータ22のモータ軸24は、図8乃至図10に示したものと同じく、中空としている。 FIG. 15 shows a robot actuator incorporating the reverse input cutoff clutch 40 (example shown in FIGS. 11 and 12) of the third embodiment. The basic configuration of this actuator is the same as that shown in FIG. It is set up. However, the motor shaft 24 of the motor 22 is hollow as shown in FIGS. 8 to 10.
 逆入力遮断クラッチ40の入力軸1とモータ軸24との連結は、図7のようなキー結合ではなく、図11に基づいて説明したように、入力軸1の一端側内周にモータ軸24の出力側端部を挿入した状態で、入力軸1の入力用ねじ孔1dにねじ込まれた入力用ねじ42を締め込むことによって行われる。 The connection between the input shaft 1 and the motor shaft 24 of the reverse input cutoff clutch 40 is not a key connection as shown in FIG. 7, but as explained based on FIG. This is done by tightening the input screw 42 screwed into the input screw hole 1d of the input shaft 1 while the output side end of the input shaft 1 is inserted.
 また、逆入力遮断クラッチ40とモータ22の間には、逆入力遮断クラッチ40の入力軸1を覆う環状のジョイント部材45が設けられており、そのジョイント部材45の周方向に複数あけられた窓45aから連結機構41のねじ12および入力用ねじ42の操作を行えるようになっている。 Further, an annular joint member 45 that covers the input shaft 1 of the reverse input cutoff clutch 40 is provided between the reverse input cutoff clutch 40 and the motor 22, and a plurality of windows are formed in the circumferential direction of the joint member 45. The screw 12 of the coupling mechanism 41 and the input screw 42 can be operated from 45a.
 連結機構41のねじ12を操作する際には、モータ軸24の回転センサ23からの突出部に取り付けられた回転板26を手動で回転操作して、モータ軸24と入力軸1を一体に回転させることにより、ジョイント部材45の窓45aと入力軸1のねじ孔1cの位置合わせを簡単に行うことができる。 When operating the screw 12 of the coupling mechanism 41, the rotary plate 26 attached to the protrusion from the rotation sensor 23 of the motor shaft 24 is manually rotated to rotate the motor shaft 24 and the input shaft 1 together. By doing so, the window 45a of the joint member 45 and the screw hole 1c of the input shaft 1 can be easily aligned.
 また、このアクチュエータでは、減速機21の外側面から、減速機21、逆入力遮断クラッチ40のハウジング7、ジョイント部材45およびモータ22を貫通して、回転センサ23にねじ込まれる一本のボルト46により、これらの各部材が連結されており、この点も図7に示したものと異なっている。 Further, in this actuator, a single bolt 46 is screwed into the rotation sensor 23 from the outer surface of the reducer 21, passing through the reducer 21, the housing 7 of the reverse input cutoff clutch 40, the joint member 45, and the motor 22. , these members are connected, and this point also differs from that shown in FIG.
 そして、前述のように、モータ軸24および逆入力遮断クラッチ40の出力軸3を中空としているので、配線をモータ軸24および出力軸3に通してロボットの外部に出さないようにすることができる。 As described above, since the motor shaft 24 and the output shaft 3 of the reverse input cutoff clutch 40 are hollow, the wiring can be passed through the motor shaft 24 and the output shaft 3 and not exposed to the outside of the robot. .
 図16は第4実施形態の逆入力遮断クラッチ50を組み込んだロボット用アクチュエータを示す。このアクチュエータの基本的な構成は、図15に示したものと同じであり、逆入力遮断クラッチ50を減速機21と中空のモータ軸24を有するモータ22の出力側の間に組み込み、モータ22の入力側に回転センサ23を設けている。逆入力遮断クラッチ50の入力軸1と出力軸3との連結機構41、そのねじ12の操作方法も図15に示したものと同じである。以下、このアクチュエータの図15に示したものとの相違点について説明する。 FIG. 16 shows a robot actuator incorporating the reverse input cutoff clutch 50 of the fourth embodiment. The basic configuration of this actuator is the same as that shown in FIG. A rotation sensor 23 is provided on the input side. The method of operating the coupling mechanism 41 between the input shaft 1 and the output shaft 3 of the reverse input cutoff clutch 50 and the screw 12 thereof is also the same as that shown in FIG. 15. Hereinafter, differences between this actuator and the one shown in FIG. 15 will be explained.
 このアクチュエータは、まず、逆入力遮断クラッチ50のハウジング7とカム受け2との間にころ軸受が形成されていない点、モータ軸24と逆入力遮断クラッチ50の入力軸1を連結するための入力軸1の入力用ねじ孔および入力用ねじ42が設けられていない点が、図15に示したものと異なる。 First, this actuator has the following points: No roller bearing is formed between the housing 7 of the reverse input cutoff clutch 50 and the cam receiver 2, and the input shaft for connecting the motor shaft 24 and the input shaft 1 of the reverse input cutoff clutch 50. This differs from the one shown in FIG. 15 in that the input screw hole of the shaft 1 and the input screw 42 are not provided.
 そして、そのモータ軸24は、逆入力遮断クラッチ50の入力軸1と出力軸3のそれぞれに回転方向隙間をもって連結されている。すなわち、図16および図17に示すように、モータ軸24は出力側端部の外周がDカットされ、モータ軸24の出力側端部が挿入される入力軸1の内周および出力軸3の内周には、それぞれモータ軸24の外周のカット面24aと対向する平坦な係合面1e、3fが形成されている。そして、図17の状態からモータ軸24を駆動したときは、図18に示すように、モータ軸24のカット面24aが出力軸3の係合面3fよりも先に入力軸1の係合面1eに係合するようになっている。言い換えると、モータ軸24と入力軸1との回転隙間角度をθMI、モータ軸24と出力軸3との回転隙間角度をθMOとするとき、θMO>θMIとなるように形成されている。 The motor shaft 24 is connected to each of the input shaft 1 and output shaft 3 of the reverse input cutoff clutch 50 with a gap in the rotational direction. That is, as shown in FIGS. 16 and 17, the outer periphery of the output end of the motor shaft 24 is cut in a D shape, and the inner periphery of the input shaft 1 and the output shaft 3 into which the output end of the motor shaft 24 is inserted are cut. Flat engagement surfaces 1e and 3f are formed on the inner periphery, respectively, to face the cut surface 24a on the outer periphery of the motor shaft 24. When the motor shaft 24 is driven from the state shown in FIG. 17, as shown in FIG. 1e. In other words, when the rotation clearance angle between the motor shaft 24 and the input shaft 1 is θ MI and the rotation clearance angle between the motor shaft 24 and the output shaft 3 is θ MO , the rotation clearance angle is formed so that θ MOMI . There is.
 また、図示は省略するが、カム受け2とスペーサ6との間、偏心カム4とスペーサ6との間にはそれぞれ僅かな嵌め合い隙間があり、カム受け2とスペーサ6との回転隙間角度をθRS、偏心カム4とスペーサ6との回転隙間角度をθCSとするとき、θRS≦θCSかつθCS<θMOとなるように設定されている。 Although not shown, there are slight fitting gaps between the cam receiver 2 and the spacer 6 and between the eccentric cam 4 and the spacer 6, so that the rotation gap angle between the cam receiver 2 and the spacer 6 can be adjusted. When θ RS is the rotational clearance angle between the eccentric cam 4 and the spacer 6, θ CS is set so that θ RS ≦θ CS and θ CSMO .
 このアクチュエータでは上記のように各回転隙間角度が設定されており、モータ軸24が駆動されたときは、θMI+θRS<θMO+θCSの関係から、最初に入力軸1およびカム受け2の方からスペーサ6に回転が伝達されてスペーサ6が公転旋回し、その後にモータ軸24から直接出力軸3に回転が伝達されて、出力軸3が回転するようになる。一方、出力軸3に逆入力トルクが加えられたときは、θCS<θMOの関係から、最初に出力軸3および偏心カム4の方からスペーサ6に回転が伝達され、スペーサ6の公転旋回運動が妨げられることにより出力軸3がロック状態となる。そして、連結機構41のねじ12を操作して、出力軸3および偏心カム4を入力軸1およびカム受け2と一体回転可能に連結すると、出力軸3に逆入力トルクが加えられたときに、θRS≦θCSの関係から、入力軸1およびカム受け2の方から出力軸3および偏心カム4の方よりも早く(または同時に)スペーサ6に回転が伝達されるので、出力軸3はロックすることなく回転するようになる。 In this actuator, each rotational clearance angle is set as described above, and when the motor shaft 24 is driven, from the relationship θ MI + θ RS < θ MO + θ CS , the input shaft 1 and cam receiver 2 are Rotation is transmitted from the motor shaft 24 to the spacer 6, causing the spacer 6 to revolve, and then rotation is transmitted directly from the motor shaft 24 to the output shaft 3, causing the output shaft 3 to rotate. On the other hand, when a reverse input torque is applied to the output shaft 3, rotation is first transmitted from the output shaft 3 and the eccentric cam 4 to the spacer 6 due to the relationship θ CS < θ MO , and the rotation of the spacer 6 is By preventing the movement, the output shaft 3 becomes locked. Then, by operating the screw 12 of the coupling mechanism 41, the output shaft 3 and the eccentric cam 4 are coupled to the input shaft 1 and the cam receiver 2 so as to be integrally rotatable, and when a reverse input torque is applied to the output shaft 3, From the relationship θ RS ≦ θ CS , rotation is transmitted from the input shaft 1 and cam receiver 2 to the spacer 6 earlier (or at the same time) than from the output shaft 3 and eccentric cam 4, so the output shaft 3 is locked. It will rotate without any movement.
 なお、図示は省略するが、図15に示した入力軸1の入力用ねじ孔と入力用ねじ42を設けて、モータ軸24を回転方向隙間なく入力軸1と連結した場合は、上記の回転隙間角度の大小関係をθMI=0として設計すればよい。 Although not shown, if the input screw hole and input screw 42 of the input shaft 1 shown in FIG. 15 are provided and the motor shaft 24 is connected to the input shaft 1 without any clearance in the rotational direction, It is sufficient to design the size relationship of the gap angles by setting θ MI =0.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims, not the meaning described above, and is intended to include meanings equivalent to the scope of the claims and all changes within the scope.
 例えば、第1乃至第3の凹凸嵌合部は、それぞれその凹部と凸部を実施形態と逆に設けるようにしてもよい。 For example, the first to third uneven fitting portions may each have a concave portion and a convex portion opposite to those in the embodiment.
 また、逆入力遮断クラッチの連結機構は、上述した各実施形態のものに限らず、出力軸および偏心カムを入力軸およびカム受けと一体回転可能に連結する機能を有しているものであればよい。 Further, the connection mechanism of the reverse input cutoff clutch is not limited to those of the above-mentioned embodiments, but any mechanism capable of connecting the output shaft and the eccentric cam to the input shaft and the cam receiver so as to be integrally rotatable can be used. good.
1 入力軸
1c ねじ孔
1e 係合面
2 カム受け
2a 偏心穴
2b ねじ孔
2c 回転操作部
3 出力軸
3a フランジ部
3c おねじ
3d 軸方向溝
3e Dカット部
3f 係合面
4 偏心カム
5 連結機構
6 スペーサ
6a 連結部
7 ハウジング(固定部材、カバー部材)
7c 開口
8 旋回支持機構
9 蓋
10 開口蓋
11 連結部材
12 ねじ
20 逆入力遮断クラッチ
21 減速機
22 モータ
23 回転センサ
24 モータ軸
24a カット面
30 逆入力遮断クラッチ
31 連結機構
32 固定板
32a 突起
33 回転板
34 コイルばね(弾性部材)
40 逆入力遮断クラッチ
41 連結機構
45 ジョイント部材
45a 窓
1 Input shaft 1c Threaded hole 1e Engagement surface 2 Cam receiver 2a Eccentric hole 2b Threaded hole 2c Rotary operation section 3 Output shaft 3a Flange section 3c Male thread 3d Axial groove 3e D-cut section 3f Engagement surface 4 Eccentric cam 5 Connection mechanism 6 Spacer 6a Connection part 7 Housing (fixing member, cover member)
7c Opening 8 Swivel support mechanism 9 Lid 10 Opening lid 11 Connection member 12 Screw 20 Reverse input cutoff clutch 21 Reducer 22 Motor 23 Rotation sensor 24 Motor shaft 24a Cut surface 30 Reverse input cutoff clutch 31 Connection mechanism 32 Fixed plate 32a Protrusion 33 Rotation Plate 34 Coil spring (elastic member)
40 Reverse input cutoff clutch 41 Connection mechanism 45 Joint member 45a Window

Claims (9)

  1.  入力軸と出力軸とを同一軸線上に配し、前記出力軸にその軸線と平行な偏心軸線を有する円筒状の偏心カムを設け、前記入力軸にその軸線と同一の軸線を有する円筒状のカム受けを設け、前記カム受けに前記偏心カムと同一軸線を有する円形の偏心穴を形成して、この偏心穴に前記偏心カムを挿入するとともに、前記カム受けの偏心穴の内周面と前記偏心カムの外周面との間に円筒状のスペーサを摺動可能に嵌め込み、前記スペーサと固定部材との間にスペーサを自転不能かつ公転旋回可能に支持する旋回支持機構を設けて、
     前記入力軸に入力トルクが加えられたときは、前記入力軸と一体にカム受けが回転し、前記カム受けの偏心穴に嵌め込まれたスペーサが公転旋回することにより、前記偏心カムと出力軸が一体に回転し、
     前記出力軸に逆入力トルクが加えられたときは、前記スペーサに移動力が生じてスペーサの公転旋回運動が妨げられることにより、前記出力軸がロック状態となるようにし、
     さらに、前記出力軸および偏心カムを前記入力軸およびカム受けと一体回転可能に連結して、前記出力軸に逆入力トルクが加えられたときに出力軸をロックさせないようにする連結機構を設けた逆入力遮断クラッチ。
    An input shaft and an output shaft are disposed on the same axis, a cylindrical eccentric cam having an eccentric axis parallel to the axis is provided on the output shaft, and a cylindrical eccentric cam having an eccentric axis parallel to the axis is provided on the input shaft. A cam receiver is provided, a circular eccentric hole having the same axis as the eccentric cam is formed in the cam receiver, and the eccentric cam is inserted into the eccentric hole, and the inner peripheral surface of the eccentric hole of the cam receiver and the A cylindrical spacer is slidably fitted between the outer circumferential surface of the eccentric cam, and a rotation support mechanism is provided between the spacer and the fixed member to support the spacer so that it cannot rotate on its axis but can rotate in revolution,
    When input torque is applied to the input shaft, the cam receiver rotates together with the input shaft, and the spacer fitted into the eccentric hole of the cam receiver rotates, causing the eccentric cam and output shaft to rotate. rotates as one,
    When a reverse input torque is applied to the output shaft, a moving force is generated in the spacer and the orbital rotational movement of the spacer is hindered, so that the output shaft is placed in a locked state;
    Furthermore, a coupling mechanism is provided that connects the output shaft and the eccentric cam so as to be integrally rotatable with the input shaft and the cam receiver to prevent the output shaft from being locked when a reverse input torque is applied to the output shaft. Reverse input cutoff clutch.
  2.  前記旋回支持機構は、前記スペーサの一端にフランジ状の連結部を設けて、前記スペーサの連結部と固定部材とに軸方向で挟まれる平板状の連結部材を設け、前記連結部材とスペーサの連結部の互いの軸方向対向面に、スペーサの径方向に延びて互いに摺動可能に嵌合する第1の凹凸嵌合部を設けるとともに、前記連結部材と固定部材の互いの軸方向対向面に、前記第1の凹凸嵌合部と直交する方向に延び、互いに摺動可能に嵌合する第2の凹凸嵌合部を設けたものであることを特徴とする請求項1に記載の逆入力遮断クラッチ。 The pivot support mechanism includes a flange-like connecting portion at one end of the spacer, a flat connecting member that is axially sandwiched between the connecting portion of the spacer and a fixing member, and a flat connecting member that connects the connecting member and the spacer. A first uneven fitting portion extending in the radial direction of the spacer and slidably fitting into each other is provided on mutually axially opposing surfaces of the connecting member and the fixing member, and a first uneven fitting portion is provided on mutually axially opposing surfaces of the connecting member and the fixing member. , a second uneven fitting portion extending in a direction perpendicular to the first uneven fitting portion and slidably fitting into each other is provided, the reverse input according to claim 1. Cutoff clutch.
  3.  前記連結機構は、前記出力軸に前記偏心カムと隣接する位置で前記カム受けの内側に挿入されるフランジ部を設け、前記カム受けにその外周面から前記出力軸のフランジ部に向かって径方向に貫通するねじ孔を設け、前記ねじ孔にねじ込まれたねじを締め込んで前記出力軸のフランジ部に押し付けるものであることを特徴とする請求項1または2に記載の逆入力遮断クラッチ。 The coupling mechanism includes a flange portion inserted into the cam receiver at a position adjacent to the eccentric cam on the output shaft, and a flange portion inserted into the cam receiver in a radial direction from an outer peripheral surface of the cam receiver toward the flange portion of the output shaft. 3. The reverse input cutoff clutch according to claim 1, wherein a screw hole is provided through the screw hole, and a screw screwed into the screw hole is tightened and pressed against the flange portion of the output shaft.
  4.  前記カム受けが前記ねじの操作を行うための開口を有するカバー部材に覆われており、前記カム受けの外周に前記ねじ孔の周縁部を傾斜面の起点として周方向に延びるラチェット歯状の回転操作部を設け、前記カバー部材の外方から前記回転操作部を操作することにより、前記カバー部材の開口と前記ねじ孔の位置合わせを行えるようにしたことを特徴とする請求項3に記載の逆入力遮断クラッチ。 The cam receiver is covered with a cover member having an opening for operating the screw, and the outer periphery of the cam receiver has a ratchet tooth-shaped rotation extending in the circumferential direction from the peripheral edge of the screw hole as a starting point of an inclined surface. 4. An operating section is provided, and the opening of the cover member and the screw hole can be aligned by operating the rotation operating section from the outside of the cover member. Reverse input cutoff clutch.
  5.  前記カム受けが前記ねじの操作を行うための開口を有するカバー部材に覆われており、前記入力軸に連結されたモータ軸の駆動により、前記カバー部材の開口と前記ねじ孔の位置合わせを行えるようにしたことを特徴とする請求項3に記載の逆入力遮断クラッチ。 The cam receiver is covered with a cover member having an opening for operating the screw, and the opening of the cover member and the screw hole can be aligned by driving a motor shaft connected to the input shaft. The reverse input cutoff clutch according to claim 3, characterized in that the reverse input cutoff clutch is configured as follows.
  6.  前記連結機構は、前記出力軸を前記入力軸の内部に通して入力軸の端面から突出させ、前記出力軸の入力軸端面からの突出部の外周面におねじおよび軸方向溝を設け、前記出力軸の突出部に、前記軸方向溝に挿入される突起を内周に有する環状の固定板を軸方向移動可能に外嵌し、前記おねじとねじ結合する環状の回転板を前記固定板よりも軸方向外側に装着するとともに、前記固定板を回転板に向けて付勢する弾性部材を設け、前記入力軸と固定板の互いの軸方向対向面に第3の凹凸嵌合部を設けて、前記回転板を所定方向に回転させることにより、前記回転板で固定板を弾性部材の付勢力に抗して軸方向内側へ移動させ、前記第3の凹凸嵌合部を嵌合状態として、前記固定板を介して前記出力軸を入力軸と一体回転可能に連結するものであることを特徴とする請求項1または2に記載の逆入力遮断クラッチ。 The coupling mechanism allows the output shaft to pass through the input shaft and protrude from the end surface of the input shaft, and provides a screw and an axial groove on the outer circumferential surface of the protrusion of the output shaft from the input shaft end surface, and An annular fixing plate having a protrusion on its inner circumference that is inserted into the axial groove is fitted onto the protrusion of the output shaft so as to be movable in the axial direction, and an annular rotary plate that is threadably coupled to the male thread is attached to the fixing plate. An elastic member is provided that is attached to the outer side in the axial direction than the fixed plate and urges the fixed plate toward the rotary plate, and a third uneven fitting portion is provided on the mutually facing surfaces of the input shaft and the fixed plate in the axial direction. By rotating the rotary plate in a predetermined direction, the rotary plate moves the fixed plate axially inward against the biasing force of the elastic member, and the third uneven fitting portion is brought into the fitted state. 3. The reverse input cutoff clutch according to claim 1, wherein the output shaft is rotatably connected to the input shaft via the fixed plate.
  7.  前記入力軸と出力軸のそれぞれに回転方向隙間をもってモータ軸が連結されており、前記モータ軸と入力軸との回転隙間角度をθMI、前記モータ軸と出力軸との回転隙間角度をθMOとし、前記カム受けとスペーサとの回転隙間角度をθRS、前記偏心カムとスペーサとの回転隙間角度をθCSとするとき、
     θMO>θMIかつθRS≦θCSかつθCS<θMOとなるように設定されていることを特徴とする請求項1または2に記載の逆入力遮断クラッチ。
    A motor shaft is connected to each of the input shaft and output shaft with a clearance in the rotational direction, and the rotational clearance angle between the motor shaft and the input shaft is θ MI , and the rotational clearance angle between the motor shaft and the output shaft is θ MO When the rotation clearance angle between the cam receiver and the spacer is θ RS and the rotation clearance angle between the eccentric cam and the spacer is θ CS ,
    The reverse input cutoff clutch according to claim 1 or 2, wherein the reverse input cutoff clutch is set so that θ MO > θ MI , θ RS ≦ θ CS , and θ CS < θ MO .
  8.  前記旋回支持機構を構成する部品のうち、少なくとも1つの部品を樹脂製としたことを特徴とする請求項1乃至7のいずれかに記載の逆入力遮断クラッチ。 The reverse input cutoff clutch according to any one of claims 1 to 7, wherein at least one of the parts constituting the swing support mechanism is made of resin.
  9.  請求項1乃至8のいずれかに記載の逆入力遮断クラッチを減速機とモータの出力側の間に組み込み、前記モータの入力側に回転センサを設けたアクチュエータ。 An actuator in which the reverse input cutoff clutch according to any one of claims 1 to 8 is incorporated between a speed reducer and an output side of a motor, and a rotation sensor is provided on the input side of the motor.
PCT/JP2023/032226 2022-09-09 2023-09-04 Reverse input cutoff clutch and actuator using same WO2024053601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022143486A JP2024039151A (en) 2022-09-09 2022-09-09 Reverse input block clutch and actuator using the same
JP2022-143486 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053601A1 true WO2024053601A1 (en) 2024-03-14

Family

ID=90191162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032226 WO2024053601A1 (en) 2022-09-09 2023-09-04 Reverse input cutoff clutch and actuator using same

Country Status (2)

Country Link
JP (1) JP2024039151A (en)
WO (1) WO2024053601A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299676A (en) * 1991-08-15 1994-04-05 Ivg Australia Pty. Limited Rotation check mechanism
JP2016223621A (en) * 2015-05-27 2016-12-28 Ntn株式会社 Reverse input cutoff clutch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299676A (en) * 1991-08-15 1994-04-05 Ivg Australia Pty. Limited Rotation check mechanism
JP2016223621A (en) * 2015-05-27 2016-12-28 Ntn株式会社 Reverse input cutoff clutch

Also Published As

Publication number Publication date
JP2024039151A (en) 2024-03-22

Similar Documents

Publication Publication Date Title
US8109370B2 (en) Electric linear-motion actuator and electric brake assembly
US9568058B2 (en) Disc brake
US8348023B2 (en) Disk brake
WO2009104578A1 (en) Electrically operated linear actuator and electrically operated braking system
US11209062B2 (en) Automatic slack adjuster
US20110247904A1 (en) Electric linear motion actuator and electric brake system
KR20080095864A (en) Worm-gear assembly having a pin raceway
JP2004169729A (en) Electric disk brake
US20130168192A1 (en) Electric linear motion actuator and electric disk brake system
US11261922B2 (en) Clutch assembly for transmission
WO2020054763A1 (en) Electric motor with reverse input cutoff clutch
JP2018157722A (en) Actuator
JPH08322189A (en) Motor linear actuator
CA3041903C (en) Automatic slack adjuster with adjusting clutch in control train
WO2024053601A1 (en) Reverse input cutoff clutch and actuator using same
JP7344674B2 (en) Decelerator
JP2002130336A (en) Electric motor unit
JP4513158B2 (en) Friction roller type transmission
JP2006138418A (en) Reverse input preventing clutch
JP2006070961A (en) Reduction gear with torque limiter
US20230179063A1 (en) Electric motor with reverse input cutoff clutch
JP2011074932A (en) Electrically operated linear actuator and electrically operated brake device
JP2756812B2 (en) Linear actuator
WO2023276722A1 (en) Geared motor and clutch actuator using same
JP2007303514A (en) Electric linear actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863139

Country of ref document: EP

Kind code of ref document: A1