WO2024053418A1 - Method for producing metal member and metal member - Google Patents

Method for producing metal member and metal member Download PDF

Info

Publication number
WO2024053418A1
WO2024053418A1 PCT/JP2023/030565 JP2023030565W WO2024053418A1 WO 2024053418 A1 WO2024053418 A1 WO 2024053418A1 JP 2023030565 W JP2023030565 W JP 2023030565W WO 2024053418 A1 WO2024053418 A1 WO 2024053418A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
component
bath
metal bath
metal material
Prior art date
Application number
PCT/JP2023/030565
Other languages
French (fr)
Japanese (ja)
Inventor
武 和田
秀実 加藤
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2024053418A1 publication Critical patent/WO2024053418A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a method of manufacturing a metal member and a metal member.
  • metal materials porous for example, ultra-light materials, high specific rigidity materials, energy absorbing materials, vibration absorbing materials, soundproofing materials, heat insulating materials, electrode materials, filter materials, biomedical materials.
  • porous metal materials that have micropores with nanometer dimensions smaller than 1 ⁇ m have specific surface areas that are orders of magnitude larger than bulk metal bodies, and therefore have catalytic properties, electrode properties, gas storage properties, and sensing properties. In this way, it is possible to exhibit high functionality that cannot be obtained with conventional materials.
  • molten metal deallocation method As a method for producing such a porous metal material having nanometer-sized micropores, the present inventor has developed a so-called molten metal deallocation method.
  • This molten metal deallocation method simultaneously contains a second component and a third component having positive and negative heat of mixing, respectively, with respect to the first component, and the freezing point of a metal bath consisting of the first component.
  • a metallic material consisting of a compound, alloy or non-equilibrium alloy having a melting point higher than
  • the third component is selectively eluted into the metal bath to obtain a metal member having minute gaps (for example, see Patent Document 1). ).
  • porous metal members such as ferritic stainless steel, beta (bcc) titanium alloy, and high entropy alloy have been manufactured by the present inventors (e.g., non-porous metal members).
  • porous metal members such as ferritic stainless steel, beta (bcc) titanium alloy, and high entropy alloy have been manufactured by the present inventors (e.g., non-porous metal members).
  • the molten metal deallocation method described in Patent Document 1 can obtain a porous metal member having nanometer-sized micropores by immersing a metal material in a metal bath and selectively eluting the third component.
  • a metal material in a metal bath
  • elution reaction of the third component is fast and it is difficult to stop the elution midway, almost all of the third component is eluted into the metal bath, and the metal member containing the third component is The problem was that it could not be manufactured.
  • the present invention has been made with attention to such problems, and provides a method for manufacturing a metal member and a metal member that can manufacture a metal member containing not only a second component but also a third component.
  • the purpose is to
  • the method for manufacturing a metal member according to the present invention includes a second component that is mutually insoluble with the first component, and a second component that is mutually soluble with the first component and mutually soluble with the second component.
  • a metal bath control step in which the temperature is controlled to be lower than the minimum value of the liquidus temperature within the composition variation range up to the composition, and the metal material prepared in the metal material preparation step is temperature controlled in the metal bath control step.
  • the third component contained in the metal material is selectively eluted into the metal bath, or the third component contained in the metal bath is selectively eluted.
  • the method is characterized by comprising an obtaining step of diffusing the second component and the third component into the metal material to obtain a metal member having the second component and the third component.
  • the method for manufacturing a metal member according to the present invention is a method for manufacturing a metal member using a metallurgical method that applies a molten metal deallopping method.
  • a metal material consisting of a compound, alloy, or nonequilibrium alloy having a second component and a third component, and A metal bath having a first component and a third component is provided.
  • the metal material preparation step and the metal bath preparation step are performed so that a substance having a composition in which the third component is decreased or increased from the metal material is in an equilibrium state with the metal bath.
  • a metal material and the metal bath are provided.
  • the metal material preparation step and the metal bath preparation step may be performed either first or simultaneously.
  • the metal bath is adjusted within a composition variation range from the composition of the metal material to a composition in which the third component in the metal material decreases or increases to reach an equilibrium state with the metal bath.
  • the temperature is controlled to be lower than the minimum liquidus temperature at .
  • the metal bath control step may be performed after the metal bath preparation step, or may be performed simultaneously with the metal bath preparation step.
  • the metal material is immersed in a temperature-controlled metal bath.
  • the second component contained in the metal material is mutually insoluble with the first component contained in the metal bath, it is not eluted into the metal bath and remains in the metal material.
  • the third component contained in both the metal material and the metal bath is mutually soluble with the first component and mutually soluble with the second component. can be moved between. That is, when a metal material is immersed in a metal bath, the third component is selectively eluted from the metal material into the metal bath until the composition reaches an equilibrium state with the metal bath, or the third component contained in the metal bath is Component 3 can be selectively diffused into the metal material.
  • the third component When the third component is eluted into the metal bath, for example, the component remaining in the metal material becomes concentrated while self-organizing minute gaps. Further, when the third component is diffused into the metal material, for example, the third component is gradually diffused so that the metal material has a uniform composition. In any of these cases, by making sure that the third component is included in the composition that is in equilibrium with the metal bath, the metal containing not only the second component but also the third component can be added. parts can be manufactured.
  • the metal material is immersed in a metal bath whose temperature has been controlled to a desired temperature in a metal bath control step.
  • the metal material may be immersed in a temperature-controlled metal bath by controlling the temperature to .
  • the first component, the second component, and the third component may each be made of a single metal element, or may be made of multiple types of elements including a metal element. It may be made up of Note that the metal element may include a metalloid element such as tin, carbon, silicon, boron, germanium, or the like. Moreover, the metal member manufactured by the method for manufacturing a metal member according to the present invention may have any composition or structure, such as an alloy or a composite member. The metal member may be, for example, stainless steel, a high entropy alloy, or a composite member whose surface is covered with different metals or alloys.
  • each component when multiple components are mutually soluble, it means that each component can be mixed to form a uniform alloy, and when multiple components are mutually insoluble, it means that each component can be mixed to form a uniform alloy. means that the components do not mix and separate into phases, making it impossible to form a uniform alloy.
  • the metal bath control step controls the metal bath from a composition of the metal material such that the third component in the metal material decreases.
  • the temperature is controlled to be lower than the minimum value of the liquidus temperature within the composition variation range up to the composition reaching an equilibrium state at , and the obtaining step is performed by immersing the metal material in the metal bath.
  • the third component contained may be selectively eluted into the metal bath to obtain the metal member made of a porous alloy having minute gaps.
  • the second and third components remaining in the metal material repeatedly combine to form particles with nanometer dimensions, and further, these particles partially combine to form microgaps by self-organization. do.
  • a metal member according to the invention which comprises a second component and a third component, and is made of a porous alloy with microscopic gaps, in which particles having nanometer dimensions are partially bonded. can.
  • a porous alloy with micro pores is formed.
  • Metal parts can be manufactured.
  • the temperature of the metal bath and the immersion time of the metal material it is possible to obtain a metal member made of a porous alloy that is entirely porous, a metal member that is porous only in the surface layer, and a porous structure that is produced.
  • the gap size and porosity can be changed. As a result, it is possible to form, for example, a minute gap having a width on the order of nanometers.
  • the metal material and the metal bath it is preferable to prepare the metal material and the metal bath so that a substance having a composition in which the third component is reduced from the metal material is in an equilibrium state with the metal bath. Further, it is preferable that the composition of the substance that is in equilibrium with the metal bath includes a third component.
  • the metal bath control step controls the metal bath so that the third component in the metal material increases from the composition of the metal material to the metal bath.
  • the temperature is controlled to be lower than the minimum value of the liquidus temperature within the composition variation range up to the composition reaching an equilibrium state at , and the obtaining step is performed by immersing the metal material in the metal bath.
  • the metal member may be obtained by selectively diffusing the third component contained in the metal material.
  • the third component is gradually diffused into the metal material so that the metal material has a uniform composition.
  • the state of diffusion of the third component into the metal material can be controlled by the immersion time of the metal material in the metal bath.
  • the immersion time in the metal bath it is possible to manufacture a metal member in which the surface of the metal material before being immersed in the metal bath is covered with the third component, similar to plating treatment. can.
  • the immersion time in the metal bath it is possible to manufacture a metal member having a surface layer with a high content of the third component or a metal member having a uniform composition as a whole.
  • the metal material may not have the third component but only have the second component. Also at this time, since the third component contained in the metal bath diffuses into the metal material, a metal member containing not only the second component but also the third component can be manufactured.
  • the metal material preparation step prepares the porous metal material, and the obtaining step includes a porous alloy having minute gaps.
  • the metal member may be obtained.
  • the metal material preparation step prepares a porous metal material, and the obtaining step includes shortening the time for which the metal material is immersed in the metal bath, thereby making the surface of the porous metal material covered with a third component. You may obtain a member.
  • the method for manufacturing a metal member according to the present invention includes the first component and the third component attached to the metal member after the metal member obtained in the obtaining step is pulled up from the metal bath.
  • the method may include a removal step for selectively removing the adhering mixture.
  • the deposition admixture consists of the metal bath components after obtaining the metal part.
  • a removal step of solidifying the metal bath in a state in which the metal member is immersed, and selectively removing metal bath components including the first component and the third component. may have.
  • the metal member can be recovered by using, for example, an acid or alkaline aqueous solution that can selectively elute only the adhering mixture and metal bath components.
  • the adhesion mixture or the metal bath component is, for example, attached around the metal member, partially attached to the inside of the minute gap, or filled inside the minute gap.
  • the first component includes at least one of Mg, Bi, Pb, Cu, and Ag
  • the second component includes Fe. , Cr, V, Co, Mo, Ni, Zr, Ta, W, Hf, Nb, and Ti
  • the third component includes Ni, Pd, Al, Ag, Cu, Mn. , and Co.
  • the first component and the second component are insoluble in each other. Moreover, the first component and the third component are mutually soluble. The second component and the third component are mutually soluble.
  • the metal material preparation step and the metal bath preparation step the metal material and the metal bath are prepared so that a substance having a composition in which the third component is reduced from the metal material is in an equilibrium state with the metal bath. At this time, the third component is included in the composition of the substance in the equilibrium state.
  • the prepared metal bath is changed in composition from the composition of the prepared metal material to the composition where the third component in the metal material decreases and reaches an equilibrium state with the metal bath.
  • the temperature is controlled to be lower than the minimum liquidus temperature within the range.
  • the temperature of the metal bath may be controlled after preparing the metal bath in the metal bath preparation step, or the temperature may be controlled while preparing the metal bath.
  • the metal material is immersed in a temperature-controlled metal bath.
  • the second component contained in the metal material is mutually insoluble with the first component contained in the metal bath, it is not eluted into the metal bath and remains in the metal material.
  • the third component contained in both the metal material and the metal bath is mutually soluble with the first component and mutually soluble with the second component. can be moved between.
  • the composition that is in equilibrium with the metal bath is the third one in the metal material.
  • the composition has a reduced number of components. Therefore, when the metal material is immersed in the metal bath, the third component can be selectively eluted from the metal material into the metal bath until the composition reaches an equilibrium state with the metal bath.
  • the second and third components remaining in the metal material repeatedly combine to form particles with nanometer dimensions, and further, by partially combining these particles, the width of nanometer dimensions increases. It is possible to self-organize micro-gaps with . In this way, it is possible to produce a metal component consisting of a porous alloy containing not only the second component but also the third component and having microscopic voids, in which particles having nanometer dimensions are partially bonded.
  • the first component is C
  • the second component is A
  • the third component is B
  • a porous alloy of A 1-x B x is manufactured as a metal member
  • a phase diagram and an active Using a curve showing the relationship between quantity and composition, C 1- y B y having a composition that is in equilibrium with A 1-x B x is selected, and this is used as a metal bath.
  • a 1-x' B x ' (x'>x) having a composition with a higher B content than A 1-x B x is selected.
  • the desired A 1-x B x or a porous alloy having a composition close to that composition can be manufactured as a metal member.
  • the amount [(x'-x)/(1-x)] of the third component B contained in the metal material eluted into the metal bath is determined by the porosity of the metal member to be manufactured and the porosity of the metal member maintained. It is preferable to take this into account when deciding, and it is preferably about 0.3 to 0.7.
  • the metal component obtained in the acquisition process is pulled up from the metal bath, in the removal process, it may adhere to the periphery of the metal component, partially adhere to the inside of the micro gap, or be filled inside the micro gap.
  • the deposited admixture from the metal bath containing the first component and the third component may be selectively removed.
  • the metal bath is solidified in a state in which the metal member is immersed, and in the removal step, the metal bath components including the first component and the third component are selectively removed. Good too.
  • an acid or alkaline aqueous solution that can selectively elute only the adhering mixture and metal bath components can be used.
  • a metal member made of a porous alloy having nanometer-sized micropores can be manufactured.
  • a metal member made entirely of a porous alloy or a metal member made of only a surface layer it is possible to obtain porous metal members and to change the pore size and porosity of the produced porous structure.
  • a porous alloy having a composition close to Fe 75 Ni 25 (subscript numbers indicate composition ratios; the same applies hereinafter) was manufactured.
  • a metal bath having a composition of (Mg 0.5 Bi 0.5 ) 98.5 Ni 1.5 was prepared as a metal bath having a composition in equilibrium with Fe 75 Ni 25 .
  • the first component is Mg and Bi
  • the second component is Fe
  • the third component is Ni.
  • the metal material was manufactured using an arc melting method using Fe and Ni as raw materials so as to have a composition of Fe 37.5 Ni 62.5 in a pure argon gas atmosphere.
  • the metal bath was prepared by placing Mg, Bi, and Ni in a crucible in a pure argon gas atmosphere to have a composition of (Mg 0.5 Bi 0.5 ) 98.5 Ni 1.5 , and heated to 1023K. Produced by heating.
  • FIG. 1 shows the results of X-ray diffraction of the metal material
  • FIG. 2 shows the scanning electron micrograph of the metal material and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS).
  • EDS energy dispersive X-ray spectroscopy
  • the metal material was immersed in a metal bath maintained at 1023K for 30 minutes.
  • the metal bath has a liquidus temperature within a composition variation range from the composition of Fe 37.5 Ni 62.5 of the metal material to the composition of Fe 75 Ni 25 that is in equilibrium with the metal bath.
  • the temperature is controlled to be lower than the minimum value (1440°C).
  • the obtained metal member was taken out from the metal bath and cooled.
  • FIG. 3 shows a scanning electron micrograph of the obtained metal member and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS).
  • EDS energy dispersive X-ray spectroscopy
  • the black part shown in FIGS. 3(a) and 3(b) is the obtained metal member, and the white part is the solidified component of the metal bath.
  • the obtained metal member is a porous metal, has a ligament width of several ⁇ m to 1 ⁇ m or less, and has minute gaps having a width smaller than several ⁇ m, In particular, it was confirmed that there were many micro-gaps with nanometer widths smaller than 1 ⁇ m, and these micro-gaps were filled with metal bath components.
  • FIGS. 3(c) and 3(d) it was confirmed that the obtained metal member was a porous alloy consisting of Fe and Ni.
  • a compositional analysis by EDS of the obtained ligament of the metal member revealed that it contained 67.8% to 73.7% (at%; the same hereinafter) of Fe, an average of 70.7%, and 26% of Ni. It was confirmed that the content ranged from .3% to 32.2%, with an average content of 29.3%. From this result, the obtained metal member is a porous alloy having a composition of Fe 70.7 Ni 29.3 , and the target Fe 75 Ni 25 is changed from the metal material Fe 37.5 Ni 62.5 before reaction. It was confirmed that the composition was close to that of . From this, it is considered that when the metal material was immersed in the metal bath, Ni (the third component) was selectively eluted from the metal material into the metal bath.
  • a porous stainless steel having a composition close to that of SUS316L, which is an austenitic stainless steel, Fe 65.8 Cr 19.4 Mo 1.5 Ni 13.4 was manufactured.
  • a metal bath with a composition of (Mg 0.75 Bi 0.25 ) 92 Ni 7 Cr 1 was prepared as a metal bath having a composition in equilibrium with Fe 65.8 Cr 19.4 Mo 1.5 Ni 13.4 . .
  • a metal material (Fe 0.658 Cr 0.194 Mo 0.015 Ni 0. 134 )
  • the first component is Mg
  • the second component is Fe, Cr, and Mo
  • the third component is Ni.
  • the metal material was prepared using an arc melting method using Fe, Cr, Mo, and Ni as raw materials in a pure argon gas atmosphere to obtain a composition of Fe 19.73 Cr 5.82 Mo 0.44 Ni 74.01 .
  • the metal bath was prepared by putting Mg, Bi, Ni, and Cr into a crucible in a pure argon gas atmosphere to have a composition of (Mg 0.75 Bi 0.25 ) 92 Ni 7 Cr 1 , and heating it to 1023K. Produced by heating.
  • the metal material was immersed in a metal bath maintained at 1023K for 10 minutes.
  • the metal bath is Fe 65.8 Cr 19.4 Mo 1 which is in equilibrium with the metal bath due to the composition of the metal material Fe 19.73 Cr 5.82 Mo 0.44 Ni 74.01 .
  • the liquidus temperature is controlled to be lower than the minimum value within the composition variation range up to the composition of .5 Ni 13.4 .
  • the obtained metal member was taken out from the metal bath and cooled.
  • a scanning electron micrograph of the obtained metal member and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS) are shown in FIGS. 4 and 5.
  • the black part shown in FIGS. 4 and 5(a) is the obtained metal member, and the white part is the solidified component of the metal bath.
  • the obtained metal member is a porous metal, and has a ligament width of less than 1 ⁇ m and many minute gaps with nanometer-sized widths of less than 1 ⁇ m.
  • FIGS. 5(e) and 5(f) it was confirmed that the minute gaps were filled with metal bath components Mg and Bi.
  • FIGS. 5(b) to 5(d) it was confirmed that the obtained metal member was a porous alloy consisting of Fe, Cr, Ni, and Mo.
  • the obtained metal member was immersed in a nitric acid aqueous solution to remove metal bath components.
  • Scanning electron micrographs of the metal member after removal of metal bath components are shown in Figures 6(a) and (b), and X-ray diffraction results and energy dispersive X-ray analysis (EDX) results are shown in Figures 7(a) and 7(b), respectively. Shown in (b).
  • EDX energy dispersive X-ray analysis
  • the metal member had an austenite face-centered cubic lattice structure (fcc). Furthermore, from the results shown in Fig. 7(b), the composition of the metal member is 64.7% Fe, 20.1% Cr, 13.6% Ni, and 1.4% Mo, and has an austenitic composition. It was confirmed that it was almost the same as SUS316L, which is stainless steel. From the above results, it is considered that porous austenitic stainless steel SUS316L could be manufactured as a metal member.
  • a porous high-entropy alloy having a composition close to V 15 Cr 15 Fe 20 Co 25 Ni 25 which is a high-entropy alloy, was manufactured.
  • a metal bath with a composition of (Bi 0.5 Mg 0.5 ) 98.2 Ni 1.5 Cr 0.3 was prepared as a metal bath having a composition in equilibrium with V 15 Cr 15 Fe 20 Co 25 Ni 25 . .
  • a metal material it has a composition with a higher Ni content than V 15 Cr 15 Fe 20 Co 25 Ni 25 (V 0.15 Cr 0.15 Fe 0.2 Co 0.25 Ni 0.25 ).
  • An alloy consisting of 50 Ni 50 V 7.5 Cr 7.5 Fe 10 Co 12.5 Ni 62.5 was prepared. At this time, the first component is Mg, the second component is V, Cr, Fe, and Co, and the third component is Ni.
  • the metal material was prepared by adding V 15 Cr 15 Fe 20 Co 25 Ni 25 and Ni to a composition of V 7.5 Cr 7.5 Fe 10 Co 12.5 Ni 62.5 in a pure argon gas atmosphere. It was manufactured using an arc melting method as a raw material. In addition, the metal bath is made of Mg, Bi, Ni, and Cr in a crucible in a pure argon gas atmosphere so that the composition becomes (Bi 0.5 Mg 0.5 ) 98.2 Ni 1.5 Cr 0.3 . It was manufactured by heating it to 1023K. The results of the X-ray diffraction of the metal material are shown in FIG. 8, and the results of the scanning electron micrograph of the metal material and the elemental analysis by energy dispersive X-ray spectroscopy (EDS) are shown in FIG.
  • EDS energy dispersive X-ray spectroscopy
  • the metal material was immersed in a metal bath maintained at 1023K for 30 minutes.
  • the metal bath is V 15 Cr 15 Fe 20 Co 25 which is in equilibrium with the metal bath due to the composition of the metal material V 7.5 Cr 7.5 Fe 10 Co 12.5 Ni 62.5 .
  • the liquidus temperature is controlled to be lower than the minimum value within the composition variation range up to the composition of Ni25 .
  • the obtained metal member was taken out from the metal bath and cooled.
  • the metal member after cooling was immersed in a nitric acid aqueous solution to remove metal bath components. Scanning electron micrographs of the metal member after removal of the metal bath components are shown in FIGS. 10(a) and 10(b), and the X-ray diffraction results are shown in FIG. 11.
  • the adhesion mixture derived from the metal bath that had adhered to the periphery of the metal member or filled inside the minute gap was removed. It was confirmed that selective removal was possible. It was also confirmed that the obtained metal member was a porous metal, had a ligament width of 1 ⁇ m or less, and had many microgaps with nanometer widths smaller than 1 ⁇ m. Further, as shown in FIG. 11, it was confirmed that the metal member had a face-centered cubic lattice structure (FCC).
  • FCC face-centered cubic lattice structure
  • the composition of the metal member was 14.9% V, 11.9% Cr, 18.8% Fe, and Co It was confirmed that Ni was 21.3% and Ni was 33.2%. From this result, the obtained metal member is a porous high-entropy alloy having a composition of V 14.9 Cr 11.9 Fe 18.8 Co 21.3 Ni 33.2 , and the metal material before reaction is V 7 .5 Cr 7.5 Fe 10 Co 12.5 Ni 62.5 , it was confirmed that the composition was close to the targeted composition of V 15 Cr 15 Fe 20 Co 25 Ni 25 .
  • EDX energy dispersive X-ray analysis
  • a porous high-entropy alloy having a composition close to Cr 20 Mn 20 Fe 20 Co 20 Ni 20 which is a high-entropy alloy, was manufactured.
  • a metal bath having a composition of Bi 95.2 Ni 1.3 Mn 3.5 was prepared as a metal bath having a composition in equilibrium with Cr 20 Mn 20 Fe 20 Co 20 Ni 20 .
  • Cr 0.2 Mn 0.2 Fe 0.2 Co 0.2 Ni 0.2 has a composition in which the Ni content is higher than that of Cr 20 Mn 20 Fe 20 Co 20 Ni 20 .
  • An alloy consisting of 50 Ni 50 Cr 10 Mn 10 Fe 10 Co 10 Ni 60 was prepared. At this time, the first component is Bi, the second component is Cr, Fe, and Co, and the third component is Ni and Mn.
  • the metal material was prepared using arc melting method using Cr 20 Mn 20 Fe 20 Co 20 Ni 20 and Ni as raw materials in a pure argon gas atmosphere so as to have a composition of Cr 10 Mn 10 Fe 10 Co 10 Ni 60 . After that, it was further cold rolled to a thickness of about 100 microns, and then homogenized at 1273K for 12 hours.
  • the metal bath was prepared by inserting pre-weighed Bi, Ni, and Mn into a crucible to have a composition of Bi 95.2 Ni 1.3 Mn 3.5 in a pure argon gas atmosphere, and heating it to 1373 K or higher. After confirming that all the metals were melted, the temperature was raised to 823K and production was carried out.
  • the metal material was immersed in a metal bath held at 823K for 30 minutes.
  • the composition of the metal bath varies from the composition of the metal material Cr 10 Mn 10 Fe 10 Co 10 Ni 60 to the composition of Cr 20 Mn 20 Fe 20 Co 20 Ni 20 that is in equilibrium with the metal bath. Controlled below the minimum liquidus temperature within the range.
  • the obtained metal member was taken out from the metal bath and cooled.
  • FIG. 12 shows a scanning electron micrograph of the metal member after cooling and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS).
  • EDS energy dispersive X-ray spectroscopy
  • the black part in FIGS. 12(a) and (b) is the obtained metal member, and the white part is the solidified metal bath component. As shown in FIGS. 10(c) to (g), it was confirmed that Cr, Mn, Fe, Co, and Ni were uniformly distributed in the ligament portion of the obtained metal member.
  • FIG. 12 The cooled metal member shown in FIG. 12 was immersed in a nitric acid aqueous solution to remove metal bath components.
  • FIG. 13 shows a scanning electron micrograph of the metal member after removal of the metal bath components. As shown in Figure 13, by immersing it in the nitric acid aqueous solution, it was possible to selectively remove adhesion admixtures derived from the metal bath that were adhering to the periphery of the metal member or filling the inside of minute gaps. This was confirmed. It was also confirmed that the obtained metal member was a porous metal, with a ligament width of about 0.3 to 0.5 ⁇ m, and a large number of minute gaps with nanometer widths smaller than 1 ⁇ m.
  • the metal member was Cr 13.4 Mn 16.5 Fe 26.6 Co 19.7 Ni 23.8 confirmed. From this result, the obtained metal member is a porous high-entropy alloy, and the target Cr 20 Mn 20 Fe 20 Co 20 Ni 20 is converted from the metal material Cr 10 Mn 10 Fe 10 Co 10 Ni 60 before reaction. It was confirmed that the composition was close to that of the original composition.
  • EDX energy dispersive X-ray analysis
  • FIG. 14 it was confirmed that a porous high-entropy alloy was obtained even when the temperature of the metal bath shown in Table 1 was the lowest.
  • FIGS. 12 to 14 it can be said that in all cases shown in Table 1, a porous high-entropy alloy having a composition close to the target Cr 20 Mn 20 Fe 20 Co 20 Ni 20 was obtained.
  • FIG. 13(b) and FIG. 14 the ligament of the metal member in FIG. 14 is thinner and the structure is finer, so the lower the temperature of the metal bath, the more porous the obtained It is thought that the metal becomes finer and the surface area becomes larger.
  • a porous body of a Mo-Ni binary alloy used as a hydrogen generation catalyst was manufactured.
  • the Mo--Ni binary alloy contains a Ni solid solution phase, a MoNi 4 phase, a MoNi 3 phase, a MoNi phase, and a Mo solid solution phase, and by forming it into a porous body, it is expected that the catalytic function will be improved.
  • a porous intermetallic compound having a composition close to that of MoNi 4 which is an intermetallic compound, was manufactured.
  • a metal bath having a composition of Bi 82 Ni 18 was prepared as a metal bath having a composition in equilibrium with MoNi 4 .
  • the first component is Bi
  • the second component is Mo
  • the third component is Ni.
  • the metal material was manufactured using an arc melting method using Ni and Mo as raw materials so as to have a composition of Mo 10 Ni 90 in a pure argon gas atmosphere.
  • the metal bath was prepared by inserting pre-weighed Bi and Ni into a crucible in a pure argon gas atmosphere to have a composition of Bi 82 Ni 18 , and heating it to 1373 K or higher to ensure that all the metals were melted. After confirmation, the temperature was set to 1073K and the product was manufactured.
  • the metal material was immersed in a metal bath maintained at 1073K for 10 minutes.
  • the metal bath has a minimum liquidus temperature (approximately 1400 °C).
  • the obtained metal member was taken out from the metal bath and cooled.
  • a scanning electron micrograph of the obtained metal member and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS) are shown in FIGS. 15 and 16.
  • the black part shown in FIGS. 15 and 16(a) is the obtained metal member, and the white part is the solidified component of the metal bath.
  • the obtained metal member is a porous metal, the width of the ligament is smaller than 1 ⁇ m, and it has many minute gaps with widths of nanometer size smaller than 1 ⁇ m.
  • the minute gaps were filled with Bi and Ni, which are metal bath components.
  • the obtained metal member was a porous metal consisting of Ni and Mo.
  • the obtained metal member was immersed in a mixed aqueous solution of hydrochloric acid (HCl) and hydrogen peroxide (H 2 O 2 ) to remove metal bath components.
  • a scanning electron micrograph of the metal member after removal of the metal bath components is shown in FIG. As shown in Figure 17, by immersing in hydrochloric acid (HCl) and hydrogen peroxide (H 2 O 2 ), the metal bath that had adhered to the periphery of the metal member or filled inside the minute gap was removed. It was confirmed that adhesion admixtures derived from the sample could be selectively removed. From the elemental analysis results by EDS, it was confirmed that the metal member shown in FIG. 17 contained 74% Ni and 26% Mo.
  • porous metals with compositions close to the target Mo solid solution phase, MoNi phase, MoNi 3 phase, and MoNi 4 phase are obtained. confirmed.
  • a porous Fe--Al intermetallic compound having a composition close to Fe 70 Al 30 was produced as a metal member.
  • a metal bath having a composition of Mg 99 Al 1 was prepared as a metal bath having a composition in equilibrium with Fe 70 Al 30 .
  • an alloy consisting of Fe 25 Al 75 having a composition with a higher Al content than Fe 70 Al 30 was prepared.
  • the first component is Mg
  • the second component is Fe
  • the third component is Al.
  • the metal material was manufactured using an arc melting method using Fe and Al as raw materials so as to have a composition of Fe 25 Al 75 in a pure argon gas atmosphere. Further, the metal bath was manufactured by placing Mg and Al in a crucible in a pure argon gas atmosphere so as to have a composition of Mg 99 Al 1 and heating it to 1073K.
  • the metal material was immersed in a metal bath maintained at 1073K for 10 minutes.
  • the metal bath has a minimum liquidus temperature ( (approximately 1170°C).
  • the obtained metal member was taken out from the metal bath and cooled.
  • a scanning electron micrograph of the obtained metal member and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS) are shown in FIGS. 19(a) to 19(f).
  • the bright parts shown in FIGS. 19(a) and (b) are the obtained metal members, and the dark parts are the solidified components of the metal bath.
  • the obtained metal member is a porous metal
  • the width of the ligament is smaller than 3 ⁇ m
  • it has many minute gaps with a width smaller than 3 ⁇ m as shown in FIG. 19(c). It was confirmed that the minute gaps were filled with Mg, a metal bath component.
  • FIGS. 19(d) to (f) it was confirmed that the obtained metal member was a porous alloy consisting of Fe and Al.
  • the obtained metal member was immersed in concentrated nitric acid (HNO 3 ) to remove metal bath components.
  • a scanning electron micrograph of the metal member after removal of the metal bath components is shown in FIG. As shown in FIG. 20, by immersing in concentrated nitric acid (HNO 3 ), adhesion mixtures derived from the metal bath that have adhered to the periphery of metal members or filled inside minute gaps can be selectively removed. It was confirmed that it had been removed. From the elemental analysis results by EDS, it was confirmed that the metal member shown in FIG. 20 contained 70% Fe and 30% Al.
  • a porous alloy having a composition close to Fe 70 Ni 30 was manufactured as a metal member.
  • Bi 97 Ni 3 was prepared as a metal bath having a composition in equilibrium with Fe 70 Ni 30 .
  • an alloy consisting of (Fe 0.70 Ni 0.30 ) 30 Ni 70 Fe 21 Ni 79 , which has a composition with a higher Ni content than Fe 70 Ni 30, was prepared .
  • the first component is Bi
  • the second component is Fe
  • the third component is Ni.
  • the metal material was manufactured using an arc melting method using Fe and Ni as raw materials so as to have a composition of Fe 21 Ni 79 in a pure argon gas atmosphere. Further, the metal bath was manufactured by placing Bi in a crucible and heating it to 1023K in a pure argon gas atmosphere.
  • the metal material was immersed in a metal bath maintained at 1023K for 60 minutes.
  • the metal bath has a minimum liquidus temperature ( 1440°C).
  • the obtained metal member was taken out from the metal bath and cooled. A scanning electron micrograph of the obtained metal member is shown in FIG.
  • the black part shown in FIG. 21 is the obtained metal member, and the white part is the solidified component of the metal bath.
  • the obtained metal member is a porous metal, the width of the ligament is smaller than 3 ⁇ m, and it has many micro-gaps with a width smaller than 3 ⁇ m, and the micro-gaps are filled with metal bath components. It was confirmed that From the elemental analysis results by EDS, it was confirmed that the metal member shown in FIG. 21 contained 73% Fe and 27% Ni.
  • a porous alloy having a composition close to Ti 50 Ni 50 which is the composition of nickel titanium, which is a shape memory alloy, was manufactured.
  • a metal bath having a composition of Mg 97 Ni 3 was prepared as a metal bath having a composition in equilibrium with Ti 50 Ni 50 .
  • an alloy consisting of (Ti 0.5 Ni 0.5 ) 50 Ni 50 Ti 25 Ni 75 , which has a composition with a higher Ni content than Ti 50 Ni 50, was prepared .
  • the first component is Mg
  • the second component is Ti
  • the third component is Ni.
  • the metal material is alloyed using an arc melting method using Ti and Ni as raw materials so as to have a composition of Ti25Ni75 in a pure argon gas atmosphere, and then alloyed in a pure argon gas atmosphere using an electric furnace. , by homogenization at 1473K for 1 hour. Further, the metal bath was manufactured by placing Mg and Ni in a crucible in a pure argon gas atmosphere so as to have a composition of Mg 97 Ni 3 and heating it to 1023K.
  • the metal material was immersed in a metal bath maintained at 1023K for 30 minutes.
  • the metal bath has a temperature lower than the minimum liquidus temperature within a composition variation range from the composition of Ti 25 Ni 75 of the metal material to the composition of Ti 50 Ni 50 that is in equilibrium with the metal bath. is also controlled low.
  • the obtained metal member was taken out from the metal bath and cooled. After cooling, the metal member was immersed in a nitric acid aqueous solution to remove metal bath components.
  • FIGS. 22(a) and 22(b) Scanning electron micrographs of the metal member after removal of the metal bath components are shown in FIGS. 22(a) and 22(b), and the X-ray diffraction results are shown in FIG. 22(c).
  • FIGS. 22(a) and 22(b) it was confirmed that the obtained metal member was a porous metal with a ligament width of several 100 nm.
  • FIG. 22(c) a B2 austenite phase was observed, and it was confirmed that the obtained metal member was a shape memory alloy.
  • EDS elemental analysis by EDS, it was confirmed that the obtained metal member contained 52.5 at% of Ti and 47.5 at% of Ni.
  • a co-continuous composite material of Fe 50 Co 50 which is an Fe--Co alloy, and Mg was manufactured.
  • a metal bath having a composition of Mg 99 Co 1 was prepared as a metal bath having a composition in equilibrium with Fe 50 Co 50 .
  • the first component is Mg
  • the second component is Fe
  • the third component is Co.
  • the metal material was manufactured using an arc melting method using Fe and Co as raw materials so as to have a composition of Fe 20 Co 80 in a pure argon gas atmosphere. Further, the metal bath was manufactured by placing Mg and Co in a crucible and heating it to 1073 K so that the composition would be Mg 99 Co 1 in a pure argon gas atmosphere.
  • the metal material was immersed in a metal bath maintained at 1073K for 10 minutes.
  • the metal bath has a temperature lower than the minimum liquidus temperature within a composition variation range from the composition of Fe 20 Co 80 of the metal material to the composition of Fe 50 Co 50 that is in equilibrium with the metal bath. is also controlled low.
  • the obtained metal member was taken out from the metal bath and cooled.
  • FIG. 23 shows a scanning electron micrograph of the obtained metal member and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS).
  • the white part shown in FIG. 23 is the obtained metal member, and the black part is the solidified component of the metal bath.
  • the obtained metal member was a porous metal
  • the width of the ligament was about several ⁇ m, and it had many micro gaps with a width smaller than several ⁇ m.
  • the micro gaps were filled with mainly Mg, which is a metal bath component, and the material as a whole was a composite material of Fe--Co alloy and Mg. From the elemental analysis results by EDS shown in FIGS. 23(b) and 23(c), it was confirmed that the ligament portion of the metal member contained 44.5 at% Fe and 55.5 at% Co.
  • a co-continuous composite material of Co 50 Ni 50 which is a Co--Ni alloy, and a Bi alloy was manufactured.
  • a metal bath having a composition of Bi 88.8 Ni 11 Co 0.2 was prepared as a metal bath having a composition in equilibrium with Co 50 Ni 50 .
  • an alloy consisting of (Co 0.5 Ni 0.5 ) 50 Ni 50 Co 25 Ni 75 , which has a composition with a higher Ni content than Co 50 Ni 50, was prepared .
  • the first component is Bi
  • the second component is Co
  • the third component is Ni.
  • the metal material is alloyed using an arc melting method using Co and Ni as raw materials to have a composition of Co 25 Ni 75 in a pure argon gas atmosphere, and then cold rolled to a thickness of about 100 ⁇ m. After processing, it was manufactured by homogenizing it at 1273K for 12 hours in a pure argon gas atmosphere using an electric furnace. In addition, the metal bath was prepared by inserting pre-weighed Bi, Ni, and Co into a crucible in a pure argon gas atmosphere so that the composition would be Bi 88.8 Ni 11 Co 0.2 , and heating it to 1373 K or higher. After confirming that all the metals were melted, the temperature was raised to 873K and manufacturing was carried out.
  • the metal material was immersed in a metal bath held at 873K for 30 minutes.
  • the metal bath has a temperature lower than the minimum liquidus temperature within a composition variation range from the composition of Co 25 Ni 75 of the metal material to the composition of Co 50 Ni 50 that is in equilibrium with the metal bath. is also controlled low.
  • the obtained metal member was taken out from the metal bath and cooled.
  • FIG. 24 shows a scanning electron micrograph of the obtained metal member and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS).
  • the black part shown in FIG. 24 is the obtained metal member, and the white part is the solidified component of the metal bath.
  • the obtained metal member was a porous metal, had a ligament width of 755 nm on average, and had many microgaps with a width smaller than several ⁇ m.
  • the micro gaps were filled with mainly Bi, which is a metal bath component, and that the material as a whole was a composite material of a Co--Ni alloy and a Bi alloy. From the elemental analysis results by EDS shown in FIGS. 24(b) and 24(c), it was confirmed that the ligament portion of the metal member contained 49.0 at% Co and 51.0 at% Ni.
  • the method for manufacturing a metal member according to the second embodiment of the present invention includes a metal material preparation step, a metal bath preparation step, and a metal bath control step. , has an acquisition process. Moreover, it may have a removal step.
  • a substance having a composition in which the third component is increased from the metal material is mixed with the metal bath.
  • the prepared metal bath is changed over a composition variation range from the composition of the prepared metal material to the composition where the third component in the metal material increases and reaches an equilibrium state with the metal bath. The temperature is controlled to be lower than the minimum liquidus temperature within the temperature range.
  • the composition that is in equilibrium with the metal bath is such that the third component in the metal material increases.
  • the composition is as follows. Therefore, when the metal material is immersed in the metal bath, the third component contained in the metal bath can be selectively diffused into the metal material until the composition reaches an equilibrium state with the metal bath. As a result, the third component gradually diffuses into the metal material so that the metal material has a uniform composition. In this way, a metal member containing not only the second component but also the third component can be manufactured.
  • the state of diffusion of the third component into the metal material can be controlled by the time during which the metal material is immersed in the metal bath. For this reason, for example, by shortening the immersion time in the metal bath, it is possible to manufacture a metal member in which the surface of the metal material before being immersed in the metal bath is covered with the third component, similar to plating treatment. can. Furthermore, by increasing the immersion time in the metal bath, it is possible to manufacture a metal member having a surface layer with a high content of the third component or a metal member having a uniform composition as a whole.
  • the first component is C
  • the second component is A
  • the third component is B
  • a porous alloy of A 1-x B x is manufactured as a metal member
  • a phase diagram and an active Using a curve showing the relationship between quantity and composition, C 1- y B y having a composition that is in equilibrium with A 1-x B x is selected, and this is used as a metal bath.
  • a 1-x' B x ' (x' ⁇ x) having a composition with a lower content of B than A 1-x B x is selected.
  • the metal material may not have the third component but only the second component. Even in this case, since the third component contained in the metal bath diffuses into the metal material, a metal member containing not only the second component but also the third component can be manufactured. Specifically, by using A as a metal material and immersing it in a metal bath of C 1-y B y , it is possible to produce A 1-x B x or an alloy with a composition close to that composition as a metal member. can.
  • the metal material prepared in the metal material preparation step may be an ingot, but may also be a porous material having minute gaps.
  • the metal material is porous, by lengthening the immersion time in the metal bath, it is possible to manufacture a metal member made of a porous alloy that has a uniform composition throughout and has minute gaps. Furthermore, by shortening the immersion time in the metal bath, it is possible to manufacture a metal member in which the surface of the porous metal material is covered with the third component, similar to plating treatment.
  • the metal material may have cracks on the surface.
  • cracks on the surface of the metal material can be filled with the third component, and a metal member with cracks filled with the third component can be manufactured. .

Abstract

[Problem] To provide a method for producing a metal member capable of producing a metal member containing not only a second component but also a third component. [Solution] A metal material comprising a compound, alloy, or non-equilibrium alloy having a second component that is mutually insoluble with a first component and a third component that is mutually soluble with the first component and mutually soluble with the second component is prepared. A metal bath having a first component and a third component is prepared. The metal bath is controlled to a temperature lower than the minimum value of the liquidus temperature within the composition variation range from the composition of the metal material to the composition where the third component in the metal material decreases and equilibrium with the metal bath is reached. By immersing the metal material in the temperature-controlled metal bath, the third component contained in the metal material is selectively eluted out into the metal bath, and a metal member having the second component and the third component is obtained.

Description

金属部材の製造方法および金属部材Metal member manufacturing method and metal member
 本発明は、金属部材の製造方法および金属部材に関する。 The present invention relates to a method of manufacturing a metal member and a metal member.
 従来、金属材料をポーラス(多孔質)にすることにより、例えば、超軽量材料、高比剛性材料、エネルギー吸収材料、振動吸収材料、防音材料、断熱材料、電極材料、フィルター材料、生体医療材料、熱交換器材料、含油軸受け材料などへの応用が広く行われている。特に、1μmより小さいナノメートル寸法の微小気孔を有するポーラス金属材料は、バルク金属体と比較して桁違いに大きな比表面積を有しているため、触媒特性、電極特性、ガス貯蔵特性、センシング特性において、従来の材料では得られない高機能性を発揮することができる。 Conventionally, by making metal materials porous, for example, ultra-light materials, high specific rigidity materials, energy absorbing materials, vibration absorbing materials, soundproofing materials, heat insulating materials, electrode materials, filter materials, biomedical materials, It is widely applied to heat exchanger materials, oil-impregnated bearing materials, etc. In particular, porous metal materials that have micropores with nanometer dimensions smaller than 1 μm have specific surface areas that are orders of magnitude larger than bulk metal bodies, and therefore have catalytic properties, electrode properties, gas storage properties, and sensing properties. In this way, it is possible to exhibit high functionality that cannot be obtained with conventional materials.
 このようなナノメートル寸法の微小気孔を有するポーラス金属材料を製造する方法として、本発明者により、いわゆる金属溶湯脱成分法が開発されている。この金属溶湯脱成分法は、第1の成分に対してそれぞれ正および負の混合熱を有する第2の成分および第3の成分を同時に含有し、かつ、第1の成分からなる金属浴の凝固点よりも高い融点を有する化合物、合金または非平衡合金から成る金属材料を、この金属材料から第3の成分が減少し、第2の成分に至るまでの組成変動範囲内における液相線温度の最小値よりも低い温度に制御された金属浴に浸すことにより、第3の成分を選択的に金属浴内に溶出させて、微小間隙を有する金属部材を得るものである(例えば、特許文献1参照)。 As a method for producing such a porous metal material having nanometer-sized micropores, the present inventor has developed a so-called molten metal deallocation method. This molten metal deallocation method simultaneously contains a second component and a third component having positive and negative heat of mixing, respectively, with respect to the first component, and the freezing point of a metal bath consisting of the first component. A metallic material consisting of a compound, alloy or non-equilibrium alloy having a melting point higher than By immersing the metal member in a metal bath whose temperature is controlled to be lower than the specified temperature, the third component is selectively eluted into the metal bath to obtain a metal member having minute gaps (for example, see Patent Document 1). ).
 この金属溶湯脱成分法を利用して、例えば、フェライト系ステンレス鋼、ベータ(bcc)型チタン合金、ハイエントロピー合金などの多孔質金属部材が、本発明者等により製造されている(例えば、非特許文献1乃至3または特許文献2参照)。 Utilizing this molten metal deallocation method, porous metal members such as ferritic stainless steel, beta (bcc) titanium alloy, and high entropy alloy have been manufactured by the present inventors (e.g., non-porous metal members). (See Patent Documents 1 to 3 or Patent Document 2).
国際公開WO2011/092909号International publication WO2011/092909 特開2020-125523号公報Japanese Patent Application Publication No. 2020-125523
 特許文献1に記載の金属溶湯脱成分法は、金属材料を金属浴に浸して第3の成分を選択的に溶出させることにより、ナノメートル寸法の微小気孔を有するポーラス金属部材を得ることができるが、第3の成分の溶出の反応が速く、その溶出を途中で止めるのが困難であるため、第3の成分がほぼ全て金属浴に溶出してしまい、第3の成分を含む金属部材を製造することができないという課題があった。 The molten metal deallocation method described in Patent Document 1 can obtain a porous metal member having nanometer-sized micropores by immersing a metal material in a metal bath and selectively eluting the third component. However, since the elution reaction of the third component is fast and it is difficult to stop the elution midway, almost all of the third component is eluted into the metal bath, and the metal member containing the third component is The problem was that it could not be manufactured.
 本発明は、このような課題に着目してなされたもので、第2の成分だけでなく、第3の成分も含む金属部材を製造することができる金属部材の製造方法および金属部材を提供することを目的とする。 The present invention has been made with attention to such problems, and provides a method for manufacturing a metal member and a metal member that can manufacture a metal member containing not only a second component but also a third component. The purpose is to
 本発明に係る金属部材の製造方法は、第1の成分と互いに非可溶である第2の成分と、前記第1の成分と互いに可溶かつ前記第2の成分と互いに可溶である第3の成分とを有し、化合物、合金または非平衡合金から成る金属材料を準備する金属材料準備工程と、前記第1の成分と前記第3の成分とを有する金属浴を準備する金属浴準備工程と、前記金属浴準備工程で準備した前記金属浴を、前記金属材料の組成から、前記金属材料中の前記第3の成分が減少または増加して前記金属浴との間で平衡状態となる組成までの組成変動範囲内での液相線温度の最小値よりも低い温度に制御する金属浴制御工程と、前記金属材料準備工程で準備した前記金属材料を、前記金属浴制御工程で温度制御された前記金属浴に浸すことにより、前記金属材料に含まれる前記第3の成分を選択的に前記金属浴内に溶出させて、または、前記金属浴に含まれる前記第3の成分を選択的に前記金属材料に拡散させて、前記第2の成分と前記第3の成分とを有する金属部材を得る取得工程とを、有することを特徴とする。 The method for manufacturing a metal member according to the present invention includes a second component that is mutually insoluble with the first component, and a second component that is mutually soluble with the first component and mutually soluble with the second component. a metal material preparation step of preparing a metal material comprising a compound, an alloy, or a non-equilibrium alloy, and a metal bath preparation step of preparing a metal bath having the first component and the third component; and the metal bath prepared in the metal bath preparation step is brought into equilibrium with the metal bath by reducing or increasing the third component in the metal material based on the composition of the metal material. A metal bath control step in which the temperature is controlled to be lower than the minimum value of the liquidus temperature within the composition variation range up to the composition, and the metal material prepared in the metal material preparation step is temperature controlled in the metal bath control step. By immersing the metal material in the metal bath, the third component contained in the metal material is selectively eluted into the metal bath, or the third component contained in the metal bath is selectively eluted. The method is characterized by comprising an obtaining step of diffusing the second component and the third component into the metal material to obtain a metal member having the second component and the third component.
 本発明に係る金属部材の製造方法は、金属溶湯脱成分法を応用した、冶金学的手法による金属部材の製造方法である。本発明に係る金属部材の製造方法では、まず、金属材料準備工程および金属浴準備工程で、第2の成分と第3の成分とを有する化合物、合金または非平衡合金から成る金属材料、および、第1の成分と第3の成分とを有する金属浴を準備する。このとき、前記金属材料準備工程および前記金属浴準備工程は、前記金属材料から前記第3の成分が減少または増加した組成を有する物質が、前記金属浴との間で平衡状態となるよう、前記金属材料および前記金属浴を準備することが好ましい。また、金属材料準備工程および金属浴準備工程は、いずれが先であってもよく、同時であってもよい。 The method for manufacturing a metal member according to the present invention is a method for manufacturing a metal member using a metallurgical method that applies a molten metal deallopping method. In the method for manufacturing a metal member according to the present invention, first, in a metal material preparation step and a metal bath preparation step, a metal material consisting of a compound, alloy, or nonequilibrium alloy having a second component and a third component, and A metal bath having a first component and a third component is provided. At this time, the metal material preparation step and the metal bath preparation step are performed so that a substance having a composition in which the third component is decreased or increased from the metal material is in an equilibrium state with the metal bath. Preferably, a metal material and the metal bath are provided. Further, the metal material preparation step and the metal bath preparation step may be performed either first or simultaneously.
 次に、金属浴制御工程で、金属浴を、金属材料の組成から、金属材料中の第3の成分が減少または増加して金属浴との間で平衡状態となる組成までの組成変動範囲内での液相線温度の最小値よりも低い温度に制御する。金属浴制御工程は、金属浴準備工程の後でもよいが、金属浴準備工程と同時であってもよい。 Next, in the metal bath control step, the metal bath is adjusted within a composition variation range from the composition of the metal material to a composition in which the third component in the metal material decreases or increases to reach an equilibrium state with the metal bath. The temperature is controlled to be lower than the minimum liquidus temperature at . The metal bath control step may be performed after the metal bath preparation step, or may be performed simultaneously with the metal bath preparation step.
 次に、取得工程で、金属材料を温度制御された金属浴に浸す。このとき、金属材料に含まれる第2の成分は、金属浴に含まれる第1の成分と互いに非可溶であるため、金属浴には溶出せず、金属材料に残存する。これに対し、金属材料および金属浴の双方に含まれる第3の成分は、第1の成分と互いに可溶かつ第2の成分と互いに可溶であるため、状況に応じて金属材料と金属浴との間で移動することができる。すなわち、金属材料を金属浴に浸したとき、金属浴との間で平衡状態となる組成まで、金属材料から第3の成分を選択的に金属浴内に溶出させたり、金属浴に含まれる第3の成分を選択的に金属材料に拡散させたりすることができる。第3の成分を金属浴内に溶出させたときには、例えば、金属材料に残存する成分が微小間隙を自己組織形成しながら濃化していく。また、第3の成分を金属材料に拡散させたときには、例えば、金属材料が均一な組成になるよう、第3の成分が徐々に拡散していく。これらいずれの場合であっても、金属浴との間で平衡状態となる組成に第3の成分が含まれるようにしておくことにより、第2の成分だけでなく、第3の成分も含む金属部材を製造することができる。 Next, in the acquisition step, the metal material is immersed in a temperature-controlled metal bath. At this time, since the second component contained in the metal material is mutually insoluble with the first component contained in the metal bath, it is not eluted into the metal bath and remains in the metal material. On the other hand, the third component contained in both the metal material and the metal bath is mutually soluble with the first component and mutually soluble with the second component. can be moved between. That is, when a metal material is immersed in a metal bath, the third component is selectively eluted from the metal material into the metal bath until the composition reaches an equilibrium state with the metal bath, or the third component contained in the metal bath is Component 3 can be selectively diffused into the metal material. When the third component is eluted into the metal bath, for example, the component remaining in the metal material becomes concentrated while self-organizing minute gaps. Further, when the third component is diffused into the metal material, for example, the third component is gradually diffused so that the metal material has a uniform composition. In any of these cases, by making sure that the third component is included in the composition that is in equilibrium with the metal bath, the metal containing not only the second component but also the third component can be added. parts can be manufactured.
 なお、取得工程は、金属浴制御工程で所望の温度に制御した後の金属浴に金属材料を浸すことが好ましいが、金属材料を金属浴に浸した後、金属浴制御工程で金属浴を所望の温度に制御することにより、金属材料を温度制御された金属浴に浸してもよい。 In addition, in the obtaining step, it is preferable that the metal material is immersed in a metal bath whose temperature has been controlled to a desired temperature in a metal bath control step. The metal material may be immersed in a temperature-controlled metal bath by controlling the temperature to .
 本発明に係る金属部材の製造方法で、第1の成分、第2の成分、および第3の成分は、それぞれ単一の金属元素から成っていてもよく、金属元素を含む複数種類の元素から成っていてもよい。なお、金属元素として、錫、炭素、珪素、ホウ素、ゲルマニウムなどの半金属元素を含んでいてもよい。また、本発明に係る金属部材の製造方法で、製造される金属部材は、合金や複合部材など、いかなる組成や構造を有していてもよい。金属部材は、例えば、ステンレス鋼やハイエントロピー合金、表面が異なる金属や合金等で覆われた複合部材であってもよい。また、本明細書中で、複数の成分が互いに可溶であるとは、各成分が混ざり合って均一な合金を形成可能であることを意味し、複数の成分が互いに非可溶であるとは、各成分が混ざり合わず、相に分離してしまい、均一な合金を形成できないことを意味している。 In the method for manufacturing a metal member according to the present invention, the first component, the second component, and the third component may each be made of a single metal element, or may be made of multiple types of elements including a metal element. It may be made up of Note that the metal element may include a metalloid element such as tin, carbon, silicon, boron, germanium, or the like. Moreover, the metal member manufactured by the method for manufacturing a metal member according to the present invention may have any composition or structure, such as an alloy or a composite member. The metal member may be, for example, stainless steel, a high entropy alloy, or a composite member whose surface is covered with different metals or alloys. Furthermore, in this specification, when multiple components are mutually soluble, it means that each component can be mixed to form a uniform alloy, and when multiple components are mutually insoluble, it means that each component can be mixed to form a uniform alloy. means that the components do not mix and separate into phases, making it impossible to form a uniform alloy.
 本発明に係る金属部材の製造方法で、前記金属浴制御工程は、前記金属浴を、前記金属材料の組成から、前記金属材料中の前記第3の成分が減少して前記金属浴との間で平衡状態となる組成までの組成変動範囲内での液相線温度の最小値よりも低い温度に制御し、前記取得工程は、前記金属材料を前記金属浴に浸すことにより、前記金属材料に含まれる前記第3の成分を選択的に前記金属浴内に溶出させて、微小間隙を有するポーラス合金から成る前記金属部材を得てもよい。この場合、金属材料に残存した第2成分および第3成分が結合を繰り返して、ナノメートル寸法を有する粒子を形成し、さらに、これらの粒子が部分的に結合することによって微小間隙を自己組織形成する。こうして、第2の成分と第3の成分とを有し、ナノメートル寸法を有する粒子が部分的に結合された、微小間隙を有するポーラス合金から成る、本発明に係る金属部材を製造することができる。 In the method for manufacturing a metal member according to the present invention, the metal bath control step controls the metal bath from a composition of the metal material such that the third component in the metal material decreases. The temperature is controlled to be lower than the minimum value of the liquidus temperature within the composition variation range up to the composition reaching an equilibrium state at , and the obtaining step is performed by immersing the metal material in the metal bath. The third component contained may be selectively eluted into the metal bath to obtain the metal member made of a porous alloy having minute gaps. In this case, the second and third components remaining in the metal material repeatedly combine to form particles with nanometer dimensions, and further, these particles partially combine to form microgaps by self-organization. do. In this way, it is possible to produce a metal member according to the invention, which comprises a second component and a third component, and is made of a porous alloy with microscopic gaps, in which particles having nanometer dimensions are partially bonded. can.
 この金属材料に含まれる第3の成分を選択的に金属浴内に溶出させる場合、形成された微小間隙に付着した、金属浴由来の物質を除去することにより、微小気孔を有するポーラス合金から成る金属部材を製造することができる。また、金属浴の温度や、金属材料の浸漬時間を調整することにより、全体が多孔質のポーラス合金から成る金属部材や、表層のみが多孔質の金属部材を得たり、製造される多孔質組織の間隙サイズや間隙率を変化させたりすることができる。これにより、例えば、ナノメートル寸法の幅を有する微小間隙を形成することができる。なお、この場合、金属材料から第3の成分が減少した組成を有する物質が、金属浴との間で平衡状態となるよう、金属材料および金属浴を準備することが好ましい。また、その金属浴との間で平衡状態となる物質の組成には、第3の成分が含まれていることが好ましい。 When the third component contained in this metal material is selectively eluted into the metal bath, by removing the substance derived from the metal bath that adheres to the formed micro gaps, a porous alloy with micro pores is formed. Metal parts can be manufactured. In addition, by adjusting the temperature of the metal bath and the immersion time of the metal material, it is possible to obtain a metal member made of a porous alloy that is entirely porous, a metal member that is porous only in the surface layer, and a porous structure that is produced. The gap size and porosity can be changed. As a result, it is possible to form, for example, a minute gap having a width on the order of nanometers. In this case, it is preferable to prepare the metal material and the metal bath so that a substance having a composition in which the third component is reduced from the metal material is in an equilibrium state with the metal bath. Further, it is preferable that the composition of the substance that is in equilibrium with the metal bath includes a third component.
 本発明に係る金属部材の製造方法で、前記金属浴制御工程は、前記金属浴を、前記金属材料の組成から、前記金属材料中の前記第3の成分が増加して前記金属浴との間で平衡状態となる組成までの組成変動範囲内での液相線温度の最小値よりも低い温度に制御し、前記取得工程は、前記金属材料を前記金属浴に浸すことにより、前記金属浴に含まれる前記第3の成分を選択的に前記金属材料に拡散させて、前記金属部材を得てもよい。この場合、金属材料が均一な組成になるよう、第3の成分が金属材料中に徐々に拡散していく。これにより、第3の成分を含む金属部材を製造することができる。また、金属材料の金属浴への浸漬時間により、金属材料への第3の成分の拡散状態を制御することができる。このため、例えば、金属浴への浸漬時間を短くすることにより、めっき処理と同様に、金属浴に浸漬する前の金属材料の表面が第3の成分により覆われた金属部材を製造することができる。また、金属浴への浸漬時間を長くすることにより、第3の成分の含有率が高い表層を有する金属部材や、全体が均一な組成を有する金属部材を製造することができる。なお、この場合、金属材料が、第3の成分を有さず、第2の成分のみを有するものであってもよい。このときにも、金属浴に含まれる第3の成分が金属材料に拡散するため、第2の成分だけでなく、第3の成分も含む金属部材を製造することができる。 In the method for manufacturing a metal member according to the present invention, the metal bath control step controls the metal bath so that the third component in the metal material increases from the composition of the metal material to the metal bath. The temperature is controlled to be lower than the minimum value of the liquidus temperature within the composition variation range up to the composition reaching an equilibrium state at , and the obtaining step is performed by immersing the metal material in the metal bath. The metal member may be obtained by selectively diffusing the third component contained in the metal material. In this case, the third component is gradually diffused into the metal material so that the metal material has a uniform composition. Thereby, a metal member containing the third component can be manufactured. Furthermore, the state of diffusion of the third component into the metal material can be controlled by the immersion time of the metal material in the metal bath. Therefore, for example, by shortening the immersion time in the metal bath, it is possible to manufacture a metal member in which the surface of the metal material before being immersed in the metal bath is covered with the third component, similar to plating treatment. can. Moreover, by increasing the immersion time in the metal bath, it is possible to manufacture a metal member having a surface layer with a high content of the third component or a metal member having a uniform composition as a whole. Note that in this case, the metal material may not have the third component but only have the second component. Also at this time, since the third component contained in the metal bath diffuses into the metal material, a metal member containing not only the second component but also the third component can be manufactured.
 また、この金属浴に含まれる第3の成分を選択的に金属材料に拡散させる場合、前記金属材料準備工程は、ポーラスの前記金属材料を準備し、前記取得工程は、微小間隙を有するポーラス合金から成る前記金属部材を得てもよい。また、金属材料準備工程は、ポーラスの金属材料を準備し、取得工程は、金属材料を金属浴に浸漬する時間を短くすることにより、ポーラスの金属材料の表面を第3の成分で覆った金属部材を得てもよい。 Further, when the third component contained in the metal bath is selectively diffused into the metal material, the metal material preparation step prepares the porous metal material, and the obtaining step includes a porous alloy having minute gaps. The metal member may be obtained. In addition, the metal material preparation step prepares a porous metal material, and the obtaining step includes shortening the time for which the metal material is immersed in the metal bath, thereby making the surface of the porous metal material covered with a third component. You may obtain a member.
 本発明に係る金属部材の製造方法は、前記取得工程で得られた前記金属部材を前記金属浴から引き上げた後、前記金属部材に付着した、前記第1の成分および前記第3の成分を含む付着混和体を選択的に除去する除去工程を有していてもよい。付着混和体は、金属部材を取得後の金属浴成分から成ることが好ましい。また、取得工程で金属部材を得た後、金属部材を浸漬した状態で金属浴を固化し、前記第1の成分および前記第3の成分を含む金属浴成分を選択的に除去する除去工程を有していてもよい。これらの場合、例えば、付着混和体や金属浴成分のみを選択的に溶出することのできる酸またはアルカリ水溶液を使用することにより、金属部材を回収することができる。付着混和体や金属浴成分は、例えば、金属部材の周囲に付着したり、微小間隙の内部に一部付着したり、微小間隙の内部に充填されたりしている。 The method for manufacturing a metal member according to the present invention includes the first component and the third component attached to the metal member after the metal member obtained in the obtaining step is pulled up from the metal bath. The method may include a removal step for selectively removing the adhering mixture. Preferably, the deposition admixture consists of the metal bath components after obtaining the metal part. Further, after obtaining the metal member in the obtaining step, a removal step of solidifying the metal bath in a state in which the metal member is immersed, and selectively removing metal bath components including the first component and the third component. may have. In these cases, the metal member can be recovered by using, for example, an acid or alkaline aqueous solution that can selectively elute only the adhering mixture and metal bath components. The adhesion mixture or the metal bath component is, for example, attached around the metal member, partially attached to the inside of the minute gap, or filled inside the minute gap.
 本発明に係る金属部材の製造方法および金属部材で、前記第1の成分は、Mg、Bi、Pb、Cu、およびAgのうちの少なくともいずれか一つを含み、前記第2の成分は、Fe、Cr、V、Co、Mo、Ni、Zr、Ta、W、Hf、Nb、およびTiのうちの少なくとも一つを含み、前記第3の成分は、Ni、Pd、Al、Ag、Cu、Mn、およびCoのうちの少なくともいずれか一つを含んでいてもよい。 In the method for manufacturing a metal member and the metal member according to the present invention, the first component includes at least one of Mg, Bi, Pb, Cu, and Ag, and the second component includes Fe. , Cr, V, Co, Mo, Ni, Zr, Ta, W, Hf, Nb, and Ti, and the third component includes Ni, Pd, Al, Ag, Cu, Mn. , and Co.
 本発明によれば、第2の成分だけでなく、第3の成分も含む金属部材を製造することができる金属部材の製造方法および金属部材を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a metal member and a metal member that can manufacture a metal member containing not only the second component but also the third component.
本発明の実施の形態の金属部材の製造方法の、実施例1の金属材料のX線回折スペクトルである。It is an X-ray diffraction spectrum of the metal material of Example 1 of the manufacturing method of the metal member of embodiment of this invention. 本発明の実施の形態の金属部材の製造方法の、実施例1の金属材料の(a)走査型電子顕微鏡(SEM)写真、(b)エネルギー分散型X線分光法(EDS)による元素分析結果を示す、Fe、(c)Niの元素マップである。(a) Scanning electron microscope (SEM) photograph, (b) Elemental analysis results by energy dispersive X-ray spectroscopy (EDS) of the metal material of Example 1 in the method for manufacturing a metal member according to the embodiment of the present invention It is an elemental map of Fe and (c) Ni, showing the following. 本発明の実施の形態の金属部材の製造方法の、実施例1で得られた金属部材の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大した、エネルギー分散型X線分光法(EDS)による元素分析範囲を示すSEM写真、(c)その元素分析結果を示す、Fe、(d)Niの元素マップである。(a) Scanning electron microscope (SEM) photograph of the metal member obtained in Example 1, (b) Enlarged part of (a), energy These are an SEM photograph showing the range of elemental analysis by dispersive X-ray spectroscopy (EDS), (c) an elemental map of Fe and (d) Ni showing the results of the elemental analysis. 本発明の実施の形態の金属部材の製造方法の、実施例2で得られた金属部材の走査型電子顕微鏡(SEM)写真である。1 is a scanning electron microscope (SEM) photograph of a metal member obtained in Example 2 of the method for manufacturing a metal member according to an embodiment of the present invention. 本発明の実施の形態の金属部材の製造方法の、実施例2で得られた金属部材の(a)図4の一部を拡大した、エネルギー分散型X線分光法(EDS)による元素分析範囲を示す走査型電子顕微鏡(SEM)写真、(b)その元素分析結果を示す、Fe、(c)Cr、(d)Ni、(e)Mg、(f)Biの元素マップである。Elemental analysis range by energy-dispersive X-ray spectroscopy (EDS) of the metal member obtained in Example 2 of the method for manufacturing a metal member according to the embodiment of the present invention (a) Enlarged part of FIG. 4 (b) An elemental map of Fe, (c) Cr, (d) Ni, (e) Mg, and (f) Bi showing the elemental analysis results. 本発明の実施の形態の金属部材の製造方法の、実施例2で得られた金属浴成分除去後の金属部材の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真である。(a) Scanning electron microscope (SEM) photograph of the metal member obtained in Example 2 after removing the metal bath components in the method for manufacturing a metal member according to the embodiment of the present invention, (b) Part of (a) This is an enlarged SEM photograph. 本発明の実施の形態の金属部材の製造方法の、実施例2で得られた金属浴成分除去後の金属部材の(a)X線回折スペクトル、(b)エネルギー分散型X線分析(EDX)スペクトルである。(a) X-ray diffraction spectrum, (b) Energy dispersive X-ray analysis (EDX) of the metal member obtained in Example 2 after removal of metal bath components in the method for manufacturing a metal member according to the embodiment of the present invention It is a spectrum. 本発明の実施の形態の金属部材の製造方法の、実施例3の金属材料のX線回折スペクトルである。It is an X-ray diffraction spectrum of the metal material of Example 3 of the manufacturing method of the metal member of embodiment of this invention. 本発明の実施の形態の金属部材の製造方法の、実施例3の金属材料の(a)エネルギー分散型X線分光法(EDS)による元素分析範囲を示す走査型電子顕微鏡(SEM)写真、(b)その元素分析結果を示す、V、(c)Fe、(d)Ni、(e)Cr、(f)Coの元素マップである。(a) Scanning electron microscope (SEM) photograph showing the range of elemental analysis by energy dispersive X-ray spectroscopy (EDS) of the metal material of Example 3 in the method for manufacturing a metal member according to the embodiment of the present invention; b) An elemental map of V, (c) Fe, (d) Ni, (e) Cr, and (f) Co showing the elemental analysis results. 本発明の実施の形態の金属部材の製造方法の、実施例3で得られた金属浴成分除去後の金属部材の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真である。(a) Scanning electron microscope (SEM) photograph of the metal member after removal of metal bath components obtained in Example 3 of the method for manufacturing a metal member according to the embodiment of the present invention, (b) Part of (a) This is an enlarged SEM photograph. 本発明の実施の形態の金属部材の製造方法の、実施例3で得られた金属浴成分除去後の金属部材のX線回折スペクトルである。It is an X-ray diffraction spectrum of the metal member obtained in Example 3 after removal of metal bath components in the method for manufacturing a metal member according to an embodiment of the present invention. 本発明の実施の形態の金属部材の製造方法の、実施例4で得られた金属部材の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大した、エネルギー分散型X線分光法(EDS)による元素分析範囲を示すSEM写真、(c)その元素分析結果を示す、Cr、(d)Mn、(e)Fe、(f)Co、(g)Niの元素マップである。(a) Scanning electron microscope (SEM) photograph of the metal member obtained in Example 4, (b) Enlarged part of (a), energy SEM photograph showing the range of elemental analysis by dispersive X-ray spectroscopy (EDS), (c) showing the elemental analysis results of Cr, (d) Mn, (e) Fe, (f) Co, (g) Ni. It is an elemental map. 本発明の実施の形態の金属部材の製造方法の、実施例4で得られた金属浴成分除去後の金属部材の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真である。(a) Scanning electron microscope (SEM) photograph of the metal member after removing the metal bath components obtained in Example 4 of the method for manufacturing a metal member according to the embodiment of the present invention, (b) Part of (a) This is an enlarged SEM photograph. 本発明の実施の形態の金属部材の製造方法の、実施例4で金属浴の温度が693Kのときに得られた金属浴成分除去後の金属部材の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of a metal member after removal of metal bath components obtained when the temperature of the metal bath was 693K in Example 4 of the method for manufacturing a metal member according to an embodiment of the present invention. 本発明の実施の形態の金属部材の製造方法の、実施例5で得られた金属部材の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the metal member obtained in Example 5 of the method for manufacturing a metal member according to the embodiment of the present invention. 本発明の実施の形態の金属部材の製造方法の、実施例5で得られた金属部材の(a)図15の一部を拡大した、エネルギー分散型X線分光法(EDS)による元素分析範囲を示す走査型電子顕微鏡(SEM)写真、(b)その元素分析結果を示す、Bi、(c)Ni、(d)Moの元素マップである。Elemental analysis range by energy dispersive X-ray spectroscopy (EDS) of the metal member obtained in Example 5 of the method for manufacturing a metal member according to the embodiment of the present invention (a) Enlarged part of FIG. 15 (b) is an elemental map of Bi, (c) Ni, and (d) Mo, showing the results of elemental analysis. 本発明の実施の形態の金属部材の製造方法の、実施例5で得られた金属浴成分除去後の金属部材の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the metal member after removal of metal bath components obtained in Example 5 of the method for manufacturing a metal member according to an embodiment of the present invention. 本発明の実施の形態の金属部材の製造方法の、実施例5で得られた金属浴成分除去後の金属部材である(a)Mo94.4Ni5.6、(b)Mo52.4Ni47.6、(c)Mo25Ni75、(d)Mo20.2Ni79.8の走査型電子顕微鏡(SEM)写真である。(a) Mo 94.4 Ni 5.6 , (b) Mo 52.4 which are the metal members after removing the metal bath components obtained in Example 5 of the method for manufacturing a metal member according to the embodiment of the present invention These are scanning electron microscope (SEM) photographs of Ni 47.6 , (c) Mo 25 Ni 75 , and (d) Mo 20.2 Ni 79.8 . 本発明の実施の形態の金属部材の製造方法の、実施例6で得られた金属部材の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真、(c)エネルギー分散型X線分光法(EDS)による元素分析結果を示す、Mg、(d)Fe、(e)Al+Fe、(f)Alの元素マップである。(a) Scanning electron microscope (SEM) photograph of the metal member obtained in Example 6 of the method for manufacturing a metal member according to the embodiment of the present invention, (b) SEM photograph with a portion of (a) enlarged , (c) Elemental maps of Mg, (d) Fe, (e) Al+Fe, and (f) Al showing the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS). 本発明の実施の形態の金属部材の製造方法の、実施例6で得られた金属浴成分除去後の金属部材の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the metal member obtained in Example 6 after removal of metal bath components in the method for manufacturing a metal member according to an embodiment of the present invention. 本発明の実施の形態の金属部材の製造方法の、実施例7で得られた金属部材の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the metal member obtained in Example 7 of the method for manufacturing a metal member according to the embodiment of the present invention. 本発明の実施の形態の金属部材の製造方法の、実施例8で得られた金属浴成分除去後の金属部材の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真、(c)X線回折スペクトルである。(a) Scanning electron microscope (SEM) photograph of the metal member after removal of metal bath components obtained in Example 8 of the method for manufacturing a metal member according to the embodiment of the present invention, (b) Part of (a) (c) X-ray diffraction spectrum. 本発明の実施の形態の金属部材の製造方法の、実施例9で得られた金属部材の(a)走査型電子顕微鏡(SEM)写真、(b)エネルギー分散型X線分光法(EDS)による元素分析結果を示す、Fe、(c)Co、(d)Mgの元素マップである。(a) Scanning electron microscope (SEM) photograph of the metal member obtained in Example 9 of the method for manufacturing a metal member according to the embodiment of the present invention, (b) Energy dispersive X-ray spectroscopy (EDS) It is an elemental map of Fe, (c) Co, and (d) Mg showing the results of elemental analysis. 本発明の実施の形態の金属部材の製造方法の、実施例10で得られた金属部材の(a)走査型電子顕微鏡(SEM)写真、(b)エネルギー分散型X線分光法(EDS)による元素分析結果を示す、Co、(c)Ni、(d)Biの元素マップである。(a) Scanning electron microscope (SEM) photograph of the metal member obtained in Example 10, (b) Energy dispersive X-ray spectroscopy (EDS) of the metal member manufacturing method of the embodiment of the present invention It is an elemental map of Co, (c) Ni, and (d) Bi showing the results of elemental analysis.
[本発明の第1の実施の形態の金属部材の製造方法]
 以下、実施例等に基づいて、本発明の第1の実施の形態について説明する。
 本発明の第1の実施の形態の金属部材の製造方法は、まず、金属材料準備工程で、化合物、合金または非平衡合金から成り、第2の成分と第3の成分とを有する金属材料を準備する。また、金属浴準備工程で、第1の成分と第3の成分とを有する金属浴を準備する。
[Method for manufacturing a metal member according to the first embodiment of the present invention]
EMBODIMENT OF THE INVENTION Hereinafter, the 1st Embodiment of this invention is described based on an Example etc.
In the method for manufacturing a metal member according to the first embodiment of the present invention, first, in a metal material preparation step, a metal material made of a compound, an alloy, or a non-equilibrium alloy and having a second component and a third component is prepared. prepare. Further, in the metal bath preparation step, a metal bath containing the first component and the third component is prepared.
 ここで、第1の成分と第2の成分とは、互いに非可溶である。また、第1の成分と第3の成分とは、互いに可溶である。第2の成分と第3の成分とは、互いに可溶である。金属材料準備工程および金属浴準備工程は、金属材料から第3の成分が減少した組成を有する物質が、金属浴との間で平衡状態となるよう、金属材料および金属浴を準備する。このとき、その平衡状態となる物質の組成に、第3の成分が含まれるようにしておく。 Here, the first component and the second component are insoluble in each other. Moreover, the first component and the third component are mutually soluble. The second component and the third component are mutually soluble. In the metal material preparation step and the metal bath preparation step, the metal material and the metal bath are prepared so that a substance having a composition in which the third component is reduced from the metal material is in an equilibrium state with the metal bath. At this time, the third component is included in the composition of the substance in the equilibrium state.
 次に、金属浴制御工程で、準備した金属浴を、準備した金属材料の組成から、金属材料中の第3の成分が減少して金属浴との間で平衡状態となる組成までの組成変動範囲内での液相線温度の最小値よりも低い温度に制御する。このとき、金属浴準備工程で金属浴を準備した後、金属浴の温度制御を行ってもよいが、金属浴の準備をしながら温度制御を行ってもよい。 Next, in the metal bath control step, the prepared metal bath is changed in composition from the composition of the prepared metal material to the composition where the third component in the metal material decreases and reaches an equilibrium state with the metal bath. The temperature is controlled to be lower than the minimum liquidus temperature within the range. At this time, the temperature of the metal bath may be controlled after preparing the metal bath in the metal bath preparation step, or the temperature may be controlled while preparing the metal bath.
 次に、取得工程で、金属材料を温度制御された金属浴に浸す。このとき、金属材料に含まれる第2の成分は、金属浴に含まれる第1の成分と互いに非可溶であるため、金属浴には溶出せず、金属材料に残存する。これに対し、金属材料および金属浴の双方に含まれる第3の成分は、第1の成分と互いに可溶かつ第2の成分と互いに可溶であるため、状況に応じて金属材料と金属浴との間で移動することができる。ここで、本発明の第1の実施の形態の金属部材の製造方法では、金属材料を金属浴に浸したとき、金属浴との間で平衡状態となる組成が、金属材料中の第3の成分が減少した組成となる。このため、金属材料を金属浴に浸したとき、金属浴との間で平衡状態となる組成まで、金属材料から第3の成分を選択的に金属浴内に溶出させることができる。 Next, in the acquisition step, the metal material is immersed in a temperature-controlled metal bath. At this time, since the second component contained in the metal material is mutually insoluble with the first component contained in the metal bath, it is not eluted into the metal bath and remains in the metal material. On the other hand, the third component contained in both the metal material and the metal bath is mutually soluble with the first component and mutually soluble with the second component. can be moved between. Here, in the method for manufacturing a metal member according to the first embodiment of the present invention, when the metal material is immersed in the metal bath, the composition that is in equilibrium with the metal bath is the third one in the metal material. The composition has a reduced number of components. Therefore, when the metal material is immersed in the metal bath, the third component can be selectively eluted from the metal material into the metal bath until the composition reaches an equilibrium state with the metal bath.
 これにより、金属材料に残存した第2成分および第3成分が結合を繰り返して、ナノメートル寸法を有する粒子を形成し、さらに、これらの粒子が部分的に結合することにより、ナノメートル寸法の幅を有する微小間隙を自己組織形成することができる。こうして、第2の成分だけでなく、第3の成分も含み、ナノメートル寸法を有する粒子が部分的に結合された、微小間隙を有するポーラス合金から成る金属部材を製造することができる。 As a result, the second and third components remaining in the metal material repeatedly combine to form particles with nanometer dimensions, and further, by partially combining these particles, the width of nanometer dimensions increases. It is possible to self-organize micro-gaps with . In this way, it is possible to produce a metal component consisting of a porous alloy containing not only the second component but also the third component and having microscopic voids, in which particles having nanometer dimensions are partially bonded.
 具体的には、第1の成分をC、第2の成分をA、第3の成分をBとし、金属部材として、A1-xのポーラス合金を製造するとき、状態図や、活量と組成との関係を示す曲線を利用して、A1-xと平衡状態となる組成を有するC1-yを選定し、これを金属浴とする。また、金属材料として、A1-xよりもBの含有率が大きい組成を有するA1-x’x’(x’>x)を選定する。選定したC1-yの金属浴に、選定したA1-x’x’の金属材料を浸漬すると、平衡状態になろうとして、金属材料内の第3の成分のBが金属浴内に溶出し、A1-x’x’がA1-xに近づいていく。ここで、金属浴は多量にあるものとし、反応の前後で、金属浴の組成は変化しないものとする。こうして、金属部材として、目的とするA1-x、または、その組成に近いポーラス合金を製造することができる。なお、金属材料に含まれる第3の成分Bのうち金属浴に溶出する量[(x’-x)/(1-x)]は、製造する金属部材の空隙率やその空隙が保持されることを考慮して決定することが好ましく、0.3~0.7程度であることが好ましい。 Specifically, when the first component is C, the second component is A, and the third component is B, and a porous alloy of A 1-x B x is manufactured as a metal member, a phase diagram and an active Using a curve showing the relationship between quantity and composition, C 1- y B y having a composition that is in equilibrium with A 1-x B x is selected, and this is used as a metal bath. Further, as the metal material, A 1-x' B x ' (x'>x) having a composition with a higher B content than A 1-x B x is selected. When the selected metal material of A 1-x ' B A 1-x' B x' approaches A 1-x B x . Here, it is assumed that there is a large amount of metal bath, and that the composition of the metal bath does not change before and after the reaction. In this way, the desired A 1-x B x or a porous alloy having a composition close to that composition can be manufactured as a metal member. Note that the amount [(x'-x)/(1-x)] of the third component B contained in the metal material eluted into the metal bath is determined by the porosity of the metal member to be manufactured and the porosity of the metal member maintained. It is preferable to take this into account when deciding, and it is preferably about 0.3 to 0.7.
 なお、取得工程により得られた金属部材を金属浴から引き上げた後、除去工程で、金属部材の周囲に付着したり、微小間隙の内部に一部付着したり、微小間隙の内部に充填されたりしている、第1の成分および第3の成分を含む金属浴由来の付着混和体を選択的に除去してもよい。また、取得工程により金属部材を得た後、金属部材を浸漬した状態で金属浴を固化し、除去工程で、第1の成分および第3の成分を含む金属浴成分を選択的に除去してもよい。除去工程では、例えば、付着混和体や金属浴成分のみを選択的に溶出することのできる酸またはアルカリ水溶液を使用することができる。これにより、ナノメートル寸法の微小気孔を有するポーラス合金から成る金属部材を製造することができる。 In addition, after the metal component obtained in the acquisition process is pulled up from the metal bath, in the removal process, it may adhere to the periphery of the metal component, partially adhere to the inside of the micro gap, or be filled inside the micro gap. The deposited admixture from the metal bath containing the first component and the third component may be selectively removed. Further, after obtaining the metal member in the obtaining step, the metal bath is solidified in a state in which the metal member is immersed, and in the removal step, the metal bath components including the first component and the third component are selectively removed. Good too. In the removal step, for example, an acid or alkaline aqueous solution that can selectively elute only the adhering mixture and metal bath components can be used. As a result, a metal member made of a porous alloy having nanometer-sized micropores can be manufactured.
 本発明の第1の実施の形態の金属部材の製造方法では、金属浴の温度や、金属材料の浸漬時間を調整することにより、全体が多孔質のポーラス合金から成る金属部材や、表層のみが多孔質の金属部材を得たり、製造される多孔質組織の間隙サイズや間隙率を変化させたりすることもできる。 In the method for manufacturing a metal member according to the first embodiment of the present invention, by adjusting the temperature of the metal bath and the immersion time of the metal material, it is possible to produce a metal member made entirely of a porous alloy or a metal member made of only a surface layer. It is also possible to obtain porous metal members and to change the pore size and porosity of the produced porous structure.
 金属部材として、Fe75Ni25(下付の数字は組成比である。以下同じ)に近い組成を有するポーラス合金の製造を行った。Fe75Ni25 と平衡状態となる組成を有する金属浴として、(Mg0.5Bi0.598.5Ni1.5 の組成のものを準備した。また、金属材料として、Fe75Ni25 よりもNiの含有率が大きい組成を有する、(Fe0.75Ni0.2550Ni50=Fe37.5Ni62.5 から成る合金を準備した。このとき、第1の成分はMgおよびBi、第2の成分はFe、第3の成分はNiである。 As a metal member, a porous alloy having a composition close to Fe 75 Ni 25 (subscript numbers indicate composition ratios; the same applies hereinafter) was manufactured. A metal bath having a composition of (Mg 0.5 Bi 0.5 ) 98.5 Ni 1.5 was prepared as a metal bath having a composition in equilibrium with Fe 75 Ni 25 . In addition, as a metal material, an alloy consisting of (Fe 0.75 Ni 0.25 ) 50 Ni 50 =Fe 37.5 Ni 62.5 , which has a composition with a higher Ni content than Fe 75 Ni 25 , was prepared. . At this time, the first component is Mg and Bi, the second component is Fe, and the third component is Ni.
 なお、金属材料は、純アルゴンガス雰囲気中で、Fe37.5Ni62.5 の組成になるよう、FeおよびNiを原料として、アーク溶解法を用いて製造した。また、金属浴は、純アルゴンガス雰囲気中で、(Mg0.5Bi0.598.5Ni1.5 の組成になるよう、Mg、Bi、Niを坩堝の中に入れ、1023Kに加熱して製造した。金属材料のX線回折結果を図1に、金属材料の走査型電子顕微鏡写真およびエネルギー分散型X線分光法(EDS)による元素分析の結果を図2に示す。 The metal material was manufactured using an arc melting method using Fe and Ni as raw materials so as to have a composition of Fe 37.5 Ni 62.5 in a pure argon gas atmosphere. In addition, the metal bath was prepared by placing Mg, Bi, and Ni in a crucible in a pure argon gas atmosphere to have a composition of (Mg 0.5 Bi 0.5 ) 98.5 Ni 1.5 , and heated to 1023K. Produced by heating. FIG. 1 shows the results of X-ray diffraction of the metal material, and FIG. 2 shows the scanning electron micrograph of the metal material and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS).
 金属材料を、1023Kに保持した金属浴に、30分間浸漬した。ここで、金属浴は、金属材料のFe37.5Ni62.5 の組成から、金属浴との間で平衡状態となるFe75Ni25 の組成までの組成変動範囲内での液相線温度の最小値(1440℃)よりも低く制御されている。金属材料を金属浴に浸漬した後、得られた金属部材を金属浴から取り出し、冷却した。得られた金属部材の走査型電子顕微鏡写真およびエネルギー分散型X線分光法(EDS)による元素分析の結果を、図3に示す。 The metal material was immersed in a metal bath maintained at 1023K for 30 minutes. Here, the metal bath has a liquidus temperature within a composition variation range from the composition of Fe 37.5 Ni 62.5 of the metal material to the composition of Fe 75 Ni 25 that is in equilibrium with the metal bath. The temperature is controlled to be lower than the minimum value (1440°C). After the metal material was immersed in the metal bath, the obtained metal member was taken out from the metal bath and cooled. FIG. 3 shows a scanning electron micrograph of the obtained metal member and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS).
 図3(a)および(b)に示す黒い部分が、得られた金属部材であり、白い部分が、金属浴が固化した成分である。図3(a)および(b)に示すように、得られた金属部材は、ポーラス金属であり、リガメントの幅が数μm~1μm以下で、数μmより小さい幅を有する微小間隙を有し、特に1μmより小さいナノメートル寸法の幅の微小間隙を多く有し、その微小間隙に金属浴成分が詰まっていることが確認された。また、図3(c)および(d)に示すように、得られた金属部材は、FeおよびNiから成るポーラス合金であることが確認された。 The black part shown in FIGS. 3(a) and 3(b) is the obtained metal member, and the white part is the solidified component of the metal bath. As shown in FIGS. 3(a) and (b), the obtained metal member is a porous metal, has a ligament width of several μm to 1 μm or less, and has minute gaps having a width smaller than several μm, In particular, it was confirmed that there were many micro-gaps with nanometer widths smaller than 1 μm, and these micro-gaps were filled with metal bath components. Moreover, as shown in FIGS. 3(c) and 3(d), it was confirmed that the obtained metal member was a porous alloy consisting of Fe and Ni.
 得られた金属部材のリガメントに対して、EDSによる組成分析を行ったところ、Feを67.8%~73.7%(at%;以下同じ)、平均で70.7%含み、Niを26.3%~32.2%、平均で29.3%含んでいることが確認された。この結果から、得られた金属部材は、Fe70.7Ni29.3 の組成を有するポーラス合金であり、反応前の金属材料Fe37.5Ni62.5 から、目標としたFe75Ni25 の組成に近づいた組成になっていることが確認された。このことから、金属材料を金属浴に浸したとき、金属材料からNi(第3の成分)が選択的に金属浴内に溶出したものと考えられる。 A compositional analysis by EDS of the obtained ligament of the metal member revealed that it contained 67.8% to 73.7% (at%; the same hereinafter) of Fe, an average of 70.7%, and 26% of Ni. It was confirmed that the content ranged from .3% to 32.2%, with an average content of 29.3%. From this result, the obtained metal member is a porous alloy having a composition of Fe 70.7 Ni 29.3 , and the target Fe 75 Ni 25 is changed from the metal material Fe 37.5 Ni 62.5 before reaction. It was confirmed that the composition was close to that of . From this, it is considered that when the metal material was immersed in the metal bath, Ni (the third component) was selectively eluted from the metal material into the metal bath.
 金属部材として、オーステナイト系のステンレス鋼であるSUS316Lの組成Fe65.8Cr19.4Mo1.5Ni13.4 に近い組成を有するポーラスのステンレス鋼の製造を行った。Fe65.8Cr19.4Mo1.5Ni13.4 と平衡状態となる組成を有する金属浴として、(Mg0.75Bi0.2592NiCr1 の組成のものを準備した。また、金属材料として、Fe65.8Cr19.4Mo1.5Ni13.4 よりもNiの含有率が大きい組成を有する、(Fe0.658Cr0.194Mo0.015Ni0.13430Ni70=Fe19.73Cr5.82Mo0.44Ni74.01 から成る合金を準備した。このとき、第1の成分はMg、第2の成分はFe、CrおよびMo、第3の成分はNiである。 As a metal member, a porous stainless steel having a composition close to that of SUS316L, which is an austenitic stainless steel, Fe 65.8 Cr 19.4 Mo 1.5 Ni 13.4 was manufactured. A metal bath with a composition of (Mg 0.75 Bi 0.25 ) 92 Ni 7 Cr 1 was prepared as a metal bath having a composition in equilibrium with Fe 65.8 Cr 19.4 Mo 1.5 Ni 13.4 . . Further, as a metal material, (Fe 0.658 Cr 0.194 Mo 0.015 Ni 0. 134 ) An alloy consisting of 30 Ni 70 =Fe 19.73 Cr 5.82 Mo 0.44 Ni 74.01 was prepared. At this time, the first component is Mg, the second component is Fe, Cr, and Mo, and the third component is Ni.
 なお、金属材料は、純アルゴンガス雰囲気中で、Fe19.73Cr5.82Mo0.44Ni74.01 の組成になるよう、Fe、Cr、MoおよびNiを原料として、アーク溶解法を用いて製造した。また、金属浴は、純アルゴンガス雰囲気中で、(Mg0.75Bi0.2592NiCr1 の組成になるよう、Mg、Bi、Ni、Crを坩堝の中に入れ、1023Kに加熱して製造した。 The metal material was prepared using an arc melting method using Fe, Cr, Mo, and Ni as raw materials in a pure argon gas atmosphere to obtain a composition of Fe 19.73 Cr 5.82 Mo 0.44 Ni 74.01 . Manufactured using In addition, the metal bath was prepared by putting Mg, Bi, Ni, and Cr into a crucible in a pure argon gas atmosphere to have a composition of (Mg 0.75 Bi 0.25 ) 92 Ni 7 Cr 1 , and heating it to 1023K. Produced by heating.
 金属材料を、1023Kに保持した金属浴に、10分間浸漬した。ここで、金属浴は、金属材料のFe19.73Cr5.82Mo0.44Ni74.01 の組成から、金属浴との間で平衡状態となるFe65.8Cr19.4Mo1.5Ni13.4 の組成までの組成変動範囲内での液相線温度の最小値よりも低く制御されている。金属材料を金属浴に浸漬した後、得られた金属部材を金属浴から取り出し、冷却した。得られた金属部材の走査型電子顕微鏡写真およびエネルギー分散型X線分光法(EDS)による元素分析の結果を、図4および図5に示す。 The metal material was immersed in a metal bath maintained at 1023K for 10 minutes. Here, the metal bath is Fe 65.8 Cr 19.4 Mo 1 which is in equilibrium with the metal bath due to the composition of the metal material Fe 19.73 Cr 5.82 Mo 0.44 Ni 74.01 . The liquidus temperature is controlled to be lower than the minimum value within the composition variation range up to the composition of .5 Ni 13.4 . After the metal material was immersed in the metal bath, the obtained metal member was taken out from the metal bath and cooled. A scanning electron micrograph of the obtained metal member and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS) are shown in FIGS. 4 and 5.
 図4および図5(a)に示す黒い部分が、得られた金属部材であり、白い部分が、金属浴が固化した成分である。図4および図5(a)に示すように、得られた金属部材は、ポーラス金属であり、リガメントの幅が1μmより小さく、1μmより小さいナノメートル寸法の幅の微小間隙を多く有しており、図5(e)および(f)に示すように、その微小間隙に金属浴成分のMgやBiが詰まっていることが確認された。また、図5(b)~(d)に示すように、得られた金属部材は、Fe、Cr、NiおよびMoから成るポーラス合金であることが確認された。 The black part shown in FIGS. 4 and 5(a) is the obtained metal member, and the white part is the solidified component of the metal bath. As shown in FIG. 4 and FIG. 5(a), the obtained metal member is a porous metal, and has a ligament width of less than 1 μm and many minute gaps with nanometer-sized widths of less than 1 μm. As shown in FIGS. 5(e) and 5(f), it was confirmed that the minute gaps were filled with metal bath components Mg and Bi. Further, as shown in FIGS. 5(b) to 5(d), it was confirmed that the obtained metal member was a porous alloy consisting of Fe, Cr, Ni, and Mo.
 得られた金属部材を硝酸水溶液に浸漬し、金属浴成分を除去した。金属浴成分除去後の金属部材の走査型電子顕微鏡写真を図6(a)および(b)に、X線回折結果およびエネルギー分散型X線分析(EDX)結果を、それぞれ図7(a)および(b)に示す。図6(a)および(b)に示すように、硝酸水溶液に浸漬することにより、金属部材の周囲に付着したり、微小間隙の内部に充填されたりしていた金属浴由来の付着混和体を選択的に除去できていることが確認された。また、図7(a)に示すように、金属部材は、オーステナイトの面心立方格子構造(fcc)を有していることが確認された。また、図7(b)の結果から、金属部材の組成は、Feが64.7%、Crが20.1%、Niが13.6%、Moが1.4%であり、オーステナイト系のステンレス鋼であるSUS316Lとほぼ一致していることが確認された。以上の結果から、金属部材として、ポーラスのオーステナイト系ステンレス鋼SUS316Lを製造することができたと考えられる。 The obtained metal member was immersed in a nitric acid aqueous solution to remove metal bath components. Scanning electron micrographs of the metal member after removal of metal bath components are shown in Figures 6(a) and (b), and X-ray diffraction results and energy dispersive X-ray analysis (EDX) results are shown in Figures 7(a) and 7(b), respectively. Shown in (b). As shown in Figures 6(a) and (b), by immersing the metal member in the nitric acid aqueous solution, the adhesion mixture derived from the metal bath that had adhered to the periphery of the metal member or filled inside the minute gap was removed. It was confirmed that selective removal was possible. Moreover, as shown in FIG. 7(a), it was confirmed that the metal member had an austenite face-centered cubic lattice structure (fcc). Furthermore, from the results shown in Fig. 7(b), the composition of the metal member is 64.7% Fe, 20.1% Cr, 13.6% Ni, and 1.4% Mo, and has an austenitic composition. It was confirmed that it was almost the same as SUS316L, which is stainless steel. From the above results, it is considered that porous austenitic stainless steel SUS316L could be manufactured as a metal member.
 金属部材として、ハイエントロピー合金であるV15Cr15Fe20Co25Ni25 に近い組成を有するポーラスのハイエントロピー合金の製造を行った。V15Cr15Fe20Co25Ni25 と平衡状態となる組成を有する金属浴として、(Bi0.5Mg0.598.2Ni1.5Cr0.3 の組成のものを準備した。また、金属材料として、V15Cr15Fe20Co25Ni25 よりもNiの含有率が大きい組成を有する、(V0.15Cr0.15Fe0.2Co0.25Ni0.2550Ni50=V7.5Cr7.5Fe10Co12.5Ni62.5 から成る合金を準備した。このとき、第1の成分はMg、第2の成分はV、Cr、FeおよびCo、第3の成分はNiである。 As a metal member, a porous high-entropy alloy having a composition close to V 15 Cr 15 Fe 20 Co 25 Ni 25 , which is a high-entropy alloy, was manufactured. A metal bath with a composition of (Bi 0.5 Mg 0.5 ) 98.2 Ni 1.5 Cr 0.3 was prepared as a metal bath having a composition in equilibrium with V 15 Cr 15 Fe 20 Co 25 Ni 25 . . Moreover, as a metal material, it has a composition with a higher Ni content than V 15 Cr 15 Fe 20 Co 25 Ni 25 (V 0.15 Cr 0.15 Fe 0.2 Co 0.25 Ni 0.25 ). An alloy consisting of 50 Ni 50 =V 7.5 Cr 7.5 Fe 10 Co 12.5 Ni 62.5 was prepared. At this time, the first component is Mg, the second component is V, Cr, Fe, and Co, and the third component is Ni.
 なお、金属材料は、純アルゴンガス雰囲気中で、V7.5Cr7.5Fe10Co12.5Ni62.5 の組成になるよう、V15Cr15Fe20Co25Ni25 およびNiを原料として、アーク溶解法を用いて製造した。また、金属浴は、純アルゴンガス雰囲気中で、(Bi0.5Mg0.598.2Ni1.5Cr0.3 の組成になるよう、Mg、Bi、Ni、Crを坩堝の中に入れ、1023Kに加熱して製造した。金属材料のX線回折結果を図8に、金属材料の走査型電子顕微鏡写真およびエネルギー分散型X線分光法(EDS)による元素分析の結果を図9に示す。 The metal material was prepared by adding V 15 Cr 15 Fe 20 Co 25 Ni 25 and Ni to a composition of V 7.5 Cr 7.5 Fe 10 Co 12.5 Ni 62.5 in a pure argon gas atmosphere. It was manufactured using an arc melting method as a raw material. In addition, the metal bath is made of Mg, Bi, Ni, and Cr in a crucible in a pure argon gas atmosphere so that the composition becomes (Bi 0.5 Mg 0.5 ) 98.2 Ni 1.5 Cr 0.3 . It was manufactured by heating it to 1023K. The results of the X-ray diffraction of the metal material are shown in FIG. 8, and the results of the scanning electron micrograph of the metal material and the elemental analysis by energy dispersive X-ray spectroscopy (EDS) are shown in FIG.
 金属材料を、1023Kに保持した金属浴に、30分間浸漬した。ここで、金属浴は、金属材料のV7.5Cr7.5Fe10Co12.5Ni62.5 の組成から、金属浴との間で平衡状態となるV15Cr15Fe20Co25Ni25 の組成までの組成変動範囲内での液相線温度の最小値よりも低く制御されている。金属材料を金属浴に浸漬した後、得られた金属部材を金属浴から取り出し、冷却した。さらに、冷却後の金属部材を硝酸水溶液に浸漬し、金属浴成分を除去した。金属浴成分除去後の金属部材の走査型電子顕微鏡写真を図10(a)および(b)に、X線回折結果を図11に示す。 The metal material was immersed in a metal bath maintained at 1023K for 30 minutes. Here, the metal bath is V 15 Cr 15 Fe 20 Co 25 which is in equilibrium with the metal bath due to the composition of the metal material V 7.5 Cr 7.5 Fe 10 Co 12.5 Ni 62.5 . The liquidus temperature is controlled to be lower than the minimum value within the composition variation range up to the composition of Ni25 . After the metal material was immersed in the metal bath, the obtained metal member was taken out from the metal bath and cooled. Furthermore, the metal member after cooling was immersed in a nitric acid aqueous solution to remove metal bath components. Scanning electron micrographs of the metal member after removal of the metal bath components are shown in FIGS. 10(a) and 10(b), and the X-ray diffraction results are shown in FIG. 11.
 図10(a)および(b)に示すように、硝酸水溶液に浸漬することにより、金属部材の周囲に付着したり、微小間隙の内部に充填されたりしていた金属浴由来の付着混和体を選択的に除去できていることが確認された。また、得られた金属部材は、ポーラス金属であり、リガメントの幅が1μm以下で、1μmより小さいナノメートル寸法の幅の微小間隙を多く有することも確認された。また、図11に示すように、金属部材は、面心立方格子構造(fcc)を有していることが確認された。 As shown in FIGS. 10(a) and (b), by immersing in a nitric acid aqueous solution, the adhesion mixture derived from the metal bath that had adhered to the periphery of the metal member or filled inside the minute gap was removed. It was confirmed that selective removal was possible. It was also confirmed that the obtained metal member was a porous metal, had a ligament width of 1 μm or less, and had many microgaps with nanometer widths smaller than 1 μm. Further, as shown in FIG. 11, it was confirmed that the metal member had a face-centered cubic lattice structure (FCC).
 得られた金属部材に対し、エネルギー分散型X線分析(EDX)を行ったところ、金属部材の組成は、Vが14.9%、Crが11.9%、Feが18.8%、Coが21.3%、Niが33.2%であることが確認された。この結果から、得られた金属部材は、V14.9Cr11.9Fe18.8Co21.3Ni33.2 の組成を有するポーラスのハイエントロピー合金であり、反応前の金属材料V7.5Cr7.5Fe10Co12.5Ni62.5 から、目標としたV15Cr15Fe20Co25Ni25 の組成に近づいた組成になっていることが確認された。 When energy dispersive X-ray analysis (EDX) was performed on the obtained metal member, the composition of the metal member was 14.9% V, 11.9% Cr, 18.8% Fe, and Co It was confirmed that Ni was 21.3% and Ni was 33.2%. From this result, the obtained metal member is a porous high-entropy alloy having a composition of V 14.9 Cr 11.9 Fe 18.8 Co 21.3 Ni 33.2 , and the metal material before reaction is V 7 .5 Cr 7.5 Fe 10 Co 12.5 Ni 62.5 , it was confirmed that the composition was close to the targeted composition of V 15 Cr 15 Fe 20 Co 25 Ni 25 .
 金属部材として、ハイエントロピー合金であるCr20Mn20Fe20Co20Ni20 に近い組成を有するポーラスのハイエントロピー合金の製造を行った。Cr20Mn20Fe20Co20Ni20 と平衡状態となる組成を有する金属浴として、Bi95.2Ni1.3Mn3.5 の組成のものを準備した。また、金属材料として、Cr20Mn20Fe20Co20Ni20 よりもNiの含有率が大きい組成を有する、(Cr0.2Mn0.2Fe0.2Co0.2Ni0.250Ni50=Cr10Mn10Fe10Co10Ni60 から成る合金を準備した。このとき、第1の成分はBi、第2の成分はCr、FeおよびCo、第3の成分はNi、Mnである。 As a metal member, a porous high-entropy alloy having a composition close to Cr 20 Mn 20 Fe 20 Co 20 Ni 20 , which is a high-entropy alloy, was manufactured. A metal bath having a composition of Bi 95.2 Ni 1.3 Mn 3.5 was prepared as a metal bath having a composition in equilibrium with Cr 20 Mn 20 Fe 20 Co 20 Ni 20 . Further, as a metal material, (Cr 0.2 Mn 0.2 Fe 0.2 Co 0.2 Ni 0.2 ) has a composition in which the Ni content is higher than that of Cr 20 Mn 20 Fe 20 Co 20 Ni 20 . An alloy consisting of 50 Ni 50 =Cr 10 Mn 10 Fe 10 Co 10 Ni 60 was prepared. At this time, the first component is Bi, the second component is Cr, Fe, and Co, and the third component is Ni and Mn.
 なお、金属材料は、純アルゴンガス雰囲気中で、Cr10Mn10Fe10Co10Ni60 の組成になるよう、Cr20Mn20Fe20Co20Ni20 およびNiを原料として、アーク溶解法を用いて製造した後、さらに約100ミクロンの厚さまで冷間圧延した後、1273Kで12時間均質化処理を行ったものとした。また、金属浴は、純アルゴンガス雰囲気中で、Bi95.2Ni1.3Mn3.5 の組成になるようにあらかじめ秤量したBi、Ni、Mnを坩堝中に挿入し、1373K以上に加熱して全ての金属が溶解したことを確認した後、温度を823Kにして製造した。 The metal material was prepared using arc melting method using Cr 20 Mn 20 Fe 20 Co 20 Ni 20 and Ni as raw materials in a pure argon gas atmosphere so as to have a composition of Cr 10 Mn 10 Fe 10 Co 10 Ni 60 . After that, it was further cold rolled to a thickness of about 100 microns, and then homogenized at 1273K for 12 hours. In addition, the metal bath was prepared by inserting pre-weighed Bi, Ni, and Mn into a crucible to have a composition of Bi 95.2 Ni 1.3 Mn 3.5 in a pure argon gas atmosphere, and heating it to 1373 K or higher. After confirming that all the metals were melted, the temperature was raised to 823K and production was carried out.
 金属材料を、823Kに保持した金属浴に、30分間浸漬した。ここで、金属浴は、金属材料のCr10Mn10Fe10Co10Ni60 の組成から、金属浴との間で平衡状態となるCr20Mn20Fe20Co20Ni20 の組成までの組成変動範囲内での液相線温度の最小値よりも低く制御されている。金属材料を金属浴に浸漬した後、得られた金属部材を金属浴から取り出し、冷却した。冷却後の金属部材の走査型電子顕微鏡写真およびエネルギー分散型X線分光法(EDS)による元素分析の結果を、図12に示す。 The metal material was immersed in a metal bath held at 823K for 30 minutes. Here, the composition of the metal bath varies from the composition of the metal material Cr 10 Mn 10 Fe 10 Co 10 Ni 60 to the composition of Cr 20 Mn 20 Fe 20 Co 20 Ni 20 that is in equilibrium with the metal bath. Controlled below the minimum liquidus temperature within the range. After the metal material was immersed in the metal bath, the obtained metal member was taken out from the metal bath and cooled. FIG. 12 shows a scanning electron micrograph of the metal member after cooling and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS).
 図12(a)および(b)の黒い部分が、得られた金属部材であり、白い部分が、金属浴成分が固化した成分である。図10(c)~(g)に示すように、得られた金属部材のリガメントの部分に、Cr、Mn、Fe、Co、Niが均一に分布していることが確認された。 The black part in FIGS. 12(a) and (b) is the obtained metal member, and the white part is the solidified metal bath component. As shown in FIGS. 10(c) to (g), it was confirmed that Cr, Mn, Fe, Co, and Ni were uniformly distributed in the ligament portion of the obtained metal member.
 図12に示す冷却後の金属部材を硝酸水溶液に浸漬し、金属浴成分を除去した。金属浴成分除去後の金属部材の走査型電子顕微鏡写真を図13に示す。図13に示すように、硝酸水溶液に浸漬することにより、金属部材の周囲に付着したり、微小間隙の内部に充填されたりしていた金属浴由来の付着混和体を選択的に除去できていることが確認された。また、得られた金属部材は、ポーラス金属であり、リガメントの幅が0.3~0.5μm程度で、1μmより小さいナノメートル寸法の幅の微小間隙を多く有することも確認された。 The cooled metal member shown in FIG. 12 was immersed in a nitric acid aqueous solution to remove metal bath components. FIG. 13 shows a scanning electron micrograph of the metal member after removal of the metal bath components. As shown in Figure 13, by immersing it in the nitric acid aqueous solution, it was possible to selectively remove adhesion admixtures derived from the metal bath that were adhering to the periphery of the metal member or filling the inside of minute gaps. This was confirmed. It was also confirmed that the obtained metal member was a porous metal, with a ligament width of about 0.3 to 0.5 μm, and a large number of minute gaps with nanometer widths smaller than 1 μm.
 得られた金属部材に対し、エネルギー分散型X線分析(EDX)を行ったところ、金属部材は、Cr13.4Mn16.5Fe26.6Co19.7Ni23.8 であることが確認された。この結果から、得られた金属部材は、ポーラスのハイエントロピー合金であり、反応前の金属材料Cr10Mn10Fe10Co10Ni60 から、目標としたCr20Mn20Fe20Co20Ni20 の組成に近づいた組成になっていることが確認された。 When energy dispersive X-ray analysis (EDX) was performed on the obtained metal member, it was found that the metal member was Cr 13.4 Mn 16.5 Fe 26.6 Co 19.7 Ni 23.8 confirmed. From this result, the obtained metal member is a porous high-entropy alloy, and the target Cr 20 Mn 20 Fe 20 Co 20 Ni 20 is converted from the metal material Cr 10 Mn 10 Fe 10 Co 10 Ni 60 before reaction. It was confirmed that the composition was close to that of the original composition.
 次に、図12および図13のものと同様にして、金属材料を同じ組成のものとし、金属浴組成および金属浴の温度を変えて、Cr20Mn20Fe20Co20Ni20 に近い組成を有するポーラスのハイエントロピー合金の製造を行った。製造条件をまとめ、表1に示す。また、表1中の金属浴の温度が693Kのときに得られた金属部材の走査型電子顕微鏡写真を、図14に示す。なお、表1には、図12および図13の場合の結果も示している。 Next, in the same manner as in FIGS. 12 and 13, the metal materials were made to have the same composition, and the metal bath composition and metal bath temperature were changed to obtain a composition close to Cr 20 Mn 20 Fe 20 Co 20 Ni 20 . We produced a porous high-entropy alloy with the following properties. The manufacturing conditions are summarized in Table 1. Further, a scanning electron micrograph of the metal member obtained when the temperature of the metal bath in Table 1 was 693K is shown in FIG. Note that Table 1 also shows the results in the cases of FIGS. 12 and 13.
 図14に示すように、表1に示す金属浴の温度が最も低い場合であっても、ポーラスのハイエントロピー合金が得られていることが確認された。図12乃至図14の結果を考慮すると、表1のいずれの場合でも、目標としたCr20Mn20Fe20Co20Ni20 の組成に近い、ポーラスのハイエントロピー合金が得られているといえる。また、図13(b)と図14とを比較すると、図14の方が、金属部材のリガメントが細く、構造が微細になっていることから、金属浴の温度が低い方が、得られるポーラス金属が微細になり、表面積が大きくなると考えられる。 As shown in FIG. 14, it was confirmed that a porous high-entropy alloy was obtained even when the temperature of the metal bath shown in Table 1 was the lowest. Considering the results shown in FIGS. 12 to 14, it can be said that in all cases shown in Table 1, a porous high-entropy alloy having a composition close to the target Cr 20 Mn 20 Fe 20 Co 20 Ni 20 was obtained. Moreover, when comparing FIG. 13(b) and FIG. 14, the ligament of the metal member in FIG. 14 is thinner and the structure is finer, so the lower the temperature of the metal bath, the more porous the obtained It is thought that the metal becomes finer and the surface area becomes larger.
 金属部材として、水素発生触媒として使用されるMo-Niの二元系合金のポーラス体の製造を行った。Mo-Niの二元系合金には、Ni固溶体相、MoNi相、MoNi相、MoNi相、Mo固溶体相が存在しており、ポーラス体とすることにより、触媒機能の向上が期待できる。 As a metal member, a porous body of a Mo-Ni binary alloy used as a hydrogen generation catalyst was manufactured. The Mo--Ni binary alloy contains a Ni solid solution phase, a MoNi 4 phase, a MoNi 3 phase, a MoNi phase, and a Mo solid solution phase, and by forming it into a porous body, it is expected that the catalytic function will be improved.
 まず、金属間化合物であるMoNiに近い組成を有するポーラスの金属間化合物の製造を行った。MoNiと平衡状態となる組成を有する金属浴として、Bi82Ni18 の組成のものを準備した。また、金属材料として、MoNiよりもNiの含有率が大きい組成を有する、(Mo0.2Ni0.850Ni50=Mo10Ni90から成る合金を準備した。このとき、第1の成分はBi、第2の成分はMo、第3の成分はNiである。 First, a porous intermetallic compound having a composition close to that of MoNi 4 , which is an intermetallic compound, was manufactured. A metal bath having a composition of Bi 82 Ni 18 was prepared as a metal bath having a composition in equilibrium with MoNi 4 . Further, as a metal material, an alloy consisting of (Mo 0.2 Ni 0.8 ) 50 Ni 50 =Mo 10 Ni 90 , which has a composition with a higher Ni content than MoNi 4 , was prepared. At this time, the first component is Bi, the second component is Mo, and the third component is Ni.
 なお、金属材料は、純アルゴンガス雰囲気中で、Mo10Ni90 の組成になるよう、NiおよびMoを原料として、アーク溶解法を用いて製造した。また、金属浴は、純アルゴンガス雰囲気中で、Bi82Ni18 の組成になるようにあらかじめ秤量したBi、Niを坩堝中に挿入し、1373K以上に加熱して全ての金属が溶解したことを確認した後、温度を1073Kにして製造した。 Note that the metal material was manufactured using an arc melting method using Ni and Mo as raw materials so as to have a composition of Mo 10 Ni 90 in a pure argon gas atmosphere. In addition, the metal bath was prepared by inserting pre-weighed Bi and Ni into a crucible in a pure argon gas atmosphere to have a composition of Bi 82 Ni 18 , and heating it to 1373 K or higher to ensure that all the metals were melted. After confirmation, the temperature was set to 1073K and the product was manufactured.
 金属材料を、1073Kに保持した金属浴に、10分間浸漬した。ここで、金属浴は、金属材料のMo10Ni90 の組成から、金属浴との間で平衡状態となるMoNiの組成までの組成変動範囲内での液相線温度の最小値(約1400℃)よりも低く制御されている。金属材料を金属浴に浸漬した後、得られた金属部材を金属浴から取り出し、冷却した。得られた金属部材の走査型電子顕微鏡写真およびエネルギー分散型X線分光法(EDS)による元素分析の結果を、図15および図16に示す。 The metal material was immersed in a metal bath maintained at 1073K for 10 minutes. Here, the metal bath has a minimum liquidus temperature (approximately 1400 ℃). After the metal material was immersed in the metal bath, the obtained metal member was taken out from the metal bath and cooled. A scanning electron micrograph of the obtained metal member and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS) are shown in FIGS. 15 and 16.
 図15および図16(a)に示す黒い部分が、得られた金属部材であり、白い部分が、金属浴が固化した成分である。図15および図16(a)に示すように、得られた金属部材は、ポーラス金属であり、リガメントの幅が1μmより小さく、1μmより小さいナノメートル寸法の幅の微小間隙を多く有し、図16(b)および(c)に示すように、その微小間隙に金属浴成分のBiやNiが詰まっていることが確認された。また、図16(c)および(d)に示すように、得られた金属部材は、NiおよびMoから成るポーラス金属であることが確認された。 The black part shown in FIGS. 15 and 16(a) is the obtained metal member, and the white part is the solidified component of the metal bath. As shown in FIGS. 15 and 16(a), the obtained metal member is a porous metal, the width of the ligament is smaller than 1 μm, and it has many minute gaps with widths of nanometer size smaller than 1 μm. As shown in Figures 16(b) and 16(c), it was confirmed that the minute gaps were filled with Bi and Ni, which are metal bath components. Moreover, as shown in FIGS. 16(c) and (d), it was confirmed that the obtained metal member was a porous metal consisting of Ni and Mo.
 得られた金属部材を塩酸(HCl)および過酸化水素水(H)の混合水溶液に浸漬し、金属浴成分を除去した。金属浴成分除去後の金属部材の走査型電子顕微鏡写真を図17に示す。図17に示すように、塩酸(HCl)および過酸化水素水(H)に浸漬することにより、金属部材の周囲に付着したり、微小間隙の内部に充填されたりしていた金属浴由来の付着混和体を選択的に除去できていることが確認された。EDSによる元素分析結果から、図17に示す金属部材は、Niが74%、Moが26%であることが確認された。 The obtained metal member was immersed in a mixed aqueous solution of hydrochloric acid (HCl) and hydrogen peroxide (H 2 O 2 ) to remove metal bath components. A scanning electron micrograph of the metal member after removal of the metal bath components is shown in FIG. As shown in Figure 17, by immersing in hydrochloric acid (HCl) and hydrogen peroxide (H 2 O 2 ), the metal bath that had adhered to the periphery of the metal member or filled inside the minute gap was removed. It was confirmed that adhesion admixtures derived from the sample could be selectively removed. From the elemental analysis results by EDS, it was confirmed that the metal member shown in FIG. 17 contained 74% Ni and 26% Mo.
 次に、図15~図17の場合と同様にして、金属材料の組成、金属浴組成、金属浴の温度、金属浴への浸漬時間を変えて、Mo-Niの二元系合金のポーラス体の製造を行った。製造条件をまとめ、表2に示す。また、製造された表2中の各金属部材(生成ポーラス金属)の走査型電子顕微鏡写真を、図18(a)~(d)に示す。なお、製造された各金属部材の構成相は、X線回折結果またはEDSによる元素分析結果から求めたものである。 Next, in the same manner as in the case of FIGS. 15 to 17, by changing the composition of the metal material, the composition of the metal bath, the temperature of the metal bath, and the immersion time in the metal bath, a porous body of the Mo-Ni binary alloy was prepared. was manufactured. The manufacturing conditions are summarized and shown in Table 2. Furthermore, scanning electron micrographs of each manufactured metal member (produced porous metal) in Table 2 are shown in FIGS. 18(a) to (d). The constituent phases of each manufactured metal member were determined from the results of X-ray diffraction or elemental analysis by EDS.
 表2および図18に示すように、いずれの場合であっても、それぞれ目標としたMo固溶体相、MoNi相、MoNi相、MoNi相の組成に近い、ポーラス金属が得られていることが確認された。 As shown in Table 2 and FIG. 18, in any case, porous metals with compositions close to the target Mo solid solution phase, MoNi phase, MoNi 3 phase, and MoNi 4 phase are obtained. confirmed.
 金属部材として、Fe70Al30 に近い組成を有するポーラスのFe-Al金属間化合物の製造を行った。Fe70Al30 と平衡状態となる組成を有する金属浴として、Mg99Al1 の組成のものを準備した。また、金属材料として、Fe70Al30 よりもAlの含有率が大きい組成を有する、Fe25Al75 から成る合金を準備した。このとき、第1の成分はMg、第2の成分はFe、第3の成分はAlである。 A porous Fe--Al intermetallic compound having a composition close to Fe 70 Al 30 was produced as a metal member. A metal bath having a composition of Mg 99 Al 1 was prepared as a metal bath having a composition in equilibrium with Fe 70 Al 30 . Further, as a metal material, an alloy consisting of Fe 25 Al 75 having a composition with a higher Al content than Fe 70 Al 30 was prepared. At this time, the first component is Mg, the second component is Fe, and the third component is Al.
 なお、金属材料は、純アルゴンガス雰囲気中で、Fe25Al75 の組成になるよう、FeおよびAlを原料として、アーク溶解法を用いて製造した。また、金属浴は、純アルゴンガス雰囲気中で、Mg99Al1 の組成になるよう、Mg、Alを坩堝の中に入れ、1073Kに加熱して製造した。 Note that the metal material was manufactured using an arc melting method using Fe and Al as raw materials so as to have a composition of Fe 25 Al 75 in a pure argon gas atmosphere. Further, the metal bath was manufactured by placing Mg and Al in a crucible in a pure argon gas atmosphere so as to have a composition of Mg 99 Al 1 and heating it to 1073K.
 金属材料を、1073Kに保持した金属浴に、10分間浸漬した。ここで、金属浴は、金属材料のFe25Al75 の組成から、金属浴との間で平衡状態となるFe70Al30 の組成までの組成変動範囲内での液相線温度の最小値(約1170℃)よりも低く制御されている。金属材料を金属浴に浸漬した後、得られた金属部材を金属浴から取り出し、冷却した。得られた金属部材の走査型電子顕微鏡写真およびエネルギー分散型X線分光法(EDS)による元素分析の結果を、図19(a)~(f)に示す。 The metal material was immersed in a metal bath maintained at 1073K for 10 minutes. Here, the metal bath has a minimum liquidus temperature ( (approximately 1170°C). After the metal material was immersed in the metal bath, the obtained metal member was taken out from the metal bath and cooled. A scanning electron micrograph of the obtained metal member and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS) are shown in FIGS. 19(a) to 19(f).
 図19(a)および(b)に示す明るい部分が、得られた金属部材であり、暗い部分が、金属浴が固化した成分である。図15に示すように、得られた金属部材は、ポーラス金属であり、リガメントの幅が3μmより小さく、3μmより小さい寸法の幅の微小間隙を多く有し、図19(c)に示すように、その微小間隙に金属浴成分のMgが詰まっていることが確認された。また、図19(d)~(f)に示すように、得られた金属部材は、FeおよびAlから成るポーラス合金であることが確認された。 The bright parts shown in FIGS. 19(a) and (b) are the obtained metal members, and the dark parts are the solidified components of the metal bath. As shown in FIG. 15, the obtained metal member is a porous metal, the width of the ligament is smaller than 3 μm, and it has many minute gaps with a width smaller than 3 μm, as shown in FIG. 19(c). It was confirmed that the minute gaps were filled with Mg, a metal bath component. Furthermore, as shown in FIGS. 19(d) to (f), it was confirmed that the obtained metal member was a porous alloy consisting of Fe and Al.
 得られた金属部材を濃硝酸(HNO)に浸漬し、金属浴成分を除去した。金属浴成分除去後の金属部材の走査型電子顕微鏡写真を、図20に示す。図20に示すように、濃硝酸(HNO)に浸漬することにより、金属部材の周囲に付着したり、微小間隙の内部に充填されたりしていた金属浴由来の付着混和体を選択的に除去できていることが確認された。EDSによる元素分析結果から、図20に示す金属部材は、Feが70%、Alが30%であることが確認された。 The obtained metal member was immersed in concentrated nitric acid (HNO 3 ) to remove metal bath components. A scanning electron micrograph of the metal member after removal of the metal bath components is shown in FIG. As shown in FIG. 20, by immersing in concentrated nitric acid (HNO 3 ), adhesion mixtures derived from the metal bath that have adhered to the periphery of metal members or filled inside minute gaps can be selectively removed. It was confirmed that it had been removed. From the elemental analysis results by EDS, it was confirmed that the metal member shown in FIG. 20 contained 70% Fe and 30% Al.
 金属部材として、Fe70Ni30 に近い組成を有するポーラス合金の製造を行った。Fe70Ni30 と平衡状態となる組成を有する金属浴として、Bi97Ni3 を準備した。また、金属材料として、Fe70Ni30 よりもNiの含有率が大きい組成を有する、(Fe0.70Ni0.3030Ni70=Fe21Ni79 から成る合金を準備した。このとき、第1の成分はBi、第2の成分はFe、第3の成分はNiである。 A porous alloy having a composition close to Fe 70 Ni 30 was manufactured as a metal member. Bi 97 Ni 3 was prepared as a metal bath having a composition in equilibrium with Fe 70 Ni 30 . Further, as a metal material, an alloy consisting of (Fe 0.70 Ni 0.30 ) 30 Ni 70 =Fe 21 Ni 79 , which has a composition with a higher Ni content than Fe 70 Ni 30, was prepared . At this time, the first component is Bi, the second component is Fe, and the third component is Ni.
 なお、金属材料は、純アルゴンガス雰囲気中で、Fe21Ni79 の組成になるよう、FeおよびNiを原料として、アーク溶解法を用いて製造した。また、金属浴は、純アルゴンガス雰囲気中で、Biを坩堝の中に入れ、1023Kに加熱して製造した。 Note that the metal material was manufactured using an arc melting method using Fe and Ni as raw materials so as to have a composition of Fe 21 Ni 79 in a pure argon gas atmosphere. Further, the metal bath was manufactured by placing Bi in a crucible and heating it to 1023K in a pure argon gas atmosphere.
 金属材料を、1023Kに保持した金属浴に、60分間浸漬した。ここで、金属浴は、金属材料のFe21Ni79 の組成から、金属浴との間で平衡状態となるFe70Ni30 の組成までの組成変動範囲内での液相線温度の最小値(1440℃)よりも低く制御されている。金属材料を金属浴に浸漬した後、得られた金属部材を金属浴から取り出し、冷却した。得られた金属部材の走査型電子顕微鏡写真を、図21に示す。 The metal material was immersed in a metal bath maintained at 1023K for 60 minutes. Here, the metal bath has a minimum liquidus temperature ( 1440°C). After the metal material was immersed in the metal bath, the obtained metal member was taken out from the metal bath and cooled. A scanning electron micrograph of the obtained metal member is shown in FIG.
 図21に示す黒い部分が、得られた金属部材であり、白い部分が、金属浴が固化した成分である。図21に示すように、得られた金属部材は、ポーラス金属であり、リガメントの幅が3μmより小さく、3μmより小さい寸法の幅の微小間隙を多く有し、その微小間隙に金属浴成分が詰まっていることが確認された。EDSによる元素分析結果から、図21に示す金属部材は、Feが73%、Niが27%であることが確認された。 The black part shown in FIG. 21 is the obtained metal member, and the white part is the solidified component of the metal bath. As shown in FIG. 21, the obtained metal member is a porous metal, the width of the ligament is smaller than 3 μm, and it has many micro-gaps with a width smaller than 3 μm, and the micro-gaps are filled with metal bath components. It was confirmed that From the elemental analysis results by EDS, it was confirmed that the metal member shown in FIG. 21 contained 73% Fe and 27% Ni.
 金属部材として、形状記憶合金であるニッケルチタンの組成Ti50Ni50 に近い組成を有するポーラス合金の製造を行った。Ti50Ni50 と平衡状態となる組成を有する金属浴として、Mg97Ni3 の組成のものを準備した。また、金属材料として、Ti50Ni50 よりもNiの含有率が大きい組成を有する、(Ti0.5Ni0.550Ni50=Ti25Ni75 から成る合金を準備した。このとき、第1の成分はMg、第2の成分はTi、第3の成分はNiである。 As a metal member, a porous alloy having a composition close to Ti 50 Ni 50 , which is the composition of nickel titanium, which is a shape memory alloy, was manufactured. A metal bath having a composition of Mg 97 Ni 3 was prepared as a metal bath having a composition in equilibrium with Ti 50 Ni 50 . Further, as a metal material, an alloy consisting of (Ti 0.5 Ni 0.5 ) 50 Ni 50 =Ti 25 Ni 75 , which has a composition with a higher Ni content than Ti 50 Ni 50, was prepared . At this time, the first component is Mg, the second component is Ti, and the third component is Ni.
 なお、金属材料は、純アルゴンガス雰囲気中で、Ti25Ni75 の組成になるよう、TiおよびNiを原料として、アーク溶解法を用いて合金化し、電気炉を用いて純アルゴンガス雰囲気中で、1473Kで1時間均質化することにより製造した。また、金属浴は、純アルゴンガス雰囲気中で、Mg97Ni3 の組成になるよう、Mg、Niを坩堝の中に入れ、1023Kに加熱して製造した。 The metal material is alloyed using an arc melting method using Ti and Ni as raw materials so as to have a composition of Ti25Ni75 in a pure argon gas atmosphere, and then alloyed in a pure argon gas atmosphere using an electric furnace. , by homogenization at 1473K for 1 hour. Further, the metal bath was manufactured by placing Mg and Ni in a crucible in a pure argon gas atmosphere so as to have a composition of Mg 97 Ni 3 and heating it to 1023K.
 金属材料を、1023Kに保持した金属浴に、30分間浸漬した。ここで、金属浴は、金属材料のTi25Ni75 の組成から、金属浴との間で平衡状態となるTi50Ni50 の組成までの組成変動範囲内での液相線温度の最小値よりも低く制御されている。金属材料を金属浴に浸漬した後、得られた金属部材を金属浴から取り出し、冷却した。冷却後、金属部材を硝酸水溶液に浸漬し、金属浴成分を除去した。 The metal material was immersed in a metal bath maintained at 1023K for 30 minutes. Here, the metal bath has a temperature lower than the minimum liquidus temperature within a composition variation range from the composition of Ti 25 Ni 75 of the metal material to the composition of Ti 50 Ni 50 that is in equilibrium with the metal bath. is also controlled low. After the metal material was immersed in the metal bath, the obtained metal member was taken out from the metal bath and cooled. After cooling, the metal member was immersed in a nitric acid aqueous solution to remove metal bath components.
 金属浴成分除去後の金属部材の走査型電子顕微鏡写真を、図22(a)および(b)に、X線回折結果を、図22(c)に示す。図22(a)および(b)に示すように、得られた金属部材は、リガメントの幅が数100nmのポーラス金属であることが確認された。また、図22(c)に示すように、B2オーステナイト相が認められ、得られた金属部材は形状記憶合金であることが確認された。また、EDSによる元素分析結果から、得られた金属部材は、Tiが52.5at%、Niが47.5at%であることが確認された。 Scanning electron micrographs of the metal member after removal of the metal bath components are shown in FIGS. 22(a) and 22(b), and the X-ray diffraction results are shown in FIG. 22(c). As shown in FIGS. 22(a) and 22(b), it was confirmed that the obtained metal member was a porous metal with a ligament width of several 100 nm. Moreover, as shown in FIG. 22(c), a B2 austenite phase was observed, and it was confirmed that the obtained metal member was a shape memory alloy. Further, from the results of elemental analysis by EDS, it was confirmed that the obtained metal member contained 52.5 at% of Ti and 47.5 at% of Ni.
 金属部材として、Fe-Co合金であるFe50Co50と、Mgとの共連続複合材料の製造を行った。Fe50Co50 と平衡状態となる組成を有する金属浴として、Mg99Coの組成のものを準備した。また、金属材料として、Fe50Co50 よりもCoの含有率が大きい組成を有する、(Fe0.5Co0.540Co60=Fe20Co80 から成る合金を準備した。このとき、第1の成分はMg、第2の成分はFe、第3の成分はCoである。 As a metal member, a co-continuous composite material of Fe 50 Co 50 , which is an Fe--Co alloy, and Mg was manufactured. A metal bath having a composition of Mg 99 Co 1 was prepared as a metal bath having a composition in equilibrium with Fe 50 Co 50 . Further, as a metal material, an alloy consisting of (Fe 0.5 Co 0.5 ) 40 Co 60 =Fe 20 Co 80 , which has a composition with a higher Co content than Fe 50 Co 50 , was prepared. At this time, the first component is Mg, the second component is Fe, and the third component is Co.
 なお、金属材料は、純アルゴンガス雰囲気中で、Fe20Co80 の組成になるよう、FeおよびCoを原料として、アーク溶解法を用いて製造した。また、金属浴は、純アルゴンガス雰囲気中で、Mg99Co1 の組成になるよう、Mg、Coを坩堝の中に入れ、1073Kに加熱して製造した。 Note that the metal material was manufactured using an arc melting method using Fe and Co as raw materials so as to have a composition of Fe 20 Co 80 in a pure argon gas atmosphere. Further, the metal bath was manufactured by placing Mg and Co in a crucible and heating it to 1073 K so that the composition would be Mg 99 Co 1 in a pure argon gas atmosphere.
 金属材料を、1073Kに保持した金属浴に、10分間浸漬した。ここで、金属浴は、金属材料のFe20Co80 の組成から、金属浴との間で平衡状態となるFe50Co50 の組成までの組成変動範囲内での液相線温度の最小値よりも低く制御されている。金属材料を金属浴に浸漬した後、得られた金属部材を金属浴から取り出し、冷却した。得られた金属部材の走査型電子顕微鏡写真およびエネルギー分散型X線分光法(EDS)による元素分析の結果を、図23に示す。 The metal material was immersed in a metal bath maintained at 1073K for 10 minutes. Here, the metal bath has a temperature lower than the minimum liquidus temperature within a composition variation range from the composition of Fe 20 Co 80 of the metal material to the composition of Fe 50 Co 50 that is in equilibrium with the metal bath. is also controlled low. After the metal material was immersed in the metal bath, the obtained metal member was taken out from the metal bath and cooled. FIG. 23 shows a scanning electron micrograph of the obtained metal member and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS).
 図23に示す白い部分が得られた金属部材であり、黒い部分が、金属浴が固化した成分である。図23に示すように、得られた金属部材は、ポーラス金属であり、リガメントの幅が数μm程度であり、数μmより小さい幅の微小間隙を多く有していることが確認された。また、その微小間隙に金属浴成分の主にMgが詰まっており、全体として、Fe-Co合金とMgとの複合材料になっていることが確認された。図23(b)、(c)に示すEDSによる元素分析結果から、金属部材のリガメント部分は、Feが44.5at%、Coが55.5at%であることが確認された。 The white part shown in FIG. 23 is the obtained metal member, and the black part is the solidified component of the metal bath. As shown in FIG. 23, it was confirmed that the obtained metal member was a porous metal, the width of the ligament was about several μm, and it had many micro gaps with a width smaller than several μm. It was also confirmed that the micro gaps were filled with mainly Mg, which is a metal bath component, and the material as a whole was a composite material of Fe--Co alloy and Mg. From the elemental analysis results by EDS shown in FIGS. 23(b) and 23(c), it was confirmed that the ligament portion of the metal member contained 44.5 at% Fe and 55.5 at% Co.
 金属部材として、Co-Ni合金であるCo50Ni50と、Bi合金との共連続複合材料の製造を行った。Co50Ni50 と平衡状態となる組成を有する金属浴として、Bi88.8Ni11Co0.2 の組成のものを準備した。また、金属材料として、Co50Ni50 よりもNiの含有率が大きい組成を有する、(Co0.5Ni0.550Ni50=Co25Ni75 から成る合金を準備した。このとき、第1の成分はBi、第2の成分はCo、第3の成分はNiである。 As a metal member, a co-continuous composite material of Co 50 Ni 50 , which is a Co--Ni alloy, and a Bi alloy was manufactured. A metal bath having a composition of Bi 88.8 Ni 11 Co 0.2 was prepared as a metal bath having a composition in equilibrium with Co 50 Ni 50 . Further, as a metal material, an alloy consisting of (Co 0.5 Ni 0.5 ) 50 Ni 50 =Co 25 Ni 75 , which has a composition with a higher Ni content than Co 50 Ni 50, was prepared . At this time, the first component is Bi, the second component is Co, and the third component is Ni.
 なお、金属材料は、純アルゴンガス雰囲気中で、Co25Ni75 の組成になるよう、CoおよびNiを原料として、アーク溶解法を用いて合金化し、冷間圧延にて約100μmの厚さに加工した後、電気炉を用いて純アルゴンガス雰囲気中で、1273Kで12時間均質化することにより製造した。また、金属浴は、純アルゴンガス雰囲気中で、Bi88.8Ni11Co0.2 の組成になるようにあらかじめ秤量したBi、Ni、Coを坩堝中に挿入し、1373K以上に加熱して全ての金属が溶解したことを確認した後、温度を873Kにして製造した。 The metal material is alloyed using an arc melting method using Co and Ni as raw materials to have a composition of Co 25 Ni 75 in a pure argon gas atmosphere, and then cold rolled to a thickness of about 100 μm. After processing, it was manufactured by homogenizing it at 1273K for 12 hours in a pure argon gas atmosphere using an electric furnace. In addition, the metal bath was prepared by inserting pre-weighed Bi, Ni, and Co into a crucible in a pure argon gas atmosphere so that the composition would be Bi 88.8 Ni 11 Co 0.2 , and heating it to 1373 K or higher. After confirming that all the metals were melted, the temperature was raised to 873K and manufacturing was carried out.
 金属材料を、873Kに保持した金属浴に、30分間浸漬した。ここで、金属浴は、金属材料のCo25Ni75 の組成から、金属浴との間で平衡状態となるCo50Ni50 の組成までの組成変動範囲内での液相線温度の最小値よりも低く制御されている。金属材料を金属浴に浸漬した後、得られた金属部材を金属浴から取り出し、冷却した。得られた金属部材の走査型電子顕微鏡写真およびエネルギー分散型X線分光法(EDS)による元素分析の結果を、図24に示す。 The metal material was immersed in a metal bath held at 873K for 30 minutes. Here, the metal bath has a temperature lower than the minimum liquidus temperature within a composition variation range from the composition of Co 25 Ni 75 of the metal material to the composition of Co 50 Ni 50 that is in equilibrium with the metal bath. is also controlled low. After the metal material was immersed in the metal bath, the obtained metal member was taken out from the metal bath and cooled. FIG. 24 shows a scanning electron micrograph of the obtained metal member and the results of elemental analysis by energy dispersive X-ray spectroscopy (EDS).
 図24に示す黒い部分が得られた金属部材であり、白い部分が、金属浴が固化した成分である。図24に示すように、得られた金属部材は、ポーラス金属であり、リガメントの幅が平均で755nmであり、数μmより小さい幅の微小間隙を多く有していることが確認された。また、その微小間隙に金属浴成分の主にBiが詰まっており、全体として、Co-Ni合金とBi合金との複合材料になっていることが確認された。図24(b)、(c)に示すEDSによる元素分析結果から、金属部材のリガメント部分は、Coが49.0at%、Niが51.0at%であることが確認された。 The black part shown in FIG. 24 is the obtained metal member, and the white part is the solidified component of the metal bath. As shown in FIG. 24, it was confirmed that the obtained metal member was a porous metal, had a ligament width of 755 nm on average, and had many microgaps with a width smaller than several μm. It was also confirmed that the micro gaps were filled with mainly Bi, which is a metal bath component, and that the material as a whole was a composite material of a Co--Ni alloy and a Bi alloy. From the elemental analysis results by EDS shown in FIGS. 24(b) and 24(c), it was confirmed that the ligament portion of the metal member contained 49.0 at% Co and 51.0 at% Ni.
[本発明の第2の実施の形態の金属部材の製造方法]
 本発明の第2の実施の形態の金属部材の製造方法は、本発明の第1の実施の形態の金属部材の製造方法と同様に、金属材料準備工程、金属浴準備工程、金属浴制御工程、取得工程を有している。また、除去工程を有していてもよい。
[Method for manufacturing metal member according to second embodiment of the present invention]
Similar to the method for manufacturing a metal member according to the first embodiment of the present invention, the method for manufacturing a metal member according to the second embodiment of the present invention includes a metal material preparation step, a metal bath preparation step, and a metal bath control step. , has an acquisition process. Moreover, it may have a removal step.
 なお、以下の説明では、主に、本発明の第1の実施の形態の金属部材の製造方法と異なる構成について説明し、本発明の第1の実施の形態の金属部材の製造方法と重複する構成および効果等の説明は省略する。 In addition, in the following explanation, the structure different from the manufacturing method of the metal member of the 1st embodiment of this invention is mainly demonstrated, and the structure which overlaps with the manufacturing method of the metal member of the 1st embodiment of this invention is explained. Descriptions of the configuration, effects, etc. will be omitted.
 本発明の第2の実施の形態の金属部材の製造方法で、金属材料準備工程および金属浴準備工程は、金属材料から第3の成分が増加した組成を有する物質が、金属浴との間で平衡状態となるよう、金属材料および金属浴を準備する。また、金属浴制御工程で、準備した金属浴を、準備した金属材料の組成から、金属材料中の第3の成分が増加して金属浴との間で平衡状態となる組成までの組成変動範囲内での液相線温度の最小値よりも低い温度に制御する。 In the method for manufacturing a metal member according to the second embodiment of the present invention, in the metal material preparation step and the metal bath preparation step, a substance having a composition in which the third component is increased from the metal material is mixed with the metal bath. Prepare the metal material and metal bath so that they are in equilibrium. In addition, in the metal bath control step, the prepared metal bath is changed over a composition variation range from the composition of the prepared metal material to the composition where the third component in the metal material increases and reaches an equilibrium state with the metal bath. The temperature is controlled to be lower than the minimum liquidus temperature within the temperature range.
 本発明の第2の実施の形態の金属部材の製造方法では、金属材料を金属浴に浸したとき、金属浴との間で平衡状態となる組成が、金属材料中の第3の成分が増加した組成となる。このため、金属材料を金属浴に浸したとき、金属浴との間で平衡状態となる組成まで、金属浴に含まれる第3の成分を選択的に金属材料に拡散させることができる。これにより、金属材料が均一な組成になるよう、第3の成分が金属材料に徐々に拡散していく。こうして、第2の成分だけでなく、第3の成分も含む金属部材を製造することができる。 In the method for manufacturing a metal member according to the second embodiment of the present invention, when the metal material is immersed in the metal bath, the composition that is in equilibrium with the metal bath is such that the third component in the metal material increases. The composition is as follows. Therefore, when the metal material is immersed in the metal bath, the third component contained in the metal bath can be selectively diffused into the metal material until the composition reaches an equilibrium state with the metal bath. As a result, the third component gradually diffuses into the metal material so that the metal material has a uniform composition. In this way, a metal member containing not only the second component but also the third component can be manufactured.
 本発明の第2の実施の形態の金属部材の製造方法では、金属材料を金属浴に浸漬する時間により、金属材料への第3の成分の拡散状態を制御することができる。このため、例えば、金属浴への浸漬時間を短くすることにより、めっき処理と同様に、金属浴に浸漬する前の金属材料の表面が第3の成分により覆われた金属部材を製造することができる。また、金属浴への浸漬時間を長くすることにより、第3の成分の含有率が高い表層を有する金属部材や、全体が均一な組成を有する金属部材を製造することができる。 In the method for manufacturing a metal member according to the second embodiment of the present invention, the state of diffusion of the third component into the metal material can be controlled by the time during which the metal material is immersed in the metal bath. For this reason, for example, by shortening the immersion time in the metal bath, it is possible to manufacture a metal member in which the surface of the metal material before being immersed in the metal bath is covered with the third component, similar to plating treatment. can. Furthermore, by increasing the immersion time in the metal bath, it is possible to manufacture a metal member having a surface layer with a high content of the third component or a metal member having a uniform composition as a whole.
 具体的には、第1の成分をC、第2の成分をA、第3の成分をBとし、金属部材として、A1-xのポーラス合金を製造するとき、状態図や、活量と組成との関係を示す曲線を利用して、A1-xと平衡状態となる組成を有するC1-yを選定し、これを金属浴とする。また、金属材料として、A1-xよりもBの含有率が小さい組成を有するA1-x’x’(x’<x)を選定する。選定したC1-yの金属浴に、選定したA1-x’x’の金属材料を浸漬すると、平衡状態になろうとして、金属浴内の第3の成分のBが金属材料に拡散し、A1-x’x’がA1-xに近づいていく。ここで、金属浴は多量にあるものとし、反応の前後で、金属浴の組成は変化しないものとする。こうして、金属部材として、目的とするA1-x、または、その組成に近い合金を製造することができる。 Specifically, when the first component is C, the second component is A, and the third component is B, and a porous alloy of A 1-x B x is manufactured as a metal member, a phase diagram and an active Using a curve showing the relationship between quantity and composition, C 1- y B y having a composition that is in equilibrium with A 1-x B x is selected, and this is used as a metal bath. Further, as the metal material, A 1-x' B x ' (x'<x) having a composition with a lower content of B than A 1-x B x is selected. When the selected metal material of A 1-x ' B A 1-x' B x' approaches A 1-x B x . Here, it is assumed that there is a large amount of metal bath, and that the composition of the metal bath does not change before and after the reaction. In this way, the desired A 1-x B x or an alloy having a composition close to that composition can be manufactured as a metal member.
 なお、本発明の第2の実施の形態の金属部材の製造方法で、金属材料が、第3の成分を有さず、第2の成分のみを有するものであってもよい。この場合でも、金属浴に含まれる第3の成分が金属材料に拡散するため、第2の成分だけでなく、第3の成分も含む金属部材を製造することができる。具体的には、金属材料としてAを使用し、C1-yの金属浴に浸漬することにより、金属部材としてA1-x、または、その組成に近い合金を製造することができる。 Note that in the method for manufacturing a metal member according to the second embodiment of the present invention, the metal material may not have the third component but only the second component. Even in this case, since the third component contained in the metal bath diffuses into the metal material, a metal member containing not only the second component but also the third component can be manufactured. Specifically, by using A as a metal material and immersing it in a metal bath of C 1-y B y , it is possible to produce A 1-x B x or an alloy with a composition close to that composition as a metal member. can.
 また、本発明の第2の実施の形態の金属部材の製造方法で、金属材料準備工程で準備する金属材料は、インゴットでもよいが、微小間隙を有するポーラス材料であってもよい。金属材料がポーラスの場合、金属浴への浸漬時間を長くすることにより、全体が均一な組成を有し、微小間隙を有するポーラス合金から成る金属部材を製造することができる。また、金属浴への浸漬時間を短くすることにより、めっき処理と同様に、ポーラスの金属材料の表面が第3の成分により覆われた金属部材を製造することができる。 Furthermore, in the method for manufacturing a metal member according to the second embodiment of the present invention, the metal material prepared in the metal material preparation step may be an ingot, but may also be a porous material having minute gaps. When the metal material is porous, by lengthening the immersion time in the metal bath, it is possible to manufacture a metal member made of a porous alloy that has a uniform composition throughout and has minute gaps. Furthermore, by shortening the immersion time in the metal bath, it is possible to manufacture a metal member in which the surface of the porous metal material is covered with the third component, similar to plating treatment.
 また、金属材料は、表面にクラックを有するものであってもよい。この場合、金属浴への浸漬時間を短くすることにより、第3の成分で金属材料の表面のクラックを埋めることができ、第3の成分によりクラックが埋められた金属部材を製造することができる。
 

 
Further, the metal material may have cracks on the surface. In this case, by shortening the immersion time in the metal bath, cracks on the surface of the metal material can be filled with the third component, and a metal member with cracks filled with the third component can be manufactured. .


Claims (12)

  1.  第1の成分と互いに非可溶である第2の成分と、前記第1の成分と互いに可溶かつ前記第2の成分と互いに可溶である第3の成分とを有し、化合物、合金または非平衡合金から成る金属材料を準備する金属材料準備工程と、
     前記第1の成分と前記第3の成分とを有する金属浴を準備する金属浴準備工程と、
     前記金属浴準備工程で準備した前記金属浴を、前記金属材料の組成から、前記金属材料中の前記第3の成分が減少または増加して前記金属浴との間で平衡状態となる組成までの組成変動範囲内での液相線温度の最小値よりも低い温度に制御する金属浴制御工程と、
     前記金属材料準備工程で準備した前記金属材料を、前記金属浴制御工程で温度制御された前記金属浴に浸すことにより、前記金属材料に含まれる前記第3の成分を選択的に前記金属浴内に溶出させて、または、前記金属浴に含まれる前記第3の成分を選択的に前記金属材料に拡散させて、前記第2の成分と前記第3の成分とを有する金属部材を得る取得工程とを、
     有することを特徴とする金属部材の製造方法。
    a second component that is mutually insoluble with the first component; and a third component that is mutually soluble with the first component and mutually soluble with the second component; or a metal material preparation step of preparing a metal material consisting of a non-equilibrium alloy;
    a metal bath preparation step of preparing a metal bath having the first component and the third component;
    The metal bath prepared in the metal bath preparation step is changed from the composition of the metal material to a composition in which the third component in the metal material decreases or increases to reach an equilibrium state with the metal bath. a metal bath control step of controlling the temperature to be lower than the minimum value of the liquidus temperature within the composition variation range;
    By immersing the metal material prepared in the metal material preparation step in the metal bath whose temperature is controlled in the metal bath control step, the third component contained in the metal material is selectively transferred into the metal bath. or selectively diffusing the third component contained in the metal bath into the metal material to obtain a metal member having the second component and the third component. and,
    A method for manufacturing a metal member, comprising:
  2.  前記金属浴制御工程は、前記金属浴を、前記金属材料の組成から、前記金属材料中の前記第3の成分が減少して前記金属浴との間で平衡状態となる組成までの組成変動範囲内での液相線温度の最小値よりも低い温度に制御し、
     前記取得工程は、前記金属材料を前記金属浴に浸すことにより、前記金属材料に含まれる前記第3の成分を選択的に前記金属浴内に溶出させて、微小間隙を有するポーラス合金から成る前記金属部材を得ることを
     特徴とする請求項1記載の金属部材の製造方法。
    The metal bath control step includes changing the composition of the metal bath from the composition of the metal material to a composition in which the third component in the metal material decreases and reaches an equilibrium state with the metal bath. The temperature is controlled to be lower than the minimum liquidus temperature within the
    In the obtaining step, the third component contained in the metal material is selectively eluted into the metal bath by immersing the metal material in the metal bath, and the third component contained in the metal material is selectively eluted into the metal bath. The method for manufacturing a metal member according to claim 1, characterized in that a metal member is obtained.
  3.  前記ポーラス合金は、ナノメートル寸法を有する粒子が部分的に結合されて成ることを特徴とする請求項2記載の金属部材の製造方法。 3. The method of manufacturing a metal member according to claim 2, wherein the porous alloy is formed by partially bonding particles having nanometer dimensions.
  4.  前記金属浴制御工程は、前記金属浴を、前記金属材料の組成から、前記金属材料中の前記第3の成分が増加して前記金属浴との間で平衡状態となる組成までの組成変動範囲内での液相線温度の最小値よりも低い温度に制御し、
     前記取得工程は、前記金属材料を前記金属浴に浸すことにより、前記金属浴に含まれる前記第3の成分を選択的に前記金属材料に拡散させて、前記金属部材を得ることを、
     特徴とする請求項1記載の金属部材の製造方法。
    The metal bath control step includes changing the composition of the metal bath from the composition of the metal material to a composition in which the third component in the metal material increases and reaches an equilibrium state with the metal bath. The temperature is controlled to be lower than the minimum liquidus temperature within the
    The obtaining step includes obtaining the metal member by immersing the metal material in the metal bath to selectively diffuse the third component contained in the metal bath into the metal material.
    The method for manufacturing a metal member according to claim 1.
  5.  第1の成分と互いに非可溶である第2の成分を有する金属材料を準備する金属材料準備工程と、
     前記第1の成分と、前記第1の成分と互いに可溶かつ前記第2の成分と互いに可溶である第3の成分とを有する金属浴を準備する金属浴準備工程と、
     前記金属浴準備工程で準備した前記金属浴を、前記金属材料の組成から、前記金属材料中の前記第3の成分が増加して前記金属浴との間で平衡状態となる組成までの組成変動範囲内での液相線温度の最小値よりも低い温度に制御する金属浴制御工程と、
     前記金属材料準備工程で準備した前記金属材料を、前記金属浴制御工程で温度制御された前記金属浴に浸すことにより、前記金属浴に含まれる前記第3の成分を選択的に前記金属材料に拡散させて、前記第2の成分と前記第3の成分とを有する金属部材を得る取得工程とを、
     有することを特徴とする金属部材の製造方法。
    a metal material preparation step of preparing a metal material having a first component and a second component that is mutually insoluble;
    a metal bath preparation step of preparing a metal bath having the first component and a third component that is mutually soluble with the first component and mutually soluble with the second component;
    The composition of the metal bath prepared in the metal bath preparation step is changed from the composition of the metal material to a composition in which the third component in the metal material increases and reaches an equilibrium state with the metal bath. a metal bath control step that controls the temperature to be lower than the minimum liquidus temperature within the range;
    By immersing the metal material prepared in the metal material preparation step in the metal bath whose temperature has been controlled in the metal bath control step, the third component contained in the metal bath is selectively transferred to the metal material. an obtaining step of diffusing to obtain a metal member having the second component and the third component;
    A method for manufacturing a metal member, comprising:
  6.  前記金属材料準備工程は、ポーラスの前記金属材料を準備し、
     前記取得工程は、微小間隙を有するポーラス合金から成る前記金属部材を得ることを
     特徴とする請求項4または5記載の金属部材の製造方法。
    The metal material preparation step prepares the porous metal material,
    6. The method of manufacturing a metal member according to claim 4, wherein the obtaining step obtains the metal member made of a porous alloy having minute gaps.
  7.  前記金属材料準備工程および前記金属浴準備工程は、前記金属材料から前記第3の成分が減少または増加した組成を有する物質が、前記金属浴との間で平衡状態となるよう、前記金属材料および前記金属浴を準備することを特徴とする請求項1乃至5のいずれか1項に記載の金属部材の製造方法。 In the metal material preparation step and the metal bath preparation step, the metal material and the metal bath are prepared so that a substance having a composition in which the third component is decreased or increased from the metal material is in an equilibrium state with the metal bath. 6. The method for manufacturing a metal member according to claim 1, further comprising preparing the metal bath.
  8.  前記取得工程で得られた前記金属部材を前記金属浴から引き上げた後、前記金属部材に付着した、前記第1の成分および前記第3の成分を含む付着混和体を選択的に除去する除去工程を有することを、特徴とする請求項1乃至5のいずれか1項に記載の金属部材の製造方法。 After the metal member obtained in the obtaining step is pulled up from the metal bath, a removal step of selectively removing an adhering mixture containing the first component and the third component adhering to the metal member. The method for manufacturing a metal member according to any one of claims 1 to 5, characterized in that it has the following.
  9.  前記除去工程は、酸またはアルカリ水溶液により、前記付着混和体のみを選択的に溶出して除去することを特徴とする請求項8記載の金属部材の製造方法。 9. The method for manufacturing a metal member according to claim 8, wherein in the removing step, only the adhering mixture is selectively eluted and removed using an acid or alkaline aqueous solution.
  10.  前記第1の成分は、Mg、Bi、Pb、Cu、およびAgのうちの少なくともいずれか一つを含み、
     前記第2の成分は、Fe、Cr、V、Co、Mo、Ni、Zr、Ta、W、Hf、Nb、およびTiのうちの少なくとも一つを含み、
     前記第3の成分は、Ni、Pd、Al、Ag、Cu、Mn、およびCoのうちの少なくともいずれか一つを含んでいることを
     特徴とする請求項1乃至5のいずれか1項に記載の金属部材の製造方法。
    The first component includes at least one of Mg, Bi, Pb, Cu, and Ag,
    The second component includes at least one of Fe, Cr, V, Co, Mo, Ni, Zr, Ta, W, Hf, Nb, and Ti,
    The third component includes at least one of Ni, Pd, Al, Ag, Cu, Mn, and Co, according to any one of claims 1 to 5. A method for manufacturing a metal member.
  11.  第1の成分と互いに非可溶である第2の成分と、
     前記第1の成分と互いに可溶かつ前記第2の成分と互いに可溶である第3の成分とを有し、
     ナノメートル寸法を有する粒子が部分的に結合された、微小間隙を有するポーラス合金から成ることを
     特徴とする金属部材。
    a second component that is mutually insoluble with the first component;
    a third component that is mutually soluble with the first component and mutually soluble with the second component;
    A metal member characterized in that it is made of a porous alloy having minute gaps in which particles having nanometer dimensions are partially bonded.
  12.  前記第1の成分は、Mg、Bi、Pb、Cu、およびAgのうちの少なくともいずれか一つを含み、
     前記第2の成分は、Fe、Cr、V、Co、Mo、Ni、Zr、Ta、W、Hf、Nb、およびTiのうちの少なくとも一つを含み、
     前記第3の成分は、Ni、Pd、Al、Ag、Cu、Mn、およびCoのうちの少なくともいずれか一つを含んでいることを
     特徴とする請求項11記載の金属部材。
     
    The first component includes at least one of Mg, Bi, Pb, Cu, and Ag,
    The second component includes at least one of Fe, Cr, V, Co, Mo, Ni, Zr, Ta, W, Hf, Nb, and Ti,
    The metal member according to claim 11, wherein the third component contains at least one of Ni, Pd, Al, Ag, Cu, Mn, and Co.
PCT/JP2023/030565 2022-09-05 2023-08-24 Method for producing metal member and metal member WO2024053418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-140750 2022-09-05
JP2022140750 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024053418A1 true WO2024053418A1 (en) 2024-03-14

Family

ID=90191221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030565 WO2024053418A1 (en) 2022-09-05 2023-08-24 Method for producing metal member and metal member

Country Status (1)

Country Link
WO (1) WO2024053418A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092909A1 (en) * 2010-01-28 2011-08-04 国立大学法人東北大学 Metal member manufacturing method, and metal member
WO2017141598A1 (en) * 2016-02-16 2017-08-24 株式会社東北テクノアーチ Method for producing porous member
WO2017141599A1 (en) * 2016-02-16 2017-08-24 株式会社東北テクノアーチ Method for producing nano-composite metal member and method for joining phase-separated metal solids
JP2018178207A (en) * 2017-04-17 2018-11-15 株式会社 東北テクノアーチ Method for manufacturing metal member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092909A1 (en) * 2010-01-28 2011-08-04 国立大学法人東北大学 Metal member manufacturing method, and metal member
WO2017141598A1 (en) * 2016-02-16 2017-08-24 株式会社東北テクノアーチ Method for producing porous member
WO2017141599A1 (en) * 2016-02-16 2017-08-24 株式会社東北テクノアーチ Method for producing nano-composite metal member and method for joining phase-separated metal solids
JP2018178207A (en) * 2017-04-17 2018-11-15 株式会社 東北テクノアーチ Method for manufacturing metal member

Similar Documents

Publication Publication Date Title
JP5826219B2 (en) Method for making a metal article having other additive components without melting
JP4989636B2 (en) High strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite manufacturing method
WO2017176532A2 (en) Aluminum alloys having iron, silicon, vanadium and copper, and with a high volume of ceramic phase therein
CN109641271B (en) Method for producing a component with a powder bed based additive manufacturing method and powder for use in such a method
KR20170084142A (en) Aluminum alloys having iron, silicon, vanadium and copper
CN113073235B (en) Crack-free nickel-based high-temperature alloy and component design method and preparation method thereof
CN106132598A (en) Porous aluminum sintered body and the manufacture method of porous aluminum sintered body
US10538826B2 (en) Water-leachable alloy-melt-swapping process and porous metal manufactured using the same
Zeng et al. Preparation of nanoporous CoCr alloy by dealloying CrCoNi medium entropy alloys
WO2024053418A1 (en) Method for producing metal member and metal member
KR101779715B1 (en) BCC HEA-LEA complex foam with open pores made by spinodal decomposition and manufacturing method for the foam
JPH03267355A (en) Aluminum-chromium alloy and its production
EP3418406B1 (en) Method for producing porous member
CN108463307B (en) Method for producing nanocomposite metal member and method for joining phase separation type metal solids to each other
CN110193597B (en) Method for producing crystalline aluminum-iron-silicon alloy
JPH05345937A (en) Production of ti-fe-al type sintered titanium alloy
Zeng et al. Preparation of Nanoporous Metals by Dealloying High Entropy Alloys
CN112941356B (en) Cu-MoNbTaVW refractory high-entropy alloy bicontinuous structural material and preparation method thereof
JP2022056741A (en) Production method of porous metal and porous metal
JP4328052B2 (en) Method for producing porous structure with added functionality
CN115386755A (en) Preparation method of low-cost element mixed NiTi shape memory alloy through high-temperature homogenization treatment
CN117862529A (en) Uniform forming additive manufacturing method based on SLM
CN117248149A (en) Intermetallic compound phase coated nano oxide phase reinforced iron-based alloy and preparation method thereof
JPH05202437A (en) Production of inter-high-melting-metallic compound-base alloy
Yamauchi 2006 Murray Raney Award Lecture: Synthesis and Features of New Raney® Catalysts from Metastable Precursors