WO2024053399A1 - 軟水化装置 - Google Patents

軟水化装置 Download PDF

Info

Publication number
WO2024053399A1
WO2024053399A1 PCT/JP2023/030344 JP2023030344W WO2024053399A1 WO 2024053399 A1 WO2024053399 A1 WO 2024053399A1 JP 2023030344 W JP2023030344 W JP 2023030344W WO 2024053399 A1 WO2024053399 A1 WO 2024053399A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tank
flow path
regeneration
channel
Prior art date
Application number
PCT/JP2023/030344
Other languages
English (en)
French (fr)
Inventor
弘樹 村瀬
ゆうこ 丸尾
唯 松本
ユジュン ル
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024053399A1 publication Critical patent/WO2024053399A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/08Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic and anionic exchangers in separate beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/80Automatic regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis

Definitions

  • the present disclosure relates to a water softening device.
  • weakly acidic cation exchange resins In conventional water softening equipment, weakly acidic cation exchange resins have hydrogen ions at the end of their functional groups and exchange hardness components (e.g., calcium ions, magnesium ions) in raw water with hydrogen ions to soften the raw water. The water is softened.
  • a method for regenerating a weakly acidic cation exchange resin without using salt a method is known in which the weakly acidic cation exchange resin is regenerated using acidic electrolyzed water produced by electrolysis (see, for example, Patent Document 1).
  • a weakly acidic cation exchange resin becomes acidic because hydrogen ions are released instead of hardening components.
  • a combination of a weakly acidic cation exchange resin and a weakly basic anion exchange resin is sometimes used.
  • a method for regenerating weakly basic anion exchange resins a method using alkaline electrolyzed water produced by electrolysis is known (see, for example, Patent Document 2).
  • the hardness components will move from the acidic electrolyzed water to the alkaline electrolyzed water.
  • the hardness components transferred into the alkaline electrolyzed water calcium ions react with carbonate ions and precipitate as calcium carbonate, and magnesium ions react with hydroxide ions in the alkaline electrolyzed water and precipitate as magnesium hydroxide.
  • the present disclosure has been made in view of such problems, and provides a water softening device that can suppress clogging of the trapping section during the ion exchange resin regeneration process.
  • the water softening device includes a water softening tank that softens raw water containing hard components with a weakly acidic cation exchange resin, and a neutralization tank that neutralizes the soft water that has passed through the water softening tank with a weakly basic anion exchange resin. , an electrolytic cell that generates alkaline electrolyzed water, an ion concentration measuring section that measures the ion concentration of the alkaline electrolyzed water generated in the electrolytic cell, and a regeneration process that is a process that regenerates the weakly basic anion exchange resin. and a control unit configured to continue the regeneration process if the ion concentration measured by the ion concentration measurement unit is less than a predetermined reference value, and terminate the regeneration process if it is equal to or higher than the reference value. .
  • FIG. 1 is a conceptual diagram showing the configuration of a water softening device according to Embodiment 1.
  • FIG. 2 is a configuration diagram showing a water softening flow path of the water softening device according to the first embodiment.
  • FIG. 3 is a configuration diagram showing a water softening tank regeneration circulation flow path and a neutralization tank regeneration circulation flow path of the water softening device according to the first embodiment.
  • FIG. 4 is a diagram showing a water softening tank regeneration channel cleaning channel of the water softening device according to the first embodiment.
  • FIG. 5 is a diagram showing a neutralization tank regeneration channel cleaning channel of the water softening device according to the first embodiment.
  • FIG. 6 is a diagram showing a regeneration channel cleaning channel of the water softening device according to the first embodiment.
  • FIG. 7 is a conceptual diagram showing an electrolytic cell cleaning flow path of the water softening device according to the first embodiment.
  • FIG. 8 is a configuration diagram showing a trap cleaning channel of the water softening device according to the first embodiment.
  • FIG. 9 is a functional block diagram of the water softening device according to the first embodiment.
  • FIG. 10 is a configuration diagram showing a method of controlling the water softening device according to the first embodiment.
  • FIG. 11 is a schematic diagram showing the product of alkaline electrolyzed water pH and solubility of precipitates in the water softening device according to the first embodiment.
  • FIG. 1 is a conceptual diagram showing the configuration of a water softening device 1 according to Embodiment 1 of the present disclosure.
  • each element of the water softening device 1 is conceptually shown.
  • the water softening device 1 is a device that generates neutral soft water from raw water containing hardness components supplied from the outside.
  • the raw water is water introduced into the apparatus from the inlet 2 (water to be treated), and is, for example, city water or well water.
  • Raw water contains hardness components (eg calcium ions or magnesium ions).
  • the water softening device 1 includes an inlet 2, a water softening tank, a neutralization tank, a water intake 7, a regenerating device 8, and a control unit 15. .
  • the water softening device 1 also includes a drain port 13, a plurality of on-off valves (on-off valve 18, on-off valve 19, on-off valve 20, on-off valve 21, on-off valve 22, and on-off valve 23), and a plurality of flow path switching It is configured to include valves (flow path switching valves 24 to 27). Details regarding these will be described later.
  • the inlet 2 is connected to a source of raw water.
  • the inlet 2 is an opening for introducing raw water into the water softening device 1 .
  • the water intake port 7 is an opening that flows through the water softening device 1 and supplies softened water to the outside of the device.
  • the water softening device 1 can take out the water after water softening treatment from the water intake port 7 by the pressure of the raw water flowing in from the inflow port 2 .
  • raw water supplied from the outside is passed through the inlet 2, the flow path 28, the first water softening tank 3, the flow path 29, the first neutralization tank 4, and the flow path during the water softening process.
  • the water flows through the channel 30, the second soft water tank 5, the channel 31, the second neutralization tank 6, the channel 32, and the water intake port 7 in this order, and is discharged as neutral soft water.
  • the water softening tanks (first water softening tank 3 and second water softening tank 5) soften raw water containing hard components by the action of a weakly acidic cation exchange resin. Specifically, water softening tanks exchange hard cations (calcium ions, magnesium ions) contained in circulating water (raw water) with hydrogen ions, which lowers the hardness of the water and softens the water. .
  • the water softening device 1 according to the first embodiment includes a first water softening tank 3 and a second water softening tank 5 as water softening tanks.
  • the first water softening tank 3 softens the raw water that flows in from the inlet 2.
  • the first soft water tank 3 includes a flow path switching valve 24 . Details of the flow path switching valve will be described later.
  • the second water softening tank 5 softens water that has passed through the first neutralization tank 4, which will be described later.
  • the second soft water tank 5 includes a flow path switching valve 26.
  • the first soft water tank 3 and the second soft water tank 5 are filled with a weakly acidic cation exchange resin 33.
  • the weakly acidic cation exchange resin 33 is an ion exchange resin having a hydrogen ion at the end of a functional group.
  • the weakly acidic cation exchange resin 33 adsorbs cations (calcium ions, magnesium ions) that are hardness components contained in the raw water being passed through, and releases hydrogen ions.
  • the soft water treated with the weakly acidic cation exchange resin 33 contains many hydrogen ions that have been exchanged with hardness components. That is, the soft water flowing out from the first soft water tank 3 and the second soft water tank 5 is soft water that contains many hydrogen ions and is acidified (acidic soft water).
  • the weakly acidic cation exchange resin 33 Since the terminal of the functional group of the weakly acidic cation exchange resin 33 is a hydrogen ion, the weakly acidic cation exchange resin 33 can be regenerated using acidic electrolyzed water in the regeneration process described below. At this time, the weakly acidic cation exchange resin 33 releases cations, which are hardness components taken in during the water softening treatment.
  • the weakly acidic cation exchange resin 33 there are no particular limitations on the weakly acidic cation exchange resin 33, and general-purpose resins can be used, such as those having a carboxyl group (-COOH) as an exchange group.
  • the hydrogen ion (H+) which is the counter ion of the carboxyl group may be a cation such as a metal ion or ammonium ion (NH4+).
  • the neutralization tanks (the first neutralization tank 4 and the second neutralization tank 6) use the action of the weakly basic anion exchange resin 34 to convert the soft water containing hydrogen ions (acidified soft water) that comes out from the water softening tank. Neutralizes the pH and makes the water neutral and soft. Specifically, since the neutralization tank adsorbs hydrogen ions and anions contained in the soft water from the water softening tank, the pH of the soft water increases and the water can be made into neutral soft water.
  • the water softening device 1 according to the first embodiment includes a first neutralization tank 4 and a second neutralization tank 6 as neutralization tanks.
  • the first neutralization tank 4 neutralizes the acidic soft water that has passed through the first soft water tank 3.
  • the first neutralization tank 4 includes a flow path switching valve 25.
  • the second neutralization tank 6 neutralizes the acidic soft water that has passed through the second soft water tank 5.
  • the second neutralization tank 6 includes a flow path switching valve 27.
  • the first neutralization tank 4 and the second neutralization tank 6 are filled with a weakly basic anion exchange resin 34.
  • the weakly basic anion exchange resin 34 neutralizes hydrogen ions contained in the water that is passed through, and produces neutral water.
  • the weakly basic anion exchange resin 34 can be regenerated using alkaline electrolyzed water in the regeneration process described below.
  • weakly basic anion exchange resin 34 there are no particular limitations on the weakly basic anion exchange resin 34, and general-purpose resins can be used, such as those in a free base type.
  • the regenerator 8 regenerates the weakly acidic cation exchange resin 33 filled in the first soft water tank 3 and the second soft water tank 5, and also regenerates the weakly acidic cation exchange resin 33 filled in the first neutralization tank 4 and the second neutralization tank 6. This is a device that regenerates the weakly basic anion exchange resin 34.
  • the regeneration device 8 is configured to include an electrolytic cell 9, a capture unit 10, a first water pump 11, and a second water pump 12.
  • the regenerating device 8 includes a first supply channel 35, a second supply channel 36, a first recovery channel, and a second water softening tank 5, a second neutralization tank 6, a channel 28, and a channel 29. 37 and a second recovery channel 38 are connected to each other. Details of each flow path will be described later. Note that the first supply flow path 35, the second supply flow path 36, the first recovery flow path 37, the second recovery flow path 38, the neutralization tank bypass flow path 42, and the water softener bypass flow path 44 form a soft water tank, which will be described later.
  • a regeneration circulation flow path 39 and a neutralization tank regeneration circulation flow path 40 are formed.
  • the electrolytic cell 9 electrolyzes the incoming water (water supplied from the inlet 2) using a pair of electrodes 41 (electrodes 41a and 41b) provided inside, thereby converting acidic electrolyzed water and alkaline electrolyzed water. Water is generated and discharged. More specifically, at the electrode 41a which becomes an anode during electrolysis in the regeneration process, hydrogen ions are generated by electrolysis and acidic electrolyzed water is generated. Further, in the electrode 41b which becomes a cathode during electrolysis in the regeneration process, hydroxide ions are generated by electrolysis, and alkaline electrolyzed water is generated.
  • the electrolytic cell 9 supplies the acidic electrolyzed water to the first soft water tank 3 and the second soft water tank 5 via the first supply flow path 35 and the neutralization tank bypass flow path 42, and supplies the alkaline electrolyzed water to the second soft water tank 5.
  • the water is supplied to the first neutralization tank 4 and the second neutralization tank 6 via the second supply channel 36 and the soft water tank bypass channel 44.
  • the acidic electrolyzed water produced by the electrolytic tank 9 is used to regenerate the weakly acidic cation exchange resin 33 in the first water softening tank 3 and the second water softening tank 5, and the acidic electrolyzed water produced by the electrolytic tank 9
  • the alkaline electrolyzed water is used to regenerate the weakly basic anion exchange resin 34 in the first neutralization tank 4 and the second neutralization tank 6.
  • the electrolytic cell 9 is configured such that the state of energization of the pair of electrodes 41 can be controlled by a control unit 15, which will be described later.
  • the first water pump 11 is a device that distributes acidic electrolyzed water to the soft water tank regeneration circulation flow path 39 (see FIG. 3) during regeneration processing by the regeneration device 8.
  • the first water pump 11 is provided in a first recovery channel 37 that communicates and connects the first soft water tank 3 and the electrolytic tank 9. The reason for this arrangement is that the acidic electrolyzed water can be easily circulated in the water softening tank regeneration circulation channel 39 using only the first water pump 11.
  • the second water pump 12 is a device that circulates alkaline electrolyzed water through the neutralization tank regeneration circulation channel 40 (see FIG. 3).
  • the second water pump 12 is provided in a second recovery channel 38 that communicates and connects the first neutralization tank 4 and the electrolytic tank 9. The reason for this arrangement is that alkaline electrolyzed water can be easily circulated through the neutralization tank regeneration circulation channel 40 using only the second water pump 12.
  • first water pump 11 and the second water pump 12 are communicably connected to a control unit 15, which will be described later, by wireless or wire.
  • the capture unit 10 is provided in a second supply channel 36 that connects the electrolytic cell 9 and the second neutralization tank 6 in communication.
  • the capturing unit 10 captures precipitates contained in the alkaline electrolyzed water sent out from the electrolytic cell 9. Precipitates are reaction products produced when hardness components, which are cations released from the first water softening tank 3 and the second water softening tank 5 during regeneration treatment, react with alkaline electrolyzed water in the electrolytic cell 9. It is. More specifically, while water is electrolyzed in the electrolytic cell 9, hardness components (e.g., calcium ions, magnesium ions) released from the first water softening tank 3 and the second water softening tank 5 during the regeneration process. moves toward the cathode (electrode 41b).
  • hardness components e.g., calcium ions, magnesium ions
  • alkaline electrolyzed water is generated on the cathode side
  • the hardness component and alkaline electrolyzed water react to form a precipitate.
  • the hardness component is calcium ion
  • a reaction occurs that produces calcium carbonate or a reaction that produces calcium hydroxide.
  • the precipitates derived from the hardness component are captured as precipitates by the capture section 10 provided in the second supply channel 36. By trapping the precipitates derived from the hardness component with the trapping section 10, it is possible to suppress the precipitates from flowing into the second neutralization tank 6 and accumulating.
  • the precipitates accumulated in the second neutralization tank 6 react with the hydrogen ions released from the first water softening tank 3 and the second water softening tank 5. It is possible to suppress an increase in the hardness of the soft water sent out from the second neutralization tank 6 due to ionization.
  • the alkaline electrolyzed water in which precipitates derived from hardness components have passed through the trapping section 10 flows through the second neutralization tank 6 and the first neutralization tank 4, and then returns to the electrolytic tank 9. It is electrolyzed and used again as alkaline electrolyzed water to regenerate the weakly basic anion exchange resin 34. At this time, the hardness component contained in the acidic electrolyzed water is reduced compared to the case where the capturing section 10 is not provided.
  • the hardness of the acidic electrolyzed water is reduced, so that the hard components flowing into the first soft water tank 3 and the second soft water tank 5 can be reduced, and the weakly acidic electrolyzed water can be reduced.
  • a decrease in the regeneration efficiency of the ion exchange resin 33 can be suppressed.
  • hardness components react includes not only a state in which all hardness components react, but also a state in which components that do not react or components whose solubility product does not exceed are included.
  • the form of the trapping section 10 does not matter as long as it can separate the precipitate produced by the reaction between the hardness component and the alkaline electrolyzed water. Examples include forms using cartridge type filters, filtration layers using granular filter media, cyclone type solid-liquid separators, hollow fiber membranes, and the like.
  • a cartridge type filter is a commonly used means for the capture unit 10.
  • a deep filtration type such as a thread-wound filter, a surface filtration type such as a pleated filter and a membrane filter, or a combination thereof can be used.
  • the capture section 10 includes an on-off valve 22 and a capture section drain port 14.
  • the on-off valve 22 is a valve that controls drainage inside the trap 10, and is provided at the bottom of the trap 10, for example. By opening the on-off valve 22, the water in the trap 10 can be discharged from the trap drain 14 to the outside of the apparatus.
  • the trapping section drain port 14 is an opening that drains the water inside the trapping section 10 to the outside of the device. By opening the on-off valve 22 provided upstream of the trapping portion drain port 14, the water in the trapping portion 10 can be discharged from the trapping portion drain port 14 to the outside of the apparatus.
  • a plurality of on-off valves are provided in each flow path, and switch between an "open” state and a "closed” state in each flow path.
  • the plurality of on-off valves start or stop the flow of water to each flow path by opening and closing the valves.
  • the on-off valve 20 and the on-off valve 22 are opened during the regeneration channel cleaning process, electrolytic cell cleaning process, and trapping part cleaning process, which will be described later, and discharge the regenerated circulating water to the outside of the apparatus.
  • a plurality of flow path switching valves (flow path switching valve 24 to flow path switching valve 27) are provided in the first soft water tank 3, the second soft water tank 5, the first neutralization tank 4, and the second neutralization tank 6, respectively. It will be done.
  • Each of the plurality of flow path switching valves has three openings, the first opening is an inflow/outflow port that allows water to flow in and out, and the second opening does not function as an outflow port but serves as an inflow port.
  • the third opening is an inlet that functions, and an outlet that does not function as an inlet but as an outlet.
  • the inflow and outflow ports are always “open”, and depending on the direction of water flow, when either the inflow port or the outflow port is “open”, the other outflow port is “open”. is “closed”.
  • each of the plurality of on-off valves (on-off valve 18 to on-off valve 23) and the plurality of flow path switching valves (flow path switching valve 24 to flow path switching valve 27) can communicate with the control unit 15 described below wirelessly or by wire. It is connected to the.
  • the drain port 13 is an opening provided at the end of the drain channel 54, and is an opening for draining water inside the device to the outside of the device in the regeneration path cleaning process and the electrolytic tank cleaning process.
  • An on-off valve 20 is provided upstream of the drain port 13, and by opening the on-off valve 20, water can be drained from the drain port 13.
  • the bypass flow path 53 is a flow path that communicates and connects the inflow port 2 and the water intake port 7, and an on-off valve 18 is provided on the flow path. Even when performing any of the regeneration process, regeneration flow path cleaning process, electrolytic tank cleaning process, and trapping part cleaning process using the bypass flow path 53, the user of the water softening device 1 is able to drain raw water from the water intake port 7. Obtainable.
  • FIG. 2 is a configuration diagram showing the water softening channel 43 of the water softening device 1. As shown in FIG. 2,
  • the water softening channel 43 (diagonal arrow in FIG. 2) is a channel for softening raw water, and the raw water flowing through the water softening channel 43 becomes neutral soft water and is discharged from the water intake port 7 to the outside of the device. Ru.
  • the water softening channel 43 includes an inlet 2, a channel 28, a first water softening tank 3, a channel 29, a first neutralizing tank 4, a channel 30, a second water softening tank 5, a channel 31, and a second neutralizing tank. It is formed by a tank 6, a flow path 32, and a water intake port 7.
  • the flow path 28 is a flow path that connects the inlet 2 to the first soft water tank 3.
  • the flow path 28 is a flow path that guides raw water containing hardness components from the inlet 2 to the first soft water tank 3.
  • the flow path 29 is a flow path that connects the first soft water tank 3 to the first neutralization tank 4. That is, the flow path 29 is a flow path that guides the water softened in the first water softening tank 3 to the first neutralization tank 4.
  • the flow path 30 is a flow path that connects the first neutralization tank 4 to the second soft water tank 5. That is, the flow path 30 is a flow path that guides the water neutralized in the first neutralization tank 4 to the second soft water tank 5.
  • the flow path 31 is a flow path that connects the second soft water tank 5 to the second neutralization tank 6. That is, the flow path 31 is a flow path that guides the water softened in the second water softening tank 5 to the second neutralization tank 6.
  • the flow path 32 is a flow path that connects the second neutralization tank to the water intake port 7. That is, the flow path 32 is a flow path that guides the softened raw water from the second neutralization tank 6 to the water intake port 7.
  • an on-off valve 19 is installed on the flow path 28 downstream of the inlet 2 and upstream of the first soft water tank 3. Further, an on-off valve 18 is installed in a bypass flow path 53, which will be described later. Then, by closing the on-off valve 18 and opening the on-off valve 19, the first soft water tank 3 and the inlet 2 are connected to each other. Further, the flow path switching valve 24 is switched so that the first soft water tank 3 and the first neutralization tank 4 are connected in communication, and the flow path switching valve 25 is changed so that the second soft water tank 5 and the second neutralization tank 6 are connected in communication.
  • FIG. 3 is a configuration diagram showing the water softening tank regeneration circulation flow path 39 and the neutralization tank regeneration circulation flow path 40 of the water softening device 1.
  • the soft water tank regeneration circulation flow path 39 is a flow path that regenerates the first soft water tank 3 and the second soft water tank 5 by flowing acidic electrolyzed water during the regeneration process, and as shown in FIG. 3 (white arrow). This is a flow path through which water sent out by the first water pump 11 flows through the electrolytic cell 9, the second soft water tank 5, and the first soft water tank 3, and returns to the electrolytic cell 9 for circulation.
  • the water softening tank regeneration circulation flow path 39 includes a first supply flow path 35 connecting the electrolytic tank 9, the second water softening tank 5, the first water softening tank 3, and the first water pump 11, and a neutralization tank bypass flow. It is constituted by the channel 42 and the first recovery channel 37.
  • the first supply flow path 35 is a flow path that communicates and connects the downstream side of the electrolytic cell 9 to the downstream side of the second soft water tank 5, and is a flow path that supplies acidic electrolyzed water from the electrolytic cell 9 to the second soft water tank 5. It is a road.
  • the neutralization tank bypass flow path 42 is a flow path that bypasses the first neutralization tank 4 and communicates and connects the upstream side of the second soft water tank 5 to the downstream side of the first soft water tank 3. This is a flow path that supplies acidic electrolyzed water from 5 to the first soft water tank 3.
  • the first recovery flow path 37 is a flow path that communicates and connects the upstream side of the first water softening tank 3 to the electrolytic tank 9. This is a flow path for recovering water to the electrolytic cell 9.
  • the first water pump 11 is provided in the first recovery channel 37 .
  • the water softener regeneration circulation flow path 39 transfers the acidic electrolyzed water sent out from the electrolyzer 9 from the downstream side of the first water softener tank 3 and the second water softener tank 5 to the first water softener tank 3 and the second water softener tank 5.
  • This is a flow path in which the water is introduced into the water softener tank and discharged from the upstream side where a larger amount of hardness components is adsorbed than the downstream side of the water softening tank.
  • the downstream side refers to the downstream side in the flow path during water softening treatment.
  • the neutralization tank regeneration circulation flow path 40 is a flow path that regenerates the first neutralization tank 4 and the second neutralization tank 6 by flowing alkaline electrolyzed water during the regeneration process, and is shown in FIG. 3 (black arrow). As shown in the flow path, water sent out by the second water pump 12 flows through the electrolytic cell 9, the second neutralization cell 6, and the first neutralization cell 4, and returns to the electrolytic cell 9. be.
  • the neutralization tank regeneration circulation flow path 40 includes the electrolytic tank 9, the second neutralization tank 6, the first neutralization tank 4, the second supply flow path 36 connecting the second water pump 12, and the water softening tank. It is constituted by a bypass channel 44 and a second recovery channel 38.
  • the second supply flow path 36 is a flow path that communicates and connects the downstream side of the electrolytic cell 9 to the downstream side of the second neutralization tank 6, and supplies alkaline electrolyzed water from the electrolytic cell 9 to the second neutralization tank 6. It is a flow path where The second supply channel 36 is provided with a trapping section 10, an on-off valve 21, an ion concentration measurement section 56, and an on-off valve 23.
  • the soft water tank bypass flow path 44 is a flow path that bypasses the second soft water tank 5 and communicates and connects the upstream side of the second neutralization tank 6 to the downstream side of the first neutralization tank 4. This is a flow path that supplies alkaline electrolyzed water from the tank 6 to the first neutralization tank 4.
  • the second recovery channel 38 is a channel that communicates and connects the upstream side of the first neutralization tank 4 to the electrolytic tank 9, and is a channel for communicating and connecting the alkaline electrolyzed water that has passed through the first neutralization tank 4 and the second neutralization tank 6. This is a flow path for recovering the electrolyte to the electrolytic cell 9.
  • the second water pump 12 is provided in the second recovery channel 38 .
  • FIG. 7 is a configuration diagram showing the regeneration channel cleaning channel 64 of the water softening device 1. As shown in FIG. 7
  • the regeneration flow path cleaning flow path 64 allows high hardness water remaining in the flow path to be removed from the apparatus without flowing into the first neutralization tank 4 and the second neutralization tank 6 during a regeneration flow path cleaning step to be described later.
  • This is a channel for discharging water to the
  • the regeneration channel cleaning channel 64 is configured to include a first drainage channel 46 and a second drainage channel 47.
  • the first drainage channel 46 is composed of channels connecting the inlet 2, the first water pump 11, the electrolytic cell 9, the on-off valve 20, and the drain port 13. Ru. Specifically, the first drainage flow path 46 drains the raw water flowing in from the inlet 2 through the flow path 28, the first recovery flow path 37, the first water pump 11, the electrolytic cell 9, the drainage flow path 54, and the on-off valve. 20, and the drain port 13.
  • the drainage channel 54 is a channel that connects to the first supply channel 35 at one end, and connects to the drain port 13 at the other end.
  • the drainage flow path 54 is provided with an on-off valve 20. By opening the on-off valve 20, water in the flow path is drained out of the device, and by closing the on-off valve 20, water is drained from the drain port 13. Can be stopped.
  • the second drainage channel 47 is a flow path that communicates and connects the inlet 2, the first soft water tank 3, the second soft water tank 5, the on-off valve 20, and the drain port 13. It is composed of roads. Specifically, the second drainage flow path 47 transfers the raw water that has flowed in from the inlet 2 to the flow path 28, the first soft water tank 3, the neutralization tank bypass flow path 42, the second soft water tank 5, and the first supply flow.
  • the passage 35, the on-off valve 20, and the drain port 13 are flow passages in this order.
  • the flow rate of water flowing through the second drainage flow path 47 is preferably controlled to be greater than the flow rate of water flowing through the first drainage flow path.
  • the highly hard water in the second drainage flow path which is a flow path including a water softening tank used during the water softening process, can be preferentially replaced with raw water. Therefore, the influence of highly hard water when starting the water softening process can be suppressed.
  • FIG. 7 is a configuration diagram showing the electrolytic cell cleaning channel 49 of the water softening device 1. As shown in FIG.
  • the electrolytic cell cleaning channel 49 is a channel for removing precipitates caused by hardness components in the electrolytic cell 9 and the neutralization tank regeneration circulation channel 40 during the electrolytic cell cleaning process described later.
  • the electrolytic cell cleaning channel 49 is configured to include a first drainage channel 46 and a third drainage channel 50.
  • the third drainage flow path 50 connects from the inlet 2 to the first soft water tank 3, the second water pump 12, the electrolytic tank 9, the on-off valve 21, the capture part 10, and the on-off valve. 22, and is constituted by each flow path that communicates with and connects the trapping part to the drainage port 14.
  • the third drainage flow path 50 transfers the raw water that has flowed in from the inlet 2 to the flow path 28, the first soft water tank 3, the second recovery flow path 38, the second water pump 12, the electrolytic tank 9, and the third drainage flow path 50.
  • the acidic soft water is passed through the on-off valve 21, the capture section 10, and the on-off valve 22 in this order through the second supply flow path 36 to dissolve the precipitates in the capture section 10 and exit the device from the capture section drain port 14. to be discharged.
  • FIG. 8 is a configuration diagram showing the trap cleaning channel 51 of the water softening device 1. As shown in FIG. 8
  • the trapping portion cleaning flow path 51 is a flow path for removing precipitates derived from hardness components deposited in the trapping portion 10 during a trapping portion cleaning step to be described later.
  • the trap cleaning channel 51 is configured to include a fourth drainage channel 52.
  • the trap cleaning channel 51 includes the inlet 2, the first soft water tank 3, the first neutralization tank 4, the second soft water tank 5, the second neutralization tank 6, the trap 10, It is constituted by each flow path that communicates with and connects up to the trapping part drainage port 14. Specifically, the trap cleaning channel 51 transfers the raw water flowing in from the inlet 2 to the channel 28, the first soft water tank 3, the channel 29, the first neutralization tank 4, the channel 30, and the second soft water tank. 5. A flow path through which the flow path 31, the second neutralization tank 6, the second supply flow path 36, the on-off valve 23, the capture section 10, and the on-off valve 22 are passed in this order, and discharged from the capture section drain port to the outside of the device. .
  • the flow rate measurement unit 62 is installed in the flow path 32 that communicates the second neutralization tank 6 and the water intake port 7, and measures the flow rate of water passing through the flow path 32.
  • the water that has flowed into the first water softening tank 3 flows through the first neutralization tank 4, the second water softening tank 5, and the second neutralization tank 6 without being distributed. Therefore, it can be considered that the amount of water flowing through the channel before and after water softening is substantially the same.
  • the flow rate of water measured by the flow rate measurement unit 62 can be considered to be the amount of raw water flowing before water softening and the amount of soft water flowing after water softening.
  • the ion concentration measuring section 56 is provided on the second supply channel 36, and the ion concentration measuring section 56 measures the alkaline electrolyzed water that has passed through the electrolytic cell 9 and flows into the neutralization tank during the regeneration process. Measure ion concentration.
  • the ion concentration of the alkaline electrolyzed water measured by the ion concentration measuring section 56 is, for example, a pH value (hydrogen ion concentration index).
  • a general-purpose pH meter can be used as the ion concentration measuring section 56.
  • the ion concentration measuring section 56 may measure the ion concentration of the alkaline electrolyzed water in real time during the regeneration process, or may measure the ion concentration at regular intervals (for example, every 5 minutes).
  • the ion concentration measuring section 56 is provided downstream of the trapping section 10 and upstream of the second neutralization tank 6. By providing the ion concentration measuring section 56 in this manner, the water passed through the ion concentration measuring section 56 becomes alkaline electrolyzed water with precipitates captured by the capturing section 10. Therefore, the possibility that precipitates will directly adhere to the ion concentration measuring section 56 can be reduced, and a decrease in reliability of the ion concentration measuring section 56 can be suppressed.
  • the ion concentration measurement section 56 may be provided in the second supply flow path 36, and may be provided, for example, on the downstream side of the electrolytic cell 9 and the upstream side of the trapping section 10.
  • the pH of the alkaline electrolyzed water immediately after flowing out from the electrolytic cell 9 can be measured.
  • the pH of the alkaline electrolyzed water can be measured while the hydroxide ions in the alkaline electrolyzed water are being used for the precipitation reaction of magnesium hydroxide. Therefore, the pH of the alkaline electrolyzed water produced in the electrolytic cell 9 can be measured with high accuracy.
  • FIG. 9 is a functional block diagram of the water softening device 1 according to the first embodiment.
  • the control unit 15 controls the execution and stopping of each process of the water softening process, the regeneration process, the regeneration channel cleaning process, the electrolytic tank cleaning process, and the trapping part cleaning process, and the switching between each process.
  • control unit 15 controls switching between each process, switching from the water softening process to the regeneration process, switching from the regeneration process to the water softening tank regeneration circulation path cleaning process, and water softening tank regeneration circulation path cleaning.
  • Switching from the process to the neutralization tank regeneration circulation flow path cleaning process switching from the neutralization tank regeneration circulation flow path cleaning process to the regeneration process, switching from the regeneration process to the regeneration flow path cleaning process, switching from the regeneration flow path cleaning process to the electrolysis
  • the switching to the tank cleaning process, the switching from the electrolytic tank cleaning process to the capture part cleaning process, and the switching from the capture part cleaning process to the water softening process are shown.
  • control unit 15 controls the on-off valve 20 and the on-off valve 22, and controls drainage during the regeneration flow path cleaning process, the electrolytic tank cleaning process, and the trap cleaning process.
  • control unit 15 controls the flow path switching valve 24 to the flow path switching valve 27, the on-off valve 18, the on-off valve 19, the on-off valve 21, and the on-off valve 23, and executes flow path switching.
  • the control section 15 includes a clock section 55, a storage section 58, and a calculation section 59.
  • the control unit 15 uses information on the water flow rate measured by the flow rate measurement unit 62 and the information on the neutralization tank regeneration flow path cleaning flow path 48 that is stored in advance in the storage unit 58. Based on the water amount information, it is determined whether the water in the neutralization tank regeneration channel cleaning channel 48 has been replaced with raw water. Note that the information on the amount of water in the neutralization tank regeneration channel cleaning channel 48 specifically indicates the amount of water that fills the entire channel of the neutralization tank regeneration channel cleaning channel 48.
  • the timing unit 55 measures the time during which the on-off valve 22 is open in the neutralization tank regeneration circulation channel cleaning process. In other words, the timer 55 measures the time required to drain the alkaline electrolyzed water whose pH has increased from the capture unit drain port 14 . The time measured by the clock section 55 is stored in the storage section 58.
  • the storage unit 58 stores in advance the ratio of the time required for the neutralization tank regeneration circulation cleaning process and the time required for the soft water tank regeneration circulation flow path cleaning process at a predetermined raw water pressure.
  • the storage unit 58 also stores the flow rate of the water softening tank regeneration circulation flow path (soft water tank drainage flow path), the flow rate of the neutralization tank regeneration circulation flow path (neutralization tank drainage flow path), and the flow rate of the water softening tank regeneration circulation flow path (soft water tank drainage flow path).
  • the flow rate ratio of the Japanese tank regeneration circulation channel is memorized.
  • the storage unit 58 stores the opening time of the on-off valve 22 measured by the clock unit 55.
  • the calculation unit 59 calculates the time required for the neutralization tank regeneration circulation flow path cleaning process measured by the clock unit 55 and stored in the storage unit 58, and the time required for the neutralization tank regeneration circulation flow path cleaning process stored in advance in the storage unit 58.
  • the time required for the water softening tank regeneration circulation flow path cleaning process can be calculated from the ratio of the time required for the water softening tank regeneration circulation flow path cleaning process to the time required for the water softening tank regeneration circulation flow path cleaning process.
  • control unit 15 continues the regeneration process if the pH of the measurement result is less than the reference value, and if the pH is higher than the reference value, the control unit 15 continues the regeneration process. In this case, the regeneration process is stopped and control is performed to switch from the regeneration process.
  • FIG. 10 is a diagram showing the state of the water softening device 1 during operation.
  • the on-off valve 18 to the on-off valve 23, the flow path switching valve 24 to the flow path switching valve 27, the electrode 41 of the electrolytic cell 9, the first water pump 11, and the second water pump 12 are switched to control the respective flow states. do.
  • Blank columns indicate a state in which the corresponding on-off valve is "closed,” a state in which the electrode 41 is not energized, and a state in which the corresponding water pump is stopped.
  • to (component number) indicates a state in which the corresponding flow path switching valve connects the flow path in a direction in which water may be sent to the corresponding component.
  • the environment is such that it is difficult for water to flow into or out of the softening water tank or neutralization tank where the corresponding flow path switching valve is installed, so the flow path is connected. Water supply from the switching valve is extremely unlikely to occur.
  • the on-off valve 19 provided in the flow path 28 is opened while the on-off valve 18 is closed.
  • raw water containing hardness components flows in from the outside.
  • the inflowing raw water flows through the first water softening tank 3, the first neutralization tank 4, the second water softening tank 5, and the second neutralization tank 6 in this order, so the water softening device 1 softens the water from the water intake 7.
  • water (neutral soft water) can be taken out.
  • the flow path switching valve 24 is in a connected state where water can be sent from the flow path 28 to the flow path 29, the flow path switching valve 25 is in a connected state where water can be sent from the flow path 29 to the flow path 30, and the flow path switching valve 26 is in a connected state where water can be sent from the flow path 29 to the flow path 30.
  • the connected state is such that water can be sent from the channel 30 to the channel 31, and the channel switching valve 27 is in the connected state that water can be transmitted from the channel 31 to the channel 32.
  • the on-off valves 20 to 23 are all in a closed state. Further, the operations of the electrode 41 of the electrolytic cell 9, the first water pump 11, and the second water pump 12 are also stopped.
  • raw water is supplied from the inlet 2 to the first water softening tank 3 through the channel 28 due to the pressure of the raw water flowing in from the outside.
  • the raw water supplied to the first soft water tank 3 flows through a weakly acidic cation exchange resin 33 provided in the first soft water tank 3.
  • cations that are hardness components in the raw water are adsorbed by the action of the weakly acidic cation exchange resin 33, and hydrogen ions are released (ion exchange is performed).
  • the raw water is softened by removing cations from the raw water.
  • the softened water contains many hydrogen ions that have been exchanged with hardness components and flowed out, it is acidified and becomes acidic water (first softened water) with a low pH.
  • water that contains a large amount of permanent hardness components for example, sulfates such as calcium sulfate or chlorides such as magnesium chloride
  • temporary hardness components for example, carbonates such as calcium carbonate
  • pH tends to drop more easily than water containing a large amount of salt. Since water softening is difficult to proceed in a state where the pH is lowered, the water that has passed through the first water softening tank 3 is passed through the first neutralization tank 4 to be neutralized.
  • the softened water flows through the flow path 29 via the flow path switching valve 24 provided in the first water softening tank 3 and flows into the first neutralization tank 4.
  • hydrogen ions contained in the softened water are adsorbed by the action of the weakly basic anion exchange resin 34. That is, since hydrogen ions are removed from the water softened by the first water softening tank 3, the decreased pH is increased and neutralized. Therefore, compared to the case where the water softened in the first water softening tank 3 is directly softened in the second water softening tank 5, the water softening process in the second water softening tank 5 progresses more easily.
  • the water neutralized by the first neutralization tank 4 flows through the flow path 30 via the flow path switching valve 25 provided in the first neutralization tank 4, and flows through the flow path 30 to the second soft water tank. 5.
  • the second soft water tank 5 due to the action of the weakly acidic cation exchange resin 33, cations which are hardness components are adsorbed and hydrogen ions are released.
  • the second soft water tank 5 exchanges the hardness components that could not be removed in the first soft water tank 3 with hydrogen ions possessed by the weakly acidic cation exchange resin 33. That is, the water flowing into the second soft water tank 5 is further softened and becomes soft water (second soft water).
  • the second soft water flows through the flow path 31 via the flow path switching valve 26 provided in the second soft water tank 5, and flows into the second neutralization tank 6.
  • hydrogen ions contained in the second soft water that has flowed in are adsorbed by the action of the weakly basic anion exchange resin 34. That is, since hydrogen ions are removed from the second soft water, the lowered pH increases, and the water becomes neutral soft water (neutralized second soft water) that can be used as domestic water.
  • the neutralized second soft water flows through the flow path 32 via the flow path switching valve 27 provided in the second neutralization tank 6 and can be taken out from the water intake port 7.
  • raw water flows through the first water softening tank 3, the first neutralization tank 4, the second water softening tank 5, and the second neutralization tank 6 in this order.
  • raw water containing hard components flows out of the first water softening tank 3 and is neutralized in the first neutralization tank 4 before the pH of the raw water progresses to decrease due to the water softening treatment in the first water softening tank 3.
  • the water is softened in the second water softening tank 5 and neutralized in the second neutralization tank 6. Therefore, compared to the case where a water softening tank and a neutralization tank are each configured as a single unit, it is possible to suppress the decrease in pH of the water flowing through the water softening tank, that is, acidification. Exchange with the hydrogen ions held by the weakly acidic cation exchange resin 33 in 5) occurs more easily. Therefore, it becomes possible to improve water softening performance.
  • the water softening device 1 when the time period specified by the control unit 15 arrives or when the water softening process exceeds a certain amount of water, the water softening process is ended and the regeneration process is executed.
  • the cation exchange capacity decreases or disappears. That is, after all the hydrogen ions, which are the functional groups of the cation exchange resin, are exchanged with calcium ions or magnesium ions, which are the hardness components, ion exchange becomes impossible. Even before all of the hydrogen ions are exchanged with hardness components, as the number of hydrogen ions decreases, the ion exchange reaction becomes more difficult to occur, resulting in a decrease in water softening performance. In such a state, hardness components come to be included in the treated water. Therefore, in the water softening device 1, it is necessary to perform regeneration processing of the first water softening tank 3, the second water softening tank 5, the first neutralization tank 4, and the second neutralization tank 6 using the regeneration device 8.
  • the on-off valve 19, the on-off valve 20, and the on-off valve 22 are closed, the on-off valve 18, the on-off valve 21, and the on-off valve 23 are opened, and the flow path switching valve 24 is connected to the neutralization tank bypass flow path 42.
  • the connection state is such that water can be sent to the first recovery channel 37
  • the flow path switching valve 25 is in a connection state that allows water to be sent from the soft water tank bypass channel 44 to the second recovery channel 38
  • the flow path switching valve 26 is in a connection state that allows water to be sent to the first recovery channel 38.
  • the flow path 35 is connected to allow water to be sent to the neutralization tank bypass flow path 42, and the flow path switching valve 27 is connected to the second supply flow path 36 to the soft water tank bypass flow path 44.
  • the state where the first soft water tank 3 and the second water softener tank 5 are connected, the state where the first neutralization tank 4 and the second neutralization tank 6 are connected, and the state where the drain port 13 and the trapping part drain port 14 are connected are connected. Drainage shall be stopped.
  • a soft water tank regeneration circulation passage 39 and a neutralization tank regeneration circulation passage 40 are formed, respectively.
  • the acidic electrolyzed water and the alkaline electrolyzed water in the electrolytic cell 9 flow through the soft water tank regeneration circulation flow path 39 and the neutralization tank regeneration circulation flow path 40, respectively. circulate.
  • the electrolytic cell 9 is energized so that the anode has a higher potential than the cathode (positive electrolysis).
  • electrolysis hydrogen ions are generated at the anode, and acidic electrolyzed water is generated near the anode.
  • hydroxide ions are generated at the cathode, and alkaline electrolyzed water is generated near the cathode.
  • the acidic electrolyzed water generated in the electrolytic cell 9 flows through the first supply flow path 35, is fed into the second soft water tank 5 via the flow path switching valve 26, and flows through the weakly acidic cation exchange resin 33 inside. . Then, the acidic electrolyzed water that has passed through the second soft water tank 5 flows through the neutralization tank bypass flow path 42 and is fed into the first soft water tank 3 via the flow path switching valve 24, where the weakly acidic cations inside The exchange resin 33 is circulated.
  • the weakly acidic cation exchange resin 33 by passing acidic electrolyzed water through the weakly acidic cation exchange resin 33, the cations (hardness component) adsorbed on the weakly acidic cation exchange resin 33 are combined with hydrogen ions and ions contained in the acidic electrolyzed water. causess an exchange reaction. As a result, the weakly acidic cation exchange resin 33 is regenerated.
  • the acidic electrolyzed water that has passed through the first soft water tank 3 contains cations and flows into the first recovery channel 37 . That is, the acidic electrolyzed water containing cations that has passed through the weakly acidic cation exchange resin 33 is recovered into the electrolytic cell 9 via the first recovery channel 37 .
  • the soft water tank regeneration circulation flow path 39 is the soft water tank located most downstream from the raw water inlet, and the soft water tank regenerates acidic electrolyzed water into weakly acidic cations, which adsorbs less hardness components than the upstream soft water tank.
  • the weakly acidic cation exchange resin is passed from the downstream side of the second water softening tank 5, which is a water softening tank having the exchange resin 33, and is located upstream and has more hard components adsorbed than the second water softening tank 5. 33 to the downstream side of the first soft water tank 3.
  • the water softener regeneration circulation flow path 39 circulates the acidic electrolyzed water sent from the electrolytic cell 9 to the second water softener tank 5, and then sends it to the first soft water tank 3 via the neutralization tank bypass flow path 42.
  • This is a flow path through which the first soft water tank 3 flows and flows into the electrolytic cell 9 via the first recovery flow path 37.
  • the acidic electrolyzed water discharged from the electrolytic tank 9 flows into the second softened water tank 5, which has a smaller adsorption amount of hardness components than the first softened water tank 3, and absorbs the hardness components.
  • the acidic electrolyzed water is discharged from the second soft water tank 5 to the first soft water tank 3.
  • the alkaline electrolyzed water generated near the cathode of the electrolytic cell 9 flows through the second supply flow path 36 and the capture section 10, and is fed into the second neutralization tank 6 via the flow path switching valve 27, and is fed into the second neutralization tank 6 through the flow path switching valve 27. It flows through a weakly basic anion exchange resin 34. Then, the alkaline electrolyzed water that has passed through the second neutralization tank 6 flows through the soft water tank bypass flow path 44 and is sent into the first neutralization tank 4 via the flow path switching valve 25, and the weak basic water inside It flows through an anion exchange resin 34.
  • the weakly basic anion exchange resin 34 by passing alkaline electrolyzed water through the weakly basic anion exchange resin 34, the anions adsorbed on the weakly basic anion exchange resin 34 are combined with hydroxide ions and ions contained in the alkaline electrolyzed water. causess an exchange reaction. As a result, the weakly basic anion exchange resin 34 is regenerated.
  • the alkaline electrolyzed water that has passed through the first neutralization tank 4 contains anions and flows into the second recovery channel 38. That is, the alkaline electrolyzed water containing anions that has passed through the weakly basic anion exchange resin 34 is recovered into the electrolytic cell 9 via the second recovery channel 38 .
  • the neutralization tank regeneration circulation flow path 40 is a neutralization tank located most downstream from the inlet of raw water for alkaline electrolyzed water, and has a higher adsorption amount of anions than the neutralization tank on the upstream side.
  • the weakly basic anion exchange resin 34 which is located upstream, has a weakly basic anion exchange resin 34 which has a weakly basic anion exchange resin 34. It was configured to flow into the downstream side of the first neutralization tank 4 having the basic anion exchange resin 34.
  • the neutralization tank regeneration circulation flow path 40 circulates the alkaline electrolyzed water sent out from the electrolytic tank 9 to the second neutralization tank 6, and then flows it to the first neutralization tank 4 via the water softener bypass flow path 44.
  • alkaline electrolyzed water flows into the second neutralization tank 6, which has a smaller adsorption amount of anions than the first neutralization tank 4, and the alkaline electrolyzed water containing anions flows into the second neutralization tank 6, which has a smaller amount of anions adsorbed than the first neutralization tank 4. It is discharged from the Japanese tank 6 to the first neutralization tank 4.
  • the consumption of hydroxide ions in the alkaline electrolyzed water is lower than in the first neutralization tank 4.
  • reduction in hydroxide ion concentration can be suppressed. Therefore, alkaline electrolyzed water containing a large amount of hydroxide ions flows into the first neutralization tank 4, and anions can be prevented from being re-adsorbed in the first neutralization tank 4. Therefore, reduction in regeneration processing efficiency can be suppressed and regeneration time can be shortened.
  • hardness components which are cations released from the first water softening tank 3 and the second water softening tank 5 according to the progress of the regeneration process, react with alkaline electrolyzed water in the electrolytic tank 9. As a result, precipitates are formed.
  • precipitates examples include calcium carbonate and magnesium hydroxide. It has been confirmed that calcium carbonate precipitates as a powdery solid, and magnesium hydroxide precipitates as a gel-like hydrated solid. Precipitates derived from these hardness components are captured as precipitates in the capture section 10 provided in the second supply channel 36. However, since magnesium hydroxide precipitates as a hydrated solid, its specific gravity is much lighter than that of calcium carbonate. That is, magnesium hydroxide has a much larger volume compared to calcium carbonate at the same weight, and when it is generated as a precipitate, it quickly blocks the trapping section 10.
  • FIG. 11 is a diagram showing the product of the pH of alkaline electrolyzed water and the solubility of precipitates.
  • pH is around 7 to 12
  • calcium carbonate precipitates in a constant amount regardless of the pH.
  • magnesium hydroxide begins to be generated when the pH exceeds 9.6, rapidly precipitates, and when the pH exceeds 10.0, the amount of precipitation becomes almost constant, indicating that it occurs frequently.
  • the pH of the alkaline electrolyzed water is measured, and the regeneration process of the water softening device 1 is stopped before the pH exceeds 10 for a long time. Control as follows.
  • hydroxide ions are generated on the cathode side by electrolysis of water in the electrolytic cell 9. That is, hydroxide ions are continuously supplied from the electrolytic cell 9 into the alkaline electrolyzed water in the neutralization tank regeneration circulation channel 40 .
  • the supplied hydroxide ions cause an ion exchange reaction with anions adsorbed on the weakly basic anion exchange resin 34, and the weakly basic anion exchange resin 34 is regenerated.
  • the regeneration process progresses, the total amount of anions adsorbed on the weakly basic anion exchange resin 34 decreases. Therefore, the amount of exchange per unit time in the ion exchange reaction of hydroxide ions and anions gradually decreases.
  • the amount of hydroxide ions per unit time supplied from the electrolytic cell 9 into the alkaline electrolyzed water in the neutralization tank regeneration circulation channel 40 is the anion adsorbed on the weakly basic anion exchange resin 34.
  • the total amount of hydroxide ions in the neutralization tank regeneration circulation channel 40 increases because the amount of hydroxide ions per unit time causes an ion exchange reaction. Therefore, as the regeneration process progresses, the pH of the alkaline electrolyzed water in the neutralization tank regeneration circulation flow path 40 increases.
  • the pH of the alkaline electrolyzed water in the neutralization tank regeneration circulation flow path 40 which was neutral immediately after the start of the regeneration process, gradually increases as the regeneration process progresses, and then naturally decreases.
  • the pH exceeds pH 9.6, which is the standard value at which magnesium hydroxide is generated, or pH 10.0, which is the standard value at which magnesium hydroxide occurs frequently, the regeneration process is immediately stopped and the pH Drain the alkaline electrolyzed water that has risen. Specifically, at the stage where the regeneration process is stopped, the process moves to the soft water tank regeneration circulation channel cleaning process.
  • the raw water passes through the bypass flow path 53 from the inlet 2. Since it flows out from the water intake port 7, the raw water can be used without waiting for the completion of the regeneration process.
  • the soft water tank regeneration circulation channel 39 during the regeneration process is filled with high hardness water containing hardness components released from the first soft water tank 3 and the second soft water tank 5.
  • the regeneration operation is stopped when the pH of the alkaline electrolyzed water exceeds a predetermined condition, for example, pH 10, during the regeneration process, and the high temperature inside the water softener tank regeneration circulation flow path 39 is stopped.
  • a cleaning process is carried out for the soft water tank regeneration circulation channel that drains hard water.
  • the predetermined conditions refer to a case where the pH exceeds a pH at which precipitation of magnesium hydroxide frequently occurs.
  • the on-off valves 21 to 23 are closed, the on-off valves 18 to 20 are opened, and the channel switching valve 24 switches the channel 28 from the neutralization tank bypass channel. 42, the flow path switching valve 25 is connected to allow water to be sent to the soft water tank bypass flow path 44, and the flow path switching valve 26 is connected from the neutralization tank bypass flow path 42 to the first supply flow path 35.
  • the connection state is such that water can be fed, and the flow path switching valve 27 is in a connection state that allows water to be fed to the second supply flow path 36.
  • the high hardness water in the flow path 28, the first recovery flow path 37, the first water pump 11, the electrolytic cell 9, and the first supply flow path 35 is washed away by the pressure of the inflowing raw water. , flows into the drainage channel 54.
  • the high hardness water that has flowed into the drainage channel 54 is discharged from the drainage port 13 to the outside of the apparatus.
  • the high hardness water in the flow path 28, the first soft water tank 3, the neutralization tank bypass flow path 42, the second water softener tank 5, and the first supply flow path 35 is is swept away and flows into the drainage channel 54.
  • the high hardness water that has flowed into the drainage channel 54 is discharged from the drainage port 13 to the outside of the apparatus.
  • the high hardness water in the first drainage flow path 46 and the second drainage flow path 47 which are the main locations where high hardness water remains when the regeneration step is stopped, is removed. It can be replaced with raw water.
  • the high hardness water is drained out of the device through a flow path that does not include the neutralization tank, so the high hardness water can be drained out of the device without flowing into the neutralization tank.
  • the hydrogen ions in the acidic water stored in the soft water tank regeneration circulation flow path 39 can be drained while being prevented from being adsorbed to the weakly basic anion exchange resin 34 in the neutralization tank, when the regeneration process is restarted, This can reduce the possibility that the time required to regenerate the neutralization tank will become longer.
  • the soft water tank regeneration circulation flow path cleaning step is ended, and the neutralization tank regeneration circulation flow path cleaning step is executed.
  • the raw water is bypassed from the inlet 2. Since it passes through the flow path 53 and flows out from the water intake port 7, the raw water can be used without waiting for the end of the soft water tank regeneration circulation flow path cleaning process.
  • alkaline electrolyzed water generated near the cathode of the electrolytic cell 9 is sent to the first neutralization tank 4 and the second neutralization tank 6, and the hydroxyl contained in the alkaline electrolyzed water is removed.
  • a part of the substance ions undergoes an ion exchange reaction with the anions adsorbed on the weakly basic anion exchange resin, and the anions are released, and the alkaline electrolyzed water is discharged from the neutralization tank regeneration circulation flow path 40. It circulates in the flow path without any problem. Therefore, as the regeneration process progresses, the water filling the neutralization tank regeneration circulation flow path 40 becomes water with increased concentrations of hydroxide ions and anions.
  • the regeneration operation is stopped when the pH of the alkaline electrolyzed water reaches a predetermined condition (for example, when the pH exceeds 10) during the regeneration process. Then, a neutralization tank regeneration circulation channel cleaning step is performed to drain the alkaline electrolyzed water whose pH has increased in the neutralization tank regeneration circulation channel 40.
  • on-off valves 19 to 20 and on-off valves 23 are closed, on-off valves 18 and on-off valves 21 to 22 are opened, and flow path switching valves 24 is in a connected state that allows water to be sent to the neutralization tank bypass channel 42, the flow path switching valve 25 is in a connected state that allows water to be sent from the soft water tank bypass channel 44 to the second recovery channel 38, and the flow path switching valve 26 is in a connected state that allows water to be sent to the second recovery channel 38.
  • the connection state is such that water can be sent to one supply channel 35, and the flow path switching valve 27 is in a connected state that water can be sent from the flow path 32 to the soft water tank bypass flow path 44.
  • the first neutralization tank 4 and the second neutralization tank 6 are in a communicating state, and the first neutralizing tank 4 and the trapping part drain port 14 are in a communicating state. Thereby, as shown in FIG. 5, a fifth drainage path 63 (neutralization tank regeneration channel cleaning channel) is formed. Note that at this time, the operations of the electrode 41, the first water pump 11, and the second water pump 12 are stopped.
  • the flow path 32, the second recovery flow path 38, the second water pump 12, the electrolytic cell 9, a part of the second supply flow path 36, and the capture unit 10 are affected by the pressure of the raw water that has flowed in.
  • the alkaline electrolyzed water whose pH has increased is washed away and discharged to the outside of the apparatus from the capture section drain port 14 provided at the bottom of the capture section 10.
  • the alkaline electrolyzed water whose pH has increased in the fifth drainage flow path 63 which is the residual location of the alkaline electrolyzed water whose main pH has increased when the regeneration process is stopped, is caused by the neutralization tank regeneration circulation flow path cleaning process. can be replaced with raw water.
  • the process is stopped.
  • the regeneration step is restarted, and the regeneration step is carried out until the regeneration of the weakly acidic cation exchange resin 33 and the weakly basic anion exchange resin 34 is completed.
  • the stopping of the regeneration process, the soft water tank regeneration circulation flow path cleaning step, and the neutralization tank regeneration circulation flow path cleaning step are performed until the regeneration of the weakly acidic cation exchange resin 33 and the weakly basic anion exchange resin 34 is completed. It may be provided multiple times.
  • the soft water tank regeneration circulation channel 39 is filled with highly hard water containing the hardness components released from the first soft water tank 3 and the second soft water tank 5.
  • the hardness of this high-hardness water is significantly higher than the hardness of raw water (for example, 450 ppm), and may rise to, for example, about 2000 ppm.
  • the weakly acidic cation exchange resin 33 in the first soft water tank 3 and the second soft water tank 5.
  • the weakly acidic cation exchange resin 33 has been regenerated by replacing the hardness components adsorbed during the water softening process with hydrogen ions during the regeneration process, it contains hardness components again. Water will be distributed. Therefore, due to the regeneration process that has been carried out, an exchange reaction occurs between the hydrogen ions filled in the weakly acidic cation exchange resin 33 and the hard components in the high hardness water, and the hard components are adsorbed to the weakly acidic cation exchange resin 33 again. Therefore, hydrogen ions available for softening raw water decrease, resulting in a decrease in water softening performance.
  • a regeneration channel cleaning process is performed to drain the high hardness water in the soft water tank regeneration circulation channel 39.
  • the on-off valves 21 to 23 are closed, the on-off valves 18 to 20 are opened, and the channel switching valve 24 sends water from the channel 28 to the neutralization tank bypass channel 42.
  • the flow path switching valve 25 is in a connected state in which water can be sent to the soft water tank bypass flow path 44, and the flow path switching valve 26 is in a connected state in which water can be sent from the neutralization tank bypass flow path 42 to the first supply flow path 35.
  • the connection state is established, and the flow path switching valve 27 is brought into a connection state in which water can be supplied to the second supply flow path 36.
  • the high hardness water in the flow path 28, the first recovery flow path 37, the first water pump 11, the electrolytic cell 9, and the first supply flow path 35 is washed away by the pressure of the inflowing raw water. , flows into the drainage channel 54.
  • the high hardness water that has flowed into the drainage channel 54 is discharged from the drainage port 13 to the outside of the apparatus.
  • the high hardness water in the flow path 28, the first soft water tank 3, the neutralization tank bypass flow path 42, the second water softener tank 5, and the first supply flow path 35 is is swept away and flows into the drainage channel 54.
  • the high hardness water that has flowed into the drainage channel 54 is discharged from the drainage port 13 to the outside of the apparatus.
  • the high hardness water in the first drainage flow path 46 and the second drainage flow path 47 which are the main areas where high hardness water remains after the regeneration step, is transferred to the neutralization tank. It is possible to replace it with raw water while suppressing the distribution of water. Therefore, in the regeneration flow path cleaning process, it is possible to suppress the adsorption of hydrogen ions to the weakly basic anion exchange resin 34 in the neutralization tank, so it is possible to suppress the consumption of the filled hydroxide ions and improve the neutralization performance. can be kept. Therefore, deterioration in water softening performance caused by highly hard water can be suppressed.
  • control unit 15 supplies raw water to each flow path so that the flow rate of raw water flowing through the second drainage flow path 47 is larger than the flow rate of raw water flowing through the first drainage flow path 46.
  • high hardness water in the second drainage flow path 47 which is a flow path that includes a water softening tank used during the water softening process and in which drainage of high hardness water in the flow path is essential, is prioritized. It can be replaced with raw water. Therefore, it is possible to suppress a decrease in water softening performance caused by highly hard water when the water softening process is started. In addition, it is possible to reduce the amount of water discharged from the first drainage flow path 46, which is not used during the water softening process and has little effect on the water softening process even if high hardness water remains, thereby reducing waste. Drainage can be prevented and the amount of water required for the regeneration channel cleaning process can be suppressed.
  • the regeneration channel cleaning step is ended and the electrolytic tank cleaning step is executed.
  • the raw water flows from the inlet 2 to the bypass channel 53. Since the raw water flows out through the water intake port 7, the raw water can be used without waiting for the completion of the regeneration channel cleaning process.
  • the on-off valves 18 to 22 are opened, and the on-off valve 23 is closed.
  • the flow path switching valve 24 is in a connected state where water can be sent from the flow path 28 to the flow path 29
  • the flow path switching valve 25 is in a connected state where water can be sent to the soft water tank bypass flow path 44
  • the flow path switching valve 26 is in a connected state where water can be sent to the water softening tank bypass flow path 44.
  • the connection state is such that water can be sent to the first supply flow path 35, and the flow path switching valve 27 is connected to the second supply flow path 36, so that water can be sent to the second supply flow path 36.
  • the first soft water tank 3 and the electrolytic cell 9 are in a communicating state
  • the electrolytic cell 9 and the drain port 13 are in a communicating state
  • the electrolytic cell 9 and the trapping part drain port 14 are in a communicating state.
  • a first drainage channel 46 and a third drainage channel 50 are respectively formed.
  • the raw water that has flowed in flows through the flow path 28, the first recovery flow path 37, and the first water pump 11, and then flows into the electrolytic cell 9.
  • the raw water that has flowed in flows through the flow path 28, the first soft water tank 3, the second recovery flow path 38, and the second water pump 12, and then flows into the electrolytic cell 9.
  • the control unit 15 applies electricity so that the cathode has a higher potential than the anode (reverse electrolysis). Therefore, the electrolytic cell 9 electrolyzes the raw water that has flowed into the electrolytic cell, producing alkaline electrolyzed water near the anode and producing acidic electrolyzed water near the cathode.
  • the acidic electrolyzed water generated at the cathode can dissolve the precipitates deposited on the cathode. Therefore, deterioration of electrolytic performance due to attachment of precipitates to the surface of the electrode 41 can be suppressed.
  • the alkaline electrolyzed water generated at the anode flows through the first supply channel 35, flows into the drain channel 54, and is discharged from the drain port 13 to the outside of the apparatus.
  • the acidic electrolyzed water generated at the cathode dissolves the precipitates deposited on the cathode, flows through the second supply channel 36, and flows into the trapping section 10.
  • the acidic electrolyzed water that has flowed into the trapping section 10 can dissolve precipitates stuck to the trapping section 10, and can preliminarily clean the trapping section 10. Therefore, the time required for the next step, the capturing section cleaning step, can be shortened.
  • the acidic electrolyzed water is then discharged to the outside of the apparatus from a trapping section drain port 14 provided at the lower part of the trapping section 10.
  • the removal of precipitates in the electrolytic cell 9 and the precipitates in the trapping part 10 can be performed simultaneously, reducing the time required from the end of the regeneration process to the start of the water softening process. Can be done.
  • the electrolytic cell cleaning process is finished, and the trapping part is cleaned. Execute the process.
  • the trapping section 10 becomes acidic, and the precipitates fixed to the trapping section 10 are dissolved by the acidic water. Therefore, since the trapping section 10 can be preliminarily cleaned, the time required for the next step, the trapping section cleaning step, can be shortened. That is, the removal of the precipitates in the electrolytic bath 9 and the precipitates in the trapping part 10 can be performed simultaneously, and the time required from the end of the regeneration process to the start of the water softening process can be shortened.
  • the raw water flows from the inlet 2 to the bypass channel 53. Since the raw water flows out from the water intake port 7, the raw water can be used without waiting for the completion of the electrolytic cell cleaning process.
  • the on-off valve 18, the on-off valve 19, the on-off valve 22, and the on-off valve 23 are opened, and the on-off valve 20 and the on-off valve 21 are closed.
  • the flow path switching valve 24 is in a connected state that allows water to be sent from the flow path 28 to the flow path 29
  • the flow path switching valve 25 is in a connected state that allows water to be sent from the flow path 29 to the flow path 30
  • the flow path switching valve 26 is in a connected state that allows water to be sent from the flow path 29 to the flow path 30.
  • the connection state is such that water can be sent from the flow path 30 to the flow path 31
  • the flow path switching valve 27 is connected to be able to send water from the flow path 31 to the second supply flow path 36 .
  • a fourth drainage channel 52 is formed.
  • raw water flows into the flow path 28 from the outside.
  • neutral soft water flows from the opposite side to the water flow direction in the regeneration process.
  • the neutral soft water that flows in performs backwashing of the trapping section 10.
  • the trapping section 10 can be easily cleaned with neutral soft water.
  • Neutral soft water containing precipitates is discharged to the outside of the apparatus from a trapping section drain port 14 provided at the bottom of the trapping section 10.
  • the trapping portion cleaning step is ended, and the water softening step is completed. Execute.
  • the flow path from the inlet 2 to the second neutralization tank 6 is the same flow path as the flow path during the water softening process. That is, by using the fourth drainage flow path 52, the second neutralization tank 6, which is the final neutralization tank in the water softening process, is filled with softened water. Therefore, by performing the water softening process after performing the trap cleaning process using the fourth drainage flow path 52, the user of the water softening device 1 can receive water softening treatment to reduce hardness immediately after starting the water softening process. Soft water can be obtained from the water intake port 7.
  • the raw water flows from the inlet 2 to the bypass channel 53. Since the raw water flows out from the water intake port 7, the raw water can be used without waiting for the completion of the trap cleaning process.
  • the trapping section cleaning step is repeatedly executed in this order.
  • the trap cleaning step immediately before the water softening step the last stage neutralization tank in the water softening step is filled with softened water. Therefore, when the user of the water softening device 1 opens the faucet, discharge of highly hard water from the water intake port 7 can be suppressed, and soft water with stable hardness can be provided immediately after the start of the water softening process.
  • the high hardness water has already been drained out of the equipment at the time of polarity reversal in the electrolytic tank cleaning process, making it possible to electrolyze the high hardness water. You can suppress your sexuality. Therefore, electrolysis of highly hard water can be suppressed, and generation of a large amount of scale in the channel through which alkaline electrolyzed water is fed during polarization can be suppressed.
  • the water softening device 1 includes a water softening tank that generates acidic soft water by softening raw water containing hard components using a weakly acidic cation exchange resin 33, and a weakly basic anion to adjust the pH of the acidic soft water that has passed through the water softening tank.
  • the ion concentration measurement unit 56 is provided to measure the ion concentration of the ion concentration.
  • the control unit 15 controls execution of the regeneration process based on the ion concentration measurement result measured by the ion concentration measurement unit 56 during the regeneration process, and continues the regeneration process if the ion concentration measurement result is less than the reference value. If the ion concentration measurement result is equal to or higher than the reference value, the regeneration process is stopped.
  • the regeneration process can be stopped based on the ion concentration of the alkaline electrolyzed water. Therefore, the regeneration step can be carried out using alkaline electrolyzed water with an ion concentration lower than that at which specific precipitates are rapidly deposited in the alkaline electrolyzed water, and the regeneration step can be carried out smoothly.
  • the reference value is an ion concentration at which a specific precipitate is generated due to the reaction between ions in the alkaline electrolyzed water and the hardness component, and is set to, for example, a pH of 10.0.
  • control unit 15 can stop the regeneration process when the pH, which is a pH condition under which a specific precipitate rapidly precipitates, becomes 10.0 or higher.
  • the control unit 15 controls the on-off valves 18 to 23 and the flow path switching valve 24 to the flow path switching valve.
  • the acidic electrolyzed water in the water softening tank regeneration circulation channel 39 can be replaced with raw water.
  • the alkaline electrolyzed water in the neutralization tank regeneration circulation channel 40 can be replaced with raw water. Therefore, it is possible to restart the regeneration process while suppressing rapid precipitation of specific precipitates into the alkaline electrolyzed water.
  • the regeneration channel cleaning process, the electrolytic tank cleaning process, and the trapping part cleaning process are performed in this order, but the present invention is not limited to this.
  • the regeneration channel cleaning step may be performed after the electrolytic cell cleaning step
  • the trapping portion cleaning step may be performed before the water softening step. Even if the inside of the apparatus is cleaned in this order, the precipitates in the electrolytic cell 9 and the trapping section can be removed, and the second neutralization tank 6 immediately before the water softening process can be filled with soft water.
  • the water softening device according to the present disclosure can be applied to a point of use (POU) water purification device or a point of entry (POE) water purification device.
  • POU point of use
  • POE point of entry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

軟水化装置(1)は、硬度成分を含む原水を弱酸性陽イオン交換樹脂により軟水化する軟水槽(3及び5)と、軟水槽を通過した軟水を弱塩基性陰イオン交換樹脂により中和する中和槽(4及び6)と、アルカリ性電解水を生成する電解槽(9)と、電解槽にて生成されたアルカリ性電解水のイオン濃度を測定するイオン濃度測定部(56)と、弱塩基性陰イオン交換樹脂の再生を行う工程である再生工程を制御する制御部(15)と、を備え、制御部(15)は、イオン濃度測定部が測定したイオン濃度が所定の基準値未満の場合には再生工程を継続し基準値以上の場合には再生工程を終了する。

Description

軟水化装置
 本開示は、軟水化装置に関する。
 従来の軟水化装置では、弱酸性陽イオン交換樹脂は、官能基の末端に水素イオンを有しており、原水中の硬度成分(例えば、カルシウムイオン、マグネシウムイオン)を水素イオンに交換して原水を軟水化している。食塩を使用しない弱酸性陽イオン交換樹脂の再生方法として、電気分解で生成した酸性電解水により弱酸性陽イオン交換樹脂を再生する方法が知られている(例えば、特許文献1を参照)。
 弱酸性陽イオン交換樹脂により軟水化された水は、硬度成分の代わりに水素イオンが放出されるために酸性となる。これを中和するために、弱酸性陽イオン交換樹脂に弱塩基性陰イオン交換樹脂を組み合わせて利用されることがある。弱塩基性陰イオン交換樹脂の再生方法として、電気分解で生成したアルカリ性電解水を用いる方法が知られている(例えば、特許文献2を参照)。
特開2011-30973号公報 特開2010-142674号公報
 このような軟水化装置では、弱酸性陽イオン交換樹脂及び弱塩基性陰イオン交換樹脂の再生処理が進行するにつれ、弱酸性陽イオン交換樹脂から放出される硬度成分(例えば、カルシウムイオン、マグネシウムイオン)により酸性電解水の硬度が上昇する。一方、弱塩基性陰イオン交換樹脂からは炭酸イオンや塩化物イオン等のアニオンが放出される。
 このとき、電解水を生成する電解槽内において、酸性電解水とアルカリ性電解水の一部が互いに移動可能であるような構成の場合には、酸性電解水からアルカリ性電解水へ硬度成分が移動する。アルカリ性電解水中に移動した硬度成分のうち、カルシウムイオンは炭酸イオンと反応して炭酸カルシウムとして析出し、マグネシウムイオンはアルカリ性電解水中の水酸化物イオンと反応して水酸化マグネシウムとして析出する。これらの析出物が装置内を循環しないよう、析出物をアルカリ性電解水から除去するために、電解槽の下流側に析出物を捕捉する捕捉部を設けることが考えられる。
 しかし、炭酸カルシウムと水酸化マグネシウムとの特性の違いから、析出した水酸化マグネシウムが捕捉部に流入すると、捕捉部が目詰まりしてしまい、アルカリ性電解水の流量が著しく低下し、再生処理の完了に要する時間が増大する、もしくは再生工程が継続できない虞があるという問題がある。
 本開示は、このような問題に鑑みてなされたものであり、イオン交換樹脂の再生工程時における捕捉部の閉塞を抑制可能な軟水化装置を提供するものである。
 本開示に係る軟水化装置は、硬度成分を含む原水を弱酸性陽イオン交換樹脂により軟水化する軟水槽と、軟水槽を通過した軟水を弱塩基性陰イオン交換樹脂により中和する中和槽と、アルカリ性電解水を生成する電解槽と、電解槽にて生成されたアルカリ性電解水のイオン濃度を測定するイオン濃度測定部と、弱塩基性陰イオン交換樹脂の再生を行う工程である再生工程を制御する制御部と、を備え、制御部は、イオン濃度測定部が測定したイオン濃度が所定の基準値未満の場合には再生工程を継続し基準値以上の場合には再生工程を終了する。
 イオン交換樹脂の再生工程時における捕捉部の閉塞を抑制可能な軟水化装置を提供することができる。
図1は、実施の形態1に係る軟水化装置の構成を示す概念図である。 図2は、実施の形態1に係る軟水化装置の軟水化流路を示す構成図である。 図3は、実施の形態1に係る軟水化装置の軟水槽再生循環流路及び中和槽再生循環流路を示す構成図である。 図4は、実施の形態1に係る軟水化装置の軟水槽再生流路洗浄流路を示す図である。 図5は、実施の形態1に係る軟水化装置の中和槽再生流路洗浄流路を示す図である。 図6は、実施の形態1に係る軟水化装置の再生流路洗浄流路を示す図である。 図7は、実施の形態1に係る軟水化装置の電解槽洗浄流路を示す概念図である。 図8は、実施の形態1に係る軟水化装置の捕捉部洗浄流路を示す構成図である。 図9は、実施の形態1に係る軟水化装置の機能ブロック図である。 図10は、実施の形態1に係る軟水化装置の制御方法を示す構成図である。 図11は、実施の形態1に係る軟水化装置のアルカリ性電解水pHと析出物の溶解度積を示す概略図である。
 以下、本開示の実施の形態について図面を参照しながら説明する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。また、実施形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
 (実施の形態1)
 図1を参照して、本開示の実施の形態1に係る軟水化装置1について説明する。図1は、本開示の実施の形態1に係る軟水化装置1の構成を示す概念図である。なお、図1では、軟水化装置1の各要素を概念的に示している。
 <全体構成>
 軟水化装置1は、外部から供給される硬度成分を含む原水から、中性の軟水を生成する装置である。なお、原水とは、流入口2から装置内に導入された水(処理対象水)であり、例えば市水や井戸水である。原水は、硬度成分(例えばカルシウムイオンまたはマグネシウムイオン)を含む。軟水化装置1を用いて軟水化処理を行うことにより、硬度の低減した中性の軟水が得られ、原水の硬度が高い地域であっても、軟水を利用することができる。
 具体的には、図1に示すように、軟水化装置1は、流入口2と、軟水槽と、中和槽と、取水口7と、再生装置8と、制御部15とを備えている。
 また、軟水化装置1は、排水口13と、複数の開閉弁(開閉弁18、開閉弁19、開閉弁20、開閉弁21、開閉弁22、及び開閉弁23)と、複数の流路切り替えバルブ(流路切り替えバルブ24~27)とを含んで構成される。これらについての詳細は後述する。
 <流入口及び取水口>
 流入口2は、原水の供給元に接続されている。流入口2は、原水を軟水化装置1内に導入するための開口である。
 取水口7は、軟水化装置1内を流通し、軟水化処理された水を装置外に供給する開口である。軟水化装置1は、流入口2から流入する原水の圧力により、取水口7から軟水化処理後の水を取り出すことができる。
 軟水化装置1では、軟水化処理を行う軟水化工程において、外部から供給される原水が、流入口2、流路28、第一軟水槽3、流路29、第一中和槽4、流路30、第二軟水槽5、流路31、第二中和槽6、流路32、取水口7の順に流通して、中性の軟水として排出される。
 <軟水槽>
 軟水槽(第一軟水槽3及び第二軟水槽5)は、弱酸性陽イオン交換樹脂の作用により、硬度成分を含む原水を軟水化する。具体的には、軟水槽は、流通する水(原水)に含まれる硬度成分である陽イオン(カルシウムイオン、マグネシウムイオン)を水素イオンと交換するため、原水の硬度が下がり、原水を軟水化する。本実施の形態1における軟水化装置1では、軟水槽として第一軟水槽3と第二軟水槽5が備えられる。
 第一軟水槽3は、流入口2から流入した原水の軟水化を行う。第一軟水槽3は、流路切り替えバルブ24を備える。流路切り替えバルブについての詳細はまとめて後述する。
 第二軟水槽5は、後述する第一中和槽4を流通した水の軟水化を行う。第二軟水槽5は、流路切り替えバルブ26を備える。
 第一軟水槽3及び第二軟水槽5には弱酸性陽イオン交換樹脂33が充填されている。
 弱酸性陽イオン交換樹脂33は、官能基の末端に水素イオンを有するイオン交換樹脂である。弱酸性陽イオン交換樹脂33は、通水される原水に含まれる硬度成分である陽イオン(カルシウムイオン、マグネシウムイオン)を吸着し、水素イオンを放出する。弱酸性陽イオン交換樹脂33で処理された軟水は、硬度成分と交換されて出てきた水素イオンを多く含む。つまり、第一軟水槽3及び第二軟水槽5から流出する軟水は、水素イオンを多く含んで酸性化した軟水(酸性軟水)である。
 弱酸性陽イオン交換樹脂33の官能基の末端が水素イオンであるため、後述する再生処理において、酸性電解水を用いて弱酸性陽イオン交換樹脂33の再生を行うことができる。この際、弱酸性陽イオン交換樹脂33からは、軟水化処理の際に取り込んだ硬度成分である陽イオンが放出される。
 弱酸性陽イオン交換樹脂33として、特に制限はなく、汎用的なものを使用することができ、例えば、カルボキシル基(-COOH)を交換基とするものが挙げられる。また、カルボキシル基の対イオンである水素イオン(H+)が、金属イオン、アンモニウムイオン(NH4+)等の陽イオンとなっているものでもよい。
 <中和槽>
 中和槽(第一中和槽4及び第二中和槽6)は、弱塩基性陰イオン交換樹脂34の作用により、軟水槽から出てきた水素イオンを含む軟水(酸性化した軟水)のpHを中和し、中性の軟水とする。具体的には、中和槽は、軟水槽からの軟水に含まれる水素イオンをアニオン(陰イオン)とともに吸着するため、軟水のpHが上がり、中性の軟水とすることができる。本実施の形態1における軟水化装置1では、中和槽として第一中和槽4と第二中和槽6が備えられる。
 第一中和槽4は、第一軟水槽3を流通した酸性軟水の中和を行う。第一中和槽4は、流路切り替えバルブ25を備える。
 第二中和槽6は、第二軟水槽5を流通した酸性軟水の中和を行う。第二中和槽6は、流路切り替えバルブ27を備える。
 第一中和槽4及び第二中和槽6には弱塩基性陰イオン交換樹脂34が充填されている。
 弱塩基性陰イオン交換樹脂34は、通水される水に含まれる水素イオンを中和し、中性の水を生成する。弱塩基性陰イオン交換樹脂34は、後述する再生処理において、アルカリ性電解水を用いて再生を行うことができる。
 弱塩基性陰イオン交換樹脂34として、特に制限はなく、汎用的なものを使用することができ、例えば、遊離塩基型となっているものが挙げられる。
 <再生装置>
 再生装置8は、第一軟水槽3及び第二軟水槽5に充填されている弱酸性陽イオン交換樹脂33を再生させ、且つ、第一中和槽4及び第二中和槽6に充填されている弱塩基性陰イオン交換樹脂34を再生させる機器である。
 再生装置8は、電解槽9と、捕捉部10と、第一送水ポンプ11と、第二送水ポンプ12とを含んで構成される。そして、再生装置8は、第二軟水槽5、第二中和槽6、流路28、流路29に対して、第一供給流路35、第二供給流路36、第一回収流路37、第二回収流路38、がそれぞれ接続されている。各流路の詳細は後述する。なお、第一供給流路35、第二供給流路36、第一回収流路37、第二回収流路38、中和槽バイパス流路42、軟水槽バイパス流路44により、後述する軟水槽再生循環流路39と中和槽再生循環流路40が形成される。
 <<電解槽>>
 電解槽9は、内部に設けた一対の電極41(電極41a及び電極41b)を用いて、入水した水(流入口2から供給される水)を電気分解することによって、酸性電解水とアルカリ性電解水とを生成して排出する。より詳細には、再生工程での電気分解の際に陽極となる電極41aでは、電気分解により水素イオンが生じ、酸性電解水が生成する。また、再生工程での電気分解の際に陰極となる電極41bでは、電気分解により水酸化物イオンが生じ、アルカリ性電解水が生成する。そして、電解槽9は、酸性電解水を、第一供給流路35及び中和槽バイパス流路42を介して第一軟水槽3と第二軟水槽5に供給し、アルカリ性電解水を、第二供給流路36及び軟水槽バイパス流路44を介して第一中和槽4と第二中和槽6に供給する。詳細は後述するが、電解槽9によって生成された酸性電解水は、第一軟水槽3と第二軟水槽5の弱酸性陽イオン交換樹脂33の再生に使用され、電解槽9によって生成されたアルカリ性電解水は、第一中和槽4と第二中和槽6の弱塩基性陰イオン交換樹脂34の再生に使用される。なお、電解槽9は、後述する制御部15によって、一対の電極41への通電状態を制御できるように構成されている。
 <<送水ポンプ>>
 第一送水ポンプ11は、再生装置8による再生処理の際に、軟水槽再生循環流路39(図3参照)に酸性電解水を流通させる機器である。第一送水ポンプ11は、第一軟水槽3と電解槽9との間を連通接続する第一回収流路37に設けられている。このような配置とするのは、第一送水ポンプ11だけで、軟水槽再生循環流路39に酸性電解水を循環させやすくなるためである。
 第二送水ポンプ12は、中和槽再生循環流路40(図3参照)にアルカリ性電解水を流通させる機器である。第二送水ポンプ12は、第一中和槽4と電解槽9との間を連通接続する第二回収流路38に設けられている。このような配置とするのは、第二送水ポンプ12だけで、中和槽再生循環流路40にアルカリ性電解水を循環させやすくなるからである。
 また、第一送水ポンプ11及び第二送水ポンプ12は、後述する制御部15と無線または有線により通信可能に接続されている。
 <<捕捉部>>
 捕捉部10は、電解槽9と第二中和槽6とを連通接続する第二供給流路36に設けられている。
 捕捉部10は、電解槽9から送出されたアルカリ性電解水に含まれる析出物を捕捉する。析出物とは、電解槽9内において、再生処理の際に第一軟水槽3及び第二軟水槽5から放出された陽イオンである硬度成分がアルカリ性電解水と反応することにより生じる反応生成物である。より詳細には、電解槽9で水の電気分解が行われている間、再生処理時の第一軟水槽3と第二軟水槽5から放出される硬度成分(例えば、カルシウムイオン、マグネシウムイオン)は、陰極(電極41b)側に移動する。陰極側ではアルカリ性電解水が生成しているため、硬度成分とアルカリ性電解水が反応し、析出物となる。例えば、硬度成分がカルシウムイオンの場合、アルカリ性電解水と混合されることにより、炭酸カルシウムが生じる反応が起こったり、水酸化カルシウムが生じる反応が起こったりする。そして、硬度成分に由来する析出物は、第二供給流路36に設けられた捕捉部10で析出物として捕捉される。そして、硬度成分に由来する析出物を捕捉部10で捕捉することにより、析出物が第二中和槽6に流入し、堆積することを抑制できる。したがって、再生処理の終了後に軟水化処理を再開する場合には、第二中和槽6に堆積した析出物が第一軟水槽3及び第二軟水槽5から放出された水素イオンと反応してイオン化することを原因とした、第二中和槽6から送出される軟水の硬度上昇を抑制できる。
 また、再生処理の際に、硬度成分に由来する析出物が捕捉部10を通過したアルカリ性電解水は、第二中和槽6と第一中和槽4を流通した後、電解槽9で再度電気分解され、再度アルカリ性電解水として、弱塩基性陰イオン交換樹脂34の再生に供される。この時、酸性電解水は、捕捉部10を備えない場合と比較し、含有する硬度成分が減少している。つまり、捕捉部10で析出物を捕捉することにより、酸性電解水の硬度が低下するため、第一軟水槽3と第二軟水槽5に流入する硬度成分を減少させることができ、弱酸性陽イオン交換樹脂33の再生効率の低下を抑制できる。
 なお、「硬度成分が反応する」とは、硬度成分すべてが反応することのみならず、反応しない成分もしくは溶解度積を超えない成分が含まれている状態も含むものとする。
 捕捉部10は、硬度成分とアルカリ性電解水との反応により生じる析出物を分離可能であればその形態は問わない。例えば、カートリッジタイプのフィルター、粒状ろ材を用いたろ過層、サイクロン型の固液分離機、中空糸膜等を用いる形態が挙げられる。
 捕捉部10の形態として一般的に使用される手段としては、カートリッジタイプのフィルターが挙げられる。カートリッジタイプのフィルターとして、糸巻きフィルターのような深層ろ過型、プリーツフィルター及びメンブレンフィルターのような表面ろ過型、またはこれらを組み合わせて使用することができる。
 捕捉部10は、開閉弁22及び捕捉部排水口14を備える。
 開閉弁22は、捕捉部10内の排水を制御する弁であり、例えば、捕捉部10の下部に設けられる。開閉弁22を開放することにより、捕捉部10内の水を捕捉部排水口14から装置外に排出できる。
 捕捉部排水口14は、捕捉部10内の水を装置外に排出する開口である。捕捉部排水口14の上流に設けられる開閉弁22を開放することにより、捕捉部排水口14から捕捉部10内の水を装置外に排出できる。
 <開閉弁及び流路切り替えバルブ>
 複数の開閉弁(開閉弁18~開閉弁23)は、各流路にそれぞれ設けられ、各流路において「開放」した状態と、「閉止」した状態とを切り替える。
 複数の開閉弁(開閉弁18、開閉弁19、開閉弁21、及び開閉弁23)は、弁の開閉により、各流路への水の流通を開始あるいは停止する。
 開閉弁20及び開閉弁22は、後述する再生流路洗浄工程、電解槽洗浄工程、捕捉部洗浄工程の際に、開放した状態となり、再生循環水を装置外に排出する。
 複数の流路切り替えバルブ(流路切り替えバルブ24~流路切り替えバルブ27)は、第一軟水槽3、第二軟水槽5、第一中和槽4、及び第二中和槽6にそれぞれ設けられる。複数の流路切り替えバルブはいずれも、3つの開口を備え、1つ目の開口は水の流入及び流出が可能な流入流出口、2つ目の開口は流出口としては機能せず流入口として機能する流入口、3つ目の開口は流入口としては機能せず流出口として機能する流出口である。複数の流路切り替えバルブはいずれも、流入流出口は常に「開放」しており、通水方向により、流入口か流出口のうちどちらか一方が「開放」している時には、他方の流出口は「閉止」している。流路切り替えバルブ24~27を備えることにより、軟水化装置1内の各流路に必要な開閉弁の数を減少でき、軟水化装置1のコストの低減ができる。
 また、複数の開閉弁(開閉弁18~開閉弁23)と複数の流路切り替えバルブ(流路切り替えバルブ24~流路切り替えバルブ27)はそれぞれ、後述する制御部15と無線または有線により通信可能に接続されている。
 <排水口>
 排水口13は、排水流路54の端部に設けられる開口であり、再生経路洗浄工程及び電解槽洗浄工程において装置内の水を装置外に排出する開口である。排水口13の上流には開閉弁20が設けられており、開閉弁20を開放することにより、排水口13から排水を行うことができる。
 <流路>
 バイパス流路53は、流入口2と取水口7とを連通接続する流路であり、流路上には開閉弁18が設けられている。バイパス流路53により、再生工程、再生流路洗浄工程、電解槽洗浄工程、捕捉部洗浄工程のいずれかを実施している場合でも、軟水化装置1の利用者は、取水口7から原水を得ることができる。
 <軟水化流路>
 図2を参照して、軟水化装置1の軟水化工程の際に形成される軟水化流路43について説明する。図2は軟水化装置1の軟水化流路43を示す構成図である。
 軟水化流路43(図2の斜線矢印)は、原水の軟水化を行う流路であり、軟水化流路43を流通した原水は中性の軟水となり、取水口7から装置外に排出される。
 軟水化流路43は、流入口2、流路28、第一軟水槽3、流路29、第一中和槽4、流路30、第二軟水槽5、流路31、第二中和槽6、流路32、取水口7により形成される。
 流路28は、流入口2から第一軟水槽3までを接続する流路である。つまり、流路28は、硬度成分を含む原水を流入口2から第一軟水槽3へ導く流路である。
 流路29は、第一軟水槽3から第一中和槽4までを接続する流路である。つまり、流路29は、第一軟水槽3で軟水化された水を第一中和槽4に導く流路である。
 流路30は、第一中和槽4から第二軟水槽5までを接続する流路である。つまり、流路30は、第一中和槽4で中和された水を第二軟水槽5へ導く流路である。
 流路31は、第二軟水槽5から第二中和槽6までを接続する流路である。つまり、流路31は、第二軟水槽5で軟水化された水を第二中和槽6に導く流路である。
 流路32は、第二中和槽から取水口7までを接続する流路である。つまり、流路32は、軟水化された原水を第二中和槽6から取水口7に導く流路である。
 図2に示すように、流入口2の下流側且つ第一軟水槽3の上流側の流路28上に開閉弁19が設置されている。また、後述するバイパス流路53には、開閉弁18が設置されている。そして、開閉弁18を閉止して、開閉弁19を開放することにより、第一軟水槽3と流入口2が連通接続される。また、流路切り替えバルブ24を第一軟水槽3と第一中和槽4とが連通接続するように切り替え、流路切り替えバルブ25を第二軟水槽5と第二中和槽6が連通接続するように切り替え、流路切り替えバルブ26を第一中和槽4と第二軟水槽5が連通接続するように切り替え、流路切り替えバルブ27を第二軟水槽5と第二中和槽6が連通接続するように切り替える。これにより、流入口2から流路28、第一軟水槽3、流路29、第一中和槽4、流路30、第二軟水槽5、流路31、第二中和槽6、流路32、取水口7までを連通接続する軟水化流路43が形成される。この時、開閉弁20、開閉弁21、開閉弁23は閉止している。
 <再生循環流路>
 次に、図3を参照して、軟水化装置1の再生工程の際に形成される軟水槽再生循環流路39と中和槽再生循環流路40について説明する。図3は、軟水化装置1の軟水槽再生循環流路39と中和槽再生循環流路40を示す構成図である。
 まず、軟水槽再生循環流路39について説明する。
 軟水槽再生循環流路39は、再生工程時に酸性電解水が流通することにより、第一軟水槽3及び第二軟水槽5の再生を行う流路であり、図3(白矢印)に示すように、第一送水ポンプ11によって送出された水が、電解槽9、第二軟水槽5、及び第一軟水槽3を流通し、電解槽9に戻って循環する流路である。
 具体的には、軟水槽再生循環流路39は、電解槽9、第二軟水槽5、第一軟水槽3、第一送水ポンプ11を接続する第一供給流路35、中和槽バイパス流路42、第一回収流路37の各流路によって構成される。
 第一供給流路35は、電解槽9の下流側から第二軟水槽5の下流側までを連通接続する流路であり、電解槽9から第二軟水槽5へ酸性電解水を供給する流路である。
 中和槽バイパス流路42は、第一中和槽4を迂回して第二軟水槽5の上流側から第一軟水槽3の下流側までを連通接続する流路であり、第二軟水槽5から第一軟水槽3へ酸性電解水を供給する流路である。
 第一回収流路37は、第一軟水槽3の上流側から電解槽9までを連通接続する流路であり、第一軟水槽3と第二軟水槽5を通過した硬度成分を含む酸性電解水を電解槽9へ回収する流路である。第一回収流路37には、第一送水ポンプ11が設けられる。
 また、軟水槽再生循環流路39は、電解槽9から送出された酸性電解水を、第一軟水槽3及び第二軟水槽5の下流側から第一軟水槽3及び第二軟水槽5に導入し、軟水槽の下流側に比べて硬度成分の吸着量が多い上流側から流出させる流路である。なお、下流側とは、軟水化処理時の流路における下流側を指す。
 次に、中和槽再生循環流路40について説明する。
 中和槽再生循環流路40は、再生工程時にアルカリ性電解水が流通することにより、第一中和槽4及び第二中和槽6の再生を行う流路であり、図3(黒矢印)に示すように、第二送水ポンプ12によって送出された水が、電解槽9、第二中和槽6、及び第一中和槽4を流通し、電解槽9に戻って循環する流路である。
 具体的には、中和槽再生循環流路40は、電解槽9、第二中和槽6、第一中和槽4、第二送水ポンプ12を接続する第二供給流路36、軟水槽バイパス流路44、第二回収流路38の各流路によって構成される。
 第二供給流路36は、電解槽9の下流側から第二中和槽6の下流側までを連通接続する流路であり、電解槽9から第二中和槽6へアルカリ性電解水を供給する流路である。第二供給流路36には、捕捉部10、開閉弁21、イオン濃度測定部56、及び開閉弁23が設置されている。
 軟水槽バイパス流路44は、第二軟水槽5を迂回して第二中和槽6の上流側から第一中和槽4の下流側までを連通接続する流路であり、第二中和槽6から第一中和槽4へアルカリ性電解水を供給する流路である。
 第二回収流路38は、第一中和槽4の上流側から電解槽9までを連通接続する流路であり、第一中和槽4と第二中和槽6を通過したアルカリ性電解水を電解槽9へ回収する流路である。第二回収流路38には、第二送水ポンプ12が設けられる。
 <再生流路洗浄流路>
 次に、図7を参照して、軟水化装置1の再生流路洗浄工程の際に形成される再生流路洗浄流路64について説明する。図7は、軟水化装置1の再生流路洗浄流路64を示す構成図である。
 再生流路洗浄流路64は、後述する再生流路洗浄工程の際に、流路内に残存する高硬度水を第一中和槽4及び第二中和槽6に流入させずに装置外に排出する流路である。再生流路洗浄流路64は、第一排水流路46及び第二排水流路47を含んで構成される。
 第一排水流路46は、図7(白矢印)に示すように、流入口2から、第一送水ポンプ11、電解槽9、開閉弁20、排水口13を接続する各流路によって構成される。具体的には、第一排水流路46は、流入口2から流入した原水を、流路28、第一回収流路37、第一送水ポンプ11、電解槽9、排水流路54、開閉弁20、排水口13の順に流通させる流路である。
 排水流路54は、一端部で第一供給流路35と接続する流路であり、他端部で排水口13と接続する流路である。排水流路54には開閉弁20が設けられており、開閉弁20を開放することで流路内の水を装置外に排水し、開閉弁20を閉止することで排水口13からの排水を停止可能である。
 第二排水流路47は、図7(黒矢印)に示すように、流入口2から、第一軟水槽3、第二軟水槽5、開閉弁20、排水口13までを連通接続する各流路によって構成される。具体的には、第二排水流路47は、流入口2から流入した原水を、流路28、第一軟水槽3、中和槽バイパス流路42、第二軟水槽5、第一供給流路35、開閉弁20、排水口13の順に流通させる流路である。
 なお、第二排水流路47を流通する水の流量は、第一排水流路を流通する水の流量よりも大きくなるよう制御されることが好ましい。これにより、軟水化工程時に使用される軟水槽を含む流路である第二排水流路内の高硬度水を優先的に原水に置換することができる。したがって、軟水化工程を開始した際の高硬度水の影響を抑制できる。
 <電解槽洗浄流路>
 次に、図7を参照して、軟水化装置1の電解槽洗浄工程の際に形成される電解槽洗浄流路49について説明する。図7は、軟水化装置1の電解槽洗浄流路49を示す構成図である。
 電解槽洗浄流路49は、後述する電解槽洗浄工程の際に、電解槽9内及び中和槽再生循環流路40内の硬度成分に起因する析出物を除去する流路である。電解槽洗浄流路49は、第一排水流路46及び第三排水流路50を含んで構成される。
 第三排水流路50は、図7(黒矢印)に示すように、流入口2から、第一軟水槽3、第二送水ポンプ12、電解槽9、開閉弁21、捕捉部10、開閉弁22、捕捉部排水口14までを連通接続する各流路によって構成される。具体的には、第三排水流路50は、流入口2から流入した原水を、流路28、第一軟水槽3、第二回収流路38、第二送水ポンプ12、電解槽9、第二供給流路36、開閉弁21、捕捉部10、開閉弁22の順に流通させ、捕捉部排水口14から装置外に排出する流路である。より具体的には、第三排水流路50では、流入口2から流入した原水を、流路28を介して第一軟水槽3に流入させ、酸性軟水とする。生成した酸性軟水を、第二回収流路38により第二送水ポンプ12を介して、電解槽9に流入させる。その後、酸性軟水を、第二供給流路36を介して、開閉弁21、捕捉部10、開閉弁22の順に流通させ、捕捉部10の析出物を溶解させ、捕捉部排水口14から装置外に排出する。
 <捕捉部洗浄流路>
 次に、図8を参照して、軟水化装置1の捕捉部洗浄工程の際に形成される捕捉部洗浄流路51について説明する。図8は、軟水化装置1の捕捉部洗浄流路51を示す構成図である。
 捕捉部洗浄流路51は、後述する捕捉部洗浄工程の際に、捕捉部10に析出した硬度成分由来の析出物を除去する流路である。捕捉部洗浄流路51は、第四排水流路52を含んで構成される。
 図8に示すように、捕捉部洗浄流路51は、流入口2から、第一軟水槽3、第一中和槽4、第二軟水槽5、第二中和槽6、捕捉部10、捕捉部排水口14までを連通接続する各流路によって構成される。具体的には、捕捉部洗浄流路51は流入口2から流入した原水を、流路28、第一軟水槽3、流路29、第一中和槽4、流路30、第二軟水槽5、流路31、第二中和槽6、第二供給流路36、開閉弁23、捕捉部10、開閉弁22の順に流通させ、捕捉部排水口から装置外に排出する流路である。
 <流量測定部>
 流量測定部62は、第二中和槽6と取水口7を連通させる流路32に設置され、流路32を通水する流量を測定する。なお、軟水化工程において、第一軟水槽3に流入した水は分配されることなく第一中和槽4、第二軟水槽5、及び第二中和槽6を流通する。したがって、軟水化前後において流路を流通する水量は実質的に同量であるとみなすことができる。つまり、流量測定部62で測定された水の流量は、軟水化前の原水通水量及び軟水化後の軟水通水量であるとみなすことができる。
 <イオン濃度測定部>
 イオン濃度測定部56は、第二供給流路36上に設けられ、イオン濃度測定部56は、再生工程時に、電解槽9を流通したアルカリ性電解水であり中和槽へ流入するアルカリ性電解水のイオン濃度を測定する。
 イオン濃度測定部56によって測定されるアルカリ性電解水のイオン濃度は、例えばpH値(水素イオン濃度指数)である。イオン濃度測定部56には汎用的なpH計を使用することができる。なお、イオン濃度測定部56は、アルカリ性電解水のイオン濃度を、再生工程中にリアルタイムで測定してもよいし、一定間隔の時間設定(例えば5分間隔)において測定してもよい。
 イオン濃度測定部56は、捕捉部10の下流側かつ第二中和槽6の上流側に設けられる。このようにイオン濃度測定部56を設けることにより、イオン濃度測定部56に通水される水は、捕捉部10で析出物が捕捉されたアルカリ性電解水となる。したがって、イオン濃度測定部56に析出物が直接付着する可能性を低減することができ、イオン濃度測定部56の信頼性低下を抑制できる。なお、上述した通り、イオン濃度測定部56は、第二供給流路36に設けられれば良く、例えば、電解槽9の下流側かつ捕捉部10の上流側に設けられても良い。イオン濃度測定部56を電解槽9の下流側かつ捕捉部10の上流側に設けた場合には、電解槽9から流出した直後のアルカリ性電解水のpHを測定することができる。つまり、アルカリ性電解水中の水酸化物イオンが水酸化マグネシウムの析出反応に用いられる最中に、アルカリ性電解水のpHを測定することができる。したがって、電解槽9で生成したアルカリ性電解水のpHを精度よく測定することができる。
 <制御部>
 次に、図9を参照して、本実施の形態に係る制御部15の各機能について説明する。図9は、実施の形態1に係る軟水化装置1の機能ブロック図である。
 制御部15は、軟水化工程、再生工程、再生流路洗浄工程、電解槽洗浄工程、捕捉部洗浄工程の各工程の実行及び停止、各工程間の切り替えを制御する。
 各工程間の切り替えの制御とは、具体的には、制御部15は、軟水化工程から再生工程への切り替え、再生工程から軟水槽再生循環経路洗浄工程への切り替え、軟水槽再生循環経路洗浄工程から中和槽再生循環流路洗浄工程への切り替え、中和槽再生循環流路洗浄工程から再生工程への切り替え、再生工程から再生流路洗浄工程への切り替え、再生流路洗浄工程から電解槽洗浄工程への切り替え、電解槽洗浄工程から捕捉部洗浄工程への切り替え、及び捕捉部洗浄工程から軟水化工程への切り替えを示す。
 また、制御部15は、開閉弁20と開閉弁22を制御し、再生流路洗浄工程と、電解槽洗浄工程と、捕捉部洗浄工程の際の排水を制御する。
 また、制御部15は、流路切り替えバルブ24~流路切り替えバルブ27、開閉弁18、開閉弁19、開閉弁21、及び開閉弁23を制御し、流路の切り替えを実行する。
 制御部15は、計時部55と、記憶部58と、算出部59とを備える。
 制御部15は、中和槽再生循環流路洗浄工程において、流量測定部62で測定する水の通水量の情報と、記憶部58にあらかじめ記憶している中和槽再生流路洗浄流路48の水量の情報から、中和槽再生流路洗浄流路48内の水が原水に置換されたかどうかを判断する。なお、中和槽再生流路洗浄流路48の水量の情報とは、具体的には、中和槽再生流路洗浄流路48の流路全体を満たす水量のことを示す。
 計時部55は、中和槽再生循環流路洗浄工程において、開閉弁22を開放している時間を計時する。つまり、計時部55は、pHが上昇したアルカリ性電解水を捕捉部排水口14から排水するために要する時間を測定する。計時部55が計時した時間は記憶部58に記憶される。
 記憶部58は、あらかじめ、所定の原水水圧における中和槽再生循環洗浄工程に必要な時間と、軟水槽再生循環流路洗浄工程に必要な時間の比を記憶している。また、記憶部58は、軟水槽再生循環流路(軟水槽排水流路)の流量、中和槽再生循環流路(中和槽排水流路)の流量、及び軟水槽再生循環流路と中和槽再生循環流路の流量比を記憶している。さらに、記憶部58は、計時部55が測定した開閉弁22の開放時間を記憶する。
 算出部59は、計時部55で測定し記憶部58に記憶した中和槽再生循環流路洗浄工程に要した時間と、記憶部58にあらかじめ記憶されている中和槽再生循環流路洗浄工程に必要な時間と軟水槽再生循環流路洗浄工程に必要な時間の比から、軟水槽再生循環流路洗浄工程に必要な時間を算出することができる。このようにして軟水槽再生循環流路洗浄工程に要する時間を算出することにより、必要時間以上に軟水槽再生循環流路洗浄工程を行うことを抑制できる。また、必要水量以上の原水を用いて軟水槽再生循環流路洗浄工程を行うことを抑制できる。
 また、制御部15は、イオン濃度測定部56で測定するアルカリ性電解水のpH測定結果に基づき、測定結果のpHが基準値未満の場合には再生工程を継続し、pHが基準値以上の場合には再生工程を停止し、再生工程からの切替えを行うように制御する。
 以上が軟水化装置1の構成である。
 次に、軟水化装置1の動作について説明する。
 <軟水化工程、再生工程、軟水槽再生循環流路洗浄工程、中和槽再生循環流路洗浄工程、電解槽洗浄工程、及び捕捉部洗浄工程>
 次に、図10を参照して、軟水化装置1の軟水化工程、再生工程、軟水槽再生循環流路洗浄工程、中和槽再生循環流路洗浄工程、電解槽洗浄工程、及び捕捉部洗浄工程について説明する。図10は、軟水化装置1の動作時の状態を示す図である。
 軟水化工程、再生工程、軟水槽再生循環流路洗浄工程、中和槽再生循環流路洗浄工程、電解槽洗浄工程、及び捕捉部洗浄工程では、制御部15は、図10に示すように、開閉弁18~開閉弁23、流路切り替えバルブ24~流路切り替えバルブ27、電解槽9の電極41、第一送水ポンプ11及び第二送水ポンプ12を切り替えてそれぞれの流通状態となるように制御する。
 ここで、図10中の「ON」は、該当の開閉弁が「開放」した状態、電極41が通電している状態、及び該当の送水ポンプが動作している状態をそれぞれ示す。空欄は、該当の開閉弁が「閉止」した状態、電極41が通電していない状態、該当の送水ポンプが停止している状態をそれぞれ示す。
 また、図10中の「(構成要素の番号)から(構成要素の番号)へ」は、該当の流路切り替えバルブが該当の構成要素から該当の構成要素へと送水される方向へと流路を接続している状態を示す。例えば、軟水化工程の流路切り替えバルブ24は、流路28から流路29へと送水可能となるように各流路を接続している。
 また図10中の「(構成要素の番号)へ」は、該当の流路切り替えバルブが、該当の構成要素へ送水される可能性のある方向へと流路を接続している状態を示す。この際には、流路は接続されているものの、該当の流路切り替えバルブが設けられた軟水槽あるいは中和槽への水の流出入が発生しづらい環境下にあるため、該当の流路切り替えバルブからの送水は極めて起こりづらい。
 <軟水化工程>
 まず、軟水化装置1による軟水化工程時の動作について、図2及び図10の「軟水化時」の欄を参照して説明する。
 軟水化装置1では、図10に示すように、軟水化工程において、開閉弁18を閉止した状態で流路28に設けた開閉弁19を開放する。これにより、外部から硬度成分を含む原水が流入する。流入した原水は、第一軟水槽3、第一中和槽4、第二軟水槽5、及び第二中和槽6の順で流通するので、軟水化装置1は、取水口7から軟水化した水(中性の軟水)を取り出すことができる。このとき、流路切り替えバルブ24は流路28から流路29へ送水可能な接続状態、流路切り替えバルブ25は流路29から流路30へ送水可能な接続状態、流路切り替えバルブ26は流路30から流路31へ送水可能な接続状態、流路切り替えバルブ27は流路31から流路32へ送水可能な接続状態になっている。開閉弁20~開閉弁23は、いずれも閉止した状態になっている。また、電解槽9の電極41、第一送水ポンプ11、及び第二送水ポンプ12の動作も停止した状態である。
 具体的には、図1に示すように、軟水化工程では、外部から流入する原水の圧力によって、原水は、流入口2から流路28を通って、第一軟水槽3に供給される。そして、第一軟水槽3に供給された原水は、第一軟水槽3内に備えられた弱酸性陽イオン交換樹脂33を流通する。このとき、原水中の硬度成分である陽イオンは弱酸性陽イオン交換樹脂33の作用により吸着され、水素イオンが放出される(イオン交換が行われる)。そして、原水から陽イオンが除去されることで原水が軟水化される。軟水化された水は、硬度成分と交換されて流出した水素イオンを多く含むため、酸性化してpHが低い酸性水(第一軟水)となっている。ここで、硬度成分として永久硬度成分(例えば、硫酸カルシウム等の硫酸塩もしくは塩化マグネシウム等の塩化物)を多く含有する水は、軟水化を行う際、一時硬度成分(例えば、炭酸カルシウム等の炭酸塩)を多く含有する水よりpHが低下しやすい。pHが低下した状態では軟水化が進行しにくくなるため、第一軟水槽3を流通した水を、第一中和槽4へ通水させ、中和を行う。
 軟水化された水は、第一軟水槽3に設けられた流路切り替えバルブ24を介して流路29を流通し、第一中和槽4へ流入する。第一中和槽4では、弱塩基性陰イオン交換樹脂34の作用によって、軟水化された水に含まれる水素イオンが吸着される。つまり、第一軟水槽3により軟水化された水から水素イオンが除去されるので、低下したpHが上昇して中和される。そのため、第一軟水槽3において軟水化した水をそのまま第二軟水槽5で軟水化する場合と比較して、第二軟水槽5での軟水化処理が進行しやすくなる。
 第一中和槽4により中和された水(中和第一軟水)は、第一中和槽4に設けられた流路切り替えバルブ25を介して流路30を流通し、第二軟水槽5に流入する。第二軟水槽5では、弱酸性陽イオン交換樹脂33の作用により、硬度成分である陽イオンが吸着され、水素イオンが放出される。第二軟水槽5は、第一軟水槽3で除去できなかった硬度成分を、弱酸性陽イオン交換樹脂33の有する水素イオンと交換する。つまり、第二軟水槽5に流入した水がさらに軟水化され、軟水(第二軟水)となる。
 第二軟水は、第二軟水槽5に設けられた流路切り替えバルブ26を介して流路31を流通し、第二中和槽6に流入する。第二中和槽6では、弱塩基性陰イオン交換樹脂34の作用により、流入した第二軟水に含まれる水素イオンが吸着される。つまり、第二軟水から水素イオンが除去されるので、低下したpHが上昇し、生活用水として使用可能な中性の軟水(中和第二軟水)となる。中和第二軟水は、第二中和槽6に設けられた流路切り替えバルブ27を介して流路32を流通し、取水口7から取り出すことができる。
 つまり、軟水化処理では、原水は、第一軟水槽3、第一中和槽4、第二軟水槽5、及び第二中和槽6の順に流通する。これにより、硬度成分を含む原水は、第一軟水槽3での軟水化処理によって原水のpHの低下が進行する前に第一軟水槽3を流出し、第一中和槽4において中和され、第二軟水槽5で軟水化され、第二中和槽6において中和されるようになる。そのため、軟水槽及び中和槽をそれぞれ単体で構成する場合と比較して、軟水槽内を流通する水のpHの低下すなわち酸性化を抑制できるので、硬度成分と軟水槽(特に第二軟水槽5)の弱酸性陽イオン交換樹脂33が保持する水素イオンとの交換が起こりやすくなる。したがって、軟水化性能を向上させることが可能となる。
 そして、軟水化装置1では、制御部15で特定された時間帯になった場合もしくは軟水化工程が一定水量を超えた場合に軟水化工程を終了し、再生工程を実行する。
 <再生工程>
 次に、軟水化装置1の再生装置8による再生工程時の動作について、図3及び図10の「再生時」の欄を参照して順に説明する。
 軟水化装置1において、弱酸性陽イオン交換樹脂33を充填した第一軟水槽3及び第二軟水槽5は、使用を続けると陽イオン交換能力が低下または消失する。すなわち、陽イオン交換樹脂の官能基である水素イオンすべてが、硬度成分であるカルシウムイオンあるいはマグネシウムイオンと交換された後は、イオン交換ができなくなる。水素イオンすべてが硬度成分と交換される前であっても、水素イオンが減少するにしたがってイオン交換反応が起こりにくくなるため、軟水化性能が低下する。このような状態になると、硬度成分が処理水中に含まれるようになる。このため、軟水化装置1では、再生装置8による第一軟水槽3、第二軟水槽5、第一中和槽4、及び第二中和槽6の再生処理を行う必要が生じる。
 再生工程時において、開閉弁19、開閉弁20、開閉弁22を閉止して、開閉弁18、開閉弁21、開閉弁23を開放し、流路切り替えバルブ24は中和槽バイパス流路42から第一回収流路37へ送水可能な接続状態とし、流路切り替えバルブ25は軟水槽バイパス流路44から第二回収流路38へ送水可能な接続状態とし、流路切り替えバルブ26は第一供給流路35から中和槽バイパス流路42へ送水可能な接続状態とし、流路切り替えバルブ27は第二供給流路36から軟水槽バイパス流路44へ送水可能な接続状態とする。つまり、第一軟水槽3と第二軟水槽5とが連通接続する状態、第一中和槽4と第二中和槽6とが連通接続する状態、排水口13及び捕捉部排水口14の排水を停止した状態とする。これにより、図3に示すように、軟水槽再生循環流路39及び中和槽再生循環流路40がそれぞれ形成される。
 そして、第一送水ポンプ11及び第二送水ポンプ12を動作させると、電解槽9内の酸性電解水及びアルカリ性電解水が軟水槽再生循環流路39及び中和槽再生循環流路40のそれぞれを循環する。
 また、電解槽9は、陰極に対して陽極が高電位となるように通電する(正電解)。これにより、電気分解の際に、陽極では水素イオンが生じ、陽極付近では酸性電解水が生成する。一方、陰極では水酸化物イオンが生じ、陰極付近ではアルカリ性電解水が生成する。
 電解槽9で生成した酸性電解水は、第一供給流路35を流通し流路切り替えバルブ26を介して第二軟水槽5内に送水され、内部の弱酸性陽イオン交換樹脂33を流通する。そして、第二軟水槽5を流通した酸性電解水は、中和槽バイパス流路42を流通し流路切り替えバルブ24を介して、第一軟水槽3内に送水され、内部の弱酸性陽イオン交換樹脂33を流通する。すなわち、酸性電解水を弱酸性陽イオン交換樹脂33に通水することで、弱酸性陽イオン交換樹脂33に吸着されている陽イオン(硬度成分)が、酸性電解水に含まれる水素イオンとイオン交換反応を起こす。これにより、弱酸性陽イオン交換樹脂33が再生される。
 その後、第一軟水槽3を流通した酸性電解水は、陽イオンを含み、第一回収流路37へ流入する。すなわち、弱酸性陽イオン交換樹脂33を流通した陽イオンを含む酸性電解水は、第一回収流路37を介して電解槽9に回収される。
 このように、軟水槽再生循環流路39は、酸性電解水を、原水の流入口から最も下流に位置する軟水槽であり、上流側の軟水槽より硬度成分の吸着量が少ない弱酸性陽イオン交換樹脂33を有する軟水槽である第二軟水槽5の下流側から流通させ、上流に位置しており第二軟水槽5に比べて硬度成分がより多く吸着している弱酸性陽イオン交換樹脂33を有する第一軟水槽3の下流側へと流入させるように構成される。つまり、軟水槽再生循環流路39は、電解槽9から送出された酸性電解水を、第二軟水槽5に流通させた後、中和槽バイパス流路42によって第一軟水槽3へと送出し、第一軟水槽3を流通させ、第一回収流路37を介して電解槽9へ流入させる流路である。これにより、再生工程の際には、第一軟水槽3と比べて硬度成分の吸着量が少ない第二軟水槽5に、電解槽9から吐出された酸性電解水が流入し、硬度成分を含んだ酸性電解水が第二軟水槽5から第一軟水槽3へと吐出される。第二軟水槽5の弱酸性陽イオン交換樹脂33の再生では、第一軟水槽3と比較し、酸性電解水中の水素イオンの消費が少ないため、第一軟水槽3の再生と比べ、水素イオン濃度の低減を抑制できる。そのため、水素イオンを多く含有する酸性電解水が第一軟水槽3に流入し、硬度成分が第一軟水槽3において再吸着するのを抑制することができる。したがって、再生処理効率の低下を抑制でき、再生時間が短縮できる。
 一方、電解槽9の陰極付近で生成したアルカリ性電解水は、第二供給流路36、捕捉部10を流通し流路切り替えバルブ27を介して第二中和槽6内に送水され、内部の弱塩基性陰イオン交換樹脂34を流通する。そして、第二中和槽6を流通したアルカリ性電解水は、軟水槽バイパス流路44を流通し、流路切り替えバルブ25を介して第一中和槽4内に送水され、内部の弱塩基性陰イオン交換樹脂34を流通する。すなわち、アルカリ性電解水を弱塩基性陰イオン交換樹脂34に通水させることで、弱塩基性陰イオン交換樹脂34に吸着されている陰イオンが、アルカリ性電解水に含まれる水酸化物イオンとイオン交換反応を起こす。これにより、弱塩基性陰イオン交換樹脂34が再生される。
 その後、第一中和槽4を流通したアルカリ性電解水は、陰イオンを含み、第二回収流路38へ流入する。すなわち、弱塩基性陰イオン交換樹脂34を流通した陰イオンを含むアルカリ性電解水は、第二回収流路38を介して電解槽9に回収される。
 このように、中和槽再生循環流路40は、アルカリ性電解水を、原水の流入口から最も下流に位置する中和槽であり、上流側の中和槽と比較して陰イオンの吸着量が少ない弱塩基性陰イオン交換樹脂34を有する第二中和槽6の下流側から流通させ、上流に位置しており第二中和槽6に比べて陰イオンがより多く吸着している弱塩基性陰イオン交換樹脂34を有する第一中和槽4の下流側へと流入させるように構成した。つまり、中和槽再生循環流路40は、電解槽9から送出されたアルカリ性電解水を、第二中和槽6に流通させた後、軟水槽バイパス流路44によって第一中和槽4へと送出し、第一中和槽4を流通させ、第二回収流路38を介して電解槽9へ流入させる流路である。これにより、再生工程時には、第一中和槽4と比べて陰イオンの吸着量が少ない第二中和槽6に、アルカリ性電解水が流入し、陰イオンを含んだアルカリ性電解水が第二中和槽6から第一中和槽4へと吐出される。第二中和槽6の弱塩基性陰イオン交換樹脂34の再生では、第一中和槽4と比較し、アルカリ性電解水中の水酸化物イオンの消費が少ないため、第一中和槽4の再生と比べ、水酸化物イオン濃度の低減を抑制できる。そのため、水酸化物イオンを多く含有するアルカリ性電解水が第一中和槽4に流入し、陰イオンが第一中和槽4において再吸着するのを抑制することができる。したがって、再生処理効率の低下を抑制でき、再生時間が短縮できる。
 本実施の形態1においては、再生工程の進行具合に応じて第一軟水槽3及び第二軟水槽5から放出される陽イオンである硬度成分が、電解槽9内において、アルカリ性電解水と反応することにより析出物が生成する。
 析出物の一例として、炭酸カルシウムや水酸化マグネシウムが挙げられる。炭酸カルシウムは粉末状の固体として析出し、水酸化マグネシウムはゲル状の水和物状の固体として析出することが確認されている。これらの硬度成分に由来する析出物は、第二供給流路36に設けられた捕捉部10において析出物として捕捉される。だが、水酸化マグネシウムは、水和物状の固体として析出するため、炭酸カルシウムに比べて比重が非常に軽い。すなわち、水酸化マグネシウムは、炭酸カルシウムと比較して同重量における体積が非常に大きく、析出物として発生した際には捕捉部10を速やかに閉塞させてしまう。捕捉部10が完全に閉塞した場合、アルカリ性電解水が捕捉部10を通過できず中和槽再生循環流路40を循環しなくなり、弱塩基性陰イオン交換樹脂34の再生が進行しなくなる。また、捕捉部10が完全に閉塞しなかった場合であっても、捕捉部10を通過するアルカリ性電解水の量が著しく低下するため、弱塩基性陰イオン交換樹脂34の再生が滞ることになる。したがって、アルカリ性電解水内に水酸化マグネシウムが析出物(特定の析出物)として発生した際には、電解槽9への通電を速やかに停止する必要がある。
 ここで、本実施の形態1におけるアルカリ性電解水内の、炭酸カルシウムと水酸化マグネシウムの溶解度積の例を図11に示す。図11は、アルカリ性電解水のpHと析出物の溶解度積を示す図である。pHが7~12付近では、炭酸カルシウムは、pHの大小に関わらず一定の析出量がある。一方、水酸化マグネシウムは、pHが9.6を超えるあたりから発生が始まり、急激に析出しpHが10.0を超えるとほぼ一定の析出量となり、頻出していることがわかる。したがって、アルカリ性電解水中への水酸化マグネシウムの大量析出を抑制するために、アルカリ性電解水のpHを測定し、pHが10を超過する時間が長くなる前に軟水化装置1の再生工程を停止するように制御する。
 以下では、アルカリ電解水のpHが上昇する要因を説明する。
 本実施の形態1における再生工程では、電解槽9における水の電気分解により、陰極側で水酸化物イオンが生じる。つまり、電解槽9から、中和槽再生循環流路40のアルカリ性電解水内に、継続的に水酸化物イオンが供給される。供給された水酸化物イオンは、弱塩基性陰イオン交換樹脂34に吸着されている陰イオンとイオン交換反応を起こし、弱塩基性陰イオン交換樹脂34の再生が行われる。再生工程が進行するにつれ、弱塩基性陰イオン交換樹脂34に吸着されている陰イオンの総量は減少していく。そのため、徐々に水酸化物イオンと陰イオンのイオン交換反応における単位時間あたりの交換量が減少することになる。すなわち、電解槽9から中和槽再生循環流路40のアルカリ性電解水内に供給される単位時間あたりの水酸化物イオンの量が、弱塩基性陰イオン交換樹脂34に吸着されている陰イオンとイオン交換反応を起こす単位時間あたりの水酸化物イオンの量よりも多くなるため、中和槽再生循環流路40の水酸化物イオンの総量が増加する。したがって、再生工程が進行するにつれて、中和槽再生循環流路40内のアルカリ性電解水のpHが上昇する。
 このようにして、再生工程開始直後は中性であった中和槽再生循環流路40内のアルカリ性電解水のpHは、再生工程の進行に伴って徐々に上昇していき、自然に下降することはない。したがって、水酸化マグネシウムの発生が起こる基準値であるpH9.6または水酸化マグネシウムの頻出が起こる基準値であるpH10.0以上のpHとなった場合には、速やかに再生工程を停止し、pHの上昇したアルカリ性電解水の排水を行う。具体的には、再生工程が停止した段階で、軟水槽再生循環流路洗浄工程に移行する。
 なお、基準値として、水酸化マグネシウムの発生が起こるpH値を用いるか、水酸化マグネシウムの頻出が起こるpH値を用いるかは、捕捉部10の大きさ等により、選択することができる。
 なお、再生工程中に利用者が軟水を得たい場合には、軟水化装置1と接続された蛇口(不図示)等を開放することにより、原水が流入口2からバイパス流路53を通り、取水口7から流出するため、再生工程の終了を待たずとも、原水を利用することができる。
 <軟水槽再生循環流路洗浄工程>
 次に、軟水化装置1の軟水槽再生循環流路洗浄工程時の動作について、図4及び図10の「軟水槽再生流路洗浄時」の欄を参照して順に説明する。
 軟水化装置1において、再生工程中には、第一軟水槽3及び第二軟水槽5から硬度成分が酸性電解水中に放出され、酸性電解水は軟水槽再生循環流路39から排出されることなく流路内を循環する。したがって、再生工程中の軟水槽再生循環流路39内には、第一軟水槽3及び第二軟水槽5から放出された硬度成分を含む高硬度水で満たされている。前述のとおり、この高硬度水に含まれる硬度成分が電解槽9内においてアルカリ性電解水側へ移動すると析出物が反応生成し、特に水酸化マグネシウムが大量に析出した場合には捕捉部10を速やかに閉塞させてしまう。これらの析出物の発生量を少なくする方法として、軟水槽再生循環流路39内の高硬度水を排水することによる方法がある。よって、これらの問題を解決するために、再生工程中にアルカリ性電解水のpHが所定の条件、例えばpHが10を超えた場合に再生運転を停止し、軟水槽再生循環流路39内の高硬度水を排水する軟水槽再生循環流路洗浄工程を行う。なお、所定の条件とは、水酸化マグネシウムの析出が頻出するpHを超えた場合を指す。
 軟水槽再生循環流路洗浄工程時において、開閉弁21~開閉弁23を閉止して、開閉弁18~開閉弁20を開放し、流路切り替えバルブ24は流路28から中和槽バイパス流路42へ送水可能な接続状態とし、流路切り替えバルブ25は軟水槽バイパス流路44へ送水可能な接続状態とし、流路切り替えバルブ26は中和槽バイパス流路42から第一供給流路35へ送水可能な接続状態とし、流路切り替えバルブ27は第二供給流路36へ送水可能な接続状態とする。つまり、第一軟水槽3と第二軟水槽5とが連通接続する状態、第二軟水槽5と排水口13とが連通接続する状態、電解槽9と排水口13とが連通接続する状態、及び捕捉部排水口14の排水を停止した状態とする。これにより、図4に示すように、第一排水流路46及び第二排水流路47がそれぞれ形成される。つまり、軟水槽酸性流路洗浄流路が形成される。なお、この時、電極41、第一送水ポンプ11、及び第二送水ポンプ12の動作は停止している。
 軟水槽再生循環流路洗浄工程において、具体的には、開閉弁19を開放することにより、外部から原水が第一排水流路46及び第二排水流路47に流入する。
 第一排水流路46では、流入した原水の圧力により、流路28、第一回収流路37、第一送水ポンプ11、電解槽9、第一供給流路35内の高硬度水が押し流され、排水流路54へと流入する。排水流路54へ流入した高硬度水は、排水口13から装置外に排出される。
 第二排水流路47では、流入した原水の圧力により、流路28、第一軟水槽3、中和槽バイパス流路42、第二軟水槽5、第一供給流路35内の高硬度水が押し流され、排水流路54へと流入する。排水流路54へ流入した高硬度水は、排水口13から装置外に排出される。
 このようにして、軟水槽再生循環流路洗浄工程により、再生工程停止時の主な高硬度水の残留箇所である第一排水流路46及び第二排水流路47内の高硬度水を、原水に置換可能である。
 また、これにより、高硬度水は中和槽を含まない流路によって装置外へ排水されるため、高硬度水を中和槽に流入させることなく装置外へ排水することができる。つまり、軟水槽再生循環流路39に貯留した酸性水中の水素イオンが中和槽内の弱塩基性陰イオン交換樹脂34へ吸着されることを抑制して排水できるため、再生工程を再開した際に中和槽の再生に要する時間が長くなる可能性を抑制できる。
 そして、軟水化装置1では、制御部15で特定された時間帯になった場合、もしくは軟水槽再生循環流路洗浄工程が一定時間(例えば1分)を超えた場合、あるいは軟水槽再生循環流路洗浄工程での通水量が一定値を超えた場合に軟水槽再生循環流路洗浄工程を終了し、中和槽再生循環流路洗浄工程を実行する。
 なお、軟水槽再生循環流路洗浄工程中に利用者が軟水を得たい場合には、軟水化装置1と接続された蛇口(不図示)等を開放することにより、原水が流入口2からバイパス流路53を通り、取水口7から流出するため、軟水槽再生循環流路洗浄工程の終了を待たずとも、原水を利用することができる。
 <中和槽再生循環流路洗浄工程>
 次に、軟水化装置1の中和槽再生循環流路洗浄工程時の動作について、図5及び図10の「中和槽再生流路洗浄時」の欄を参照して順に説明する。
 軟水化装置1において、再生工程中には、電解槽9の陰極付近で生成したアルカリ性電解水が第一中和槽4及び第二中和槽6に送水され、アルカリ性電解水に含まれる水酸化物イオンの一部が弱塩基性陰イオン交換樹脂に吸着されている陰イオンとイオン交換反応を起こして陰イオンが放出され、アルカリ性電解水は中和槽再生循環流路40から排出されることなく流路内を循環する。したがって、再生工程が進行するにつれて中和槽再生循環流路40内に満たされている水は、水酸化物イオンと陰イオンの濃度が上昇した水となる。つまり、徐々にpHが上昇することを意味する。前述のとおり、電解槽9内において、軟水槽再生循環流路39内に満たされている高硬度水に含まれる硬度成分のアルカリ性電解水への移動が起こると、析出物が反応生成し、特に水酸化マグネシウムが大量に発生した場合には捕捉部10を速やかに閉塞させてしまう。これらの析出物の発生量を少なくする方法として、中和槽再生循環流路40内のpHが上昇したアルカリ性電解水を排水する方法がある。よって、析出物による捕捉部10の閉塞という問題を解決するために、再生工程中にアルカリ性電解水のpHが所定の条件となった場合(例えばpHが10を超えた場合)に再生運転を停止し、中和槽再生循環流路40内のpHが上昇したアルカリ性電解水を排水する中和槽再生循環流路洗浄工程を行う。
 中和槽再生循環流路洗浄工程時において、開閉弁19~開閉弁20、および開閉弁23を閉止して、開閉弁18、および開閉弁21~開閉弁22を開放し、流路切り替えバルブ24は中和槽バイパス流路42へ送水可能な接続状態とし、流路切り替えバルブ25は軟水槽バイパス流路44から第二回収流路38へ送水可能な接続状態とし、流路切り替えバルブ26は第一供給流路35へ送水可能な接続状態とし、流路切り替えバルブ27は流路32から軟水槽バイパス流路44へ送水可能な接続状態とする。つまり、第一中和槽4と第二中和槽6とが連通接続する状態、第一中和槽4と捕捉部排水口14とが連通接続する状態とする。これにより、図5に示すように、第五排水経路63(中和槽再生流路洗浄流路)が形成される。なお、この時、電極41、第一送水ポンプ11、及び第二送水ポンプ12の動作は停止している。
 中和槽再生経路洗浄工程において、具体的には開閉弁22を開放することにより、外部から原水が第五排水流路63に流入し、流路32に流入した原水は、その流量を流量測定部62により測定される。
 第五排水流路63では、流入した原水の圧力により、流路32、第二回収流路38、第二送水ポンプ12、電解槽9、第二供給流路36の一部、および捕捉部10内のpHが上昇したアルカリ性電解水が押し流され、捕捉部10の下部に設けられた捕捉部排水口14から装置外に排出される。
 このようにして、中和槽再生循環流路洗浄工程により、再生工程停止時の主なpHが上昇したアルカリ性電解水の残留箇所である第五排水流路63内のpHが上昇したアルカリ性電解水を、原水に置換可能である。
 軟水槽再生循環流路洗浄工程および中和槽再生循環流路洗浄工程により、再生工程に発生した高硬度の酸性電解水および高pHのアルカリ電解水を装置外へ排出した後には、停止していた再生工程を再開し、弱酸性陽イオン交換樹脂33および弱塩基性陰イオン交換樹脂34の再生が完了するまで再生工程を実施する。なお、再生工程の停止と軟水槽再生循環流路洗浄工程、および中和槽再生循環流路洗浄工程は弱酸性陽イオン交換樹脂33および弱塩基性陰イオン交換樹脂34の再生が完了するまでに複数回設けてもよい。
 <再生流路洗浄工程>
 次に、軟水化装置1の再生流路洗浄工程時の動作について、図4及び図10の「再生流路洗浄時」の欄を参照して順に説明する。
 軟水化装置1において、再生工程中には、第一軟水槽3及び第二軟水槽5から硬度成分が酸性電解水中に放出され、酸性電解水は軟水槽再生循環流路39から排出されることなく流路内を循環する。したがって、再生工程終了後の軟水槽再生循環流路39内には、第一軟水槽3及び第二軟水槽5から放出された硬度成分を含む高硬度水で満たされている。この高硬度水の硬度は、原水の硬度(例えば450ppm)よりも著しく高くなっており、例えば2000ppm程度まで上昇する場合がある。この高硬度水が軟水化装置1内に残存した状態で軟水化工程に移行すると、取水口7からは高硬度水もしくは原水と高硬度水の混合水が排出される。したがって、軟水化装置1の利用者は、再生工程終了後に軟水化工程を実行した場合には、軟水化工程開始直後には軟水を得られないどころか原水よりも硬度の高い水を得ることになる可能性がある。
 また、高硬度水が第一軟水槽3及び第二軟水槽5内の弱酸性陽イオン交換樹脂33を流通することになる。つまり、弱酸性陽イオン交換樹脂33に対しては、軟水化工程の実行によって吸着した硬度成分を再生工程の実行により水素イオンと置換して再生を行ったにもかかわらず、再度硬度成分を含む水が流通することとなる。そのため、せっかく行った再生処理により弱酸性陽イオン交換樹脂33に充填された水素イオンと高硬度水中の硬度成分とが交換反応を起こし、弱酸性陽イオン交換樹脂33に再度硬度成分が吸着する。したがって、原水の軟水化に利用可能な水素イオンが減少し、軟水化性能が低下してしまう。
 これらの問題を解決するために、軟水槽再生循環流路39内の高硬度水を排水する再生流路洗浄工程を行う。
 再生流路洗浄工程時において、開閉弁21~開閉弁23を閉止して、開閉弁18~開閉弁20を開放し、流路切り替えバルブ24は流路28から中和槽バイパス流路42へ送水可能な接続状態とし、流路切り替えバルブ25は軟水槽バイパス流路44へ送水可能な接続状態とし、流路切り替えバルブ26は中和槽バイパス流路42から第一供給流路35へ送水可能な接続状態とし、流路切り替えバルブ27は第二供給流路36へ送水可能な接続状態とする。つまり、第一軟水槽3と第二軟水槽5とが連通接続する状態、第二軟水槽5と排水口13とが連通接続する状態、電解槽9と排水口13とが連通接続する状態、及び捕捉部排水口14の排水を停止した状態とする。これにより、図4に示すように、第一排水流路46及び第二排水流路47がそれぞれ形成される。なお、この時、電極41、第一送水ポンプ11、及び第二送水ポンプ12の動作は停止している。
 再生流路洗浄工程において、具体的には、開閉弁19を開放することにより、外部から原水が第一排水流路46及び第二排水流路47に流入する。
 第一排水流路46では、流入した原水の圧力により、流路28、第一回収流路37、第一送水ポンプ11、電解槽9、第一供給流路35内の高硬度水が押し流され、排水流路54へと流入する。排水流路54へ流入した高硬度水は、排水口13から装置外に排出される。
 第二排水流路47では、流入した原水の圧力により、流路28、第一軟水槽3、中和槽バイパス流路42、第二軟水槽5、第一供給流路35内の高硬度水が押し流され、排水流路54へと流入する。排水流路54へ流入した高硬度水は、排水口13から装置外に排出される。
 このようにして、再生流路洗浄工程により、再生工程後の主な高硬度水の残留箇所である第一排水流路46及び第二排水流路47内の高硬度水を、中和槽への流通を抑制しつつ原水に置換可能である。したがって、再生流路洗浄工程において、中和槽内の弱塩基性陰イオン交換樹脂34への水素イオンの吸着を抑制可能なため、充填された水酸化物イオンの消費を抑制でき、中和性能を保つことができる。したがって、高硬度水を原因とする軟水化性能の低下を抑制できる。
 なお、制御部15は、第二排水流路47を流通する原水の流量が第一排水流路46を流通する原水の流量よりも大きくなるように、各流路に原水を供給する。
 これにより、軟水化工程時に使用される軟水槽を含む流路であり、流路内の高硬度水の排水が必須な流路である第二排水流路47内の高硬度水を優先的に原水に置換することができる。したがって、軟水化工程を開始した際の高硬度水を原因とする軟水化性能の低下を抑制できる。また、軟水化工程時には利用しない流路であり、高硬度水が残存していても軟水化工程への影響が少ない流路である第一排水流路46からの排水量を低減できるため、無駄な排水を防ぐことができ、再生流路洗浄工程に要する水量を抑制できる。
 また、これにより、高硬度水は中和槽を含まない流路によって装置外へ排水される。つまり、軟水槽再生循環流路39に貯留した高硬度水中の硬度成分を中和槽内の弱塩基性陰イオン交換樹脂34への吸着を抑制して排水することができるため、再生工程の際に発生する高硬度水に起因して生じる軟水化性能の低下を防ぎ、軟水化性能を維持できる。
 そして、軟水化装置1では、制御部15で特定された時間帯になった場合、もしくは再生流路洗浄工程が一定時間(例えば1分)を超えた場合、あるいは再生流路洗浄工程での通水量が一定値を超えた場合に再生流路洗浄工程を終了し、電解槽洗浄工程を実行する。
 なお、再生流路洗浄工程中に利用者が軟水を得たい場合には、軟水化装置1と接続された蛇口(不図示)等を開放することにより、原水が流入口2からバイパス流路53を通り、取水口7から流出するため、再生流路洗浄工程の終了を待たずとも、原水を利用することができる。
 <電解槽洗浄工程>
 次に、軟水化装置1の電解槽洗浄工程時の動作について、図7及び図10の「電解槽洗浄時」の欄を参照して順に説明する。
 再生工程において、電解槽9が動作していると、陰極には水中の硬度成分(カルシウムイオンあるいはマグネシウムイオン)が固体(スケール)として析出する。陰極へ析出した析出物は不導体であるため、電解槽9の運転電圧を上昇させ、再生工程時の消費電力を上昇させてしまう。そこで、陰極に析出した析出物を除去する電解槽洗浄工程を行う必要がある。
 電解槽洗浄工程において、開閉弁18~開閉弁22を開放し、開閉弁23を閉止する。また、流路切り替えバルブ24は流路28から流路29へ送水可能な接続状態とし、流路切り替えバルブ25は軟水槽バイパス流路44へと送水可能な接続状態とし、流路切り替えバルブ26は第一供給流路35へ送水可能な接続状態とし、流路切り替えバルブ27は第二供給流路36へ送水可能な接続状態とする。つまり、第一軟水槽3と電解槽9とが連通接続する状態、電解槽9と排水口13とが連通接続する状態、電解槽9と捕捉部排水口14とが連通接続する状態とする。これにより、図7に示すように、第一排水流路46及び第三排水流路50がそれぞれ形成される。
 電解槽洗浄工程において、具体的には、開閉弁19を開放することにより、外部から原水が第一排水流路46及び第三排水流路50に流入する。
 第一排水流路46では、流入した原水は、流路28、第一回収流路37、第一送水ポンプ11を流通し、電解槽9に流入する。
 一方、第三排水流路50では、流入した原水は、流路28、第一軟水槽3、第二回収流路38、第二送水ポンプ12を流通し、電解槽9に流入する。
 電解槽洗浄工程では、制御部15は、陽極に対して陰極が高電位となるように通電する(逆電解)。そのため、電解槽9は、電解槽内に流入した原水を電気分解し、陽極付近ではアルカリ性電解水を生成し、陰極付近では酸性電解水を生成する。
 この際、陰極で生成された酸性電解水により、陰極に析出した析出物を溶解させることができる。したがって、電極41表面への析出物の付着を原因とした電解性能の低下を抑制できる。
 陽極で生成されたアルカリ性電解水は、第一供給流路35を流通して排水流路54に流入し、排水口13から装置外に排出される。
 一方、陰極で生成された酸性電解水は、陰極に析出した析出物を溶解し、第二供給流路36を流通して捕捉部10に流入する。捕捉部10に流入した酸性電解水は、捕捉部10に固着した析出物を溶解させることができ、捕捉部10を予備的に洗浄できる。したがって、次の工程である捕捉部洗浄工程に要する時間を短縮することができる。そして酸性電解水は、捕捉部10の下部に設けられた捕捉部排水口14から装置外に排出される。
 つまり、電解槽洗浄工程では、電解槽9内の析出物の除去と捕捉部10内の析出物の除去を同時に行うことができ、再生工程終了から軟水化工程開始までに要する時間を短縮することができる。
 そして、軟水化装置1では、制御部15で特定された時間帯になった場合もしくは電解槽洗浄工程が一定時間(例えば5分)を超えた場合に電解槽洗浄工程を終了し、捕捉部洗浄工程を実行する。
 なお、第三排水流路50において、原水が第一軟水槽3を通過するため、酸性になった水が捕捉部10を通過する。そのため、捕捉部10が酸性下になり、捕捉部10に固着した析出物が酸性水により溶解する。したがって、捕捉部10を予備的に洗浄できるため、次の工程である捕捉部洗浄工程に要する時間を短縮することができる。つまり、電解槽9内の析出物の除去と捕捉部10内の析出物の除去を同時に行うことができ、再生工程終了から軟水化工程開始までに要する時間を短縮することができる。
 なお、電解槽洗浄工程中に利用者が軟水を得たい場合には、軟水化装置1と接続された蛇口(不図示)等を開放することにより、原水が流入口2からバイパス流路53を通り、取水口7から流出するため、電解槽洗浄工程の終了を待たずとも、原水を利用することができる。
 <捕捉部洗浄工程>
 次に、軟水化装置1の捕捉部洗浄工程時の動作について、図8及び図10の「捕捉部洗浄時」の欄を参照して順に説明する。
 再生工程において、電解槽9には第一軟水槽3及び第二軟水槽5から放出された硬度成分を含む高硬度水が流入する。硬度成分は、電気分解の際に陰極側へと移動し、陰極で生成される水酸化物イオンと反応し、析出物となる。析出した析出物の一部は、電解槽9から放出されるアルカリ性電解水に含まれ、第二供給流路36を流通し、捕捉部10によって捕捉される。したがって、再生工程中の捕捉部10には、析出物が徐々に堆積するため、捕捉部10を原因とした圧力損失が徐々に増大し、中和槽再生循環流路40を流通するアルカリ性電解水の流量が徐々に低下する。したがって、析出物を放置すると、第一中和槽4及び第二中和槽6の弱塩基性陰イオン交換樹脂34の再生に要する時間が延び、最終的には弱塩基性陰イオン交換樹脂34への水酸化物イオンの充填が完了しなくなる恐れがある。そのため、捕捉部10に固着あるいは析出した析出物を除去する捕捉部洗浄工程を行う必要がある。
 捕捉部洗浄工程において、開閉弁18、開閉弁19、開閉弁22、及び開閉弁23を開放し、開閉弁20及び開閉弁21を閉止する。また、流路切り替えバルブ24は流路28から流路29へ送水可能な接続状態とし、流路切り替えバルブ25は流路29から流路30へ送水可能な接続状態とし、流路切り替えバルブ26は流路30から流路31へ送水可能な接続状態とし、流路切り替えバルブ27は流路31から第二供給流路36へ送水可能な接続状態とする。つまり、第一軟水槽3と第一中和槽4とが連通接続する状態、第一中和槽4と第二軟水槽5とが連通接続する状態、第二軟水槽5と第二中和槽6とが連通接続する状態、第二中和槽6と捕捉部排水口14とが連通接続する状態とする。これにより、図8に示すように、第四排水流路52が形成される。
 捕捉部洗浄工程において、具体的には、開閉弁19を開放することにより、外部から原水が流路28に流入する。流入した原水は、流路28、第一軟水槽3、流路29、第一中和槽4、流路30、第二軟水槽5、流路31、第二中和槽6、第二供給流路36を流通し、捕捉部10に流入する。
 捕捉部10では、再生工程の通水方向とは反対側から中性軟水が流入する。つまり、流入した中性軟水により、捕捉部10の逆洗浄が行われる。この時、電解槽洗浄工程によって捕捉部10に固着あるいは析出した析出物の一部が予め溶解しているため、中性軟水による捕捉部10の洗浄を容易に行うことができる。析出物を含む中性軟水は、捕捉部10の下部に設けられた捕捉部排水口14から装置外に排出される。
 このようにして、捕捉部10を逆洗浄することができるため、捕捉部10に残留する析出物を除去できる。したがって、捕捉部10の閉塞を抑制でき、再び再生工程を行う際に、捕捉部10に起因する圧力損失を低減できる。その結果、捕捉部10を含む再生流路である中和槽再生循環流路40の流量低減を抑制でき、アルカリ性電解水の流量を担保できるため、再生性能を確保できる。
 そして、軟水化装置1では、制御部15で特定された時間帯になった場合もしくは捕捉部洗浄工程が一定時間(例えば5分)を超えた場合に捕捉部洗浄工程を終了し、軟水化工程を実行する。
 なお、流入口2から第二中和槽6までの流路は、軟水化工程時の流路と同様の流路である。つまり、第四排水流路52を使用することにより、軟水化工程における最後段の中和槽である第二中和槽6は軟水化された水で充填された状態となる。したがって、第四排水流路52を用いて捕捉部洗浄工程を行った後に軟水化工程を行うことにより、軟水化装置1の利用者は、軟水化工程開始直後から軟水化処理され硬度の低減した軟水を取水口7から得ることができる。
 なお、捕捉部洗浄工程中に利用者が軟水を得たい場合には、軟水化装置1と接続された蛇口(不図示)等を開放することにより、原水が流入口2からバイパス流路53を通り、取水口7から流出するため、捕捉部洗浄工程の終了を待たずとも、原水を利用することができる。
 以上のようにして、軟水化装置1では、軟水化工程、再生工程、軟水槽再生経路洗浄工程、中和槽再生循環流路洗浄工程、再生工程、再生流路洗浄工程、電解槽洗浄工程、捕捉部洗浄工程がこの順で繰り返し実行される。軟水化工程の直前に捕捉部洗浄工程を実施することで、軟水化工程における最後段の中和槽は、軟水化された水で充填された状態になる。したがって、軟水化装置1の利用者が蛇口を開けた際に、取水口7からの高硬度水の排出を抑制でき、軟水化工程開始直後から硬度の安定した軟水を提供することができる。
 また、再生流路洗浄工程を行ってから電解槽洗浄工程を行うことにより、電解槽洗浄工程での転極時には、高硬度水が既に装置外に排水されており、高硬度水を電解する可能性を抑制できる。したがって、硬度の高い水の電解を抑制でき、転極時にアルカリ性電解水が送水される流路における多量のスケール発生を抑制できる。
 以上、本実施の形態1に係る軟水化装置1によれば、以下の効果を享受することができる。
 (1)軟水化装置1は、硬度成分を含む原水を弱酸性陽イオン交換樹脂33により軟水化して酸性軟水を生成する軟水槽と、軟水槽を通過した酸性軟水のpHを弱塩基性陰イオン交換樹脂34により中和して中和軟水を生成する中和槽と、弱酸性陽イオン交換樹脂33及び/又は弱塩基性陰イオン交換樹脂34の再生を行う工程である再生工程を制御する制御部15と、弱酸性陽イオン交換樹脂33の再生に供される酸性電解水と弱塩基性陰イオン交換樹脂34の再生に供されるアルカリ性電解水とを生成する電解槽9と、アルカリ性電解水のイオン濃度を測定するイオン濃度測定部56を備える。制御部15は、再生工程時に、イオン濃度測定部56が測定したイオン濃度測定結果に基づいて、再生工程の実行を制御し、イオン濃度測定結果が基準値未満の場合には再生工程を継続し、イオン濃度測定結果が基準値以上となった場合には再生工程を停止する。
 こうした構成によれば、アルカリ性電解水のイオン濃度に基づいて、再生工程を停止することができる。したがって、アルカリ性電解水中に急激に特定の析出物が析出するイオン濃度未満のアルカリ性電解水によって再生工程を実施することができ、再生工程を滞りなく実施することが可能となる。
 (2)軟水化装置1では、基準値は、アルカリ性電解水中のイオンと硬度成分との反応により、特定の析出物が発生するイオン濃度とし、例えばpHが10.0としている。
 こうした構成によれば、制御部15は、特定の析出物が急激に析出するpH条件であるpHが10.0以上となった場合には、再生工程を停止することができる。
 (3)軟水化装置1では、開閉弁18~開閉弁23と、流路切り替えバルブ24~流路切り替えバルブ27と、再生工程中に軟水槽再生循環流路39中に満たされている高硬度の酸性電解水を原水と入れ替える軟水槽再生流路洗浄流路45と、再生工程中に中和槽再生循環流路40中に満たされているpH値の高いアルカリ性電解水を原水と入れ替える中和槽再生流路洗浄流路48とを備える。こうした構成によれば、制御部15は、アルカリ性電解水のpHが基準値以上となって再生工程を停止したのちに、開閉弁18~開閉弁23、および流路切り替えバルブ24~流路切り替えバルブ27を軟水槽再生流路洗浄流路45、および中和槽再生流路洗浄流路を構成するように切り替えることで、軟水槽再生循環流路39内の酸性電解水を原水と入れ替えることができ、中和槽再生循環流路40内のアルカリ性電解水を原水と入れ替えることができる。したがって、アルカリ性電解水中への急激な特定の析出物の析出を抑制しつつ、再生工程を再開することが可能となる。
 以上、本開示に関して実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素あるいは各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されているところである。
 本実施の形態1に係る軟水化装置1では、再生工程終了後に、再生流路洗浄工程、電解槽洗浄工程、捕捉部洗浄工程の順に実行するようにしたが、これに限らない。例えば、電解槽洗浄工程を行ってから再生流路洗浄工程を行ってもよく、軟水化工程の前工程に捕捉部洗浄工程が実行されればよい。このような順番で装置内の洗浄を行っても、電解槽9及び捕捉部の析出物を除去でき、軟水化工程直前の第二中和槽6内に軟水を充填することができる。
 本開示に係る軟水化装置は、使用場所設置型浄水装置(POU:Point of Use)あるいは建物入口設置型浄水装置(POE: Point of Entry)に適用することが可能である。
 1  軟水化装置
 2  流入口
 3  第一軟水槽
 4  第一中和槽
 5  第二軟水槽
 6  第二中和槽
 7  取水口
 8  再生装置
 9  電解槽
 10  捕捉部
 11  第一送水ポンプ
 12  第二送水ポンプ
 13  排水口
 14  捕捉部排水口
 15  制御部
 18、19、20、21、22、23  開閉弁
 24、25、26、27  流路切り替えバルブ
 28、29、30、31、32  流路
 33  弱酸性陽イオン交換樹脂
 34  弱塩基性陰イオン交換樹脂
 35  第一供給流路
 36  第二供給流路
 37  第一回収流路
 38  第二回収流路
 39  軟水槽再生循環流路
 40  中和槽再生循環流路
 41  電極
 41a  電極
 41b  電極
 42  中和槽バイパス流路
 43  軟水化流路
 44  軟水槽バイパス流路
 45  軟水槽再生流路洗浄流路
 46  第一排水流路
 47  第二排水流路
 48  中和槽再生流路洗浄流路
 49  電解槽洗浄流路
 50  第三排水流路
 51  捕捉部洗浄流路
 52  第四排水流路
 53  バイパス流路
 54  排水流路
 55  計時部
 56  イオン濃度測定部
 58  記憶部
 62  流量測定部
 63  第五排水流路
 64  再生流路洗浄流路

Claims (9)

  1.  硬度成分を含む原水を弱酸性陽イオン交換樹脂により軟水化する軟水槽と、
     前記軟水槽を通過した軟水を弱塩基性陰イオン交換樹脂により中和する中和槽と、
     アルカリ性電解水を生成する電解槽と、
     前記電解槽にて生成された前記アルカリ性電解水のイオン濃度を測定するイオン濃度測定部と、
     前記弱塩基性陰イオン交換樹脂の再生を行う工程である再生工程を制御する制御部と、を備え、
     前記制御部は、
      前記測定部が測定した前記イオン濃度が所定の基準値未満の場合には前記再生工程を継続し前記基準値以上の場合には前記再生工程を停止する軟水化装置。
  2.  前記基準値は、前記アルカリ性電解水中のイオンと前記硬度成分との反応により特定の析出物が発生するイオン濃度である請求項1に記載の軟水化装置。
  3.  前記基準値は、前記アルカリ性電解水中のイオンと前記硬度成分との反応により生じる特定の析出物の析出が頻出するイオン濃度である請求項1に記載の軟水化装置。
  4.  前記頻出は、前記アルカリ性電解水のpHが10.0以上である場合の前記特定の析出物の発生である請求項3に記載の軟水化装置。
  5.  前記硬度成分に起因する析出物を捕捉する捕捉部を備え、
     前記制御部は、
      前記測定部が測定した前記イオン濃度が前記基準値以上の場合には前記捕捉部への前記アルカリ性電解水の送水を停止する請求項1に記載の軟水化装置。
  6.  前記制御部は、
      前記測定部が測定した前記イオン濃度が前記基準値以上の場合には、前記軟水槽と、前記電解槽と、前記軟水槽及び前記電解槽を連通する流路と、を含む軟水槽排水流路内に残存する酸性電解水を排水する請求項1または5に記載の軟水化装置。
  7.  前記制御部は、
      前記測定部が測定した前記イオン濃度が前記基準値以上の場合には、前記中和槽と、前記電解槽と、前記中和槽及び前記電解槽を連通する流路と、を含む中和槽排水流路内に残存するアルカリ性電解水を排水する請求項1または5に記載の軟水化装置。
  8.  前記中和槽に通水される水の流量を測定する流量測定部と、
     前記軟水槽と、前記電解槽と、前記軟水槽及び前記電解槽を連通する流路と、を含む軟水槽排水流路と、
     前記中和槽と、前記電解槽と、前記中和槽及び前記電解槽を連通する流路と、を含む中和槽排水流路と、
    を備え、
     前記制御部は、
      前記アルカリ性電解水の排水に要する時間を測定する計時部と、
      前記軟水槽排水流路と前記中和槽排水流路の流量比を記憶する記憶部と、
      前記流量測定部の測定値と前記流量比とに基づいて前記酸性電解水の排水に要する時間を算出する算出部と、を備え、
      前記算出部が算出した前記時間に基づいて、前記酸性電解水の排水を行う請求項1または5に記載の軟水化装置。
  9.  前記特定の析出物は、水酸化マグネシウムである請求項2または3に記載の軟水化装置。
PCT/JP2023/030344 2022-09-08 2023-08-23 軟水化装置 WO2024053399A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-142613 2022-09-08
JP2022142613A JP2024038541A (ja) 2022-09-08 2022-09-08 軟水化装置

Publications (1)

Publication Number Publication Date
WO2024053399A1 true WO2024053399A1 (ja) 2024-03-14

Family

ID=90191205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030344 WO2024053399A1 (ja) 2022-09-08 2023-08-23 軟水化装置

Country Status (2)

Country Link
JP (1) JP2024038541A (ja)
WO (1) WO2024053399A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190924A (ja) * 2002-12-10 2004-07-08 Matsushita Electric Ind Co Ltd 給湯機
WO2022004180A1 (ja) * 2020-06-30 2022-01-06 パナソニックIpマネジメント株式会社 軟水化装置
WO2022113741A1 (ja) * 2020-11-30 2022-06-02 パナソニックIpマネジメント株式会社 軟水化装置、軟水化装置の再生方法、及び軟水化装置の洗浄方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190924A (ja) * 2002-12-10 2004-07-08 Matsushita Electric Ind Co Ltd 給湯機
WO2022004180A1 (ja) * 2020-06-30 2022-01-06 パナソニックIpマネジメント株式会社 軟水化装置
WO2022113741A1 (ja) * 2020-11-30 2022-06-02 パナソニックIpマネジメント株式会社 軟水化装置、軟水化装置の再生方法、及び軟水化装置の洗浄方法

Also Published As

Publication number Publication date
JP2024038541A (ja) 2024-03-21

Similar Documents

Publication Publication Date Title
KR20120078611A (ko) 수처리 장치 및 이를 이용한 수처리 방법
KR20170135843A (ko) 수처리 시스템용 저장과 전달 및 그 사용 방법
JP5146437B2 (ja) 給湯機
WO2022113741A1 (ja) 軟水化装置、軟水化装置の再生方法、及び軟水化装置の洗浄方法
WO2023032478A1 (ja) 軟水化装置
JP5729062B2 (ja) 水処理方法及び水処理システム
WO2024053399A1 (ja) 軟水化装置
JP2022013569A (ja) 軟水化装置
JP5786376B2 (ja) 水処理方法及び水処理システム
JP2024002399A (ja) 軟水化装置
JP2022095010A (ja) 軟水化装置
JP2023126107A (ja) 軟水化装置
WO2023248920A1 (ja) 軟水化装置
JP2024021106A (ja) 軟水化装置
WO2023248599A1 (ja) 軟水化装置
JP2023142337A (ja) 軟水化装置
JP2012196634A (ja) 水処理方法及び水処理システム
JP2013123679A (ja) 硬水軟化装置の運転方法及び硬水軟化装置
WO2023233812A1 (ja) 軟水化装置および軟水化装置の制御方法
JP6061446B2 (ja) 水処理方法及び水処理システム
JP2024017437A (ja) 軟水化装置
WO2023145312A1 (ja) 軟水化装置
JP2023050355A (ja) 軟水化装置
JPH1157420A (ja) 電気式脱イオン水製造装置の通水処理方法
JP2024049424A (ja) 軟水化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862938

Country of ref document: EP

Kind code of ref document: A1