WO2024053114A1 - Terminal and communication method - Google Patents

Terminal and communication method Download PDF

Info

Publication number
WO2024053114A1
WO2024053114A1 PCT/JP2022/033963 JP2022033963W WO2024053114A1 WO 2024053114 A1 WO2024053114 A1 WO 2024053114A1 JP 2022033963 W JP2022033963 W JP 2022033963W WO 2024053114 A1 WO2024053114 A1 WO 2024053114A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
signal
base station
terminal
transmitted
Prior art date
Application number
PCT/JP2022/033963
Other languages
French (fr)
Japanese (ja)
Inventor
優元 ▲高▼橋
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/033963 priority Critical patent/WO2024053114A1/en
Publication of WO2024053114A1 publication Critical patent/WO2024053114A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure relates to a terminal and a communication method.
  • the 3rd Generation Partnership Project (3GPP) is the 5th generation mobile communication system (5G, New Radio (NR) or Nex t Generation (NG)), and furthermore, the next generation specifications called Beyond 5G, 5G Evolution or 6G. is also progressing.
  • 5G New Radio
  • NG Nex t Generation
  • Non-Patent Document 2 power saving of base stations is being considered (for example, Non-Patent Document 2).
  • the details are a subject for future consideration. Note that power may be replaced with energy, and power saving may be replaced with power reduction, etc.
  • One aspect of the present disclosure provides a technology for realizing power saving in a base station.
  • a terminal includes a receiving unit that receives settings related to periodic transmission signals from a base station, and a receiving unit that receives settings related to periodic transmission signals from a base station; and a control unit that assumes that a periodic transmission signal is being transmitted from the base station.
  • a terminal receives settings related to periodic transmission signals from a base station and monitors the periodic transmission signals at a plurality of cycles indicated by the settings, Assume that the periodic transmission signal is being transmitted from the base station.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to an embodiment of the present disclosure.
  • 1 is a diagram illustrating an example of a frequency range used in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a radio frame, a subframe, and a slot used in a radio communication system according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example in which SSB is transmitted within a time window in a certain period. It is a figure which shows the example of arrangement
  • FIG. 3 is a diagram showing a configuration example of ServingCellConfigCommon.
  • FIG. 3 is a diagram showing a configuration example of ServingCellConfigCommon.
  • FIG. 3 illustrates an example where multiple SSB sets are transmitted within the same time window.
  • FIG. 3 is a diagram illustrating an example in which multiple SSB sets are transmitted within different windows; It is a figure showing the example of composition of ServingCellConfigCommonSIB.
  • FIG. 3 is a diagram showing a configuration example of ServingCellConfigCommon. It is a figure which shows the example of a description of a specification.
  • FIG. 6 is a diagram illustrating an example in which multiple SSB sets are transmitted in multiple cycles.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a base station according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating an example of the configuration of a terminal according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of the hardware configuration of a base station and a terminal according to an embodiment of the present disclosure.
  • 1 is a diagram illustrating an example of a configuration of a vehicle according to an embodiment of the present disclosure.
  • Existing technologies are used as appropriate for the operation of the wireless communication system according to the embodiment of the present disclosure.
  • the existing technology is, for example, existing LTE or existing NR, but is not limited to existing LTE or NR.
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical broadcast channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • NR corresponds to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, etc.
  • NR- the above terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, etc.
  • NR- the signal is used for NR, it is not necessarily specified as "NR-".
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
  • “configuring" wireless parameters etc. may mean pre-configuring predetermined values, or may mean pre-configuring predetermined values or It may also be possible to set wireless parameters notified from.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system 10 according to an embodiment of the present disclosure.
  • the wireless communication system 10 is a wireless communication system that complies with 5G NR, and includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200 (hereinafter also referred to as UE (User Equipment) 200). include.
  • NG-RAN 20 Next Generation-Radio Access Network 20
  • UE User Equipment
  • the wireless communication system 10 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G.
  • the NG-RAN 20 includes a base station 100A (hereinafter also referred to as gNB 100A) and a base station 100B (hereinafter also referred to as gNB 100B). Note that when there is no need to distinguish between gNB 100A, gNB 100B, etc., they are collectively referred to as gNB or base station 100. Furthermore, the number of gNBs and UEs is not limited to the example shown in FIG. 1 .
  • the NG-RAN 20 actually includes multiple NG-RAN nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown).
  • gNB may be replaced with network (NW).
  • the gNB 100A and gNB 100B are, for example, base stations that comply with 5G, and perform wireless communication with the UE 200 according to 5G.
  • gNB100A, gNB100B, and UE200 use MIMO (Multiple-Input Multiple-Output), which generates a beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements, and multiple component carriers (CC:
  • the present invention may support carrier aggregation (CA) that uses a bundle of components carriers, dual connectivity (DC) that performs communication between the UE and each of two NG-RAN nodes, and the like.
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 10 may support multiple frequency ranges (FR).
  • FIG. 2 is a diagram showing an example of FR used in the wireless communication system 10. As shown in FIG. 2, the wireless communication system 10 may support FR1 and FR2.
  • the frequency bands of each FR are, for example, as follows. ⁇ FR1: 410MHz ⁇ 7.125GHz ⁇ FR2: 24.25GHz to 52.6GHz
  • FR1 sub-carrier spacing (SCS) of 15 kHz, 30 kHz, or 60 kHz may be used, and a bandwidth (BW) of 5 to 100 MHz may be used.
  • SCS sub-carrier spacing
  • BW bandwidth
  • FR2 is at a higher frequency than FR1, and an SCS of 60 kHz or 120 kHz (may include 240 kHz) may be used, and a bandwidth (BW) of 50 to 400 MHz may be used.
  • SCS may be interpreted as numerology.
  • the numerology is defined in 3GPP TS 38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 may support a frequency band higher than the frequency band of FR2. Specifically, the wireless communication system 10 may support frequency bands exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
  • FR2x frequency band exceeding 52.6 GHz
  • CP-OFDM Cyclic Prefix - Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing
  • FIG. 3 is a diagram showing a configuration example of a radio frame (system frame), subframe, and slot used in the radio communication system 10. As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). However, the SCS is not limited to the intervals (frequency) shown in FIG. 3. For example, 480 kHz, 960 kHz, etc. may be used as the SCS.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, it may be 28 or 56 symbols, etc.). Furthermore, the number of slots per subframe may vary depending on the SCS.
  • time direction (t) shown in FIG. 3 may also be called a time domain, symbol period, symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP), or the like.
  • the gNB 100 transmits control information, configuration information, etc. to the UE 200 as a downlink (DL) signal.
  • DL downlink
  • the gNB 100 receives control information, data signals, information regarding the processing capability of the UE 200 (terminal capability (information); for example, UE capability), etc. from the UE 200 as an uplink (UL) signal.
  • terminal capability information
  • UL uplink
  • Channels used for transmitting DL signals include, for example, data channels and control channels.
  • data channels may include a physical downlink shared channel (PDSCH)
  • control channels may include a physical downlink control channel (PDCCH).
  • the gNB 100 transmits control information to the UE 200 using the PDCCH, and transmits a DL data signal using the PDSCH.
  • PDSCH is an example of a downlink shared channel
  • PDCCH is an example of a downlink control channel.
  • PDCCH may be replaced with downlink control information (DCI), control information, etc. transmitted on PDCCH.
  • DCI downlink control information
  • Reference signals included in the DL signal include, for example, DMRS (Demodulation Reference Signal), PTRS (Phase Tracking Reference Signal), CSI-RS (Channel State Information-Reference Signal), SRS (Sounding Reference Signal), and location information. At least one PRS (Positioning Reference Signal) for use may be included.
  • reference signals such as DMRS and PTRS are used to demodulate DL data signals and are transmitted using PDSCH.
  • the UE 200 is a communication device with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine).
  • a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine).
  • the UE 200 utilizes various communication services provided by the wireless communication system 10 by receiving a control signal or data signal from the gNB 100 via DL and transmitting the control signal or data signal to the gNB 100 via UL. Further, UE 200 receives various reference signals transmitted from gNB 100, and measures channel quality based on the reception results of the reference signals.
  • the UE 200 receives control information, configuration information, etc. from the gNB 100 as a DL signal.
  • the UE 200 transmits control information, data signals, terminal capability information of the UE 200, etc. to the gNB 100 as a UL signal.
  • Channels used for transmitting UL signals include, for example, data channels and control channels.
  • data channels may include a physical uplink shared channel (PUSCH)
  • control channels may include a physical uplink control channel (PUCCH).
  • the UE 200 transmits control information using the PUCCH, and transmits a UL data signal using the PUSCH.
  • PUSCH is an example of an uplink shared channel
  • PUCCH is an example of an uplink control channel.
  • a shared channel may be called a data channel.
  • PUSCH or PUCCH may be replaced with uplink control information (UCI), control information, etc. transmitted on PUSCH or PUCCH.
  • UCI uplink control information
  • the reference signal included in the UL signal may include, for example, at least one of DMRS, PTRS, CSI-RS, SRSRS, and PRS for location information.
  • reference signals such as DMRS and PTRS are used to demodulate UL data signals and are transmitted using PUSCH.
  • Base station-side and terminal-side techniques are being considered to improve network energy reduction from both base station transmit and receive perspectives.
  • the potential support/feedback from the terminal and the potential terminal assistance information can be used to improve efficiency in one or more network energy reduction techniques in the time domain, frequency domain, spatial domain and power domain.
  • a method of realizing operation dynamically and/or semi-statically and realizing finer-grained adaptation of transmission and/or reception is being considered (for example, Non-Patent Document 2).
  • Non-Patent Document 2 no suitable method for reducing power consumption of base stations has been proposed so far.
  • SSB Synchronization Signal Blocks
  • SSB is used by the UE 200 to detect, for example, the cell frequency and reception timing necessary for communication, or to detect reception power (for example, SS-RSRP (Synchronization Signal Reference Signal Received Power)) or reception quality (for example, SS-RSRP). It is used to measure RSRQ (Synchronization Signal Reference Signal Received Quality). Furthermore, the UE 200 grasps the basic information of a certain cell by reading information included in the PBCH (physical broadcast channel) in the SSB of that cell.
  • PBCH physical broadcast channel
  • the gNB 100 may transmit one or more SSBs within a time window for SSB (transmission). More specifically, one or more SSBs are transmitted periodically in a time division multiplexed manner within the time resources of the first half or the second half of a (wireless) frame (e.g. 10 ms). It's okay to be. Therefore, the time window for SSB may be 5ms. Therefore, as a default, the UE 200 may assume that the time window is 5ms.
  • one or more SSBs for one period transmitted within one time window are called a burst, a burst set, an SS burst, an SS burst set, an SSB burst, an SSB burst set, or the like.
  • L max The maximum number of SSBs (L max ) that can be transmitted within a time window (5 ms) or half frame is defined as follows, depending on the carrier frequency/band and SCS: Note that L max may be an integer of 1 or more.
  • FIG. 4 is a diagram showing an example in which in a certain cell, 1 to L max SSBs are transmitted within a time window (5 ms) at a period (SSB transmission periodicity) of, for example, 20 ms.
  • FIG. 5 is a diagram showing an example of SSB arrangement in Case A when the carrier frequency is higher than 3 GHz.
  • one SSB (eg, each of SSB #0 to SSB #7) is, for example, four symbols long, and each SSB starts at a defined position.
  • One SSB includes a PBCH and synchronization signals (PSS (primary synchronization signal), SSS (secondary synchronization signal)) (not shown).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • L max in Case A when the carrier frequency is higher than 3 GHz is 8.
  • the maximum number of eight SSBs #0 to SSB #7 are arranged in subframes 0 to 3 within a time window of 5 ms.
  • frames with 15 kHz SCS may be used for transmitting and receiving SSB and data
  • frames with 30 kHz SCS and frames with 60 kHz SCS may be used for transmitting and receiving data.
  • the operations of the UE 200 related to the SSB cycle are classified into the following cases 1 to 3.
  • the UE 200 may assume that half frames with SSB occur at a period of two frames. That is, at the time of initial access, the UE 200 may monitor the SSB assuming that the SSB period is 20 ms.
  • SIB1 System Information Block 1
  • the SSB transmission cycle is notified from gNB 100 to UE 200 by ssb-periodicityServingCell in ServingCellConfigCommonSIB.
  • the UE 200 may monitor the SSB based on the notified period.
  • the period is an essential parameter, and the period value selected from the range ⁇ ms5, ms10, ms20, ms40, ms80, ms160 ⁇ (i.e., ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ ) is the gNB100
  • the UE 200 is notified from the UE 200.
  • the position of the SSB in the SS burst set (SSB being transmitted) is notified from the gNB 100 to the UE 200 by ssb-PositionsInBurst in ServingCellConfigCommonSIB.
  • L max maximum number of SSBs
  • L max is 4 or 8
  • which SSB is being transmitted is notified from the gNB 100 to the UE 200 using the field inOneGroup in ssb-PositionsInBurst shown in FIG. 6A.
  • Each bit of inOneGroup(bitmap, bit pattern) corresponds to each SSB index in the SS burst set, and the most significant bit (MSB; first bit, leftmost bit) in this bitmap is SSB index 0. The next most significant bit is for SSB index 1, and so on.
  • a value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted. Note that when L max is 4, the UE 200 ignores the lower 4 bits of inOneGroup.
  • L max is 64
  • an additional field groupPresence in ssb-PositionsInBurst is set.
  • the SSBs (therefore SSB indexes), which can be up to 64, are divided into eight groups (referred to as SSB groups), and which SSB groups exist are notified from the gNB 100 to the UE 200 by groupPresence.
  • groupPresence Each bit of groupPresence (bitmap, bit pattern) corresponds to each SSB group that includes 8 SSB indices.
  • the MSB in this bitmap corresponds to SSB indexes 0-7, the next most significant bit corresponds to SSB indexes 8-15, and so on.
  • a value "0" in this bitmap indicates that there is no SSB according to inOneGroup, whereas a value "1" in this bitmap indicates that the corresponding SSB is transmitted according to inOneGroup.
  • the MSB in inOneGroup corresponds to the first SSB index (SSB index 0, 8, 16, 7) in each SSB group, and the next most significant bit corresponds to the second SSB index (SSB index 0, 8, 16, etc.) in each SSB group. indexes 1, 9, 17, ...), and so on.
  • a value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
  • the SSB period during the RRC connection state is notified from the gNB 100 to the UE 200 by ssb-periodicityServingCell in ServingCellConfigCommon shown in FIG. 6B, which is dedicated RRC signaling.
  • the value to be notified can be selected from the range ⁇ ms5, ms10, ms20, ms40, ms80, ms160, spare2, spare1 ⁇ (i.e., ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, spare 2, spare 1 ⁇ ) is the value to be used.
  • the UE 200 monitors the SSB assuming that the SSB period is 5 ms (applying the 5 ms period).
  • the position of the SSB in the SS burst set (SSB being transmitted) is notified from the gNB 100 to the UE 200 by ssb-PositionsInBurst in ServingCellConfigCommon.
  • L max maximum number of SSBs
  • each bit of shortBitmap corresponds to each SSB index in the SS burst set, the MSB in this bitmap is for SSB index 0, and the next most significant bit is for SSB index 1. , etc.
  • a value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
  • each bit of mediumBitmap corresponds to each SSB index in the SS burst set, the MSB in this bitmap is for SSB index 0, and the next most significant bit is for SSB index 1. , etc.
  • a value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
  • L max is 64
  • which SSB is being transmitted is notified from the gNB 100 to the UE 200 using the field longBitmap in ssb-PositionsInBurst shown in FIG. 6B.
  • Each bit of the longBitmap corresponds to each SSB index in the SS burst set, the MSB in this bitmap is for SSB index 0, the next most significant bit is for SSB index 1, etc. be.
  • a value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
  • One possible method for reducing the power consumption of a base station is to suppress signal and/or channel transmission.
  • Periodic DL transmission such as the above-mentioned SSB constantly consumes power of the gNB 100, so in order to reduce the power consumption of the gNB 100, it is important to reduce transmission occasions of SSB.
  • simply reducing the SSB transmission opportunities by lengthening the SSB etc. period may cause an unexpected event to occur in the UE 200, and the UE 200 may not be able to operate properly.
  • the gNB 100 may also not be able to operate properly.
  • SSB is only an example of a DL signal (which may also be called DL information) that the base station 100 periodically transmits, and the proposed technology described below can be applied to the base station 100 other than the SSB as needed. It may be applied to a DL signal (for example, a channel state information reference signal (CSI-RS)) that is periodically transmitted.
  • CSI-RS channel state information reference signal
  • SSB (set), CSI-RS, etc. may be referred to as a periodic signal, a periodic transmission signal, a signal periodically transmitted from a base station to a terminal, or the like.
  • each cell includes two or more (i.e., multiple) SSB sets each including one or more SSBs and their settings (information) (which may also be referred to as instructions (information)). may be set, and a plurality of SSB sets may be transmitted from the base station 100 to the terminal 200 within a time window at the set period.
  • the time window is a time interval during which (terminal 200) monitors SSB (periodic transmission signal), a period during which (terminal 200) monitors SSB, and a time during which (base station 100) transmits SSB (periodic transmission signal). It may also be referred to as a section, a period in which (the base station 100) transmits SSB, or the like.
  • the (same) period of all SSB sets may be notified from the base station 100 to the terminal 200 using an existing parameter such as ssb-periodicityServingCell shown in FIGS. 6A and 6B. That is, the base station 100 may transmit an existing parameter such as ssb-periodicityServingCell indicating the (same) period of all SSB sets to the terminal 200, and the terminal 200 may send the (same) period of all SSB sets to the terminal 200.
  • Existing parameters such as ssb-periodicityServingCell indicating the period may be received from the base station 100.
  • the range of (same) period values is ⁇ ms5, ms10, ms20, ms40, ms80, ms160 ⁇ (i.e., ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ ) as shown in Figures 6A and 6B. ).
  • the periods of at least two SSB sets among the plurality of SSB sets may be different from each other.
  • the periods of at least two SSB sets among the plurality of SSB sets may be set independently from each other.
  • the number of multiple SSB sets is two will be explained as an example, but the same explanation applies to a case where the number of multiple SSB sets is three or more.
  • the first SSB set of two SSB sets or the period of the first SSB set is notified from the base station 100 to the terminal 200 using existing parameters such as ssb-periodicityServingCell shown in FIGS. 7A and 7B. It's okay to be. That is, the base station 100 may transmit an existing parameter such as ssb-periodicityServingCell indicating the period of the first SSB set to the terminal 200, and the terminal 200 may transmit an existing parameter such as ssb-periodicityServingCell indicating the period of the first SSB set. Existing parameters, such as, may be received from the base station 100.
  • the range of period values for the first SSB set is ⁇ ms5, ms10, ms20, ms40, ms80, ms160 ⁇ (i.e., ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ ).
  • the second SSB set of the two SSB sets or the period of the second SSB set is notified from the base station 100 to the terminal 200 using a separate new parameter such as ssb-periodicityServingCell2 shown in FIGS. 7A and 7B. It's fine. That is, the base station 100 may transmit a new parameter such as ssb-periodicityServingCell2 indicating the period of the second SSB set to the terminal 200, and the terminal 200 may transmit a new parameter such as ssb-periodicityServingCell2 indicating the period of the second SSB set. New parameters may be received from base station 100. The same applies when the number of multiple SSB sets is three or more.
  • the third SSB set or the period of the third SSB set may be notified from the base station 100 to the terminal 200 using a separate new parameter such as ssb-periodicityServingCell3 indicating the period of the third SSB set.
  • the range of period values other than the first SSB set is ⁇ ms5, ms10, ms20, ms40, ms80, as shown in FIGS. 7A and 7B.
  • ms160, ms320, ms640 ⁇ ie, ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, 320ms, 640ms ⁇ .
  • the present disclosure is not limited to this range and other values are not excluded.
  • the range of values may include values greater than 640ms.
  • ssb-periodicityServingCell may be referred to as settings related to SSB (periodic transmission signal), settings related to SSB (transmission) cycle, etc.
  • the period of the second SSB set may be determined based on the period of the first SSB set.
  • the period of the second SSB set may be determined by adding a certain value to the period of the first SSB set, or may be determined by multiplying the period of the first SSB set by a certain value. It's okay.
  • the specific value to be added or multiplied may be notified from the base station 100 to the terminal 200, may be set in advance in the terminal 200, or may be specified in the specifications.
  • the cycles of the third and subsequent SSB sets may be similarly determined based on the cycles of the first SSB set and/or the cycles of other SSB sets.
  • the terminal 200 may receive settings related to the SSB period, such as ssb-periodicityServingCell and ssb-periodicityServingCell2, from the base station 100.
  • the terminal 200 may monitor the SSB from the base station 100 according to the setting regarding the period of the received SSB, assuming that the SSB is being transmitted from the base station 100 at the period indicated by the setting.
  • the terminal 200 may receive the SSB transmitted by the base station 100 according to the settings made by the base station 100.
  • the base station 100 may transmit settings related to the SSB period, such as ssb-periodicityServingCell and ssb-periodicityServingCell2, to the terminal 200.
  • the base station 100 may assume that the SSB is monitored by the terminal 200 at a period based on the settings made by the base station 100.
  • the base station 100 may transmit the SSB to the terminal 200 at a cycle based on the settings made by the base station 100.
  • option 2 of proposal 1 by making the periods of multiple SSB sets different, there will be a time window in which SSBs included in a certain SSB set are not transmitted, so it is possible to reduce the chances of SSB transmission. . Thereby, power saving of the base station 100 can be realized.
  • the first of the two SSB sets may include four SSBs
  • the second SSB set of the two SSB sets or the second SSB set may include four SSBs. That is, the number of SSBs included in the first SSB set and the number of SSBs included in the second SSB set are the same, and the sum of these numbers only needs to be less than or equal to L max .
  • L max the carrier frequency
  • the number of SSBs included in each SSB set may be the same or different In option 2 of Proposal 2, the number of SSBs included in each of multiple SSB sets may be the same or different. .
  • the first of the two SSB sets may include 5 SSBs
  • the second SSB set of the two SSB sets or the second SSB set may include 3 SSBs. That is, the number of SSBs included in the first SSB set and the number of SSBs included in the second SSB set may be different (or may be the same), and the sum of these numbers is L max The following is sufficient.
  • the number of SSBs included in each SSB set may be different by at least two (or all may be the same), and the sum of these numbers is less than or equal to L max . That's fine.
  • the number of SSBs included in each of the plurality of SSB sets can be made different, so flexible measures can be taken depending on the situation. Thereby, power saving of the base station 100 can be realized.
  • the maximum number (L max ) of the total number of SSBs included in all SSB sets is the maximum number in Release 15/16/17 ( L max ), that is, it may be greater than the existing L max .
  • the maximum number of SSBs (L' max ) for each SSB set may be 4, and for carrier frequencies higher than 3 GHz, the maximum number of SSBs (L' max ) for each SSB set may be 4.
  • max(a, b) represents the larger of a and b. The same may apply to Cases B to E.
  • the maximum number (L max ) of the total number of SSBs included in all SSB sets is less than the maximum number in Release 15/16/17 ( L max ), that is, it may be less than the existing L max .
  • Case A is assumed where there are two SSB sets and the carrier frequency is higher than 3 GHz (i.e., L max is 8), and the first SSB set of the two SSB sets or included in the first SSB set if the first SSB set includes 4 SSBs and the second SSB set of the two SSB sets or the second SSB set includes 4 SSBs.
  • SSB indexes 0 to 3 may be associated with the four SSBs
  • SSB indexes 4 to 7 may be associated with the four SSBs included in the second SSB set.
  • the SSB index is set for the SSBs included in all SSB sets, and the SSBs included in the first SSB set to the last SSB set. 0 to M-1 (M is the total number of SSBs included in all SSB sets) may be associated.
  • a separate SSB index may be associated with the SSB included in each of the plurality of SSB sets.
  • mutually different SSB sets may include SSBs that are associated with the same SSB index.
  • Case A is assumed where there are two SSB sets and the carrier frequency is higher than 3 GHz (i.e., L max is 8), and the first SSB set of the two SSB sets or included in the first SSB set if the first SSB set includes 4 SSBs and the second SSB set of the two SSB sets or the second SSB set includes 4 SSBs.
  • SSB indexes 0 to 3 may be associated with the four SSBs, and SSB indexes 0 to 3 may be associated with the four SSBs included in the second SSB set.
  • the SSB index 0 to N i -1 (N i is the number of SSBs included in the i-th SSB set) for the SSBs included in each SSB set. may be associated.
  • option 1 of proposal 4 if the SSBs included in all SSB sets are transmitted within the same time window (e.g., when option 1 of proposal 5 described below is applied), there is no difference with existing technology. Can be made compatible.
  • the SSBs included in all SSB sets e.g., the first SSB set and the second SSB set shown in FIG. 8A
  • the SSB indexes may be transmitted sequentially starting from the SSB index with the smaller number included in the smaller (earlier) SSB set (for example, the first SSB set shown in FIG. 8A).
  • the base station 100 transmits the SSBs included in the first SSB set in the order of index numbers to the terminal 200 in the set period and within the same time window according to the settings by the base station 100, and
  • the terminal 200 may transmit the SSB included in the second SSB set, and the terminal 200 may receive the SSB transmitted from the base station 100 at a set period.
  • the SSB index numbers of the SSBs included in all SSB sets are consecutive, the SSBs may be transmitted in order from the lowest numbered SSB index.
  • the base station 100 may transmit the SSBs included in all the SSB sets in the order of index numbers in the same time window at the configured period according to the configuration by the base station 100, and the terminal 200 The SSB transmitted from the base station 100 may be received at a certain period.
  • each of the time windows of the multiple SSB sets may be different.
  • the time windows of multiple SSB sets may be determined (set) independently of each other.
  • the first SSB set of the two SSB sets or the first SSB set is a second SSB set of the two SSB sets or a second SSB set is transmitted within a second time window or a second time window that is different from the first time window; It may be sent in
  • Different time windows such as the first time window and the second time window shown in FIG. 8B, may not overlap with each other in the time domain.
  • the time window of SSB sets other than the first SSB set (for example, the second SSB set, the third SSB set when the number of multiple SSB sets is 3 or more, or the third SSB set, etc.)
  • the starting position (starting symbol) may be determined (set) according to options 2-1 to 2-2 below.
  • the starting position (starting symbol) of the time window may be a specified value in the specification.
  • the starting position (starting symbol) of the time window of the second SSB set may be x symbols after the first symbol of the first SSB set.
  • the start position (start symbol) of the time window of the second SSB set is x symbols after the first symbol of the first SSB set
  • the starting position (starting symbol) of the time window of the set may be y symbols after the first symbol of the second SSB set, and so on.
  • the values of x, y, etc. may be the same or different. Further, if only one value x is specified in the specification, the above y symbol etc. may be replaced with an x symbol.
  • the start position (start symbol) of the time window of the second SSB set is x symbols after the first symbol of the first SSB set, and 3
  • the starting position (starting symbol) of the time window of the first SSB set may be y symbols after the first symbol of the first SSB set, and so on.
  • the values of x, y, etc. satisfy at least the condition x ⁇ y ( ⁇ ).
  • the terminal 200 receives a configuration regarding SSB from the base station 100, and configures the SSB within a first time window, a second time window that starts x symbols after the first symbol of the first SSB set, ...
  • the SSB may be monitored assuming that the SSB is being transmitted.
  • the terminal 200 may receive the SSB transmitted by the base station 100 according to the settings made by the base station 100.
  • base station 100 assumes that SSB is being monitored by terminal 200 within a first time window, a second time window that starts x symbols after the first symbol of the first SSB set, ... You may do so.
  • the base station 100 transmits the SSBs included in the first SSB set to the terminal 200 within a first time window corresponding to the first SSB set, according to the settings by the base station 100, and
  • the SSBs included in the second SSB set may be transmitted in a second time window starting x symbols after the first symbol of the second SSB set, and so on.
  • the starting position (starting symbol) of the time window may be notified from the base station 100 to the terminal 200, for example, by a new parameter in ServingCellConfigCommonSIB or ServingCellConfigCommon. That is, the base station 100 may transmit a new parameter in ServingCellConfigCommonSIB or ServingCellConfigCommon indicating the starting position (starting symbol) of the time window to the terminal 200, and the terminal 200 may transmit the starting position (starting symbol) of the time window to the terminal 200.
  • a new parameter in ServingCellConfigCommonSIB or ServingCellConfigCommon may be received from the base station 100.
  • the value x may be notified from the base station 100 to the terminal 200 by a new parameter "X" in ServingCellConfigCommonSIB or ServingCellConfigCommon, and in this case, the starting position (starting symbol) of the time window of the second SSB set is It may be x symbols after the first symbol of the first SSB set.
  • the parameter indicating the start position (start symbol) of the time window may be included in an information element other than ServingCellConfigCommonSIB or ServingCellConfigCommon.
  • the values x, y, etc. are notified from the base station 100 to the terminal 200 by new parameters "X", "Y", etc. in ServingCellConfigCommonSIB or ServingCellConfigCommon, etc.
  • the starting position of the time window of the second SSB set (start symbol) is x symbols after the first symbol of the first SSB set
  • the starting position of the time window of the third SSB set ( The starting symbol) may be y symbols after the first symbol of the second SSB set, and so on.
  • the values of x, y, etc. may be the same or different.
  • one of x and y may be determined based on the other.
  • y may be determined by adding a particular value to x, or may be determined by multiplying x by a particular value. In this case, instead of directly notifying the value of y, a specific value may be notified from the base station 100 to the terminal 200.
  • the values x, y, etc. are transferred from the base station 100 to the terminal 200 by new parameters "X", "Y", etc. in ServingCellConfigCommonSIB or ServingCellConfigCommon, etc.
  • the starting position (starting symbol) of the time window of the second SSB set is x symbols after the first symbol of the first SSB set
  • the start position (start symbol) of the time window of the third SSB set is The starting position (starting symbol) may be y symbols after the first symbol of the first SSB set, and so on.
  • the values of x, y, etc. satisfy at least the condition x ⁇ y ( ⁇ ).
  • the parameters X, Y, etc. may be referred to as settings related to SSB (periodic transmission signal), settings related to the SSB time window, settings related to the start position of the SSB time window, etc.
  • SSB periodic transmission signal
  • settings related to the SSB time window settings related to the start position of the SSB time window, etc.
  • the terminal 200 receives settings regarding SSB including settings regarding the starting position of the time window from the base station 100, and according to the settings from the base station 100, the first symbol of the first time window and the first SSB set is monitor the SSBs within a second time window starting x symbols later than . You may do so.
  • the terminal 200 may receive the SSB transmitted by the base station 100 according to the settings made by the base station 100.
  • the base station 100 may select a first time window, a second time window that starts x symbols after the first symbol of the first SSB set, according to settings by the base station 100, including settings regarding the start position of the time window. , . . , it may be assumed that the SSB is monitored by the terminal 200 within.
  • the base station 100 transmits the SSBs included in the first SSB set to the terminal 200 within a first time window corresponding to the first SSB set, according to the settings by the base station 100, and
  • the SSBs included in the second SSB set may be transmitted in a second time window starting x symbols after the first symbol of the second SSB set, and so on.
  • time units such as x and y described above are not limited to symbols, and may be symbols, slots, ms, etc., or any combination thereof.
  • the terminal 200 may receive settings regarding the starting position of the SSB time window, such as parameters X and Y, from the base station 100.
  • the terminal 200 assumes that, according to the setting regarding the start position of the SSB time window, the SSB included in the SSB set after the first SSB set within the time window starting at the start position based on the setting is being transmitted.
  • the SSB from the base station 100 may be monitored.
  • the terminal 200 may receive the SSB transmitted by the base station 100 according to the settings made by the base station 100.
  • the base station 100 may transmit settings related to the starting position of the SSB time window, such as parameters X and Y, to the terminal 200.
  • the base station 100 assumes that the SSBs included in the SSB set are being monitored by the terminal 200 within a time window starting at the starting position based on the configuration by the base station 100. You may do so.
  • the base station 100 may transmit the SSBs included in the SSB sets after the first SSB set to the terminal 200 within a time window starting at a starting position based on the configuration by the base station 100.
  • a flexible time window can be provided for each of a plurality of SSB sets, and furthermore, the starting position of the time window can be determined without the need for signaling.
  • flexible time windows can be provided for each of a plurality of SSB sets, and furthermore, the start position of the start window can be flexibly set.
  • the position of the SSB in the SS burst set may be notified from the base station 100 to the terminal 200 using one parameter such as servingCellConfigCommonSIB or ssb-PositionsInBurst in servingCellConfigCommon (see FIGS. 6A and 6B). That is, the base station 100 may transmit parameters such as ssb-PositionsInBurst indicating the position of the SSB in the SS burst set to the terminal 200, and the terminal 200 may transmit parameters such as ssb-PositionsInBurst indicating the position of the SSB in the SS burst set. Parameters may be received from base station 100. Parameters such as ssb-PositionsInBurst are parameters (settings) common to all SSB sets.
  • ssb-PositionsInBurst in servingCellConfigCommonSIB is used, more specifically, for example, depending on the maximum number (L max ) of the total number of SSBs included in all SSB sets that can be transmitted within a time window (half frame): The location of the SSB is notified as follows.
  • L max is 4 or 8
  • which SSB is being transmitted is notified from the gNB 100 to the UE 200 using the field inOneGroup in ssb-PositionsInBurst shown in FIG. 6A.
  • Each bit of inOneGroup(bitmap, bit pattern) corresponds to each SSB index in the SS burst set, and the most significant bit (MSB; first bit, leftmost bit) in this bitmap is SSB index 0. The next most significant bit is for SSB index 1, and so on.
  • a value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted. Note that when L max is 4, the UE 200 ignores the lower 4 bits of inOneGroup.
  • L max is 64
  • an additional field groupPresence in ssb-PositionsInBurst is set.
  • the SSBs (therefore, the SSB indexes), which may be up to 64, are divided into eight groups (SSB groups), and which SSB groups exist is notified from the gNB 100 to the UE 200 by groupPresence.
  • Each bit of groupPresence corresponds to each SSB group that includes 8 SSB indices.
  • the MSB in this bitmap corresponds to SSB indexes 0-7, the next most significant bit corresponds to SSB indexes 8-15, and so on.
  • a value "0" in this bitmap indicates that there is no SSB according to inOneGroup, whereas a value "1" in this bitmap indicates that the corresponding SSB is transmitted according to inOneGroup.
  • the MSB in inOneGroup corresponds to the first SSB index (SSB index 0, 8, 16, 7) in each SSB group, and the next most significant bit corresponds to the second SSB index (SSB index 0, 8, 16, etc.) in each SSB group. indexes 1, 9, 17, ...), and so on.
  • a value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
  • ssb-PositionsInBurst in servingCellConfigCommon is used, more specifically, depending on the maximum number (L max ) of the total number of SSBs included in all SSB sets that can be sent within a time window, for example, as follows: The location of the SSB will be notified.
  • L max is 64
  • which SSB is being transmitted is notified from the gNB 100 to the UE 200 using the field longBitmap in ssb-PositionsInBurst shown in FIG. 6B.
  • Each bit of the longBitmap corresponds to each SSB index in the SS burst set, the MSB in this bitmap is for SSB index 0, the next most significant bit is for SSB index 1, etc. be.
  • a value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
  • the terminal 200 may receive a configuration shared by multiple SSB sets, such as ssb-PositionsInBurst, from the base station 100.
  • Terminal 200 may assume that SSBs included in a plurality of SSB sets are being transmitted from base station 100 based on the shared setting.
  • the terminal 200 may receive the SSB transmitted by the base station 100 according to the settings made by the base station 100.
  • the base station 100 may transmit settings shared by multiple SSB sets, such as ssb-PositionsInBurst, to the terminal 200.
  • Base station 100 may assume that SSBs included in a plurality of SSB sets are being monitored by terminal 200 based on the shared setting.
  • Base station 100 may transmit SSBs included in a plurality of SSB sets to terminal 200 based on settings by base station 100.
  • Position of SSB is signaled by separate parameters for each SSB set
  • separate parameters for each SSB set may be used to indicate the position of the SSB in the SSB set. Therefore, the number of parameters may be equal to the number of SSB sets. In the following, a case in which the number of multiple SSB sets is two will be explained as an example, but the same explanation applies to a case where the number of multiple SSB sets is three or more.
  • the position of the first SSB set of two SSB sets or the SSB included in the first SSB set is determined by parameters such as servingCellConfigCommonSIB or ssb-PositionsInBurst (see FIGS. 9A and 9B) in servingCellConfigCommon.
  • the terminal 200 may be notified from the station 100. That is, the base station 100 may transmit a parameter such as ssb-PositionsInBurst indicating the position of the SSB included in the first SSB set to the terminal 200, and the terminal 200 A parameter such as ssb-PositionsInBurst indicating a position may be received from the base station 100. Then, depending on the maximum number of SSBs (L max ) that can be transmitted within a time window (half frame), the positions of the SSBs may be notified, as described above.
  • L max maximum number of SSBs
  • the second SSB set of the two SSB sets or the position of the SSB included in the second SSB set may be changed to a new position such as servingCellConfigCommonSIB or ssb-PositionsInBurst2 (see FIGS. 9A and 9B) in servingCellConfigCommon.
  • the base station 100 may notify the terminal 200 based on the parameters.
  • the base station 100 may transmit a new parameter such as ssb-PositionsInBurst2 indicating the position of the SSB included in the second SSB set to the terminal 200, and the terminal 200 New parameters such as ssb-PositionsInBurst2 indicating the position of the SSB may be received from the base station 100. Then, depending on the maximum number of SSBs (L max ) that can be transmitted within a time window (half frame), the positions of the SSBs may be notified, as described above. The same applies when the number of multiple SSB sets is three or more.
  • the position of the third SSB set or the SSBs included in the third SSB set may be notified from the base station 100 to the terminal 200 using a new parameter such as servingCellConfigCommonSIB or ssb-PositionsInBurst3 in servingCellConfigCommon.
  • a new parameter such as servingCellConfigCommonSIB or ssb-PositionsInBurst3 in servingCellConfigCommon.
  • the terminal 200 may receive separate settings for each of the plurality of SSB sets, such as ssb-PositionsInBurst and ssb-PositionsInBurst2, from the base station 100.
  • the terminal 200 may assume that the SSBs included in each of the plurality of SSB sets are being transmitted from the base station 100 based on each individual setting.
  • Terminal 200 may receive the SSB transmitted by base station 100 according to settings by base station 100.
  • the base station 100 may transmit to the terminal 200 separate settings for each of a plurality of SSB sets, such as ssb-PositionsInBurst and ssb-PositionsInBurst2.
  • the base station 100 may assume that the SSBs included in each of the plurality of SSB sets are being monitored by the terminal 200 based on each separate configuration.
  • the base station 100 may transmit SSB to the terminal 200 based on the settings made by the base station 100.
  • servingCellConfigCommonSIB, servingCellConfigCommon, etc. may also be referred to as settings related to SSB (periodic transmission signal).
  • SSB periodic transmission signal
  • ssb-PositionsInBurst, ssb-PositionsInBurst2, inOneGroup, groupPresence, shortBitmap, mediumBitmap, longBitmap, etc. are settings related to SSB (periodic transmission signal), settings related to SSB position (or time position or time domain position), and settings that are being transmitted. It may also be referred to as settings related to SSB.
  • the position of the SSB included in the second SSB set of the two SSB sets is independently notified by a separate new parameter such as ssb-PositionsInBurst2, but This disclosure is not limited thereto.
  • the position of the SSB included in the second SSB set of two SSB sets may be determined based on the position of the SSB included in the first SSB set.
  • the positions of the SSBs included in the second SSB set may be determined by adding a specific value indicating an offset from the position of the SSBs included in the first SSB set.
  • the specific value to be added may be notified from the base station 100 to the terminal 200, may be set in advance in the terminal 200, or may be specified in the specifications.
  • the positions of SSBs included in SSB sets after the second SSB set are similarly based on the positions of SSBs included in the first SSB set and/or the positions of SSBs included in other SSB sets. may also be determined.
  • the terminal 200 may receive settings related to SSB positions, such as ssb-PositionsInBurst and ssb-PositionsInBurst2, from the base station 100.
  • the terminal 200 may assume that the SSB is being transmitted from the base station 100 based on the setting regarding the location of the SSB.
  • the terminal 200 may receive the SSB transmitted by the base station 100 according to the settings made by the base station 100.
  • the base station 100 may transmit settings related to SSB positions, such as ssb-PositionsInBurst and ssb-PositionsInBurst2, to the terminal 200.
  • the base station 100 may assume that the SSB is being monitored by the terminal 200 based on the settings regarding the location of the SSB.
  • the base station 100 may transmit SSB to the terminal 200 based on the settings made by the base station 100.
  • the position of the SSB can be flexibly set according to each of a plurality of SSB sets. Thereby, power saving of the base station 100 can be realized.
  • the terminal 200 may determine SSB transmission opportunities according to parameters indicating the position of the SSB, such as ssb-PositionsInBurst, ssb-PositionsInBurst2, etc.
  • the terminal 200 may assume that in OFDM symbols in which SSB is transmitted, physical resource blocks (PRBs) including SSB transmission resources cannot be used for PDSCH, and during rate matching, ssb-PositionsInBurst, ssb -PositionsInBurst2, etc., may refer to a parameter indicating the position of the SSB.
  • PRBs physical resource blocks
  • FIG. 10 is a diagram showing an example of specifications related to the above that may be written in the future. Although only up to ssb-PositionsInBurst2 is described in FIG. 10, if three or more SSB sets exist, a corresponding number of parameters (for example, ssb-PositionsInBurst3, etc.) may be described.
  • FIG. 11 is a diagram illustrating an example in which multiple SSB sets are transmitted in multiple cycles.
  • Figure 11 shows an example of a combination of the above-mentioned proposals.
  • Case A is assumed when the carrier frequency is higher than 3 GHz (that is, L max is 8), and option 2 (for the first SSB set) is assumed for proposal 1. Examples are shown in which the period is 20 ms and the period of the second SSB set is 40 ms), and option 1 is applied to each of proposals 2 to 6.
  • Terminal 200 may report the following terminal capabilities to base station 100 as UE capabilities. ⁇ Whether to support multiple SSB settings (multiple cycles, etc.)
  • the matters described in the above proposal may be applied not only to SSB but also to other signals (for example, CSI-RS).
  • the settings for SSB and the settings for other signals may be common settings or may be independent settings from each other.
  • the terminal 200 may report to the base station 100 UE Capability indicating whether or not to support other signal settings (for example, CSI-RS settings).
  • the time window is 20 ms
  • the length of the time window may be variable. For example, if the terminal 200 supports multiple SSB settings (multiple periods, etc.), the number of SSBs to be transmitted is small, or the SSBs included in all SSB sets are If the maximum number of total numbers L max is less than the existing L max , the time window may be shorter than 20 ms.
  • the start position (start symbol) of the time window of the second SSB set is x symbols after the first symbol of the first SSB set
  • the start position (start symbol) of the time window of the third SSB set is
  • the position (starting symbol) has been described as being y symbols after the first symbol of the first SSB set, etc., the starting positions of SSB sets after the first SSB set are not limited to these.
  • the start position (start symbol) of the time window of the second SSB set is x symbols after the first symbol of the time window of the first SSB set
  • the start position (start symbol) of the time window of the third SSB set is The starting symbol) may be y symbols after the first symbol of the time window of the second SSB set, and so on.
  • the technique described in option 2 of proposal 5 may be applied.
  • Base station 100 and terminal 200 may have a function to implement the embodiments described above. However, base station 100 and terminal 200 may each have only some of the functions in the embodiment.
  • FIG. 12 is a block diagram illustrating an example of the configuration of base station 100 according to an embodiment of the present disclosure.
  • the base station includes, for example, a transmitter 101, a receiver 102, and a controller 103.
  • Base station 100 communicates with terminal 200 (see FIG. 13) wirelessly.
  • terminal 200 see FIG. 13
  • the transmitting section 101 and the receiving section 102 may be collectively referred to as a communication section.
  • the transmitter 101 transmits the DL signal to the terminal 200.
  • the transmitter 101 transmits a DL signal under the control of the controller 103.
  • the DL signal may include information indicating scheduling regarding signal transmission by the terminal 200 (eg, UL grant), upper layer control information, and the like.
  • the transmitter 101 transmits various control signals (RRC layer control signals, etc.), reference signals, data signals, etc. to the terminal 200 as DL signals.
  • the transmitter 101 transmits, for example, the various signals, channels, setting information, control information, etc. (SSB, CSI-RS, etc.) described in the above embodiments to the terminal 200 as DL signals.
  • the transmitter 101 transmits periodic transmission signals such as SSB and CSI-RS to the terminal 200 as DL signals.
  • the transmitting unit 101 transmits configuration information such as SSB-related settings (SSB period, SSB position, SSB time window start position, etc.) generated by the control unit 103 as a DL signal using upper layer parameters. Send to terminal 200.
  • configuration information such as SSB-related settings (SSB period, SSB position, SSB time window start position, etc.) generated by the control unit 103 as a DL signal using upper layer parameters.
  • the receiving unit 102 receives the UL signal transmitted from the terminal 200.
  • the receiving unit 102 receives a UL signal under the control of the control unit 103.
  • the receiving unit 102 receives a signal including terminal capability information (for example, UE capability) of the terminal 200, various control signals, reference signals, data signals, etc. from the terminal 200 as a UL signal.
  • terminal capability information for example, UE capability
  • the control unit 103 controls the overall (communication) operation of the base station 100, including the transmission processing in the transmission unit 101 and the reception processing in the reception unit 102.
  • control unit 103 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 101. Further, the control unit 103 outputs the data, control information, etc. received from the reception unit 102 to the upper layer.
  • control unit 103 determines the resources and/or UL used for transmitting/receiving DL signals based on the signals (for example, data and control information, etc.) received from the terminal 200 and/or the data and control information acquired from the upper layer. Allocates resources used for signal transmission and reception. Information regarding the allocated resources may be included in the control information transmitted to the terminal 200.
  • the control unit 103 executes operations other than the transmission and reception described in the above embodiments (note that the operations may be executed by the transmission unit 101 and/or the reception unit 102).
  • control unit 103 generates setting information such as settings related to SSB (transmission cycle, position of SSB, starting position of SSB time window, etc.).
  • control unit 103 makes settings related to SSB, and that the terminal 200 monitors SSB or receives SSB according to the settings.
  • control unit 103 controls the SSB and CSI-RS transmitted from the base station 100 by the terminal 200 at a plurality of cycles indicated by the above settings (settings related to the SSB cycle (for example, ssb-periodicityServingCell and ssb-periodicityServingCell2)). It is assumed that the periodic transmission signal is being monitored or the periodic transmission signal is being received within a time window for monitoring the periodic transmission signal such as .
  • FIG. 13 is a block diagram illustrating an example of the configuration of terminal 200 according to an embodiment of the present disclosure.
  • Terminal 200 includes, for example, a receiving section 201, a transmitting section 202, and a control section 203.
  • Terminal 200 communicates with base station 100 (see FIG. 12) wirelessly, for example.
  • base station 100 see FIG. 12
  • the receiving section 201 and the transmitting section 202 may be collectively referred to as a communication section.
  • the receiving unit 201 receives the DL signal transmitted from the base station 100.
  • the receiving unit 201 receives a DL signal under the control of the control unit 203.
  • the receiving unit 201 receives various control signals, reference signals, data signals, etc. from the base station 100 as DL signals.
  • the receiving unit 201 receives, for example, the various signals, channels, setting information, control information, etc. described in the above embodiments from the base station 100 as DL signals.
  • the receiving unit 201 receives periodic transmission signals such as SSB and CSI-RS from the base station 100 as DL signals.
  • the receiving unit 201 receives setting information such as SSB-related settings (SSB period, SSB position, SSB time window start position, etc.) from the base station 100 as a DL signal using upper layer parameters.
  • setting information such as SSB-related settings (SSB period, SSB position, SSB time window start position, etc.) from the base station 100 as a DL signal using upper layer parameters.
  • the transmitter 202 transmits the UL signal to the base station 100.
  • the transmitter 202 transmits a UL signal under the control of the controller 203.
  • the transmitter 202 transmits a signal including information regarding the processing capacity of the terminal 200, various control signals, reference signals, data signals, etc. to the base station 100 as a UL signal.
  • the control unit 203 controls the overall (communication) operation of the terminal 200, including reception processing in the reception unit 201 and transmission processing in the transmission unit 202.
  • control unit 203 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 202. Further, the control unit 203 outputs, for example, data and control information received from the reception unit 201 to an upper layer.
  • the control unit 203 executes operations other than the transmission and reception described in the above embodiments (note that the operations may be executed by the reception unit 201 and/or the transmission unit 202).
  • the control unit 203 transmits the SSB transmitted from the base station 100 at a plurality of cycles indicated by the settings transmitted from the base station 100 (settings related to the SSB cycle (for example, ssb-periodicityServingCell and ssb-periodicityServingCell2)). It is assumed that a periodic transmission signal is being transmitted from the base station 100 within a time window in which a periodic transmission signal such as a CSI-RS is monitored.
  • a periodic transmission signal such as a CSI-RS
  • the control unit 203 monitors the first signal and the second signal. Assume that at least one of the first signal and the second signal is transmitted from the base station 100 within the same time window.
  • the control unit 203 controls the first time period for monitoring the first signal. Assume that a first signal is being transmitted from the base station 100 within the window, and assume that a second signal is being transmitted from the base station 100 within a second time window of monitoring the second signal.
  • the control unit 203 controls the first signal and the second SSB set among the above settings. It is assumed that the first signal and the second signal are being transmitted from the base station 100 based on a common setting for the first signal and the second signal (for example, ssb-PositionsInBurst) regarding the position of the second signal.
  • a common setting for the first signal and the second signal for example, ssb-PositionsInBurst
  • the control unit 203 configures the first signal in the above settings. Assuming that the first signal is being transmitted from the base station 100 based on the first setting regarding the position (for example, ssb-PositionsInBurst), the second setting regarding the position of the second signal among the above settings (for example, ssb-PositionsInBurst) -PositionsInBurst2), it is assumed that the second signal is being transmitted from the base station 100.
  • the first setting regarding the position for example, ssb-PositionsInBurst
  • the second setting regarding the position of the second signal among the above settings for example, ssb-PositionsInBurst2
  • the second signal is being transmitted from the base station 100.
  • the channels used for transmitting DL signals and the channels used for transmitting UL signals are not limited to the examples described above.
  • the channels used for transmitting DL signals and the channels used for transmitting UL signals may include the RACH and PBCH described above.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 14 is a diagram illustrating an example of the hardware configuration of base station 100 and terminal 200 according to an embodiment of the present disclosure.
  • the base station 100 and terminal 200 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configurations of the base station 100 and the terminal 200 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 100 and the terminal 200 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of data reading and writing in the memory 1002 and the storage 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control units 103, 203, etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • the control unit 103 of the base station 100, the control unit 203 of the terminal 200, etc. may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way. Good too.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be done.
  • Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • Storage 1003 may also be called an auxiliary storage device.
  • the storage medium mentioned above may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the communication device 1004 may have a transmitter and a receiver that are physically or logically separated.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 100 and the terminal 200 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • a receiving unit that receives settings related to periodic transmission signals from a base station;
  • a terminal including a control unit that assumes that a periodic transmission signal is being transmitted from the base station.
  • the periodic transmission signal includes a first signal and a second signal
  • the control unit monitors the first signal and the second signal within the same time period in which the first signal and the second signal are monitored. It is assumed that at least one of the second signals is being transmitted from the base station.
  • the periodic transmission signal includes a first signal and a second signal
  • the control unit is configured to control whether the first signal is transmitted from the base station within a first time period in which the first signal is monitored. It is assumed that the second signal is being transmitted from the base station within a second time period in which the second signal is monitored.
  • the periodic transmission signal includes a first signal and a second signal
  • the settings are common to the first signal and the second signal regarding the positions of the first signal and the second signal. settings, and the control unit assumes that the first signal and the second signal are being transmitted from the base station based on the shared settings.
  • the periodic transmission signal includes a first signal and a second signal
  • the settings include a first setting regarding the position of the first signal and a second setting regarding the position of the second signal
  • the setting includes a first setting regarding the position of the first signal and a second setting regarding the position of the second signal
  • the control unit assumes that the first signal is being transmitted from the base station based on the first setting, and that the second signal is being transmitted from the base station based on the second setting. Assuming that.
  • the positions of the first signal and the second signal can be flexibly set according to each of the first signal and the second signal.
  • a terminal receives settings related to periodic transmission signals from a base station, and within a time period in which the terminal monitors the periodic transmission signals at a plurality of cycles indicated by the settings. , a communication method is provided in which it is assumed that the periodic transmission signal is transmitted from the base station.
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • the base station 100 and the terminal 200 have been described using functional block diagrams for convenience of processing description, such devices may be implemented in hardware, software, or a combination thereof.
  • Software operated by a processor included in base station 100 according to an embodiment of the present disclosure and software operated by a processor included in terminal 200 according to an embodiment of this disclosure are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information may include physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented using broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G fourth generation mobile communication system
  • 5G 5th generation mobile communication system
  • the present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
  • ⁇ Base station operation> The specific operations performed by the base station in this disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this could be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.).
  • MME Mobility Management Entity
  • S-GW Serving Mobility Management Entity
  • ⁇ Input/output direction> Information etc. can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (eg, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may be called a carrier frequency, a cell, a frequency carrier, or the like.
  • the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed.
  • radio resources may be indicated by an index.
  • Base Station In this disclosure, "Base Station (BS),""wireless base station,””fixedstation,” "NodeB,””eNodeB(eNB),”"gNodeB(gNB),”""""accesspoint”,”transmissionpoint”,”receptionpoint”,”transmission/receptionpoint”,”cell”,”sector”,”cellgroup”,”
  • carrier “component carrier”, etc. may be used interchangeably.
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services may also be provided by a remote radio head).
  • RRHs small indoor base stations
  • Communication services may also be provided by a remote radio head).
  • the term "cell” or “sector” refers to a portion or the entire coverage area of a base station and/or base station subsystem that provides communication services in this coverage. refers to
  • the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. Examples of such moving objects include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships and other watercraft.
  • the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
  • the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the terminal 200 may have the functions that the base station 100 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 100 may have the functions that the terminal 200 described above has.
  • FIG. 15 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 2029 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 receives signals from the various sensors 2021 to 2029 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 2010, various sensors 2021 to 2029, information service unit 2012, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 2013 may include information based on the above input.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
  • Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as "assuming", “expecting", “considering”, etc.
  • connection means any connection or coupling, direct or indirect, between two or more elements and each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called a pilot depending on the applied standard.
  • any reference to elements using the designations "first,””second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • the numerology may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • multiple consecutive subframes may be called a TTI
  • one slot or minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), code block, codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs are defined as physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also referred to as partial bandwidth) refers to a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. good.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • Maximum transmit power as described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power ( It may also mean the rated UE maximum transmit power.
  • the present disclosure is useful for wireless communication systems.
  • Wireless communication system 20 NG-RAN 100 base station (gNB) 200 Terminal (UE) 101,202 Transmitting unit 102,201 Receiving unit 103,203 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to one aspect of the present disclosure comprises: a reception unit that receives, from a base station, a setting relating to a periodic transmission signal; and a control unit that assumes that the periodic transmission signal is transmitted from the base station within a time interval in which the periodic transmission signal is monitored with a plurality of periods indicated by the setting.

Description

端末及び通信方法Terminal and communication method
 本開示は、端末及び通信方法に関する。 The present disclosure relates to a terminal and a communication method.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)又はNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution又は6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) is the 5th generation mobile communication system (5G, New Radio (NR) or Nex t Generation (NG)), and furthermore, the next generation specifications called Beyond 5G, 5G Evolution or 6G. is also progressing.
 5Gにおいては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば、非特許文献1)。 For 5G, technologies that satisfy the requirements such as a large capacity system, high data transmission speed, low delay, simultaneous connection of many terminals, low cost, and power saving are being considered (for example, non-patent document 1). ).
 3GPPのRelease 18では、基地局の省電力について検討されている(例えば、非特許文献2)。詳細については今後の検討課題となっている。なお、電力はエネルギーで読み替えられてもよく、省電力は電力削減等で読み替えられてもよい。 In 3GPP Release 18, power saving of base stations is being considered (for example, Non-Patent Document 2). The details are a subject for future consideration. Note that power may be replaced with energy, and power saving may be replaced with power reduction, etc.
 このように、将来の無線通信システムでは、基地局の省電力について検討されているが、当該省電力に係る制御をどのように行うかが問題となる。しかしながら、このような制御に関する具体的な動作等については十分に検討されていない。 As described above, power saving of base stations is being considered in future wireless communication systems, but the question is how to control the power saving. However, specific operations related to such control have not been sufficiently studied.
 本開示の一態様は、基地局の省電力を実現するための技術を提供する。 One aspect of the present disclosure provides a technology for realizing power saving in a base station.
 本開示の一態様に係る端末は、基地局から、周期的送信信号に関する設定を受信する受信部と、前記設定が示す複数の周期で、前記周期的送信信号をモニタする時間区間内で、前記周期的送信信号が前記基地局から送信されていると想定する制御部と、を備える。 A terminal according to an aspect of the present disclosure includes a receiving unit that receives settings related to periodic transmission signals from a base station, and a receiving unit that receives settings related to periodic transmission signals from a base station; and a control unit that assumes that a periodic transmission signal is being transmitted from the base station.
 本開示の一態様に係る通信方法は、端末が、基地局から、周期的送信信号に関する設定を受信し、前記設定が示す複数の周期で、前記周期的送信信号をモニタする時間区間内で、前記周期的送信信号が前記基地局から送信されていると想定する。 In a communication method according to an aspect of the present disclosure, within a time period in which a terminal receives settings related to periodic transmission signals from a base station and monitors the periodic transmission signals at a plurality of cycles indicated by the settings, Assume that the periodic transmission signal is being transmitted from the base station.
本開示の実施の形態に係る無線通信システムの一例を示す図である。1 is a diagram illustrating an example of a wireless communication system according to an embodiment of the present disclosure. 本開示の実施の形態に係る無線通信システムにおいて用いられる周波数レンジの一例を示す図である。1 is a diagram illustrating an example of a frequency range used in a wireless communication system according to an embodiment of the present disclosure. 本開示の実施の形態に係る無線通信システムにおいて用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a radio frame, a subframe, and a slot used in a radio communication system according to an embodiment of the present disclosure. ある周期で、SSBが時間ウィンドウ内で送信される例を示す図である。FIG. 3 is a diagram illustrating an example in which SSB is transmitted within a time window in a certain period. SSBの配置例を示す図である。It is a figure which shows the example of arrangement|positioning of SSB. ServingCellConfigCommonSIBの構成例を示す図である。It is a figure showing the example of composition of ServingCellConfigCommonSIB. ServingCellConfigCommonの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of ServingCellConfigCommon. ServingCellConfigCommonSIBの構成例を示す図である。It is a figure showing the example of composition of ServingCellConfigCommonSIB. ServingCellConfigCommonの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of ServingCellConfigCommon. 複数のSSBセットが同一の時間ウィンドウ内で送信される例を示す図である。FIG. 3 illustrates an example where multiple SSB sets are transmitted within the same time window. 複数のSSBセットが異なるウィンドウ内で送信される例を示す図である。FIG. 3 is a diagram illustrating an example in which multiple SSB sets are transmitted within different windows; ServingCellConfigCommonSIBの構成例を示す図である。It is a figure showing the example of composition of ServingCellConfigCommonSIB. ServingCellConfigCommonの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of ServingCellConfigCommon. 仕様の記載例を示す図である。It is a figure which shows the example of a description of a specification. 複数の周期で複数のSSBセットが送信される例を示す図である。FIG. 6 is a diagram illustrating an example in which multiple SSB sets are transmitted in multiple cycles. 本開示の実施の形態に係る基地局の構成の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of a configuration of a base station according to an embodiment of the present disclosure. 本開示の実施の形態に係る端末の構成の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of the configuration of a terminal according to an embodiment of the present disclosure. 本開示の実施の形態に係る基地局及び端末のハードウェア構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of the hardware configuration of a base station and a terminal according to an embodiment of the present disclosure. 本開示の実施の形態に係る車両の構成の一例を示す図である。1 is a diagram illustrating an example of a configuration of a vehicle according to an embodiment of the present disclosure.
 以下、本開示の一態様に係る実施の形態を、図面を参照して説明する。なお、以下で説明する実施の形態は一例であり、本開示が適用される実施の形態は、以下の実施の形態に限られない。 Hereinafter, embodiments according to one aspect of the present disclosure will be described with reference to the drawings. Note that the embodiment described below is an example, and the embodiment to which the present disclosure is applied is not limited to the following embodiment.
 本開示の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTE又は既存のNRであるが、既存のLTE、NRに限られない。 Existing technologies are used as appropriate for the operation of the wireless communication system according to the embodiment of the present disclosure. However, the existing technology is, for example, existing LTE or existing NR, but is not limited to existing LTE or NR.
 また、以下で説明する本開示の実施の形態では、既存のLTE又はNRで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。 In addition, in the embodiments of the present disclosure described below, SS (Synchronization signal), PSS (Primary SS), SSS (Secondary SS), PBCH (Physical broadcast channel), and PRACH used in existing LTE or NR will be used. (Physical random access channel), PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel), PUCCH (Physical Uplink Control Channel), PUSCH (Physical Uplink Shared Channel), etc. are used. This is for convenience of description, and signals, functions, etc. similar to these may be referred to by other names. Also, the above terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, etc. However, even if the signal is used for NR, it is not necessarily specified as "NR-".
 また、本開示の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Further, in the embodiment of the present disclosure, the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
 また、本開示の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局又は端末から通知される無線パラメータが設定されることであってもよい。 Furthermore, in the embodiments of the present disclosure, "configuring" wireless parameters etc. may mean pre-configuring predetermined values, or may mean pre-configuring predetermined values or It may also be possible to set wireless parameters notified from.
 (実施の形態)
 <無線通信システム>
 図1は、本開示の実施の形態に係る無線通信システム10の一例を示す図である。無線通信システム10は、5G NRに従った無線通信システムであり、Next Generation-Radio Access Network20(以下、NG-RAN20)と、端末200(以下、UE(User Equipment)200とも記載する)と、を含む。
(Embodiment)
<Wireless communication system>
FIG. 1 is a diagram illustrating an example of a wireless communication system 10 according to an embodiment of the present disclosure. The wireless communication system 10 is a wireless communication system that complies with 5G NR, and includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200 (hereinafter also referred to as UE (User Equipment) 200). include.
 なお、無線通信システム10は、Beyond 5G、5G Evolution又は6Gと呼ばれる方式に従った無線通信システムであってもよい。 Note that the wireless communication system 10 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、基地局100A(以下、gNB100Aとも記載する)及び基地局100B(以下、gNB100Bとも記載する)を含む。なお、gNB100A、gNB100B等のそれぞれを区別する必要がない場合には、gNB又は基地局100と総称される。また、gNB及びUEの数は、図1に示す例に限定されない。 The NG-RAN 20 includes a base station 100A (hereinafter also referred to as gNB 100A) and a base station 100B (hereinafter also referred to as gNB 100B). Note that when there is no need to distinguish between gNB 100A, gNB 100B, etc., they are collectively referred to as gNB or base station 100. Furthermore, the number of gNBs and UEs is not limited to the example shown in FIG. 1 .
 NG-RAN20は、実際には複数のNG-RANノード、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク(5GC、図示せず)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。また、以下において、gNBは、ネットワーク(NW)で読み替えられてもよい。 The NG-RAN 20 actually includes multiple NG-RAN nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that the NG-RAN 20 and 5GC may be simply expressed as a "network." Furthermore, in the following, gNB may be replaced with network (NW).
 gNB100A及びgNB100Bは、一例として、5Gに従った基地局であり、5Gに従った無線通信をUE200と実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC:Component Carrier)を束ねて用いるキャリアアグリゲーション(CA:Carrier Aggregation)、及び、UEと2つのNG-RANノードそれぞれとの間において通信を行うデュアルコネクティビティ(DC:Dual Connectivity)等に対応してよい。 The gNB 100A and gNB 100B are, for example, base stations that comply with 5G, and perform wireless communication with the UE 200 according to 5G. gNB100A, gNB100B, and UE200 use MIMO (Multiple-Input Multiple-Output), which generates a beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements, and multiple component carriers (CC: The present invention may support carrier aggregation (CA) that uses a bundle of components carriers, dual connectivity (DC) that performs communication between the UE and each of two NG-RAN nodes, and the like.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応してよい。図2は、無線通信システム10において用いられるFRの一例を示す図である。図2に示すように、無線通信システム10は、FR1及びFR2に対応してよい。各FRの周波数帯は、例えば、以下のとおりである。
 ・FR1:410MHz~7.125GHz
 ・FR2:24.25GHz~52.6GHz
Furthermore, the wireless communication system 10 may support multiple frequency ranges (FR). FIG. 2 is a diagram showing an example of FR used in the wireless communication system 10. As shown in FIG. 2, the wireless communication system 10 may support FR1 and FR2. The frequency bands of each FR are, for example, as follows.
・FR1: 410MHz ~ 7.125GHz
・FR2: 24.25GHz to 52.6GHz
 FR1では、15kHz、30kHz又は60kHzのサブキャリア間隔(SCS:Sub-Carrier Spacing)が用いられ、5~100MHzの帯域幅(BW:Bandwidth)が用いられてもよい。FR2は、FR1よりも高周波数であり、60kHz又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。 In FR1, sub-carrier spacing (SCS) of 15 kHz, 30 kHz, or 60 kHz may be used, and a bandwidth (BW) of 5 to 100 MHz may be used. FR2 is at a higher frequency than FR1, and an SCS of 60 kHz or 120 kHz (may include 240 kHz) may be used, and a bandwidth (BW) of 50 to 400 MHz may be used.
 なお、SCSは、ニューメロロジー(numerology)と解釈されてもよい。ニューメロロジーは、3GPP TS 38.300において定義されており、周波数ドメインにおける1つのサブキャリア間隔と対応する。 Note that SCS may be interpreted as numerology. The numerology is defined in 3GPP TS 38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯に対応してもよい。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応してもよい。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。52.6GHzを超える帯域を用いる場合、より大きなSCSを有するCP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing)/DFT-S-OFDM(Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing)を適用してもよい。 Furthermore, the wireless communication system 10 may support a frequency band higher than the frequency band of FR2. Specifically, the wireless communication system 10 may support frequency bands exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience. When using a band exceeding 52.6 GHz, even if CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing)/DFT-S-OFDM (Discrete Fourier Transform - Spread - Orthogonal Frequency Division Multiplexing) with a larger SCS is applied. good.
 図3は、無線通信システム10において用いられる無線フレーム(システムフレーム)、サブフレーム及びスロットの構成例を示す図である。図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。ただし、SCSは、図3に示す間隔(周波数)に限定されない。例えば、SCSとして、480kHz、960kHz等が用いられてもよい。 FIG. 3 is a diagram showing a configuration example of a radio frame (system frame), subframe, and slot used in the radio communication system 10. As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). However, the SCS is not limited to the intervals (frequency) shown in FIG. 3. For example, 480 kHz, 960 kHz, etc. may be used as the SCS.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28又は56シンボル等であってもよい)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Furthermore, the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, it may be 28 or 56 symbols, etc.). Furthermore, the number of slots per subframe may vary depending on the SCS.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間又はシンボル時間等と呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP:Bandwidth Part)等と呼ばれてもよい。 Note that the time direction (t) shown in FIG. 3 may also be called a time domain, symbol period, symbol time, or the like. Further, the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP), or the like.
 gNB100は、下りリンク(DL:Downlink)信号として、制御情報、設定情報等をUE200へ送信する。 The gNB 100 transmits control information, configuration information, etc. to the UE 200 as a downlink (DL) signal.
 また、例えば、gNB100は、上りリンク(UL:Uplink)信号として、UE200から、制御情報、データ信号、UE200の処理能力に関する情報(端末能力(情報);例えば、UE capability)等を受信する。 Further, for example, the gNB 100 receives control information, data signals, information regarding the processing capability of the UE 200 (terminal capability (information); for example, UE capability), etc. from the UE 200 as an uplink (UL) signal.
 DL信号の送信に使用されるチャネルには、例えば、データチャネル及び制御チャネルが含まれる。例えば、データチャネルには、物理下りリンク共有チャネル(PDSCH)が含まれてよく、制御チャネルには、物理下りリンク制御チャネル(PDCCH)が含まれてよい。例えば、gNB100は、UE200に対して、PDCCHを用いて制御情報を送信し、PDSCHを用いてDLのデータ信号を送信する。なお、PDSCHは下りリンク共有チャネルの一例であり、PDCCHは下りリンク制御チャネルの一例である。なお、PDCCHは、PDCCHにおいて送信される下りリンク制御情報(DCI:Downlink Control Information)、制御情報等で読み替えられてもよい。 Channels used for transmitting DL signals include, for example, data channels and control channels. For example, data channels may include a physical downlink shared channel (PDSCH), and control channels may include a physical downlink control channel (PDCCH). For example, the gNB 100 transmits control information to the UE 200 using the PDCCH, and transmits a DL data signal using the PDSCH. Note that PDSCH is an example of a downlink shared channel, and PDCCH is an example of a downlink control channel. Note that PDCCH may be replaced with downlink control information (DCI), control information, etc. transmitted on PDCCH.
 DL信号に含まれる参照信号には、例えば、例えば、DMRS(Demodulation Reference Signal)、PTRS(Phase Tracking Reference Signal)、CSI-RS(Channel State Information - Reference Signal)、SRS(Sounding Reference Signal)及び位置情報用のPRS(Positioning Reference Signal)のうちの少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、DLのデータ信号の復調に使用され、PDSCHを用いて送信される。 Reference signals included in the DL signal include, for example, DMRS (Demodulation Reference Signal), PTRS (Phase Tracking Reference Signal), CSI-RS (Channel State Information-Reference Signal), SRS (Sounding Reference Signal), and location information. At least one PRS (Positioning Reference Signal) for use may be included. For example, reference signals such as DMRS and PTRS are used to demodulate DL data signals and are transmitted using PDSCH.
 UE200は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の、無線通信機能を備えた通信装置である。 The UE 200 is a communication device with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine).
 UE200は、DLで制御信号又はデータ信号をgNB100から受信し、ULで制御信号又はデータ信号をgNB100へ送信することで、無線通信システム10により提供される各種通信サービスを利用する。また、UE200は、gNB100から送信される各種の参照信号を受信し、当該参照信号の受信結果に基づいて伝搬路品質の測定を実行する。 The UE 200 utilizes various communication services provided by the wireless communication system 10 by receiving a control signal or data signal from the gNB 100 via DL and transmitting the control signal or data signal to the gNB 100 via UL. Further, UE 200 receives various reference signals transmitted from gNB 100, and measures channel quality based on the reception results of the reference signals.
 例えば、UE200は、DL信号として、gNB100から、制御情報、設定情報等を受信する。 For example, the UE 200 receives control information, configuration information, etc. from the gNB 100 as a DL signal.
 また、例えば、UE200は、UL信号として、制御情報、データ信号、UE200の端末能力情報等をgNB100へ送信する。 Also, for example, the UE 200 transmits control information, data signals, terminal capability information of the UE 200, etc. to the gNB 100 as a UL signal.
 UL信号の送信に使用されるチャネルには、例えば、データチャネル及び制御チャネルが含まれる。例えば、データチャネルには、物理上りリンク共有チャネル(PUSCH)が含まれてよく、制御チャネルには、物理上りリンク制御チャネル(PUCCH)が含まれてよい。例えば、UE200は、PUCCHを用いて制御情報を送信し、PUSCHを用いてULのデータ信号を送信する。なお、PUSCHは上りリンク共有チャネルの一例であり、PUCCHは上りリンク制御チャネルの一例である。共有チャネルはデータチャネルと呼ばれてもよい。なお、PUSCH又はPUCCHは、PUSCH又はPUCCHにおいて送信される上りリンク制御情報(UCI:Uplink Control Information)、制御情報等で読み替えられてもよい。 Channels used for transmitting UL signals include, for example, data channels and control channels. For example, data channels may include a physical uplink shared channel (PUSCH), and control channels may include a physical uplink control channel (PUCCH). For example, the UE 200 transmits control information using the PUCCH, and transmits a UL data signal using the PUSCH. Note that PUSCH is an example of an uplink shared channel, and PUCCH is an example of an uplink control channel. A shared channel may be called a data channel. Note that PUSCH or PUCCH may be replaced with uplink control information (UCI), control information, etc. transmitted on PUSCH or PUCCH.
 UL信号に含まれる参照信号には、例えば、DMRS、PTRS、CSI-RS、SRSRS及び位置情報用のPRSのうちの少なくとも1つが含まれてよい。例えば、DMRS、PTRS等の参照信号は、ULのデータ信号の復調に使用され、PUSCHを用いて送信される。 The reference signal included in the UL signal may include, for example, at least one of DMRS, PTRS, CSI-RS, SRSRS, and PRS for location information. For example, reference signals such as DMRS and PTRS are used to demodulate UL data signals and are transmitted using PUSCH.
 <基地局の省電力の議論状況>
 次に、3GPPのRelease 18における基地局の省電力の議論状況について説明する。基地局の送信及び受信の両方の観点からネットワークエネルギー削減を向上させるための、基地局側及び端末側での技術が検討されている。例えば、端末からの潜在的なサポート/フィードバックと潜在的な端末支援情報とを用いて、時間ドメイン、周波数ドメイン、空間ドメイン及び電力ドメインでの1つ以上のネットワークエネルギー削減技術において、より効率的な動作を動的及び/又は半静的に実現し、送信及び/又は受信のより細かい粒度の適応を実現する方法が検討されている(例えば、非特許文献2)。しかしながら、従来、基地局の消費電力を削減する適切な手法は提案されていない。
<Status of discussion on base station power saving>
Next, the status of discussions on base station power saving in 3GPP Release 18 will be explained. Base station-side and terminal-side techniques are being considered to improve network energy reduction from both base station transmit and receive perspectives. For example, the potential support/feedback from the terminal and the potential terminal assistance information can be used to improve efficiency in one or more network energy reduction techniques in the time domain, frequency domain, spatial domain and power domain. A method of realizing operation dynamically and/or semi-statically and realizing finer-grained adaptation of transmission and/or reception is being considered (for example, Non-Patent Document 2). However, no suitable method for reducing power consumption of base stations has been proposed so far.
 <SSBについて>
 基地局から端末に送信される信号及び/又はチャネルには、周期的に送信されるものがある。そのような信号及び/又はチャネルの例には、同期信号ブロック(SSB:Synchronization Signal Block)が含まれる。なお、以下では、SSBをSynchronization/PBCH block又はSS/PBCH blockと呼ぶこともある。
<About SSB>
Some of the signals and/or channels transmitted from the base station to the terminal are periodically transmitted. Examples of such signals and/or channels include Synchronization Signal Blocks (SSB). Note that hereinafter, SSB may be referred to as Synchronization/PBCH block or SS/PBCH block.
 <SSBに関わる基本的な動作について>
 まず、本実施の形態におけるSSB(その送信周期又は単に周期(periodicity)等)に関わる基本的な動作を説明する。SSBは、UE200により、例えば、通信に必要なセルの周波数、受信タイミング等の検出に、あるいは、受信電力(例えば、SS-RSRP(Synchronization Signal Reference Signal Received Power))又は受信品質(例えば、SS-RSRQ(Synchronization Signal Reference Signal Received Quality))の測定に、用いられる。また、UE200は、あるセルのSSB内のPBCH(物理報知チャネル)に含まれる情報を読み取ることで、そのセルの基本的な情報を把握する。
<About basic operations related to SSB>
First, basic operations related to SSB (its transmission period or periodicity, etc.) in this embodiment will be explained. SSB is used by the UE 200 to detect, for example, the cell frequency and reception timing necessary for communication, or to detect reception power (for example, SS-RSRP (Synchronization Signal Reference Signal Received Power)) or reception quality (for example, SS-RSRP). It is used to measure RSRQ (Synchronization Signal Reference Signal Received Quality). Furthermore, the UE 200 grasps the basic information of a certain cell by reading information included in the PBCH (physical broadcast channel) in the SSB of that cell.
 NRでは、gNB100は、1個以上のSSBを、SSB(送信)用の時間(タイム)ウィンドウ(time window)内で送信してよい。より具体的には、1個以上のSSBは、(無線)フレーム(例えば、10ms)の前半又は後半の半分(half frame:半フレーム)の時間リソース内で、時分割多重方式で周期的に送信されてよい。したがって、SSB用の時間ウィンドウは5msであってよい。そのため、デフォルトとして、UE200は、時間ウィンドウが5msであると想定してよい。なお、1つの時間ウィンドウ内で送信される1周期分の1個以上のSSBは、バースト、バーストセット、SSバースト、SSバーストセット、SSBバースト又はSSBバーストセット等と呼ばれる。 In NR, the gNB 100 may transmit one or more SSBs within a time window for SSB (transmission). More specifically, one or more SSBs are transmitted periodically in a time division multiplexed manner within the time resources of the first half or the second half of a (wireless) frame (e.g. 10 ms). It's okay to be. Therefore, the time window for SSB may be 5ms. Therefore, as a default, the UE 200 may assume that the time window is 5ms. Note that one or more SSBs for one period transmitted within one time window are called a burst, a burst set, an SS burst, an SS burst set, an SSB burst, an SSB burst set, or the like.
 時間ウィンドウ(5ms)又は半フレーム内で送信され得るSSBの最大数(Lmax)は、キャリア周波数/バンド及びSCSに応じて、以下のように定義されている。なお、Lmaxは、1以上の整数であってよい。 The maximum number of SSBs (L max ) that can be transmitted within a time window (5 ms) or half frame is defined as follows, depending on the carrier frequency/band and SCS: Note that L max may be an integer of 1 or more.
 Case A:SSBに対して15kHz SCS
 -3GHz以下のキャリア周波数では、Lmax=4
 -3GHzより高いキャリア周波数では、Lmax=8
Case A: 15kHz SCS for SSB
For carrier frequencies below -3 GHz, L max = 4
For carrier frequencies higher than -3 GHz, L max =8
 Case B:SSBに対して30kHz SCS(バンドn5/n66)
 -3GHz以下のキャリア周波数では、Lmax=4
 -3GHzより高いキャリア周波数では、Lmax=8
Case B: 30kHz SCS for SSB (band n5/n66)
For carrier frequencies below -3 GHz, L max = 4
For carrier frequencies higher than -3 GHz, L max =8
 Case C:SSBに対して30kHz SCS(バンドn5/n66以外のバンド)
 -FDDの場合の3GHz以下の又はTDDの場合の1.88GHz以下のキャリア周波数では、Lmax=4
 -FDDの場合の3GHzより高い又はTDDの場合の1.88GHzより高いキャリア周波数では、Lmax=8
Case C: 30kHz SCS for SSB (bands other than band n5/n66)
- For carrier frequencies below 3 GHz for FDD or below 1.88 GHz for TDD, L max =4
- For carrier frequencies higher than 3 GHz for FDD or higher than 1.88 GHz for TDD, L max =8
 Case D:SSBに対して120kHz SCS(FR2)
 -Lmax=64
Case D: 120kHz SCS (FR2) for SSB
-Lmax =64
 Case E:SSBに対して240kHz SCS(FR2)
 -Lmax=64
Case E: 240kHz SCS (FR2) for SSB
-Lmax =64
 図4は、あるセルにおいて、例えば20msといった周期(SSB transmission periodicity)で、1周期あたり1~Lmax個のSSBが、時間ウィンドウ(5ms)内で送信される例を示す図である。 FIG. 4 is a diagram showing an example in which in a certain cell, 1 to L max SSBs are transmitted within a time window (5 ms) at a period (SSB transmission periodicity) of, for example, 20 ms.
 図5は、キャリア周波数が3GHzより高い場合のCase Aにおける、SSBの配置例を示す図である。 FIG. 5 is a diagram showing an example of SSB arrangement in Case A when the carrier frequency is higher than 3 GHz.
 概して、図5に示すように、1個のSSB(例えば、SSB#0~SSB#7の各々)は、例えば4シンボル長であり、個々のSSBは、規定された位置から開始する。1個のSSBには、PBCH及び同期信号(PSS(プライマリ同期信号)、SSS(セカンダリ同期信号))が含まれる(図示せず)。 Generally, as shown in FIG. 5, one SSB (eg, each of SSB #0 to SSB #7) is, for example, four symbols long, and each SSB starts at a defined position. One SSB includes a PBCH and synchronization signals (PSS (primary synchronization signal), SSS (secondary synchronization signal)) (not shown).
 上記の通り、キャリア周波数が3GHzより高い場合のCase AにおけるLmaxは8である。一例として、図示するように、最大数である8個のSSB#0~SSB#7が、5msの時間ウィンドウ内で、サブフレーム0~サブフレーム3に配置されている。 As mentioned above, L max in Case A when the carrier frequency is higher than 3 GHz is 8. As an example, as shown in the figure, the maximum number of eight SSBs #0 to SSB #7 are arranged in subframes 0 to 3 within a time window of 5 ms.
 なお、15kHz SCSであるフレームは、SSB及びデータの送受信に使用されてよく、30kHz SCSであるフレーム及び60kHz SCSであるフレームは、データの送受信に使用されてよい。 Note that frames with 15 kHz SCS may be used for transmitting and receiving SSB and data, and frames with 30 kHz SCS and frames with 60 kHz SCS may be used for transmitting and receiving data.
 SSBの周期に関連するUE200の動作は、以下のケース1~3に分類される。 The operations of the UE 200 related to the SSB cycle are classified into the following cases 1 to 3.
 [ケース1:初期セル選択(initial cell selection)]
 ケース1の初期セル選択又は初期セルサーチ(初期アクセス)の時点では、UE200は、SSBを伴う半フレームが、2フレームの周期で発生すると想定してよい。すなわち、初期アクセス時、UE200は、SSBの周期が20msであると想定してSSBをモニタしてよい。
[Case 1: Initial cell selection]
At the time of initial cell selection or initial cell search (initial access) in case 1, the UE 200 may assume that half frames with SSB occur at a period of two frames. That is, at the time of initial access, the UE 200 may monitor the SSB assuming that the SSB period is 20 ms.
 [ケース2:SIB1受信からRRC接続状態(RRC Connected state (mode))になるまで]
 UE200は、あるセルへの初期アクセスの後、そのセルでSIB1(System Information Block 1)を受信し、RRC接続を行う。SIB1受信からRRC接続状態になるまでの期間において、SSBの送信周期は、ServingCellConfigCommonSIBにおけるssb-periodicityServingCellにより、gNB100からUE200に通知される。UE200は、通知された周期に基づいてSSBをモニタしてよい。周期は必須のパラメータであり、{ms5, ms10, ms20, ms40, ms80, ms160}(すなわち、{5ms,10ms,20ms,40ms,80ms,160ms})の範囲から選択された周期の値が、gNB100からUE200に通知される。
[Case 2: From SIB1 reception to RRC Connected state (mode)]
After initial access to a certain cell, the UE 200 receives SIB1 (System Information Block 1) in that cell and establishes an RRC connection. During the period from receiving SIB1 to entering the RRC connection state, the SSB transmission cycle is notified from gNB 100 to UE 200 by ssb-periodicityServingCell in ServingCellConfigCommonSIB. The UE 200 may monitor the SSB based on the notified period. The period is an essential parameter, and the period value selected from the range {ms5, ms10, ms20, ms40, ms80, ms160} (i.e., {5ms, 10ms, 20ms, 40ms, 80ms, 160ms}) is the gNB100 The UE 200 is notified from the UE 200.
 SSバーストセットにおけるSSBの位置(送信されているSSB)は、ServingCellConfigCommonSIBにおけるssb-PositionsInBurstにより、gNB100からUE200に通知される。以下で説明するように、時間ウィンドウ(半フレーム)内で送信され得るSSBの最大数(Lmax)に応じて、異なるパラメータが設定され、SSBの位置が通知される。 The position of the SSB in the SS burst set (SSB being transmitted) is notified from the gNB 100 to the UE 200 by ssb-PositionsInBurst in ServingCellConfigCommonSIB. As explained below, depending on the maximum number of SSBs (L max ) that can be transmitted within a time window (half frame), different parameters are set to signal the position of the SSBs.
 Lmaxが4又は8である場合、どのSSBが送信されているかが、図6Aに示すssb-PositionsInBurstにおけるフィールドinOneGroupにより、gNB100からUE200に通知される。inOneGroup(ビットマップ、ビットパターン)の各ビットは、SSバーストセットにおける各SSBインデックスに対応し、このビットマップにおける最上位ビット(MSB;1番目のビット、1番左のビット)は、SSBインデックス0用であり、次の上位ビットは、SSBインデックス1用である、等である。このビットマップ中の値「0」は、対応するSSBが送信されていないことを示すのに対し、このビットマップ中の値「1」は、対応するSSBが送信されていることを示す。なお、Lmaxが4である場合、UE200は、inOneGroupの下位4ビットを無視する。 When L max is 4 or 8, which SSB is being transmitted is notified from the gNB 100 to the UE 200 using the field inOneGroup in ssb-PositionsInBurst shown in FIG. 6A. Each bit of inOneGroup(bitmap, bit pattern) corresponds to each SSB index in the SS burst set, and the most significant bit (MSB; first bit, leftmost bit) in this bitmap is SSB index 0. The next most significant bit is for SSB index 1, and so on. A value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted. Note that when L max is 4, the UE 200 ignores the lower 4 bits of inOneGroup.
 一方、Lmaxが64である場合、ssb-PositionsInBurstにおけるさらなるフィールドgroupPresenceが設定される。最大で64個である可能性があるSSB(したがってSSBインデックス)は、8個のグループ(SSBグループと呼ぶ)に分けられ、どのSSBグループが存在するかが、groupPresenceにより、gNB100からUE200に通知される。groupPresence(ビットマップ、ビットパターン)の各ビットは、8個のSSBインデックスが含まれる各SSBグループに対応する。このビットマップにおけるMSBは、SSBインデックス0~7に対応し、次の上位ビットは、SSBインデックス8~15に対応する、等である。このビットマップ中の値「0」は、inOneGroupに従うSSBが存在しないことを示すのに対し、このビットマップ中の値「1」は、inOneGroupに従って、対応するSSBが送信されることを示す。inOneGroupにおけるMSBは、それぞれのSSBグループにおける1番目のSSBインデックス(SSBインデックス0、8、16、・・・)に対応し、次の上位ビットは、それぞれのSSBグループにおける2番目のSSBインデックス(SSBインデックス1、9、17、・・・)に対応する、等である。このビットマップ中の値「0」は、対応するSSBが送信されていないことを示すのに対し、このビットマップ中の値「1」は、対応するSSBが送信されていることを示す。 On the other hand, if L max is 64, an additional field groupPresence in ssb-PositionsInBurst is set. The SSBs (therefore SSB indexes), which can be up to 64, are divided into eight groups (referred to as SSB groups), and which SSB groups exist are notified from the gNB 100 to the UE 200 by groupPresence. Ru. Each bit of groupPresence (bitmap, bit pattern) corresponds to each SSB group that includes 8 SSB indices. The MSB in this bitmap corresponds to SSB indexes 0-7, the next most significant bit corresponds to SSB indexes 8-15, and so on. A value "0" in this bitmap indicates that there is no SSB according to inOneGroup, whereas a value "1" in this bitmap indicates that the corresponding SSB is transmitted according to inOneGroup. The MSB in inOneGroup corresponds to the first SSB index ( SSB index 0, 8, 16, ...) in each SSB group, and the next most significant bit corresponds to the second SSB index ( SSB index 0, 8, 16, etc.) in each SSB group. indexes 1, 9, 17, ...), and so on. A value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
 [ケース3:RRC接続状態の間]
 RRC接続状態の間におけるSSBの周期は、専用RRCシグナリングである、図6Bに示すServingCellConfigCommonにおけるssb-periodicityServingCellにより、gNB100からUE200に通知される。通知される値は、{ms5, ms10, ms20, ms40, ms80, ms160, spare2, spare1}(すなわち、{5ms,10ms,20ms,40ms,80ms,160ms,予備2,予備1})の範囲から選択される値である。もしも、ServingCellConfigCommonの中にssb-periodicityServingCellが存在しない場合、UE200は、SSBの周期が5msであると想定して(5msの周期を適用して)SSBをモニタする。
[Case 3: During RRC connection state]
The SSB period during the RRC connection state is notified from the gNB 100 to the UE 200 by ssb-periodicityServingCell in ServingCellConfigCommon shown in FIG. 6B, which is dedicated RRC signaling. The value to be notified can be selected from the range {ms5, ms10, ms20, ms40, ms80, ms160, spare2, spare1} (i.e., {5ms, 10ms, 20ms, 40ms, 80ms, 160ms, spare 2, spare 1}) is the value to be used. If ssb-periodicityServingCell does not exist in ServingCellConfigCommon, the UE 200 monitors the SSB assuming that the SSB period is 5 ms (applying the 5 ms period).
 SSバーストセットにおけるSSBの位置(送信されているSSB)は、ServingCellConfigCommonにおけるssb-PositionsInBurstにより、gNB100からUE200に通知される。以下で説明するように、時間ウィンドウ(半フレーム)内で送信され得るSSBの最大数(Lmax)に応じて、異なるパラメータが設定され、SSBの位置が通知される。 The position of the SSB in the SS burst set (SSB being transmitted) is notified from the gNB 100 to the UE 200 by ssb-PositionsInBurst in ServingCellConfigCommon. As explained below, depending on the maximum number of SSBs (L max ) that can be transmitted within a time window (half frame), different parameters are set to signal the position of the SSBs.
 Lmaxが4である場合、どのSSBが送信されているかが、図6Bに示すssb-PositionsInBurstにおけるフィールドshortBitmapにより、gNB100からUE200に通知される。shortBitmap(ビットマップ、ビットパターン)の各ビットは、SSバーストセットにおける各SSBインデックスに対応し、このビットマップにおけるMSBは、SSBインデックス0用であり、次の上位ビットは、SSBインデックス1用である、等である。このビットマップ中の値「0」は、対応するSSBが送信されていないことを示すのに対し、このビットマップ中の値「1」は、対応するSSBが送信されていることを示す。 When L max is 4, which SSB is being transmitted is notified from the gNB 100 to the UE 200 using the field shortBitmap in ssb-PositionsInBurst shown in FIG. 6B. Each bit of shortBitmap (bitmap, bit pattern) corresponds to each SSB index in the SS burst set, the MSB in this bitmap is for SSB index 0, and the next most significant bit is for SSB index 1. , etc. A value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
 Lmaxが8である場合、どのSSBが送信されているかが、図6Bに示すssb-PositionsInBurstにおけるフィールドmediumBitmapにより、gNB100からUE200に通知される。mediumBitmap(ビットマップ、ビットパターン)の各ビットは、SSバーストセットにおける各SSBインデックスに対応し、このビットマップにおけるMSBは、SSBインデックス0用であり、次の上位ビットは、SSBインデックス1用である、等である。このビットマップ中の値「0」は、対応するSSBが送信されていないことを示すのに対し、このビットマップ中の値「1」は、対応するSSBが送信されていることを示す。 When L max is 8, which SSB is being transmitted is notified from the gNB 100 to the UE 200 using the field mediumBitmap in ssb-PositionsInBurst shown in FIG. 6B. Each bit of mediumBitmap (bitmap, bit pattern) corresponds to each SSB index in the SS burst set, the MSB in this bitmap is for SSB index 0, and the next most significant bit is for SSB index 1. , etc. A value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
 Lmaxが64である場合、どのSSBが送信されているかが、図6Bに示すssb-PositionsInBurstにおけるフィールドlongBitmapにより、gNB100からUE200に通知される。longBitmap(ビットマップ)の各ビットは、SSバーストセットにおける各SSBインデックスに対応し、このビットマップにおけるMSBは、SSBインデックス0用であり、次の上位ビットは、SSBインデックス1用である、等である。このビットマップ中の値「0」は、対応するSSBが送信されていないことを示すのに対し、このビットマップ中の値「1」は、対応するSSBが送信されていることを示す。 When L max is 64, which SSB is being transmitted is notified from the gNB 100 to the UE 200 using the field longBitmap in ssb-PositionsInBurst shown in FIG. 6B. Each bit of the longBitmap corresponds to each SSB index in the SS burst set, the MSB in this bitmap is for SSB index 0, the next most significant bit is for SSB index 1, etc. be. A value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
 <検討>
 現在、カーボンニュートラル及びSDGs(Sustainable Development Goals)を達成するために、基地局の消費電力を削減することの重要性が高まっている。また、5Gは、新しい機能及び性能向上を実現するが、基地局及び端末のエネルギー要件は厳しくなる。端末については、省電力に関する標準化が進められているが、基地局の消費電力を削減する技術は標準化されていないという課題がある。
<Consideration>
Currently, in order to achieve carbon neutrality and SDGs (Sustainable Development Goals), it is becoming increasingly important to reduce power consumption of base stations. 5G also enables new features and performance improvements, but increases the energy requirements of base stations and terminals. Regarding terminals, standardization regarding power saving is progressing, but there is a problem in that technology for reducing power consumption of base stations has not been standardized.
 基地局の消費電力を削減する方法の1つとして、信号及び/又はチャネルの送信を抑制することが考えられる。上述したSSB等の周期的なDL送信は、gNB100の電力をコンスタントに消費するので、gNB100の消費電力を削減するには、SSBの送信機会(transmission occasion)を削減することが重要である。しかしながら、単にSSB等の周期を長くする等してSSBの送信機会を削減するだけでは、UE200に想定外の事象が生じて、UE200が適切に動作できないおそれがある。また、これに対応して、gNB100も適切に動作できないおそれがある。 One possible method for reducing the power consumption of a base station is to suppress signal and/or channel transmission. Periodic DL transmission such as the above-mentioned SSB constantly consumes power of the gNB 100, so in order to reduce the power consumption of the gNB 100, it is important to reduce transmission occasions of SSB. However, simply reducing the SSB transmission opportunities by lengthening the SSB etc. period may cause an unexpected event to occur in the UE 200, and the UE 200 may not be able to operate properly. Correspondingly, the gNB 100 may also not be able to operate properly.
 <実施の形態の概要>
 そこで、本実施の形態の以下の説明では、基地局100の消費電力を削減するための提案技術について、SSBを例に取って説明する。しかしながら、SSBは、基地局100が周期的に送信するDL信号(DL情報と呼んでもよい)の一例に過ぎず、以下で説明する提案技術は、必要に応じて、SSB以外の基地局100が周期的に送信するDL信号(例えば、チャネル状態情報用参照信号(CSI-RS))に対して適用されてもよい。SSB(セット)、CSI-RS等は、周期的信号、周期的送信信号、基地局から端末に周期的に送信される信号等と称されてもよい。
<Overview of embodiment>
Therefore, in the following description of this embodiment, a proposed technique for reducing the power consumption of base station 100 will be described using SSB as an example. However, the SSB is only an example of a DL signal (which may also be called DL information) that the base station 100 periodically transmits, and the proposed technology described below can be applied to the base station 100 other than the SSB as needed. It may be applied to a DL signal (for example, a channel state information reference signal (CSI-RS)) that is periodically transmitted. SSB (set), CSI-RS, etc. may be referred to as a periodic signal, a periodic transmission signal, a signal periodically transmitted from a base station to a terminal, or the like.
 以下に記載される提案技術では、セル毎に、各々1個以上のSSBが含まれる2個以上(すなわち複数)のSSBセット及びその設定(情報)(指示(情報)と称されてもよい)が設定され、複数のSSBセットが、設定された周期で、時間ウィンドウ内で、基地局100から端末200に送信されてよい。時間ウィンドウは、(端末200が)SSB(周期的送信信号)をモニタする時間区間、(端末200が)SSBをモニタする期間、(基地局100が)SSB(周期的送信信号)を送信する時間区間、(基地局100が)SSBを送信する期間等と称されてもよい。以下、具体的な提案内容について説明する。 In the proposed technology described below, each cell includes two or more (i.e., multiple) SSB sets each including one or more SSBs and their settings (information) (which may also be referred to as instructions (information)). may be set, and a plurality of SSB sets may be transmitted from the base station 100 to the terminal 200 within a time window at the set period. The time window is a time interval during which (terminal 200) monitors SSB (periodic transmission signal), a period during which (terminal 200) monitors SSB, and a time during which (base station 100) transmits SSB (periodic transmission signal). It may also be referred to as a section, a period in which (the base station 100) transmits SSB, or the like. The specific contents of the proposal will be explained below.
 なお、以下で説明する提案1~7は、矛盾しない限り、又は、組み合わせられないと明示的に記載されていない限り、適宜に組み合わされてもよい。 Note that Proposals 1 to 7 described below may be combined as appropriate, as long as they do not contradict each other or unless it is explicitly stated that they cannot be combined.
 <提案1>SSBの(送信)周期について
 [オプション1]同一の周期
 提案1のオプション1では、複数のSSBセットのそれぞれの周期が同一であってよい。
<Proposal 1> Regarding SSB (transmission) cycles [Option 1] Same cycle In option 1 of Proposal 1, the cycles of multiple SSB sets may be the same.
 例えば、全てのSSBセットの(同一の)周期が、図6A及び図6Bに示すssb-periodicityServingCell等の既存のパラメータによって、基地局100から端末200に通知されてよい。すなわち、基地局100は、全てのSSBセットの(同一の)周期を示すssb-periodicityServingCell等の既存のパラメータを、端末200に送信してよく、端末200は、全てのSSBセットの(同一の)周期を示すssb-periodicityServingCell等の既存のパラメータを、基地局100から受信してよい。 For example, the (same) period of all SSB sets may be notified from the base station 100 to the terminal 200 using an existing parameter such as ssb-periodicityServingCell shown in FIGS. 6A and 6B. That is, the base station 100 may transmit an existing parameter such as ssb-periodicityServingCell indicating the (same) period of all SSB sets to the terminal 200, and the terminal 200 may send the (same) period of all SSB sets to the terminal 200. Existing parameters such as ssb-periodicityServingCell indicating the period may be received from the base station 100.
 (同一の)周期の値の範囲は、図6A及び図6Bに示すように、{ms5, ms10, ms20, ms40, ms80, ms160}(すなわち、{5ms,10ms,20ms,40ms,80ms,160ms})であってよい。 The range of (same) period values is {ms5, ms10, ms20, ms40, ms80, ms160} (i.e., {5ms, 10ms, 20ms, 40ms, 80ms, 160ms}) as shown in Figures 6A and 6B. ).
 [オプション2]異なる周期
 提案1のオプション2では、複数のSSBセットのうちの少なくとも2個のSSBセットの周期が互いに異なってよい。別言すると、提案1のオプション2では、複数のSSBセットのうちの少なくとも2個のSSBセットの周期が、互いに独立して設定されてもよい。以下では、複数のSSBセットの数が2個である場合を例に取って説明するが、複数のSSBセットの数が3個以上である場合も同様の説明が適用される。
[Option 2] Different periods In option 2 of proposal 1, the periods of at least two SSB sets among the plurality of SSB sets may be different from each other. In other words, in option 2 of proposal 1, the periods of at least two SSB sets among the plurality of SSB sets may be set independently from each other. In the following, a case in which the number of multiple SSB sets is two will be explained as an example, but the same explanation applies to a case where the number of multiple SSB sets is three or more.
 例えば、2個のSSBセットのうちの1番目のSSBセット又は第1のSSBセットの周期が、図7A及び図7Bに示すssb-periodicityServingCell等の既存のパラメータによって、基地局100から端末200に通知されてよい。すなわち、基地局100は、1番目のSSBセットの周期を示すssb-periodicityServingCell等の既存のパラメータを、端末200に送信してよく、端末200は、1番目のSSBセットの周期を示すssb-periodicityServingCell等の既存のパラメータを、基地局100から受信してよい。 For example, the first SSB set of two SSB sets or the period of the first SSB set is notified from the base station 100 to the terminal 200 using existing parameters such as ssb-periodicityServingCell shown in FIGS. 7A and 7B. It's okay to be. That is, the base station 100 may transmit an existing parameter such as ssb-periodicityServingCell indicating the period of the first SSB set to the terminal 200, and the terminal 200 may transmit an existing parameter such as ssb-periodicityServingCell indicating the period of the first SSB set. Existing parameters, such as, may be received from the base station 100.
 1番目のSSBセットの周期の値の範囲は、図7A及び図7Bに示すように、{ms5, ms10, ms20, ms40, ms80, ms160}(すなわち、{5ms,10ms,20ms,40ms,80ms,160ms})であってよい。 The range of period values for the first SSB set is {ms5, ms10, ms20, ms40, ms80, ms160} (i.e., {5ms, 10ms, 20ms, 40ms, 80ms, 160ms}).
 2個のSSBセットのうちの2番目のSSBセット又は第2のSSBセットの周期が、図7A及び図7Bに示すssb-periodicityServingCell2といった別個の新たなパラメータによって、基地局100から端末200に通知されてよい。すなわち、基地局100は、2番目のSSBセットの周期を示すssb-periodicityServingCell2といった新たなパラメータを、端末200に送信してよく、端末200は、2番目のSSBセットの周期を示すssb-periodicityServingCell2といった新たなパラメータを、基地局100から受信してよい。複数のSSBセットの数が3個以上である場合も同様である。例えば、3番目のSSBセット又は第3のSSBセットの周期が、3番目のSSBセットの周期を示すssb-periodicityServingCell3といった別個の新たなパラメータによって、基地局100から端末200に通知されてよい。 The second SSB set of the two SSB sets or the period of the second SSB set is notified from the base station 100 to the terminal 200 using a separate new parameter such as ssb-periodicityServingCell2 shown in FIGS. 7A and 7B. It's fine. That is, the base station 100 may transmit a new parameter such as ssb-periodicityServingCell2 indicating the period of the second SSB set to the terminal 200, and the terminal 200 may transmit a new parameter such as ssb-periodicityServingCell2 indicating the period of the second SSB set. New parameters may be received from base station 100. The same applies when the number of multiple SSB sets is three or more. For example, the third SSB set or the period of the third SSB set may be notified from the base station 100 to the terminal 200 using a separate new parameter such as ssb-periodicityServingCell3 indicating the period of the third SSB set.
 2番目及び3番目のSSBセットの周期の値の範囲といった、1番目のSSBセット以外の周期の値の範囲は、図7A及び図7Bに示すように、{ms5, ms10, ms20, ms40, ms80, ms160, ms320, ms640}(すなわち、{5ms,10ms,20ms,40ms,80ms,160ms,320ms,640ms})であってよい。しかしながら、本開示は、この範囲に限定されず、他の値が除外されるものではない。例えば、値の範囲には、640msより大きな値が含まれてもよい。 The range of period values other than the first SSB set, such as the range of period values of the second and third SSB sets, is {ms5, ms10, ms20, ms40, ms80, as shown in FIGS. 7A and 7B. , ms160, ms320, ms640} (ie, {5ms, 10ms, 20ms, 40ms, 80ms, 160ms, 320ms, 640ms}). However, the present disclosure is not limited to this range and other values are not excluded. For example, the range of values may include values greater than 640ms.
 ssb-periodicityServingCell、ssb-periodicityServingCell2等は、SSB(周期的送信信号)に関する設定、SSBの(送信)周期に関する設定等と称されてもよい。 ssb-periodicityServingCell, ssb-periodicityServingCell2, etc. may be referred to as settings related to SSB (periodic transmission signal), settings related to SSB (transmission) cycle, etc.
 なお、上記では、2番目のSSBセットの周期が、独立して、ssb-periodicityServingCell2といった別個の新たなパラメータによって、通知される例を示したが、本開示はこれに限定されない。例えば、2番目のSSBセットの周期が、1番目のSSBセットの周期に基づいて決定されてもよい。2番目のSSBセットの周期が、1番目のSSBセットの周期に特定の値を加算することによって決定されてもよいし、1番目のSSBセットの周期に特定の値を乗算することによって決定されてもよい。この場合、加算又は乗算する特定の値は、基地局100から端末200に通知されてもよいし、端末200において予め設定されてもよいし、仕様において規定されていてもよい。なお、3番目以降のSSBセットの周期についても、同様に、1番目のSSBセットの周期及び/又は他のSSBセットの周期に基づいて決定されてもよい。 Although the above example shows that the period of the second SSB set is independently notified by a separate new parameter such as ssb-periodicityServingCell2, the present disclosure is not limited to this. For example, the period of the second SSB set may be determined based on the period of the first SSB set. The period of the second SSB set may be determined by adding a certain value to the period of the first SSB set, or may be determined by multiplying the period of the first SSB set by a certain value. It's okay. In this case, the specific value to be added or multiplied may be notified from the base station 100 to the terminal 200, may be set in advance in the terminal 200, or may be specified in the specifications. Note that the cycles of the third and subsequent SSB sets may be similarly determined based on the cycles of the first SSB set and/or the cycles of other SSB sets.
 提案1では、端末200は、基地局100から、ssb-periodicityServingCell、ssb-periodicityServingCell2等の、SSBの周期に関する設定を受信してよい。端末200は、受信したSSBの周期に関する設定に従って、当該設定が示す周期でSSBが基地局100から送信されていると想定して、基地局100からのSSBをモニタしてよい。端末200は、基地局100による設定に従って基地局100により送信されたSSBを受信してよい。 In proposal 1, the terminal 200 may receive settings related to the SSB period, such as ssb-periodicityServingCell and ssb-periodicityServingCell2, from the base station 100. The terminal 200 may monitor the SSB from the base station 100 according to the setting regarding the period of the received SSB, assuming that the SSB is being transmitted from the base station 100 at the period indicated by the setting. The terminal 200 may receive the SSB transmitted by the base station 100 according to the settings made by the base station 100.
 また、提案1では、基地局100は、ssb-periodicityServingCell、ssb-periodicityServingCell2等の、SSBの周期に関する設定を、端末200に送信してよい。基地局100は、基地局100による設定に基づく周期で端末200によりSSBがモニタされていると想定してよい。基地局100は、基地局100による設定に基づく周期で、SSBを端末200に送信してよい。 Furthermore, in proposal 1, the base station 100 may transmit settings related to the SSB period, such as ssb-periodicityServingCell and ssb-periodicityServingCell2, to the terminal 200. The base station 100 may assume that the SSB is monitored by the terminal 200 at a period based on the settings made by the base station 100. The base station 100 may transmit the SSB to the terminal 200 at a cycle based on the settings made by the base station 100.
 提案1のオプション1によれば、複数のSSBセットが送受信される場合でも同一の周期が用いられるので、既存技術との互換性を持たせることができる。 According to option 1 of proposal 1, the same cycle is used even when multiple SSB sets are transmitted and received, so compatibility with existing technology can be achieved.
 提案1のオプション2によれば、複数のSSBセットの周期を異ならせることにより、あるSSBセットに含まれるSSBが送信されない時間ウィンドウが生じることになるので、SSBの送信機会を削減することができる。これにより、基地局100の省電力を実現することができる。 According to option 2 of proposal 1, by making the periods of multiple SSB sets different, there will be a time window in which SSBs included in a certain SSB set are not transmitted, so it is possible to reduce the chances of SSB transmission. . Thereby, power saving of the base station 100 can be realized.
 <提案2>SSBセットあたりのSSB数について
 [オプション1]各SSBセットに含まれるSSBの数は同一
 提案2のオプション1では、複数のSSBセットの各々に含まれるSSBの数は同一であってよい。
<Proposal 2> Regarding the number of SSBs per SSB set [Option 1] The number of SSBs included in each SSB set is the same In option 1 of Proposal 2, the number of SSBs included in each of multiple SSB sets is the same. good.
 例えば、2個のSSBセットが存在し、かつ、キャリア周波数が3GHzより高い場合のCase Aが想定される(すなわち、Lmaxが8である)場合、2個のSSBセットのうちの1番目のSSBセット又は第1のSSBセットは、4個のSSBを含んでもよく、2個のSSBセットのうちの2番目のSSBセット又は第2のSSBセットは、4個のSSBを含んでもよい。すなわち、1番目のSSBセットに含まれるSSBの数と2番目のSSBセットに含まれるSSBの数とは同一であり、これらの数の和がLmax以下であればよい。3個以上のSSBセットが存在する場合も同様に、各SSBセットに含まれるSSBの数が同一であり、これらの数の和がLmax以下であればよい。 For example, if Case A is assumed where there are two SSB sets and the carrier frequency is higher than 3 GHz (i.e., L max is 8), then the first of the two SSB sets The SSB set or the first SSB set may include four SSBs, and the second SSB set of the two SSB sets or the second SSB set may include four SSBs. That is, the number of SSBs included in the first SSB set and the number of SSBs included in the second SSB set are the same, and the sum of these numbers only needs to be less than or equal to L max . Similarly, even when there are three or more SSB sets, it is sufficient that the number of SSBs included in each SSB set is the same and the sum of these numbers is equal to or less than L max .
 [オプション2]各SSBセットに含まれるSSBの数は同一又は異なる
 提案2のオプション2では、複数のSSBセットの各々に含まれるSSBの数は、同一であってもよいし、異なってもよい。
[Option 2] The number of SSBs included in each SSB set may be the same or different In option 2 of Proposal 2, the number of SSBs included in each of multiple SSB sets may be the same or different. .
 例えば、2個のSSBセットが存在し、かつ、キャリア周波数が3GHzより高い場合のCase Aが想定される(すなわち、Lmaxが8である)場合、2個のSSBセットのうちの1番目のSSBセット又は第1のSSBセットは、5個のSSBを含んでもよく、2個のSSBセットのうちの2番目のSSBセット又は第2のSSBセットは、3個のSSBを含んでもよい。すなわち、1番目のSSBセットに含まれるSSBの数と2番目のSSBセットに含まれるSSBの数とは異なってもよく(又は、同一であってもよく)、これらの数の和がLmax以下であればよい。3個以上のSSBセットが存在する場合も同様に、各SSBセットに含まれるSSBの数が少なくとも2つ異なってもよく(全て同一であってもよく)、これらの数の和がLmax以下であればよい。 For example, if Case A is assumed where there are two SSB sets and the carrier frequency is higher than 3 GHz (i.e., L max is 8), then the first of the two SSB sets The SSB set or the first SSB set may include 5 SSBs, and the second SSB set of the two SSB sets or the second SSB set may include 3 SSBs. That is, the number of SSBs included in the first SSB set and the number of SSBs included in the second SSB set may be different (or may be the same), and the sum of these numbers is L max The following is sufficient. Similarly, when there are three or more SSB sets, the number of SSBs included in each SSB set may be different by at least two (or all may be the same), and the sum of these numbers is less than or equal to L max . That's fine.
 提案2のオプション1によれば、複数のSSBセットの各々に含まれるSSBの数が同一であるので、SSBセット毎に処理を変える必要がない。 According to option 1 of proposal 2, since the number of SSBs included in each of the plurality of SSB sets is the same, there is no need to change the processing for each SSB set.
 提案2のオプション2によれば、複数のSSBセットの各々に含まれるSSBの数を異ならせることができるので、状況に応じた柔軟な対処が可能である。これにより、基地局100の省電力を実現することができる。 According to Option 2 of Proposal 2, the number of SSBs included in each of the plurality of SSB sets can be made different, so flexible measures can be taken depending on the situation. Thereby, power saving of the base station 100 can be realized.
 <提案3>全てのSSBセットに含まれるSSBの総数の最大数(Lmax)について
 [オプション1]Release 15/16/17における総数と同数
 提案3のオプション1では、全てのSSBセットに含まれるSSBの総数の最大数(Lmax)は、Release 15/16/17における最大数(Lmax)、すなわち、既存のLmaxと同数であってよい。
<Proposal 3> Regarding the maximum number (L max ) of the total number of SSBs included in all SSB sets [Option 1] Same number as the total number in Release 15/16/17 In option 1 of Proposal 3, the maximum number (L max ) of the total number of SSBs included in all SSB sets The maximum number (L max ) of the total number of SSBs may be the same as the maximum number (L max ) in Release 15/16/17, ie, the existing L max .
 例えば、Case Aにおいて、3GHz以下のキャリア周波数では、Lmax=4であってよく、3GHzより高いキャリア周波数では、Lmax=8であってよい。Case B~Eについても同様であってよい。 For example, in Case A, for carrier frequencies below 3 GHz, L max =4, and for carrier frequencies higher than 3 GHz, L max =8. The same may apply to Cases B to E.
 提案3のオプション1によれば、既存技術との互換性を持たせることができる。 According to option 1 of proposal 3, compatibility with existing technology can be achieved.
 [オプション2]Release 15/16/17における総数より多い
 提案3のオプション2では、全てのSSBセットに含まれるSSBの総数の最大数(Lmax)は、Release 15/16/17における最大数(Lmax)、すなわち、既存のLmaxより多くてよい。
[Option 2] Greater than the total number in Release 15/16/17 In option 2 of proposal 3, the maximum number (L max ) of the total number of SSBs included in all SSB sets is the maximum number in Release 15/16/17 ( L max ), that is, it may be greater than the existing L max .
 例えば、Case Aにおいて、3GHz以下のキャリア周波数では、各SSBセットについてSSBの最大数(L’max)は4であってよく、3GHzより高いキャリア周波数では、各SSBセットについてSSBの最大数(L’max)は8であってよい。したがって、Lmax=max(N,SSBセットの数*L’max)であってよい。ここで、Nは、制限がない場合に半フレームに配置され得るSSBの最大数であり、例えば、Case Aでは、N=10である。また、max(a,b)は、aとbとのうち大きい方を表す。Case B~Eについても同様であってよい。 For example, in Case A, for carrier frequencies below 3 GHz, the maximum number of SSBs (L' max ) for each SSB set may be 4, and for carrier frequencies higher than 3 GHz, the maximum number of SSBs (L' max ) for each SSB set may be 4. ' max ) may be 8. Therefore, L max = max(N, number of SSB sets*L' max ). Here, N is the maximum number of SSBs that can be placed in a half frame if there is no limit, for example, in Case A, N=10. Further, max(a, b) represents the larger of a and b. The same may apply to Cases B to E.
 [オプション3]Release 15/16/17における総数より少ない
 提案3のオプション3では、全てのSSBセットに含まれるSSBの総数の最大数(Lmax)は、Release 15/16/17における最大数(Lmax)、すなわち、既存のLmaxより少なくてよい。
[Option 3] Less than the total number in Release 15/16/17 In option 3 of proposal 3, the maximum number (L max ) of the total number of SSBs included in all SSB sets is less than the maximum number in Release 15/16/17 ( L max ), that is, it may be less than the existing L max .
 例えば、Case Aにおいて、3GHz以下のキャリア周波数では、Lmax=2であってよく、3GHzより高いキャリア周波数では、Lmax=4であってよい。Case B~Eについても同様であってよい。 For example, in Case A, for carrier frequencies below 3 GHz, L max =2 may be used, and for carrier frequencies higher than 3 GHz, L max =4 may be used. The same may apply to Cases B to E.
 <提案4>SSBセットあたりのSSBインデックスについて
 [オプション1]全てのSSBセットに含まれるSSBに対して連続的
 提案4のオプション1では、全てのSSBセットに含まれるSSBに対して連続する番号のSSBインデックスが対応付けられてよい。この場合、互いに異なるSSBセットの中に、同じSSBインデックスが対応付けられるSSBが含まれない。
<Proposal 4> About SSB index per SSB set [Option 1] Continuous number for SSB included in all SSB sets In option 1 of proposal 4, consecutive number for SSB included in all SSB sets. An SSB index may be associated. In this case, mutually different SSB sets do not include SSBs that are associated with the same SSB index.
 例えば、2個のSSBセットが存在し、キャリア周波数が3GHzより高い場合のCase Aが想定され(すなわち、Lmaxが8であり)、かつ、2個のSSBセットのうちの1番目のSSBセット又は第1のSSBセットが4個のSSBを含み、2個のSSBセットのうちの2番目のSSBセット又は第2のSSBセットが4個のSSBを含む場合、1番目のSSBセットに含まれる4個のSSBに対して、SSBインデックス0~3が対応付けられてよく、2番目のSSBセットに含まれる4個のSSBに対して、SSBインデックス4~7が対応付けられてよい。3個以上のSSBセットが存在する場合も同様に、全てのSSBセットに含まれるSSBに対して、1番目のSSBセットに含まれるSSB~最後のSSBセットに含まれるSSBに対して、SSBインデックス0~M-1(Mは、全てのSSBセットに含まれるSSBの総数)が対応付けられてよい。 For example, Case A is assumed where there are two SSB sets and the carrier frequency is higher than 3 GHz (i.e., L max is 8), and the first SSB set of the two SSB sets or included in the first SSB set if the first SSB set includes 4 SSBs and the second SSB set of the two SSB sets or the second SSB set includes 4 SSBs. SSB indexes 0 to 3 may be associated with the four SSBs, and SSB indexes 4 to 7 may be associated with the four SSBs included in the second SSB set. Similarly, when there are three or more SSB sets, the SSB index is set for the SSBs included in all SSB sets, and the SSBs included in the first SSB set to the last SSB set. 0 to M-1 (M is the total number of SSBs included in all SSB sets) may be associated.
 [オプション2]SSBセット毎に別個
 提案4のオプション2では、複数のSSBセットの各々に含まれるSSBに対して別個のSSBインデックスが対応付けられてよい。この場合、互いに異なるSSBセットの中に、同じSSBインデックスが対応付けられるSSBが含まれてよい。
[Option 2] Separate for each SSB set In option 2 of proposal 4, a separate SSB index may be associated with the SSB included in each of the plurality of SSB sets. In this case, mutually different SSB sets may include SSBs that are associated with the same SSB index.
 例えば、2個のSSBセットが存在し、キャリア周波数が3GHzより高い場合のCase Aが想定され(すなわち、Lmaxが8であり)、かつ、2個のSSBセットのうちの1番目のSSBセット又は第1のSSBセットが4個のSSBを含み、2個のSSBセットのうちの2番目のSSBセット又は第2のSSBセットが4個のSSBを含む場合、1番目のSSBセットに含まれる4個のSSBに対して、SSBインデックス0~3が対応付けられてよく、2番目のSSBセットに含まれる4個のSSBに対して、SSBインデックス0~3が対応付けられてよい。3個以上のSSBセットが存在する場合も同様に、各SSBセットに含まれるSSBに対して、SSBインデックス0~N-1(Nは、i番目のSSBセットに含まれるSSBの数)が対応付けられてよい。 For example, Case A is assumed where there are two SSB sets and the carrier frequency is higher than 3 GHz (i.e., L max is 8), and the first SSB set of the two SSB sets or included in the first SSB set if the first SSB set includes 4 SSBs and the second SSB set of the two SSB sets or the second SSB set includes 4 SSBs. SSB indexes 0 to 3 may be associated with the four SSBs, and SSB indexes 0 to 3 may be associated with the four SSBs included in the second SSB set. Similarly, when there are three or more SSB sets, the SSB index 0 to N i -1 (N i is the number of SSBs included in the i-th SSB set) for the SSBs included in each SSB set. may be associated.
 提案4のオプション1によれば、全てのSSBセットに含まれるSSBが同じ時間ウィンドウ内で送信される場合(例えば、後述する提案5のオプション1が適用される場合)には、既存技術との互換性を持たせることができる。 According to option 1 of proposal 4, if the SSBs included in all SSB sets are transmitted within the same time window (e.g., when option 1 of proposal 5 described below is applied), there is no difference with existing technology. Can be made compatible.
 提案4のオプション2によれば、異なるSSBセットに含まれるSSBが異なる時間ウィンドウ内で送信される場合(例えば、後述する提案5のオプション2が適用される場合)には、既存技術との互換性を持たせることができる。 According to option 2 of proposal 4, if SSBs included in different SSB sets are transmitted within different time windows (e.g., when option 2 of proposal 5 described below is applied), compatibility with existing technology It can be given gender.
 <提案5>時間ウィンドウ及びその開始位置について
 [オプション1]同一の時間ウィンドウ
 提案5のオプション1では、全てのSSBセットの時間ウィンドウが同一であってよい。
<Proposal 5> Regarding time windows and their starting positions [Option 1] Same time window In option 1 of proposal 5, the time windows of all SSB sets may be the same.
 図8Aに示すように、例えば、全てのSSBセット(例えば、図8Aに示す1番目のSSBセット及び2番目のSSBセット)に含まれるSSBが、同一の時間ウィンドウ内で、各SSB送信機会の中でより小さい方(早い方)のSSBセット(例えば、図8Aに示す1番目のSSBセット)に含まれるより小さい番号のSSBインデックスの方から順次に送信されてよい。すなわち、基地局100は、基地局100による設定に従って、設定された周期で、同一の時間ウィンドウ内で、端末200に、インデックス番号順に1番目のSSBセットに含まれるSSBを送信し、インデックス番号順に2番目のSSBセットに含まれるSSBを送信すること等を行ってよく、端末200は、設定された周期で基地局100から送信されたSSBを受信してよい。あるいは、例えば、全てのSSBセットに含まれるSSBのSSBインデックス番号が連続的である場合、小さい番号のSSBインデックスの方から順次にSSBが送信されてよい。すなわち、基地局100は、基地局100による設定に従って、設定された周期で、同一の時間ウィンドウ内で、インデックス番号順に全てのSSBセットに含まれるSSBを送信してよく、端末200は、設定された周期で基地局100から送信されたSSBを受信してよい。 As shown in FIG. 8A, for example, if the SSBs included in all SSB sets (e.g., the first SSB set and the second SSB set shown in FIG. 8A) are The SSB indexes may be transmitted sequentially starting from the SSB index with the smaller number included in the smaller (earlier) SSB set (for example, the first SSB set shown in FIG. 8A). That is, the base station 100 transmits the SSBs included in the first SSB set in the order of index numbers to the terminal 200 in the set period and within the same time window according to the settings by the base station 100, and The terminal 200 may transmit the SSB included in the second SSB set, and the terminal 200 may receive the SSB transmitted from the base station 100 at a set period. Alternatively, for example, if the SSB index numbers of the SSBs included in all SSB sets are consecutive, the SSBs may be transmitted in order from the lowest numbered SSB index. That is, the base station 100 may transmit the SSBs included in all the SSB sets in the order of index numbers in the same time window at the configured period according to the configuration by the base station 100, and the terminal 200 The SSB transmitted from the base station 100 may be received at a certain period.
 [オプション2]異なる時間ウィンドウ
 提案1のオプション2では、複数のSSBセットの時間ウィンドウの各々が異なってよい。別言すると、複数のSSBセットの時間ウィンドウが、互いに独立して決定(設定)されてよい。
[Option 2] Different Time Windows In option 2 of proposal 1, each of the time windows of the multiple SSB sets may be different. In other words, the time windows of multiple SSB sets may be determined (set) independently of each other.
 例えば、複数のSSBセットの数が2個である場合、図8Bに示すように、2個のSSBセットのうちの1番目のSSBセット又は第1のSSBセットが、1番目の時間ウィンドウ又は第1の時間ウィンドウ内で送信され、2個のSSBセットのうちの2番目のSSBセット又は第2のSSBセットが、第1の時間ウィンドウとは異なる2番目の時間ウィンドウ又は第2の時間ウィンドウ内で送信されてよい。 For example, when the number of multiple SSB sets is two, as shown in FIG. 8B, the first SSB set of the two SSB sets or the first SSB set is a second SSB set of the two SSB sets or a second SSB set is transmitted within a second time window or a second time window that is different from the first time window; It may be sent in
 図8Bに示す1番目の時間ウィンドウ及び2番目の時間ウィンドウといった異なる時間ウィンドウは、時間領域において、互いとオーバーラップしなくてよい。 Different time windows, such as the first time window and the second time window shown in FIG. 8B, may not overlap with each other in the time domain.
 また、1番目のSSBセット以外のSSBセット(例えば、2番目のSSBセット、複数のSSBセットの数が3個以上である場合の3番目のSSBセット又は第3のSSBセット等)の時間ウィンドウの開始位置(開始シンボル)は、以下のオプション2-1~2-2に従って決定(設定)されてよい。 Also, the time window of SSB sets other than the first SSB set (for example, the second SSB set, the third SSB set when the number of multiple SSB sets is 3 or more, or the third SSB set, etc.) The starting position (starting symbol) may be determined (set) according to options 2-1 to 2-2 below.
 オプション2-1:時間ウィンドウの開始位置(開始シンボル)は、仕様における規定された値であってよい。例えば、2番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、1番目のSSBセットの最初のシンボルよりxシンボル後であってよい。 Option 2-1: The starting position (starting symbol) of the time window may be a specified value in the specification. For example, the starting position (starting symbol) of the time window of the second SSB set may be x symbols after the first symbol of the first SSB set.
 3つ以上のSSBセットが存在する場合、例えば、2番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、1番目のSSBセットの最初のシンボルよりxシンボル後であり、3番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、2番目のSSBセットの最初のシンボルよりyシンボル後である、等であってよい。この場合、x、y等の値は、同一であってもよいし、異なってもよい。また、1つの値xのみが仕様において規定されている場合、上記のyシンボル等は、xシンボルに読み替えられてよい。 If there are three or more SSB sets, for example, the start position (start symbol) of the time window of the second SSB set is x symbols after the first symbol of the first SSB set, and The starting position (starting symbol) of the time window of the set may be y symbols after the first symbol of the second SSB set, and so on. In this case, the values of x, y, etc. may be the same or different. Further, if only one value x is specified in the specification, the above y symbol etc. may be replaced with an x symbol.
 3つ以上のSSBセットが存在する場合、別の例として、2番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、1番目のSSBセットの最初のシンボルよりxシンボル後であり、3番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、1番目のSSBセットの最初のシンボルよりyシンボル後である、等であってよい。この場合、x、y等の値は、少なくとも、x<y(<・・・)という条件を満たす。 As another example, if there are more than two SSB sets, the start position (start symbol) of the time window of the second SSB set is x symbols after the first symbol of the first SSB set, and 3 The starting position (starting symbol) of the time window of the first SSB set may be y symbols after the first symbol of the first SSB set, and so on. In this case, the values of x, y, etc. satisfy at least the condition x<y (<...).
 例えば、端末200は、基地局100からSSBに関する設定を受信し、第1の時間ウィンドウ、1番目のSSBセットの最初のシンボルよりxシンボル後に開始する第2の時間ウィンドウ、・・・内でSSBが送信されていると想定してSSBをモニタしてよい。端末200は、基地局100による設定に従って基地局100により送信されたSSBを受信してよい。 For example, the terminal 200 receives a configuration regarding SSB from the base station 100, and configures the SSB within a first time window, a second time window that starts x symbols after the first symbol of the first SSB set, ... The SSB may be monitored assuming that the SSB is being transmitted. The terminal 200 may receive the SSB transmitted by the base station 100 according to the settings made by the base station 100.
 例えば、基地局100は、第1の時間ウィンドウ、1番目のSSBセットの最初のシンボルよりxシンボル後に開始する第2の時間ウィンドウ、・・・内で端末200によりSSBがモニタされていると想定してよい。基地局100は、基地局100による設定に従って、端末200に、1番目のSSBセットに対応する第1の時間ウィンドウ内で、1番目のSSBセットに含まれるSSBを送信し、1番目のSSBセットの最初のシンボルよりxシンボル後に開始する第2の時間ウィンドウ内で、2番目のSSBセットに含まれるSSBを送信すること等を行ってよい。 For example, base station 100 assumes that SSB is being monitored by terminal 200 within a first time window, a second time window that starts x symbols after the first symbol of the first SSB set, ... You may do so. The base station 100 transmits the SSBs included in the first SSB set to the terminal 200 within a first time window corresponding to the first SSB set, according to the settings by the base station 100, and The SSBs included in the second SSB set may be transmitted in a second time window starting x symbols after the first symbol of the second SSB set, and so on.
 オプション2-2:時間ウィンドウの開始位置(開始シンボル)は、例えばServingCellConfigCommonSIB又はServingCellConfigCommonにおける新たなパラメータにより、基地局100から端末200に通知されてよい。すなわち、基地局100は、時間ウィンドウの開始位置(開始シンボル)を示す、ServingCellConfigCommonSIB又はServingCellConfigCommonにおける新たなパラメータを、端末200に送信してよく、端末200は、時間ウィンドウの開始位置(開始シンボル)を示す、ServingCellConfigCommonSIB又はServingCellConfigCommonにおける新たなパラメータを、基地局100から受信してよい。例えば、値xが、ServingCellConfigCommonSIB又はServingCellConfigCommonにおける新たなパラメータ「X」により、基地局100から端末200に通知されてよく、この場合、2番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、1番目のSSBセットの最初のシンボルよりxシンボル後であってよい。なお、時間ウィンドウの開始位置(開始シンボル)を示すパラメータは、ServingCellConfigCommonSIB又はServingCellConfigCommon以外の情報要素に含まれてもよい。 Option 2-2: The starting position (starting symbol) of the time window may be notified from the base station 100 to the terminal 200, for example, by a new parameter in ServingCellConfigCommonSIB or ServingCellConfigCommon. That is, the base station 100 may transmit a new parameter in ServingCellConfigCommonSIB or ServingCellConfigCommon indicating the starting position (starting symbol) of the time window to the terminal 200, and the terminal 200 may transmit the starting position (starting symbol) of the time window to the terminal 200. A new parameter in ServingCellConfigCommonSIB or ServingCellConfigCommon may be received from the base station 100. For example, the value x may be notified from the base station 100 to the terminal 200 by a new parameter "X" in ServingCellConfigCommonSIB or ServingCellConfigCommon, and in this case, the starting position (starting symbol) of the time window of the second SSB set is It may be x symbols after the first symbol of the first SSB set. Note that the parameter indicating the start position (start symbol) of the time window may be included in an information element other than ServingCellConfigCommonSIB or ServingCellConfigCommon.
 3つ以上のSSBセットが存在する場合、例えば、値x、y等が、ServingCellConfigCommonSIB又はServingCellConfigCommon等における新たなパラメータ「X」、「Y」等のそれぞれにより、基地局100から端末200に通知されてよく、この場合、2番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、1番目のSSBセットの最初のシンボルよりxシンボル後であり、3番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、2番目のSSBセットの最初のシンボルよりyシンボル後である、等であってよい。この場合、x、y等の値は、同一であってもよいし、異なってもよい。また、X等の1つのパラメータのみがServingCellConfigCommonSIB又はServingCellConfigCommon等に導入される場合、上記のyシンボル等は、xシンボルに読み替えられてよい。また、x及びyの一方は、他方に基づいて決定されてもよい。例えば、yが、xに特定の値を加算することによって決定されてもよいし、xに特定の値を乗算することによって決定されてもよい。この場合、yの値を直接通知する代わりに、特定の値が、基地局100から端末200に通知されてもよい。 When three or more SSB sets exist, for example, the values x, y, etc. are notified from the base station 100 to the terminal 200 by new parameters "X", "Y", etc. in ServingCellConfigCommonSIB or ServingCellConfigCommon, etc. Often, in this case, the starting position of the time window of the second SSB set (start symbol) is x symbols after the first symbol of the first SSB set, and the starting position of the time window of the third SSB set ( The starting symbol) may be y symbols after the first symbol of the second SSB set, and so on. In this case, the values of x, y, etc. may be the same or different. Further, when only one parameter such as Also, one of x and y may be determined based on the other. For example, y may be determined by adding a particular value to x, or may be determined by multiplying x by a particular value. In this case, instead of directly notifying the value of y, a specific value may be notified from the base station 100 to the terminal 200.
 3つ以上のSSBセットが存在する場合、別の例として、値x、y等が、ServingCellConfigCommonSIB又はServingCellConfigCommon等における新たなパラメータ「X」、「Y」等のそれぞれにより、基地局100から端末200に通知されてよく、この場合、2番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、1番目のSSBセットの最初のシンボルよりxシンボル後であり、3番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、1番目のSSBセットの最初のシンボルよりyシンボル後である、等であってよい。この場合、x、y等の値は、少なくとも、x<y(<・・・)という条件を満たす。 As another example, when three or more SSB sets exist, the values x, y, etc. are transferred from the base station 100 to the terminal 200 by new parameters "X", "Y", etc. in ServingCellConfigCommonSIB or ServingCellConfigCommon, etc. In this case, the starting position (starting symbol) of the time window of the second SSB set is x symbols after the first symbol of the first SSB set, and the start position (start symbol) of the time window of the third SSB set is The starting position (starting symbol) may be y symbols after the first symbol of the first SSB set, and so on. In this case, the values of x, y, etc. satisfy at least the condition x<y (<...).
 パラメータX、Y等は、SSB(周期的送信信号)に関する設定、SSBの時間ウィンドウに関する設定、SSBの時間ウィンドウの開始位置に関する設定等と称されてもよい。 The parameters X, Y, etc. may be referred to as settings related to SSB (periodic transmission signal), settings related to the SSB time window, settings related to the start position of the SSB time window, etc.
 例えば、端末200は、基地局100から、時間ウィンドウの開始位置に関する設定を含むSSBに関する設定を受信し、基地局100からの設定に従って、第1の時間ウィンドウ、1番目のSSBセットの最初のシンボルよりxシンボル後に開始する第2の時間ウィンドウ、・・・内で複数のSSBセットの各SSBセットに含まれるSSBが異なる時間ウィンドウの各時間ウィンドウ内で送信されていると想定してSSBをモニタしてよい。端末200は、基地局100による設定に従って基地局100により送信されたSSBを受信してよい。 For example, the terminal 200 receives settings regarding SSB including settings regarding the starting position of the time window from the base station 100, and according to the settings from the base station 100, the first symbol of the first time window and the first SSB set is monitor the SSBs within a second time window starting x symbols later than . You may do so. The terminal 200 may receive the SSB transmitted by the base station 100 according to the settings made by the base station 100.
 例えば、基地局100は、時間ウィンドウの開始位置に関する設定を含む、基地局100による設定に従って、第1の時間ウィンドウ、1番目のSSBセットの最初のシンボルよりxシンボル後に開始する第2の時間ウィンドウ、・・・内で端末200によりSSBがモニタされていると想定してよい。基地局100は、基地局100による設定に従って、端末200に、1番目のSSBセットに対応する第1の時間ウィンドウ内で、1番目のSSBセットに含まれるSSBを送信し、1番目のSSBセットの最初のシンボルよりxシンボル後に開始する第2の時間ウィンドウ内で、2番目のSSBセットに含まれるSSBを送信すること等を行ってよい。 For example, the base station 100 may select a first time window, a second time window that starts x symbols after the first symbol of the first SSB set, according to settings by the base station 100, including settings regarding the start position of the time window. , . . , it may be assumed that the SSB is monitored by the terminal 200 within. The base station 100 transmits the SSBs included in the first SSB set to the terminal 200 within a first time window corresponding to the first SSB set, according to the settings by the base station 100, and The SSBs included in the second SSB set may be transmitted in a second time window starting x symbols after the first symbol of the second SSB set, and so on.
 なお、上述したx、y等の時間単位は、シンボルに限定されず、シンボル、スロット、ms等、又はこれらの任意の組み合わせであってもよい。また、上記において、「N番目(N=1、2、・・・)のSSBセットの最初のシンボル」は、「N番目(N=1、2、・・・)のSSBセットの最後のシンボル」等、「N番目(N=1、2、・・・)のSSBセットの所定位置のシンボル」に読み換えられてもよい。x、y等の値は、“「N番目(N=1、2、・・・)のSSBセットの所定位置のシンボル」とのオフセット”と称されてもよい。 Note that the time units such as x and y described above are not limited to symbols, and may be symbols, slots, ms, etc., or any combination thereof. In addition, in the above, "the first symbol of the Nth (N=1, 2,...) SSB set" is "the last symbol of the Nth (N=1, 2,...) SSB set". ", etc. may be read as "symbol at a predetermined position of the Nth (N=1, 2, . . . ) SSB set." The values of x, y, etc. may be referred to as "offsets from the "symbol at a predetermined position of the Nth (N=1, 2, . . . ) SSB set"".
 提案5では、端末200は、基地局100から、パラメータX、Y等の、SSBの時間ウィンドウの開始位置に関する設定を受信してよい。端末200は、SSBの時間ウィンドウの開始位置に関する設定に従って、当該設定に基づく開始位置で開始する時間ウィンドウ内で1番目のSSBセットより後のSSBセットに含まれるSSBが送信されていると想定して、基地局100からのSSBをモニタしてよい。端末200は、基地局100による設定に従って基地局100により送信されたSSBを受信してよい。 In proposal 5, the terminal 200 may receive settings regarding the starting position of the SSB time window, such as parameters X and Y, from the base station 100. The terminal 200 assumes that, according to the setting regarding the start position of the SSB time window, the SSB included in the SSB set after the first SSB set within the time window starting at the start position based on the setting is being transmitted. The SSB from the base station 100 may be monitored. The terminal 200 may receive the SSB transmitted by the base station 100 according to the settings made by the base station 100.
 また、提案5では、基地局100は、パラメータX、Y等の、SSBの時間ウィンドウの開始位置に関する設定を、端末200に送信してよい。基地局100は、1番目のSSBセットより後のSSBセットに関して、基地局100による設定に基づく開始位置で開始する時間ウィンドウ内で端末200により当該SSBセットに含まれるSSBがモニタされていると想定してよい。基地局100は、基地局100による設定に基づく開始位置で開始する時間ウィンドウ内で、1番目のSSBセットより後のSSBセットに含まれるSSBを端末200に送信してよい。 Furthermore, in proposal 5, the base station 100 may transmit settings related to the starting position of the SSB time window, such as parameters X and Y, to the terminal 200. For SSB sets after the first SSB set, the base station 100 assumes that the SSBs included in the SSB set are being monitored by the terminal 200 within a time window starting at the starting position based on the configuration by the base station 100. You may do so. The base station 100 may transmit the SSBs included in the SSB sets after the first SSB set to the terminal 200 within a time window starting at a starting position based on the configuration by the base station 100.
 提案5のオプション1によれば、既存技術との互換性を持たせることができる。 According to option 1 of proposal 5, compatibility with existing technology can be achieved.
 提案5のオプション2-1によれば、複数のSSBセットのそれぞれに合わせた柔軟な時間ウィンドウを設けることができ、さらに、シグナリングの必要なく時間ウィンドウの開始位置を決定することができる。 According to option 2-1 of proposal 5, a flexible time window can be provided for each of a plurality of SSB sets, and furthermore, the starting position of the time window can be determined without the need for signaling.
 提案5のオプション2-2によれば、複数のSSBセットのそれぞれに合わせた柔軟な時間ウィンドウを設けることができ、さらに、開始ウィンドウの開始位置を柔軟に設定することができる。 According to option 2-2 of Proposal 5, flexible time windows can be provided for each of a plurality of SSB sets, and furthermore, the start position of the start window can be flexibly set.
 <提案6>SSBの位置(送信されているSSB)について
 [オプション1]SSBの位置は1つのパラメータにより通知
 提案6のオプション1では、全てのSSBセットから構成されるSSバーストセットにおけるSSBの位置を示すために、1つの(同一の)パラメータが用いられてよい。なお、このオプションは、提案5のオプション1が適用される場合にのみ適用可能であると想定される。
<Proposal 6> Regarding the position of SSB (SSB being transmitted) [Option 1] The position of SSB is notified by one parameter In option 1 of Proposal 6, the position of SSB in the SS burst set consisting of all SSB sets is One (same) parameter may be used to indicate . Note that this option is assumed to be applicable only if option 1 of proposal 5 is applied.
 例えば、SSバーストセットにおけるSSBの位置は、servingCellConfigCommonSIB又はservingCellConfigCommonにおけるssb-PositionsInBurst(図6A及び図6B参照)等の1つのパラメータにより、基地局100から端末200に通知されてよい。すなわち、基地局100は、SSバーストセットにおけるSSBの位置を示すssb-PositionsInBurst等のパラメータを、端末200に送信してよく、端末200は、SSバーストセットにおけるSSBの位置を示すssb-PositionsInBurst等のパラメータを、基地局100から受信してよい。ssb-PositionsInBurst等のパラメータは、全てのSSBセットに共用のパラメータ(設定)である。 For example, the position of the SSB in the SS burst set may be notified from the base station 100 to the terminal 200 using one parameter such as servingCellConfigCommonSIB or ssb-PositionsInBurst in servingCellConfigCommon (see FIGS. 6A and 6B). That is, the base station 100 may transmit parameters such as ssb-PositionsInBurst indicating the position of the SSB in the SS burst set to the terminal 200, and the terminal 200 may transmit parameters such as ssb-PositionsInBurst indicating the position of the SSB in the SS burst set. Parameters may be received from base station 100. Parameters such as ssb-PositionsInBurst are parameters (settings) common to all SSB sets.
 servingCellConfigCommonSIBにおけるssb-PositionsInBurstが用いられる場合、より具体的には、例えば、時間ウィンドウ(半フレーム)内で送信され得る全てのSSBセットに含まれるSSBの総数の最大数(Lmax)に応じて、以下のようにSSBの位置が通知される。 If ssb-PositionsInBurst in servingCellConfigCommonSIB is used, more specifically, for example, depending on the maximum number (L max ) of the total number of SSBs included in all SSB sets that can be transmitted within a time window (half frame): The location of the SSB is notified as follows.
 Lmaxが4又は8である場合、どのSSBが送信されているかが、図6Aに示すssb-PositionsInBurstにおけるフィールドinOneGroupにより、gNB100からUE200に通知される。inOneGroup(ビットマップ、ビットパターン)の各ビットは、SSバーストセットにおける各SSBインデックスに対応し、このビットマップにおける最上位ビット(MSB;1番目のビット、1番左のビット)は、SSBインデックス0用であり、次の上位ビットは、SSBインデックス1用である、等である。このビットマップ中の値「0」は、対応するSSBが送信されていないことを示すのに対し、このビットマップ中の値「1」は、対応するSSBが送信されていることを示す。なお、Lmaxが4である場合、UE200は、inOneGroupの下位4ビットを無視する。 When L max is 4 or 8, which SSB is being transmitted is notified from the gNB 100 to the UE 200 using the field inOneGroup in ssb-PositionsInBurst shown in FIG. 6A. Each bit of inOneGroup(bitmap, bit pattern) corresponds to each SSB index in the SS burst set, and the most significant bit (MSB; first bit, leftmost bit) in this bitmap is SSB index 0. The next most significant bit is for SSB index 1, and so on. A value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted. Note that when L max is 4, the UE 200 ignores the lower 4 bits of inOneGroup.
 一方、Lmaxが64である場合、ssb-PositionsInBurstにおけるさらなるフィールドgroupPresenceが設定される。最大で64個である可能性があるSSB(したがってSSBインデックス)は、8個のグループ(SSBグループ)に分けられ、どのSSBグループが存在するかが、groupPresenceにより、gNB100からUE200に通知される。groupPresence(ビットマップ、ビットパターン)の各ビットは、8個のSSBインデックスが含まれる各SSBグループに対応する。このビットマップにおけるMSBは、SSBインデックス0~7に対応し、次の上位ビットは、SSBインデックス8~15に対応する、等である。このビットマップ中の値「0」は、inOneGroupに従うSSBが存在しないことを示すのに対し、このビットマップ中の値「1」は、inOneGroupに従って、対応するSSBが送信されることを示す。inOneGroupにおけるMSBは、それぞれのSSBグループにおける1番目のSSBインデックス(SSBインデックス0、8、16、・・・)に対応し、次の上位ビットは、それぞれのSSBグループにおける2番目のSSBインデックス(SSBインデックス1、9、17、・・・)に対応する、等である。このビットマップ中の値「0」は、対応するSSBが送信されていないことを示すのに対し、このビットマップ中の値「1」は、対応するSSBが送信されていることを示す。 On the other hand, if L max is 64, an additional field groupPresence in ssb-PositionsInBurst is set. The SSBs (therefore, the SSB indexes), which may be up to 64, are divided into eight groups (SSB groups), and which SSB groups exist is notified from the gNB 100 to the UE 200 by groupPresence. Each bit of groupPresence (bitmap, bit pattern) corresponds to each SSB group that includes 8 SSB indices. The MSB in this bitmap corresponds to SSB indexes 0-7, the next most significant bit corresponds to SSB indexes 8-15, and so on. A value "0" in this bitmap indicates that there is no SSB according to inOneGroup, whereas a value "1" in this bitmap indicates that the corresponding SSB is transmitted according to inOneGroup. The MSB in inOneGroup corresponds to the first SSB index ( SSB index 0, 8, 16, ...) in each SSB group, and the next most significant bit corresponds to the second SSB index ( SSB index 0, 8, 16, etc.) in each SSB group. indexes 1, 9, 17, ...), and so on. A value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
 servingCellConfigCommonにおけるssb-PositionsInBurstが用いられる場合、より具体的には、例えば、時間ウィンドウ内で送信され得る全てのSSBセットに含まれるSSBの総数の最大数(Lmax)に応じて、以下のようにSSBの位置が通知される。 If ssb-PositionsInBurst in servingCellConfigCommon is used, more specifically, depending on the maximum number (L max ) of the total number of SSBs included in all SSB sets that can be sent within a time window, for example, as follows: The location of the SSB will be notified.
 Lmaxが4である場合、どのSSBが送信されているかが、図6Bに示すssb-PositionsInBurstにおけるフィールドshortBitmapにより、gNB100からUE200に通知される。shortBitmap(ビットマップ)の各ビットは、SSバーストセットにおける各SSBインデックスに対応し、このビットマップにおけるMSBは、SSBインデックス0用であり、次の上位ビットは、SSBインデックス1用である、等である。このビットマップ中の値「0」は、対応するSSBが送信されていないことを示すのに対し、このビットマップ中の値「1」は、対応するSSBが送信されていることを示す。 When L max is 4, which SSB is being transmitted is notified from the gNB 100 to the UE 200 using the field shortBitmap in ssb-PositionsInBurst shown in FIG. 6B. Each bit of the shortBitmap corresponds to each SSB index in the SS burst set, the MSB in this bitmap is for SSB index 0, the next most significant bit is for SSB index 1, etc. be. A value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
 Lmaxが8である場合、どのSSBが送信されているかが、図6Bに示すssb-PositionsInBurstにおけるフィールドmediumBitmapにより、gNB100からUE200に通知される。mediumBitmap(ビットマップ)の各ビットは、SSバーストセットにおける各SSBインデックスに対応し、このビットマップにおけるMSBは、SSBインデックス0用であり、次の上位ビットは、SSBインデックス1用である、等である。このビットマップ中の値「0」は、対応するSSBが送信されていないことを示すのに対し、このビットマップ中の値「1」は、対応するSSBが送信されていることを示す。 When L max is 8, which SSB is being transmitted is notified from the gNB 100 to the UE 200 using the field mediumBitmap in ssb-PositionsInBurst shown in FIG. 6B. Each bit in the mediumBitmap corresponds to each SSB index in the SS burst set, the MSB in this bitmap is for SSB index 0, the next most significant bit is for SSB index 1, and so on. be. A value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
 Lmaxが64である場合、どのSSBが送信されているかが、図6Bに示すssb-PositionsInBurstにおけるフィールドlongBitmapにより、gNB100からUE200に通知される。longBitmap(ビットマップ)の各ビットは、SSバーストセットにおける各SSBインデックスに対応し、このビットマップにおけるMSBは、SSBインデックス0用であり、次の上位ビットは、SSBインデックス1用である、等である。このビットマップ中の値「0」は、対応するSSBが送信されていないことを示すのに対し、このビットマップ中の値「1」は、対応するSSBが送信されていることを示す。 When L max is 64, which SSB is being transmitted is notified from the gNB 100 to the UE 200 using the field longBitmap in ssb-PositionsInBurst shown in FIG. 6B. Each bit of the longBitmap corresponds to each SSB index in the SS burst set, the MSB in this bitmap is for SSB index 0, the next most significant bit is for SSB index 1, etc. be. A value "0" in this bitmap indicates that the corresponding SSB is not being transmitted, whereas a value "1" in this bitmap indicates that the corresponding SSB is being transmitted.
 例えば、端末200は、基地局100から、ssb-PositionsInBurst等の、複数のSSBセットに共用の設定を受信してよい。端末200は、共用の設定に基づいて、複数のSSBセットに含まれるSSBが基地局100から送信されていると想定してよい。端末200は、基地局100による設定に従って基地局100により送信されたSSBを受信してよい。 For example, the terminal 200 may receive a configuration shared by multiple SSB sets, such as ssb-PositionsInBurst, from the base station 100. Terminal 200 may assume that SSBs included in a plurality of SSB sets are being transmitted from base station 100 based on the shared setting. The terminal 200 may receive the SSB transmitted by the base station 100 according to the settings made by the base station 100.
 例えば、基地局100は、ssb-PositionsInBurst等の、複数のSSBセットに共用の設定を、端末200に送信してよい。基地局100は、共用の設定に基づいて、端末200により複数のSSBセットに含まれるSSBがモニタされていると想定してよい。基地局100は、基地局100による設定に基づいて、複数のSSBセットに含まれるSSBを端末200に送信してよい。 For example, the base station 100 may transmit settings shared by multiple SSB sets, such as ssb-PositionsInBurst, to the terminal 200. Base station 100 may assume that SSBs included in a plurality of SSB sets are being monitored by terminal 200 based on the shared setting. Base station 100 may transmit SSBs included in a plurality of SSB sets to terminal 200 based on settings by base station 100.
 [オプション2]SSBの位置はSSBセット毎の別個のパラメータにより通知
 提案6のオプション2では、SSBセットにおけるSSBの位置を示すために、SSBセット毎に別個のパラメータが用いられてよい。したがって、パラメータの数は、SSBセットの数に等しくてよい。以下では、複数のSSBセットの数が2個である場合を例に取って説明するが、複数のSSBセットの数が3個以上である場合も同様の説明が適用される。
[Option 2] Position of SSB is signaled by separate parameters for each SSB set In option 2 of proposal 6, separate parameters for each SSB set may be used to indicate the position of the SSB in the SSB set. Therefore, the number of parameters may be equal to the number of SSB sets. In the following, a case in which the number of multiple SSB sets is two will be explained as an example, but the same explanation applies to a case where the number of multiple SSB sets is three or more.
 例えば、2個のSSBセットのうちの1番目のSSBセット又は第1のSSBセットに含まれるSSBの位置が、servingCellConfigCommonSIB又はservingCellConfigCommonにおけるssb-PositionsInBurst(図9A及び図9B参照)等のパラメータにより、基地局100から端末200に通知されてよい。すなわち、基地局100は、1番目のSSBセットに含まれるSSBの位置を示すssb-PositionsInBurst等のパラメータを、端末200に送信してよく、端末200は、1番目のSSBセットに含まれるSSBの位置を示すssb-PositionsInBurst等のパラメータを、基地局100から受信してよい。そして、時間ウィンドウ(半フレーム)内で送信され得るSSBの最大数(Lmax)に応じて、上述したように、SSBの位置が通知されてよい。 For example, the position of the first SSB set of two SSB sets or the SSB included in the first SSB set is determined by parameters such as servingCellConfigCommonSIB or ssb-PositionsInBurst (see FIGS. 9A and 9B) in servingCellConfigCommon. The terminal 200 may be notified from the station 100. That is, the base station 100 may transmit a parameter such as ssb-PositionsInBurst indicating the position of the SSB included in the first SSB set to the terminal 200, and the terminal 200 A parameter such as ssb-PositionsInBurst indicating a position may be received from the base station 100. Then, depending on the maximum number of SSBs (L max ) that can be transmitted within a time window (half frame), the positions of the SSBs may be notified, as described above.
 また、例えば、2個のSSBセットのうちの2番目のSSBセット又は第2のSSBセットに含まれるSSBの位置が、servingCellConfigCommonSIB又はservingCellConfigCommonにおけるssb-PositionsInBurst2(図9A及び図9B参照)等といった新たなパラメータにより、基地局100から端末200に通知されてよい。すなわち、基地局100は、2番目のSSBセットに含まれるSSBの位置を示すssb-PositionsInBurst2等の新たなパラメータを、端末200に送信してよく、端末200は、2番目のSSBセットに含まれるSSBの位置を示すssb-PositionsInBurst2等の新たなパラメータを、基地局100から受信してよい。そして、時間ウィンドウ(半フレーム)内で送信され得るSSBの最大数(Lmax)に応じて、上述したように、SSBの位置が通知されてよい。複数のSSBセットの数が3個以上である場合も同様である。例えば、3番目のSSBセット又は第3のSSBセットに含まれるSSBの位置が、servingCellConfigCommonSIB又はservingCellConfigCommonにおけるssb-PositionsInBurst3等といった新たなパラメータにより、基地局100から端末200に通知されてよい。 Also, for example, the second SSB set of the two SSB sets or the position of the SSB included in the second SSB set may be changed to a new position such as servingCellConfigCommonSIB or ssb-PositionsInBurst2 (see FIGS. 9A and 9B) in servingCellConfigCommon. The base station 100 may notify the terminal 200 based on the parameters. That is, the base station 100 may transmit a new parameter such as ssb-PositionsInBurst2 indicating the position of the SSB included in the second SSB set to the terminal 200, and the terminal 200 New parameters such as ssb-PositionsInBurst2 indicating the position of the SSB may be received from the base station 100. Then, depending on the maximum number of SSBs (L max ) that can be transmitted within a time window (half frame), the positions of the SSBs may be notified, as described above. The same applies when the number of multiple SSB sets is three or more. For example, the position of the third SSB set or the SSBs included in the third SSB set may be notified from the base station 100 to the terminal 200 using a new parameter such as servingCellConfigCommonSIB or ssb-PositionsInBurst3 in servingCellConfigCommon.
 例えば、端末200は、基地局100から、ssb-PositionsInBurst、ssb-PositionsInBurst2等の、複数のSSBセットの各々に別個の設定を受信してよい。端末200は、各別個の設定に基づいて、複数のSSBセットの各々に含まれるSSBが基地局100から送信されていると想定してよい。端末200は、基地局100による設定に従って基地局100により送信されたSSBを受信してよい。 For example, the terminal 200 may receive separate settings for each of the plurality of SSB sets, such as ssb-PositionsInBurst and ssb-PositionsInBurst2, from the base station 100. The terminal 200 may assume that the SSBs included in each of the plurality of SSB sets are being transmitted from the base station 100 based on each individual setting. Terminal 200 may receive the SSB transmitted by base station 100 according to settings by base station 100.
 例えば、基地局100は、ssb-PositionsInBurst、ssb-PositionsInBurst2等の、複数のSSBセットの各々に別個の設定を、端末200に送信してよい。基地局100は、各別個の設定に基づいて、端末200により複数のSSBセットの各々に含まれるSSBがモニタされていると想定してよい。基地局100は、基地局100による設定に基づいて、SSBを端末200に送信してよい。 For example, the base station 100 may transmit to the terminal 200 separate settings for each of a plurality of SSB sets, such as ssb-PositionsInBurst and ssb-PositionsInBurst2. The base station 100 may assume that the SSBs included in each of the plurality of SSB sets are being monitored by the terminal 200 based on each separate configuration. The base station 100 may transmit SSB to the terminal 200 based on the settings made by the base station 100.
 servingCellConfigCommonSIB、servingCellConfigCommon等は、SSB(周期的送信信号)に関する設定等と称されてもよい。ssb-PositionsInBurst、ssb-PositionsInBurst2、inOneGroup、groupPresence、shortBitmap、mediumBitmap、longBitmap等は、SSB(周期的送信信号)に関する設定、SSBの位置(又は時間的位置又は時間領域位置)に関する設定、送信されているSSBに関する設定等と称されてもよい。 servingCellConfigCommonSIB, servingCellConfigCommon, etc. may also be referred to as settings related to SSB (periodic transmission signal). ssb-PositionsInBurst, ssb-PositionsInBurst2, inOneGroup, groupPresence, shortBitmap, mediumBitmap, longBitmap, etc. are settings related to SSB (periodic transmission signal), settings related to SSB position (or time position or time domain position), and settings that are being transmitted. It may also be referred to as settings related to SSB.
 なお、上記では、2個のSSBセットのうちの2番目のSSBセットに含まれるSSBの位置が、独立して、ssb-PositionsInBurst2といった別個の新たなパラメータによって、通知される例を示したが、本開示はこれに限定されない。例えば、2個のSSBセットのうちの2番目のSSBセットに含まれるSSBの位置が、1番目のSSBセットに含まれるSSBの位置に基づいて決定されてもよい。例えば、2番目のSSBセットに含まれるSSBの位置が、1番目のSSBセットに含まれるSSBの位置からのオフセットを示す特定の値を加算することによって決定されてもよい。この場合、加算する特定の値は、基地局100から端末200に通知されてもよいし、端末200において予め設定されてもよいし、仕様において規定されていてもよい。なお、2番目のSSBセットより後のSSBセットに含まれるSSBの位置についても、同様に、1番目のSSBセットに含まれるSSBの位置及び/又は他のSSBセットに含まれるSSBの位置に基づいて決定されてもよい。 Note that in the above example, the position of the SSB included in the second SSB set of the two SSB sets is independently notified by a separate new parameter such as ssb-PositionsInBurst2, but This disclosure is not limited thereto. For example, the position of the SSB included in the second SSB set of two SSB sets may be determined based on the position of the SSB included in the first SSB set. For example, the positions of the SSBs included in the second SSB set may be determined by adding a specific value indicating an offset from the position of the SSBs included in the first SSB set. In this case, the specific value to be added may be notified from the base station 100 to the terminal 200, may be set in advance in the terminal 200, or may be specified in the specifications. Note that the positions of SSBs included in SSB sets after the second SSB set are similarly based on the positions of SSBs included in the first SSB set and/or the positions of SSBs included in other SSB sets. may also be determined.
 提案6では、端末200は、基地局100から、ssb-PositionsInBurst、ssb-PositionsInBurst2等の、SSBの位置に関する設定を受信してよい。端末200は、SSBの位置に関する設定に基づいて、SSBが基地局100から送信されていると想定してよい。端末200は、基地局100による設定に従って基地局100により送信されたSSBを受信してよい。 In proposal 6, the terminal 200 may receive settings related to SSB positions, such as ssb-PositionsInBurst and ssb-PositionsInBurst2, from the base station 100. The terminal 200 may assume that the SSB is being transmitted from the base station 100 based on the setting regarding the location of the SSB. The terminal 200 may receive the SSB transmitted by the base station 100 according to the settings made by the base station 100.
 また、提案6では、基地局100は、ssb-PositionsInBurst、ssb-PositionsInBurst2等の、SSBの位置に関する設定を、端末200に送信してよい。基地局100は、SSBの位置に関する設定に基づいて、端末200によりSSBがモニタされていると想定してよい。基地局100は、基地局100による設定に基づいて、SSBを端末200に送信してよい。 Furthermore, in Proposal 6, the base station 100 may transmit settings related to SSB positions, such as ssb-PositionsInBurst and ssb-PositionsInBurst2, to the terminal 200. The base station 100 may assume that the SSB is being monitored by the terminal 200 based on the settings regarding the location of the SSB. The base station 100 may transmit SSB to the terminal 200 based on the settings made by the base station 100.
 提案6のオプション1によれば、既存技術との互換性を持たせることができる。 According to option 1 of proposal 6, compatibility with existing technology can be achieved.
 提案6のオプション2によれば、複数のSSBセットのそれぞれに合わせて、SSBの位置を柔軟に設定することができる。これにより、基地局100の省電力を実現することができる。 According to Option 2 of Proposal 6, the position of the SSB can be flexibly set according to each of a plurality of SSB sets. Thereby, power saving of the base station 100 can be realized.
 <提案7>PDSCHレートマッチングについて
 提案6のオプション2に関連して、端末200は、ssb-PositionsInBurst、ssb-PositionsInBurst2等といった、SSBの位置を示すパラメータに従って、SSBの送信機会を判断してよい。
<Proposal 7> Regarding PDSCH rate matching Regarding option 2 of Proposal 6, the terminal 200 may determine SSB transmission opportunities according to parameters indicating the position of the SSB, such as ssb-PositionsInBurst, ssb-PositionsInBurst2, etc.
 端末200は、SSBが送信されるOFDMシンボルでは、SSB送信リソースを含む物理リソースブロック(PRB:Physical Resource Block)がPDSCHに使用できないと想定してよく、レートマッチングの際に、ssb-PositionsInBurst、ssb-PositionsInBurst2等といった、SSBの位置を示すパラメータを参照してよい。 The terminal 200 may assume that in OFDM symbols in which SSB is transmitted, physical resource blocks (PRBs) including SSB transmission resources cannot be used for PDSCH, and during rate matching, ssb-PositionsInBurst, ssb -PositionsInBurst2, etc., may refer to a parameter indicating the position of the SSB.
 図10は、今後記載される可能性がある、上記に関する仕様の記載例を示す図である。図10には、ssb-PositionsInBurst2までしか記載されていないが、3つ以上のSSBセットが存在する場合、対応する数のパラメータ(例えば、ssb-PositionsInBurst3等)が記載されてよい。 FIG. 10 is a diagram showing an example of specifications related to the above that may be written in the future. Although only up to ssb-PositionsInBurst2 is described in FIG. 10, if three or more SSB sets exist, a corresponding number of parameters (for example, ssb-PositionsInBurst3, etc.) may be described.
 <提案の組み合わせ>
 図11は、複数の周期で複数のSSBセットが送信される例を示す図である。図11は、上述した提案の組み合わせ例であり、キャリア周波数が3GHzより高い場合のCase Aが想定され(すなわち、Lmaxが8であり)、提案1についてはオプション2(1番目のSSBセットの周期は20ms、2番目のSSBセットの周期は40ms)が適用され、提案2~6についてはそれぞれオプション1が適用された例を示す。
<Combination of proposals>
FIG. 11 is a diagram illustrating an example in which multiple SSB sets are transmitted in multiple cycles. Figure 11 shows an example of a combination of the above-mentioned proposals. Case A is assumed when the carrier frequency is higher than 3 GHz (that is, L max is 8), and option 2 (for the first SSB set) is assumed for proposal 1. Examples are shown in which the period is 20 ms and the period of the second SSB set is 40 ms), and option 1 is applied to each of proposals 2 to 6.
 この例によれば、1番目のSSBセットの周期(20ms)と2番目のSSBセットの周期(40ms)とが異なるので、図示される2番目の時間ウィンドウ内では、2番目のSSBセットに含まれるSSBは送信されない。 According to this example, since the period of the first SSB set (20 ms) and the period of the second SSB set (40 ms) are different, within the second time window illustrated, SSBs that are sent are not sent.
 このように、少なくとも、複数のSSBセットのうちの少なくとも2つのSSBセットの周期を異ならせることにより、あるSSBセットに含まれるSSBが送信されない時間ウィンドウが生じることになる。これにより、SSBの送信機会を削減することができるので、基地局100の省電力を実現することができる。 In this way, by making the periods of at least two of the plurality of SSB sets different, a time window is created in which the SSBs included in a certain SSB set are not transmitted. As a result, it is possible to reduce the number of SSB transmission opportunities, and thus it is possible to realize power saving of the base station 100.
 <UE capability>
 端末200は、以下の端末能力を、UE capabilityとして基地局100に報告してもよい。
 ・複数のSSB設定(複数の周期等)をサポートするか否か
<UE capability>
Terminal 200 may report the following terminal capabilities to base station 100 as UE capabilities.
・Whether to support multiple SSB settings (multiple cycles, etc.)
 <変形例>
 上記の提案において説明した事項(例えば、提案1のオプション1、提案1のオプション2、提案2のオプション1、提案2のオプション2等)のうちどの事項がサポートされるかは、RRCによる設定、MAC CE又はDCI/UCIによる指示、又は、端末能力に依存してもよい。
<Modified example>
Which of the items explained in the above proposals (for example, option 1 of proposal 1, option 2 of proposal 1, option 1 of proposal 2, option 2 of proposal 2, etc.) is supported depends on the settings by RRC, It may depend on instructions by MAC CE or DCI/UCI, or on terminal capabilities.
 また、上記の提案において説明した事項は、SSBに限らず、他の信号(例えば、CSI-RS)に適用されてもよい。この場合、SSBに対する設定と、他の信号(例えば、CSI-RS)における設定とは、共通の設定としてもよいし、互いに独立した設定としてもよい。また、例えば、端末200は、他の信号の設定(例えば、CSI-RSの設定)をサポートするか否かを示すUE Capabilityを基地局100に報告してもよい。 Further, the matters described in the above proposal may be applied not only to SSB but also to other signals (for example, CSI-RS). In this case, the settings for SSB and the settings for other signals (for example, CSI-RS) may be common settings or may be independent settings from each other. Further, for example, the terminal 200 may report to the base station 100 UE Capability indicating whether or not to support other signal settings (for example, CSI-RS settings).
 上記の提案において、時間ウィンドウが20msである例を説明したが、時間ウィンドウの長さは可変であってもよい。例えば、端末200が複数のSSB設定(複数の周期等)をサポートする場合、送信されるSSBの数が少ない場合や、提案3のオプション3で説明したように、全てのSSBセットに含まれるSSBの総数の最大数Lmaxが既存のLmaxより少ない場合、時間ウィンドウを20msより短くしてもよい。 In the above proposal, an example in which the time window is 20 ms has been described, but the length of the time window may be variable. For example, if the terminal 200 supports multiple SSB settings (multiple periods, etc.), the number of SSBs to be transmitted is small, or the SSBs included in all SSB sets are If the maximum number of total numbers L max is less than the existing L max , the time window may be shorter than 20 ms.
 提案5において、同一の時間ウィンドウ及び異なる時間ウィンドウという2つのオプションを説明したが、これらの組み合わせが適用されてもよい。例えば、複数のSSBセットの数が3個以上である場合、少なくとも2個のSSBセットの時間ウィンドウが異なれば、3個以上のSSBセットの時間ウィンドウにおいて同一の時間ウィンドウが存在してもよい。 In proposal 5, two options were described: same time window and different time windows, but a combination of these may also be applied. For example, when the number of multiple SSB sets is three or more, the same time window may exist among the time windows of three or more SSB sets as long as the time windows of at least two SSB sets are different.
 提案5のオプション2において、2番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、1番目のSSBセットの最初のシンボルよりxシンボル後であり、3番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、1番目のSSBセットの最初のシンボルよりyシンボル後である等として説明したが、1番目のSSBセットより後のSSBセットの開始位置は、これらに限定されない。例えば、2番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、1番目のSSBセットの時間ウィンドウの最初のシンボルよりxシンボル後であり、3番目のSSBセットの時間ウィンドウの開始位置(開始シンボル)は、2番目のSSBセットの時間ウィンドウの最初のシンボルよりyシンボル後である、等であってもよい。その他の点については、提案5のオプション2において説明した技術が適用されてよい。この場合、x、y等の値は、“「N番目(N=1、2、・・・)のSSBセットの時間ウィンドウの所定位置のシンボル」とのオフセット”と称されてもよい。 In option 2 of proposal 5, the start position (start symbol) of the time window of the second SSB set is x symbols after the first symbol of the first SSB set, and the start position (start symbol) of the time window of the third SSB set is Although the position (starting symbol) has been described as being y symbols after the first symbol of the first SSB set, etc., the starting positions of SSB sets after the first SSB set are not limited to these. For example, the start position (start symbol) of the time window of the second SSB set is x symbols after the first symbol of the time window of the first SSB set, and the start position (start symbol) of the time window of the third SSB set is The starting symbol) may be y symbols after the first symbol of the time window of the second SSB set, and so on. For other points, the technique described in option 2 of proposal 5 may be applied. In this case, the values of x, y, etc. may be referred to as "offsets from the symbol at a predetermined position in the time window of the Nth (N=1, 2, . . . ) SSB set."
 上記の提案において記載されている新たなパラメータ等の名称は、例であり、適宜変更可能である。 The names of new parameters etc. described in the above proposal are examples and can be changed as appropriate.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局100及び端末200の機能構成例を説明する。基地局100及び端末200は、上述した実施の形態を実施する機能を有してよい。ただし、基地局100及び端末200はそれぞれ、実施の形態の中の一部の機能のみを有してもよい。
(Device configuration)
Next, an example of the functional configuration of the base station 100 and the terminal 200 that execute the processes and operations described above will be described. Base station 100 and terminal 200 may have a function to implement the embodiments described above. However, base station 100 and terminal 200 may each have only some of the functions in the embodiment.
 <基地局>
 図12は、本開示の一実施の形態に係る基地局100の構成の一例を示すブロック図である。基地局は、例えば、送信部101と、受信部102と、制御部103と、を含む。基地局100は、端末200(図13参照)と無線によって通信する。なお、送信部101及び受信部102は、あわせて通信部と称されてもよい。
<Base station>
FIG. 12 is a block diagram illustrating an example of the configuration of base station 100 according to an embodiment of the present disclosure. The base station includes, for example, a transmitter 101, a receiver 102, and a controller 103. Base station 100 communicates with terminal 200 (see FIG. 13) wirelessly. Note that the transmitting section 101 and the receiving section 102 may be collectively referred to as a communication section.
 送信部101は、DL信号を端末200へ送信する。例えば、送信部101は、制御部103による制御の下に、DL信号を送信する。例えば、DL信号には、端末200の信号送信に関するスケジューリングを示す情報(例えば、ULグラント)、上位レイヤの制御情報等が含まれてよい。 The transmitter 101 transmits the DL signal to the terminal 200. For example, the transmitter 101 transmits a DL signal under the control of the controller 103. For example, the DL signal may include information indicating scheduling regarding signal transmission by the terminal 200 (eg, UL grant), upper layer control information, and the like.
 例えば、送信部101は、DL信号として、各種の制御信号(RRCレイヤの制御信号等)、参照信号、データ信号等を端末200へ送信する。送信部101は、例えば、DL信号として、上記の実施の形態において説明した各種の信号、チャネル、設定情報、制御情報等(SSB、CSI-RS等)を端末200へ送信する。 For example, the transmitter 101 transmits various control signals (RRC layer control signals, etc.), reference signals, data signals, etc. to the terminal 200 as DL signals. The transmitter 101 transmits, for example, the various signals, channels, setting information, control information, etc. (SSB, CSI-RS, etc.) described in the above embodiments to the terminal 200 as DL signals.
 例えば、送信部101は、DL信号として、SSB、CSI-RS等の周期的送信信号を端末200へ送信する。 For example, the transmitter 101 transmits periodic transmission signals such as SSB and CSI-RS to the terminal 200 as DL signals.
 例えば、送信部101は、DL信号として、制御部103によって生成された、SSBに関する設定(SSBの周期、SSBの位置、SSBの時間ウィンドウの開始位置等)等の設定情報を、上位レイヤパラメータによって端末200へ送信する。 For example, the transmitting unit 101 transmits configuration information such as SSB-related settings (SSB period, SSB position, SSB time window start position, etc.) generated by the control unit 103 as a DL signal using upper layer parameters. Send to terminal 200.
 受信部102は、端末200から送信されたUL信号を受信する。例えば、受信部102は、制御部103による制御の下に、UL信号を受信する。 The receiving unit 102 receives the UL signal transmitted from the terminal 200. For example, the receiving unit 102 receives a UL signal under the control of the control unit 103.
 例えば、受信部102は、UL信号として、端末200の端末能力情報(例えば、UE capability)を含む信号、各種の制御信号、参照信号、データ信号等を端末200から受信する。 For example, the receiving unit 102 receives a signal including terminal capability information (for example, UE capability) of the terminal 200, various control signals, reference signals, data signals, etc. from the terminal 200 as a UL signal.
 制御部103は、送信部101における送信処理及び受信部102における受信処理を含む、基地局100の(通信)動作全般を制御する。 The control unit 103 controls the overall (communication) operation of the base station 100, including the transmission processing in the transmission unit 101 and the reception processing in the reception unit 102.
 例えば、制御部103は、上位レイヤからデータ及び制御情報といった情報を取得し、送信部101へ出力する。また、制御部103は、受信部102から受信したデータ及び制御情報等を上位レイヤへ出力する。 For example, the control unit 103 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 101. Further, the control unit 103 outputs the data, control information, etc. received from the reception unit 102 to the upper layer.
 例えば、制御部103は、端末200から受信した信号(例えば、データ及び制御情報等)及び/又は上位レイヤから取得したデータ及び制御情報等に基づいて、DL信号の送受信に用いるリソース及び/又はUL信号の送受信に用いるリソースの割り当てを行う。割り当てたリソースに関する情報は、端末200に送信する制御情報に含まれてよい。 For example, the control unit 103 determines the resources and/or UL used for transmitting/receiving DL signals based on the signals (for example, data and control information, etc.) received from the terminal 200 and/or the data and control information acquired from the upper layer. Allocates resources used for signal transmission and reception. Information regarding the allocated resources may be included in the control information transmitted to the terminal 200.
 制御部103は、上記の実施の形態において説明した送信及び受信以外の動作を実行する(なお、当該動作は、送信部101及び/又は受信部102によって実行されてもよい)。 The control unit 103 executes operations other than the transmission and reception described in the above embodiments (note that the operations may be executed by the transmission unit 101 and/or the reception unit 102).
 例えば、制御部103は、SSBに関する設定(送信周期、SSBの位置、SSBの時間ウィンドウの開始位置等)等の設定情報を生成する。 For example, the control unit 103 generates setting information such as settings related to SSB (transmission cycle, position of SSB, starting position of SSB time window, etc.).
 例えば、制御部103は、SSBに関する設定を行い、当該設定に従って端末200によりSSBがモニタされている又はSSBの受信が行われていると想定する。 For example, it is assumed that the control unit 103 makes settings related to SSB, and that the terminal 200 monitors SSB or receives SSB according to the settings.
 例えば、制御部103は、上記設定(SSBの周期に関する設定(例えば、ssb-periodicityServingCell及びssb-periodicityServingCell2))が示す複数の周期で、端末200により、基地局100から送信されたSSB、CSI-RS等の周期的送信信号をモニタする時間ウィンドウ内で、周期的送信信号がモニタされている又は当該周期的送信信号の受信が行われていると想定する。 For example, the control unit 103 controls the SSB and CSI-RS transmitted from the base station 100 by the terminal 200 at a plurality of cycles indicated by the above settings (settings related to the SSB cycle (for example, ssb-periodicityServingCell and ssb-periodicityServingCell2)). It is assumed that the periodic transmission signal is being monitored or the periodic transmission signal is being received within a time window for monitoring the periodic transmission signal such as .
 <端末>
 図13は、本開示の一実施の形態に係る端末200の構成の一例を示すブロック図である。端末200は、例えば、受信部201と、送信部202と、制御部203と、を含む。端末200は、例えば、基地局100(図12参照)と無線によって通信する。なお、受信部201及び送信部202は、あわせて通信部と称されてもよい。
<Terminal>
FIG. 13 is a block diagram illustrating an example of the configuration of terminal 200 according to an embodiment of the present disclosure. Terminal 200 includes, for example, a receiving section 201, a transmitting section 202, and a control section 203. Terminal 200 communicates with base station 100 (see FIG. 12) wirelessly, for example. Note that the receiving section 201 and the transmitting section 202 may be collectively referred to as a communication section.
 受信部201は、基地局100から送信されたDL信号を受信する。例えば、受信部201は、制御部203による制御の下に、DL信号を受信する。 The receiving unit 201 receives the DL signal transmitted from the base station 100. For example, the receiving unit 201 receives a DL signal under the control of the control unit 203.
 例えば、受信部201は、DL信号として、各種の制御信号、参照信号、データ信号等を基地局100から受信する。受信部201は、例えば、DL信号として、上記の実施の形態において説明した各種の信号、チャネル、設定情報、制御情報等を基地局100から受信する。 For example, the receiving unit 201 receives various control signals, reference signals, data signals, etc. from the base station 100 as DL signals. The receiving unit 201 receives, for example, the various signals, channels, setting information, control information, etc. described in the above embodiments from the base station 100 as DL signals.
 例えば、受信部201は、DL信号として、SSB、CSI-RS等の周期的送信信号を基地局100から受信する。 For example, the receiving unit 201 receives periodic transmission signals such as SSB and CSI-RS from the base station 100 as DL signals.
 例えば、受信部201は、DL信号として、上位レイヤパラメータによって、SSBに関する設定(SSBの周期、SSBの位置、SSBの時間ウィンドウの開始位置等)等の設定情報を基地局100から受信する。 For example, the receiving unit 201 receives setting information such as SSB-related settings (SSB period, SSB position, SSB time window start position, etc.) from the base station 100 as a DL signal using upper layer parameters.
 送信部202は、UL信号を基地局100へ送信する。例えば、送信部202は、制御部203による制御の下に、UL信号を送信する。 The transmitter 202 transmits the UL signal to the base station 100. For example, the transmitter 202 transmits a UL signal under the control of the controller 203.
 例えば、送信部202は、UL信号として、端末200の処理能力に関する情報を含む信号、各種の制御信号、参照信号、データ信号等を基地局100へ送信する。 For example, the transmitter 202 transmits a signal including information regarding the processing capacity of the terminal 200, various control signals, reference signals, data signals, etc. to the base station 100 as a UL signal.
 制御部203は、受信部201における受信処理及び送信部202における送信処理を含む、端末200の(通信)動作全般を制御する。 The control unit 203 controls the overall (communication) operation of the terminal 200, including reception processing in the reception unit 201 and transmission processing in the transmission unit 202.
 例えば、制御部203は、上位レイヤからデータ及び制御情報といった情報を取得し、送信部202へ出力する。また、制御部203は、例えば、受信部201から受信したデータ及び制御情報等を上位レイヤへ出力する。 For example, the control unit 203 acquires information such as data and control information from an upper layer and outputs it to the transmission unit 202. Further, the control unit 203 outputs, for example, data and control information received from the reception unit 201 to an upper layer.
 制御部203は、上記の実施の形態において説明した送信及び受信以外の動作を実行する(なお、当該動作は、受信部201及び/又は送信部202によって実行されてもよい)。 The control unit 203 executes operations other than the transmission and reception described in the above embodiments (note that the operations may be executed by the reception unit 201 and/or the transmission unit 202).
 例えば、制御部203は、基地局100から送信された上記設定(SSBの周期に関する設定(例えば、ssb-periodicityServingCell及びssb-periodicityServingCell2))が示す複数の周期で、基地局100から送信されたSSB、CSI-RS等の周期的送信信号をモニタする時間ウィンドウ内で、周期的送信信号が基地局100から送信されていると想定する。 For example, the control unit 203 transmits the SSB transmitted from the base station 100 at a plurality of cycles indicated by the settings transmitted from the base station 100 (settings related to the SSB cycle (for example, ssb-periodicityServingCell and ssb-periodicityServingCell2)). It is assumed that a periodic transmission signal is being transmitted from the base station 100 within a time window in which a periodic transmission signal such as a CSI-RS is monitored.
 例えば、制御部203は、SSB等の周期的送信信号が、1番目のSSBセット(第1信号)及び2番目のSSBセット(第2信号)を含む場合、第1信号及び第2信号をモニタする同一の時間ウィンドウ内で、第1信号及び第2信号のうちの少なくとも一方が基地局100から送信されていると想定する。 For example, when the periodic transmission signal such as SSB includes a first SSB set (first signal) and a second SSB set (second signal), the control unit 203 monitors the first signal and the second signal. Assume that at least one of the first signal and the second signal is transmitted from the base station 100 within the same time window.
 例えば、制御部203は、SSB等の周期的送信信号が、1番目のSSBセット(第1信号)及び2番目のSSBセット(第2信号)を含む場合、第1信号をモニタする第1時間ウィンドウ内で、第1信号が基地局100から送信されていると想定し、第2信号をモニタする第2時間ウィンドウ内で、第2信号が基地局100から送信されていると想定する。 For example, when the periodic transmission signal such as SSB includes a first SSB set (first signal) and a second SSB set (second signal), the control unit 203 controls the first time period for monitoring the first signal. Assume that a first signal is being transmitted from the base station 100 within the window, and assume that a second signal is being transmitted from the base station 100 within a second time window of monitoring the second signal.
 例えば、制御部203は、SSB等の周期的送信信号が、1番目のSSBセット(第1信号)及び2番目のSSBセット(第2信号)を含む場合、上記設定のうちで第1信号及び第2信号の位置に関する、第1信号及び第2信号に共用の設定(例えば、ssb-PositionsInBurst)に基づいて、第1信号及び第2信号が基地局100から送信されていると想定する。 For example, when the periodic transmission signal such as SSB includes a first SSB set (first signal) and a second SSB set (second signal), the control unit 203 controls the first signal and the second SSB set among the above settings. It is assumed that the first signal and the second signal are being transmitted from the base station 100 based on a common setting for the first signal and the second signal (for example, ssb-PositionsInBurst) regarding the position of the second signal.
 例えば、制御部203は、SSB等の周期的送信信号が、1番目のSSBセット(第1信号)及び2番目のSSBセット(第2信号)を含む場合、上記設定のうちで第1信号の位置に関する第1設定(例えば、ssb-PositionsInBurst)に基づいて、第1信号が基地局100から送信されていると想定し、上記設定のうちで第2信号の位置に関する第2設定(例えば、ssb-PositionsInBurst2)に基づいて、第2信号が基地局100から送信されていると想定する。 For example, in the case where the periodic transmission signal such as SSB includes a first SSB set (first signal) and a second SSB set (second signal), the control unit 203 configures the first signal in the above settings. Assuming that the first signal is being transmitted from the base station 100 based on the first setting regarding the position (for example, ssb-PositionsInBurst), the second setting regarding the position of the second signal among the above settings (for example, ssb-PositionsInBurst) -PositionsInBurst2), it is assumed that the second signal is being transmitted from the base station 100.
 また、DL信号の送信に使用されるチャネル及びUL信号の送信に使用されるチャネルは、上述した例に限定されない。例えば、DL信号の送信に使用されるチャネル及びUL信号の送信に使用されるチャネルには、上述したRACH及びPBCHが含まれてよい。 Furthermore, the channels used for transmitting DL signals and the channels used for transmitting UL signals are not limited to the examples described above. For example, the channels used for transmitting DL signals and the channels used for transmitting UL signals may include the RACH and PBCH described above.
 以上、本開示について説明した。なお、上記の説明における項目の区分けは本開示に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。 The present disclosure has been described above. Note that the division of items in the above explanation is not essential to the present disclosure, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another. may be applied to the matters described in the section (unless they conflict with each other).
 <ハードウェア構成等>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
<Hardware configuration, etc.>
It should be noted that the block diagram used to explain the above embodiment shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、本開示の一実施の形態に係る基地局100及び端末200のハードウェア構成の一例を示す図である。上述の基地局100及び端末200は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 14 is a diagram illustrating an example of the hardware configuration of base station 100 and terminal 200 according to an embodiment of the present disclosure. The base station 100 and terminal 200 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局100及び端末200のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configurations of the base station 100 and the terminal 200 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 基地局100及び端末200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 100 and the terminal 200 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of data reading and writing in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部103、203などは、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, the above-mentioned control units 103, 203, etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、基地局100の制御部103、端末200の制御部203などは、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 103 of the base station 100, the control unit 203 of the terminal 200, etc. may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way. Good too. Although the various processes described above have been described as being executed by one processor 1001, they may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be done. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. Storage 1003 may also be called an auxiliary storage device. The storage medium mentioned above may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送信部101、受信部102、受信部201及び送信部202などは、通信装置1004によって実現されてもよい。通信装置1004は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of. For example, the above-mentioned transmitting section 101, receiving section 102, receiving section 201, transmitting section 202, etc. may be realized by the communication device 1004. The communication device 1004 may have a transmitter and a receiver that are physically or logically separated.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局100及び端末200は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 100 and the terminal 200 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 (実施の形態のまとめ)
 本開示の実施の形態によれば、基地局から、周期的送信信号に関する設定を受信する受信部と、前記設定が示す複数の周期で、前記周期的送信信号をモニタする時間区間内で、前記周期的送信信号が前記基地局から送信されていると想定する制御部と、を備える端末が提供される。
(Summary of embodiments)
According to an embodiment of the present disclosure, a receiving unit that receives settings related to periodic transmission signals from a base station; A terminal is provided, including a control unit that assumes that a periodic transmission signal is being transmitted from the base station.
 上記の構成により、周期的送信信号の周期を複数設定して異ならせることにより、一部の周期的送信信号が送信され、かつ、一部の周期的送信信号が送信されない時間ウィンドウが生じることになる。これにより、周期的送信信号の送信機会を削減することができるので、基地局の省電力を実現することができる。 With the above configuration, by setting multiple periods of periodic transmission signals and making them different, there will be a time window in which some periodic transmission signals are transmitted and some periodic transmission signals are not transmitted. Become. As a result, it is possible to reduce the transmission opportunities of periodic transmission signals, and therefore it is possible to realize power saving of the base station.
 本端末において、前記周期的送信信号は、第1信号及び第2信号を含み、前記制御部は、前記第1信号及び前記第2信号をモニタする同一の時間区間内で、前記第1信号及び前記第2信号のうちの少なくとも一方が前記基地局から送信されていると想定する。 In this terminal, the periodic transmission signal includes a first signal and a second signal, and the control unit monitors the first signal and the second signal within the same time period in which the first signal and the second signal are monitored. It is assumed that at least one of the second signals is being transmitted from the base station.
 上記の構成により、第1信号及び第2信号に対して異なる時間区間を導入する必要がないので、既存技術との互換性を持たせることができる。 With the above configuration, there is no need to introduce different time intervals for the first signal and the second signal, so compatibility with existing technology can be achieved.
 本端末において、前記周期的送信信号は、第1信号及び第2信号を含み、前記制御部は、前記第1信号をモニタする第1時間区間内で、前記第1信号が前記基地局から送信されていると想定し、前記第2信号をモニタする第2時間区間内で、前記第2信号が前記基地局から送信されていると想定する。 In this terminal, the periodic transmission signal includes a first signal and a second signal, and the control unit is configured to control whether the first signal is transmitted from the base station within a first time period in which the first signal is monitored. It is assumed that the second signal is being transmitted from the base station within a second time period in which the second signal is monitored.
 上記の構成により、第1の信号及び第2の信号のそれぞれに合わせた柔軟な時間区間を設けることができる。 With the above configuration, flexible time intervals can be provided for each of the first signal and the second signal.
 本端末において、前記周期的送信信号は、第1信号及び第2信号を含み、前記設定は、前記第1信号及び前記第2信号の位置に関する、前記第1信号及び前記第2信号に共用の設定を含み、前記制御部は、前記共用の設定に基づいて、前記第1信号及び前記第2信号が前記基地局から送信されていると想定する。 In this terminal, the periodic transmission signal includes a first signal and a second signal, and the settings are common to the first signal and the second signal regarding the positions of the first signal and the second signal. settings, and the control unit assumes that the first signal and the second signal are being transmitted from the base station based on the shared settings.
 上記の構成により、第1信号及び第2信号に対して異なる設定を導入する必要がないので、既存技術との互換性を持たせることができる。 With the above configuration, there is no need to introduce different settings for the first signal and the second signal, so compatibility with existing technology can be achieved.
 本端末において、前記周期的送信信号は、第1信号及び第2信号を含み、前記設定は、前記第1信号の位置に関する第1設定及び前記第2信号の位置に関する第2設定を含み、前記制御部は、前記第1設定に基づいて、前記第1信号が前記基地局から送信されていると想定し、前記第2設定に基づいて、前記第2信号が前記基地局から送信されていると想定する。 In this terminal, the periodic transmission signal includes a first signal and a second signal, the settings include a first setting regarding the position of the first signal and a second setting regarding the position of the second signal, and the setting includes a first setting regarding the position of the first signal and a second setting regarding the position of the second signal, The control unit assumes that the first signal is being transmitted from the base station based on the first setting, and that the second signal is being transmitted from the base station based on the second setting. Assuming that.
 上記の構成により、第1の信号及び第2の信号のそれぞれに合わせて、第1の信号及び第2の信号の位置を柔軟に設定することができる。 With the above configuration, the positions of the first signal and the second signal can be flexibly set according to each of the first signal and the second signal.
 また、本開示の実施の形態によれば、端末が、基地局から、周期的送信信号に関する設定を受信し、前記設定が示す複数の周期で、前記周期的送信信号をモニタする時間区間内で、前記周期的送信信号が前記基地局から送信されていると想定する、通信方法が提供される。 Further, according to an embodiment of the present disclosure, a terminal receives settings related to periodic transmission signals from a base station, and within a time period in which the terminal monitors the periodic transmission signals at a plurality of cycles indicated by the settings. , a communication method is provided in which it is assumed that the periodic transmission signal is transmitted from the base station.
 上記の構成により、周期的送信信号の周期を複数設定して異ならせることにより、一部の周期的送信信号が送信され、かつ、一部の周期的送信信号が送信されない時間ウィンドウが生じることになる。これにより、周期的送信信号の送信機会を削減することができるので、基地局の省電力を実現することができる。 With the above configuration, by setting multiple periods of periodic transmission signals and making them different, there will be a time window in which some periodic transmission signals are transmitted and some periodic transmission signals are not transmitted. Become. Thereby, it is possible to reduce the transmission opportunities of periodic transmission signals, and therefore it is possible to realize power saving of the base station.
 (実施の形態の補足)
 以上、本開示の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本開示に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局100及び端末200は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本開示の実施の形態に従って基地局100が有するプロセッサにより動作するソフトウェア及び本開示の実施の形態に従って端末200が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplementary information on the embodiment)
Although the embodiments of the present disclosure have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, etc. Probably. Although the invention has been explained using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, these numerical values are merely examples, and any appropriate values may be used. The division of items in the above explanation is not essential to the present disclosure, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another item. may be applied to the matters described in (unless inconsistent). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical components. The operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components. Regarding the processing procedures described in the embodiments, the order of processing may be changed as long as there is no contradiction. Although the base station 100 and the terminal 200 have been described using functional block diagrams for convenience of processing description, such devices may be implemented in hardware, software, or a combination thereof. Software operated by a processor included in base station 100 according to an embodiment of the present disclosure and software operated by a processor included in terminal 200 according to an embodiment of this disclosure are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
 <情報の通知、シグナリング>
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
<Information notification, signaling>
Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented using broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
 <適用システム>
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
<Applicable system>
Each aspect/embodiment described in this disclosure applies to LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer, decimal, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems and systems that are extended, modified, created, and defined based on these. The present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 <処理手順等>
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
<Processing procedures, etc.>
The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 <基地局の動作>
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
<Base station operation>
The specific operations performed by the base station in this disclosure may be performed by its upper node in some cases. In a network consisting of one or more network nodes including a base station, various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this could be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.). In the above example, there is one network node other than the base station, but it may be a combination of multiple other network nodes (for example, MME and S-GW).
 <入出力の方向>
 情報等(<情報、信号>の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
<Input/output direction>
Information etc. (see the item <Information, Signal>) can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 <入出力された情報等の扱い>
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
<Handling of input/output information, etc.>
The input/output information may be stored in a specific location (eg, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
 <判定方法>
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
<Judgment method>
Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
 <態様のバリエーション等>
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わないこと)によって行われてもよい。
<Variations of aspects, etc.>
Each aspect/embodiment described in this disclosure may be used alone, may be used in combination, or may be switched and used in accordance with execution. Further, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
 <ソフトウェア>
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
<Software>
Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 <情報、信号>
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
<Information, signals>
The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, or the like.
 <システム、ネットワーク>
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
<System, network>
As used in this disclosure, the terms "system" and "network" are used interchangeably.
 <パラメータ、チャネルの名称>
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
<Parameter, channel name>
In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements may be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 <基地局>
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
<Base station>
In this disclosure, "Base Station (BS),""wireless base station,""fixedstation,""NodeB,""eNodeB(eNB),""gNodeB(gNB),"""accesspoint","transmissionpoint","receptionpoint","transmission/receptionpoint","cell","sector","cellgroup"," The terms "carrier", "component carrier", etc. may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services may also be provided by a remote radio head).The term "cell" or "sector" refers to a portion or the entire coverage area of a base station and/or base station subsystem that provides communication services in this coverage. refers to
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In the present disclosure, the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
 <移動局>
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
<Mobile station>
In this disclosure, terms such as "Mobile Station (MS),""userterminal,""User Equipment (UE)," and "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 <基地局/移動局>
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
<Base station/mobile station>
At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. Examples of such moving objects include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships and other watercraft. , including, but not limited to, airplanes, rockets, artificial satellites, drones (registered trademarks), multicopters, quadcopters, balloons, and objects mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good. Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施の形態を適用してもよい。この場合、上述の基地局100が有する機能を端末200が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 200 may have the functions that the base station 100 described above has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述の端末200が有する機能を基地局100が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 100 may have the functions that the terminal 200 described above has.
 図15に車両2001の構成例を示す。図15に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施の形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 FIG. 15 shows an example of the configuration of the vehicle 2001. As shown in FIG. 15, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013. Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカー、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
 情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2029との間でデータを送受信する。 Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port. For example, the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 2029 in the control unit 2010.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021~2029からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021~2029、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 2013 receives signals from the various sensors 2021 to 2029 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 2010, various sensors 2021 to 2029, information service unit 2012, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 2013 may include information based on the above input.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029などの制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001. The information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
 <用語の意味、解釈>
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
<Meaning and interpretation of terms>
As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (for example, accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" refer to resolving, selecting, choosing, establishing, comparing, etc. as "judgment" and "decision". may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, mean any connection or coupling, direct or indirect, between two or more elements and each other. It may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
 <参照信号>
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
<Reference signal>
The reference signal can also be abbreviated as RS (Reference Signal), and may also be called a pilot depending on the applied standard.
 <「に基づいて」の意味>
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
<Meaning of “based on”>
As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 <「第1の」、「第2の」>
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
<“first”, “second”>
As used in this disclosure, any reference to elements using the designations "first,""second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 <手段>
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
<Means>
"Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 <オープン形式>
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
<Open format>
Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 <TTI等の時間単位、RBなどの周波数単位、無線フレーム構成>
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
<Time units such as TTI, frequency units such as RB, radio frame configuration>
A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a Transmission Time Interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or minislot may be called a TTI. It's okay. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), code block, codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs are defined as physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also referred to as partial bandwidth) refers to a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. good. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 <最大送信電力>
 本開示に記載の「最大送信電力」は、送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
<Maximum transmission power>
"Maximum transmit power" as described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power ( It may also mean the rated UE maximum transmit power.
 <冠詞>
 本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
<Article>
In this disclosure, when articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 <「異なる」>
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
<“Different”>
In this disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示は、無線通信システムに有用である。 The present disclosure is useful for wireless communication systems.
 10 無線通信システム
 20 NG-RAN
 100 基地局(gNB)
 200 端末(UE)
 101,202 送信部
 102,201 受信部
 103,203 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Wireless communication system 20 NG-RAN
100 base station (gNB)
200 Terminal (UE)
101,202 Transmitting unit 102,201 Receiving unit 103,203 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (6)

  1.  基地局から、周期的送信信号に関する設定を受信する受信部と、
     前記設定が示す複数の周期で、前記周期的送信信号をモニタする時間区間内で、前記周期的送信信号が前記基地局から送信されていると想定する制御部と、
     を備える端末。
    a receiving unit that receives settings regarding the periodic transmission signal from the base station;
    a control unit that assumes that the periodic transmission signal is being transmitted from the base station within a time period in which the periodic transmission signal is monitored at a plurality of cycles indicated by the setting;
    A terminal equipped with
  2.  前記周期的送信信号は、第1信号及び第2信号を含み、
     前記制御部は、前記第1信号及び前記第2信号をモニタする同一の時間区間内で、前記第1信号及び前記第2信号のうちの少なくとも一方が前記基地局から送信されていると想定する、
     請求項1に記載の端末。
    The periodic transmission signal includes a first signal and a second signal,
    The control unit assumes that at least one of the first signal and the second signal is being transmitted from the base station within the same time period in which the first signal and the second signal are monitored. ,
    The terminal according to claim 1.
  3.  前記周期的送信信号は、第1信号及び第2信号を含み、
     前記制御部は、前記第1信号をモニタする第1時間区間内で、前記第1信号が前記基地局から送信されていると想定し、前記第2信号をモニタする第2時間区間内で、前記第2信号が前記基地局から送信されていると想定する、
     請求項1に記載の端末。
    The periodic transmission signal includes a first signal and a second signal,
    The control unit assumes that the first signal is being transmitted from the base station within a first time period in which the first signal is monitored, and within a second time period in which the second signal is monitored, Assume that the second signal is being transmitted from the base station;
    The terminal according to claim 1.
  4.  前記周期的送信信号は、第1信号及び第2信号を含み、
     前記設定は、前記第1信号及び第2信号の位置に関する、前記第1信号及び前記第2信号に共用の設定を含み、
     前記制御部は、前記共用の設定に基づいて、前記第1信号及び前記第2信号が前記基地局から送信されていると想定する、
     請求項1に記載の端末。
    The periodic transmission signal includes a first signal and a second signal,
    The settings include settings shared by the first signal and the second signal regarding the positions of the first signal and the second signal,
    The control unit assumes that the first signal and the second signal are being transmitted from the base station based on the shared setting.
    The terminal according to claim 1.
  5.  前記周期的送信信号は、第1信号及び第2信号を含み、
     前記設定は、前記第1信号の位置に関する第1設定及び前記第2信号の位置に関する第2設定を含み、
     前記制御部は、前記第1設定に基づいて、前記第1信号が前記基地局から送信されていると想定し、前記第2設定に基づいて、前記第2信号が前記基地局から送信されていると想定する、
     請求項1に記載の端末。
    The periodic transmission signal includes a first signal and a second signal,
    The settings include a first setting regarding the position of the first signal and a second setting regarding the position of the second signal,
    The control unit assumes that the first signal is transmitted from the base station based on the first setting, and assumes that the second signal is transmitted from the base station based on the second setting. Assume that there are
    The terminal according to claim 1.
  6.  端末が、
     基地局から、周期的送信信号に関する設定を受信し、
     前記設定が示す複数の周期で、前記周期的送信信号をモニタする時間区間内で、前記周期的送信信号が前記基地局から送信されていると想定する、
     通信方法。
    The terminal is
    receiving settings regarding periodic transmission signals from a base station;
    Assume that the periodic transmission signal is transmitted from the base station within a time period in which the periodic transmission signal is monitored at a plurality of periods indicated by the settings;
    Communication method.
PCT/JP2022/033963 2022-09-09 2022-09-09 Terminal and communication method WO2024053114A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033963 WO2024053114A1 (en) 2022-09-09 2022-09-09 Terminal and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033963 WO2024053114A1 (en) 2022-09-09 2022-09-09 Terminal and communication method

Publications (1)

Publication Number Publication Date
WO2024053114A1 true WO2024053114A1 (en) 2024-03-14

Family

ID=90192239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033963 WO2024053114A1 (en) 2022-09-09 2022-09-09 Terminal and communication method

Country Status (1)

Country Link
WO (1) WO2024053114A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020503823A (en) * 2017-06-16 2020-01-30 エルジー エレクトロニクス インコーポレイティド Method and apparatus for measuring synchronization signal block
US20210067292A1 (en) * 2018-05-11 2021-03-04 Vivo Mobile Communication Co.,Ltd. Transmission resource indication method, network device, and terminal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020503823A (en) * 2017-06-16 2020-01-30 エルジー エレクトロニクス インコーポレイティド Method and apparatus for measuring synchronization signal block
US20210067292A1 (en) * 2018-05-11 2021-03-04 Vivo Mobile Communication Co.,Ltd. Transmission resource indication method, network device, and terminal

Similar Documents

Publication Publication Date Title
WO2024053114A1 (en) Terminal and communication method
WO2023203703A1 (en) Terminal and communication method
WO2023203623A1 (en) Terminal, base station, and communication method
WO2023210012A1 (en) Terminal, base station, and communication method
WO2023203780A1 (en) Terminal, base station, and communication method
WO2023203781A1 (en) Terminal, base station, and communication method
WO2024034101A1 (en) Terminal and communication method
WO2023209781A1 (en) Terminal and communication method
WO2024034102A1 (en) Terminal and communication method
WO2023203732A1 (en) Terminal, base station, and communication method
WO2023203704A1 (en) Terminal, base station, and communication method
WO2023203735A1 (en) Terminal and communication method
WO2024034084A1 (en) Terminal, base station, and communication method
WO2023203734A1 (en) Terminal and communication method
WO2024034036A1 (en) Terminal and communication method
WO2023210010A1 (en) Terminal and communication method
WO2023210015A1 (en) Terminal, and communication method
WO2023210013A1 (en) Terminal, base station, and communication method
WO2023242965A1 (en) Terminal, base station, and communication method
WO2023203705A1 (en) Terminal, base station, and communication method
WO2023199393A1 (en) Terminal, base station, and communication method
WO2023199528A1 (en) Terminal, base station, and communication method
WO2023199526A1 (en) Terminal, base station, and communication method
WO2023209831A1 (en) Terminal and base station
WO2023210017A1 (en) Terminal, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958192

Country of ref document: EP

Kind code of ref document: A1