WO2024052284A1 - Procede ameliore de fabrication d'acides carboxyliques alpha-beta insatures a partir de poly(3-hydroxyalcanoate) - Google Patents

Procede ameliore de fabrication d'acides carboxyliques alpha-beta insatures a partir de poly(3-hydroxyalcanoate) Download PDF

Info

Publication number
WO2024052284A1
WO2024052284A1 PCT/EP2023/074176 EP2023074176W WO2024052284A1 WO 2024052284 A1 WO2024052284 A1 WO 2024052284A1 EP 2023074176 W EP2023074176 W EP 2023074176W WO 2024052284 A1 WO2024052284 A1 WO 2024052284A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
hydroxyalkanoate
thermolysis
process according
unsaturated
Prior art date
Application number
PCT/EP2023/074176
Other languages
English (en)
Inventor
Yves CABON
Jean-Jacques GESLOT
Guillaume SABOT
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2024052284A1 publication Critical patent/WO2024052284A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/50Use of additives, e.g. for stabilisation

Definitions

  • the present invention relates to a process for manufacturing unsaturated a ⁇ P carboxylic acids by thermolysis of poly(3-hydroxyalkanoate), while limiting the fouling phenomena linked to fortuitous condensation of hot vapors of a ⁇ carboxylic acids.
  • Unsaturated P generated on process walls and the subsequent formation of solids by a radical polymerization reaction.
  • the invention is based on the introduction into the thermolysis reactor of a radical polymerization inhibitor and the use of particular thermolysis conditions making this inhibitor partially volatile during the thermolysis of poly(3-hydroxyalkanoate).
  • the radical polymerization inhibitor also condenses and protects the liquid phase formed against a radical polymerization reaction.
  • the industrial production of unsaturated a ⁇ P carboxylic acids is today mainly carried out from raw materials of fossil origin.
  • acrylic acid is obtained by oxidation of propylene
  • methacrylic acid can be obtained by oxidation of isobutylene.
  • bio-based raw materials come from renewable organic matter (biomass) of biological origin (microorganisms, plants or animals).
  • thermolysis at temperatures of 150 to 300°C of corresponding poly(3-hydroxyalkanoates), according to the following reaction:
  • Poly(3-hydroxyalkanoate) poly(3-hydroxypropionate) (P3HP);
  • Unsaturated a ⁇ P carboxylic acid propenoic acid (acrylic acid).
  • Poly(3-hydroxyalkanoate) poly(3-hydroxyisobutyrate) (P3HiB);
  • Unsaturated a ⁇ P carboxylic acid isobutenoic acid (methacrylic acid).
  • Poly(3-hydroxyalkanoate) poly(3-hydroxybutyrate) (P3HB);
  • Unsaturated a ⁇ P carboxylic acid but-2-enoic acid (crotonic acid).
  • Poly(3-hydroxyalkanoate) is poly(3-hydroxy valerate) (P3HV);
  • poly(3-hydroxyalkanoates) can themselves be obtained beforehand by chemical transformations of raw materials of fossil origin, but also by fermentation of biomass.
  • a potential problem with any process for manufacturing ap unsaturated carboxylic acids is that these compounds can easily radically polymerize when hot and in the liquid phase. This is true in liquid phases formed intentionally, such as the liquid phases present in a distillation column, in a reactor or in a condenser, but it can also happen in liquid phases formed accidentally, such as those formed during accidental condensation of hot vapors on a wall with a cold spot.
  • the usual consequence of this process is the deposit, in the installation equipment, of solid polymers which end up causing blockages and making necessary to stop the workshop for cleaning, which proves difficult and costly in terms of non-productive downtime.
  • radical polymerization inhibitors are added in a conventional manner at all stages of the production process, that is to say at the synthesis stage and at the purification stages.
  • radical polymerization inhibitors are added to the water absorption column of AA vapors resulting from the catalytic oxidation of propylene and then to each column. distillation and finally in the finished product.
  • the radical polymerization inhibitors conventionally used in these manufacturing processes are phenolic derivatives such as hydroquinone (HQ) and its derivatives such as hydroquinone methyl ether (EMHQ), 2,6-di-terbutyl-4 - methyl phenol (BHT) or 2,4-dimethyl-6-terbutyl phenol (Topanol A); phenothiazine and its derivatives; nitroxide compounds such as 4-hydroxy-2,2,6,6-tetramethylpiperidin-l-oxyl (4-OH-TEMPO); or amino compounds such as paraphenylenediamine derivatives.
  • HQ hydroquinone
  • EMHQ hydroquinone methyl ether
  • BHT 2,6-di-terbutyl-4 - methyl phenol
  • Topicanol A 2,4-dimethyl-6-terbutyl phenol
  • phenothiazine and its derivatives phenothiazine and its derivatives
  • nitroxide compounds such as 4-hydroxy-2,2,6,6
  • inhibitors are usually considered non-volatile under the conditions of production of unsaturated a ⁇ P carboxylic acid. In order to be present in all liquid phases containing unsaturated a-p acid, they must therefore be injected into the reaction but also into the feeds, boilers, condensers and reflux of purification equipment. Inhibitor sprays in solution can also be used to protect all surfaces on which hot vapors of unsaturated a-p acid are likely to condense accidentally.
  • Document EP 2398832 describes another solution aimed at preventing polymerization, including in the event of accidental accidental condensation of AA vapors. It uses a second type of inhibitor, called fugitive, that is to say volatile, in the production operating conditions, close to those of unsaturated ap acid, here acrylic acid. This inhibitor is then present in the gas phase and condenses at the same time as the acrylic acid vapors during a fortuitous condensation.
  • fugitive that is to say volatile, in the production operating conditions, close to those of unsaturated ap acid, here acrylic acid.
  • This inhibitor is then present in the gas phase and condenses at the same time as the acrylic acid vapors during a fortuitous condensation.
  • these polymerization inhibitors which are nitrosobenzene derivatives, have the disadvantage of being toxic.
  • US 2568636 describes the thermolysis of poly(3-hydroxypropionate) (P3HP) to form acrylic acid (AA) at temperatures between 130 and 300 °C and the use of triarylphosphates to limit the polymerization of AA in the thermo oly se reactor.
  • US Patent 3002017 describes a similar thermolysis in which AA vapors are absorbed into cold AA in order to limit polymerization during the condensation step.
  • US 9115070 describes the thermolysis of P3HP to form AA using a tertiary amine catalyst to reduce the reaction temperature.
  • Conventional polymerization inhibitors such as phenothiazine (PTZ)
  • PTZ phenothiazine
  • US 10065914 describes the thermolysis of P3HP to form AA at temperatures of 100 to 300 ° C, using a sodium acrylate catalyst in order to reduce the reaction temperature and thus limit the risks of polymerization of the AA formed in the thermolysis medium.
  • polymerization inhibitors such as PTZ and EMHQ
  • in the liquid phase of the thermolysis reactor as well as their voluntary introduction into the liquid phases of a distillation or a condenser also makes it possible to reduce the phenomena polymerization.
  • the inventors have now surprisingly discovered that it is possible to drastically reduce the polymerization phenomena linked to the accidental condensation of hot vapors in a process for the synthesis of a-p unsaturated carboxylic acid from poly(3-hydroxyalkanoate) without using a non-classical inhibitor.
  • the parameters of the thermal reaction of poly(3-hydroxyalkanoate) into unsaturated ⁇ -p carboxylic acid can in fact be adjusted in order to obtain significant volatility of certain conventional polymerization inhibitors. These inhibitors are then present in the gas phase and condense at the same time as the unsaturated a-p carboxylic acid during a fortuitous condensation on a cold point, instantly protecting the liquid phase formed. There is no need for a complex inhibitor distribution system at several points in the process or for expensive and toxic inhibitors.
  • the invention proposes to provide a simple and easy to implement solution to reduce clogging phenomena and thus maintain high reliability and high productivity in processes for manufacturing unsaturated a ⁇ P carboxylic acids from of poly(3-hydroxypropionate).
  • the subject of the present invention is a process for manufacturing a ⁇ P unsaturated carboxylic acids by thermolysis of poly(3-hydroxyalkanoate) carried out in a thermolysis reactor from which the carboxylic acid vapors generated join a condenser, in the presence of one or more polymerization inhibitors, characterized in that the pressure in the reactor is adjusted so that it is less than twice the vapor pressure of at least one of the inhibitors at the temperature at which thermolysis is carried out.
  • thermolysis conditions used pressure and temperature
  • said method comprises the following characters, where appropriate combined.
  • the contents indicated are expressed by weight, unless otherwise indicated.
  • the limits are included in the value ranges indicated.
  • the poly(3-hydroxyalkanoate) used in the therm oly process comprises a single type of 3-hydroxyalkanoate units and the product formed is therefore composed of a single unsaturated a ⁇ P carboxylic acid.
  • the poly(3-hydroxyalkanoate) used in the therm oly process comprises several different 3-hydroxyalkanoate units and the product formed is therefore composed of a mixture of different a-p unsaturated carboxylic acids.
  • P3HA copolymers are poly-3-hydroxybutyrate-co-3-hydroxypropionate (poly-3HB-co-3HP) or poly-3-hydroxybutyrate-co-3-hydroxyvalerate (poly-3HB-co-3HV) .
  • the poly(3-hydroxyalkanoate) used in the thermolysis process is obtained from raw materials of fossil origin.
  • the poly(3-hydroxyalkanoate) used in the thermolysis process is obtained from raw materials of renewable origin or at least partly of renewable origin.
  • the poly(3-hydroxyalkanoate) is more than 50% by weight, preferably more than 80% by weight, advantageously 100% by weight of renewable origin.
  • the poly(3-hydroxyalkanoate) used in the thermolysis process is obtained by chemical reaction, for example obtaining P3HP by polymerization of P-propiolactone itself obtained from ethylene oxide and carbon monoxide.
  • the poly(3-hydroxyalkanoate) used in the thermolysis process is obtained by biological reaction, in particular by fermentation.
  • the poly(3-hydroxyalkanoate) used in the thermolysis process is purified prior to the thermolysis reaction.
  • the poly(3-hydroxyalkanoate) used in the thermolysis process is used without prior purification, in particular without separation of the cell membrane, if it was obtained by fermentation.
  • the poly(3 -hydroxyalkanoate) is obtained inside a cell by a fermentation reaction, the biomass is washed and dried but the poly(3 -hydroxyalkanoate) is not separated from the cell membrane before the thermolysis stage.
  • the poly(3 -hydroxyalkanoate) is obtained inside a cell by a fermentation reaction, the biomass is washed and dried and the poly(3 -hydroxyalkanoate) is separated from the cell membrane before the thermolysis step, for example by extraction.
  • thermolysis reaction of the poly(3-hydroxyalkanoate) takes place in the absence of solvent, the product then being in solid form or in the molten state.
  • thermolysis reaction of poly(3-hydroxyalkanoate) takes place in solution.
  • thermolysis reaction of the poly(3-hydroxyalkanoate) takes place in suspension.
  • thermolysis reaction of poly(3-hydroxyalkanoate) takes place in batch.
  • thermolysis reaction of the poly(3-hydroxyalkanoate) takes place continuously.
  • thermolysis reaction of poly(3-hydroxyalkanoate) takes place in the absence of catalyst.
  • the polymerization inhibitors used in the process according to the invention are chosen from the inhibitors conventionally used in existing industrial processes for the production of unsaturated a ⁇ P carboxylic acids. These include phenolic derivatives such as hydroquinone (HQ) and its derivatives; phenothiazine and its derivatives; nitroxide compounds; and amino compounds such as parapheny 1 enedi amine derivatives.
  • phenolic derivatives such as hydroquinone (HQ) and its derivatives
  • phenothiazine and its derivatives phenothiazine and its derivatives
  • nitroxide compounds such as parapheny 1 enedi amine derivatives.
  • the poly(3 -hydroxyalkanoate) contains the 3-hydroxypropionate unit and at least one of the a ⁇ P unsaturated carboxylic acids produced is acrylic acid.
  • the poly(3-hydroxyalkanoate) is poly(3-hydroxypropionate) and the a ⁇ P unsaturated carboxylic acid produced is acrylic acid.
  • the poly(3-hydroxyalkanoate) contains the 3-hydroxybutyrate unit and at least one of the a ⁇ P unsaturated carboxylic acids produced is crotonic acid.
  • the poly(3-hydroxyalkanoate) is poly(3-hydroxybutyrate) and the a ⁇ P unsaturated carboxylic acid produced is crotonic acid.
  • the poly(3-hydroxyalkanoate) contains the 3-hydroxyisobutyrate unit and at least one of the a ⁇ P unsaturated carboxylic acids produced is methacrylic acid.
  • the poly(3-hydroxyalkanoate) is poly(3-hydroxyisobutyrate) and the a ⁇ P unsaturated carboxylic acid produced is methacrylic acid.
  • Another object of the invention relates to a process for purifying the unsaturated a ⁇ P carboxylic acid(s) obtained by the process of thermolysis of poly(3-hydroxyalkanoate) operated at a pressure less than twice the vapor pressure of at least one polymerization inhibitor at the thermolysis temperature, characterized in that it comprises a step of condensation of the vapors of the a-p unsaturated carboxylic acid(s) thus obtained, followed by one or more purification steps.
  • the present invention meets the need expressed in the state of the art. It makes it possible to prevent the risks of fouling due to the fortuitous condensation of vapors of unsaturated a ⁇ P carboxylic acids on cold points in the case of the generation of unsaturated a ⁇ P carboxylic acids by thermolysis of poly(3-hydroxypropionate ).
  • the invention makes it possible in particular to protect the zone located between the thermolysis reactor and the condenser. Thanks to the polymerization inhibitor made volatile in the thermolysis medium, it will be present in the gas phase throughout the part of the installation where the unsaturated a-p carboxylic acid(s) are in the gas phase.
  • the invention also makes it possible to avoid the formation of polymers in the reaction medium.
  • the invention aims to produce on an industrial scale a-p unsaturated carboxylic acids by thermolysis of poly(3-hydroxy alkanoate), without being confronted with the problem of clogging of the installations used, due to the polymerization of the vapors of unsaturated a ⁇ P carboxylic acids when they condense on cold points of the installation.
  • the invention aims to provide a method making it possible to reduce or eliminate this risk of clogging.
  • the invention is based on the addition of a polymerization inhibitor and the choice of pressure and temperature conditions in the poly(3-hydroxyalkanoate) thermolysis reactor, so that the inhibitor has significant volatility under the reaction conditions.
  • the pressure in the reactor is adjusted so that it is less than twice the vapor pressure of the inhibitor at the thermolysis temperature.
  • thermolysis of poly(3-hydroxyalkanoate) means its chemical decomposition into unsaturated a ⁇ P carboxylic acid obtained under the effect of temperature. This term is synonymous with pyrolysis.
  • saturated vapor pressure is the pressure exerted by a pure substance (at a given temperature) in a system containing only the vapor and the condensed phase (liquid or solid) of the substance.
  • vapor pressure will be used in the same sense as the term “saturating vapor pressure”. Also, the term “vapor pressure” is synonymous with “vapor tension”.
  • the poly(3-hydroxyalkanoate) is heated to a temperature of 130 to 300°C, preferably 170 to 230°C.
  • the reaction medium in the thermolysis reactor comprises at least one polymerization inhibitor, in particular at a rate of 50ppm to 5% by weight, in particular from 0.01% to 3% by weight, relative to the weight of the poly(3-hydroxyalkanoate ). When there are two or more inhibitors, their overall content does not exceed 5% by weight.
  • the polymerization inhibitors are chosen from the inhibitors conventionally used in existing industrial processes for the production of ap unsaturated carboxylic acids.
  • phenolic derivatives such as hydroquinone (HQ) and its derivatives such as hydroquinone methyl ether (EMHQ), 2,6-di-terbutyl-4-methyl phenol (BHT) or 2 ,4-dimethyl-6-terbutyl phenol (Topanol A); phenothiazine and its derivatives; nitroxide compounds such as 4-hydroxy-2,2,6,6-tetramethylpiperidin-l-oxyl (4-OH-TEMPO); amino compounds such as paraphenylenediamine derivatives.
  • HQ hydroquinone
  • EMHQ hydroquinone methyl ether
  • BHT 2,6-di-terbutyl-4-methyl phenol
  • Topicanol A 2 ,4-dimethyl-6-terbutyl phenol
  • phenothiazine and its derivatives nitroxide compounds such as 4-hydroxy-2,2,6,6-tetramethylpiperidin-l-oxyl (4-OH-TEMPO); amino compounds such as paraphenylened
  • the temperature and pressure conditions in the thermolysis reactor are chosen so that the unsaturated a-p carboxylic acid(s) formed are in the form of vapors and that at least one of the inhibitors is volatile. This is obtained when the pressure in the reactor is less than twice the vapor pressure of one of the inhibitors at the thermolysis temperature.
  • At least one of said polymerization inhibitors is hydroquinone methyl ether (EMHQ).
  • EMHQ has a vapor pressure of:
  • the process according to the invention thus makes it possible to adopt specific pressure conditions to obtain volatility of the inhibitor and thus protect the operation in the event of unwanted condensation of hot vapors of unsaturated a-p carboxylic acids on a cold point d one of the walls of the equipment.
  • the thermolysis reaction is carried out in the presence of a solvent, either in solution or in suspension.
  • a solvent either in solution or in suspension.
  • the solvent is chosen so as to that its vapor pressure at the thermolysis temperature of the poly(3-hydroxy alkanoate) is less than three-quarters of the pressure at which the thermolysis is carried out.
  • the solvent for operating conditions of 200°C and 20 kPa, the solvent must have a vapor pressure at 200°C less than 15 kPa and can therefore be chosen from:
  • n-hexadecane (Cl 6) at 200°C is 10 kPa.
  • the thermolysis reaction takes place in suspension.
  • the vapor pressure of capric acid (CIO) at 200°C is 11.2 kPa.
  • the thermolysis reaction takes place in suspension.
  • thermolysis reaction takes place in solution.
  • the operating pressure is between 1.5 times the vapor pressure of the solvent at the thermolysis temperature and double the vapor pressure of at least one inhibitor at the thermolysis temperature.
  • the preferred operating pressure for the poly(3-hydroxyalkanoate) thermolysis reaction is just below the vapor pressure of the inhibitor.
  • the polymerization inhibitor is hydroquinone methyl ether and the operation is carried out in solution in a solvent such as sulfolane or tetraglyme.
  • thermolysis of poly(3-hydroxyalkanoate) takes place in the absence of catalyst.
  • catalysts makes it possible to accelerate the kinetics of thermolysis and/or reduce its temperature.
  • the use of a catalyst makes the process more complex and more difficult to implement on an industrial scale.
  • the invention also relates to a process for purifying the unsaturated ap carboxylic acid(s) obtained by the thermolysis process of poly(3- hydroxyalkanoate) operated at a pressure less than twice the vapor pressure of at least one polymerization inhibitor at the thermolysis temperature, characterized in that it comprises a step of condensation of the vapors of the unsaturated ap carboxylic acid(s) thus obtained , followed by one or more purification steps.
  • Purification operations may generally include distillations, liquid/liquid extractions, film evaporator separations, or crystallizations, or a combination of these techniques.
  • Thermolysis tests of poly(3-hydroxypropionate) (P3HP) to generate acrylic acid (AA) are carried out in a laboratory setup. 2 g of pure P3HP are introduced into a 25 mL two-necked flask.
  • An inhibitor (PTZ or EMHQ) is optionally added at a rate of 20 mg.
  • a solvent is optionally added at a rate of 10 g.
  • the side neck of the flask is equipped with a thermometer to monitor the reaction temperature.
  • the upper neck of the flask is equipped with a separation bridge leading to a water-cooled side condenser, itself leading to a recipe consisting of a second 25 mL flask. A tap between the condenser and the recipe allows a reduced pressure to be established in the assembly.
  • the system is placed under the desired pressure then the flask containing the P3HP, as well as possibly the inhibitor and/or the solvent, is placed in a heating system making it possible to establish the desired thermolysis temperature. (oil bath or electric heating mantle).
  • the recipe is cooled by an ice bath.
  • the separation bridge between the thermolysis flask and the side condenser is left deheat-insulated in order to simulate the existence of cold spots.
  • thermolysis reactor As soon as the thermolysis reactor reaches more than 170°C, we observe the formation of AA vapors which condense mainly in the side condenser but also on the cold spots of the separation bridge. After 4 hours of heating, the formation of AA vapors in the thermolysis reactor diminishes and the experiment is then stopped. The state of contamination of the separation bridge, representing the area of involuntary condensation of AA on cold points in an industrial installation, is then judged visually. The AA recovered in the recipe is also analyzed by gas chromatography in order to verify the presence or absence of the inhibitor possibly introduced into the thermolysis reactor, testifying to its volatility or not under the experimental conditions tested.
  • solvent 3, 6, 7
  • solvent in suspension (10, 13, 14) or in solution (17, 20, 21.
  • a polymerization inhibitor under an operating pressure in the assembly, less than twice the vapor pressure of the inhibitor, show a notable reduction in clogging of the separation bridge where hot AA vapors condense on cold spots, and this occurs in mass (4, 5), in suspension (11, 12) or in solution (18 , 19).
  • inhibitor in the AA recovered in the recipe at least in trace amounts, a sign that it was volatile under the operating conditions of thermolysis.
  • C8 acid octanoic acid
  • CIO acid decanoic acid
  • C12 acid dodecanoic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'acides carboxyliques α-β insaturés par thermolyse de poly(3-hydroxyalcanoate), tout en limitant les phénomènes d'encrassement liés à une condensation fortuite des vapeurs chaudes d'acide carboxyliques α-β insaturés générées sur des parois du procédé et à la formation subséquente de solides par une réaction de polymérisation radicalaire. L'invention est basée sur l'introduction dans le réacteur de thermolyse d'un inhibiteur de polymérisation radicalaire et l'utilisation des conditions de thermolyse particulières rendant cet inhibiteur partiellement volatil lors de la thermolyse du poly(3-hydroxyalcanoate).

Description

PROCEDE AMELIORE DE FABRICATION D’ACIDES CARBOXYLIQUES a- P INSATURES A PARTIR DE POLY(3-HYDROXYALCANOATE)
Domaine
Figure imgf000002_0001
La présente invention concerne un procédé de fabrication d’acides carboxyliques a~P insaturés par therm oly se de poly(3-hydroxyalcanoate), tout en limitant les phénomènes d’encrassement liés à une condensation fortuite des vapeurs chaudes d’acide carboxyliques a~P insaturés générées sur des parois du procédé et à la formation subséquente de solides par une réaction de polymérisation radicalaire. L’invention est basée sur l’introduction dans le réacteur de thermolyse d’un inhibiteur de polymérisation radicalaire et l’utilisation des conditions de thermolyse particulières rendant cet inhibiteur partiellement volatil lors de la thermolyse du poly(3-hydroxyalcanoate). Ainsi, en cas de condensation fortuite de vapeurs chaudes d’acide carboxyliques a-p insaturés générées sur des parois du procédé, l’inhibiteur de polymérisation radicalaire se condense également et protège la phase liquide formée contre une réaction de polymérisation radicalaire.
Art antérieur et
Figure imgf000002_0002
La production industrielle d’acides carboxyliques a~P insaturés est aujourd’hui majoritairement réalisée à partir de matières premières d’origine fossile. Par exemple l’acide acrylique est obtenu par oxydation de propylène, ou l’acide méthacrylique peut être obtenu par oxydation de l’isobutylène.
Il existe une forte demande du marché pour que ces acides carboxyliques a-p insaturés, utilisés comme monomères dans de nombreuses applications, puissent être obtenus à partir de matières premières biosourcées. Ces matières premières biosourcées sont issues de la matière organique renouvelable (biomasse) d’origine biologique (microorganismes, végétaux ou animaux).
Une des voies possibles pour obtenir ces acides carboxyliques a-p insaturés est la thermolyse à des températures de 150 à 300°C de poly(3-hydroxyalcanoates) correspondants, selon la réaction suivante :
Figure imgf000003_0001
Ri= H ou alkyl et R2= H ou alkyl ; n est un nombre supérieur à 30
Si RI=R2= H :
Poly(3-hydroxyalcanoate) = poly(3-hydroxypropionate) (P3HP) ;
Acide carboxylique a~P insaturé = acide propénoique (acide acrylique).
Si Ri= méthyle et R2= H :
Poly(3-hydroxyalcanoate) = poly(3-hydroxyisobutyrate) (P3HiB) ;
Acide carboxylique a~P insaturé = acide isobuténoique (acide méthacrylique).
Si Ri= H et R2= méthyle :
Poly(3-hydroxyalcanoate) = poly (3 -hydroxybutyrate) (P3HB) ;
Acide carboxylique a~P insaturé = acide but-2-énoique (acide crotonique).
Si R1=H et R2 = éthyle :
- Poly(3-hydroxyalcanoate) est le poly(3 -hydroxy valerate) (P3HV) ;
- Acide carboxylique a~P insaturé = acide pent-2-énoique
Ces poly(3-hydroxyalcanoates) peuvent eux-mêmes être préalablement obtenus par des transformations chimiques de matières premières d’origine fossile, mais également par fermentation de biomasse.
Un problème potentiel de tout procédé de fabrication d’acides carboxyliques a-p insaturés est que ces composés peuvent facilement polymériser de manière radicalaire lorsqu’ils se retrouvent à chaud et en phase liquide. Cela est vrai dans les phases liquides formées volontairement, telles que les phases liquides présentes dans une colonne de distillation, dans un réacteur ou dans un condenseur, mais cela peut aussi arriver dans les phases liquides formées de manière fortuite, telles que celles se formant lors d’une condensation fortuite de vapeurs chaudes sur une paroi présentant un point froid. La conséquence habituelle de ce processus est le dépôt, dans les équipements de l’installation, de polymères solides qui finissent par provoquer des bouchages et rendent nécessaire un arrêt de l’atelier en vue d’un nettoyage, lequel s’avère difficile et coûteux en temps d’immobilisation non productif.
Pour réduire ces inconvénients, des inhibiteurs de polymérisation radicalaire sont ajoutés de façon classique à toutes les étapes du procédé de production, c’est-à-dire à l’étape de synthèse et aux étapes de purification.
Par exemple, lors de la fabrication industrielle d’acide acrylique (AA), des inhibiteurs de polymérisation radicalaire sont ajoutés dans la colonne d’absorption dans l’eau des vapeurs d’AA issues de l’oxydation catalytique du propylène puis dans chaque colonne de distillation et enfin dans le produit fini.
Les inhibiteurs de polymérisation radicalaire classiquement utilisés dans ces procédés de fabrication sont des dérivés phénoliques comme 1’ hydroquinone (HQ) et ses dérivés tels que l’éther méthylique de 1’ hydroquinone (EMHQ), le 2,6-di-terbutyl-4- méthyl phénol (BHT) ou le 2,4-diméthyl-6-terbutyl phénol (Topanol A) ; la phénothiazine et ses dérivés ; les composés nitroxyde comme le 4-hydroxy-2,2,6,6- tétraméthylpipéridin-l-oxyl (4-OH- TEMPO) ; ou les composés aminés comme les dérivés de paraphénylènediamine.
Lin inconvénient de ces inhibiteurs est qu’ils sont habituellement considérés non volatils dans les conditions de production de l’acide carboxylique a~P insaturé. Afin d’être présent dans toutes les phases liquides contenant de l’acide a-p insaturé, ils doivent donc être injectés dans la réaction mais également dans les alimentations, bouilleurs, condenseurs et reflux des équipements de purification. Des sprays d’inhibiteurs en solution peuvent également être utilisés pour protéger toutes les surfaces sur laquelle des vapeurs chaudes d’acide a-p insaturé sont susceptibles de se condenser de manière fortuite. Cette problématique est bien connue de l’homme de l’art ; par exemple, lors de la purification industrielle d’acide acrylique par distillation, des inhibiteurs de polymérisation sont ajoutés dans l’alimentation, le condenseur et le reflux de la colonne de distillation mais également fréquemment pulvérisés sous forme de sprays pour protéger le dôme, le col de cygne, les trous d’homme, ou tout autre élément de la colonne où des vapeurs d’acide acrylique sont susceptibles de condenser.
Le document EP 2398832 décrit une autre solution visant à prévenir la polymérisation, y compris en cas de condensation fortuite accidentelle de vapeurs d’AA. Il utilise un second type d’inhibiteur, dit fugitif, c’est-à-dire d’une volatilité, dans les conditions opératoires de production, proche de celle de l’acide a-p insaturé, ici l’acide acrylique. Cet inhibiteur est alors présent en phase gaz et se condense en même temps que les vapeurs d’acide acrylique lors d’une condensation fortuite. Toutefois, ces inhibiteurs de polymérisation, qui sont des dérivés de nitrosobenzène, présentent l’inconvénient d’être toxiques.
La problématique de la polymérisation lors de la production d’acides carboxyliques a~P insaturés est également présente lorsque ceux-ci sont produits par therm oly se du poly(3-hydroxyalcanoate) correspondant.
US 2568636 décrit la thermolyse de poly(3 -hydroxypropionate) (P3HP) pour former de l’acide acrylique (AA) à des températures comprises entre 130 et 300 °C et l’utilisation de triarylphosphates pour limiter la polymérisation de l’AA dans le réacteur de therm oly se. Le brevet US 3002017 décrit une therm oly se similaire dans laquelle les vapeurs d’ AA sont absorbées dans de l’AA froid afin de limiter la polymérisation lors de l’étape de condensation.
US 9115070 décrit la thermolyse de P3HP pour former de l’AA en utilisant un catalyseur amine tertiaire afin de réduire la température de réaction. Il peut potentiellement être utilisé des inhibiteurs de polymérisation classiques, tels que la phénothiazine (PTZ), dans le milieu réactionnel à raison de 10 à 1000 ppm en poids vis- à-vis du P3HP afin de réduire les phénomènes de polymérisation d’AA formé dans le milieu de thermolyse.
US 10065914 décrit la thermolyse de P3HP pour former de l’AA à des températures de 100 à 300 °C, en utilisant un catalyseur acrylate de sodium afin de réduire la température de réaction et ainsi limiter les risques de polymérisation de l’AA formé dans le milieu de thermolyse. L’utilisation d’inhibiteurs de polymérisation, tels que la PTZ et l’EMHQ, dans la phase liquide du réacteur de thermolyse ainsi que leur introduction volontaire dans les phases liquides d’une distillation ou d’un condenseur permettent aussi de réduire les phénomènes de polymérisation.
Les procédés de l’art antérieur présentent toutefois un inconvénient majeur. Ils décrivent comment réduire les risques liés à la polymérisation de phases liquides d’acides a~P insaturés en injectant un inhibiteur de polymérisation dans ces phases liquides formées volontairement (milieu de thermolyse, condenseur, phase liquide d’une colonne à distiller. . .), mais n’apportent pas de solution dans le cas où la phase liquide est formée de manière fortuite, par exemple lors de la condensation non désirée d’acide a-p insaturé sur un « point froid » d’une installation. L’utilisation de sprays permettant de pulvériser ces inhibiteurs sur l’ensemble des parois d’un système industriel est certes possible mais complexe à mettre en œuvre. L’utilisation d’inhibiteurs non classiques, tels que les dérivés nitrosobenzène, est également complexe à mettre en œuvre industriellement.
Les inventeurs ont maintenant découvert de façon surprenante qu’il est possible de réduire drastiquement les phénomènes de polymérisation liés à la condensation fortuite de vapeurs chaudes dans un procédé de synthèse d’acide carboxylique a-p insaturé à partir de poly(3-hydroxyalcanoate) sans utiliser un inhibiteur non classique. Les paramètres de la réaction therm oly se de poly(3-hydroxyalcanoate) en acide carboxylique a-p insaturé peuvent en effet être ajustés afin d’obtenir une volatilité significative de certains inhibiteurs de polymérisation classiques. Ces inhibiteurs sont alors présents en phase gaz et se condensent en même temps que l’acide carboxylique a-p insaturé lors d’une condensation fortuite sur un point froid, protégeant instantanément la phase liquide formée. Il n’est pas nécessaire d’avoir recours à un système complexe de distribution de l’inhibiteur en plusieurs points du procédé ni à des inhibiteurs coûteux et toxiques.
En conséquence, l’invention propose de fournir une solution simple et facile à mettre en œuvre pour réduire les phénomènes d’encrassement et ainsi maintenir une haute fiabilité et une productivité élevée dans des procédés de fabrication d’acides carboxyliques a~P insaturés à partir de poly(3-hydroxypropionate).
Résumé de l’invention
La présente invention a pour objet un procédé de fabrication d’acides carboxyliques a~P insaturés par thermolyse de poly(3-hydroxyalcanoate) opérée dans un réacteur de thermolyse à partir duquel les vapeurs d’acides carboxyliques générées rejoignent un condenseur, en présence d’un ou plusieurs inhibiteurs de polymérisation, caractérisé en ce que la pression dans le réacteur est ajustée afin qu’elle soit inférieure au double de la tension de vapeur d’au moins un des inhibiteurs à la température à laquelle la thermolyse est réalisée.
Selon l’invention, les conditions de thermolyse utilisées (pression et température) permettent à un des inhibiteurs de polymérisation d’être significativement volatil et donc d’obtenir l’effet recherché. Selon diverses réalisations, ledit procédé comprend les caractères suivants, le cas échéant combinés. Les teneurs indiquées sont exprimées en poids, sauf si indiqué autrement. Dans les fourchettes de valeurs indiquées, les bornes sont comprises.
Selon un mode de réalisation, le poly(3-hydroxyalcanoate) utilisé dans le procédé de therm oly se comprend un seul type de motifs 3-hydroxyalcanoate et le produit formé est donc composé d’un unique acide carboxylique a~P insaturé.
Selon un mode de réalisation, le poly(3-hydroxyalcanoate) utilisé dans le procédé de therm oly se comprends plusieurs motifs 3-hydroxyalcanoate différents et le produit formé est donc composé d’un mélange de différents acides carboxyliques a-p insaturés. Des exemples de copolymères de P3HA sont le poly-3-hydroxybutyrate-co-3- hydroxypropionate (poly-3HB-co-3HP) ou le poly-3-hydroxybutyrate-co-3- hydroxyvalérate (poly-3HB-co-3HV).
Selon un mode de réalisation, le poly(3-hydroxyalcanoate) utilisé dans le procédé de thermolyse est obtenu à partir de matières premières d’origine fossile.
Selon un mode de réalisation, le poly(3-hydroxyalcanoate) utilisé dans le procédé de thermolyse est obtenu à partir de matières premières d’origine renouvelable ou au moins en partie d’origine renouvelable. Selon ce mode de réalisation, le poly(3- hydroxyalcanoate) est à plus de 50% en poids, de préférence plus de 80% en poids, avantageusement à 100% en poids d’origine renouvelable.
Selon un mode de réalisation, le poly(3-hydroxyalcanoate) utilisé dans le procédé de thermolyse est obtenu par réaction chimique, par exemple l’obtention de P3HP par polymérisation de P-propiolactone elle-même obtenue à partir d'oxyde d'éthylène et de monoxyde de carbone.
Selon un mode de réalisation, le poly(3-hydroxyalcanoate) utilisé dans le procédé de thermolyse est obtenu par réaction biologique, notamment par fermentation.
Selon un mode de réalisation, le poly(3-hydroxyalcanoate) utilisé dans le procédé de thermolyse est purifié préalablement à la réaction de thermolyse.
Selon un mode de réalisation, le poly(3-hydroxyalcanoate) utilisé dans le procédé de thermolyse est utilisé sans purification préalable, notamment sans séparation de la membrane cellulaire, s’il a été obtenu par fermentation. Selon un mode de réalisation, le poly(3 -hydroxyalcanoate) est obtenu à l’intérieur d’une cellule par une réaction de fermentation, la biomasse est lavée et séchée mais le poly(3 -hydroxyalcanoate) n’est pas séparé de la membrane cellulaire avant l’étape de thermolyse.
Selon un mode de réalisation, le poly(3 -hydroxyalcanoate) est obtenu à l’intérieur d’une cellule par une réaction de fermentation, la biomasse est lavée et séchée et le poly(3 -hydroxyalcanoate) est séparé de la membrane cellulaire avant l’étape de thermolyse, par exemple par extraction.
Selon un mode de réalisation, la réaction de thermolyse du poly(3- hydroxyalcanoate) a lieu en l’absence de solvant, le produit étant alors sous forme solide ou à l’état fondu.
Selon un mode de réalisation, la réaction de therm oly se du poly(3- hydroxyalcanoate) a lieu en solution.
Selon un mode de réalisation, la réaction de therm oly se du poly(3- hydroxyalcanoate) a lieu en suspension.
Selon un mode de réalisation, la réaction de therm oly se du poly(3- hydroxyalcanoate) a lieu en batch.
Selon un mode de réalisation, la réaction de thermolyse du poly(3- hydroxyalcanoate) a lieu en continu.
Selon un mode de réalisation, la réaction de therm oly se du poly(3- hydroxyalcanoate) a lieu en l’absence de catalyseur.
Les inhibiteurs de polymérisation utilisés dans le procédé selon l’invention sont choisis parmi les inhibiteurs classiquement utilisés dans les procédés industriels existant de production d’acides carboxyliques a~P insaturés. Ceux-ci comprennent les dérivés phénoliques comme 1’ hydroquinone (HQ) et ses dérivés; la phénothiazine et ses dérivés ; les composés nitroxyde; et les composés aminés comme les dérivés de paraphény 1 ènedi amine .
Selon un mode de réalisation, le poly(3 -hydroxyalcanoate) contient le motif 3- hydroxypropionate et au moins l’un des acides carboxyliques a~P insaturés produits est l’acide acrylique.
Selon un mode de réalisation, le poly(3 -hydroxyalcanoate) est le poly(3- hydroxypropionate) et l’acide carboxylique a~P insaturé produit est l’acide acrylique. Selon un mode de réalisation, le poly(3-hydroxyalcanoate) contient le motif 3- hydroxybutyrate et au moins l’un des acides carboxyliques a~P insaturés produits est l’acide crotonique.
Selon un mode de réalisation, le poly(3-hydroxyalcanoate) est le poly(3- hydroxybutyrate) et l’acide carboxylique a~P insaturé produit est l’acide crotonique.
Selon un mode de réalisation, le poly(3-hydroxyalcanoate) contient le motif 3- hydroxyisobutyrate et au moins l’un des acides carboxyliques a~P insaturés produits est l’acide méthacrylique.
Selon un mode de réalisation, le poly(3-hydroxyalcanoate) est le poly(3- hydroxyisobutyrate) et l’acide carboxylique a~P insaturé produit est l’acide méthacrylique.
Un autre objet de l’invention porte sur un procédé de purification du ou des acides carboxyliques a~P insaturés obtenus par le procédé de therm oly se de poly(3- hydroxyalcanoate) opéré à une pression inférieure au double de la tension de vapeur d’au moins un inhibiteur de polymérisation à la température de thermolyse, caractérisé en ce qu’il comprend une étape de condensation des vapeurs du ou des acides carboxyliques a-p insaturés ainsi obtenues, suivie d’une ou plusieurs étapes de purification.
La présente invention répond au besoin exprimé dans l’état de la technique. Elle permet de prévenir les risques d’encrassement dû à la condensation fortuite de vapeurs d’acides carboxyliques a~P insaturés sur des points froids dans le cas de la génération d’acides carboxyliques a~P insaturés par thermolyse de poly(3-hydroxypropionate). L’invention permet notamment de protéger la zone située entre le réacteur de thermolyse et le condenseur. Grâce à l’inhibiteur de polymérisation rendu volatil dans le milieu de thermolyse, celui-ci sera présent en phase gazeuse dans toute la partie de l’installation où le ou les acides carboxyliques a-p insaturés sont en phase gazeuse. L’invention permet également d’éviter la formation de polymères dans le milieu réactionnel.
L’invention va maintenant être décrite plus en détails dans la description qui suit. Exposé détaillé de l’invention
L’invention vise à produire à l’échelle industrielle des acides carboxyliques a-p insaturés par therm oly se de poly(3 -hydroxy alcanoate), sans être confronté au problème d’encrassement des installations mises en œuvre, dû à la polymérisation des vapeurs d’acides carboxyliques a~P insaturés lorsqu’elles se condensent sur des points froids de l’installation.
L’invention se propose de fournir un procédé permettant de réduire ou d’éliminer ce risque d’encrassement. L’invention est basée sur l’ajout d’un inhibiteur de polymérisation et le choix de conditions de pression et de température dans le réacteur de thermolyse du poly(3-hydroxyalcanoate), de manière à ce que l’inhibiteur ait une volatilité significative dans les conditions de réaction. De manière caractéristique, la pression dans le réacteur est ajustée afin qu’elle soit inférieure au double de la tension de vapeur de l’inhibiteur à la température de thermolyse.
Le terme « thermolyse » du poly(3-hydroxyalcanoate) signifie sa décomposition chimique en acide carboxylique a~P insaturé obtenue sous l’effet de la température. Ce terme est synonyme de pyrolyse.
Selon l’IUPAC, la « tension de vapeur saturante » est la pression exercée par une substance pure (à une température donnée) dans un système contenant uniquement la vapeur et la phase condensée (liquide ou solide) de la substance. (Pure and Applied Chemistry, 1990, Volume 62, No. 11, pp. 2167-2219 & Glossary of atmospheric chemistry terms (Recommendations 1990), page 2212).
Dans la description de l’invention, le terme « tension de vapeur » sera utilisé au même sens que le terme « tension de vapeur saturante ». Aussi, le terme « pression de vapeur » est synonyme de « tension de vapeur ».
Dans le procédé de thermolyse du poly(3-hydroxyalcanoate) selon l’invention, le poly(3-hydroxyalcanoate) est chauffé à une température de 130 à 300°C, de préférence de 170 à 230°C.
Le milieu réactionnel dans le réacteur de thermolyse comprend au moins un inhibiteur de polymérisation, à raison notamment de 50ppm à 5% en poids, en particulier de 0,01% à 3% en poids, par rapport au poids du poly(3-hydroxyalcanoate). Lorsqu’il y a deux ou plusieurs inhibiteurs, leur teneur globale ne dépasse pas 5% en poids. Les inhibiteurs de polymérisation sont choisis parmi les inhibiteurs classiquement utilisés dans les procédés industriels existant de production d’acides carboxyliques a-p insaturés. Ceux-ci comprennent les dérivés phénoliques comme 1’ hydroquinone (HQ) et ses dérivés tels que l’éther méthylique de 1’ hydroquinone (EMHQ), le 2,6-di-terbutyl-4- méthyl phénol (BHT) ou le 2,4-diméthyl-6-terbutyl phénol (Topanol A) ; la phénothiazine et ses dérivés ; les composés nitroxyde comme le 4-hydroxy-2,2,6,6- tétraméthylpipéridin-l-oxyl (4-OH- TEMPO) ; les composés aminés comme les dérivés de paraphénylènediamine.
Dans le procédé de thermolyse du poly(3-hydroxyalcanoate) selon l’invention, les conditions de température et de pression dans le réacteur de thermolyse sont choisies de manière à ce que le ou les acides carboxyliques a-p insaturés formés soient sous forme de vapeurs et qu’au moins un des inhibiteurs soit volatil. Ceci est obtenu lorsque la pression dans le réacteur est inférieure à deux fois la tension de vapeur d’un des inhibiteurs à la température de thermolyse.
Selon un mode de réalisation, au moins un desdits inhibiteurs de polymérisation est l'éther méthylique de l'hydroquinone (EMHQ).
A titre d’exemple, l’EMHQ à une pression de vapeur de :
- 20 kPa à 190°C ; on ajuste la pression dans le réacteur en dessous de 40 kPa pour une thermolyse à 190 °C ;
- 28,5 kPa à 200°C ; on ajuste la pression dans le réacteur en dessous de 57 kPa pour une thermolyse à 200 °C ;
- 39 kPa à 210°C ; on ajuste la pression dans le réacteur en dessous de 78 kPa pour une thermolyse à 210°C.
Le procédé selon l’invention permet ainsi d’adopter des conditions de pression spécifiques pour obtenir une volatilité de l’inhibiteur et ainsi protéger l’opération en cas de condensation non souhaitée de vapeurs chaudes d’acides carboxyliques a-p insaturés sur un point froid d’une des parois de l’équipement.
Selon un mode de réalisation de l’invention, la réaction de thermolyse est opérée en présence d’un solvant, soit en solution soit en suspension. Afin de limiter la vaporisation du solvant avec les vapeurs d’acides carboxyliques a-p insaturés générées lors de la thermolyse du poly(3-hydroxyalcanoate), le solvant est choisi de manière à ce que sa tension de vapeur à la température de therm oly se du poly(3 -hydroxy alcanoate) soit inférieure aux trois quarts de la pression à laquelle la thermolyse est effectuée.
Selon un mode de réalisation, pour des conditions opératoires de 200°C et 20 kPa, le solvant doit avoir une tension de vapeur à 200 °C inférieure à 15 kPa et peut donc être choisi parmi :
- les alcanes supérieurs contenant plus de 14 atomes de carbone ; à titre d’exemple, la tension de vapeur du n-hexadécane (Cl 6) à 200°C est de 10 kPa. Lorsque le solvant est un alcane, la réaction de thermolyse a lieu en suspension.
- les acides gras contenant plus de 8 atomes de carbone ; à titre d’exemple, la tension vapeur de l’acide caprique (CIO) à 200 °C est de 11,2 kPa. Lorsque le solvant est un acide gras, la réaction de thermolyse a lieu en suspension.
- Les diméthyléthers de polyglycol (glymes) à partir du tétraglyme ; à titre d’exemple, la tension de vapeur du tétraglyme à 200°C est de 10,2 kPa. Lorsque le solvant est un glyme, la réaction de thermolyse a lieu en solution.
- le sulfolane, qui présente une tension de vapeur à 200°C de 10,3 kPa. Lorsque le solvant est le sulfolane, la réaction de thermolyse a lieu en solution.
Selon un mode de réalisation, lorsque la réaction de thermolyse du poly(3- hydroxyalcanoate) est opérée en suspension ou solution dans un solvant, la pression opératoire est comprise entre 1,5 fois la tension de vapeur du solvant à la température de thermolyse et le double de la tension de vapeur d’au moins un inhibiteur à la température de thermolyse.
La pression opératoire préférée pour la réaction de thermolyse du poly(3- hydroxyalcanoate) se situe juste en dessous de la tension de vapeur de l’inhibiteur.
Selon un mode préféré de réalisation, l’inhibiteur de polymérisation est l'éther m éthylique de l'hydroquinone et l’opération est menée en solution dans un solvant tel que le sulfolane ou le tétraglyme.
Selon un mode de réalisation, la thermolyse du poly(3-hydroxyalcanoate) a lieu en l’absence de catalyseur. L’utilisation de catalyseurs permet d’accélérer la cinétique de thermolyse et/ou de réduire sa température. Cependant, l’utilisation d’un catalyseur rend le procédé plus complexe, et plus difficile à mettre en œuvre à l’échelle industrielle.
L’invention a trait également à un procédé de purification du ou des acides carboxyliques a-p insaturés obtenus par le procédé de thermolyse de poly(3- hydroxyalcanoate) opéré à une pression inférieure au double de la tension de vapeur d’au moins un inhibiteur de polymérisation à la température de thermolyse, caractérisé en ce qu’il comprend une étape de condensation des vapeurs du ou des acides carboxyliques a-p insaturés ainsi obtenues, suivie d’une ou plusieurs étapes de purification. Les opérations de purification peuvent comprendre généralement des distillations, des extractions liquide/liquide, des séparations à l’aide d’un évaporateur à film, ou des cristallisations, ou une combinaison de ces techniques.
Les exemples ci -après illustrent la présente invention sans toutefois en limiter la portée.
PARTIE EXPERIMENTALE
Des essais de thermolyse de poly(3 -hydroxypropionate) (P3HP) pour générer de l’acide acrylique (AA) sont effectués dans un montage de laboratoire. Dans un ballon bicol de 25 mL, on introduit 2 g de P3HP pur.
On ajoute éventuellement un inhibiteur (PTZ ou EMHQ) à raison de 20 mg.
On ajoute éventuellement un solvant à raison de 10 g.
Le col latéral du ballon est équipé d’un thermomètre pour suivre la température de réaction. Le col supérieur du ballon est équipé d’un pont de séparation menant à un condenseur latéral refroidi à l’eau, menant lui-même à une recette constituée d’un second ballon de 25 mL. Un piquage entre le condenseur et la recette permet d’établir une pression réduite dans le montage.
Au début de l’expérience, le système est placé sous la pression désirée puis le ballon contenant le P3HP, ainsi éventuellement que l’inhibiteur et/ou le solvant, est placé dans un système de chauffage permettant d’établir la température de thermolyse désirée (bain d’huile ou chauffe-ballon électrique). La recette est refroidie par un bain de glace. Le pont de séparation entre le ballon de thermolyse et le condenseur latéral est laissé dé- calorifugé afin de simuler l’existence de points froids.
Dès que le réacteur de thermolyse atteint plus de 170 °C, on observe la formation de vapeurs d’AA qui se condensent majoritairement dans le condenseur latéral mais également sur les points froids du pont de séparation. Après 4 h de chauffe, la formation de vapeurs d’AA dans le réacteur de thermolyse s’amenuise et on arrête alors l’expérience. L’état d’encrassement du pont de séparation, représentant la zone de condensation involontaire d’AA sur des points froids dans une installation industrielle, est alors jugé visuellement. On analyse également par chromatographie gazeuse l’AA récupéré dans la recette afin de vérifier la présence ou non de l’inhibiteur éventuellement introduit dans le réacteur de thermolyse, témoignant de sa volatilité ou non dans les conditions expérimentales testées.
Les principaux résultats obtenus sont présentés dans les Tableau 1.
Les essais comparatifs 1, 2, 8, 9, 15 et 16, opérés sans aucun inhibiteur de polymérisation, montrent un fort encrassement du pont de séparation où des vapeurs d’AA chaudes se condensent sur des points froids, et ce que Ton opère sans solvant (1, 2), en suspension (8, 9) ou en solution (15, 16) ainsi qu’à pression atmosphérique (1, 8, 15) ou sous une pression réduite de 20 kPa (2, 9, 16).
Les essais comparatifs 3, 6, 7, 10, 13, 14, 17, 20 et 21, opérés en présence d’un inhibiteur de polymérisation mais sous une pression opératoire dans le montage, supérieure au double de la tension de vapeur de l’inhibiteur à la température de thermolyse, montrent également un fort encrassement du pont de séparation où des vapeurs d’AA chaudes se condensent sur des points froids, et ce que Ton opère sans solvant (3, 6, 7), en suspension (10, 13, 14) ou en solution (17, 20, 21). On note également qu’il n’est pas retrouvé de traces de l’inhibiteur dans l’AA récupéré dans la recette, signe que celui-ci n’était pas volatil dans les conditions opératoires de la thermolyse.
Les essais 4, 5, 11, 12, 18 et 19, selon l’invention, opérés en présence d’un inhibiteur de polymérisation sous une pression opératoire dans le montage, inférieure au double de la tension de vapeur de l’inhibiteur, montrent une réduction notable de l’encrassement du pont de séparation où des vapeurs d’AA chaudes se condensent sur des points froids, et ce que Ton opère en masse (4, 5), en suspension (11, 12) ou en solution (18, 19). On note également la présence d’inhibiteur dans l’AA récupéré dans la recette, au moins à l’état de traces, signe que celui-ci était volatil dans les conditions opératoires de la thermolyse. La réduction de l’encrassement, ainsi que la présence de l’inhibiteur dans l’AA formé, est faible mais significative lorsque la pression opératoire est juste en dessous du double de la tension de vapeur de l’inhibiteur à la température de thermolyse (4, 11, 18), et plus nette lorsque la pression opératoire est en dessous de la tension de vapeur de l’inhibiteur à la température de thermolyse (5, 12, 19). [Tableau 1]
Figure imgf000015_0001
Les essais complémentaires 22 à 31 (tableau 2), opérés en solvant à 200 °C et 20 kPa en présence d’EMHQ, soit dans les conditions de l’invention, montrent une absence d’encrassement du pont de séparation où des vapeurs d’AA chaudes se condensent sur des points froids. On note également la présence de l’inhibiteur dans l’AA récupéré dans la recette, signe que celui-ci est volatil dans les conditions opératoires de la thermolyse. Ils permettent de montrer l’importance à accorder au choix du solvant lors d’une thermolyse de poly(3-hydroxyalcanoate) réalisée selon l’invention en milieu solvant. Ainsi, si la tension de vapeur du solvant à la température de thermolyse (ici 200 °C) n’est pas inférieure aux trois quarts de la pression opératoire (ici 20 kPa, soit une tension de vapeur du solvant à 200 °C inférieure à 15 kPa), on observe une forte pollution de l’AA récupéré dans la recette par le solvant utilisé (22, 26, 29). Ce phénomène est drastiquement limité lorsqu’on utilise un solvant dont la tension de vapeur à la température de thermolyse est inférieure au trois quarts de la pression opératoire (23, 24, 25, 27, 28, 30, 31). C14 = n-tétradécane ; C16 = n-hexadécane ; C18 = n-octadécane ; C20 = n-eicosane
Acide C8 = acide octanoïque ; Acide CIO = acide décanoïque ; Acide C12 = acide dodécanoïque
[Tableau 2]
Figure imgf000016_0001

Claims

REVENDICATIONS Procédé de fabrication d’acides carboxyliques a-p insaturés par thermolyse de poly(3-hydroxyalcanoate) opérée en présence d’au moins un inhibiteur de polymérisation, caractérisé en ce que la pression opératoire dans le réacteur est inférieure au double la tension de vapeur d’un des inhibiteurs à la température de thermolyse. Procédé selon la revendication 1, dans lequel la température de thermolyse est comprise entre 130 et 300°C, de préférence entre 170 et 230°C. Procédé selon l’une des revendications 1 et 2, dans lequel la teneur en inhibiteurs est de 50 ppm à 5% en poids, en particulier de 0,01% à 3% en poids, par rapport au poids du poly(3-hydroxyalcanoate). Procédé selon l’une des revendications 1 à 3 dans lequel ledit au moins un des inhibiteurs de polymérisation est un composé choisi parmi les dérivés phénoliques, les dérivés de phénothiazine, les dérivés nitroxyde ou les dérivés de paraphénylènediamine. Procédé selon l’une quelconque des revendications précédentes dans lequel ledit au moins un des inhibiteurs de polymérisation est l'éther méthylique de l'hydroquinone (EMHQ). Procédé selon l’une quelconque des revendications précédentes dans lequel le poly(3-hydroxyalcanoate) est d’origine pétrochimique ou au moins en partie d’origine renouvelable. Procédé selon l’une quelconque des revendications 1 à 5 dans lequel le poly(3- hydroxyalcanoate) est à plus de 50% en poids, de préférence plus de 80% en poids, avantageusement à 100% en poids d’origine renouvelable. 8. Procédé selon l’une quelconque des revendications précédentes dans lequel le poly(3-hydroxyalcanoate) est obtenu par réaction chimique.
9. Procédé selon la revendication 7 dans lequel le poly(3-hydroxyalcanoate) est obtenu par fermentation.
10. Procédé selon la revendication 9 dans lequel le poly(3-hydroxyalcanoate) est séparé du milieu biologique préalablement à l’étape de thermolyse, par exemple par extraction.
11. Procédé selon l’une quelconque des revendications précédentes dans lequel la réaction de thermolyse est opérée en absence de solvant.
12. Procédé selon l’une quelconque des revendications 1 à 10 dans lequel la réaction de thermolyse est opérée en suspension dans un solvant.
13. Procédé selon l’une quelconque des revendications 1 à 10 dans lequel la réaction de thermolyse est opérée en solution dans un solvant.
14. Procédé selon l’une quelconque des revendications 12 ou 13 dans lequel le solvant a une tension de vapeur, à la température de la réaction de thermolyse, inférieure aux trois quarts de la pression opératoire.
15. Procédé selon la revendication 13 dans lequel le solvant est le sulfolane.
16. Procédé selon la revendication 15 dans lequel au moins des inhibiteurs de polymérisation est l'éther méthylique de l'hydroquinone.
17. Procédé selon l’une quelconque des revendications précédentes dans lequel la thermolyse du poly(3-hydroxyalcanoate) est réalisée en batch.
18. Procédé selon l’une quelconque des revendications 1 à 16 dans lequel la thermolyse du poly(3-hydroxyalcanoate) est réalisée en continu. 19. Procédé selon l’une quelconque des revendications précédentes dans lequel le poly(3-hydroxyalcanoate) contient le motif 3 -hydroxypropionate et au moins l’un des acides carboxyliques a~P insaturés produits est l’acide acrylique.
20. Procédé selon l’une quelconque des revendications précédentes dans lequel le poly(3-hydroxyalcanoate) est le poly(3 -hydroxypropionate) et l’acide carboxylique a~P insaturé produit est l’acide acrylique.
21. Procédé selon l’une quelconque des revendications 1 à 18 dans lequel le poly(3-hydroxyalcanoate) contient le motif 3 -hydroxybutyrate et au moins l’un des acides carboxyliques a~P insaturés produits est l’acide crotonique.
22. Procédé selon l’une quelconque des revendications 1 à 18 et 21, dans lequel le poly(3-hydroxyalcanoate) est le poly(3 -hydroxybutyrate) et l’acide carboxylique a~P insaturé produit est l’acide crotonique.
23. Procédé selon l’une quelconque des revendications 1 à 18 dans lequel le poly(3-hydroxyalcanoate) contient le motif 3-hydroxyisobutyrate et au moins l’un des acides carboxyliques a~P insaturés produits est l’acide méthacrylique.
24. Procédé selon l’une quelconque des revendications 1 à 18 et 23, dans lequel le poly(3 -hydroxy alcanoate) est le poly(3-hydroxyisobutyrate) et l’acide carboxylique a~P insaturé produit est l’acide méthacrylique
25. Procédé de fabrication d’acides carboxyliques a-p insaturés obtenus par le procédé selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend une étape de condensation des produits ainsi obtenus, suivie d’une ou plusieurs étapes de purification choisies parmi la distillation, l’extraction liquide/liquide, la séparation à l’aide d’un évaporateur à film, ou la cristallisation ou une combinaison de ces techniques.
PCT/EP2023/074176 2022-09-06 2023-09-04 Procede ameliore de fabrication d'acides carboxyliques alpha-beta insatures a partir de poly(3-hydroxyalcanoate) WO2024052284A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2208914 2022-09-06
FR2208914A FR3139336A1 (fr) 2022-09-06 2022-09-06 PROCEDE AMELIORE DE FABRICATION D’ACIDES CARBOXYLIQUES α-β INSATURES A PARTIR DE POLY(3-HYDROXYALCANOATE)

Publications (1)

Publication Number Publication Date
WO2024052284A1 true WO2024052284A1 (fr) 2024-03-14

Family

ID=87930055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/074176 WO2024052284A1 (fr) 2022-09-06 2023-09-04 Procede ameliore de fabrication d'acides carboxyliques alpha-beta insatures a partir de poly(3-hydroxyalcanoate)

Country Status (2)

Country Link
FR (1) FR3139336A1 (fr)
WO (1) WO2024052284A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2568636A (en) 1950-07-29 1951-09-18 Goodrich Co B F Process for preparing anhydrous alpha-beta unsaturated carboxylic acids
US3002017A (en) 1959-07-13 1961-09-26 Goodrich Co B F Method for preparing acrylic acid
US3462484A (en) * 1959-10-20 1969-08-19 Celanese Corp Condensation of acrylic acid
EP2398832A1 (fr) 2009-02-18 2011-12-28 Dow Global Technologies LLC Composition inhibitrice de la polymérisation et procédé d'inhibition de la polymérisation de monomères distillables
US9115070B2 (en) 2012-07-16 2015-08-25 Basf Se Process for preparing acrylic acid from ethylene oxide and carbon monoxide
US10065914B1 (en) 2017-04-24 2018-09-04 Novomer, Inc. Thermolysis of polypropiolactone to produce acrylic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2568636A (en) 1950-07-29 1951-09-18 Goodrich Co B F Process for preparing anhydrous alpha-beta unsaturated carboxylic acids
US3002017A (en) 1959-07-13 1961-09-26 Goodrich Co B F Method for preparing acrylic acid
US3462484A (en) * 1959-10-20 1969-08-19 Celanese Corp Condensation of acrylic acid
EP2398832A1 (fr) 2009-02-18 2011-12-28 Dow Global Technologies LLC Composition inhibitrice de la polymérisation et procédé d'inhibition de la polymérisation de monomères distillables
US9115070B2 (en) 2012-07-16 2015-08-25 Basf Se Process for preparing acrylic acid from ethylene oxide and carbon monoxide
US10065914B1 (en) 2017-04-24 2018-09-04 Novomer, Inc. Thermolysis of polypropiolactone to produce acrylic acid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GLOSSARY OF ATMOSPHERIC CHEMISTRY TERMS, 1990, pages 2212
PURE AND APPLIED CHEMISTRY, vol. 62, no. 11, 1990, pages 2167 - 2219

Also Published As

Publication number Publication date
FR3139336A1 (fr) 2024-03-08

Similar Documents

Publication Publication Date Title
EP2773608B1 (fr) Procédé de production d'acrylate de 2-octyle par estérification directe
EP3027586B1 (fr) Procédé de production en continu d'acrylates légers par estérification d'un acide acrylique de grade ester brut
EP3606903B1 (fr) Procede de purification d'acide (meth)acrylique incluant une colonne de distillation a paroi separatrice.
EP3225613A1 (fr) Procede ameliore de production d'acide (meth)acrylique
FR3111634A1 (fr) Procédé de fabrication d’acide aminoundecanoique et d’acide aminodecanoique
EP0946486B1 (fr) Purification de l'acide acrylique obtenu par oxydation catalytique du propylene
EP1212280B1 (fr) Procede de purification de l'acide acrylique obtenu par oxydation du propylene et/ou l'acroleine
FR2901272A1 (fr) Procede perfectionne de fabrication de (meth)acrylates d'alkyle en c1-c4
FR2771089A1 (fr) Procede de production d'acide acrylique
WO2024052284A1 (fr) Procede ameliore de fabrication d'acides carboxyliques alpha-beta insatures a partir de poly(3-hydroxyalcanoate)
WO2013110877A1 (fr) Procede de production d'acrylate de 2-octyle par transesterification
FR3128459A1 (fr) D’acrylate de butyle de purete elevee
EP4291547A1 (fr) Procede perfectionne de fabrication d'acrylates d'alkyle de purete elevee
WO2021234249A1 (fr) Procede de valorisation de lourds d'acide acrylique et d'esters dudit acide par craquage thermique avec condensation partielle
EP2807140B1 (fr) Procede de production d'acrylate de 2-octyle par transesterification
EP3551603A1 (fr) Procede pour eviter le depot de polymeres dans un procede de purification d'acide (meth)acrylique
WO2023025999A1 (fr) Procede perfectionne de fabrication d'acrylate de butyle de purete elevee
FR3137089A1 (fr) Procede de valorisation de sous-produits lourds issus de la fabrication d’acide acrylique
FR3108906A1 (fr) Procede de purification d’acide (meth)acrylique
FR3137088A1 (fr) Procede de valorisation en batch de sous-produits lourds issus de la fabrication d’acide acrylique
FR3137091A1 (fr) Procede de valorisation continu de sous-produits lourds issus de la fabrication d’acide acrylique
WO2020201661A1 (fr) Production d'acide acrylique de grade polymere
BE1019021A3 (fr) Procede de preparation de lactate d'alkyle c1-c4 de grande purete par putrification des lactates d'alkyle c1-c4 bruts.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23764932

Country of ref document: EP

Kind code of ref document: A1