WO2024051856A1 - 一种提升6016汽车冲压板包边性能的制造方法 - Google Patents

一种提升6016汽车冲压板包边性能的制造方法 Download PDF

Info

Publication number
WO2024051856A1
WO2024051856A1 PCT/CN2023/120343 CN2023120343W WO2024051856A1 WO 2024051856 A1 WO2024051856 A1 WO 2024051856A1 CN 2023120343 W CN2023120343 W CN 2023120343W WO 2024051856 A1 WO2024051856 A1 WO 2024051856A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
cold
temperature
rolling
aging
Prior art date
Application number
PCT/CN2023/120343
Other languages
English (en)
French (fr)
Inventor
宋喜波
柴明科
李克振
曹艳华
荆照锋
Original Assignee
河南明晟新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南明晟新材料科技有限公司 filed Critical 河南明晟新材料科技有限公司
Priority to AU2023339342A priority Critical patent/AU2023339342A1/en
Publication of WO2024051856A1 publication Critical patent/WO2024051856A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of aluminum alloy processing, and specifically relates to a manufacturing method for improving the edge wrapping performance of 6016 automobile stamping plates.
  • Automotive panel hemming technology is a process that bends the edges of outer panels and fastens and connects inner and outer panels.
  • 6016 automotive stamping sheets are used as automobile exterior parts. After stamping, they need to be edged.
  • the synthesis of the inner and outer panels of the engine cover uses the edge edge process. Therefore, the aluminum alloy plate is required to have good edge edge properties.
  • the excellent edge binding performance can ensure that when the outer panel of the panel is wrapped around the inner panel of the panel, there will be no micro-cracks on the surface of the material and the arc of the edge will be smooth and delicate. .
  • the Chinese invention patent with application publication number CN101935785A discloses a highly formable aluminum alloy for automobile bodies.
  • This invention patent avoids the insoluble Mg2Si phase by controlling the contents of the main alloy elements Mg, Si, and Cu, and the process of Si particles Formation, thereby improving the formability of the material, while ensuring the content and proportion of Mg and Si phases, so that the baking hardening performance of the material meets the needs of use; and the content of trace elements Fe and Mn are reasonably controlled to control the grain size, thereby achieving further
  • the purpose is to improve the formability of the material; however, although the aluminum alloy prepared by this technical solution has good elongation, it does not have good edge wrapping properties;
  • the Chinese invention patent application with publication number CN105543741A discloses an intermediate annealing process for aluminum alloys and aluminum alloys for automobile panels.
  • the invention patent uses continuous annealing to increase the annealing temperature of the intermediate annealing process and improve the quality of the returned aluminum alloys. Microstructure morphology, thereby improving the flanging performance of the product; although the technical solution provided by the invention patent can make the surface of the produced aluminum alloy smooth after flanging, without crack initiation lines or cracks, the process is used to prepare The cost of aluminum alloy is higher;
  • the invention patent application published with the application publication number CN105441740A discloses a 6XXX series aluminum alloy plate with high hemming performance for automobile bodies and its manufacturing method.
  • the invention patent uses a higher homogenization heat treatment temperature to treat the hot-rolled strip.
  • the material is cold rolled, intermediate annealed, cold rolled again, and the cold rolling reduction rate of the cold rolled again is 60-85% to improve the aluminum
  • the invention patent did not improve the intermediate annealing system and did not control the evolution process of the structure within the aluminum alloy, resulting in unsatisfactory hemming properties of the prepared aluminum alloy;
  • the Chinese invention patent with application publication number CN109868398A discloses a 6xxx series aluminum alloy plate with high flanging performance. It mainly adjusts the proportion of coarse second phase and fine second phase in the plate structure after intermediate annealing, giving full play to the
  • the coarse second phase promotes the recrystallization nucleation (PSN mechanism) and the fine second phase hinders the growth of recrystallized grains, thereby improving the final plate grain size and adjusting the proportion of the second phase in the final finished plate.
  • PSN mechanism recrystallization nucleation
  • It has excellent flanging performance to meet the needs of automobile panel outer panels.
  • the intermediate annealing before solution quenching mainly emphasizes the adjustment of the second phase ratio and the proportion of the final finished panel after annealing. Grain size, but it does not control the impurity compounds that affect the edge binding performance of automobile panels, the morphology, size, mechanical properties, and dimensional accuracy of second phase compounds.
  • the purpose of the present invention is to overcome the shortcomings of the existing technology and provide a manufacturing method that effectively improves the edge wrapping performance of 6016 automotive stamping plates.
  • a manufacturing method for improving the edge binding performance of 6016 automobile stamping plates including the following preparation process:
  • step S2 Smelting and casting.
  • the raw materials in step S1 are placed in the smelting furnace for smelting.
  • the melt is then introduced into the refining furnace for refining. After degassing and slag removal, it is cast into a 600-650mm thick aluminum alloy ingot. ;
  • step S3 Homogenization heat treatment. After sawing and milling the aluminum alloy ingot obtained in step S2, put it into a heating furnace and homogenize it. Homogenization heat treatment, the metal temperature is controlled at 565°C-570°C, and the temperature is kept for 15 hours;
  • Hot rolling perform multi-pass hot rolling on the aluminum alloy ingot after homogenization heat treatment to obtain an 8.0mm thick hot-rolled billet
  • the 8.0mm thick hot-rolled billet obtained in S4 is subjected to the first pass of ultra-fine rolling using high pressure and large processing rate to a 4.0mm thick first cold-rolled billet, and then the first pass
  • the cold-rolled billet is subjected to 3-4 passes of ordinary rolling at a processing rate of 25%-35% per pass to obtain a second cold-rolled billet, and finally the second cold-rolled billet is processed at a processing rate of 15%-20%.
  • the finished coil is solution quenched in a continuous quenching line using a sub-temperature solution method.
  • the solution temperature is 495 ⁇ At 5°C, the solid solution holding time is 2-3.5 minutes.
  • water spray quenching is performed when the transfer time is less than 20 seconds.
  • the water temperature is lower than 35°C, and the cooling rate of water spray quenching is 100°C/ Seconds or more; pre-aging treatment should be carried out within 3 minutes after water spray quenching.
  • the pre-aging temperature is 190 ⁇ 5°C
  • the pre-aging holding time is 50 to 70 seconds
  • multiple air cooling channels are installed at the outlet of the pre-aging furnace. Zone, so that the material temperature of the pre-aged aluminum coil drops below 45°C before export winding;
  • the finished coil processed by S6 is tensioned, straightened, and transversely sheared to obtain an aluminum alloy base material.
  • the ratio of Mn and Fe is controlled to 1:1.
  • the inclusion content in the launder is less than 0.02 mm 2 /kg, and the inclusion size is less than 12 ⁇ m.
  • the aluminum alloy base material has a tensile strength of 200-215MPa, a yield strength of 90-110MPa, a yield ratio of less than 0.5, and an elongation at break of A50mm of more than 24.0%; the minimum relative bending radius of the edge can be less than 0.5t and The flanging morphology can reach first-class morphology.
  • the invention controls Mn with Fe
  • the ratio is 1:1, which can maximize the transformation of the iron-rich phase structure from ⁇ -AlFeSi to ⁇ -AlFeSi phase, making the iron-rich phase appear in the form of small Chinese characters or polygonal particles, dispersedly distributed in the ternary eutectic In the structure, reduce the harmful effects of ⁇ -AlFeSi phase, thereby improving the morphology of the iron-rich phase;
  • the present invention found that the homogenization heat treatment caused the iron-rich phase morphology to transform from needle-like or flaky ⁇ -AlFeSi phase to granular or Hanzi-like ⁇ -AlFeSi phase, the addition of Mn can accelerate the transformation of the iron-rich phase during the homogenization heat treatment process.
  • the 6016 alloy ingot becomes brittle needle-shaped or flake-shaped.
  • the ⁇ -AlFeSi phase transforms into the granular ⁇ -AlFeSi phase.
  • the spheroidization rate of the Fe-rich phase reaches more than 95%.
  • the reduction of the coarse Fe-rich phase avoids the stress concentration of dislocations around the coarse second phase during bending and edge wrapping. , effectively avoids the formation of micro-cracks during hemming, thereby improving the hemming performance;
  • the total processing rate of the hot-rolled blank to the finished coil is more than 85%, and in the first pass of cold rolling, high-pressure and high-processing rate ultra-fine rolling is used to fully The second phase particles in the matrix are broken and refined to achieve the purpose of refining the structure; on the other hand, in the last pass of cold rolling, a smaller cold rolling processing rate of no more than 20% is used, which is beneficial to Improved dimensional accuracy and plate shape quality of finished products, reducing edge wrinkling or cracking caused by uneven thickness and poor plate shape during edge wrapping, thereby improving edge wrapping performance;
  • the solid solution temperature is controlled at 495 ⁇ 5°C, thereby maintaining a lower solid solution temperature, thereby facilitating the refinement of the grains, and after the solution quenching is completed, water spraying is performed.
  • Pre-aging treatment is carried out within 3 minutes after shower quenching, which can effectively reduce the mechanical properties of the finished coil after pre-aging treatment and reduce its yield strength, thus ensuring that the finished coil has good bending performance;
  • the 6061 automotive stamping plate prepared by the method provided by the present invention has good bending performance and edge wrapping performance.
  • Figure 1 is a grain diagram of the aluminum alloy substrate prepared in Example 1;
  • Figure 2 is a grain diagram of the aluminum alloy substrate prepared in Comparative Example 4.
  • Figure 3 is an SEM image of the fracture surface of the aluminum alloy substrate prepared in Example 1;
  • Figure 4 is an SEM image of the fracture surface of the aluminum alloy substrate prepared in Comparative Example 4.
  • a manufacturing method for improving the edge binding performance of 6016 automobile stamping plates including the following preparation process:
  • step S2 Smelting and casting.
  • the raw materials in step S1 are placed in the smelting furnace for smelting.
  • the melt is then introduced into the refining furnace for refining. After degassing and slag removal, it is cast into a 600-650mm thick aluminum alloy ingot. ;
  • step S3 Homogenization heat treatment. After sawing and milling the aluminum alloy ingot obtained in step S2, place it in a heating furnace for homogenization heat treatment. The metal temperature is controlled at 565°C-570°C and kept warm for 15 hours;
  • Hot rolling perform multi-pass hot rolling on the aluminum alloy ingot after homogenization heat treatment to obtain an 8.0mm thick hot-rolled billet
  • the finished coil is solution quenched in a continuous quenching line using a sub-temperature solution method.
  • the solution temperature is 495 ⁇ At 5°C, the solid solution holding time is 2-3.5 minutes.
  • water spray quenching is performed when the transfer time is less than 20 seconds.
  • the water temperature is lower than 35°C, and the cooling rate of water spray quenching is 100°C/ Seconds or more; pre-aging treatment should be carried out within 3 minutes after water spray quenching.
  • the pre-aging temperature is 190 ⁇ 5°C
  • the pre-aging holding time is 50 to 70 seconds
  • multiple air cooling channels are installed at the outlet of the pre-aging furnace. Zone, so that the material temperature of the pre-aged aluminum coil drops below 45°C before export winding;
  • the finished coil processed by S6 is tensioned, straightened, and transversely sheared to obtain an aluminum alloy base material.
  • the ratio of Mn to Fe in S1 is controlled to 1:1;
  • Fe element is an impurity element in aluminum alloy. Since its solubility in the aluminum matrix is very low, it will inevitably form during the casting process.
  • the impurity phase affects the mechanical properties and corrosion resistance of the alloy; this impurity phase is mainly the AlFeSi phase, which will transform during the homogenization and heat preservation process, from the lath-like ⁇ -AlFeSi phase to the granular ⁇ -AlFeSi phase. ;
  • the Mn element can accelerate the speed of this transformation, and the Mn element provides an innate elemental basis for the Fe-rich phase transformation.
  • the Mn element can change the morphology of the iron-rich phase to a certain extent and promote the precipitation process.
  • the inclusion content in the launder is less than 0.02 mm 2 /kg, and the inclusion size is less than 12 ⁇ m; thereby reducing the content of impurity compounds in the plate.
  • a manufacturing method for improving the edge binding performance of 6016 automobile stamping plates including the following preparation process:
  • step S2 Smelting and casting.
  • the raw materials in step S1 are placed in the smelting furnace for smelting, and then the melt is introduced into the refining furnace for refining. After degassing and slag removal, it is cast into a 600mm thick aluminum alloy ingot; proceed During melting and casting, metal and non-metallic compounds are strictly controlled, the launder inclusion content is ⁇ 0.02mm 2 /kg, and the inclusion size is less than 12 ⁇ m; thereby reducing the content of impurity compounds in the plate;
  • step S3 Homogenization heat treatment. After sawing and milling the aluminum alloy ingot obtained in step S2, place it in a heating furnace for homogenization heat treatment. The metal temperature is controlled at 565°C-570°C and kept warm for 15 hours;
  • Hot rolling perform multi-pass hot rolling on the aluminum alloy ingot after homogenization heat treatment to obtain an 8.0mm thick hot-rolled billet
  • the 8.0mm thick hot-rolled billet obtained in S4 is subjected to the first pass of ultra-fine rolling using high pressure and large processing rate to a 4.0mm thick first cold-rolled billet, and then the first pass
  • the cold-rolled billets are processed at a processing rate of 35% per pass. Perform 3 passes of ordinary rolling to obtain a second cold-rolled billet, and finally cold-roll the second cold-rolled billet to a 0.9mm finished coil at a processing rate of 18%;
  • the finished coil is solution quenched in a continuous quenching line using a sub-temperature solution method.
  • the solid solution temperature is 495 ⁇ 5°C.
  • the solid solution holding time is 2 minutes.
  • water spray quenching is performed when the transfer time is less than 20 seconds.
  • the water temperature is lower than 35°C, and the water spray quenching cooling rate is above 100°C/second; water
  • pre-aging treatment is carried out within 3 minutes.
  • the pre-aging temperature is 190 ⁇ 5°C, and the pre-aging holding time is 55 seconds.
  • the finished coil processed by S6 is tensioned, straightened, and transversely sheared to obtain an aluminum alloy base material.
  • a manufacturing method for improving the edge binding performance of 6016 automobile stamping plates including the following preparation process:
  • step S2 Smelting and casting.
  • the raw materials in step S1 are placed in the smelting furnace for smelting, and then the melt is introduced into the refining furnace for refining. After degassing and slag removal, it is cast into a 650mm thick aluminum alloy ingot; proceed During melting and casting, metal and non-metallic compounds are strictly controlled, the launder inclusion content is ⁇ 0.02mm 2 /kg, and the inclusion size is less than 12 ⁇ m; thereby reducing the content of impurity compounds in the plate;
  • step S3 Homogenization heat treatment. After sawing and milling the aluminum alloy ingot obtained in step S2, place it in a heating furnace for homogenization heat treatment. The metal temperature is controlled at 565°C-570°C and kept warm for 15 hours;
  • Hot rolling perform multi-pass hot rolling on the aluminum alloy ingot after homogenization heat treatment to obtain an 8.0mm thick hot-rolled billet
  • the 8.0mm thick hot-rolled billet obtained in S4 is subjected to the first pass of ultra-fine rolling using high pressure and large processing rate to a 4.0mm thick first cold-rolled billet, and then the first pass The cold-rolled billet is subjected to 3 passes of ordinary rolling at a processing rate of 31% per pass to obtain a second cold-rolled billet. Finally, the second cold-rolled billet is cold-rolled at a processing rate of 16% to 1.1mm finished coil;
  • the finished coil is solution quenched in a continuous quenching line using a sub-temperature solution method.
  • the solid solution temperature is 495 ⁇ 5°C.
  • the solid solution holding time is 3.0 minutes.
  • water spray quenching is performed when the transfer time is less than 20 seconds.
  • the water temperature is lower than 35°C, and the water spray quenching cooling rate is above 100°C/second; water
  • pre-aging treatment is carried out within 3 minutes.
  • the pre-aging temperature is 190 ⁇ 5°C, and the pre-aging holding time is 65 seconds.
  • the finished coil processed by S6 is tensioned, straightened, and transversely sheared to obtain an aluminum alloy base material.
  • a manufacturing method for improving the edge binding performance of 6016 automobile stamping plates including the following preparation process:
  • step S2 Smelting and casting.
  • the raw materials in step S1 are placed in the smelting furnace for smelting, and then the melt is introduced into the refining furnace for refining. After degassing and slag removal, it is cast into a 600mm thick aluminum alloy ingot; proceed During melting and casting, metal and non-metallic compounds are strictly controlled, the launder inclusion content is ⁇ 0.02mm 2 /kg, and the inclusion size is less than 12 ⁇ m; thereby reducing the content of impurity compounds in the plate;
  • step S3 Homogenization heat treatment. After sawing and milling the aluminum alloy ingot obtained in step S2, place it in a heating furnace for homogenization heat treatment. The metal temperature is controlled at 565°C-570°C and kept warm for 15 hours;
  • Hot rolling perform multi-pass hot rolling on the aluminum alloy ingot after homogenization heat treatment to obtain an 8.0mm thick hot-rolled billet
  • the 8.0mm thick hot-rolled billet obtained in S4 is subjected to the first pass of ultra-fine rolling using high pressure and large processing rate to a 4.0mm thick first cold-rolled billet, and then the first pass The cold-rolled billet is subjected to 3 passes of ordinary rolling at a processing rate of 33% per pass to obtain a second cold-rolled billet. Finally, the second cold-rolled billet is cold-rolled to a 1.0mm finished coil at a processing rate of 17%. material;
  • the finished coil is solution quenched in a continuous quenching line using a sub-temperature solution method.
  • the solid solution temperature is 495 ⁇ 5°C.
  • the solid solution holding time is 2.5 minutes.
  • water spray quenching is performed when the transfer time is less than 20 seconds.
  • the water temperature is lower than 35°C, and the cooling rate of water spray quenching is above 100°C/second; water After spray quenching, pre-aging treatment is carried out within 3 minutes.
  • the pre-aging temperature is 190 ⁇ 5°C, and the pre-aging holding time is 60 seconds. There are multiple air-cooling zones at the outlet of the pre-aging furnace, so that after pre-aging The material temperature of the aluminum coil drops below 45°C before exporting;
  • the finished coil processed by S6 is tensioned, straightened, and transversely sheared to obtain an aluminum alloy base material.
  • Comparative Example 1 The production method of Comparative Example 1 is roughly the same as that of Example 1, except that when step S12 is performed, the added amount of Mn is 0.1% or less.
  • Comparative Example 2 The production method of Comparative Example 2 is roughly the same as that of Example 1, except that during step S3, during the homogenization heat treatment, the metal temperature is controlled to 550°C and the temperature is maintained for 8 hours.
  • Comparative Example 3 The production method of Comparative Example 3 is roughly the same as that of Example 1, except that in step S5, ordinary rolling is used to perform multiple passes of cold rolling on the hot-rolled billet to a finished coil with a thickness of 0.9 mm.
  • Comparative Example 4 The production method of Comparative Example 4 is roughly the same as that of Example 1, except that when performing step S6, the solid solution temperature is 550°C; as shown in Figures 1 and 2, the solid solution temperature provided by the present invention is 495 ⁇ 5°C. Compared with the electron microscope images of the prepared aluminum alloy substrate and the aluminum alloy substrate prepared at the conventional solid solution temperature in Comparative Example 4, the grain size of the aluminum alloy substrate provided by the present invention is smaller than that prepared by the method provided in Comparative Example 4.
  • the grain size of the aluminum alloy substrate as shown in Figure 3 and Figure 4, the aluminum alloy substrate prepared by the solid solution temperature of 495 ⁇ 5°C provided by the present invention and the aluminum alloy substrate prepared by the conventional solid solution temperature in Comparative Example 4 Compared with the SEM electron micrograph of the fracture surface of the material, the fracture surface of the aluminum alloy substrate prepared by the method provided by the present invention is a typical ductile fracture.
  • the fracture surface of the aluminum alloy substrate prepared by the method of Comparative Example 4 has fewer dimples and is layered.
  • the proportion of intergranular cracking increases, that is, the plasticity of the aluminum alloy substrate prepared by the method provided by the present invention is better than that of the aluminum alloy prepared in Comparative Example 4. gold substrate;
  • Table 1 is the performance monitoring table of Examples 1-3:
  • Table 2 is the performance monitoring table of Comparative Examples 1-4:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

一种提高6016汽车冲压板包边性能的制造方法,包括原料铸造、均匀化退火、热轧、冷轧、固溶处理及预时效处理;在添加原料时,控制Mn与Fe的比例为1∶1,然后通过高压大加工率超细化轧制来破碎基体中第二相粒子,采用亚温固溶实现晶粒细化,最后采用较低的预时效处理工艺降低基材的屈强比和屈服强度,从而通过对材料第二相细化、晶粒细化、屈强比和屈服强度的降低实现了包边性能的提高。

Description

一种提升6016汽车冲压板包边性能的制造方法 技术领域
本发明属于铝合金加工技术领域,具体涉及一种提升6016汽车冲压板包边性能的制造方法。
背景技术
汽车板包边技术是一种将外板件边缘折弯,并将内外板件扣合连接的工艺。6016汽车冲压板做为汽车外覆零件,在冲压成形后,要进行包边加工,如发动机盖板的内外板的合成等均采用包边工艺,因此要求铝合金板材应具有良好的包边性能。在汽车覆盖件成形过程中,优异的包边性能可以保证覆盖件外板用包边(翻边)方式包住覆盖件内板时,材料的表面无微裂纹产生且包边圆弧处光滑细腻。
近年来,围绕着如何提高车身板的包边性能进行了大量的研究,例如:
申请公布号为CN101935785A的中国发明专利公开了一种高成形性汽车车身用铝合金,该发明专利通过控制主要合金元素Mg、Si、Cu的含量,避免了难溶的Mg2Si相,过程Si颗粒的形成,从而提高材料的成形性能,同时保证Mg、Si相含量及比例,使得材料的烘烤硬化性能满足使用需要;并且合理控制微量元素Fe、Mn的含量,以控制晶粒尺寸,从而达到进一步提高材料成形性能的目的;但是,该技术方案制备出的铝合金虽然具有良好的延伸率,但是其不具备良好的包边性能;
申请公布号为CN105543741A的中国发明专利公开了一种铝合金的中间退火工艺及汽车覆盖件用铝合金,该发明专利采用连续退火的方式,提升中间退火过程的退火温度,改善退货后铝合金的组织形貌,从而达到改善产品翻边性能的作用;虽然该发明专利提供的技术方案能够使得制得的铝合金经翻边后表面光滑,没有裂纹萌生线或者裂纹产生,但是采用该工艺制备出的铝合金成本较高;
申请公布号为CN105441740A的找你过发明专利公开了一种汽车车身用高卷边性能6XXX系铝合金板材及其制造方法,该发明专利通过较高的均匀化热处理温度,对热轧后的带材进行冷轧、中间退火、再次冷轧,再次冷轧的冷轧压下率为60-85%的工艺来提升铝 合金板材的包边性能,但是该发明专利并未对中间退火制度进行完善,未对铝合金内组织的演变过程进行控制,从而导致制备出的铝合金包边性能不理想;
申请公布号为CN109868398A的中国发明专利公开了一种高翻边性能的6xxx系铝合金板材,其主要是通过调节中间退火后板材组织中粗大第二相和细小第二相的比例,充分发挥了粗大第二相促进再结晶行核(PSN机制)及细小第二相阻碍再结晶晶粒长大的双重作用,从而改善了最终板材晶粒尺寸,同时调节了最终成品板第二相比例,从而使其具有优异的翻边性能,满足汽车覆盖件外板的需要,从其公开的工艺来看,其固溶淬火前的中间退火主要强调了退火后的调节了最终成品板第二相比例和晶粒尺寸情况,但其未对影响汽车板包边性能的杂质化合物控制、第二相化合物形态大小及力学性能、尺寸精度等未进行控制。
因此,虽然现有技术中公开了较多的关于汽车用高翻边性能铝合金的制备方法,但是这些现有技术未对6016汽车冲压板用铝合金未对铝合金内组织演变过程进行控制、未充分考虑组织晶粒细化程度、第二相离子细化程度、板件尺寸精度等对铝合金板包边性能的影响。
发明内容
本发明的目的是克服现有技术的不足而提供一种有效的提升6016汽车冲压板包边性能的制造方法。
本发明的技术方案如下:
一种提升6016汽车冲压板包边性能的制造方法,包括以下制备过程:
S1、配料,按以下重量百分比含量组分配制原料备用:Si=1.0%-1.05%,Fe=0.12%-0.2%,Cu≤0.02%,Mn=0.12%-0.2%,Mg=0.38%-0.45%,Cr≤0.002%,Zn≤0.02%,Ti=0.02%-0.025%,其他不可避免的单个元素≤0.05%,合计≤0.15%,余量为Al;
S2、熔炼、铸造,将步骤S1中的原料置于熔炼炉中进行熔炼,再将熔体导入精炼炉中进行精炼后,再经过除气除渣后铸造成600-650mm厚的铝合金铸锭;
S3、均匀化热处理,将步骤S2得到的铝合金铸锭经过锯切、铣面后置入加热炉中均 匀化热处理,金属温度控制在565℃-570℃,保温15h;
S4、热轧,将经过均匀化热处理后的铝合金铸锭进行多道次热轧得到8.0mm厚的热轧坯料;
S5、冷轧,将S4中得到的8.0mm厚的热轧坯料采用高压大加工率进行第一道次的超细化轧制至4.0mm厚的第一冷轧坯料,然后将所述第一冷轧坯料按每道次25%-35%的加工率进行3-4道次的普通轧制得到第二冷轧坯料,最后将所述第二冷轧坯料按15%-20%的加工率冷轧至0.9-1.2mm的成品卷材;
S6、固溶淬火和预时效处理,将所述成品卷材在连续式淬火线采用亚温固溶方式进行固溶淬火,对厚度0.9-1.2mm厚的成品卷材在固溶温度为495±5℃下,固溶保温时间2-3.5分钟,固溶淬火后在转移时间小于20秒的情况下进行水喷淋式淬火,水温低于35℃,水喷淋式淬火冷却速度在100℃/秒以上;水喷淋式淬火结束后在3分钟之内进行预时效处理,预时效温度为190±5℃,预时效保温时间为50~70秒,预时效炉出口处设置有多道风冷区,使预时效后的铝卷在出口收卷前料温降至45℃以下;
S7、将经过S6处理的成品卷材经过拉矫、横剪后得到铝合金基材。
进一步,所述S1中,Mn与Fe的比例控制为1∶1。
进一步,所述S2中,进行熔铸时,严格控制金属及非金属化合物,流槽夹杂物含量<0.02mm2/kg,夹杂物尺寸小于12μm。
进一步,所述S3中,经过均匀化热处理后的铝合金铸锭的板条状β-AlFeSi相全部转化为颗粒状α-AlFeSi相。
进一步,所述铝合金基材的抗拉强度200-215MPa,屈服强度90-110MPa,屈强比在0.5以下,断裂延伸率A50mm达24.0%以上;包边最小相对弯曲半径可达0.5t以下且翻边形貌可达一级形貌。
与现有技术相比,本发明的有益效果如下:
1、由于脆性富Fe相粒子尺寸较大,会诱发裂纹萌生而降低合金的冲压成形性能和包边性能,尤其是针状或片状本β-AlFeSi粒子的影响较为显著;因此,发明控制Mn与Fe 的比例为1∶1,能最大化的使富铁相结构从β-AlFeSi转变成α-AlFeSi相,使富铁相以细小的汉字状或多边形颗粒状形式出现,弥散分布在三元共晶组织中,减轻β-AlFeSi相的有害作用,从而改善富铁相的形态;
2、本发明通过对加Mn后的6016铝合金铸锭进行565℃-570℃的均匀化分析中发现均匀化热处理使得富铁相形态由针状或片状β-AlFeSi相转变成颗粒状或汉子状α-AlFeSi相,Mn的加入能够加速富铁相在均匀化热处理过程中形态的转变,经565℃-570℃*15h的均匀化处理后,6016合金铸锭中脆性针状或片状β-AlFeSi相转变成颗粒状α-AlFeSi相,富Fe相的球化率达95%以上,粗大富Fe相的减少避免了折弯及包边时位错在粗大第二相周围的应力集中,有效规避了包边时微裂纹的形成,从而提高了包边性能;
3、本发明在冷轧过程中,热轧坯料冷轧至成品卷材的总加工率为85%以上,并且在第一道次的冷轧中采用高压大加工率超细化轧制,充分破碎并细化了基体中的第二相粒子,达到细化组织的目的;另一方面在最后一道次的冷轧中采用较小的不超过20%的冷轧加工率进行轧制,有利于成品尺寸精度和板形质量的提高,降低包边时因厚度不均和板形不良造成的包边起皱或开裂,以提高包边性能;
4、本发明在固溶淬火过程中,控制固溶温度在495±5℃,从而保持较低的固溶温度,从而便于对晶粒进行细化,并且固溶淬火结束后,再经过水喷淋式淬火后在3分钟内进行预时效处理,从而能够有效降低预时效处理后的成品卷材的力学性能,降低其屈服强度,从而保证成品卷材具有良好的折弯性能;
总之,本发明提供的方法制备出的6061汽车冲压板具有良好的折弯性能和包边性能。
附图说明
图1为实施例1制备出的铝合金基材晶粒图;
图2为对比例4制备出的铝合金基材晶粒图;
图3为实施例1制备出的铝合金基材断口SEM图;
图4为对比例4制备出的铝合金基材断口SEM图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
一种提升6016汽车冲压板包边性能的制造方法,包括以下制备过程:
S1、配料,按以下重量百分比含量组分配制原料备用:Si=1.0%-1.05%,Fe=0.12%-0.2%,C≤0.02%,Mn=0.12%-0.2%,Mg=0.38%-0.45%,Cr≤0.002%,Zn≤0.02%,Ti=0.02%-0.025%,其他不可避免的单个元素≤0.05%,合计≤0.15%,余量为Al;
S2、熔炼、铸造,将步骤S1中的原料置于熔炼炉中进行熔炼,再将熔体导入精炼炉中进行精炼后,再经过除气除渣后铸造成600-650mm厚的铝合金铸锭;
S3、均匀化热处理,将步骤S2得到的铝合金铸锭经过锯切、铣面后置入加热炉中均匀化热处理,金属温度控制在565℃-570℃,保温15h;
S4、热轧,将经过均匀化热处理后的铝合金铸锭进行多道次热轧得到8.0mm厚的热轧坯料;
S5、冷轧,将S4中得到的8.0mm厚的热轧坯料采用高压大加工率进行第一道次的超细化轧制至4.0mm厚的第一冷轧坯料,然后将所述第一冷轧坯料按每道次25%-35%的加工率进行3-4道次的普通轧制得到第二冷轧坯料,最后将所述第二冷轧坯料按15%-20%的加工率冷轧至0.9-1.2mm的成品卷材;
S6、固溶淬火和预时效处理,将所述成品卷材在连续式淬火线采用亚温固溶方式进行固溶淬火,对厚度0.9-1.2mm厚的成品卷材在固溶温度为495±5℃下,固溶保温时间2-3.5分钟,固溶淬火后在转移时间小于20秒的情况下进行水喷淋式淬火,水温低于35℃,水喷淋式淬火冷却速度在100℃/秒以上;水喷淋式淬火结束后在3分钟之内进行预时效处理,预时效温度为190±5℃,预时效保温时间为50~70秒,预时效炉出口处设置有多道风冷区,使预时效后的铝卷在出口收卷前料温降至45℃以下;
S7、将经过S6处理的成品卷材经过拉矫、横剪后得到铝合金基材。
本发明中,所述S1中,Mn与Fe的比例控制为1∶1;Fe元素是铝合金中的一种杂质元素,由于其在铝基体中的溶解度很低,在铸造过程中必然会形成杂质相,影响合金的力学性能和耐蚀性能;这种杂质相主要是AlFeSi相,该相在均匀化保温过程中会发生转变,由板条状β-AlFeSi相转变成颗粒状α-AlFeSi相;Mn元素能加速这一转变的速度,Mn元素为富Fe相相变提供了先天的元素基础。Mn元素可在一定程度上改变富铁相的形态并可以推动该析出过程。
本发明中,所述S2中,进行熔铸时,严格控制金属及非金属化合物,流槽夹杂物含量<0.02mm2/kg,夹杂物尺寸小于12μm;从而降低板材中的杂质化合物的含量。
本发明中,所述S3中,经过均匀化热处理后的铝合金铸锭的板条状β-AlFeSi相全部转化为颗粒状α-AlFeSi相。
实施例1
一种提升6016汽车冲压板包边性能的制造方法,包括以下制备过程:
S1、配料,按以下重量百分比含量组分配制原料备用:Si=1.0%-1.05%,Fe=0.12%-0.2%,Cu≤0.02%,Mn=0.12%-0.2%,Mg=0.38%-0.45%,Cr≤0.002%,Zn≤0.02%,Ti=0.02%-0.025%,其他不可避免的单个元素≤0.05%,合计≤0.15%,余量为Al;Mn与Fe的比例控制为1∶1;
S2、熔炼、铸造,将步骤S1中的原料置于熔炼炉中进行熔炼,再将熔体导入精炼炉中进行精炼后,再经过除气除渣后铸造成600mm厚的铝合金铸锭;进行熔铸时,严格控制金属及非金属化合物,流槽夹杂物含量<0.02mm2/kg,夹杂物尺寸小于12μm;从而降低板材中的杂质化合物的含量;
S3、均匀化热处理,将步骤S2得到的铝合金铸锭经过锯切、铣面后置入加热炉中均匀化热处理,金属温度控制在565℃-570℃,保温15h;
S4、热轧,将经过均匀化热处理后的铝合金铸锭进行多道次热轧得到8.0mm厚的热轧坯料;
S5、冷轧,将S4中得到的8.0mm厚的热轧坯料采用高压大加工率进行第一道次的超细化轧制至4.0mm厚的第一冷轧坯料,然后将所述第一冷轧坯料按每道次35%的加工率进 行3道次的普通轧制得到第二冷轧坯料,最后将所述第二冷轧坯料按18%的加工率冷轧至0.9mm的成品卷材;
S6、固溶淬火和预时效处理,将所述成品卷材在连续式淬火线采用亚温固溶方式进行固溶淬火,对厚度0.9mm厚的成品卷材在固溶温度为495±5℃下,固溶保温时间2分钟,固溶淬火后在转移时间小于20秒的情况下进行水喷淋式淬火,水温低于35℃,水喷淋式淬火冷却速度在100℃/秒以上;水喷淋式淬火结束后在3分钟之内进行预时效处理,预时效温度为190±5℃,预时效保温时间为55秒,预时效炉出口处设置有多道风冷区,使预时效后的铝卷在出口收卷前料温降至45℃以下;
S7、将经过S6处理的成品卷材经过拉矫、横剪后得到铝合金基材。
实施例2
一种提升6016汽车冲压板包边性能的制造方法,包括以下制备过程:
S1、配料,按以下重量百分比含量组分配制原料备用:Si=1.0%-1.05%,Fe=0.12%-0.2%,Cu≤0.02%,Mn=0.12%-0.2%,Mg=0.38%-0.45%,Cr≤0.002%,Zn≤0.02%,Ti=0.02%-0.025%,其他不可避免的单个元素≤0.05%,合计≤0.15%,余量为Al;Mn与Fe的比例控制为1∶1;
S2、熔炼、铸造,将步骤S1中的原料置于熔炼炉中进行熔炼,再将熔体导入精炼炉中进行精炼后,再经过除气除渣后铸造成650mm厚的铝合金铸锭;进行熔铸时,严格控制金属及非金属化合物,流槽夹杂物含量<0.02mm2/kg,夹杂物尺寸小于12μm;从而降低板材中的杂质化合物的含量;
S3、均匀化热处理,将步骤S2得到的铝合金铸锭经过锯切、铣面后置入加热炉中均匀化热处理,金属温度控制在565℃-570℃,保温15h;
S4、热轧,将经过均匀化热处理后的铝合金铸锭进行多道次热轧得到8.0mm厚的热轧坯料;
S5、冷轧,将S4中得到的8.0mm厚的热轧坯料采用高压大加工率进行第一道次的超细化轧制至4.0mm厚的第一冷轧坯料,然后将所述第一冷轧坯料按每道次31%的加工率进行3道次的普通轧制得到第二冷轧坯料,最后将所述第二冷轧坯料按16%的加工率冷轧至 1.1mm的成品卷材;
S6、固溶淬火和预时效处理,将所述成品卷材在连续式淬火线采用亚温固溶方式进行固溶淬火,对厚度1.1mm厚的成品卷材在固溶温度为495±5℃下,固溶保温时间3.0分钟,固溶淬火后在转移时间小于20秒的情况下进行水喷淋式淬火,水温低于35℃,水喷淋式淬火冷却速度在100℃/秒以上;水喷淋式淬火结束后在3分钟之内进行预时效处理,预时效温度为190±5℃,预时效保温时间为65秒,预时效炉出口处设置有多道风冷区,使预时效后的铝卷在出口收卷前料温降至45℃以下;
S7、将经过S6处理的成品卷材经过拉矫、横剪后得到铝合金基材。
实施例3
一种提升6016汽车冲压板包边性能的制造方法,包括以下制备过程:
S1、配料,按以下重量百分比含量组分配制原料备用:Si=1.0%-1.05%,Fe=0.12%-0.2%,Cu≤0.02%,Mn=0.12%-0.2%,Mg=0.38%-0.45%,Cr≤0.002%,Zn≤0.02%,Ti=0.02%-0.025%,其他不可避免的单个元素≤0.05%,合计≤0.15%,余量为Al;Mn与Fe的比例控制为1∶1;
S2、熔炼、铸造,将步骤S1中的原料置于熔炼炉中进行熔炼,再将熔体导入精炼炉中进行精炼后,再经过除气除渣后铸造成600mm厚的铝合金铸锭;进行熔铸时,严格控制金属及非金属化合物,流槽夹杂物含量<0.02mm2/kg,夹杂物尺寸小于12μm;从而降低板材中的杂质化合物的含量;
S3、均匀化热处理,将步骤S2得到的铝合金铸锭经过锯切、铣面后置入加热炉中均匀化热处理,金属温度控制在565℃-570℃,保温15h;
S4、热轧,将经过均匀化热处理后的铝合金铸锭进行多道次热轧得到8.0mm厚的热轧坯料;
S5、冷轧,将S4中得到的8.0mm厚的热轧坯料采用高压大加工率进行第一道次的超细化轧制至4.0mm厚的第一冷轧坯料,然后将所述第一冷轧坯料按每道次33%的加工率进行3道次的普通轧制得到第二冷轧坯料,最后将所述第二冷轧坯料按17%的加工率冷轧至1.0mm的成品卷材;
S6、固溶淬火和预时效处理,将所述成品卷材在连续式淬火线采用亚温固溶方式进行固溶淬火,对厚度1.0mm厚的成品卷材在固溶温度为495±5℃下,固溶保温时间2.5分钟,固溶淬火后在转移时间小于20秒的情况下进行水喷淋式淬火,水温低于35℃,水喷淋式淬火冷却速度在100℃/秒以上;水喷淋式淬火结束后在3分钟之内进行预时效处理,预时效温度为190±5℃,预时效保温时间为60秒,预时效炉出口处设置有多道风冷区,使预时效后的铝卷在出口收卷前料温降至45℃以下;
S7、将经过S6处理的成品卷材经过拉矫、横剪后得到铝合金基材。
对比例1
对比例1与实施例1的生产方法大致相同,不同之处在于在进行步骤S12时,Mn的添加量为0.1%以下。
对比例2
对比例2与实施例1的生产方法大致相同,不同之处在于在进行步骤S3时,均匀化热处理时,控制金属温度550℃,保温8h。
对比例3
对比例3与实施例1的生产方法大致相同,不同之处在于在进行步骤S5时,采用普通轧制对热轧坯料进行多道次的冷轧至0.9mm厚的成品卷材。
对比例4
对比例4与实施例1的生产方法大致相同,不同之处在于在进行步骤S6时,固溶温度为550℃;参见图1及图2所示,本发明提供的固溶温度495±5℃制备出的铝合金基材与对比例4常规固溶温度制得的铝合金基材的电镜图相比,本发明提供的铝合金基材的晶粒尺寸小于对比例4提供的方法制备出的铝合金基材的晶粒尺寸;参见图3及图4所示,本发明提供的固溶温度495±5℃制备出的铝合金基材与对比例4常规固溶温度制得的铝合金基材的断口SEM电镜图相比,本发明提供的方法制备出的铝合金基材断口属于典型的韧性断裂,对比例4的方法制备出的铝合金基材断口上的韧窝较少,层状沿晶开裂所占的比例增大,即本发明提供的方法制备出的铝合金基材的可塑性优于对比例4制备出的铝合 金基材;
通过对实施例1-3和对比例1-4制得的铝合金基材的性能检测结果如下表:
表1为实施例1-3的性能监测表:
表2为对比例1-4的性能监测表:
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

  1. 一种提升6016汽车冲压板包边性能的制造方法,其特征在于,包括以下制备过程:
    S1、配料,按以下重量百分比含量组分配制原料备用:Si=1.0%-1.05%,Fe=0.12%-0.2%,Cu≤0.02%,Mn=0.12%-0.2%,Mg=0.38%-0.45%,Cr≤0.002%,Zn≤0.02%,Ti=0.02%-0.025%,其他不可避免的单个元素≤0.05%,合计≤0.15%,余量为Al,Mn与Fe的比例控制为1∶1;
    S2、熔炼、铸造,将步骤S1中的原料置于熔炼炉中进行熔炼,再将熔体导入精炼炉中进行精炼后,再经过除气除渣后铸造成600-650mm厚的铝合金铸锭;
    S3、均匀化热处理,将步骤S2得到的铝合金铸锭经过锯切、铣面后置入加热炉中均匀化热处理,金属温度控制在565℃-570℃,保温15h;
    S4、热轧,将经过均匀化热处理后的铝合金铸锭进行多道次热轧得到8.0mm厚的热轧坯料;
    S5、冷轧,将S4中得到的8.0mm厚的热轧坯料采用高压大加工率进行第一道次的超细化轧制至4.0mm厚的第一冷轧坯料,然后将所述第一冷轧坯料按每道次25%-35%的加工率进行3-4道次的普通轧制得到第二冷轧坯料,最后将所述第二冷轧坯料按15%-20%的加工率冷轧至0.9-1.2mm的成品卷材;
    S6、固溶淬火和预时效处理,将所述成品卷材在连续式淬火线采用亚温固溶方式进行固溶淬火,对厚度0.9-1.2mm厚的成品卷材在固溶温度为495±5℃下,固溶保温时间2-3.5分钟,固溶淬火后在转移时间小于20秒的情况下进行水喷淋式淬火,水温低于35℃,水喷淋式淬火冷却速度在100℃/秒以上;水喷淋式淬火结束后在3分钟之内进行预时效处理,预时效温度为190±5℃,预时效保温时间为50~70秒,预时效炉出口处设置有多道风冷区,使预时效后的铝卷在出口收卷前料温降至45℃以下;
    S7、将经过S6处理的成品卷材经过拉矫、横剪后得到铝合金基材。
  2. 根据权利要求1所述的提升6016汽车冲压板包边性能的制造方法,其特征在于:所述S2中,进行熔铸时,严格控制金属及非金属化合物,流槽夹杂物含量<0.02mm2/kg,夹杂物尺寸小于12μm。
  3. 根据权利要求1所述的提升6016汽车冲压板包边性能的制造方法,其特征在于: 所述S3中,经过均匀化热处理后的铝合金铸锭的板条状β-AlFeSi相全部转化为颗粒状α-AlFeSi相。
  4. 根据权利要求1所述的提升6016汽车冲压板包边性能的制造方法,其特征在于:所述铝合金基材的抗拉强度200-215MPa,屈服强度90-110MPa,屈强比在0.5以下,断裂延伸率A50mm达24.0%以上;包边最小相对弯曲半径达0.5t以下且翻边形貌达一级形貌。
PCT/CN2023/120343 2022-09-07 2023-09-21 一种提升6016汽车冲压板包边性能的制造方法 WO2024051856A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2023339342A AU2023339342A1 (en) 2022-09-07 2023-09-21 Manufacturing method for improving edge fitting properties of 6016 automobile stamped sheets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211092420.8 2022-09-07
CN202211092420.8A CN115747535B (zh) 2022-09-07 2022-09-07 一种提升6016汽车冲压板包边性能的制造方法

Publications (1)

Publication Number Publication Date
WO2024051856A1 true WO2024051856A1 (zh) 2024-03-14

Family

ID=85349678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120343 WO2024051856A1 (zh) 2022-09-07 2023-09-21 一种提升6016汽车冲压板包边性能的制造方法

Country Status (3)

Country Link
CN (1) CN115747535B (zh)
AU (1) AU2023339342A1 (zh)
WO (1) WO2024051856A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747535B (zh) * 2022-09-07 2023-10-03 河南明晟新材料科技有限公司 一种提升6016汽车冲压板包边性能的制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565586A (ja) * 1991-09-05 1993-03-19 Sky Alum Co Ltd 成形加工用アルミニウム合金圧延板およびその製造方法
US20030029531A1 (en) * 2001-05-03 2003-02-13 Bull Michael Jackson Process for making aluminum alloy sheet having excellent bendability
US20160083818A1 (en) * 2013-04-19 2016-03-24 General Research Institute For Nonferrous Metals Aluminum alloy materials suitable for the manufacture of automotive body panels and methods for producing the same
CN105925858A (zh) * 2016-06-12 2016-09-07 山东南山铝业股份有限公司 一种铝合金薄板及其生产方法
CN106756287A (zh) * 2016-11-16 2017-05-31 东北大学 一种6016铝合金板材的制备方法
CN111334728A (zh) * 2018-12-19 2020-06-26 有研工程技术研究院有限公司 一种改善铝合金板材翻边性能的方法
CN112195424A (zh) * 2020-10-29 2021-01-08 天津忠旺铝业有限公司 一种提高6016铝合金板r值及其均匀性的制备工艺
CN115747535A (zh) * 2022-09-07 2023-03-07 河南明晟新材料科技有限公司 一种提升6016汽车冲压板包边性能的制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708555B2 (ja) * 2000-12-13 2011-06-22 株式会社神戸製鋼所 成形性と平坦度に優れたアルミニウム合金圧延薄板の連続溶体化焼き入れ処理方法
JP4939093B2 (ja) * 2006-03-28 2012-05-23 株式会社神戸製鋼所 ヘム曲げ性およびベークハード性に優れる自動車パネル用6000系アルミニウム合金板の製造方法
WO2008078399A1 (en) * 2006-12-22 2008-07-03 Nippon Light Metal Company, Ltd. Method of producing aluminum alloy sheet
CN109536792A (zh) * 2018-10-24 2019-03-29 郑州明泰实业有限公司 一种手机卡槽及按键材料用高性能6061铝合金的生产工艺
CN109628803B (zh) * 2018-11-30 2020-08-25 郑州明泰实业有限公司 一种4017-h2x状态铝合金花纹板及其制备方法
CN110093536B (zh) * 2019-03-29 2021-01-29 郑州明泰实业有限公司 一种电池导板用6101-t63状态铝合金卷材及其制备方法
CN109988948B (zh) * 2019-04-26 2021-05-18 郑州明泰实业有限公司 一种汽车内板用5182-o状态铝合金板材及其生产方法
CN113186413A (zh) * 2021-04-29 2021-07-30 郑州明泰实业有限公司 一种新能源汽车用5083-o态电池壳侧板的制备方法
CN113174500B (zh) * 2021-04-29 2022-11-11 河南明晟新材料科技有限公司 一种提高5083合金o态折弯性能的方法
CN113278825B (zh) * 2021-05-17 2022-07-12 河南明晟新材料科技有限公司 一种单面高光泽度6061-h22状态铝合金镜面板的制备方法
CN113337760B (zh) * 2021-06-04 2022-08-02 河南明晟新材料科技有限公司 一种提升5754合金o态电导率的方法
CN114457265B (zh) * 2022-01-28 2023-06-02 河南明晟新材料科技有限公司 一种高强度高疲劳性能6系铝合金、气瓶及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565586A (ja) * 1991-09-05 1993-03-19 Sky Alum Co Ltd 成形加工用アルミニウム合金圧延板およびその製造方法
US20030029531A1 (en) * 2001-05-03 2003-02-13 Bull Michael Jackson Process for making aluminum alloy sheet having excellent bendability
US20160083818A1 (en) * 2013-04-19 2016-03-24 General Research Institute For Nonferrous Metals Aluminum alloy materials suitable for the manufacture of automotive body panels and methods for producing the same
CN105925858A (zh) * 2016-06-12 2016-09-07 山东南山铝业股份有限公司 一种铝合金薄板及其生产方法
CN106756287A (zh) * 2016-11-16 2017-05-31 东北大学 一种6016铝合金板材的制备方法
CN111334728A (zh) * 2018-12-19 2020-06-26 有研工程技术研究院有限公司 一种改善铝合金板材翻边性能的方法
CN112195424A (zh) * 2020-10-29 2021-01-08 天津忠旺铝业有限公司 一种提高6016铝合金板r值及其均匀性的制备工艺
CN115747535A (zh) * 2022-09-07 2023-03-07 河南明晟新材料科技有限公司 一种提升6016汽车冲压板包边性能的制造方法

Also Published As

Publication number Publication date
CN115747535A (zh) 2023-03-07
AU2023339342A1 (en) 2024-05-30
CN115747535B (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
US4645544A (en) Process for producing cold rolled aluminum alloy sheet
CN105829559B (zh) 成形用铝合金板
EP0259700B1 (en) Production process for aluminium alloy rolled sheet
WO2018011245A1 (en) Method of making 6xxx aluminium sheets
JP2008542526A (ja) アルミニウム合金板、及びその製造方法
WO2005056859A1 (ja) ベークハード性およびヘム加工性に優れたAl-Mg-Si合金板の製造方法
CN112458344B (zh) 一种高强耐蚀的铝合金及其制备方法和应用
CN103243247A (zh) 一种铝合金及其制备方法
CN111218590B (zh) 一种高强度高成型性铝镁铜合金板材及其制备方法
WO2024051856A1 (zh) 一种提升6016汽车冲压板包边性能的制造方法
CN105755333B (zh) 一种易拉罐薄型罐盖用铝合金板材的制备方法
US20180142336A1 (en) Alloys for highly shaped aluminum products and methods of making the same
CN103255323B (zh) 一种Al-Mg-Zn-Cu合金及其制备方法
CN113528900A (zh) 一种短流程高导电6系铝合金板带材及其制备方法
CN110983129B (zh) 一种提高汽车用铝合金板材弯边性能的一体化过程调控方法
CN112522552B (zh) 一种耐蚀的铝合金及其制备方法和应用
CN113474479B (zh) 由铝合金制造板材或带材的方法和由此制成的板材、带材或成形件
JP2003105471A (ja) アルミニウム合金板およびその製造方法
CN110238229B (zh) 一种铝合金板材的制造方法
JPS626740B2 (zh)
CN110983117A (zh) 一种电容器外壳用铝合金及其铝合金板带制备方法
WO2008078399A1 (en) Method of producing aluminum alloy sheet
CN113862498B (zh) 一种载货汽车油箱用高强度铝板材及其生产方法
JP3749627B2 (ja) プレス成形性に優れたAl合金板
CN111254324A (zh) 一种Al-Mg-Si合金板材及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023339342

Country of ref document: AU

Ref document number: AU2023339342

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023339342

Country of ref document: AU

Date of ref document: 20230921

Kind code of ref document: A