WO2024051737A1 - 一种粗苯精制副产高沸点溶剂油的方法 - Google Patents

一种粗苯精制副产高沸点溶剂油的方法 Download PDF

Info

Publication number
WO2024051737A1
WO2024051737A1 PCT/CN2023/117238 CN2023117238W WO2024051737A1 WO 2024051737 A1 WO2024051737 A1 WO 2024051737A1 CN 2023117238 W CN2023117238 W CN 2023117238W WO 2024051737 A1 WO2024051737 A1 WO 2024051737A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzene
boiling point
solvent oil
crude benzene
point solvent
Prior art date
Application number
PCT/CN2023/117238
Other languages
English (en)
French (fr)
Inventor
朱磊
李治国
李辉
李达
李昕
李俸宇
刘书群
刘理华
Original Assignee
淮北师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淮北师范大学 filed Critical 淮北师范大学
Publication of WO2024051737A1 publication Critical patent/WO2024051737A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/005Processes comprising at least two steps in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the technical field of crude benzene refining, and in particular relates to a method for refining crude benzene as a by-product of high boiling point solvent oil.
  • Coking crude benzene is a light distillate recovered from the crude gas produced during the coking process.
  • the content of benzene, toluene and xylene aromatic compounds can reach more than 90%, while high boiling point solvent oil (the main component is C9 compound) content of about 1%, it is widely used in fine chemicals and organic synthesis industries.
  • high boiling point solvent oil the main component is C9 compound
  • coking crude benzene reached 4.28 million tons in 2017, so coking crude benzene is one of the important sources of high-boiling point solvent oil.
  • the traditional pre-fractionation process of hydrorefining coked crude benzene is that the coked crude benzene is preheated to 65-72°C through a heat exchanger and enters the pre-distillation tower. During this process, low boiling point components and heavy benzene are removed. After the hydrorefining reaction, Sulfur- and nitrogen-containing compounds are converted into H 2 S and NH 3 , and the refined fractions enter the first distillation tower and the second distillation tower to obtain high-purity benzene, toluene and xylene.
  • CN103013560A proposes that the product after deduplication of coked crude benzene is hydrofined and distilled to obtain benzene, toluene, xylene, 150-175°C and 180-200°C high boiling point solvent oil, and the separation unit requires at least 4 to 5 refiners. Distillation towers. Traditional crude benzene refining companies generally only have two distillation towers for separating benzene, toluene and xylene. Adding a distillation tower to produce high-boiling solvent oil by-product not only requires space and a large amount of funds, but also requires environmental and safety evaluations. ; CN103520945 proposes a crude benzene hydrorefining device and method.
  • the hydrogenation product is separated by distillation to obtain benzene, toluene and xylene, without any by-product solvent.
  • the invention provides a method with simple process, stable operation, low production cost, high aromatic hydrocarbon recovery rate, no need to add separation devices such as a distillation tower, and a by-product of high boiling point solvent oil.
  • a method for refining crude benzene as a by-product of high boiling point solvent oil including the following specific steps:
  • the pre-fractionated material is mixed with hydrogen, heated and pressurized, and then introduced into the first hydrogenation reactor and the second hydrogenation reactor to carry out hydrogenation reaction of unsaturated components, hydrodesulfurization and hydrodenitrification reactions respectively. , remove sulfur-containing and nitrogen-containing mixtures to produce high-quality aromatic hydrocarbon compounds such as benzene, toluene and xylene.
  • the liquid phase material obtained in step (2) is processed through other processes and then introduced into the first rectification tower and the second rectification tower. High-purity benzene and toluene are extracted from the tops of the first and second rectification towers respectively.
  • xylene and high-boiling point solvent oil are produced from the side line and tower kettle of the second distillation tower respectively.
  • the pre-fractionation process parameters are as follows: crude benzene feed temperature is 69 ⁇ 72°C; the top temperature of the pre-distillation tower is 67 ⁇ 68°C, and the pressure is -52 ⁇ - 55kPa; pre-distillation tower still temperature 160 ⁇ 175°C, pressure -30 ⁇ -40kPa;
  • the first hydrogenation reactor uses NiMo catalyst
  • the second hydrogenation reactor is filled with a small amount of NiMo catalyst and mixed with the traditional hydrogenation refining catalyst CoMo catalyst.
  • the filling ratio is 1:19 ⁇ 1:3, in which the NiMo catalyst MoO 3 content is 8 ⁇ 12wt%.
  • the temperature of the second distillation tower is 150 ⁇ 165°C
  • the pressure is 45 ⁇ 60kPa
  • the side line extraction position is 55 ⁇ 62 blocks
  • the temperature is 143 ⁇ 146°C .
  • the present invention realizes the steaming out of more aromatic hydrocarbon compounds in the crude benzene raw material by raising the temperature of the predistillation tower and optimizing part of the catalyst in the second hydrogenation reactor to improve the hydrogenation, desulfurization and denitrification performance of the catalyst, and adds a second refinery
  • the side line extraction of the distillation tower realizes the separation of high-boiling point solvent oil.
  • the present invention increases the temperature of the predistillation tower kettle, which not only helps to distill benzene, toluene, and xylene aromatic compounds in the crude benzene raw material, but also steams out the high-boiling point solvent oil mainly composed of C9 components.
  • part of the NiMo catalyst is mixed in the second hydrogenation reactor to improve the hydrodenitrification performance of the reaction unit and help produce colorless or light yellow solvents with low nitrogen content and high stability;
  • the present invention adds side extraction facilities to the second distillation tower to achieve the separation of “three components in one tower” (toluene, xylene, and high-boiling point solvent oil) without adding large-scale equipment to the distillation tower. , increase the economic benefits of enterprises;
  • the temperature of the pre-distillation tower still is increased, the partial catalyst of the second hydrogenation reactor is optimized, and the second distillation tower side line is added and coupled.
  • the traditional crude benzene pre-fractionation operation strictly controls the fractionation temperature.
  • the fractionation temperature is lower, which reduces the recovery rate of "triphenyl".
  • the fractionation temperature is higher, and the heavy components affect the purity of xylene.
  • the coupling of the present invention can fractionate the crude benzene pre-fractionation operation.
  • the temperature point changes to the fractionation temperature range, increasing the flexibility of actual operation.
  • Figure 1 is a process flow diagram for the high boiling point solvent oil by-product of crude benzene refining; among them, 1-predistillation tower, 2-stripping section, 3-tower still, 4-rectifying tower, 5-stripping section, 6- Side extraction section; 101-predistillation tower, 102-first hydrogenation reactor, 103-second hydrogenation reactor, 104-first rectification tower, 105-second rectification tower; 11-crude benzene, 12-Predistillation tower top product, 13-Predistillation tower bottom product (heavy benzene), 14-Refined product, 15-benzene, 16-First distillation tower bottom product, 17-Toluene, 18-Di Toluene, 19-high boiling point mineral spirits;
  • Figure 2 shows the influence of the mass fraction of toluene, xylene and C9 component high boiling point solvent oil in the number of theoretical plates in the second distillation column.
  • a method for refining crude benzene as a by-product of high-boiling solvent oil in this embodiment includes the following specific steps:
  • the pre-fractionated material is mixed with hydrogen, heated and pressurized, and then introduced into the first hydrogenation reactor 102 and the second hydrogenation reactor 103.
  • the first hydrogenation reactor 102 uses a NiMo catalyst, and the NiMo catalyst is M8-21. , the packing density is 0.7g/cm 3 .
  • part of the traditional CoMo catalyst is replaced with NiMo catalysis in the second hydrogenation reactor 103, where the mass ratio of NiMo to CoMo is 1:19 , CoMo catalyst is M8-12, containing 5%wtNiO, containing 12%wtMoO 3 , packing density 0.75g/cm 3 , reaction temperature and reaction pressure remain unchanged.
  • the liquid phase material obtained in step (2) is introduced into the first rectification tower 104 and the second rectification tower 105, and the tops of the first rectification tower 104 and the second rectification tower 105 are extracted respectively.
  • High-purity benzene and toluene 17 adopt a side-line extraction process.
  • the side-line extraction outlet is located on the 62nd tray.
  • the tray temperature is controlled at 146°C
  • the tower still temperature is 150°C
  • the tower still pressure is 45kPa
  • the second distillation tower side line and tower kettle respectively produce xylene 18 and high boiling point solvent oil 19.
  • a method for refining crude benzene as a by-product of high-boiling solvent oil in this embodiment includes the following specific steps:
  • the pre-fractionated material is mixed with hydrogen, heated and pressurized, and then introduced into the first hydrogenation reactor 102 and the second hydrogenation reactor 103.
  • the first hydrogenation reactor uses a NiMo catalyst, and the NiMo catalyst is M8-21.
  • the packing density is 0.7g/cm 3 .
  • NiMo catalyst CNBR-01 Southwest Chemical Research and Design Institute Co., Ltd. contains 5%wtNiO, 8%wtMoO 3 , packing density 0.75g/cm 3 , reaction temperature and reaction pressure remain unchanged.
  • the liquid phase material obtained in step (2) is introduced into the first rectification tower 104 and the second rectification tower 105, and the tops of the first rectification tower 104 and the second rectification tower 105 are extracted respectively.
  • High-purity benzene and toluene adopt a side-line extraction process.
  • the side-line extraction outlet is located on the 60th tray.
  • the tray temperature is controlled at 145°C
  • the tower still temperature is 158°C
  • the tower still pressure is 50kPa.
  • the second distillation tower side line and The tower kettle produces xylene 18 and high boiling point solvent oil 19 respectively.
  • a method for refining crude benzene as a by-product of high-boiling solvent oil in this embodiment includes the following specific steps:
  • the temperature of column kettle 3 is 170°C and the pressure of column kettle is -40kPa to remove low boiling point compounds and heavy benzene components;
  • the content of "triphenyl” (benzene, toluene, xylene) in the product after predistillation treatment is slightly increased, and the content of high-boiling point solvent oil with C9 component as the main fraction increases, but The mass fraction of nitrogen-containing compounds contained in it increases.
  • the pre-fractionated material is mixed with hydrogen, heated and pressurized, and then introduced into the first hydrogenation reactor 102 and the second hydrogenation reactor 103.
  • the first hydrogenation reactor uses NiMo catalyst.
  • NiMo catalyst CNBR-01-Southwestern Chemical Research and Design Institute Co., Ltd. the filling density is 0.7g/cm 3
  • the second hydrogenation reactor 103 part of the traditional CoMo catalyst is replaced with NiMo catalysis, where NiMo and CoMo The mass ratio is 1:4, the packing density is 0.75g/cm 3
  • the CoMo catalyst model is CNBR-02 Southwest Chemical Research and Design Institute Co., Ltd., and the reaction temperature and reaction pressure remain unchanged.
  • the liquid phase material obtained in step (2) is introduced into the first rectification tower 104 and the second rectification tower 105, and the tops of the first rectification tower 104 and the second rectification tower 105 are extracted respectively.
  • High-purity benzene and toluene adopt a side-line extraction process.
  • the side-line extraction outlet is located on the 59th tray.
  • the tray temperature is controlled at 145°C
  • the tower still temperature is 161°C
  • the tower still pressure is 55kPa.
  • the side line of the second distillation tower and The tower kettle produces xylene 18 and high boiling point solvent oil 19 respectively.
  • NiMo catalyst CNBR-01 - Southwest Chemical Industry Research Institute Co., Ltd., CoMo catalyst is M8-12.
  • a method for refining crude benzene as a by-product of high boiling point solvent oil in this embodiment includes the following specific steps:
  • the content of "triphenyl” (benzene, toluene, xylene) in the product after predistillation treatment is slightly increased, and the content of high-boiling point solvent oil with C9 component as the main fraction increases, but The mass fraction of nitrogen-containing compounds contained in it increases.
  • the pre-fractionated material is mixed with hydrogen, heated and pressurized, and then introduced into the first hydrogenation reactor and the second hydrogenation reactor.
  • the first hydrogenation reactor uses NiMo catalyst.
  • part of the traditional CoMo catalyst was replaced with NiMo catalysis in the second hydrogenation reactor, where the mass ratio of NiMo to CoMo was 1:3, the packing density was 0.73g/cm 3 , and the reaction temperature and reaction pressure remained unchanged.
  • the liquid phase material obtained in step (2) is introduced into the first rectification tower 104 and the second rectification tower 105, and the tops of the first rectification tower 104 and the second rectification tower 105 are extracted respectively.
  • High-purity benzene and toluene adopt the side line extraction process.
  • the side line extraction outlet is located on the 55th tray.
  • the tray temperature is controlled at 143°C
  • the tower still temperature is 165°C
  • the tower still pressure is 60kPa
  • the second distillation tower 105 side line and tower kettle to produce xylene and high boiling point solvent oil respectively.
  • a method for refining crude benzene as a by-product of high-boiling solvent oil in this embodiment includes the following specific steps:
  • the temperature of column kettle 3 is 165°C and the pressure of column kettle is -35kPa to remove low boiling point compounds and heavy benzene components;
  • the pre-fractionated material is mixed with hydrogen, heated and pressurized, and then introduced into the first hydrogenation reactor 102 and the second hydrogenation reactor 103.
  • the first hydrogenation reactor 102 and the second hydrogenation reactor 103 are both CoMo catalyst, the CoMo catalyst is M8-12, the packing density is 0.7g/cm 3 , the reaction temperature and reaction pressure remain unchanged.
  • the liquid phase material obtained in step (2) is processed through other processes and then introduced into the first rectification tower 104 and the second rectification tower 105.
  • High-purity benzene is extracted from the top of the first rectification tower 104.
  • High-purity toluene is extracted from the top of tower 105, and xylene is extracted from the tower kettle. There is no side line extraction process.
  • the temperature of the tower kettle is 165°C, and the pressure of the tower kettle is 60kPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明属于粗苯精制技术领域,提供了一种粗苯精制副产高沸点溶剂油的方法,包括如下步骤:粗苯首先预热进入预馏塔,脱除低沸点化合物和重苯;加氢精制反应,处理后精制的物料进入两个精馏塔,生产高纯苯、高纯甲苯、二甲苯和副产高沸点溶剂油。本发明在确保苯、甲苯、二甲苯产量和品质不降低的前提下,通过优化预馏塔塔釜温度、甲苯塔侧线采出二甲苯,塔釜副产高沸点溶剂油,同时具有工艺简单、操作稳定、生产成本低、芳烃回收率、无需增加精馏塔等分离装置的等优点,增加企业的经济效益和社会效益。

Description

一种粗苯精制副产高沸点溶剂油的方法 技术领域
本发明属于粗苯精制技术领域,尤其涉及一种粗苯精制副产高沸点溶剂油的方法。
背景技术
焦化粗苯是从炼焦过程中产生的粗煤气中回收得到的一种轻质馏分油,其中苯、甲苯、二甲苯芳烃化合物含量可达90%以上,而高沸点溶剂油(主要组分为C9化合物)含量约1%左右,在精细化工和有机合成工业中有广泛的应用,据统计2017年焦化粗苯达428万吨,因此焦化粗苯是高沸点溶剂油的重要来源之一。在传统焦化粗苯加氢精制工艺过程中通过技术改造,确保生产高质量苯、甲苯、二甲苯的前提下,同时不增加精馏塔等大型分离设备,实现高沸点溶剂油的副产,不仅提高焦化粗苯的资源化利用,同时提高企业经济效益。
传统焦化粗苯加氢精制的预分馏过程是焦化粗苯经换热器预热至65-72℃进入预馏塔,在此过程中除去低沸点组分和重苯,经加氢精制反应将含硫、含氮化合物转化为H 2S、NH 3,精制馏分进入第一精馏塔和第二精馏塔,得到高纯度苯、甲苯和二甲苯。为了保障二甲苯的品质,高沸点溶剂油通过严格控制预分馏塔工艺参数切入重苯中,造成资源浪费。综上所述,设计一种粗苯精制工艺副产高沸点溶剂油具有重要意义。
CN103013560A提出焦化粗苯脱重苯后的产物经加氢精制、精馏,得到苯、甲苯、二甲苯、150-175℃和180-200℃高沸点溶剂油,分离单元至少需要4~5个精馏塔,传统粗苯精制企业一般只有分离苯、甲苯和二甲苯的2个精馏塔,为了副产高沸点溶剂油增加精馏塔,不仅需要场地和大量资金,而且需要环境和安全等评价;CN103520945提出粗苯加氢精制装置及方法,加氢产物经精馏分离得到苯、甲苯和二甲苯,没有副产溶剂。综上所述,开发一种无需新增分离设备,工艺简单,粗苯精制工艺副产高沸点溶剂油的技术具有较高经济效益和社会效益。
发明内容
本发明提供一种工艺简单、操作稳定、生产成本低、芳烃回收率高、无需增加精馏塔等分离装置且副产高沸点溶剂油方法。
一种粗苯精制副产高沸点溶剂油的方法,包括如下具体步骤:
(1)粗苯预分馏:
对粗苯原料进行预分馏,脱除低沸点化合物和重苯组分;
(2)粗苯加氢精制:
将预分馏后的物料与氢气混合,经升温和加压后导入第一加氢反应器和第二加氢反应器,分别进行不饱和组分加氢反应、加氢脱硫和加氢脱氮反应,脱除含硫、含氮混合物,从而生产高品质的苯、甲苯和二甲苯等芳烃化合物。
(3)精馏分离:
对步骤(2)中得到的液相物料经其他工序处理后,导入第一精馏塔和第二精馏塔,第一和第二精馏塔塔顶分别采出高纯度苯和甲苯,采用侧线采出工艺,第二精馏塔侧线和塔釜分别采出二甲苯和高沸点溶剂油。
作为本发明的优选方式之一,所述步骤(1)中,预分馏工艺参数如下:粗苯进料温度69~72℃;预馏塔塔顶温度67~68℃,压力为-52~-55kPa;预馏塔塔釜温度160~175℃,压力-30~-40kPa;
作为本发明的优选方式之一,所述步骤(2)中,第一加氢反应器采用NiMo催化剂,第二加氢反应器中装填少量NiMo催化剂与传统加氢精制催化剂CoMo催化剂混合,两者装填比例为1:19~1:3,其中NiMo催化剂MoO 3含量为8~12wt%。
作为本发明的优选方式之一,所述步骤(3)中,第二精馏塔塔釜温度150~165℃,压力45~60kPa,侧线采出位置55~62块,温度为143~146℃。
本发明相比现有技术的优点在于:
本发明通过升高预馏塔塔釜温度实现粗苯原料中更多芳烃化合物蒸出、优化第二加氢反应器部分催化剂实现催化剂的加氢、脱硫、脱氮性能的提高,增设第二精馏塔侧线采出实现高沸点溶剂油的分离,上述三者耦合,不仅增强预馏塔温度控制的操作弹性,提高原料中重组分的利用率,增加企业的经济和社会效益。
本发明的具体优势如下:
(1)本发明提高预馏塔塔釜温度,不仅有助于粗苯原料中苯、甲苯、二甲苯芳烃化合物的馏出,而且将以C9组分为主的高沸点溶剂油蒸出,为重苯的资源化利用奠定基础;
(2)本发明在第二加氢反应器中混装部分NiMo催化剂,提高反应单元的加氢脱氮性能,有助于生产无色或淡黄色、低氮含量、安定性较高的溶剂;
(3)本发明在第二精馏塔上增设侧线采出设施,在不增加精馏塔大型设备前提下,实现“一塔三组分”(甲苯、二甲苯、高沸点溶剂油)的分离,增加企业经济效益;
(4)本发明将预馏塔塔釜温度提高、第二加氢反应器部分催化剂的优化、第二精馏塔侧线增设耦合。传统粗苯预分馏操作通过严格控制分馏温度,分馏温度较低,降低“三苯”回收率,分馏温度较高,重组分影响二甲苯的纯度,本发明的耦合,将粗苯预分馏操作分馏温度点变为分馏温度区间,增加实际操作弹性。
附图说明
图1是粗苯精制副产高沸点溶剂油的工艺流程图;其中,1-预馏塔,2-提馏段,3-塔釜,4-精馏塔,5-提馏段,6-侧线采出段;101-预馏塔,102-第一加氢反应器,103-第二加氢反应器,104-第一精馏塔,105-第二精馏塔;11-粗苯,12-预馏塔塔顶产物,13-预馏塔塔釜产物(重苯),14-精制后产物,15-苯,16-第一精馏塔塔釜产物,17-甲苯,18-二甲苯,19-高沸点溶剂油;
图2是第二精馏塔理论板数中对甲苯、二甲苯和C9组分高沸点溶剂油的质量分数的影响。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,本实施例的一种粗苯精制副产高沸点溶剂油的方法,包括如下具体步骤:
(1)粗苯预分馏:
对粗苯11原料进行预分馏,塔釜3温度为160℃,塔釜3压力为-30kPa,脱除低沸点化合物和重苯组分;
(2)粗苯加氢精制:
通过提高预馏塔塔釜3温度,经预馏处理后的产物中“三苯”(苯、甲苯、二甲苯)含量略有提高,以C9组分为主要馏分的高沸点溶剂油含量增加,但是其中所含含氮化合物质量分数增加。将预分馏后的物料与氢气混合,经升温和加压后导入第一加氢反应器102和第二加氢反应器103,第一加氢反应器102采用NiMo催化剂,NiMo催化剂为M8-21,装填密度为0.7g/cm 3,为了提高加氢精制的加氢脱氮性能,在第二加氢反应器103将传统部分CoMo催化剂置换为NiMo催化,其中NiMo与CoMo质量比为1∶19,CoMo催化剂为M8-12,含5%wtNiO,含12%wtMoO 3,装填密度0.75g/cm 3,反应温度反应压力保持不变,。
(3)精馏分离:
对步骤(2)中得到的液相物料经其他工序处理后,导入第一精馏塔104和第二精馏塔105,第一精馏塔104和第二精馏塔105塔顶分别采出高纯度苯和甲苯17,采用侧线采出工艺,侧线采出口位于第62塔板上,塔板温度控制为146℃,塔釜温度为150℃,塔釜压力为45kPa,第二精馏塔侧线和塔釜分别采出二甲苯18和高沸点溶剂油19。
实施例2
如图1所示,本实施例的一种粗苯精制副产高沸点溶剂油的方法,包括如下具体步骤:
(1)粗苯预分馏:
对粗苯11原料进行预分馏,塔釜温度为164℃,塔釜压力为-35kPa,脱除低沸点化合物和重苯组分;
(2)粗苯加氢精制:
通过提高预馏塔塔釜3温度,经预馏处理后的产物中“三苯”(苯、甲苯、二甲苯)含量略有提高,以C9组分为主要馏分的高沸点溶剂油含量增加,但是其中所含含氮化合物质量分数增加。将预分馏后的物料与氢气混合,经升温和加压后导入第一加氢反应器102和第二加氢反应器103,第一加氢反应器采用NiMo催化剂,NiMo催化剂为M8-21,装填密度为0.7g/cm 3,为了提高加氢精制的加氢脱氮性能,在第二加氢反应器103将传统部分CoMo催化剂置换为NiMo催化,其中NiMo与CoMo质量比为1∶9,NiMo催化剂CNBR-01西南化工研究设计院有限公司,含5%wtNiO,含8%wtMoO 3,装填密度0.75g/cm 3,反应温度反应压力保持不变。
(3)精馏分离:
对步骤(2)中得到的液相物料经其他工序处理后,导入第一精馏塔104和第二精馏塔105,第一精馏塔104和第二精馏塔105塔顶分别采出高纯度苯和甲苯,采用侧线采出工艺,侧线采出口位于第60塔板上,塔板温度控制为145℃,塔釜温度为158℃,塔釜压力为50kPa,第二精馏塔侧线和塔釜分别采出二甲苯18和高沸点溶剂油19。
实施例3
如图1所示,本实施例的一种粗苯精制副产高沸点溶剂油的方法,包括如下具体步骤:
(1)粗苯预分馏:
对粗苯11原料进行预分馏,塔釜3温度为170℃,塔釜压力为-40kPa,脱除低沸点化合物和重苯组分;
(2)粗苯加氢精制:
通过提高预馏塔塔釜温度,经预馏处理后的产物中“三苯”(苯、甲苯、二甲苯)含量略有提高,以C9组分为主要馏分的高沸点溶剂油含量增加,但是其中所含含氮化合物质量分数增加。将预分馏后的物料与氢气混合,经升温和加压后导入第一加氢反应器102和第二加氢反应器103,第一加氢反应器采用NiMo催化剂,为了提高加氢精制的加氢脱氮性能,NiMo催化剂CNBR-01-西南化工研究设计院有限公司,装填密度为0.7g/cm 3,在第二加氢反应器103将传统部分CoMo催化剂置换为NiMo催化,其中NiMo与CoMo质量比为1∶4,装填密度为0.75g/cm 3,CoMo催化剂型号CNBR-02西南化工研究设计院有限公司,反应温度反应压力保持不变。
(3)精馏分离:
对步骤(2)中得到的液相物料经其他工序处理后,导入第一精馏塔104和第二精馏塔105,第一精馏塔104和第二精馏塔105塔顶分别采出高纯度苯和甲苯,采用侧线采出工艺,侧线采出口位于第59塔板上,塔板温度控制为145℃,塔釜温度为161℃,塔釜压力为55kPa,第二精馏塔侧线和塔釜分别采出二甲苯18和高沸点溶剂油19。
实施例4
如图1所示,NiMo催化剂CNBR-01-西南化工研究院有限公司,CoMo催化剂为M8-12,本实施例的一种粗苯精制副产高沸点溶剂油的方法,包括如下具体步骤:
(1)粗苯预分馏:
对粗苯11原料进行预分馏,塔釜温度为170℃,塔釜压力为-30kPa,脱除低沸点化合物和重苯组分;
(2)粗苯加氢精制:
通过提高预馏塔塔釜温度,经预馏处理后的产物中“三苯”(苯、甲苯、二甲苯)含量略有提高,以C9组分为主要馏分的高沸点溶剂油含量增加,但是其中所含含氮化合物质量分数增加。将预分馏后的物料与氢气混合,经升温和加压后导入第一加氢反应器和第二加氢反应器,第一加氢反应器采用NiMo催化剂,为了提高加氢精制的加氢脱氮性能,在第二加氢反应器将传统部分CoMo催化剂置换为NiMo催化,其中NiMo与CoMo质量比为1∶3,装填密度为0.73g/cm 3,反应温度反应压力保持不变。
(3)精馏分离:
对步骤(2)中得到的液相物料经其他工序处理后,导入第一精馏塔104和第二精馏塔105,第一精馏塔104和第二精馏塔105塔顶分别采出高纯度苯和甲苯,采用侧线采出工艺,侧线采出口位于第55塔板上,塔板温度控制为143℃,塔釜温度为165℃,塔釜压力为60kPa,第二精馏塔105侧线和塔釜分别采出二甲苯和高沸点溶剂油。
实施例5
如图1所示,本实施例的一种粗苯精制副产高沸点溶剂油的方法,包括如下具体步骤:
(1)粗苯预分馏:
对粗苯11原料进行预分馏,塔釜3温度为165℃,塔釜压力为-35kPa,脱除低沸点化合物和重苯组分;
(2)粗苯加氢精制:
将预分馏后的物料与氢气混合,经升温和加压后导入第一加氢反应器102和第二加氢反应器103,第一加氢反应器102和第二加氢反应器103均为CoMo催化剂,CoMo催化剂为M8-12,装填密度为0.7g/cm 3,反应温度反应压力保持不变。
(3)精馏分离:
对步骤(2)中得到的液相物料经其他工序处理后,导入第一精馏塔104和第二精馏塔105,第一精馏塔104塔顶采出高纯度苯,第二精馏塔105塔顶采出高纯度甲苯,塔釜采出二甲苯,无侧线采出工艺,塔釜温度为165℃,塔釜压力为60kPa。
实施例1~5的第二精馏塔中甲苯、二甲苯和C9组分高沸点溶剂油的质量分结果见表1。
表1第二精馏塔中甲苯、二甲苯和C9组分高沸点溶剂油的质量分数
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种粗苯精制副产高沸点溶剂油的方法,其特征在于,包括如下具体步骤:(1)粗苯预分馏:对粗苯原料进行预分馏,脱除低沸点化合物和重苯组分;(2)粗苯加氢精制:将预分馏后的物料与氢气混合,经升温和加压后导入第一加氢反应器和第二加氢反应器,分别进行不饱和组分加氢反应、加氢脱硫和加氢脱氮反应,脱除含硫、含氮混合物,从而生产高品质的苯、甲苯和二甲苯等芳烃化合物;(3)精馏分离:对步骤(2)中得到的液相物料经其他工序处理后,导入第一精馏塔和第二精馏塔,第一精馏塔和第二精馏塔塔顶分别采出高纯度苯和甲苯,采用侧线采出工艺,第二精馏塔侧线和塔釜分别采出二甲苯和高沸点溶剂油。
  2. 根据权利要求1所述的粗苯精制工艺副产高沸点溶剂油的方法,其特征在于,所述步骤(1)中,预馏塔塔釜温度160~175℃,压力-30~-40kPa。
  3. 根据权利要求1所述的粗苯精制工艺副产高沸点溶剂油的方法,其特征在于,所述步骤(2)中,第一加氢反应器采用NiMo催化剂,第二加氢反应器中装填NiMo催化剂与加氢精制催化剂CoMo催化剂混合,两者装填比例为1:19~1:3,其中NiMo催化剂MoO 3含量为8~12wt%。
  4. 根据权利要求1所述的粗苯精制工艺副产高沸点溶剂油的方法,其特征在于,所述步骤(3)中,第二精馏塔塔釜温度150~165℃,压力45~60kPa。
  5. 根据权利要求1所述的粗苯精制工艺副产高沸点溶剂油的方法,其特征在于,所述步骤(3)中,侧线采出位置55~62块,塔板温度为143~146℃。
PCT/CN2023/117238 2022-09-08 2023-09-06 一种粗苯精制副产高沸点溶剂油的方法 WO2024051737A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211093852 2022-09-08
CN202211093852.0 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024051737A1 true WO2024051737A1 (zh) 2024-03-14

Family

ID=87621778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117238 WO2024051737A1 (zh) 2022-09-08 2023-09-06 一种粗苯精制副产高沸点溶剂油的方法

Country Status (2)

Country Link
CN (1) CN116640603A (zh)
WO (1) WO2024051737A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118026803A (zh) * 2024-04-13 2024-05-14 潍坊三昌化工科技有限公司 一种粗苯加氢精制装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116640603A (zh) * 2022-09-08 2023-08-25 临涣焦化股份有限公司 一种粗苯精制副产高沸点溶剂油的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1186934A (fr) * 1956-04-11 1959-09-03 Metallgesellschaft Ag Procédé d'extraction d'hydrocarbures aromatiques purs du benzène brut
CN1900032A (zh) * 2006-07-06 2007-01-24 湖南长岭石化科技开发有限公司 一种由粗苯生产苯系芳烃的方法
CN103013560A (zh) * 2011-09-26 2013-04-03 花得水 一种从粗苯中提取高沸点溶剂油的方法
CN103520945A (zh) * 2012-07-04 2014-01-22 天津大学 粗苯加氢产物的精制装置及方法
WO2014079599A1 (de) * 2012-11-22 2014-05-30 Thyssenkrupp Uhde Gmbh Verfahren zur isolierung von benzol, toluol und xylol aus einem aromatenreichen einsatzgasstrom
CN105646126A (zh) * 2016-03-07 2016-06-08 南京师范大学 一种芳烃溶剂油中甲苯、二甲苯、三甲苯的分离方法
CN106916044A (zh) * 2015-12-24 2017-07-04 上海宝钢化工有限公司 一种焦化粗苯精制方法
CN116640603A (zh) * 2022-09-08 2023-08-25 临涣焦化股份有限公司 一种粗苯精制副产高沸点溶剂油的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1186934A (fr) * 1956-04-11 1959-09-03 Metallgesellschaft Ag Procédé d'extraction d'hydrocarbures aromatiques purs du benzène brut
CN1900032A (zh) * 2006-07-06 2007-01-24 湖南长岭石化科技开发有限公司 一种由粗苯生产苯系芳烃的方法
CN103013560A (zh) * 2011-09-26 2013-04-03 花得水 一种从粗苯中提取高沸点溶剂油的方法
CN103520945A (zh) * 2012-07-04 2014-01-22 天津大学 粗苯加氢产物的精制装置及方法
WO2014079599A1 (de) * 2012-11-22 2014-05-30 Thyssenkrupp Uhde Gmbh Verfahren zur isolierung von benzol, toluol und xylol aus einem aromatenreichen einsatzgasstrom
CN106916044A (zh) * 2015-12-24 2017-07-04 上海宝钢化工有限公司 一种焦化粗苯精制方法
CN105646126A (zh) * 2016-03-07 2016-06-08 南京师范大学 一种芳烃溶剂油中甲苯、二甲苯、三甲苯的分离方法
CN116640603A (zh) * 2022-09-08 2023-08-25 临涣焦化股份有限公司 一种粗苯精制副产高沸点溶剂油的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Green Coking Process Technology", 31 December 2020, METALLURGICAL INDUSTRY PRESS, CN, ISBN: 978-7-5024-8607-5, article WANG, XINDONG ET AL.: "5.2 Deep processing of Motor Benzol", pages: 237 - 238, XP009554660 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118026803A (zh) * 2024-04-13 2024-05-14 潍坊三昌化工科技有限公司 一种粗苯加氢精制装置及方法

Also Published As

Publication number Publication date
CN116640603A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
WO2024051737A1 (zh) 一种粗苯精制副产高沸点溶剂油的方法
CN103781882B (zh) 用于原位有机过氧化物生产和氧化性杂原子转化的集成***和方法
EA013731B1 (ru) Способ гидропереработки сырой нефти (варианты)
CN103274885B (zh) 粗苯加氢精制工艺
ITTO20010963A1 (it) Schema di procedimento per l'idro-trattamento e l'idro-cracking in sequenza di combustibile diesel e di gasolio ottenuto sotto vuoto.
CN101824336A (zh) 一种裂解c9馏分加氢生产三苯、茚满及芳烃溶剂油工艺
KR102202081B1 (ko) 용해된 수소를 함유하는 공급원료용 하이드로비스브레이킹 공정
CN105462610B (zh) 一种蒽油加氢方法
CN104962307B (zh) 一种煤炭液化生产轻质油的方法
CN1923972A (zh) 一种烃类加氢裂化方法
CN107365241A (zh) 一种粗苯加氢精制工艺
JPS5922756B2 (ja) 窒素化合物によつて汚染された石油炭化水素の水素化クラツキング方法
CN109456793B (zh) 一种同步工业联产方法
CN111748373B (zh) 一种低碳烯烃和芳烃的多产装置及方法
CN101054533A (zh) 含硫燃料油改质工艺
CN104531197B (zh) 一种液体燃料的制备方法
CN108070403A (zh) 一种生产喷气燃料的方法
CN102585898A (zh) 一种高氮高芳烃油两段法烃氢化方法
CN106635160A (zh) 一种煤和煤焦油混合加氢***及工艺
CN115216341A (zh) 一种中低温煤焦油加工***及加工方法
US4741822A (en) Procedure for hydrogenation of coal by means of liquid phase and fixed-bed catalyst hydrogenation
CN111943796A (zh) 一种粗苯加氢与萃取蒸馏的工艺及***
CN109181762A (zh) 一种劣质油的多级悬浮床加氢装置及方法
CN106675646A (zh) 一种煤焦油全馏分轻质化***及方法
US4424115A (en) Selective removal and recovery of ammonia and hydrogen sulfide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862431

Country of ref document: EP

Kind code of ref document: A1