WO2024051210A1 - 一种单晶炉用换热器及单晶炉 - Google Patents

一种单晶炉用换热器及单晶炉 Download PDF

Info

Publication number
WO2024051210A1
WO2024051210A1 PCT/CN2023/095572 CN2023095572W WO2024051210A1 WO 2024051210 A1 WO2024051210 A1 WO 2024051210A1 CN 2023095572 W CN2023095572 W CN 2023095572W WO 2024051210 A1 WO2024051210 A1 WO 2024051210A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air guide
guide structure
exchanger body
single crystal
Prior art date
Application number
PCT/CN2023/095572
Other languages
English (en)
French (fr)
Inventor
董升
朱永刚
张伟建
卓珍珍
白锋
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2024051210A1 publication Critical patent/WO2024051210A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of crystal growth technology, and in particular to a heat exchanger for a single crystal furnace and a single crystal furnace.
  • Monocrystalline silicon in the solar photovoltaic industry is generally produced by the Czochralski method using a monocrystalline furnace.
  • the technical problem to be solved by this application is to provide a heat exchanger for a single crystal furnace and a single crystal furnace to solve the problem that existing heat exchangers used in the single crystal growth process are prone to silicon splashing and silicon spraying.
  • This application proposes a heat exchanger for single crystal furnaces, which includes a heat exchanger body and a gas guide structure;
  • the heat exchanger body has a receiving space for growing single crystal silicon, and the receiving space extends along the axis direction of the heat exchanger body and penetrates the heat exchanger body;
  • the air guide structure is arranged at one end of the heat exchanger body around the receiving space, the air guide structure has an air guide port, and the air guide port is connected with the receiving space;
  • the gas guide structure is used to allow the gas flowing into the receiving space from the other end of the heat exchanger body to flow out from the gas guide port when the heat exchanger is in contact with the liquid in the single crystal furnace.
  • the multiple gas guide ports are arranged along the circumferential direction of the heat exchanger body.
  • a plurality of the gas guide ports are provided on a side of the gas guide structure away from the heat exchanger body.
  • the side of the gas guide structure away from the heat exchanger body has a tooth pattern, and a gap between two adjacent teeth in the tooth pattern forms a The air guide port.
  • the gas guide structure is cylindrical, and the gas guide port is provided radially through the side wall of the gas guide structure.
  • the gas guide structure is detachably installed at one end of the heat exchanger body; or the gas guide structure and the heat exchanger body are integrated. structure.
  • a sensor is provided on the gas guide structure, and the sensor is used to monitor whether the gas guide structure is immersed in silicon liquid.
  • the heat exchanger further includes a liquid supply pipe and a liquid drain pipe, the liquid supply pipe is connected to one end of the heat exchanger body, and the liquid drain pipe The tube is connected to the other end of the heat exchanger body;
  • the sensor is connected with a first wire and a second wire;
  • the first wire is passed through the liquid supply pipe
  • the second wire is passed through the drain pipe.
  • This application also proposes a single crystal furnace, which includes a furnace body and a heat exchanger for the single crystal furnace as described above installed inside the furnace body.
  • this application includes the following advantages:
  • the heat exchanger for a single crystal furnace in this application includes a heat exchanger body and a gas guide structure; the heat exchanger body has a receiving space for growing single crystal silicon, and the receiving space extends along the axis of the heat exchanger body and runs through the exchanger. Heater body; the air guide structure is arranged at one end of the heat exchanger body around the receiving space. The air guide structure has an air guide port, and the air guide port is connected with the receiving space; the air guide structure is used for liquid contact between the heat exchanger and the single crystal furnace.
  • Figure 1 is a schematic structural diagram of a heat exchanger for a single crystal furnace provided by an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a heat exchanger for a single crystal furnace provided by another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a heat exchanger for a single crystal furnace provided by another embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a single crystal furnace provided by an embodiment of the present application.
  • the heat exchanger for single crystal furnace mainly uses heat exchange method to quickly take away the heat from the root of single crystal silicon crystal, thereby achieving the rapid growth of single crystal silicon.
  • the heat exchanger has a receiving space for growing single crystal silicon.
  • it is necessary to grow the Czochralski single crystal during the growth process. pass argon gas through the area where single crystal silicon grows in the heat exchanger from top to bottom.
  • an embodiment of the present application provides a heat exchanger 10 for a single crystal furnace, as shown in Figures 1 to 3, including a heat exchanger body 11 and a gas guide structure 12; the heat exchanger body 11 has a growth unit.
  • the accommodation space 13 for crystalline silicon extends along the axial direction of the heat exchanger body 11 and penetrates the heat exchanger body 11; the air guide structure 12 is provided in the heat exchanger around the accommodation space 13.
  • the gas guide structure 12 has a gas guide port 14, and the gas guide port 14 is connected with the receiving space 13; the gas guide structure 12 is used to heat the heat exchanger 10 when it comes into contact with the liquid in the single crystal furnace.
  • the gas flowing into the receiving space 13 from the other end of the heat exchanger body 11 flows out from the air guide port 14 .
  • the receiving space 13 in the heat exchanger body 11 is used to provide a growth area for single crystal silicon.
  • a coolant flowing inside the heat exchanger which can continue to grow with the single crystal silicon rods accommodated in the receiving space 13.
  • Heat exchange is used to cool the single crystal silicon rod; the above-mentioned coolant can specifically be water.
  • the heat exchanger 10 is placed above the silicon liquid.
  • the protective gas is passed through the above-mentioned receiving space 13 in the heat exchanger body 11 from top to bottom to take away the silicon oxide and impurity volatiles generated by the high temperature, while maintaining the single crystal furnace.
  • the above protective gas can be an inert gas such as argon.
  • the gas guide structure 12 since the gas guide structure 12 is arranged at one end of the heat exchanger body 11 around the receiving space 13, the gas guide structure 12 will not hinder the growth of the crystal and the protective gas.
  • the air guide structure 12 has an air guide port 14, and the air guide port 14 is connected to the receiving space 13, when it comes into contact with the silicon liquid level in the single crystal furnace, the air guide from the other end of the heat exchanger body 11
  • the protective gas flowing into the receiving space 13 can use the air guide port 14 as an outflow channel, that is, the protective gas can flow out of the receiving space 13 of the heat exchanger body 11 from the air guide port 14, thus avoiding the need for the heat exchanger 10 to mix with the silicon liquid.
  • the protective gas entering the containing space 13 is forced to rush directly toward the liquid surface due to the barrier of the liquid surface, causing the silicon liquid on the local liquid surface to turn upward, resulting in silicon splashing, silicon spraying and other phenomena.
  • the single crystal furnace is evacuated by a vacuum pump.
  • the heat exchanger 10 provided in the embodiment of the present application has a plurality of air guide openings 14, and the plurality of air guide openings 14 are arranged along the circumferential direction of the heat exchanger body 11; specifically, they can be arranged evenly.
  • the air guide ports 14 evenly along the circumferential direction of the heat exchanger body 11
  • the gas in the accommodation space 13 can be evenly discharged from the accommodation space 13 along the plurality of air guide ports 14, so that the air pressure in each area inside the accommodation space 13 can be kept consistent and avoid the problem of uneven air pressure.
  • the resulting fluctuations in crystal diameter and pulling speed further affect the quality of crystal growth.
  • a plurality of the above-mentioned air guide openings 14 are provided on the side of the air guide structure 12 away from the heat exchanger body 11 , that is, the air guide openings 14 are provided close to the silicon liquid below the heat exchanger 10 , that is, It can be realized that when the heat exchanger 10 is in contact with the liquid in the single crystal furnace, an outflow channel can be provided for the gas flowing into the receiving space 13 from the other end of the heat exchanger body 11, and the protective gas entering the receiving space 13 can be prevented as much as possible. It flows through the entire receiving space 13 to better protect the single crystal silicon rod.
  • the material of the above-mentioned air guide structure 12 is a high-temperature-resistant and high-purity material. That is, the air-guide structure 12 is made of a high-temperature-resistant and high-purity material, which can not only withstand the high temperature of the silicon liquid environment, and will not chemically react with silicon liquid to affect the quality of single crystal silicon growth.
  • the above-mentioned air guide structure 12 is detachably installed on one end of the heat exchanger body 11 to facilitate the disassembly and replacement of the above-mentioned air guide structure 12 .
  • the air guide structure 12 can also be integrally formed with the heat exchanger body 11 .
  • the above-mentioned air guide structure 12 can also be welded to one end of the heat exchanger body 11 .
  • the side of the above-mentioned air guide structure 12 away from the heat exchanger body 11 has tooth patterns. 121.
  • the gap between two adjacent teeth in the tooth pattern 121 forms the above-mentioned air guide port 14.
  • the above-mentioned gas guide structure 12 is a tooth-like structure, and the tooth pattern 121 is provided on the side away from the heat exchanger body 11, that is, toward the direction of the silicon liquid, so that there is a gap between the heat exchanger 10 and the single crystal furnace.
  • the gas flowing into the receiving space 13 from the other end of the heat exchanger body 11 can directly flow out from the gap between the tooth patterns 121 to avoid being forced into the receiving space 13 due to the liquid level barrier. It rushes directly to the liquid surface, causing the silicon liquid on the local liquid surface to turn upward, resulting in silicon splashing, silicon spraying and other phenomena.
  • the teeth in the above-mentioned tooth pattern 121 include but are not limited to arc-shaped teeth and sharp-angled teeth.
  • the teeth in the above-mentioned tooth pattern 121 can be continuously and evenly arranged around the axial direction of the heat exchanger body 11 or evenly spaced. . Among them, the number, size and shape of the teeth can be set according to actual needs.
  • the above-mentioned air guide structure 12 is cylindrical, and the side walls of the above-mentioned air guide structure 12 are Along the path The above-mentioned air guide port 14 is provided through.
  • the above-mentioned receiving space 13 is in the shape of a cylinder with openings at both ends.
  • the above-mentioned air guide structure 12 is configured in a cylindrical shape matching the above-mentioned receiving space 13, and its axial direction is in line with the heat exchanger.
  • the axes of the bodies 11 are coincident, that is, the air guide structure 12 is arranged at one end of the heat exchanger body 11 in the same axial direction as the heat exchanger body 11 .
  • the above-mentioned air guide port 14 is a through hole provided on the side wall of the air guide structure 12 along the radial direction.
  • the gas guide structure 12 provided in this specific embodiment can assist in guiding the gas flowing into the receiving space 13 when the heat exchanger 10 is not in contact with the silicon liquid; and when the heat exchanger 10 is in contact with the silicon liquid, The above-mentioned air guide port 14 discharges the gas flowing into the accommodation space 13 .
  • the above-mentioned air guide openings 14 can be circular, semicircular, rectangular, triangular, etc., and their number and size can be set according to actual needs.
  • a sensor 15 is provided on the above-mentioned air guide structure 12, and the sensor 15 is used to monitor whether the air guide structure 12 is immersed in silicon liquid.
  • the accommodation space 13 can be discharged from the air guide port 14 on the air guide structure 12
  • the gas in the heat exchanger body 11 is released, and the sensor 15 triggers a warning in time to remind manual intervention when necessary to prevent the silicon liquid from immersing in the heat exchanger body 11, which can further improve the safety of the single crystal furnace.
  • the above-mentioned sensor 15 is provided at one end of the air guide structure 10 away from the heat exchanger body 11 .
  • it is provided at the tooth top of the tooth pattern 121 .
  • the above-mentioned sensor 15 determines whether the air guide structure 12 is immersed in silicon liquid through temperature changes or conductivity conditions.
  • the above-mentioned sensor 15 is a temperature sensor 15 .
  • the temperature at the air guide structure 12 will continue to increase, so the sensor 15 can determine whether to be immersed in the silicon liquid based on the temperature change.
  • the above-mentioned sensor 15 is a conductivity sensor 15 .
  • the conductivity sensor 15 can be used to monitor the conductivity to determine whether the air guide structure 12 is immersed in silicon. liquid.
  • the heat exchanger 10 provided in the embodiment of the present application also includes a liquid supply pipe 16 and a liquid discharge pipe 17.
  • the liquid supply pipe 16 is connected to one end of the heat exchanger body 11. Should The drain pipe 17 is connected to the other end of the heat exchanger body 11; the sensor 15 is connected to a first wire 151 and a second wire; the first wire 151 is passed through the above-mentioned liquid supply pipe 16, and the second wire is passed through the above-mentioned liquid supply pipe 16. Drain pipe 17.
  • the first wire 151 is the input wire of the sensor 15, and the second wire 152 is the output wire of the sensor 15.
  • the electrical signals of the first wire 151 and the second wire 152 it can be determined whether the sensor 15 is immersed. Silicone liquid.
  • the input wire and the output wire of the sensor 15 are run through the liquid supply pipe 16 and the liquid discharge pipe 17, and the coolant in the heat exchanger 10 can be used to cool and protect the wires to avoid oxidation of the wires in a high temperature environment. Corrosion and signal interference extend the service life of wires.
  • this application also proposes a single crystal furnace, which includes a furnace body and the above-mentioned single crystal furnace heat exchanger 10 installed inside the furnace body.
  • the single crystal furnace 100 may specifically include: a furnace body 20 and a heat exchanger 10 installed in the furnace body, an insulation felt 30 , a heater 40 , and a crucible 50 . and a heat shield 60.
  • the crucible 50 contains silicon liquid 70.
  • the heater 40 is used to heat the crucible 50.
  • the thermal insulation felt 30 is located between the crucible 50 and the furnace body.
  • the heat exchanger 10 is fixed on the furnace wall of the furnace body. And placed above the above-mentioned crucible 50, the above-mentioned heat shield 60 is detachably connected to the outer wall of the heat exchanger 10.
  • the arrow indicates the direction of the air flow, and the bottom of the furnace body 20 is provided with an air outlet for vacuuming; the above-mentioned heat shield 60 can be detachably connected to the outer wall of the heat exchanger 10 through threaded fasteners.
  • threaded fasteners may be bolts or other threaded fasteners such as screws, which are not limited in the embodiments of the present application.
  • the above-mentioned single crystal furnace embodiment includes the above-mentioned heat exchanger 10 for the single crystal furnace 100, and can achieve the same technical effect. To avoid repetition, it will not be described in detail here. For relevant information, please refer to the heat exchanger for single crystal furnace 100. Partial description of the embodiment of the device 10 is sufficient.
  • the heat exchanger for a single crystal furnace in this application includes a heat exchanger body and a gas guide structure;
  • the above-mentioned heat exchanger body has a receiving space for growing single crystal silicon, and the receiving space is along the heat exchanger The body extends in the axial direction and penetrates the heat exchanger body;
  • the air guide structure is arranged at one end of the heat exchanger body around the receiving space, the air guide structure has an air guide port, and the air guide port is connected with the receiving space;
  • the air guide structure is used for heat exchange
  • the heat exchanger comes into contact with the liquid in the single crystal furnace, the gas flowing into the receiving space from the other end of the heat exchanger body flows out from the above-mentioned gas guide port;
  • the gas guide port is connected to the receiving space, so that when the heat exchanger is close to the silicon liquid level in the single crystal furnace or is partially immersed in the silicon liquid, it provides a channel for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本申请提供了一种单晶炉用换热器及单晶炉,其中,单晶炉用换热器包括换热器本体及导气结构;换热器本体具有生长单晶硅的收容空间,收容空间沿换热器本体的轴线方向延伸,且贯穿换热器本体;导气结构绕收容空间设置于换热器本体一端,导气结构具有导气口,且导气口与收容空间连通;导气结构用于,在换热器与单晶炉中的液体接触时,将从换热器本体的另一端流入收容空间的气体从所述导气口流出。本申请实施例提供的换热器,在换热器本体一端设置具有导气口的导气结构,可以在换热器接近单晶炉中硅液液面或部分浸入硅液时,提供气体向外流动的通道,防止因保护气体气流问题导致的喷硅、溅硅问题,提升单晶炉使用过程中的安全性。

Description

一种单晶炉用换热器及单晶炉
本申请要求在2022年9月8日提交中国专利局、申请号为202222382861.3、名称为“一种单晶炉用换热器及单晶炉”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及晶体生长技术领域,特别是涉及一种单晶炉用换热器及单晶炉。
背景技术
当前,单晶硅在太阳能光伏产业中有着广泛应用。太阳能光伏产业中的单晶硅一般采用单晶炉通过直拉法制备。
在拉晶过程中,存在单晶炉的换热器浸入硅液的情况下。因现有单晶炉中换热器设计不合理,使得换热器前端部分浸入硅液或者接近硅液表面时,单晶炉内氩气等保护气体无法散出,气体被迫直接冲向液面,导致局部液面硅液向上翻起而出现溅硅、喷硅等现象,不仅影响晶体生长质量,也存在较大的安全隐患。
发明内容
本申请所要解决的技术问题是提供一种单晶炉用换热器及单晶炉,以解决现有单晶生长过程所使用的换热器,容易出现溅硅、喷硅现象的问题。
为了解决上述问题,本申请是通过如下技术方案实现的:
本申请提出了一种单晶炉用换热器,其中,包括换热器本体及导气结构;
所述换热器本体具有生长单晶硅的收容空间,所述收容空间沿所述换热器本体的轴线方向延伸,且贯穿所述换热器本体;
所述导气结构绕所述收容空间设置于所述换热器本体一端,所述导气结构具有导气口,且所述导气口与所述收容空间连通;
所述导气结构用于,换热器与单晶炉中的液体接触时,将从所述换热器本体的另一端流入所述收容空间的气体从所述导气口流出。
可选地,所述的单晶炉用换热器中,所述导气口具有多个,且多个所述导气口沿所述换热器本体的周向方向设置。
可选地,所述的单晶炉用换热器中,多个所述导气口设置在所述导气结构远离所述换热器本体的一侧。
可选地,所述的单晶炉用换热器中,所述导气结构远离所述换热器本体的一侧具有齿纹,所述齿纹中相邻两个齿之间的间隙形成所述导气口。
可选地,所述的单晶炉用换热器中,所述导气结构为筒状,所述导气结构的侧壁沿径向贯穿设置有所述导气口。
可选地,所述的单晶炉用换热器中,所述导气结构可拆卸地安装于所述换热器本体一端;或所述导气结构与所述换热器本体为一体式结构。
可选地,所述的单晶炉用换热器中,所述导气结构上设置有传感器,所述传感器用于监测导气结构是否浸入硅液。
可选地,所述的单晶炉用换热器中,所述换热器还包括供液管及排液管,所述供液管与所述换热器本体一端连通,所述排液管与所述换热器本体另一端连通;
所述传感器连接有第一导线和第二导线;
所述第一导线穿设于所述供液管;
所述第二导线穿设于所述排液管。
本申请还提出了一种单晶炉,其中,包括炉体及安装于所述炉体内部的如上所述的单晶炉用换热器。
与现有技术相比,本申请包括以下优点:
本申请中的单晶炉用换热器包括换热器本体及导气结构;上述换热器本体具有生长单晶硅的收容空间,收容空间沿换热器本体的轴线方向延伸,且贯穿换热器本体;导气结构绕收容空间设置于换热器本体一端,导气结构具有导气口,且导气口与收容空间连通;导气结构用于在换热器与单晶炉中的液体接触时,将从换热器本体的另一端流入收容空间的气体从上述导气口流出;其中,通过在换热器本体一端设置具有导气口的导气结构,且该导气口与收容空间连通,使得在换热器接近单晶炉中硅液液面或部分浸入硅液时,提供给氩气等保护气体向外流动的通道而从收容空间向四周泄出,从而防止 因保护气体气流问题导致的喷硅、溅硅问题,提升单晶炉使用过程中的安全性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1本申请一实施例所提供的单晶炉用换热器结构示意图;
图2本申请另一实施例所提供的单晶炉用换热器结构示意图;
图3本申请又一实施例所提供的单晶炉用换热器结构示意图;
图4是本申请实施例所提供的单晶炉结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
单晶炉用换热器主要是通过热量交换方法快速带走单晶硅晶体根部的热量,从而实现单晶硅的快速生长。其中,换热器具有生长单晶硅的收容空间,同时,为了带走由于高温产生的硅氧化物和杂质挥发物,维持单晶炉体内真空度的稳定性,需要在直拉单晶生长过程中,将氩气由上至下贯穿换热器中单晶硅生长的区域。
但是,因现有换热器底部为平口,使得在换热器底部浸入硅液后无法向 外泄出氩气,使得进入收容空间内的气体被迫直接冲向液面,导致局部液面硅液向上翻起而出现溅硅、喷硅等现象。
针对上述问题,本申请实施例提供的一种单晶炉用换热器10,如图1~3所示,包括换热器本体11及导气结构12;上述换热器本体11具有生长单晶硅的收容空间13,上述收容空间13沿所述换热器本体11的轴线方向延伸,且贯穿上述换热器本体11;上述导气结构12绕所述收容空间13设置于上述换热器本体11一端,上述导气结构12具有导气口14,且上述导气口14与上述收容空间13连通;上述导气结构12,用于在换热器10与单晶炉中的液体接触时,将从上述换热器本体11的另一端流入上述收容空间13的气体从上述导气口14流出。
其中,上述换热器本体11中的收容空间13用于为单晶硅提供生长的区域,上述换热器内部流经有冷却剂,可以与收容空间13内所收容的单晶硅棒持续进行热交换,实现对单晶硅棒的冷却;上述冷却剂具体可以为水。在直拉生长单晶硅的过程中,该换热器10置于硅液上方。
其中,在直拉单晶生长过程中,将保护气体由上至下贯穿换热器本体11中上述收容空间13,以将由高温产生的硅氧化物和杂质挥发物带离,同时维持单晶炉体内真空度的稳定性,上述保护气体可以为氩气等惰性气体。
本申请所提供的单晶炉用换热器10中,因上述导气结构12绕上述收容空间13设置于换热器本体11一端,使得上述导气结构12不会阻碍晶体的生长及保护气体的流通;同时,因为导气结构12具有导气口14,且该导气口14与收容空间13连通,使得在与单晶炉中的硅液液面接触时,从换热器本体11的另一端流入该收容空间13的保护气体可以将该导气口14作为流出的通道,也即保护气体可以从该导气口14流出换热器本体11的收容空间13,避免了在换热器10与硅液面接触时,因液面阻隔使得进入收容空间13内的保护气体被迫直接冲向液面,导致局部液面硅液向上翻起而出现溅硅、喷硅等现象。其中,在保护气体经导气口14从换热器本体11的收容空间13排出后,由真空泵抽离单晶炉。
可选地,本申请实施例所提供的换热器10,上述导气口14具有多个,且多个导气口14沿该换热器本体11的周向方向设置;具体可以均匀设置。该实施方式中,通过将导气口14沿换热器本体11的周向方向均匀设置,使 得在换热器10浸入硅液时,收容空间13内气体可以沿多个导气口14均匀地从收容空间13排出,使得收容空间13内部各区域的气压可以保持一致,避免了因气压不均导致的晶体直径、拉速的波动,进而影响晶体生长质量。
可选地,在一种实施方式中,多个上述导气口14设置在导气结构12远离换热器本体11的一侧,也即导气口14靠近换热器10下方的硅液设置,即可以实现在换热器10与单晶炉中的液体接触时,为从换热器本体11的另一端流入收容空间13的气体提供流出的通道,又可以尽量使进入收容空间13内的保护气体流经整个收容空间13,从而更好地实现对单晶硅棒的保护效果。
本申请实施例所提供的换热器10中,上述导气结构12的材料为耐高温高纯材料,也即导气结构12由耐高温高纯材料制成,不仅可以耐受硅液的高温环境,且不会与硅液发生化学反应而影响单晶硅生长质量。
可选地,上述导气结构12可拆卸地安装于换热器本体11一端,以便于对上述导气结构12进行拆卸、更换。此外,根据生产需要,导气结构12也可以与换热器本体11一体成型。
可选地,上述导气结构12也可以焊接于换热器本体11一端。
可选地,在一种具体实施方式中,如图1或2所示,本申请实施例所提供的换热器10中,上述导气结构12远离换热器本体11的一侧具有齿纹121,该齿纹121中相邻两个齿之间的间隙形成上述导气口14。
上述具体实施方式中,上述导气结构12为齿状结构,且齿纹121设置在远离换热器本体11的一侧,也即朝向硅液方向,使得在换热器10与单晶炉中的液体接触时,从换热器本体11的另一端流入收容空间13的气体即可直接由齿纹121之间的间隙处流出,避免因液面阻隔使得进入收容空间13内的保护气体被迫直接冲向液面,导致局部液面硅液向上翻起而出现溅硅、喷硅等现象。
可选地,上述齿纹121中的齿包括但不限于圆弧齿状及尖角齿状,上述齿纹121中的齿可以绕换热器本体11的轴向方向连续均匀设置或间隔均匀设置。其中,齿的个数、尺寸及形状可以根据实际使用需要设置。
可选地,在另一种具体实施方式中,如图3所示,本申请实施例所提供的换热器10中,上述导气结构12为筒状,且上述导气结构12的侧壁沿径 向贯穿设置有上述导气口14。
本申请实施例所提供的换热器10中,上述收容空间13为两端开口的筒状,上述导气结构12设置为与上述收容空间13匹配的筒状,且其轴向与换热器本体11轴线重合,也即导气结构12按与换热器本体11相同的轴线方向设置在换热器本体11一端。其中,上述导气口14为沿径向贯穿设置在导气结构12的侧壁上的通孔。
该具体实施方式所提供的导气结构12,可以在换热器10未与硅液接触时,辅助对流入收容空间13的气体进行导流;而在换热器10与硅液接触时,利用上述导气口14将流入收容空间13的气体排出。
其中,上述导气口14可以为圆形、半圆形、矩形、三角形等形状,其个数及尺寸可以根据实际使用需要设置。
可选地,在一种实施方式中,如图2或3所示,上述导气结构12上设置有传感器15,该传感器15用于监测导气结构12是否浸入硅液。通过在导气结构12上额外设置用于监测硅液浸入情况的传感器15,可以在导气结构12浸入硅液或与硅液接触时,由导气结构12上的导气口14排出收容空间13内的气体,而由传感器15及时触发警告,以在必要时提醒人工干预,避免硅液浸入换热器本体11,能够进一步提升单晶炉安全性。
可选地,在一种具体实施方式中,上述传感器15设置于导气结构10远离换热器本体11的一端。示例地,在图2中设置于齿纹121的齿顶处。
其中,上述传感器15通过温度变化或导电情况判断导气结构12是否浸入硅液。
可选地,上述传感器15为温度传感器15。其中,因为在硅液逐渐靠近导气结构12时,导气结构12处的温度会持续升高,因而上述传感器15可以通过温度变化情况来判断是否浸入硅液。
可选地,上述传感器15为电导率传感器15。其中,因为在导气结构12浸入硅液前后,导气结构12处设置的电导率传感器15的导电情况会发生变化,因而可以利用电导率传感器15监测导电情况来判断导气结构12是否浸入硅液。
可选地,在一种具体实施方式中,本申请实施例所提供的换热器10,还包括供液管16及排液管17,该供液管16与换热器本体11一端连通,该 排液管17与换热器本体11另一端连通;该传感器15连接有第一导线151和第二导线;该第一导线151穿设于上述供液管16,该第二导线穿设于上述排液管17。
其中,第一导线151为传感器15的输入导线,第二导线152为传感器15的输出导线,通过对比上述第一导线151与第二导线152的电信号情况下,即可确定传感器15处是否浸入硅液。
上述具体实施方式中,利用供液管16及排液管17穿设传感器15的输入导线及输出导线,可以利用换热器10中的冷却剂对导线进行冷却保护,避免高温环境对导线造成氧化侵蚀作用及信号干扰,延长导线的使用寿命。
另外,本申请还提出了一种单晶炉,其中,包括炉体及安装于该炉体内部的如上述的单晶炉用换热器10。
可选地,如图4所示,本申请实施例所提供的单晶炉100具体可以包括:炉体20及安装于该炉体内的换热器10、保温毡30、加热器40、坩埚50和热屏60,坩埚50盛放有硅液70,加热器40用于对坩埚50进行加热,而保温毡30位于坩埚50和炉体之间,换热器10固定于炉体的炉壁上并置于上述坩埚50上方,上述热屏60可拆卸连接于换热器10外壁上。
其中,箭头表示气流方向,炉体20底部设置有用于抽真空的出气口;上述热屏60具体可以通过过螺纹紧固件等可拆卸连接于换热器10外壁上。
可以理解的是,螺纹紧固件可以是螺栓,也可以是螺钉等其他的螺纹紧固件,本申请实施例对此不作限定。
对于上述单晶炉实施例而言,其包括上述单晶炉100用换热器10,且能达到相同的技术效果,为避免重复,这里不再赘述,相关之处参见单晶炉用换热器10实施例的部分说明即可。
综上,在本实施例中,本申请中的单晶炉用换热器包括换热器本体及导气结构;上述换热器本体具有生长单晶硅的收容空间,收容空间沿换热器本体的轴线方向延伸,且贯穿换热器本体;导气结构绕收容空间设置于换热器本体一端,导气结构具有导气口,且导气口与收容空间连通;导气结构用于在换热器与单晶炉中的液体接触时,将从换热器本体的另一端流入收容空间的气体从上述导气口流出;其中,通过在换热器本体一端设置具有导气口的 导气结构,且该导气口与收容空间连通,使得在换热器接近单晶炉中硅液液面或部分浸入硅液时,提供给氩气等保护气体向外流动的通道而从收容空间向四周泄出,从而防止因保护气体气流问题导致的喷硅、溅硅问题,提升单晶炉使用过程中的安全性。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体与另一个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的技术方案进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,同时,对于本领域的一般技术人员,依据本申请的原理及实现方式,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种单晶炉用换热器,其中,包括换热器本体及导气结构;
    所述换热器本体具有生长单晶硅的收容空间,所述收容空间沿所述换热器本体的轴线方向延伸,且贯穿所述换热器本体;
    所述导气结构绕所述收容空间设置于所述换热器本体一端,所述导气结构具有导气口,且所述导气口与所述收容空间连通;
    所述导气结构用于,换热器与单晶炉中的液体接触时,将从所述换热器本体的另一端流入所述收容空间的气体从所述导气口流出。
  2. 根据权利要求1所述的换热器,其中,所述导气口具有多个,且多个所述导气口沿所述换热器本体的周向方向设置。
  3. 根据权利要求2所述的换热器,其中,多个所述导气口设置在所述导气结构远离所述换热器本体的一侧。
  4. 根据权利要求3所述的换热器,其中,所述导气结构远离所述换热器本体的一侧具有齿纹,所述齿纹中相邻两个齿之间的间隙形成所述导气口。
  5. 根据权利要求4所述的换热器,其中,所述齿纹中的齿为圆弧齿状或尖角齿状。
  6. 根据权利要求1~3任一所述的换热器,其中,所述导气结构为筒状,所述导气结构的侧壁沿径向贯穿设置有所述导气口。
  7. 根据权利要求1所述的换热器,其中,所述导气结构可拆卸地安装于所述换热器本体一端;或所述导气结构与所述换热器本体为一体式结构。
  8. 根据权利要求1所述的换热器,其中,所述导气结构上设置有传感器,所述传感器用于监测导气结构是否浸入硅液。
  9. 根据权利要求8所述的换热器,其中,所述换热器还包括供液管及排液管,所述供液管与所述换热器本体一端连通,所述排液管与所述换热器本体另一端连通;
    所述传感器连接有第一导线和第二导线;
    所述第一导线穿设于所述供液管;
    所述第二导线穿设于所述排液管。
  10. 一种单晶炉,其中,包括炉体及安装于所述炉体内部的如权利要求1~9任意一项所述的单晶炉用换热器。
PCT/CN2023/095572 2022-09-08 2023-05-22 一种单晶炉用换热器及单晶炉 WO2024051210A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222382861.3 2022-09-08
CN202222382861.3U CN218596574U (zh) 2022-09-08 2022-09-08 一种单晶炉用换热器及单晶炉

Publications (1)

Publication Number Publication Date
WO2024051210A1 true WO2024051210A1 (zh) 2024-03-14

Family

ID=85399156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095572 WO2024051210A1 (zh) 2022-09-08 2023-05-22 一种单晶炉用换热器及单晶炉

Country Status (2)

Country Link
CN (1) CN218596574U (zh)
WO (1) WO2024051210A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218596574U (zh) * 2022-09-08 2023-03-10 隆基绿能科技股份有限公司 一种单晶炉用换热器及单晶炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201864792U (zh) * 2010-12-10 2011-06-15 镇江荣德新能源科技有限公司 用于直拉法单晶硅生长装置的导流筒和单晶硅生长装置
CN111663178A (zh) * 2019-03-08 2020-09-15 宁夏隆基硅材料有限公司 直拉单晶用热屏装置及单晶硅生产设备
CN214244666U (zh) * 2020-09-01 2021-09-21 银川隆基硅材料有限公司 一种换热装置和单晶炉
CN216237369U (zh) * 2021-07-05 2022-04-08 连城凯克斯科技有限公司 一种单晶炉中液口距实时监控装置及具备其的单晶炉
CN218596574U (zh) * 2022-09-08 2023-03-10 隆基绿能科技股份有限公司 一种单晶炉用换热器及单晶炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201864792U (zh) * 2010-12-10 2011-06-15 镇江荣德新能源科技有限公司 用于直拉法单晶硅生长装置的导流筒和单晶硅生长装置
CN111663178A (zh) * 2019-03-08 2020-09-15 宁夏隆基硅材料有限公司 直拉单晶用热屏装置及单晶硅生产设备
CN214244666U (zh) * 2020-09-01 2021-09-21 银川隆基硅材料有限公司 一种换热装置和单晶炉
CN216237369U (zh) * 2021-07-05 2022-04-08 连城凯克斯科技有限公司 一种单晶炉中液口距实时监控装置及具备其的单晶炉
CN218596574U (zh) * 2022-09-08 2023-03-10 隆基绿能科技股份有限公司 一种单晶炉用换热器及单晶炉

Also Published As

Publication number Publication date
CN218596574U (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2024051210A1 (zh) 一种单晶炉用换热器及单晶炉
US20220307156A1 (en) Single Crystal Pulling Apparatus Hot-Zone Structure, Single Crystal Pulling Apparatus and Crystal Ingot
CN110760935B (zh) 单晶炉
CN210151239U (zh) 可快速拆装式单晶硅制备用水冷热屏及单晶炉
WO2020181795A1 (zh) 直拉单晶用热屏装置及单晶硅生产设备
JP3676123B2 (ja) 単結晶引上装置
CN111056731B (zh) 一种喉管砖以及玻璃基板制造设备
CN210596314U (zh) 直拉单晶用热屏装置及单晶硅生产设备
CN218232640U (zh) 一种炉盖隔水条
CN208901908U (zh) 一种用于直拉炉的水冷设备
CN110106547A (zh) 提高直拉单晶拉速的装置
CN114381795A (zh) 直拉单晶炉水冷屏装置及单晶炉
CN112048762B (zh) 一种半导体单晶硅炉水冷套
CN211170882U (zh) 内筒壁吹扫装置
CN210151240U (zh) 单晶硅制备用水冷热屏及单晶炉
CN112481693A (zh) 一种拉晶炉
CN217231021U (zh) 一种碳化硅加工冷却装置
CN212293581U (zh) 一种有机复合肥料生产用均匀冷却装置
CN221028783U (zh) 单晶炉
CN212426240U (zh) 可降低晶棒碳铁含量的单晶炉
CN110645700A (zh) 管道用电加热装置
CN215310356U (zh) 一种新型高效脱色罐
CN213266523U (zh) 一种微生物发酵罐冷却装置
CN213357809U (zh) 一种用于长晶设备的水循环冷却装置
CN216639712U (zh) 稳定300mm单晶硅片掺砷元素拉晶温度的单晶炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861914

Country of ref document: EP

Kind code of ref document: A1