WO2024048031A1 - Recycled resin production method, recycled resin production device, and program - Google Patents

Recycled resin production method, recycled resin production device, and program Download PDF

Info

Publication number
WO2024048031A1
WO2024048031A1 PCT/JP2023/022994 JP2023022994W WO2024048031A1 WO 2024048031 A1 WO2024048031 A1 WO 2024048031A1 JP 2023022994 W JP2023022994 W JP 2023022994W WO 2024048031 A1 WO2024048031 A1 WO 2024048031A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
viscosity
recovered
recycled
supply amount
Prior art date
Application number
PCT/JP2023/022994
Other languages
French (fr)
Japanese (ja)
Inventor
健晴 伊崎
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2024048031A1 publication Critical patent/WO2024048031A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing recycled resin, an apparatus for producing recycled resin, and a program.
  • Patent Document 1 describes a granulator that includes an extruder that melt-kneads and extrudes waste plastic material, and a molding device that granulates the molten plastic extruded by the extruder into pellets. There is.
  • waste plastics to be reused have different melt flow rates (MFR) depending on their form and physical properties, and it is difficult to granulate them into pellets with a predetermined MFR. there were.
  • MFR melt flow rates
  • peroxide is added to reduce the molecular weight of a polymer resin such as polyolefin.
  • the granulator described in Patent Document 1 includes a first extruder into which waste plastic is input and kneaded, and a granulator installed after the first extruder to and a second extruder for introducing peroxide into the molten plastic extruded from the extruder.
  • the granulator measures the MFR of the molten plastic extruded from the first extruder inline, and based on the MFR of the molten plastic measured above, the peroxide to be fed into the second extruder is It is said that by adjusting the input amount, pellets having a predetermined MFR can be granulated.
  • Patent Document 2 the present inventors connected two or more kneaders in tandem, and determined that the first kneader was mixed according to the viscosity of the recovered resin kneaded by the first kneader.
  • a method for obtaining recycled resin having a desired viscosity by changing the amount of added resin introduced into the kneader 2. According to this method, a recycled resin having a predetermined viscosity can be obtained from the recovered resin while suppressing the addition of impurities such as peroxide in Patent Document 1.
  • Patent Document 2 uses two or more kneaders, measures the viscosity of the recovered resin melted by the first kneader, and feeds it into the second kneader depending on the measured viscosity. The amount of added resin to be added is changed. On the other hand, from the viewpoint of space saving and cost saving of equipment, it is desirable that the viscosity of the recycled resin can be made uniform by adding the same additive resin even when only one kneading machine is used.
  • an object of the present invention is to provide a recycled resin manufacturing apparatus for carrying out the manufacturing method, and a program for operating the apparatus.
  • a method for producing recycled resin according to one embodiment of the present invention for solving the above problems relates to [1] to [9] below.
  • [1] A step of supplying the recovered resin to a kneader, a step of supplying two or more types of additive resins having different viscosities to the kneading machine; a step of kneading the recovered resin and the two or more types of added resin to obtain a recycled resin; After the start of the kneading, measuring the viscosity of the kneaded resin or the recycled resin obtained by the kneading; a step of changing the supply amount of each of the two or more types of additive resins based on the measured viscosity;
  • a method for producing recycled resin comprising: [2] The method for producing recycled resin according to [1], wherein the degree of stirring before supplying the recovered resin is changed based on the measured viscosity.
  • the recycled resin is at least one selected from the group consisting of polyethylene, polypropylene, polyamide, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS), polyvinyl chloride (PVC), polycarbonate, and polyester.
  • the two or more types of additive resins are: a second resin having a smaller melt flow rate; a third resin having a higher melt flow rate;
  • the melt flow rate (MFR) of the second resin and the third resin measured in accordance with ASTM D1238 (2013) is 1 g/10 minutes or more and 300 g/10 minutes or less,
  • the ratio of the melt flow rate of the second resin to the melt flow rate of the third resin (MFR of the second resin/MFR of the third resin) measured under the same conditions is 2 or more and 100 or less.
  • a recycled resin manufacturing apparatus for solving the above problems is related to [10] to [18] below.
  • the first supply section has a storage section that stores the recovered resin to be supplied to the cylinder,
  • the storage unit includes a stirrer that stirs the recovered resin.
  • [12] The recycled resin manufacturing apparatus according to [11], wherein the storage section has a volume larger than the capacity of the cylinder.
  • the control unit changes the kneading time of the recovered resin and the two or more types of additive resins inside the cylinder based on the viscosity measured by the viscometer, [10] to [14].
  • the apparatus for producing recycled resin according to any one of the above.
  • the control unit calculates the viscosity of the supplied recovered resin from the measured viscosity, and adds the two or more types to the supplied amount determined based on the calculated viscosity of the recovered resin.
  • the recycled resin manufacturing apparatus according to any one of [10] to [15], wherein the supply amount of each added resin is changed.
  • the control unit calculates the viscosity of the supplied recovered resin from the measured viscosity, and sets the calculated viscosity of the recovered resin and the state of the recovered resin at the time of recovery as training data. Generating an estimation model by machine learning to estimate the viscosity of the recovered resin predicted from the state at the time of recovery,
  • a program related to another aspect of the present invention for solving the above problems is related to [19] to [20] below.
  • a computer that determines the supply amount of the two or more types of additive resins, receiving viscosity data measured from the kneaded resin or recycled resin obtained by kneading; Based on the supply amount of the recovered resin, the supply amount of each of the two or more types of additive resins, and the viscosity of each of the two or more types of additive resins used in the production of the resin or recycled resin whose viscosity was measured.
  • a method for producing a recycled resin whose viscosity has been made uniform by the addition of an additive resin, and which can be carried out even when only one kneader is used is provided.
  • FIG. 1 is a flowchart of a method for producing recycled resin according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a schematic configuration of a recycled resin manufacturing apparatus (kneading apparatus) used in the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing the main functional configuration of the recycled resin manufacturing apparatus (kneading apparatus) used in the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing each sub-process in the step in which the controller changes the supply amount of the added resin in steps 1-5 (step S150) of the first embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for producing recycled resin according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a schematic configuration of a recycled resin manufacturing apparatus (kneading apparatus) used in the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing the main functional configuration of the recycled resin manufacturing apparatus (kne
  • FIG. 5 is a flowchart showing each sub-process in the step in which the controller changes the supply amount of the added resin in steps 1-5 (step S150) of the second embodiment of the present invention.
  • FIG. 6 is a flowchart showing the processing of the control unit in the third embodiment of the present invention.
  • FIG. 7 shows simulation results in calculation example 1.
  • FIG. 8 shows the simulation results in calculation example 2.
  • FIG. 9 shows simulation results in calculation example 3.
  • FIG. 10 shows the simulation results in calculation example 4.
  • FIG. 11 shows the simulation results in calculation example 5.
  • FIG. 12 shows the simulation results in calculation example 6.
  • FIG. 13 shows the simulation results in calculation example 7.
  • FIG. 14 shows the simulation results in calculation example 8.
  • FIG. 15 shows the simulation results in calculation example 9.
  • FIG. 16 shows the simulation results in calculation example 10.
  • FIG. 17 shows the simulation results in calculation example 11.
  • FIG. 18 shows the simulation results in calculation example 12.
  • FIG. 19 shows the simulation results in calculation example 13.
  • the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value of another numerical range described in stages. .
  • FIG. 1 is a flowchart of a method for producing recycled resin according to a first embodiment of the present invention.
  • the method for producing recycled resin includes a step of supplying the recovered resin to a kneader (step 1-1: step S110), and kneading two or more types of additive resins with known viscosities and different viscosities.
  • the method includes a step of supplying the resin to a machine (step 1-2: step S120), and a step of kneading the recovered resin and two or more types of added resin to obtain a recycled resin (step 1-3: step S130).
  • the viscosity of the recovered resin and added resin in this specification is the ratio of shear stress to shear rate.
  • the melt viscosity of resin has temperature dependence and shear rate dependence.
  • the viscosity of the recycled resin may be, for example, a value measured with an in-line viscometer of a kneader, or may be a viscosity measurement value of the recycled resin sampled off-line.
  • an in-line viscometer a commercially available viscometer (rotational viscometer or capillary viscometer) can be used.
  • step S140 the step of measuring the viscosity of the recycled resin obtained by kneading
  • step S150 the step of changing each supply amount
  • FIG. 2 is a schematic diagram showing a schematic configuration of a recycled resin manufacturing apparatus (kneading apparatus) used in this embodiment.
  • FIG. 3 is a block diagram showing the main functional configuration of the kneading device.
  • the kneading device 100 includes a kneader 110 that is a kneader (extruder) for melt-kneading recovered resin and two or more types of additive resin, and a viscosity device that measures in-line the viscosity of the recovered resin kneaded by the kneader 110. a thermometer 125 that measures the temperature of the resin when measuring the viscosity, and a control unit 130 that controls the operation of the kneader 110 based on the viscosity of the recovered resin measured by the viscometer 120. .
  • the kneader 110 includes a long cylindrical cylinder 111, a screw 112 rotatably arranged in the inner hole of the cylinder 111, and a recovered resin (hereinafter also referred to as "first resin") supplied into the cylinder 111.
  • Hopper 113 first supply section
  • two or more types of additive resin in this embodiment, an example is shown in which two types of additive resin are supplied, and hereinafter, these additive resins will be referred to as “second resin” and "third resin”, respectively).
  • hopper 115 (second supply section) that supplies the recycled resin (also referred to as "resin"), an extrusion section 116 that extrudes the recycled resin obtained by kneading, a resin flow path 117 through which the extruded recycled resin flows, and the resin being kneaded. It has a filtration section 118 that removes foreign substances contained in the composition.
  • the cylinder 111 is a container for kneading the recovered resin supplied therein with a screw 112.
  • the cylinder 111 may have a heating section for adjusting the internal temperature and melting the recovered resin.
  • One or more screws 112 are arranged inside the cylinder 111, and are rotated by a motor (not shown) to knead the recovered resin inside the cylinder 111.
  • a twin-screw extruder consisting of two screws can adjust the kneading characteristics by combining screw segments with various types of kneading characteristics such as forward flight, kneading, and reverse flight. These combinations may be appropriately selected depending on the type of resin and its physical properties.
  • an extruder composed of a plurality of screw shafts can be appropriately selected depending on the kneading performance.
  • the ratio (L/D) between the length (L) and the diameter (D) of the screw 112 is preferably 20 or more and 80 or less, more preferably 25 or more and 70 or less, and 30 or more and 50 or less. It is even more preferable.
  • L/D By setting L/D to 20 or more, three types of resins can be sufficiently melted and kneaded.
  • L/D By setting L/D to 80 or less, excessive rise in resin temperature can be suppressed and power consumption can be reduced.
  • the hopper 113 is a supply port for supplying recovered resin to the inside of the cylinder 111.
  • the hopper 113 supplies, into the cylinder 111, recovered resin containing polyethylene and polypropylene, which has been recovered from, for example, discarded automobiles, crushed, and separated by magnetic separation and specific gravity separation.
  • the hopper 113 has a storage section 114 that is a container that temporarily stores the recovered resin to be supplied to the kneader 110 before supplying it.
  • the storage unit 114 has an agitator 114a inside the container, and the agitator 114a can agitate the stored recovered resin.
  • the agitator 114a can be a dry blender such as a tumble mixer, a V-blender, a ribbon blender, a two-roll mixer, a shaker, or a buffer tank equipped with rotary blades inside.
  • a dry blender such as a tumble mixer, a V-blender, a ribbon blender, a two-roll mixer, a shaker, or a buffer tank equipped with rotary blades inside.
  • the hopper 115 is a supply port for supplying two or more types of additive resin into the inside of the cylinder 111.
  • the hopper 115 may be located at the same position as the hopper 113, and from the hopper 115 and the hopper 113, the recovered resin (first resin) and the added resin (second resin and third resin) are simultaneously introduced into the cylinder 111. May be supplied.
  • all of these additive resins have known viscosity or MFR, and are resins with different viscosities or MFRs, and by being added to and mixed with the recovered resin, the viscosity of the recovered resin can be adjusted to a predetermined range. It is a resin for These additive resins may be the same type of resin as the recovered resin (polyethylene or polypropylene in this embodiment) or may be a different type of resin from the recovered resin, but in this embodiment, polypropylene is used.
  • the hopper 115 has a second resin supply section 115a that supplies the second resin to the hopper 115, and a third resin supply section 115b that supplies the third resin to the hopper 115. Both the second resin supply section 115a and the third resin supply section 115b can change the amount of the second resin or third resin supplied by a valve (not shown). Thereby, the hopper 115 changes the supply amount of two or more types of added resins. In the present embodiment, under the control of the control unit 130, the hopper 115 changes the supply amount of two or more types of additive resins according to the viscosity of the recovered resin measured by the viscometer 120. The method by which the control unit 130 determines the supply amount of each additive resin supplied from the hopper 115 will be described later.
  • the kneader 110 mixes additives such as stabilizers, antioxidants, and crystal nucleating agents, reinforcing fiber materials such as glass fibers, carbon fibers, and organic fibers, fillers such as rubber, talc, and calcium carbonate into the cylinder 111. It may also have a separate hopper as a feed port for feeding into the container. Note that the change in viscosity due to the addition of a certain amount of these fillers is within the range that can be predicted using theoretical or empirical formulas, so supplying these additives may cause the viscosity of the resulting recycled resin to become unpredictable. It's not something you want to do.
  • the kneader 110 may further include a vent mechanism for degassing.
  • the filtration section 118 filters the resin composition that is being kneaded.
  • the filtration unit 118 can remove foreign substances such as soil and sand contained in the recovered resin, thereby suppressing the incorporation of foreign substances into the recycled resin.
  • the filter section 118 can be a known filter.
  • the extrusion unit 116 has a die and the like, and extrudes the recovered resin supplied into the cylinder 111 and melted and kneaded by the rotation of the screw 112 into the resin flow path 117.
  • the extrusion section 116 can be a known gear pump or the like. In particular, it is preferable to use a gear pump that can accurately measure the discharge amount because it can improve the accuracy of viscosity calculation.
  • the resin flow path 117 is a flow path through which the recycled resin extruded from the extrusion section 116 flows in a molten state.
  • the resin flow path 117 is equipped with a viscometer 120. Note that the resin flow path 117 may include a heating section for adjusting the temperature inside the flow path and causing the recycled resin to flow.
  • the viscometer 120 is an in-line viscometer and measures the viscosity of the recycled resin obtained by melt-kneading in the kneader 110.
  • the viscometer 120 may be any known viscometer that measures the viscosity of a portion of the recovered resin melt-kneaded and extruded in the kneader 110 by taking it out. For example, R. Gendron, L. E. Daigneault, J. Cell. Plast., 35, 221 (1999) and M. Lee, C. B. Park, C. Tzoganakis, Polym. Eng. Sci., 39, 99 (1999), an in-line viscosity measurement device was introduced. Furthermore, a viscometer having a viscosity measurement piping described in Japanese Patent Application No. 2022-075959 by the present inventor may be used.
  • the configuration of the kneading device 100 is not limited to this.
  • the recycled resin kneaded in the kneader 110 and passed through the filtration section 118 may be configured to pass through a die, a viscometer 120, a static mixer, a gear pump, a screen changer, and an extruder in this order;
  • the recycled resin kneaded in the machine 110 and passed through the filtration section 118 may be configured to pass through a die, a viscometer 120, a gear pump, a screen changer, and an extruder in this order.
  • a static mixer may be installed immediately before the viscometer 120.
  • thermometer 125 is placed at the same position as the viscometer 120, and measures the temperature of the resin when measuring the viscosity.
  • the thermometer 125 may be any known thermometer.
  • the operations of the kneader 110 and the viscometer 120 are controlled by a control unit 130 (see FIG. 3).
  • the control unit 130 may be a known computer, and includes a CPU 132 (Central Processing Unit), a RAM 134 (Random Access Memory), a ROM 136 (Read Only Memory), and a storage unit 138.
  • the CPU 132 reads various control programs and setting data stored in the ROM 136, stores them in the RAM 134, and executes the programs to perform various calculation processes. Further, the CPU 132 centrally controls the entire operation of the kneading apparatus 100 including the kneading machine 110 and the viscometer 120.
  • RAM 134 provides working memory space for CPU 132 and stores temporary data. Note that the RAM 134 may include nonvolatile memory.
  • the ROM 136 stores various control programs executed by the CPU 132, setting data, and the like.
  • a rewritable nonvolatile memory such as an EEPROM (Electrically Erasable Programmable Read Only Memory) or a flash memory may be used.
  • the storage unit 138 stores jobs input from the outside via the input/output interface 142 and data related to the jobs.
  • a HDD Hard Disk Drive
  • a DRAM Dynamic Random Access Memory
  • Step 1-1 the hopper 113 supplies the recovered resin to the kneader 110. Specifically, the hopper 113 supplies the collected resin (first resin) temporarily stored in the storage section 114 into the cylinder 111 .
  • the amount of recovered resin supplied at this time may be an amount corresponding to a predetermined ratio (volume fraction) of recovered resin in the recycled resin. Note that, by controlling the cylinder 111 (or the heating section) by the control section 130, the temperature inside the cylinder 111 in this step can be adjusted depending on which of the recovered resin (the first resin) and the added resin (the second resin and the third resin). It is said to be the temperature at which something melts or flows.
  • stirrer 114a stirs the recovered resin stored inside the storage section 114, thereby suppressing sudden and uneven viscosity fluctuations of the supplied recovered resin.
  • Step 1-2 the hopper 115 supplies two or more types of additive resin into the cylinder 111.
  • the hopper 115 supplies a second resin with a higher viscosity (or a lower MFR) and a third resin with a lower viscosity (or a higher MFR) into the cylinder 111 .
  • the hopper 115 supplies one additive resin (second resin) and the other additive resin (third resin) into the cylinder 111. Immediately after starting production of recycled resin, the hopper 115 supplies predetermined amounts of the second resin and the third resin into the cylinder 111. Thereafter, under the control of the control unit 130, the hopper 115 changes the supply amount of the second resin and the third resin to the amounts determined at any time by the control unit 130 in the 1-5th process.
  • the two or more types of additive resins have known melt flow rates (MFRs), and may have different MFRs.
  • MFR melt flow rate
  • the measurement conditions for melt flow rate (MFR) are based on JISK7210 (2014) or ASTM D1238 (2013), such as 2.16 kg load and 190°C for polyethylene resin, and 190°C for polypropylene resin. It is selected as appropriate depending on the type of resin used, such as measuring under the conditions of 2.16 kg load and 230°C.
  • the second resin or the third resin preferably has an MFR of 1 g/10 minutes or more and 300 g/10 minutes or less, and the ratio of the MFR of the second resin and the MFR of the third resin measured under the same conditions.
  • MFR of the third resin/MFR of the second resin is preferably 2 or more and 100 or less, more preferably 2.5 or more and 50 or less, and even more preferably 3 or more and 20 or less.
  • the MFR of the second resin is preferably 1 g/10 min or more and 50 g/10 min or less, more preferably 3 g/10 min or more and 45 g/10 min or less, and even more preferably 5 g/10 min or more and 30 g/10 min or less.
  • the melt flow rate of the third resin is preferably 20 g/10 min or more and 300 g/10 min or less, more preferably 25 g/10 min or more and 250 g/10 min or less, and 30 g/10 min or more and 200 g/10 min or less. It is even more preferable.
  • either the 1-1 step or the 1-2 step may be performed first, or the recovered resin and the added resin may be supplied into the cylinder 111 at the same time.
  • the kneader 110 mixes the recovered resin (first resin) that is supplied into the cylinder 111 and is melted inside the cylinder 111, and the added resin (second resin and third resin). Knead. Specifically, the kneader 110 rotates the screw 112 to knead the recovered resin and the added resin, and moves the kneaded recovered resin and the added resin toward the exit of the cylinder 111 (in the direction of the extrusion section 116). and move it. The rotational speed of the screw 112 at this time is adjusted to a rotational speed that allows the target discharge amount to be obtained, and can be changed at any time depending on the properties and shape of the recovered resin.
  • a recycled resin is obtained.
  • the obtained recycled resin is extruded from the extrusion section 116.
  • the extruded recycled resin flows through the resin flow path 117.
  • Step 1-4 Measurement of viscosity ⁇ d of recycled resin
  • Step 1-4: Step S140 the viscometer 120 measures the viscosity ⁇ d of the recycled resin flowing through the resin flow path 117.
  • the viscosity measured here is the so-called melt viscosity, and the viscosity in this specification means the melt viscosity based on a measurement temperature of 230 ° C. and a shear rate of 1.0 (1/s) at the time of measurement.
  • measured values of viscosity at other temperatures and shear rates can be easily converted to the same temperature and shear rate by using the relational expression described later.
  • the viscosity measurement conditions can be freely set without particular restrictions, or can be linked to the temperature conditions and operating information of the extruder. (Note that these measurement conditions are for resins containing polyethylene and polypropylene, and when using other resins, the measurement conditions commonly used for the resins may be used.) Viscometer 120 transmits the measured viscosity to CPU 132. The CPU 132 temporarily stores the viscosity of the resin in the storage unit 138.
  • control unit 130 receives data indicating the viscosity ⁇ d of the recycled resin measured by the viscometer 120 in the 1-4th step, and in accordance with the viscosity of the data, the controller 130 performs the 1-2 step
  • the supply amounts of two or more types of additive resins are varied. Note that the control unit 130 maintains a constant proportion of the amount of added resin supplied in the 1-2 step in the recovered resin in the recycled resin, and controls the amount of each added resin to account for the total amount of added resin. The proportions may be varied, or the amounts of each added resin may be varied so that the proportion of the added resin in the recycled resin is varied.
  • FIG. 4 is a flowchart showing each sub-process in the step in which the control unit 130 changes the supply amount of the added resin in this step.
  • the control unit 130 first calculates the viscosity ⁇ 1 of the recovered resin (first resin) from the viscosity ⁇ d of the recycled resin (step 1-5a-1, step S150a). Then, from the calculated viscosity ⁇ 1 of the first resin, the supply amount of the added resins (second resin and third resin) is determined so that the viscosity ⁇ d of the obtained recycled resin becomes the desired viscosity ⁇ final . (Step 1-5a-2, step S150b).
  • the control unit 130 further changes the supply amount of the added resin (second resin and third resin) from the hopper 115 to the determined supply amount (Step 1-5a-3, Step S150c). Note that the control unit 130 performs these sub-processes by storing the program stored in the ROM 136 in the RAM 134 and timing the program. Each sub-process will be explained below.
  • Step 1-5a-1 Step S150a
  • the control unit 130 controls the volume of the recovered resin (first resin) based on a theory regarding blending of polymers, for example, the Double-Reptation theory (C. Tsenoglou, Macromolecules, 24, 1762-1767 (1991)). From the fraction ⁇ 1 , the respective volume fractions ⁇ 2 and ⁇ 3 of the added resins (second resin and third resin), the known viscosities ⁇ 2 and ⁇ 3 , and the viscosity ⁇ d of the obtained recycled resin, the recovered The viscosity ⁇ 1 of the resin (first resin) is calculated.
  • the viscosity ⁇ Blend of a mixture of the first resin, second resin, and third resin can be expressed by the following equation (1).
  • ⁇ 1 is the volume of the recovered resin (first resin) supplied by the hopper 113, the volume of one added resin (second resin) supplied by the hopper 115, and the volume of the recovered resin (second resin) supplied by the hopper 115.
  • ⁇ 1 represents the viscosity of the first resin
  • ⁇ 2 represents the volume fraction of one added resin (second resin) with respect to the total volume of the resin component supplied inside the cylinder 111
  • ⁇ 2 represents the viscosity of the second resin.
  • ⁇ 3 represents the volume fraction of another added resin (third resin) with respect to the total volume of the resin component supplied inside the cylinder 111
  • ⁇ 3 represents the viscosity of the third resin.
  • ⁇ Blend represents the viscosity of the resulting mixture.
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 2 , and ⁇ 3 are known. Therefore, by substituting the viscosity ⁇ d of the recycled resin (mixture) measured by the viscometer 120 into ⁇ Blend , the remaining variable, the viscosity ⁇ 1 of the first resin, can be calculated backwards.
  • the volume fraction ⁇ 1 of the recovered resin (first resin) can be set in a predetermined range, for example, in the range of 0.1 or more and 0.7 or less (10 volume% or more and 70 volume% or less), and 0. It is preferably .2 or more and 0.6 or less (20 volume % or more and 60 volume % or less), and more preferably 0.3 or more and 0.5 or less (30 volume % or more and 50 volume % or less).
  • the temperature dependence and shear rate dependence of the melt viscosity of the added resin can be determined by the following method.
  • a device that measures the melt viscoelasticity of polymers such as a commercially available rotary rheometer (for example, Discovery Hybrid Rheometer (DHR10) manufactured by TA Instruments) to determine the melting point Tm + 10°C.
  • DHR10 Discovery Hybrid Rheometer
  • the ratio of the viscosity obtained at another temperature T and the viscosity at the reference temperature T0 is expressed as follows as a shift factor aT of the time-temperature conversion rule obtained when creating the master curve.
  • shear rate r SR is represented by the following symbol in the formula.
  • the rheological model (Carreau-Yasuda model: Yasuda, K., Armstrong, R.C. and Cohen, R.E.: Rheol. Acta, 20, 163 (1981)) expressing the shear rate dependence of melt viscosity is as follows.
  • ⁇ 0 , n, ⁇ , and a are model parameters, and represent parameters related to zero shear viscosity, non-Newtonian exponent, relaxation time, and transition from Newtonian region to non-Newtonian region, respectively.
  • the shear rate may be matched to the shear rate at which ⁇ d was measured, or the model parameters of equation (4) may be obtained using an in-line viscometer that can simultaneously measure the viscosity at three or more shear rates. .
  • Melt flow rate is often used as an indicator of resin fluidity.
  • the melt flow rate of commercially available resins is indicated in the brand list, and it is convenient to select the additive resin (second resin, third resin) with reference to this value.
  • melt viscosity of the additive resin The relationship between the melt viscosity of the additive resin and the melt flow rate can be considered as follows (Takeharu Izaki, Molding Processing Vol. 22, October issue, P556-561 (2010)).
  • MFR can be determined from this flow rate by converting it to [(m 3 /s]), multiplying by the density ⁇ , and converting the unit to [(g/10min]).
  • MFR (g/10 min)
  • polymer density (g/cm 3 )
  • r MFR meter hole radius (cm)
  • ⁇ SR shear rate (1/s).
  • Step 1-5a-2 Step S150b
  • the control unit 130 determines whether the viscosity of the recycled resin is a desired viscosity ⁇ final based on the viscosity ⁇ d of the recovered resin (first resin) calculated in the previous sub-process (step 1-5a-1).
  • the supply amount of the added resin (second resin and third resin) is determined so that the following results are obtained.
  • ⁇ d is a function of temperature and shear rate, but it will be treated as having been converted to the standard state, and henceforth will be expressed simply as ⁇ d .
  • control unit 130 calculates the viscosity ⁇ 1 of the recovered resin (first resin) calculated in the previous sub-process (step 1-5a-1), the viscosity ⁇ 2 of the added resin (second resin), Based on the viscosity ⁇ 3 of the added resin (third resin) and the volume fraction ⁇ 1 of the recovered resin (first resin), the viscosity ⁇ final of the recycled resin targeted by ⁇ Blend in the above equation (1) Calculate the volume fraction ⁇ 2 of the second resin and the volume fraction ⁇ 3 of the third resin such that be able to.). Then, the supply amount of the second resin and the supply amount of the third resin are calculated according to the obtained volume fraction ⁇ 2 of the second resin and volume fraction ⁇ 3 of the third resin, and these are calculated as the second resin and the supply amount of the third resin.
  • Step 1-5a-3 Change in supply amount of added resin
  • the control unit 130 controls the hopper 115 so that the second resin and the third resin in the supply amounts determined in the previous sub-process (step 1-5a-2) are supplied into the cylinder 111.
  • the supply amount of the added resin (second resin and third resin) is changed.
  • control unit 130 controls the operations of the second resin supply unit 115a and the third resin supply unit 115b included in the hopper 115, and controls the supply of the second resin that these supply units each supply to the hopper 115. Both the amount and the supply amount of the third resin are changed to the supply amount determined in the previous sub-process (step 1-5a-2). Thereby, the supply amount of the second resin and the supply amount of the third resin supplied from the hopper 115 into the cylinder 111 are changed.
  • control unit 130 in this sub-process may be determined depending on the method of supplying the second resin and the third resin to the kneader 110. For example, when the kneading machine 110 separately has a hopper for supplying the second resin and a hopper for supplying the third resin, the control unit 130 controls the operation of each of the plurality of hoppers to supply the second resin. What is necessary is just to change the supply amount and the supply amount of the third resin.
  • the supply amount of the added resin in this step may be changed only once, regularly or irregularly several times, or continuously.
  • the viscosity of the recovered resin changes depending on the source of recovery, time of recovery, storage conditions, period of use, etc. Therefore, in this embodiment, the viscosity ⁇ 1 of the recovered resin (first resin) supplied from the hopper 113 to the inside of the cylinder 111 is not constant but changes over time.
  • the supply amount of the second resin and the third resin should be adjusted according to the changing viscosity ⁇ 1 of the recovered resin (first resin). It is preferable to change it over time. Therefore, it is preferable to change the supply amount of the added resin in this step (Steps 1-5) multiple times or continuously, and more preferably continuously.
  • Step 1-6, Step S160 Determining whether there is any remaining recovered resin (Step 1-6, Step S160) Then, the control unit 130 determines whether all of the recovered resin stored in the storage unit 114 has been supplied to the cylinder 111, in other words, whether there is any recovered resin remaining in the storage unit 114 (the first -6 step, step S160). Whether or not there is any recovered resin remaining in the storage section 114 can be determined, for example, by checking with a sensor built into the storage section 114 or by checking the amount of recovered resin supplied to the storage section 114 and the recovered resin supplied from the hopper 113 into the cylinder 111. This can be done by calculating the difference between the amount of
  • the control section 130 When it is determined that all the recovered resin has been supplied to the cylinder 111 and there is no recovered resin remaining in the storage section 114, the control section 130 causes the recovered resin and the added resin currently kneaded inside the cylinder 111 to be transferred to the extrusion section. After being extruded from 116, the operation of the kneading device 100 is stopped. When it is determined that the recovered resin remains in the storage section 114, the control section 130 repeats and continuously performs steps 1-1 to 1-5. Note that new recovered resin may be supplied to the storage section 114 while this embodiment is being performed.
  • the viscosity of the recycled resin measured by the viscometer 120 is the viscosity after the recovered resin (first resin) is supplied into the cylinder 111 from the hopper 113 and then kneaded for a predetermined period of time. Therefore, from the viscosity of the recycled resin measured by the viscometer 120, the viscosity ⁇ 1 of the recovered resin (first resin) determined in step 1-5-1 is equal to 1 resin), but the viscosity of the recovered resin supplied a predetermined time ago. Furthermore, as described above, the viscosity of the recovered resin (first resin) changes over time.
  • the viscosity of the recycled resin does not necessarily reach the target viscosity ⁇ final .
  • the viscosity of the recovered resin (first resin) does not change irregularly and over a large range, but usually changes at a predetermined period. As shown in the calculation example described later, by executing the method shown in this embodiment, it is possible to further reduce the rate of variation in the viscosity ⁇ d of the obtained recycled resin.
  • ⁇ 1 of the recovered resin (first resin) is calculated from the viscosity ⁇ d of the recycled resin measured by the viscometer 120, and the calculated ⁇ 1 of the recovered resin (first resin) is calculated.
  • the supply amount of the second resin and the supply amount of the third resin were determined by calculation using ⁇ 1 .
  • the present recovery is determined based on the calculated viscosity ⁇ 1 (viscosity of the recovered resin (first resin) supplied in the past; hereinafter referred to as “ ⁇ 1-past ”) over time.
  • the viscosity ⁇ 1 of the resin (first resin) (the viscosity of the recovered resin (first resin) supplied at the present time; hereinafter referred to as " ⁇ 1-present ") is predicted, and the predicted viscosity ⁇ 1-present is used.
  • the amount of supply of the second resin and the amount of third resin to be supplied are determined by the calculations made.
  • the flowchart of the method for producing recycled resin and the configuration of the kneading device used are the same as those in the first embodiment (FIGS. 1 and 2), but the supply amount of each of two or more types of additive resin is
  • the method of changing (steps 1-5, step S150) is different from the first embodiment.
  • duplicate explanations will be omitted for parts that are the same as those in the first embodiment, and only different parts will be described.
  • FIG. 5 is a flowchart showing each sub-process in the step in which the control unit 130 changes the supply amount of the added resin in steps 1-5 (step S150) of this embodiment.
  • the control unit 130 first calculates the viscosity ⁇ 1-past of the recovered resin (first resin) from the viscosity of the recycled resin (Step 1-5b-1, Step S150d). Then, the calculated viscosity ⁇ 1-past is stored (step 1-5b-2, step S150e).
  • Step 1-5b-3, Step S150f a prediction formula indicating the change in viscosity ⁇ 1 over time is created based on the accumulated viscosity ⁇ 1-past.
  • the viscosity ⁇ 1-present of the recovered resin (first resin) at the present time is predicted from the created prediction formula (Step 1-5b-4, Step S150g).
  • the supply amount of the additive resins (second resin and third resin) is determined so that the viscosity of the obtained recycled resin becomes the desired viscosity (the second resin and the third resin).
  • control unit 130 changes the supply amount of the added resin (second resin and third resin) from the hopper 115 to the determined supply amount (Step 1-5b-6, Step S150i). Note that the control unit 130 performs these sub-processes by storing the program stored in the ROM 136 in the RAM 134 and timing the program. Each sub-process will be explained below.
  • Step 1-5b-1 Step S150d
  • the control unit 130 controls the volume fraction ⁇ 1 of the recovered resin (first resin), the volume fractions ⁇ 2 and ⁇ 3 of the added resins (second resin and third resin), and the known viscosity.
  • the viscosity ⁇ 1-past of the recovered resin (first resin) is calculated from ⁇ 2 and ⁇ 3 and the viscosity ⁇ d of the obtained recycled resin.
  • the method for determining the viscosity ⁇ 1-past of the recovered resin (first resin) can be the same as in step 1-5a-1 in the first embodiment. In the present embodiment, the calculation of the viscosity ⁇ 1-past of the recovered resin (first resin) is performed multiple times regularly or irregularly, or continuously.
  • Step 1-5b-2 Preservation of viscosity ⁇ 1-past of recovered resin
  • the control unit 130 stores the viscosity ⁇ 1-past of the recovered resin (first resin) calculated in the previous sub-process (step 1-5b-1) in the RAM 134 or storage unit along with the measured time. 138. As time passes, data in which the viscosity ⁇ 1-past and time are set is accumulated.
  • Step 1-5b-3 Step S150f
  • the control unit 130 determines the viscosity ⁇ 1 over time based on the accumulated data.
  • a predictive formula showing the change for example, a mathematical formula showing the relationship between the elapsed time from the start of production of the recycled resin and the viscosity ⁇ 1 is created.
  • the method for creating the prediction formula is not particularly limited, and for example, a linear formula or a higher-order formula that approximates the relationship between elapsed time and viscosity ⁇ 1-past may be determined.
  • the temporal change in the viscosity ⁇ 1-past may be smoothed by a moving average, and a prediction formula may be created based on the smoothed temporal change in the viscosity ⁇ 1-past .
  • Step 1-5b-2 new data is accumulated from the previous sub-process.
  • the control unit 130 updates the prediction formula as new data is accumulated.
  • the control unit may create a new prediction formula using all the data accumulated in the past, or the control unit may create a new prediction formula using all the data accumulated in the past, or the control unit may create a new prediction formula using all the data accumulated in the past.
  • a new prediction formula may be created using only past data that goes back by (time).
  • a new prediction formula may be created by extracting a predetermined number of data from the accumulated data.
  • Step 1-5b-4 Step S150g
  • the control unit 130 uses the prediction formula created in the previous sub-process (step 1-5b-3) to determine the viscosity ⁇ of the recovered resin (first resin) supplied to the cylinder 111 at the current moment. 1-Predict present .
  • control unit 130 substitutes the current time (time elapsed from the start of production of recycled resin) into the above prediction formula, and uses the obtained value of ) has a viscosity ⁇ 1-present .
  • Step 1-5b-5 Step S150h
  • the control unit 130 controls the viscosity of the recycled resin to a desired viscosity based on the viscosity ⁇ 1-present of the recovered resin (first resin) calculated in the previous sub-process (step 1-5b-4).
  • the supply amount of the added resin (second resin and third resin) is determined so that the following results are obtained.
  • the method for determining the supply amount of the added resin (second resin and third resin) in this sub-process can be the same as in step 1-5a-2 in the first embodiment.
  • Step 1-5b-6 Change in supply amount of added resin
  • the control unit 130 controls the hopper 115 so that the second resin and the third resin in the supply amounts determined in the previous sub-process (step 1-5b-5) are supplied into the cylinder 111.
  • the supply amount of the added resin (second resin and third resin) is changed.
  • the method for determining the supply amount of the added resin (second resin and third resin) in this sub-process can be the same as in step 1-5a-3 in the first embodiment.
  • the control unit 130 predicts the viscosity ⁇ 1-present of the recovered resin (first resin) at the present time, and adjusts the supply amount of the added resins (second resin and third resin) accordingly. It had been decided. In addition to this, the viscosity ⁇ 1-present of the recovered resin (first resin) at a predetermined time ahead is predicted, and the supply amount of the added resins (second resin and third resin) is determined in advance according to this. The supply amount of the added resin (second resin and third resin) after a predetermined time may be changed to a predetermined supply amount.
  • the supply amount of the added resin can be determined using the more accurate viscosity ⁇ 1-present of the recovered resin (first resin) predicted by the prediction formula, so that the viscosity is further reduced.
  • a homogenized recycled resin can be obtained.
  • the viscosity of the obtained recycled resin was made uniform by changing the amount of added resin based on the viscosity of the resin after kneading.
  • the control unit 130 performs further control to achieve further uniformity of the viscosity of the recycled resin. Note that the control performed by the control unit 130 in this embodiment can be performed independently of and in parallel with the control in the first embodiment or the second embodiment.
  • FIG. 6 is a flowchart showing the processing of the control unit 130 in this embodiment.
  • the control unit 130 first receives data indicating the viscosity ⁇ d of the recycled resin measured by the viscometer 120, and stores the data (Step 3-1, Step S310). Once a predetermined amount of viscosity ⁇ d has been accumulated, the rate of change in the viscosity ⁇ d over time is calculated based on the accumulated viscosity ⁇ d (step 3-2, step S320).
  • Step 3-3 it is determined whether the calculated variation rate is within the allowable range (step 3-3, step S330), and when it is not within the allowable range, a method for suppressing the variation in the viscosity ⁇ d of the recycled resin is executed. or present it (Step 3-4, Step S340).
  • the control unit 130 performs these steps by storing a program stored in the ROM 136 in the RAM 134 and executing the program. Each step will be explained below.
  • Step 3-1 Preservation of viscosity ⁇ d
  • the control unit 130 receives data indicating the viscosity ⁇ d of the recycled resin measured by the viscometer 120, and stores the data in the RAM 134 or the storage unit 138 along with the measurement time. As time passes, data in which the viscosity ⁇ d and time are set is accumulated.
  • Step 3-2 Calculation of variation rate of viscosity ⁇ d (Step 3-2: Step S320) After the amount of data accumulated in the previous step (Step 3-1) reaches a predetermined amount, in this step, the control unit 130 determines the rate of change in the viscosity ⁇ d over time based on the accumulated data. Calculate.
  • the method of calculating the fluctuation rate is not particularly limited, and for example, the difference (fluctuation width) between the maximum value and minimum value of the viscosity ⁇ d is divided by the average value of the viscosity ⁇ d (or the target viscosity ⁇ final ).
  • an approximate expression indicating the change over time of the viscosity ⁇ d may be created and the fluctuation rate of the viscosity ⁇ d based on the approximate expression may be determined.
  • Step 3-3 Determination of the fluctuation rate of viscosity ⁇ d (Step 3-3: Step S330)
  • the control unit 130 determines whether the fluctuation rate calculated in the previous step (step 3-2) is within a predetermined range of allowable fluctuation rates.
  • the allowable rate of variation can be arbitrarily determined depending on the use of the recycled resin, etc. Then, when it is determined that the calculated fluctuation rate is within the allowable range, it can be considered that the viscosity of the recycled resin is sufficiently uniform, so that the control unit 130 Finish the process.
  • step S340 Execution and presentation of variation suppression method (3rd-4th step: step S340)
  • the control unit 130 executes a method of suppressing the variation in the viscosity ⁇ d of the recycled resin, or suppresses the variation. Show workers how to do this.
  • the control unit 130 increases the rotational speed of the stirrer 114a included in the storage unit 114 in order to suppress fluctuations in the viscosity ⁇ 1 of the recovered resin to be supplied, so that the recycled resin in the storage unit 114 is increased.
  • the degree of stirring may be increased.
  • the viscosity of the recovered resin in the more recent past may be reduced.
  • ⁇ 1 may be calculated from the viscosity ⁇ d of the recycled resin.
  • control unit 130 may increase the rotational speed of the screw 112 to further shorten the kneading time of the recycled resin and the added resin inside the cylinder 111. Moreover, the kneading time of the recycled resin and the added resin inside the cylinder 111 may be further shortened by installing the hopper 115 that supplies the added resin on the downstream side of the extruder.
  • the kneading machine 110 has a configuration in which the positions of the hopper 113 and the hopper 115 can be changed in the flow direction of the resin along the cylinder 111, and by changing the positions of the hopper 113 and the hopper 115 under the control of the control unit 130,
  • the kneading time of the recycled resin and the added resin inside the cylinder 111 may be configured to be variable.
  • the kneading time means the time from when two or more kinds of additive resins are added to the recovered resin until the viscosity is measured.
  • the kneading time of the recovered resin and the added resin inside the cylinder 111 (the time from when both the recovered resin and the added resin are supplied to the inside of the cylinder 111 until they are extruded from the extrusion section 116) is 1 minute or more and 50 minutes.
  • the time can be set to 3 minutes or less, it is preferably 3 minutes or more and 30 minutes or less, and more preferably 5 minutes or more and 20 minutes or less.
  • the volume fraction ⁇ 1 of the recovered resin (first resin) supplied into the cylinder 111 with respect to the total resin supplied may be made smaller, and the volume fraction of the added resin ( ⁇ 2 + ⁇ 3 ) can suppress fluctuations in the viscosity ⁇ d of the obtained recycled resin. Therefore, in this step, the control unit 130 reduces the amount of recovered resin (first resin) supplied from the hopper 113 or reduces the amount of added resin (second resin and third resin) supplied from the hopper 115.
  • the volume fraction ⁇ 1 of the recovered resin (first resin) may be made smaller by increasing the volume fraction ⁇ 1 or by controlling both of these.
  • the control unit 130 sends a signal via the input/output interface 142 to display (present) that the fluctuation in the viscosity ⁇ d of the recycled resin is large and that the above-mentioned countermeasures are recommended. , may be sent to an external display.
  • the capacity of the storage section 114 can be larger than the capacity of the cylinder 111, preferably three times or more the capacity of the cylinder 111, and more preferably five times or more the capacity of the cylinder.
  • control unit 130 performed control to suppress fluctuations in the viscosity ⁇ d of the recycled resin.
  • the control unit 130 reduces the degree of stirring to save energy, or controls the inside of the cylinder to knead more thoroughly.
  • the kneading time of the recovered resin and added resin may be made longer, or the proportion of recovered resin may be increased to achieve efficient recycling with less added resin.
  • the kneading device 100 measures the viscosity of the recycled resin extruded from the extrusion section 116 and flowing through the resin flow path 117 using the viscometer 120.
  • the kneading device 100 may include a viscometer that measures the viscosity of these resins inside the cylinder 111 to measure the viscosity of the resin being kneaded inside the cylinder 111. The viscosity measured at this time may be the viscosity after the recycled resin and added resin are supplied.
  • the shorter the period of time between supplying the recycled resin and additive resin until measuring the viscosity ⁇ d of the recycled resin the more efficiently the viscosity ⁇ d of the recycled resin can be made uniform. be able to. From this point of view, it is preferable to measure the viscosity inside the cylinder 111 because it contributes to making the viscosity ⁇ d of the recycled resin uniform.
  • an additive resin such as polyethylene or polypropylene is added to the recovered resin containing polyethylene and polypropylene, but the type of resin used is not limited to these.
  • the recovered resin and the additive resin are one or more of various resins including polyamide, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS), polyvinyl chloride (PVC), polycarbonate, and polyester. It can be a combination of These resins may be off-grade materials or separated and sorted recovered materials. From the perspective of reducing carbon dioxide emissions, it is also possible to use biomass plastics made from plant resources, plastics that partially contain biomass raw materials in a mass balance method, and biodegradable plastics. Naturally, the recycled resins produced may also contain these resins.
  • the viscosity ⁇ 1-past of the supplied recovered resin is back calculated based on the Double-Reptation theory, and the supply amount of the added resin based on ⁇ 1 (the volume fraction of the second resin and the third resin ⁇ 2 and ⁇ 3 ), other theories describing the relationship between the amount of each polymer and the viscosity of the mixture when blending polymers may be used.
  • additive resins are added to the recovered resin, but three or more types of additive resins may be added.
  • additives such as stabilizers, antioxidants, and crystal nucleating agents, fillers such as rubber, talc, and calcium carbonate, and reinforcing fiber materials such as glass fibers, carbon fibers, and organic fibers can also be added to the cylinder 111.
  • the recovered resin is added to the cylinder 111, but in addition to the recovered resin, virgin material may also be added to the cylinder 111, or natural resin or biomass plastic with unknown viscosity may be added. may be added to the cylinder 111. Additionally, liquid ethylene-propylene rubber, pellet-like ethylene-propylene rubber, ethylene-butene rubber, propylene-butene rubber, and propylene-butene-ethylene rubber are added to the cylinder 111 as compatibilizers for copolymers of polyethylene and polypropylene, etc. You may do so.
  • the extrusion section extrudes the recycled resin into any known shape including sheet, film, rod, plate, pipe, irregular cross-section molded product, strand, etc. Good too.
  • a cutter or the like may be disposed downstream of the extrusion section to process the extruded recycled resin into pellets.
  • a known molding machine may be disposed downstream of the extrusion section to mold the extruded recycled resin into a predetermined shape.
  • control unit 130 receives the state of the collected resin at the time of collection (collection source, collection time, storage period, usage period) and the 1-5a-1 step (step S150a) and the 1-5a-1 step (step S150a).
  • the relationship between the viscosity ⁇ 1 of the recovered resin and An estimation model for estimating the viscosity ⁇ 1 may be generated.
  • the viscosity ⁇ 1 of the recovered resin may be output from the state at the time of recovery of the recovered resin.
  • the estimation model may be updated by relearning based on the viscosity ⁇ 1 of the recovered resin calculated by repeating each of the above steps and the state of the recovered resin at the time of recovery. .
  • Density of resin mixture in molten state 760 kg/m 3
  • Volume of recovered resin storage section (hopper): 1m3 Kneading machine: Extruder ( ⁇ 90mm, L/D 35, internal volume including filtration part 0.023m 3 ) Discharge amount: 100kg/hour
  • the viscosity of each resin was measured at a measurement temperature of 230° C. and a shear rate of 1.0 (1/s) at the time of measurement.
  • MFR was a value measured under 2.16 kg load and 190° C. conditions in accordance with JIS 7210 (2014).
  • the volume fraction of the supply amount of the recovered resin is ⁇ 1
  • the volume fraction of the supply amount of the second resin is ⁇ 2
  • the target viscosity ⁇ final of the obtained recycled resin is set to 2200 Pas, and the control shown in the calculation example below is performed so that the viscosity ⁇ d of the recycled resin becomes ⁇ final .
  • the fraction ⁇ 2 and the volume fraction ⁇ 3 of the supply amount of the third resin were continuously changed.
  • the viscosity ⁇ 1 of the recovered resin changes, the viscosity ⁇ d of the obtained recycled resin also changes. Based on the changing viscosity ⁇ d of the recycled resin, the viscosity ⁇ 1-past of the recovered resin supplied 600 seconds ago is calculated back, and the viscosity ⁇ 1-past of the recovered resin obtained by the back calculation is calculated at the current ⁇ 1 .
  • the volume fraction ⁇ 2 of the supply amount of the second resin and the volume fraction ⁇ 3 of the supply amount of the third resin were continuously calculated on the assumption that there was a certain amount.
  • FIG. 7 shows ⁇ 1 at this time, the calculated ⁇ 1-past 600 seconds before (the calculated value is plotted 600 seconds before the calculation), the measured ⁇ d , and the supply It is a simulation result which shows the change of the volume fraction (phi) 2 of the supply amount of the 2nd resin, and the volume fraction (phi) 3 of the supply amount of the 3rd resin which were supplied by changing the quantity.
  • FIG. 8 shows the viscosity ⁇ 1 of the recovered resin at this time, the calculated viscosity ⁇ 1-past of the recovered resin 600 seconds ago, the measured viscosity ⁇ d of the recycled resin, and the amount of the recycled resin supplied after being changed. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
  • FIG. 9 shows the viscosity ⁇ 1 of the recovered resin at this time, the calculated viscosity ⁇ 1-past of the recovered resin 600 seconds before, the measured viscosity ⁇ d of the recycled resin, and the amount of the recycled resin supplied with the changed supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
  • FIG. 10 shows the viscosity ⁇ 1 of the recovered resin at this time, the calculated viscosity ⁇ 1-past of the recovered resin 300 seconds ago, the measured viscosity ⁇ d of the recycled resin, and the viscosity ⁇ 1 of the recovered resin at this time, as well as the viscosity ⁇ d of the recycled resin supplied after changing the supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
  • FIG. 11 shows the viscosity ⁇ 1 of the recovered resin at this time, the calculated viscosity ⁇ 1-past of the recovered resin 300 seconds before, the measured viscosity ⁇ d of the recycled resin, and the viscosity ⁇ 1 of the recovered resin at this time, as well as the viscosity ⁇ d of the recycled resin that was supplied after changing the supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
  • FIG. 12 shows the viscosity ⁇ 1 of the recovered resin at this time, the calculated viscosity ⁇ 1-past of the recovered resin 300 seconds before, the measured viscosity ⁇ d of the recycled resin, and the viscosity ⁇ 1 of the recovered resin at this time, as well as the viscosity ⁇ d of the recycled resin that was supplied after changing the supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
  • the viscosity of the recovered resin after 600 seconds ( ⁇ 1-present after 600 seconds) was predicted. Then, according to equation (1), when the viscosity ⁇ 1 of the recovered resin after 600 seconds is the predicted value ⁇ 1 ⁇ present , the viscosity ⁇ d of the obtained recycled resin is the target viscosity ⁇ final (2200 Pas ), the volume fraction ⁇ 2 of the supply amount of the second resin and the volume fraction ⁇ 3 of the supply amount of the third resin to be supplied after 600 seconds were calculated. Then, the second resin and the third resin were supplied in amounts corresponding to the calculated volume fractions after 600 seconds.
  • FIG. 16 shows the viscosity ⁇ 1 of the recovered resin at this time, the calculated viscosity ⁇ 1-past of the recovered resin 600 seconds before, the predicted viscosity ⁇ 1-present of the recovered resin 600 seconds later, and the measured regeneration.
  • These are simulation results showing changes in the viscosity ⁇ d of the resin, the volume fraction ⁇ 2 of the supply amount of the second resin supplied with the supply amount changed, and the volume fraction ⁇ 3 of the supply amount of the third resin. .
  • the solid line is ⁇ 1-present
  • the broken line is ⁇ 1-present .
  • FIG. 16 shows the viscosity ⁇ 1 of the recovered resin at this time, the predicted viscosity ⁇ 1-present of the recovered resin after 600 seconds, the measured viscosity ⁇ d of the recycled resin, and the viscosity ⁇ 1 of the recovered resin at this time , as well as the viscosity ⁇ d of the recycled resin that was supplied after changing the supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
  • the variation rate of the viscosity ⁇ d of the recycled resin in this calculation example was 23.0%.
  • the variation rate of the viscosity ⁇ d of the recycled resin in this calculation example was 26.9%.
  • the rate of variation in the viscosity ⁇ d of the recycled resin in this calculation example was 16.7%.
  • the volume fraction ⁇ 2 of the supply amount of the second resin and the volume fraction ⁇ 3 of the supply amount of the third resin are changed based on the measured viscosity ⁇ d of the recycled resin. It has been found that, without it, the rate of variation in the viscosity ⁇ d of the recycled resin does not become so small.
  • the viscosity of the obtained recycled resin can be made uniform by using only one kneading machine. It can also be carried out.
  • the kneading device of the present invention can homogenize the viscosity of recycled resin obtained from consumer materials and off-grade materials, and can recycle these resins into recycled resins that can be easily used in a variety of applications. It is expected that this will expand the scope of reuse of resin and contribute to improving the recycling efficiency of resin.
  • by using only one kneading machine it is expected that it will be possible to further save space and make it possible to manufacture recycled resin more easily.
  • Kneading device 110 Kneader 111 Cylinder 112 Screw 113 Hopper 114 Storage section 114a Stirrer 115 Hopper 115a Second resin supply section 115b Third resin supply section 116 Extrusion section 117 Resin flow path 120 Viscometer 130 Control section 132 CPU 134 RAM 136 ROM 138 Storage unit 142 Input/output interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

The present invention provides a method for producing recycled resin with uniform viscosity through addition of additive resin, the method being capable of being executed even when only one kneading machine is used. The method for producing recycled resin comprises: a process for supplying recovered resin to a kneading machine; a process for supplying two or more types of additive resin with different viscosities to the kneading machine; a process for kneading the recovered resin and the two or more types of additive resin to obtain recycled resin; a process for measuring the viscosity of the resin being kneaded or the recycled resin obtained by kneading after the start of kneading; and a process for changing the supply amount of each of the two or more types of additive resin on the basis of the measured viscosity.

Description

再生樹脂の製造方法、再生樹脂の製造装置、およびプログラムRecycled resin manufacturing method, recycled resin manufacturing equipment, and program
 本発明は、再生樹脂の製造方法、再生樹脂の製造装置、およびプログラムに関する。 The present invention relates to a method for producing recycled resin, an apparatus for producing recycled resin, and a program.
 廃棄品から回収された樹脂成分(コンシューマー材)や、製造工程で不可避的に産出される販売品の規格を満たさない樹脂成分(オフグレード材)などの、実使用に供されない樹脂成分を回収して、再利用できるように処理する方法が種々検討されている(以下、上記回収された樹脂成分を単に「回収樹脂」ともいい、回収樹脂を再利用に供される形態に処理して得られた樹脂成分を単に「再生樹脂」ともいう。)。 We collect resin components that are not used for actual use, such as resin components recovered from waste products (consumer materials) and resin components that do not meet the standards for sales products that are inevitably produced during the manufacturing process (off-grade materials). (Hereinafter, the above-mentioned recovered resin component is also simply referred to as "recovered resin," and is a method obtained by processing recovered resin into a form that can be reused.) (The recycled resin component is also simply referred to as "recycled resin.")
 たとえば、特許文献1には、廃プラスチック材を溶融混練して押出す押出機と、上記押出機が押出した溶融プラスチックをペレット状に造粒する成形装置と、を有する造粒機が記載されている。 For example, Patent Document 1 describes a granulator that includes an extruder that melt-kneads and extrudes waste plastic material, and a molding device that granulates the molten plastic extruded by the extruder into pellets. There is.
 特許文献1によると、再利用しようとする廃プラスチックは、その形態および物性などにより、それぞれメルトフローレート(MFR)が異なっており、これらを所定のMFRを有するペレットに造粒することは困難であった。上記問題を解決するため、特許文献1では、パーオキサイドを添加してポリオレフィンなどの高分子樹脂を低分子化している。具体的には、特許文献1に記載されている造粒機は、廃プラスチックが投入されて混練される第1の押出機と、第1の押出機の後段に設置されて、第1の押出機から押出された溶融プラスチックにパーオキサイドを投入する第2の押出機と、を有する。そして、上記造粒機は、第1の押出機から押出された溶融プラスチックのMFRをインラインで測定し、上記測定された溶融プラスチックのMFRを基に、第2の押出機で投入するパーオキサイドの投入量を調整することで、所定のMFRを有するペレットを造粒できるとされている。 According to Patent Document 1, waste plastics to be reused have different melt flow rates (MFR) depending on their form and physical properties, and it is difficult to granulate them into pellets with a predetermined MFR. there were. In order to solve the above problem, in Patent Document 1, peroxide is added to reduce the molecular weight of a polymer resin such as polyolefin. Specifically, the granulator described in Patent Document 1 includes a first extruder into which waste plastic is input and kneaded, and a granulator installed after the first extruder to and a second extruder for introducing peroxide into the molten plastic extruded from the extruder. Then, the granulator measures the MFR of the molten plastic extruded from the first extruder inline, and based on the MFR of the molten plastic measured above, the peroxide to be fed into the second extruder is It is said that by adjusting the input amount, pellets having a predetermined MFR can be granulated.
 これに対し、本発明者らは、特許文献2に記載されているように、2つ以上の混練機をタンデムに連結し、第1の混練機で混練した回収樹脂の粘度に応じて、第2の混練機で投入する添加樹脂の投入量を変化させることにより、所望の粘度を有する再生樹脂を得る方法を開発している。この方法によれば、特許文献1におけるパーオキサイドのような不純物の添加を抑制しつつ、回収樹脂から所定の粘度を有する再生樹脂を得ることができる。 On the other hand, as described in Patent Document 2, the present inventors connected two or more kneaders in tandem, and determined that the first kneader was mixed according to the viscosity of the recovered resin kneaded by the first kneader. We have developed a method for obtaining recycled resin having a desired viscosity by changing the amount of added resin introduced into the kneader 2. According to this method, a recycled resin having a predetermined viscosity can be obtained from the recovered resin while suppressing the addition of impurities such as peroxide in Patent Document 1.
特開2019-065092号公報Japanese Patent Application Publication No. 2019-065092 特開2021-137979号公報Japanese Patent Application Publication No. 2021-137979
 特許文献2に記載の方法は、2つ以上の混練機を用い、第1の混練機で溶融させた回収樹脂の粘度を測定し、測定された粘度に応じて第2の混練機で投入する添加樹脂の投入量を変化させるものである。これに対し、設備の省スペース化や省コスト化の観点からは、1つの混練機のみを使用したときにも、同様の添加樹脂の添加により再生樹脂の粘度を均一化できることが望ましい。 The method described in Patent Document 2 uses two or more kneaders, measures the viscosity of the recovered resin melted by the first kneader, and feeds it into the second kneader depending on the measured viscosity. The amount of added resin to be added is changed. On the other hand, from the viewpoint of space saving and cost saving of equipment, it is desirable that the viscosity of the recycled resin can be made uniform by adding the same additive resin even when only one kneading machine is used.
 上記問題に鑑み、本発明は、添加樹脂の添加により粘度を均一化した再生樹脂を得る方法であって、1つの混練機のみを使用したときにも実行することができる、再生樹脂の製造方法、当該製造方法を実施するための再生樹脂の製造装置、および当該装置を動作させるためのプログラムを提供することを目的とする。 In view of the above problems, the present invention provides a method for producing recycled resin with a uniform viscosity by adding an additive resin, which can be carried out even when only one kneading machine is used. , an object of the present invention is to provide a recycled resin manufacturing apparatus for carrying out the manufacturing method, and a program for operating the apparatus.
 上記の課題を解決するための本発明の一態様に関する再生樹脂の製造方法は、下記[1]~[9]に関する。
 [1]回収樹脂を混練機に供給する工程と、
 粘度が異なる2種類以上の添加樹脂を前記混練機に供給する工程と、
 前記回収樹脂と前記2種類以上の添加樹脂とを混練して再生樹脂を得る工程と、
 前記混練の開始後に、前記混練されている樹脂または混練により得られた再生樹脂の粘度を測定する工程と、
 前記測定された粘度に基づき、前記2種類以上の添加樹脂のそれぞれの供給量を変更する工程と、
 を有する、再生樹脂の製造方法。
 [2]前記測定された粘度に基づき、前記回収樹脂の供給前の攪拌の度合いを変化させる、[1]に記載の再生樹脂の製造方法。
 [3]前記測定された粘度に基づき、前記混練機における前記回収樹脂と前記2種類以上の添加樹脂との混練時間を変化させる、[1]または[2]に記載の再生樹脂の製造方法。
 [4]前記測定された粘度から、前記供給された回収樹脂の粘度を算出する工程を有し、
 前記供給量を変更する工程は、前記算出された回収樹脂の粘度に基づいて決定された供給量に、前記2種類以上の添加樹脂のそれぞれの供給量を変更する工程である、
 [1]~[3]のいずれかに記載の再生樹脂の製造方法。
 [5]前記混練機における前記回収樹脂と前記2種類以上の添加樹脂との混練時間は、3分以上30分以下である、[1]~[4]のいずれかに記載の再生樹脂の製造方法。
 [6]前記再生樹脂は、ポリエチレン、ポリプロピレン、ポリアミド、ポリスチレン、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、ポリ塩化ビニル(PVC)、ポリカーボネート、およびポリエステルからなる群から選択される少なくとも1種の樹脂を含む、[1]~[5]のいずれかに記載の再生樹脂の製造方法。
 [7]前記2種類以上の添加樹脂は、
 メルトフローレートがより小さい第2樹脂と、
 メルトフローレートがより大きい第3樹脂と、を含み、
 前記第2樹脂および前記第3樹脂の、ASTM D1238(2013年)に準拠して測定されるメルトフローレート(MFR)はいずれも1g/10分以上300g/10分以下である、
 [1]~[6]のいずれかに記載の再生樹脂の製造方法。
 [8]同一条件で測定される前記第2樹脂のメルトフローレートと前記第3樹脂のメルトフローレートとの比(第2樹脂のMFR/第3樹脂のMFR)は、2以上100以下である、
 [7]に記載の再生樹脂の製造方法。
 [9]前記回収樹脂の供給量は、前記再生樹脂の全体積に対して10体積%以上70体積%以下である、[1]~[8]のいずれかに記載の再生樹脂の製造方法。
A method for producing recycled resin according to one embodiment of the present invention for solving the above problems relates to [1] to [9] below.
[1] A step of supplying the recovered resin to a kneader,
a step of supplying two or more types of additive resins having different viscosities to the kneading machine;
a step of kneading the recovered resin and the two or more types of added resin to obtain a recycled resin;
After the start of the kneading, measuring the viscosity of the kneaded resin or the recycled resin obtained by the kneading;
a step of changing the supply amount of each of the two or more types of additive resins based on the measured viscosity;
A method for producing recycled resin, comprising:
[2] The method for producing recycled resin according to [1], wherein the degree of stirring before supplying the recovered resin is changed based on the measured viscosity.
[3] The method for producing a recycled resin according to [1] or [2], wherein the kneading time of the recovered resin and the two or more types of added resins in the kneader is changed based on the measured viscosity.
[4] Calculating the viscosity of the supplied recovered resin from the measured viscosity,
The step of changing the supply amount is a step of changing the supply amount of each of the two or more types of additive resin to the supply amount determined based on the calculated viscosity of the recovered resin,
The method for producing recycled resin according to any one of [1] to [3].
[5] The production of recycled resin according to any one of [1] to [4], wherein the time for kneading the recovered resin and the two or more types of added resin in the kneader is 3 minutes or more and 30 minutes or less. Method.
[6] The recycled resin is at least one selected from the group consisting of polyethylene, polypropylene, polyamide, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS), polyvinyl chloride (PVC), polycarbonate, and polyester. The method for producing a recycled resin according to any one of [1] to [5], comprising a resin.
[7] The two or more types of additive resins are:
a second resin having a smaller melt flow rate;
a third resin having a higher melt flow rate;
The melt flow rate (MFR) of the second resin and the third resin measured in accordance with ASTM D1238 (2013) is 1 g/10 minutes or more and 300 g/10 minutes or less,
The method for producing recycled resin according to any one of [1] to [6].
[8] The ratio of the melt flow rate of the second resin to the melt flow rate of the third resin (MFR of the second resin/MFR of the third resin) measured under the same conditions is 2 or more and 100 or less. ,
The method for producing recycled resin according to [7].
[9] The method for producing recycled resin according to any one of [1] to [8], wherein the supply amount of the recovered resin is 10% by volume or more and 70% by volume or less based on the total volume of the recycled resin.
 また、上記の課題を解決するための本発明の別の態様に関する再生樹脂の製造装置は、下記[10]~[18]に関する。
 [10]スクリューを有するシリンダと、
 回収樹脂を前記シリンダに供給する第1供給部と、
 粘度が互いに異なる2種類以上の添加樹脂を前記シリンダに供給する第2供給部と、を有し、
 前記回収樹脂と前記2種類以上の添加樹脂とを前記シリンダの内部で混練する混練機と、
 前記混練機により混練されている樹脂、または混練機による混練により得られた再生樹脂、の粘度を測定する粘度計と、
 前記粘度計が測定した粘度に基づき、前記第2供給部からの前記2種類以上の添加樹脂のそれぞれの供給量を変更する制御部と、
 を有する、再生樹脂の製造装置。
 [11]前記第1供給部は、前記シリンダに供給される回収樹脂を貯蔵する貯蔵部を有し、
 前記貯蔵部は、前記回収樹脂を攪拌する攪拌機を有する、
 [10]に記載の再生樹脂の製造装置。
 [12]前記貯蔵部は、前記シリンダの容量よりも大きい容積を有する、[11]に記載の再生樹脂の製造装置。
 [13]前記貯蔵部の容量は、前記シリンダの容量の5倍以上である、[11]または[12]に記載の再生樹脂の製造装置。
 [14]前記制御部は、前記粘度計が測定した粘度に基づき、前記攪拌機による前記回収樹脂の攪拌の度合いを変化させる、[11]~[13]のいずれかに記載の再生樹脂の製造装置。
 [15]前記制御部は、前記粘度計が測定した粘度に基づき、前記シリンダの内部における前記回収樹脂と前記2種類以上の添加樹脂との混練時間を変化させる、[10]~[14]のいずれかに記載の再生樹脂の製造装置。
 [16]前記制御部は、前記測定された粘度から、前記供給された回収樹脂の粘度を算出し、前記算出された回収樹脂の粘度に基づいて決定された供給量に、前記2種類以上の添加樹脂のそれぞれの供給量を変更する、[10]~[15]のいずれかに記載の再生樹脂の製造装置。
 [17]前記制御部は、前記測定された粘度から、前記供給された回収樹脂の粘度を算出し、前記算出された回収樹脂の粘度と、前記回収樹脂の回収時の状態と、を教師データとして、前記回収時の状態から予測される回収樹脂の粘度を推定する推定モデルを機械学習により生成する、
 [10]~[16]のいずれかに記載の再生樹脂の製造装置。
 [18]前記スクリューは、長さ(L)と直径(D)との比率(L/D)が20以上80以下である、[10]~[17]のいずれかに記載の再生樹脂の製造装置。
Further, a recycled resin manufacturing apparatus according to another aspect of the present invention for solving the above problems is related to [10] to [18] below.
[10] A cylinder having a screw;
a first supply unit that supplies recovered resin to the cylinder;
a second supply section that supplies two or more types of additive resins having different viscosities to the cylinder,
a kneader that kneads the recovered resin and the two or more types of additive resins inside the cylinder;
a viscometer that measures the viscosity of the resin being kneaded by the kneader or the recycled resin obtained by kneading by the kneader;
a control unit that changes the supply amount of each of the two or more types of additive resin from the second supply unit based on the viscosity measured by the viscometer;
Recycled resin manufacturing equipment.
[11] The first supply section has a storage section that stores the recovered resin to be supplied to the cylinder,
The storage unit includes a stirrer that stirs the recovered resin.
The apparatus for producing recycled resin according to [10].
[12] The recycled resin manufacturing apparatus according to [11], wherein the storage section has a volume larger than the capacity of the cylinder.
[13] The recycled resin manufacturing apparatus according to [11] or [12], wherein the capacity of the storage section is five times or more the capacity of the cylinder.
[14] The recycled resin manufacturing apparatus according to any one of [11] to [13], wherein the control unit changes the degree of stirring of the recovered resin by the stirrer based on the viscosity measured by the viscometer. .
[15] The control unit changes the kneading time of the recovered resin and the two or more types of additive resins inside the cylinder based on the viscosity measured by the viscometer, [10] to [14]. The apparatus for producing recycled resin according to any one of the above.
[16] The control unit calculates the viscosity of the supplied recovered resin from the measured viscosity, and adds the two or more types to the supplied amount determined based on the calculated viscosity of the recovered resin. The recycled resin manufacturing apparatus according to any one of [10] to [15], wherein the supply amount of each added resin is changed.
[17] The control unit calculates the viscosity of the supplied recovered resin from the measured viscosity, and sets the calculated viscosity of the recovered resin and the state of the recovered resin at the time of recovery as training data. Generating an estimation model by machine learning to estimate the viscosity of the recovered resin predicted from the state at the time of recovery,
The apparatus for producing recycled resin according to any one of [10] to [16].
[18] The production of recycled resin according to any one of [10] to [17], wherein the screw has a length (L) to diameter (D) ratio (L/D) of 20 or more and 80 or less. Device.
 また、上記の課題を解決するための本発明の別の態様に関するプログラムは、下記[19]~[20]に関する。
 [19]回収樹脂と、粘度が異なる2種類以上の添加樹脂と、を混練して再生樹脂を製造する際に、前記2種類以上の添加樹脂の供給量を決定するコンピュータに、
 前記混練されている樹脂または混練により得られた再生樹脂から測定された粘度のデータを受け付けることと、
 前記粘度を測定された樹脂または再生樹脂の製造に用いた、前記回収樹脂の供給量、前記2種類以上の添加樹脂のそれぞれの供給量、および前記2種類以上の添加樹脂のそれぞれの粘度に基づいて、前記粘度を測定された樹脂または再生樹脂の粘度が目標とする粘度になるような前記2種類以上の添加樹脂のそれぞれの供給量を決定することと、
 を実行させるプログラム。
 [20]前記供給量を決定するときに、
 前記受け付けた粘度のデータに基づいて、前記回収樹脂の粘度を算出することと、
 前記算出された回収樹脂の粘度に基づいて、前記2種類以上の添加樹脂のそれぞれの供給量を決定することと、
 を前記コンピュータに実行させる、[19]に記載のプログラム。
Further, a program related to another aspect of the present invention for solving the above problems is related to [19] to [20] below.
[19] When producing recycled resin by kneading recovered resin and two or more types of additive resins having different viscosities, a computer that determines the supply amount of the two or more types of additive resins,
receiving viscosity data measured from the kneaded resin or recycled resin obtained by kneading;
Based on the supply amount of the recovered resin, the supply amount of each of the two or more types of additive resins, and the viscosity of each of the two or more types of additive resins used in the production of the resin or recycled resin whose viscosity was measured. determining the supply amount of each of the two or more types of additive resins such that the viscosity of the resin whose viscosity was measured or the recycled resin becomes a target viscosity;
A program to run.
[20] When determining the supply amount,
Calculating the viscosity of the recovered resin based on the received viscosity data;
Determining the supply amount of each of the two or more types of additive resin based on the calculated viscosity of the recovered resin;
The program according to [19], which causes the computer to execute.
 本発明によれば、添加樹脂の添加により粘度を均一化した再生樹脂を得る方法であって、1つの混練機のみを使用したときにも実行することができる、再生樹脂の製造方法、当該製造方法を実施するための再生樹脂の製造装置、および当該装置を動作させるためのプログラムが提供される。 According to the present invention, there is provided a method for producing a recycled resin whose viscosity has been made uniform by the addition of an additive resin, and which can be carried out even when only one kneader is used. A recycled resin manufacturing apparatus for carrying out the method and a program for operating the apparatus are provided.
図1は、本発明の第1の実施形態に関する再生樹脂の製造方法のフローチャートである。FIG. 1 is a flowchart of a method for producing recycled resin according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態において用いる再生樹脂の製造装置(混練装置)の概略構成を示す模式図である。FIG. 2 is a schematic diagram showing a schematic configuration of a recycled resin manufacturing apparatus (kneading apparatus) used in the first embodiment of the present invention. 図3は、本発明の第1の実施形態において用いる再生樹脂の製造装置(混練装置)の主要な機能構成を示すブロック図である。FIG. 3 is a block diagram showing the main functional configuration of the recycled resin manufacturing apparatus (kneading apparatus) used in the first embodiment of the present invention. 図4は、本発明の第1の実施形態の第1-5工程(工程S150)において制御部が添加樹脂の供給量を変更する工程における各サブプロセスを示したフローチャートである。FIG. 4 is a flowchart showing each sub-process in the step in which the controller changes the supply amount of the added resin in steps 1-5 (step S150) of the first embodiment of the present invention. 図5は、本発明の第2の実施形態の第1-5工程(工程S150)において制御部が添加樹脂の供給量を変更する工程における各サブプロセスを示したフローチャートである。FIG. 5 is a flowchart showing each sub-process in the step in which the controller changes the supply amount of the added resin in steps 1-5 (step S150) of the second embodiment of the present invention. 図6は、本発明の第3の実施形態における制御部の処理を示すフローチャートである。FIG. 6 is a flowchart showing the processing of the control unit in the third embodiment of the present invention. 図7は、計算例1におけるシミュレーション結果である。FIG. 7 shows simulation results in calculation example 1. 図8は、計算例2におけるシミュレーション結果である。FIG. 8 shows the simulation results in calculation example 2. 図9は、計算例3におけるシミュレーション結果である。FIG. 9 shows simulation results in calculation example 3. 図10は、計算例4におけるシミュレーション結果である。FIG. 10 shows the simulation results in calculation example 4. 図11は、計算例5におけるシミュレーション結果である。FIG. 11 shows the simulation results in calculation example 5. 図12は、計算例6におけるシミュレーション結果である。FIG. 12 shows the simulation results in calculation example 6. 図13は、計算例7におけるシミュレーション結果である。FIG. 13 shows the simulation results in calculation example 7. 図14は、計算例8におけるシミュレーション結果である。FIG. 14 shows the simulation results in calculation example 8. 図15は、計算例9におけるシミュレーション結果である。FIG. 15 shows the simulation results in calculation example 9. 図16は、計算例10におけるシミュレーション結果である。FIG. 16 shows the simulation results in calculation example 10. 図17は、計算例11におけるシミュレーション結果である。FIG. 17 shows the simulation results in calculation example 11. 図18は、計算例12におけるシミュレーション結果である。FIG. 18 shows the simulation results in calculation example 12. 図19は、計算例13におけるシミュレーション結果である。FIG. 19 shows the simulation results in calculation example 13.
 以下、複数の実施形態により、本発明の混練装置を説明する。 Hereinafter, the kneading device of the present invention will be explained with reference to a plurality of embodiments.
 本明細書において段階的に記載されている数値範囲について、1つの数値範囲で記載された上限値または下限値は、他の段階的な記載の数値範囲の上限値または下限値に置き換えてもよい。 Regarding the numerical ranges described in stages in this specification, the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value of another numerical range described in stages. .
 1.第1の実施形態
 図1は、本発明の第1の実施形態に関する再生樹脂の製造方法のフローチャートである。
1. First Embodiment FIG. 1 is a flowchart of a method for producing recycled resin according to a first embodiment of the present invention.
 本実施形態に関する再生樹脂の製造方法は、回収樹脂を混練機に供給する工程(第1-1工程:工程S110)、粘度が既知であり、かつ粘度が互いに異なる2種類以上の添加樹脂を混練機に供給する工程(第1-2工程:工程S120)、および回収樹脂と2種類以上の添加樹脂とを混練して再生樹脂を得る工程(第1-3工程:工程S130)を有する。 The method for producing recycled resin according to the present embodiment includes a step of supplying the recovered resin to a kneader (step 1-1: step S110), and kneading two or more types of additive resins with known viscosities and different viscosities. The method includes a step of supplying the resin to a machine (step 1-2: step S120), and a step of kneading the recovered resin and two or more types of added resin to obtain a recycled resin (step 1-3: step S130).
 なお、本明細書における回収樹脂および添加樹脂の粘度は、せん断応力とせん断速度との比である。樹脂の溶融粘度は温度依存性とせん断速度依存性を持つものである。再生樹脂の粘度は、例えば混練機のインライン粘度計で測定される値であってもよいし、オフラインでサンプリングした再生樹脂の粘度測定値であってもよい。インライン粘度計としては、市販の粘度計(回転型粘度計やキャピラリー粘度計)を使用することができる。 Note that the viscosity of the recovered resin and added resin in this specification is the ratio of shear stress to shear rate. The melt viscosity of resin has temperature dependence and shear rate dependence. The viscosity of the recycled resin may be, for example, a value measured with an in-line viscometer of a kneader, or may be a viscosity measurement value of the recycled resin sampled off-line. As the in-line viscometer, a commercially available viscometer (rotational viscometer or capillary viscometer) can be used.
 本実施形態ではさらに、混練の開始後に、混練により得られた再生樹脂の粘度を測定する工程(第1-4工程:工程S140)、および測定された粘度に基づき、2種類以上の添加樹脂のそれぞれの供給量を変更する工程(第1-5工程:工程S150)を行う。これらの各工程は、混練装置による回収樹脂と2種類以上の添加樹脂との混練に際して行われる。そのため、以下の説明ではまず、本実施形態で使用する混練装置について説明し、その後、混練装置の動作とともに、上記各工程について説明していく。 In this embodiment, after the start of kneading, the step of measuring the viscosity of the recycled resin obtained by kneading (step 1-4: step S140), and based on the measured viscosity, adding two or more types of added resin. A step of changing each supply amount (step 1-5: step S150) is performed. Each of these steps is performed when the recovered resin and two or more types of added resin are kneaded using a kneading device. Therefore, in the following explanation, the kneading device used in this embodiment will be explained first, and then the operation of the kneading device and each of the above steps will be explained.
 1-1.混練装置
 図2は、本実施形態において用いる再生樹脂の製造装置(混練装置)の概略構成を示す模式図である。図3は、上記混練装置の主要な機能構成を示すブロック図である。
1-1. Kneading Apparatus FIG. 2 is a schematic diagram showing a schematic configuration of a recycled resin manufacturing apparatus (kneading apparatus) used in this embodiment. FIG. 3 is a block diagram showing the main functional configuration of the kneading device.
 混練装置100は、回収樹脂および2種類以上の添加樹脂を溶融混練するための混練機(押出機)である混練機110と、混練機110により混練された回収樹脂の粘度をインラインで計測する粘度計120と、粘度を測定するときの樹脂の温度を測定する温度計125と、粘度計120により測定された回収樹脂の粘度に基づき、混練機110の動作を制御する制御部130と、を有する。 The kneading device 100 includes a kneader 110 that is a kneader (extruder) for melt-kneading recovered resin and two or more types of additive resin, and a viscosity device that measures in-line the viscosity of the recovered resin kneaded by the kneader 110. a thermometer 125 that measures the temperature of the resin when measuring the viscosity, and a control unit 130 that controls the operation of the kneader 110 based on the viscosity of the recovered resin measured by the viscometer 120. .
 混練機110は、長尺筒状のシリンダ111、シリンダ111の内孔に回転駆動可能に配置されたスクリュー112、シリンダ111内に回収樹脂(以下、「第1樹脂」ともいう。)を供給するホッパー113(第1供給部)、2種類以上の添加樹脂(本実施形態では、2種類の添加樹脂を供給する例を示し、以下、これらの添加樹脂をそれぞれ「第2樹脂」および「第3樹脂」ともいう。)を供給するホッパー115(第2供給部)、混練されて得られる再生樹脂を押出す押出部116、押出された再生樹脂が流通する樹脂流路117、および混練中の樹脂組成物に含まれる異物を除去する濾過部118を有する。 The kneader 110 includes a long cylindrical cylinder 111, a screw 112 rotatably arranged in the inner hole of the cylinder 111, and a recovered resin (hereinafter also referred to as "first resin") supplied into the cylinder 111. Hopper 113 (first supply section), two or more types of additive resin (in this embodiment, an example is shown in which two types of additive resin are supplied, and hereinafter, these additive resins will be referred to as "second resin" and "third resin", respectively). hopper 115 (second supply section) that supplies the recycled resin (also referred to as "resin"), an extrusion section 116 that extrudes the recycled resin obtained by kneading, a resin flow path 117 through which the extruded recycled resin flows, and the resin being kneaded. It has a filtration section 118 that removes foreign substances contained in the composition.
 シリンダ111は、内部に供給された回収樹脂をスクリュー112で混練するための容器である。シリンダ111は、内部の温度を調整して回収樹脂を溶融させるための加熱部を有してもよい。 The cylinder 111 is a container for kneading the recovered resin supplied therein with a screw 112. The cylinder 111 may have a heating section for adjusting the internal temperature and melting the recovered resin.
 スクリュー112は、シリンダ111内部に1本または複数本配置されており、不図示のモーターにより回転されて、シリンダ111内の回収樹脂を混練する。2本のスクリューから構成される2軸押出機は、順フライト、ニーディング、逆フライトなど様々な種類の混練特性を持つスクリューセグメントの組み合わせにより、混練特性を調整することができる。これらの組み合わせは、樹脂の種類やその物性によって適宜選択すればよい。さらに複数のスクリュー軸から構成される押出機も混練性能によって適宜選択できる。 One or more screws 112 are arranged inside the cylinder 111, and are rotated by a motor (not shown) to knead the recovered resin inside the cylinder 111. A twin-screw extruder consisting of two screws can adjust the kneading characteristics by combining screw segments with various types of kneading characteristics such as forward flight, kneading, and reverse flight. These combinations may be appropriately selected depending on the type of resin and its physical properties. Furthermore, an extruder composed of a plurality of screw shafts can be appropriately selected depending on the kneading performance.
 スクリュー112の長さ(L)と直径(D)との比率(L/D)は、20以上80以下であることが好ましく、25以上70以下であることがより好ましく、30以上50以下であることがさらに好ましい。L/Dを20以上とすることで、3種類の樹脂を十分に溶融し、混練することできる。L/Dを80以下とすることで、樹脂温度の過度な上昇を抑制でき、電力消費量を削減することができる。 The ratio (L/D) between the length (L) and the diameter (D) of the screw 112 is preferably 20 or more and 80 or less, more preferably 25 or more and 70 or less, and 30 or more and 50 or less. It is even more preferable. By setting L/D to 20 or more, three types of resins can be sufficiently melted and kneaded. By setting L/D to 80 or less, excessive rise in resin temperature can be suppressed and power consumption can be reduced.
 ホッパー113は、回収樹脂をシリンダ111の内部に供給するための供給口である。本実施形態では、ホッパー113は、たとえば廃棄された自動車から回収され、破砕後に磁選および比重分離により分離された、ポリエチレンおよびポリプロピレンを含む回収樹脂をシリンダ111の内部に供給する。ホッパー113は、混練機110に供給される回収樹脂を供給前に一時貯蔵する容器である貯蔵部114を有する。貯蔵部114は、容器の内部に攪拌機114aを有し、攪拌機114aにより貯蔵されている回収樹脂を攪拌可能である。 The hopper 113 is a supply port for supplying recovered resin to the inside of the cylinder 111. In the present embodiment, the hopper 113 supplies, into the cylinder 111, recovered resin containing polyethylene and polypropylene, which has been recovered from, for example, discarded automobiles, crushed, and separated by magnetic separation and specific gravity separation. The hopper 113 has a storage section 114 that is a container that temporarily stores the recovered resin to be supplied to the kneader 110 before supplying it. The storage unit 114 has an agitator 114a inside the container, and the agitator 114a can agitate the stored recovered resin.
 攪拌機114aは、タンブルミキサー、V-ブレンダー、リボンブレンダー、二本ロールミキサー、シェイカー、回転翼を内部に備えたバッファータンクなどの乾式のブレンダーとすることができる。 The agitator 114a can be a dry blender such as a tumble mixer, a V-blender, a ribbon blender, a two-roll mixer, a shaker, or a buffer tank equipped with rotary blades inside.
 ホッパー115は、2種類以上の添加樹脂をシリンダ111の内部に供給するための供給口である。ホッパー115は、ホッパー113と同じ位置であっても良く、ホッパー115とホッパー113とから、回収樹脂(第1樹脂)と添加樹脂(第2樹脂および第3樹脂)とを同時にシリンダ111の内部に供給してもよい。なお、これらの添加樹脂はいずれも、粘度またはMFRが既知であり、かつ粘度またはMFRが互いに異なる樹脂であり、回収樹脂に添加され混合されることにより、回収樹脂の粘度を所定の範囲に調整するための樹脂である。これらの添加樹脂は、回収樹脂と同種の樹脂(本実施形態ではポリエチレンまたはポリプロピレン)であってもよいし、回収樹脂とは別種の樹脂であってもよいが、本実施形態ではポリプロピレンとする。 The hopper 115 is a supply port for supplying two or more types of additive resin into the inside of the cylinder 111. The hopper 115 may be located at the same position as the hopper 113, and from the hopper 115 and the hopper 113, the recovered resin (first resin) and the added resin (second resin and third resin) are simultaneously introduced into the cylinder 111. May be supplied. Note that all of these additive resins have known viscosity or MFR, and are resins with different viscosities or MFRs, and by being added to and mixed with the recovered resin, the viscosity of the recovered resin can be adjusted to a predetermined range. It is a resin for These additive resins may be the same type of resin as the recovered resin (polyethylene or polypropylene in this embodiment) or may be a different type of resin from the recovered resin, but in this embodiment, polypropylene is used.
 ホッパー115は、ホッパー115に第2樹脂を供給する第2樹脂供給部115a、およびホッパー115に第3樹脂を供給する第3樹脂供給部115bを有する。第2樹脂供給部115aおよび第3樹脂供給部115bはいずれも、不図示の弁により、供給する第2樹脂または第3樹脂の量を変化させることが可能である。これにより、ホッパー115は、2種類以上の添加樹脂の供給量をそれぞれ変化させる。本実施形態では、ホッパー115は、制御部130による制御の下、粘度計120が測定した回収樹脂の粘度に応じて、2種類以上の添加樹脂の供給量をそれぞれ変化させる。ホッパー115から供給されるそれぞれの添加樹脂の供給量を制御部130が決定する方法は、後述する。 The hopper 115 has a second resin supply section 115a that supplies the second resin to the hopper 115, and a third resin supply section 115b that supplies the third resin to the hopper 115. Both the second resin supply section 115a and the third resin supply section 115b can change the amount of the second resin or third resin supplied by a valve (not shown). Thereby, the hopper 115 changes the supply amount of two or more types of added resins. In the present embodiment, under the control of the control unit 130, the hopper 115 changes the supply amount of two or more types of additive resins according to the viscosity of the recovered resin measured by the viscometer 120. The method by which the control unit 130 determines the supply amount of each additive resin supplied from the hopper 115 will be described later.
 なお、混練機110は、安定剤、酸化防止剤および結晶核剤などの添加剤、ガラス繊維、炭素繊維および有機繊維などの強化繊維材料、ゴムやタルク、ならびに炭酸カルシウムなどの充填剤をシリンダ111内に供給するための供給口としての別のホッパーを有してもよい。なお、これらの充填剤等を一定量添加することによる粘度の変化は理論式や経験式などで予測できる範囲内であるため、これらの添加剤の供給は、得られる再生樹脂の粘度を予測不能にするものではない。混練機110は、さらに脱気をするためのベント機構を備えていても良い。 The kneader 110 mixes additives such as stabilizers, antioxidants, and crystal nucleating agents, reinforcing fiber materials such as glass fibers, carbon fibers, and organic fibers, fillers such as rubber, talc, and calcium carbonate into the cylinder 111. It may also have a separate hopper as a feed port for feeding into the container. Note that the change in viscosity due to the addition of a certain amount of these fillers is within the range that can be predicted using theoretical or empirical formulas, so supplying these additives may cause the viscosity of the resulting recycled resin to become unpredictable. It's not something you want to do. The kneader 110 may further include a vent mechanism for degassing.
 濾過部118は、混練されている樹脂組成物を濾過する。濾過部118は、回収樹脂に含まれる土や砂などの異物を除去して、再生樹脂中への異物の混入を抑制することができる。濾過部118は、公知のフィルターとすることができる。 The filtration section 118 filters the resin composition that is being kneaded. The filtration unit 118 can remove foreign substances such as soil and sand contained in the recovered resin, thereby suppressing the incorporation of foreign substances into the recycled resin. The filter section 118 can be a known filter.
 押出部116は、ダイなどを有し、シリンダ111の内部に供給されてスクリュー112の回転により溶融混練された回収樹脂を、樹脂流路117に押出す。押出部116は、公知のギアポンプなどとすることができる。特に吐出量を正確に計量することができるギアポンプを用いることは、粘度の算出の精度を高めることができるため、好適である。 The extrusion unit 116 has a die and the like, and extrudes the recovered resin supplied into the cylinder 111 and melted and kneaded by the rotation of the screw 112 into the resin flow path 117. The extrusion section 116 can be a known gear pump or the like. In particular, it is preferable to use a gear pump that can accurately measure the discharge amount because it can improve the accuracy of viscosity calculation.
 樹脂流路117は、押出部116から押出された再生樹脂が、溶融状態のまま流通する流路である。樹脂流路117には、粘度計120が備えられている。なお、樹脂流路117は、流路内部の温度を調整して再生樹脂を流動させるための加熱部を有してもよい。 The resin flow path 117 is a flow path through which the recycled resin extruded from the extrusion section 116 flows in a molten state. The resin flow path 117 is equipped with a viscometer 120. Note that the resin flow path 117 may include a heating section for adjusting the temperature inside the flow path and causing the recycled resin to flow.
 粘度計120は、インライン粘度計であり、混練機110で溶融混練されて得られる再生樹脂の粘度を測定する。粘度計120は、混練機110で溶融混練されて押し出された回収樹脂の一部を取り出しでその粘度を計測するような、公知の粘度計であればよい。たとえば、R. Gendron, L. E. Daigneault,  J. Cell. Plast., 35, 221 (1999).やM. Lee, C. B. Park,  C. Tzoganakis, Polym. Eng. Sci., 39, 99 (1999).にインラインで粘度を計測する装置が紹介されている。また、本発明者による特願2022-075959号に記載の粘度計測用配管を有する粘度計を使用してもよい。 The viscometer 120 is an in-line viscometer and measures the viscosity of the recycled resin obtained by melt-kneading in the kneader 110. The viscometer 120 may be any known viscometer that measures the viscosity of a portion of the recovered resin melt-kneaded and extruded in the kneader 110 by taking it out. For example, R. Gendron, L. E. Daigneault, J. Cell. Plast., 35, 221 (1999) and M. Lee, C. B. Park, C. Tzoganakis, Polym. Eng. Sci., 39, 99 (1999), an in-line viscosity measurement device was introduced. Furthermore, a viscometer having a viscosity measurement piping described in Japanese Patent Application No. 2022-075959 by the present inventor may be used.
 なお、混練装置100の構成がこれに限定されないことは言うまでもない。たとえば、混練機110で混練されて濾過部118を通過した再生樹脂が、ダイ、粘度計120、スタティックミキサー、ギアポンプ、スクリーンチェンジャー、および押出機の順番に通過する構成であってもよいし、混練機110で混練されて濾過部118を通過した再生樹脂が、ダイ、粘度計120、ギアポンプ、スクリーンチェンジャー、および押出機の順番に通過する構成であってもよい。第1の例のように、粘度計120の直前にスタティックミキサーを設置してもよい。壁面と管中央部の位置を交換する効果があるスタティックミキサーを粘度計120の直前に設置すると、混練機110で溶融混練された再生樹脂が接続する導管の内壁面に滞留することの影響を最小にして、粘度の計測値の安定性が向上すると考えられる。 Note that it goes without saying that the configuration of the kneading device 100 is not limited to this. For example, the recycled resin kneaded in the kneader 110 and passed through the filtration section 118 may be configured to pass through a die, a viscometer 120, a static mixer, a gear pump, a screen changer, and an extruder in this order; The recycled resin kneaded in the machine 110 and passed through the filtration section 118 may be configured to pass through a die, a viscometer 120, a gear pump, a screen changer, and an extruder in this order. As in the first example, a static mixer may be installed immediately before the viscometer 120. If a static mixer is installed immediately before the viscometer 120, which has the effect of exchanging the positions of the wall surface and the center of the pipe, the influence of the recycled resin melted and kneaded by the kneader 110 remaining on the inner wall surface of the connected pipe can be minimized. It is thought that the stability of the measured viscosity value will be improved.
 温度計125は、粘度計120と同じ位置に配置され、粘度を測定するときの樹脂の温度を測定する。温度計125は、公知の温度計であればよい。 The thermometer 125 is placed at the same position as the viscometer 120, and measures the temperature of the resin when measuring the viscosity. The thermometer 125 may be any known thermometer.
 混練機110および粘度計120の動作は、制御部130により制御されている(図3参照)。 The operations of the kneader 110 and the viscometer 120 are controlled by a control unit 130 (see FIG. 3).
 制御部130は、公知のコンピュータとすることができ、CPU132(Central Processing Unit)、RAM134(Random Access Memory)、ROM136(Read Only Memory)および記憶部138を有する。CPU132は、ROM136に記憶された各種制御用のプログラムや設定データを読み出してRAM134に記憶させ、当該プログラムを実行して各種の演算処理を行う。また、CPU132は、混練機110および粘度計120を含めた混練装置100の全体動作を統括制御する。RAM134は、CPU132に作業用のメモリー空間を提供し、一時データを記憶する。なお、RAM134は、不揮発性メモリーを含んでも良い。ROM136は、CPU132により実行される各種制御用のプログラムや設定データ等を格納する。なお、ROM136に代えて、EEPROM(Electrically Erasable Programmable Read Only Memory)やフラッシュメモリー等の書き換え可能な不揮発性メモリーが用いられてもよい。記憶部138には、入出力インターフェース142を介して外部から入力されたジョブおよび当該ジョブに係るデータが記憶される。記憶部138としては、例えばHDD(Hard Disk Drive)が用いられ、また、DRAM(Dynamic Random Access Memory)などが併用されても良い。 The control unit 130 may be a known computer, and includes a CPU 132 (Central Processing Unit), a RAM 134 (Random Access Memory), a ROM 136 (Read Only Memory), and a storage unit 138. The CPU 132 reads various control programs and setting data stored in the ROM 136, stores them in the RAM 134, and executes the programs to perform various calculation processes. Further, the CPU 132 centrally controls the entire operation of the kneading apparatus 100 including the kneading machine 110 and the viscometer 120. RAM 134 provides working memory space for CPU 132 and stores temporary data. Note that the RAM 134 may include nonvolatile memory. The ROM 136 stores various control programs executed by the CPU 132, setting data, and the like. Note that in place of the ROM 136, a rewritable nonvolatile memory such as an EEPROM (Electrically Erasable Programmable Read Only Memory) or a flash memory may be used. The storage unit 138 stores jobs input from the outside via the input/output interface 142 and data related to the jobs. As the storage unit 138, for example, a HDD (Hard Disk Drive) is used, and a DRAM (Dynamic Random Access Memory) or the like may also be used in combination.
 以下、上記混練装置100を用いての、第1工程~第5工程による本実施形態に関する再生樹脂の製造方法について説明する。 Hereinafter, a method for producing recycled resin according to the present embodiment using the kneading apparatus 100 and the first to fifth steps will be described.
 1-2.回収樹脂の供給(第1-1工程:工程S110)
 第1-1工程において、ホッパー113は、回収樹脂を混練機110に供給する。具体的には、ホッパー113は、貯蔵部114に一時貯蔵されていた回収樹脂(第1樹脂)を、シリンダ111の内部に供給する。このとき供給する回収樹脂の量は、再生樹脂中の回収樹脂の割合(体積分率)として予め決められた割合に応じた量とすればよい。なお、制御部130によるシリンダ111(あるいは加熱部)の制御により、本工程におけるシリンダ111の内部の温度は、回収樹脂(第1樹脂)、ならびに添加樹脂(第2樹脂および第3樹脂)のいずれもが溶融または流動する温度とされている。
1-2. Supply of recovered resin (Step 1-1: Step S110)
In the 1-1 step, the hopper 113 supplies the recovered resin to the kneader 110. Specifically, the hopper 113 supplies the collected resin (first resin) temporarily stored in the storage section 114 into the cylinder 111 . The amount of recovered resin supplied at this time may be an amount corresponding to a predetermined ratio (volume fraction) of recovered resin in the recycled resin. Note that, by controlling the cylinder 111 (or the heating section) by the control section 130, the temperature inside the cylinder 111 in this step can be adjusted depending on which of the recovered resin (the first resin) and the added resin (the second resin and the third resin). It is said to be the temperature at which something melts or flows.
 このとき、攪拌機114aが、貯蔵部114の内部に貯蔵された回収樹脂を攪拌することで、供給される回収樹脂の急激で不均一な粘度変動を抑制することもできる。 At this time, the stirrer 114a stirs the recovered resin stored inside the storage section 114, thereby suppressing sudden and uneven viscosity fluctuations of the supplied recovered resin.
 1-3.添加樹脂の供給(第1-2工程:工程S120)
 第1-2工程において、ホッパー115は、2種類以上の添加樹脂を、シリンダ111の内部に供給する。本実施形態では、ホッパー115は、粘度がより大きい(またはMFRがより小さい)第2樹脂と、粘度がより小さい(またはMFRがより大きい)第3樹脂と、をシリンダ111の内部に供給する。
1-3. Supply of additive resin (Step 1-2: Step S120)
In the 1-2 step, the hopper 115 supplies two or more types of additive resin into the cylinder 111. In this embodiment, the hopper 115 supplies a second resin with a higher viscosity (or a lower MFR) and a third resin with a lower viscosity (or a higher MFR) into the cylinder 111 .
 具体的には、ホッパー115は、一の添加樹脂(第2樹脂)および他の添加樹脂(第3樹脂)を、シリンダ111の内部に供給する。ホッパー115は、再生樹脂の製造を開始した直後には、いずれも予め決められた量の第2樹脂および第3樹脂をシリンダ111の内部に供給する。その後、ホッパー115は、制御部130による制御の下、第2樹脂の供給量および第3樹脂の供給量を、第1-5工程において制御部130が随時決定した量に随時変化されていく。 Specifically, the hopper 115 supplies one additive resin (second resin) and the other additive resin (third resin) into the cylinder 111. Immediately after starting production of recycled resin, the hopper 115 supplies predetermined amounts of the second resin and the third resin into the cylinder 111. Thereafter, under the control of the control unit 130, the hopper 115 changes the supply amount of the second resin and the third resin to the amounts determined at any time by the control unit 130 in the 1-5th process.
 2種類以上の添加樹脂は、メルトフローレート(MFR)が既知で、MFRが互いに異なるものであっても良い。メルトフローレート(MFR)の測定条件は、JISK7210(2014年)またはASTM D1238(2013年)に準拠して、例えばポリエチレン系樹脂の場合は2.16kg荷重190℃の条件、ポリプロピレン系樹脂の場合は2.16kg荷重230℃の条件で測定する等、用いる樹脂の種類によって適宜選択する。 The two or more types of additive resins have known melt flow rates (MFRs), and may have different MFRs. The measurement conditions for melt flow rate (MFR) are based on JISK7210 (2014) or ASTM D1238 (2013), such as 2.16 kg load and 190°C for polyethylene resin, and 190°C for polypropylene resin. It is selected as appropriate depending on the type of resin used, such as measuring under the conditions of 2.16 kg load and 230°C.
 なお、第2樹脂または第3樹脂は、MFRが1g/10分以上300g/10分以下であることが好ましく、かつ同一条件で測定される第2樹脂のMFRと第3樹脂のMFRとの比(第3樹脂のMFR/第2樹脂のMFR)が、2以上100以下であることが好ましく、2.5以上50以下であることがより好ましく、3以上20以下であることがさらに好ましい。 The second resin or the third resin preferably has an MFR of 1 g/10 minutes or more and 300 g/10 minutes or less, and the ratio of the MFR of the second resin and the MFR of the third resin measured under the same conditions. (MFR of the third resin/MFR of the second resin) is preferably 2 or more and 100 or less, more preferably 2.5 or more and 50 or less, and even more preferably 3 or more and 20 or less.
 第2樹脂は、MFRが1g/10min以上50g/10min以下であることが好ましく、3g/10min以上45g/10min以下であることがより好ましく、5g/10min以上30g/10min以下であることがさらに好ましい。また、第3樹脂は、メルトフローレートが20g/10min以上300g/10min以下であることが好ましく、25g/10min以上250g/10min以下であることがより好ましく、30g/10min以上200g/10min以下であることがさらに好ましい。 The MFR of the second resin is preferably 1 g/10 min or more and 50 g/10 min or less, more preferably 3 g/10 min or more and 45 g/10 min or less, and even more preferably 5 g/10 min or more and 30 g/10 min or less. . Further, the melt flow rate of the third resin is preferably 20 g/10 min or more and 300 g/10 min or less, more preferably 25 g/10 min or more and 250 g/10 min or less, and 30 g/10 min or more and 200 g/10 min or less. It is even more preferable.
 なお、第1-1工程と第1-2工程とはいずれを先に行ってもかまわないし、回収樹脂および添加樹脂を同時にシリンダ111の内部に供給してもよい。 Note that either the 1-1 step or the 1-2 step may be performed first, or the recovered resin and the added resin may be supplied into the cylinder 111 at the same time.
 1-4.混練(第1-3工程:工程S130)
 第1-3工程において、混練機110は、シリンダ111の内部に供給され、シリンダ111の内部で溶融している回収樹脂(第1樹脂)と、添加樹脂(第2樹脂および第3樹脂)とを混練する。具体的には、混練機110は、スクリュー112を回転させて、回収樹脂および添加樹脂を混練し、かつ混練されている回収樹脂および添加樹脂をシリンダ111の出口方向(押出部116の方向)へと移動させる。このときのスクリュー112の回転速度は、目標とする吐出量が得られる回転数に調整されており、回収樹脂の性状や形状により随時変更され得る。
1-4. Kneading (Steps 1-3: Step S130)
In the 1-3rd step, the kneader 110 mixes the recovered resin (first resin) that is supplied into the cylinder 111 and is melted inside the cylinder 111, and the added resin (second resin and third resin). Knead. Specifically, the kneader 110 rotates the screw 112 to knead the recovered resin and the added resin, and moves the kneaded recovered resin and the added resin toward the exit of the cylinder 111 (in the direction of the extrusion section 116). and move it. The rotational speed of the screw 112 at this time is adjusted to a rotational speed that allows the target discharge amount to be obtained, and can be changed at any time depending on the properties and shape of the recovered resin.
 上記混練により、再生樹脂が得られる。得られた再生樹脂は、押出部116から押し出される。押出された再生樹脂は、樹脂流路117を流通する。 Through the above kneading, a recycled resin is obtained. The obtained recycled resin is extruded from the extrusion section 116. The extruded recycled resin flows through the resin flow path 117.
 1-5.再生樹脂の粘度ηの測定(第1-4工程:工程S140)
 第1-4工程において、粘度計120は、樹脂流路117を流通する再生樹脂の粘度ηを測定する。なお、ここで測定される粘度はいわゆる溶融粘度であり、本明細書における粘度は、測定温度230℃、測定時のせん断速度1.0(1/s)を基準の状態とした溶融粘度を意味するが、この他の温度、せん断速度における粘度の測定値でも後述の関係式を用いることで容易に同じ温度、同じせん断速度に換算することができる。そのため、粘度の測定条件は、特に制約なく自由に設定したり、押出機の温度条件や運転情報に連動させることができる。(なお、この測定条件は、ポリエチレンおよびポリプロピレンを含む樹脂についての測定条件であり、他の樹脂を用いるときは、当該樹脂について常用されている測定条件を用いればよい。)。粘度計120は、測定された粘度をCPU132に送信する。CPU132は、樹脂した粘度を記憶部138に一時記憶する。
1-5. Measurement of viscosity η d of recycled resin (Step 1-4: Step S140)
In the 1-4th step, the viscometer 120 measures the viscosity η d of the recycled resin flowing through the resin flow path 117. The viscosity measured here is the so-called melt viscosity, and the viscosity in this specification means the melt viscosity based on a measurement temperature of 230 ° C. and a shear rate of 1.0 (1/s) at the time of measurement. However, measured values of viscosity at other temperatures and shear rates can be easily converted to the same temperature and shear rate by using the relational expression described later. Therefore, the viscosity measurement conditions can be freely set without particular restrictions, or can be linked to the temperature conditions and operating information of the extruder. (Note that these measurement conditions are for resins containing polyethylene and polypropylene, and when using other resins, the measurement conditions commonly used for the resins may be used.) Viscometer 120 transmits the measured viscosity to CPU 132. The CPU 132 temporarily stores the viscosity of the resin in the storage unit 138.
 1-6.供給量の変更(第1-5工程:工程S150)
 第1-5工程において、制御部130は、第1-4工程で粘度計120が測定した再生樹脂の粘度ηを示すデータを受け取り、当該データの粘度に応じて、第1-2工程で供給する2種類以上の添加樹脂のそれぞれの供給量を変化させる。なお、制御部130は、第1-2工程で供給する添加樹脂の量が再生樹脂中の回収樹脂中で占める割合を一定に保ちつつ、それぞれの添加樹脂の量が添加樹脂の全体量に占める割合を変化させてもよいし、再生樹脂中における添加樹脂の割合が変化するように、それぞれの添加樹脂の量を変化させてもよい。
1-6. Change of supply amount (1st-5th process: process S150)
In the 1-5th step, the control unit 130 receives data indicating the viscosity η d of the recycled resin measured by the viscometer 120 in the 1-4th step, and in accordance with the viscosity of the data, the controller 130 performs the 1-2 step The supply amounts of two or more types of additive resins are varied. Note that the control unit 130 maintains a constant proportion of the amount of added resin supplied in the 1-2 step in the recovered resin in the recycled resin, and controls the amount of each added resin to account for the total amount of added resin. The proportions may be varied, or the amounts of each added resin may be varied so that the proportion of the added resin in the recycled resin is varied.
 図4は、本工程において制御部130が添加樹脂の供給量を変更する工程における各サブプロセスを示したフローチャートである。本工程において、制御部130は、まず再生樹脂の粘度ηから、回収樹脂(第1樹脂)の粘度ηを算出する(第1-5a-1工程、工程S150a)。そして、算出された第1の樹脂の粘度ηから、得られる再生樹脂の粘度ηが所望の粘度ηfinalになるように添加樹脂(第2樹脂および第3樹脂)の供給量を決定する(第1-5a-2工程、工程S150b)。制御部130はさらに、ホッパー115からの添加樹脂(第2樹脂および第3樹脂)の供給量を、決定された供給量に変更する(第1-5a-3工程、工程S150c)。なお、制御部130は、ROM136に格納されたプログラムをRAM134に記憶させ、当該プログラムを時刻することにより、これらのサブプロセスを行う。以下、各サブプロセスについて説明する。 FIG. 4 is a flowchart showing each sub-process in the step in which the control unit 130 changes the supply amount of the added resin in this step. In this step, the control unit 130 first calculates the viscosity η 1 of the recovered resin (first resin) from the viscosity η d of the recycled resin (step 1-5a-1, step S150a). Then, from the calculated viscosity η 1 of the first resin, the supply amount of the added resins (second resin and third resin) is determined so that the viscosity η d of the obtained recycled resin becomes the desired viscosity η final . (Step 1-5a-2, step S150b). The control unit 130 further changes the supply amount of the added resin (second resin and third resin) from the hopper 115 to the determined supply amount (Step 1-5a-3, Step S150c). Note that the control unit 130 performs these sub-processes by storing the program stored in the ROM 136 in the RAM 134 and timing the program. Each sub-process will be explained below.
 1-6-1.回収樹脂の粘度ηの算出(第1-5a-1工程:工程S150a)
 本サブプロセスにおいて、制御部130は、高分子のブレンドに関する理論、たとえばDouble-Reptation 理論(C. Tsenoglou, Macromolecules, 24, 1762-1767 (1991))に基づき、回収樹脂(第1樹脂)の体積分率φ、添加樹脂(第2樹脂および第3樹脂)のそれぞれの体積分率φおよびφならびに既知の粘度ηおよびη、ならびに得られた再生樹脂の粘度ηから、回収樹脂(第1樹脂)の粘度ηを算出する。
1-6-1. Calculation of viscosity η 1 of recovered resin (Step 1-5a-1: Step S150a)
In this sub-process, the control unit 130 controls the volume of the recovered resin (first resin) based on a theory regarding blending of polymers, for example, the Double-Reptation theory (C. Tsenoglou, Macromolecules, 24, 1762-1767 (1991)). From the fraction φ 1 , the respective volume fractions φ 2 and φ 3 of the added resins (second resin and third resin), the known viscosities η 2 and η 3 , and the viscosity η d of the obtained recycled resin, the recovered The viscosity η 1 of the resin (first resin) is calculated.
 Double-Reptation 理論によると、3成分系において、第1樹脂、第2樹脂および第3樹脂の混合物の粘度ηBlendは、以下の式(1)により表すことができる。 According to the Double-Reptation theory, in a three-component system, the viscosity η Blend of a mixture of the first resin, second resin, and third resin can be expressed by the following equation (1).
 なお、式(1)において、φは、ホッパー113が供給する回収樹脂(第1樹脂)の体積と、ホッパー115が供給する一の添加樹脂(第2樹脂)の体積と、ホッパー115が供給する別の添加樹脂(第3樹脂)の体積と、の合計量(シリンダ111の内部に供給される樹脂成分の全体積)に対する、回収樹脂(第1樹脂)の体積分率を表し、ηは、第1樹脂の粘度を表し、φは、シリンダ111の内部に供給される樹脂成分の全体積に対する一の添加樹脂(第2樹脂)の体積分率を表し、ηは、第2樹脂の粘度を表し、φは、シリンダ111の内部に供給される樹脂成分の全体積に対する別の添加樹脂(第3樹脂)の体積分率を表し、ηは、第3樹脂の粘度を表し、ηBlendは、得られる混合物の粘度を表す。 In equation (1), φ 1 is the volume of the recovered resin (first resin) supplied by the hopper 113, the volume of one added resin (second resin) supplied by the hopper 115, and the volume of the recovered resin (second resin) supplied by the hopper 115. η 1 represents the viscosity of the first resin, φ 2 represents the volume fraction of one added resin (second resin) with respect to the total volume of the resin component supplied inside the cylinder 111, and η 2 represents the viscosity of the second resin. represents the viscosity of the resin, φ 3 represents the volume fraction of another added resin (third resin) with respect to the total volume of the resin component supplied inside the cylinder 111, and η 3 represents the viscosity of the third resin. where η Blend represents the viscosity of the resulting mixture.
 これらの変数のうち、φ、φ、φ、η、およびηは既知である。そのため、粘度計120が測定した再生樹脂(混合物)の粘度ηをηBlendに代入すれば、残る変数である第1樹脂の粘度ηを逆算することができる。 Among these variables, φ 1 , φ 2 , φ 3 , η 2 , and η 3 are known. Therefore, by substituting the viscosity η d of the recycled resin (mixture) measured by the viscometer 120 into η Blend , the remaining variable, the viscosity η 1 of the first resin, can be calculated backwards.
 なお、回収樹脂(第1樹脂)の体積分率φは、たとえば0.1以上0.7以下(10体積%以上70体積%以下)の範囲で予め定めた範囲とすることができ、0.2以上0.6以下(20体積%以上60体積%以下)であることが好ましく、0.3以上0.5以下(30体積%以上50体積%以下)であることがより好ましい。 Note that the volume fraction φ 1 of the recovered resin (first resin) can be set in a predetermined range, for example, in the range of 0.1 or more and 0.7 or less (10 volume% or more and 70 volume% or less), and 0. It is preferably .2 or more and 0.6 or less (20 volume % or more and 60 volume % or less), and more preferably 0.3 or more and 0.5 or less (30 volume % or more and 50 volume % or less).
 (η、およびηの粘度の取り扱いに関して)
 添加樹脂の溶融粘度の温度依存性、およびせん断速度依存性は、以下の方法で求めることができる。
(Regarding handling of viscosity of η 2 and η 3 )
The temperature dependence and shear rate dependence of the melt viscosity of the added resin can be determined by the following method.
 あらかじめ市販の回転型レオメータなどの高分子の溶融粘弾性を測定する装置(たとえば、TAインスツルメンツ社製のDiscovery Hybrid Rheometer(DHR10)など)を使用して、結晶性の樹脂の場合は、融点Tm+10℃からTm+100℃の温度範囲、非晶性樹脂の場合は、ガラス転移温度Tg+10℃からTg+200℃の温度範囲で適宜3から5水準の温度を選択し、周波数範囲ω=0.1~500(rad/s)で線形粘弾性関数(G’、G’’)を測定する。 In the case of crystalline resins, use a device that measures the melt viscoelasticity of polymers such as a commercially available rotary rheometer (for example, Discovery Hybrid Rheometer (DHR10) manufactured by TA Instruments) to determine the melting point Tm + 10°C. In the case of amorphous resin, appropriately select 3 to 5 levels of temperature in the temperature range from glass transition temperature Tg + 10°C to Tg + 200°C, and frequency range ω = 0.1 to 500 (rad/ s) to measure the linear viscoelastic functions (G', G'').
 この線形粘弾性関数から、基準温度T=230℃として、時間温度の換算則に基づきマスターカーブを作成する。この操作は、上記のレオメータに付属しているソフトウェアにより、容易に得ることができる。 From this linear viscoelastic function, a master curve is created based on the time-temperature conversion rule, with the reference temperature T 0 =230°C. This operation can be easily obtained using the software attached to the rheometer mentioned above.
 他の温度Tで求めた粘度と基準温度Tにおける粘度との比は、マスターカーブを作成するときに得た時間温度の換算則のシフトファクターaとして次のように表される。 The ratio of the viscosity obtained at another temperature T and the viscosity at the reference temperature T0 is expressed as follows as a shift factor aT of the time-temperature conversion rule obtained when creating the master curve.
 このシフトファクターは、結晶性を有する樹脂の多くの場合は次のアレニウス式で表される。ここで、Eは活性化エネルギー(J/mol)、Rは気体定数である。 This shift factor is expressed by the following Arrhenius equation in most cases of crystalline resins. Here, E is activation energy (J/mol) and R is a gas constant.
 線形粘弾性関数である複素粘度|η*(ω)|より、Cox-Marz則(Cox, W. P. and Merz, E. H. : J. Polym. Sci., 28, 619 (1958))を用い、周波数(ω)=せん断速度(γSR)とすることで、溶融粘度の温度依存性、およびせん断速度依存性を求める。 From the complex viscosity |η*(ω)|, which is a linear viscoelastic function, the frequency (ω )=shear rate (γ SR ), the temperature dependence and shear rate dependence of the melt viscosity are determined.
 なお、せん断速度rSRは、式中では下記記号で表される。 Note that the shear rate r SR is represented by the following symbol in the formula.
 溶融粘度のせん断速度依存性を表すレオロジーモデル(Carreau-Yasudaモデル:Yasuda, K., Armstrong, R.C. and Cohen, R.E.: Rheol. Acta, 20, 163 (1981))は以下の通りである。 The rheological model (Carreau-Yasuda model: Yasuda, K., Armstrong, R.C. and Cohen, R.E.: Rheol. Acta, 20, 163 (1981)) expressing the shear rate dependence of melt viscosity is as follows.
 ここでη、n、λ、aはモデルパラメータで、それぞれゼロせん断粘度、非ニュートン指数、緩和時間、ニュートン領域から非ニュートン領域への転移に関するパラメータを表している。 Here, η 0 , n, λ, and a are model parameters, and represent parameters related to zero shear viscosity, non-Newtonian exponent, relaxation time, and transition from Newtonian region to non-Newtonian region, respectively.
 粘度の温度依存性を表す(3)式と、せん断速度依存性を表す(4)式とを組み合わせて、粘度は次のように表される。 By combining equation (3) expressing the temperature dependence of viscosity and equation (4) expressing the shear rate dependence, the viscosity is expressed as follows.
 この式に上記の測定結果をフィットさせ、パラメータを求めれば、任意の温度、せん断速度における粘度をすぐに求めることができる。 By fitting the above measurement results to this equation and determining the parameters, the viscosity at any temperature and shear rate can be immediately determined.
 同種類の樹脂であるならば、η、η、ηFinalの粘度の温度依存性の(3)式のパラメータは添加樹脂とほとんど同じであるので、添加樹脂と同じパラメータを用いてよい。 If the resins are of the same type, the parameters of equation (3) for the temperature dependence of the viscosity of η 1 , η d , η Final are almost the same as those for the added resin, so the same parameters as for the added resin may be used.
 せん断速度は、ηを計測した時のせん断速度に合わせても良いし、3点以上のせん断速度における粘度を同時に計測できるインライン粘度計を用い、(4)式のモデルパラメータを得ても良い。 The shear rate may be matched to the shear rate at which η d was measured, or the model parameters of equation (4) may be obtained using an in-line viscometer that can simultaneously measure the viscosity at three or more shear rates. .
 樹脂の流動性の指標としてメルトフローレート(MFR)が良く用いられている。市販の樹脂は銘柄表にメルトフローレートが表記されており、この値を参考に添加樹脂(第2樹脂、第3樹脂)を選定することが便利である。 Melt flow rate (MFR) is often used as an indicator of resin fluidity. The melt flow rate of commercially available resins is indicated in the brand list, and it is convenient to select the additive resin (second resin, third resin) with reference to this value.
 添加樹脂の溶融粘度とメルトフローレートとの関係は、次のように考えることができる(伊崎健晴、成形加工 第22巻10月号、P556~561(2010))。 The relationship between the melt viscosity of the additive resin and the melt flow rate can be considered as follows (Takeharu Izaki, Molding Processing Vol. 22, October issue, P556-561 (2010)).
 メルトフローレート(MFR)は一定荷重下における高分子溶融体のキャピラリーからの流量を測定したもので、一定荷重Fをかけたときの応力 σ=ηγSR は、(5)式から求めることができる。また、せん断速度と流量Qとの関係は(6)式で表される。 Melt flow rate (MFR) is a measurement of the flow rate of a polymer melt from a capillary under a constant load, and the stress σ = ηγ SR when a constant load F is applied can be calculated from equation (5). . Further, the relationship between the shear rate and the flow rate Q is expressed by equation (6).
 すなわち粘度測定で得られたせん断速度γSR-せん断応力σプロットで荷重2.16kg に相当する応力(σ=19360Pa)となるせん断速度を(5)式より求め、(6)式を用いて流量Q[(m3/s]) に換算し、密度ρを乗算し、単位を[(g/10min])に換算すれば、この流量からMFRを求めることができる。 In other words, the shear rate at which the stress (σ = 19360 Pa) corresponding to a load of 2.16 kg is obtained in the shear rate γ SR - shear stress σ plot obtained from the viscosity measurement is determined from equation (5), and the flow rate Q is calculated using equation (6). MFR can be determined from this flow rate by converting it to [(m 3 /s]), multiplying by the density ρ, and converting the unit to [(g/10min]).
 ここで、MFR:(g/10min)、ρ:ポリマー密度(g/cm)、r:MFR計穴半径(cm)、γSR:せん断速度(1/s)である。 Here, MFR: (g/10 min), ρ: polymer density (g/cm 3 ), r: MFR meter hole radius (cm), and γ SR : shear rate (1/s).
 1-6-2.添加樹脂の供給量の決定(第1-5a-2工程:工程S150b)
 本サブプロセスにおいて、制御部130は、前サブプロセス(第1-5a-1工程)で算出された回収樹脂(第1樹脂)の粘度ηに基づき、再生樹脂の粘度が所望の粘度ηfinalになるように添加樹脂(第2樹脂および第3樹脂)の供給量を決定する。前述のようにηは温度、せん断速度の関数であるが、基準の状態に換算したものとして扱い、以降はηとだけ表記することとする。
1-6-2. Determining the supply amount of added resin (Step 1-5a-2: Step S150b)
In this sub-process, the control unit 130 determines whether the viscosity of the recycled resin is a desired viscosity η final based on the viscosity η d of the recovered resin (first resin) calculated in the previous sub-process (step 1-5a-1). The supply amount of the added resin (second resin and third resin) is determined so that the following results are obtained. As mentioned above, η d is a function of temperature and shear rate, but it will be treated as having been converted to the standard state, and henceforth will be expressed simply as η d .
 具体的には、制御部130は、前サブプロセス(第1-5a-1工程)で算出された回収樹脂(第1樹脂)の粘度η、添加樹脂(第2樹脂)の粘度η、添加樹脂(第3樹脂)の粘度η、および回収樹脂(第1樹脂)の体積分率φをもとに、上述した式(1)においてηBlendが目標とする再生樹脂の粘度ηfinalとなるような、第2樹脂の体積分率φおよび第3樹脂の体積分率φを求める(なお、φ+φ=1-φであるので、この計算は2次方程式により求めることができる。)。そして、求められた第2樹脂の体積分率φおよび第3樹脂の体積分率φに応じた、第2樹脂の供給量および第3樹脂の供給量を算出し、これらを第2樹脂および第3樹脂の供給量として決定する。 Specifically, the control unit 130 calculates the viscosity η 1 of the recovered resin (first resin) calculated in the previous sub-process (step 1-5a-1), the viscosity η 2 of the added resin (second resin), Based on the viscosity η 3 of the added resin (third resin) and the volume fraction φ 1 of the recovered resin (first resin), the viscosity η final of the recycled resin targeted by η Blend in the above equation (1) Calculate the volume fraction φ 2 of the second resin and the volume fraction φ 3 of the third resin such that be able to.). Then, the supply amount of the second resin and the supply amount of the third resin are calculated according to the obtained volume fraction φ 2 of the second resin and volume fraction φ 3 of the third resin, and these are calculated as the second resin and the supply amount of the third resin.
 1-6-3.添加樹脂の供給量の変更(第1-5a-3工程:工程S150c)
 本サブプロセスにおいて、制御部130は、前サブプロセス(第1-5a-2工程)で決定された供給量の第2樹脂および第3樹脂がシリンダ111の内部に供給されるように、ホッパー115からの添加樹脂(第2樹脂および第3樹脂)の供給量を変更する。
1-6-3. Change in supply amount of added resin (Step 1-5a-3: Step S150c)
In this sub-process, the control unit 130 controls the hopper 115 so that the second resin and the third resin in the supply amounts determined in the previous sub-process (step 1-5a-2) are supplied into the cylinder 111. The supply amount of the added resin (second resin and third resin) is changed.
 具体的には、制御部130は、ホッパー115が有する第2樹脂供給部115aおよび第3樹脂供給部115bの動作を制御して、これらの供給部がそれぞれホッパー115に供給する第2樹脂の供給量および第3樹脂の供給量を、いずれも前サブプロセス(第1-5a-2工程)で決定された供給量に変更する。これにより、ホッパー115からシリンダ111の内部に供給される第2樹脂の供給量および第3樹脂の供給量が変更される。 Specifically, the control unit 130 controls the operations of the second resin supply unit 115a and the third resin supply unit 115b included in the hopper 115, and controls the supply of the second resin that these supply units each supply to the hopper 115. Both the amount and the supply amount of the third resin are changed to the supply amount determined in the previous sub-process (step 1-5a-2). Thereby, the supply amount of the second resin and the supply amount of the third resin supplied from the hopper 115 into the cylinder 111 are changed.
 なお、本サブプロセスにおける制御部130の動作は、混練機110への第2樹脂および第3樹脂の供給方法に応じて決定すればよい。たとえば、混練機110が、第2樹脂を供給するホッパーと第3樹脂を供給するホッパーとを別個に有するときは、制御部130はこれら複数のホッパーの動作をそれぞれ制御して、第2樹脂の供給量および第3樹脂の供給量を変更すればよい。 Note that the operation of the control unit 130 in this sub-process may be determined depending on the method of supplying the second resin and the third resin to the kneader 110. For example, when the kneading machine 110 separately has a hopper for supplying the second resin and a hopper for supplying the third resin, the control unit 130 controls the operation of each of the plurality of hoppers to supply the second resin. What is necessary is just to change the supply amount and the supply amount of the third resin.
 本工程(第1-5工程)における添加樹脂の供給量の変更は、一度のみ行ってもよいし、定期または不定期に複数回行ってもよいし、連続的に行い続けてもよい。なお、回収樹脂は、回収元や回収時期、保存状態、使用期間等により粘度が変化する。そのため、本実施形態においてホッパー113からシリンダ111の内部に供給される回収樹脂(第1樹脂)の粘度ηは一定ではなく、経時的に変化する。再生樹脂の粘度ηを一定の粘度に安定化する観点からは、この変化する回収樹脂(第1樹脂)の粘度ηに応じて、第2樹脂の供給量および第3樹脂の供給量を経時的に変化させることが好ましい。そのため、本工程(第1-5工程)における添加樹脂の供給量の変更も、複数回行うか、または連続的に行い続けることが好ましく、連続的に行い続けることがより好ましい。 The supply amount of the added resin in this step (Steps 1-5) may be changed only once, regularly or irregularly several times, or continuously. Note that the viscosity of the recovered resin changes depending on the source of recovery, time of recovery, storage conditions, period of use, etc. Therefore, in this embodiment, the viscosity η 1 of the recovered resin (first resin) supplied from the hopper 113 to the inside of the cylinder 111 is not constant but changes over time. From the viewpoint of stabilizing the viscosity η d of the recycled resin to a constant viscosity, the supply amount of the second resin and the third resin should be adjusted according to the changing viscosity η 1 of the recovered resin (first resin). It is preferable to change it over time. Therefore, it is preferable to change the supply amount of the added resin in this step (Steps 1-5) multiple times or continuously, and more preferably continuously.
 1-7.残存する回収樹脂があるか否かの判断(第1-6工程、工程S160)
 そして、制御部130は、貯蔵部114に貯蔵されていた回収樹脂のすべてがシリンダ111に供給されたか否か、言い換えると貯蔵部114に残存する回収樹脂があるか否かを判断する(第1-6工程、工程S160)。貯蔵部114に残存する回収樹脂があるか否かは、たとえば貯蔵部114に内蔵したセンサーによる確認や、貯蔵部114に供給した回収樹脂の量とホッパー113からシリンダ111の内部に供給した回収樹脂の量との差の算出等により、行うことができる。
1-7. Determining whether there is any remaining recovered resin (Step 1-6, Step S160)
Then, the control unit 130 determines whether all of the recovered resin stored in the storage unit 114 has been supplied to the cylinder 111, in other words, whether there is any recovered resin remaining in the storage unit 114 (the first -6 step, step S160). Whether or not there is any recovered resin remaining in the storage section 114 can be determined, for example, by checking with a sensor built into the storage section 114 or by checking the amount of recovered resin supplied to the storage section 114 and the recovered resin supplied from the hopper 113 into the cylinder 111. This can be done by calculating the difference between the amount of
 すべての回収樹脂がシリンダ111に供給され、貯蔵部114に回収樹脂が残存しないと判断されたときは、制御部130は、いまシリンダ111の内部で混練されている回収樹脂および添加樹脂が押出部116から押し出された後に、混練装置100の動作を停止する。貯蔵部114に回収樹脂が残存すると判断されたときは、制御部130は、第1-1工程~第1-5工程を繰り返し、かつ連続して行う。なお、本実施形態を行っている間に新たな回収樹脂を貯蔵部114に供給してもよい。 When it is determined that all the recovered resin has been supplied to the cylinder 111 and there is no recovered resin remaining in the storage section 114, the control section 130 causes the recovered resin and the added resin currently kneaded inside the cylinder 111 to be transferred to the extrusion section. After being extruded from 116, the operation of the kneading device 100 is stopped. When it is determined that the recovered resin remains in the storage section 114, the control section 130 repeats and continuously performs steps 1-1 to 1-5. Note that new recovered resin may be supplied to the storage section 114 while this embodiment is being performed.
 (効果)
 本実施形態によれば、回収樹脂の粘度変動に起因する得られる再生樹脂の粘度変動を規制し、粘度がより均一化された再生樹脂を得ることができる。
(effect)
According to this embodiment, it is possible to control the viscosity fluctuation of the obtained recycled resin due to the viscosity fluctuation of the recovered resin, and to obtain the recycled resin with a more uniform viscosity.
 ところで、粘度計120が測定した再生樹脂の粘度は、ホッパー113から回収樹脂(第1樹脂)をシリンダ111の内部に供給したあと、所定時間の混練を経た後の粘度である。そのため、粘度計120が測定した再生樹脂の粘度から、第1-5-1工程において求められた回収樹脂(第1樹脂)の粘度ηは、粘度を測定したタイミングで投入する回収樹脂(第1樹脂)の粘度ではなく、所定時間前に供給された回収樹脂の粘度である。また、上述したように、回収樹脂(第1樹脂)の粘度は経時的に変化する。そのため、所定時間前の回収樹脂の粘度から、第2樹脂の供給量および第3樹脂の供給量を決定したとしても、そのタイミングで供給する第1樹脂の粘度は変化しているので、得られる再生樹脂の粘度が目標とする粘度ηfinalになるとは限らない。しかし、回収樹脂(第1樹脂)の粘度は不規則かつ大きな変化幅で変化することはなく、所定の周期で変動することが通常である。そして、後述する計算例に示すように、本実施形態に示す方法を実行することで、得られる再生樹脂の粘度ηの変動率をより小さくすることが可能である。 By the way, the viscosity of the recycled resin measured by the viscometer 120 is the viscosity after the recovered resin (first resin) is supplied into the cylinder 111 from the hopper 113 and then kneaded for a predetermined period of time. Therefore, from the viscosity of the recycled resin measured by the viscometer 120, the viscosity η 1 of the recovered resin (first resin) determined in step 1-5-1 is equal to 1 resin), but the viscosity of the recovered resin supplied a predetermined time ago. Furthermore, as described above, the viscosity of the recovered resin (first resin) changes over time. Therefore, even if the supply amount of the second resin and the third resin are determined from the viscosity of the recovered resin a predetermined time ago, the viscosity of the first resin supplied at that timing has changed, so the obtained The viscosity of the recycled resin does not necessarily reach the target viscosity η final . However, the viscosity of the recovered resin (first resin) does not change irregularly and over a large range, but usually changes at a predetermined period. As shown in the calculation example described later, by executing the method shown in this embodiment, it is possible to further reduce the rate of variation in the viscosity η d of the obtained recycled resin.
 2.第2の実施形態
 第1の実施形態では、粘度計120が測定した再生樹脂の粘度ηから回収樹脂(第1樹脂)のηを算出し、算出された回収樹脂(第1樹脂)のηを用いた計算により、第2樹脂の供給量および第3樹脂の供給量を決定した。これに対し、本実施形態では、計算された粘度η(過去に供給した回収樹脂(第1樹脂)の粘度。以下、「η1-past」とする。)の経時変化から現時点での回収樹脂(第1樹脂)の粘度η1(現時点で供給する回収樹脂(第1樹脂)の粘度。以下、「η1-present」とする。)を予測し、予測された粘度η1-presentを用いた計算により、第2樹脂の供給量および第3樹脂の供給量を決定する。
2. Second Embodiment In the first embodiment, η 1 of the recovered resin (first resin) is calculated from the viscosity η d of the recycled resin measured by the viscometer 120, and the calculated η 1 of the recovered resin (first resin) is calculated. The supply amount of the second resin and the supply amount of the third resin were determined by calculation using η 1 . In contrast, in the present embodiment, the present recovery is determined based on the calculated viscosity η 1 (viscosity of the recovered resin (first resin) supplied in the past; hereinafter referred to as “η 1-past ”) over time. The viscosity η1 of the resin (first resin) (the viscosity of the recovered resin (first resin) supplied at the present time; hereinafter referred to as "η 1-present ") is predicted, and the predicted viscosity η 1-present is used. The amount of supply of the second resin and the amount of third resin to be supplied are determined by the calculations made.
 本実施形態は、再生樹脂の製造方法のフローチャートおよび使用する混練装置の構成は、第1の実施形態(図1および図2)と同一であるが、2種類以上の添加樹脂のそれぞれの供給量を変更する方法(第1-5工程、工程S150)が第1の実施形態とは異なる。以下、第1の実施形態と同一である部分については重複する説明を省略し、異なる部分について説明をする。 In this embodiment, the flowchart of the method for producing recycled resin and the configuration of the kneading device used are the same as those in the first embodiment (FIGS. 1 and 2), but the supply amount of each of two or more types of additive resin is The method of changing (steps 1-5, step S150) is different from the first embodiment. Hereinafter, duplicate explanations will be omitted for parts that are the same as those in the first embodiment, and only different parts will be described.
 図5は、本実施形態の第1-5工程(工程S150)において制御部130が添加樹脂の供給量を変更する工程における各サブプロセスを示したフローチャートである。本実施形態において、制御部130は、まず再生樹脂の粘度から、回収樹脂(第1樹脂)の粘度η1-pastを算出する(第1-5b-1工程、工程S150d)。そして、算出した粘度η1-pastを保存していく(第1-5b-2工程、工程S150e)。所定量の粘度η1-pastが蓄積されたら、蓄積された粘度η1-pastをもとに、粘度ηの経時変化を示す予測式を作成する(第1-5b-3工程、工程S150f)。次に、作製された予測式から、現時点における回収樹脂(第1樹脂)の粘度η1-presentを予測する(第1-5b-4工程、工程S150g)。そして、予測された第1の樹脂の粘度η1-presentから、得られる再生樹脂の粘度が所望の粘度になるように添加樹脂(第2樹脂および第3樹脂)の供給量を決定する(第1-5b-5工程、工程S150h)。そして、制御部130は、ホッパー115からの添加樹脂(第2樹脂および第3樹脂)の供給量を、決定された供給量に変更する(第1-5b-6工程、工程S150i)。なお、制御部130は、ROM136に格納されたプログラムをRAM134に記憶させ、当該プログラムを時刻することにより、これらのサブプロセスを行う。以下、各サブプロセスについて説明する。 FIG. 5 is a flowchart showing each sub-process in the step in which the control unit 130 changes the supply amount of the added resin in steps 1-5 (step S150) of this embodiment. In the present embodiment, the control unit 130 first calculates the viscosity η 1-past of the recovered resin (first resin) from the viscosity of the recycled resin (Step 1-5b-1, Step S150d). Then, the calculated viscosity η 1-past is stored (step 1-5b-2, step S150e). When a predetermined amount of viscosity η 1-past is accumulated, a prediction formula indicating the change in viscosity η 1 over time is created based on the accumulated viscosity η 1-past (Step 1-5b-3, Step S150f ). Next, the viscosity η 1-present of the recovered resin (first resin) at the present time is predicted from the created prediction formula (Step 1-5b-4, Step S150g). Then, based on the predicted viscosity η 1-present of the first resin, the supply amount of the additive resins (second resin and third resin) is determined so that the viscosity of the obtained recycled resin becomes the desired viscosity (the second resin and the third resin). Step 1-5b-5, step S150h). Then, the control unit 130 changes the supply amount of the added resin (second resin and third resin) from the hopper 115 to the determined supply amount (Step 1-5b-6, Step S150i). Note that the control unit 130 performs these sub-processes by storing the program stored in the ROM 136 in the RAM 134 and timing the program. Each sub-process will be explained below.
 2-1.回収樹脂の粘度η1-pastの算出(第1-5b-1工程:工程S150d)
 本サブプロセスにおいて、制御部130は、回収樹脂(第1樹脂)の体積分率φ、添加樹脂(第2樹脂および第3樹脂)のそれぞれの体積分率φおよびφならびに既知の粘度ηおよびη、ならびに得られた再生樹脂の粘度ηから、回収樹脂(第1樹脂)の粘度η1-pastを算出する。回収樹脂(第1樹脂)の粘度η1-pastの求め方は、第1の実施形態における第1-5a-1工程と同様とすることができる。なお、本実施形態において、回収樹脂(第1樹脂)の粘度η1-pastの算出は、定期または不定期に複数回行うか、または連続的に行い続ける。
2-1. Calculation of viscosity η 1-past of recovered resin (Step 1-5b-1: Step S150d)
In this sub-process, the control unit 130 controls the volume fraction φ 1 of the recovered resin (first resin), the volume fractions φ 2 and φ 3 of the added resins (second resin and third resin), and the known viscosity. The viscosity η 1-past of the recovered resin (first resin) is calculated from η 2 and η 3 and the viscosity η d of the obtained recycled resin. The method for determining the viscosity η 1-past of the recovered resin (first resin) can be the same as in step 1-5a-1 in the first embodiment. In the present embodiment, the calculation of the viscosity η 1-past of the recovered resin (first resin) is performed multiple times regularly or irregularly, or continuously.
 2-2.回収樹脂の粘度η1-pastの保存(第1-5b-2工程:工程S150e)
 本サブプロセスにおいて、制御部130は、前サブプロセス(第1-5b-1工程)で算出された回収樹脂(第1樹脂)の粘度η1-pastを、測定した時間とともに、RAM134または記憶部138に保存する。時間の経過とともに、粘度η1-pastと時間とがセットになったデータが蓄積されていく。
2-2. Preservation of viscosity η 1-past of recovered resin (Step 1-5b-2: Step S150e)
In this sub-process, the control unit 130 stores the viscosity η 1-past of the recovered resin (first resin) calculated in the previous sub-process (step 1-5b-1) in the RAM 134 or storage unit along with the measured time. 138. As time passes, data in which the viscosity η 1-past and time are set is accumulated.
 2-3.予測式の作成(第1-5b-3工程:工程S150f)
 前サブプロセス(第1-5b-2工程)において蓄積したデータの量が所定量となった後、本サブプロセスにおいて、制御部130は、蓄積されたデータをもとに、粘度ηの経時変化を示す予測式、たとえば再生樹脂の製造開始からの経過時間と粘度ηとの関係を示す数式を作成する。
2-3. Creation of prediction formula (Step 1-5b-3: Step S150f)
After the amount of data accumulated in the previous sub-process (step 1-5b-2) reaches a predetermined amount, in this sub-process, the control unit 130 determines the viscosity η 1 over time based on the accumulated data. A predictive formula showing the change, for example, a mathematical formula showing the relationship between the elapsed time from the start of production of the recycled resin and the viscosity η 1 is created.
 予測式の作成方法は特に限定されず、たとえば、経過時間と粘度η1-pastとの関係を近似する一次式や高次式を求めればよい。このとき、移動平均により粘度η1-pastの経時変化を平滑化させ、平滑化された粘度η1-pastの経時変化に基づいて予測式を作成してもよい。 The method for creating the prediction formula is not particularly limited, and for example, a linear formula or a higher-order formula that approximates the relationship between elapsed time and viscosity η 1-past may be determined. At this time, the temporal change in the viscosity η 1-past may be smoothed by a moving average, and a prediction formula may be created based on the smoothed temporal change in the viscosity η 1-past .
 たとえば、過去600秒から現時点迄の600秒間のη1-pastを移動平均により一次近似式Y=AX+B に近似して(Y=η1-past、 X=時間(秒))、さらに600秒後におけるY=η1-present、 X=時間(秒)を予測する方法などがある。さらにこのとき、過去の実績で解っているηの最大値η1-maxや最小値η1-minの範囲を超えてηの過大予測や過小予測をする可能性があるため、予測式と条件分岐を組み合わせて予測値が絶えず最大と最小の範囲を超えないようにする方法などが考えられる。 For example, η 1-past for 600 seconds from the past 600 seconds to the present time is approximated by the linear approximation formula Y=AX+B (Y=η 1-past , X=time (seconds)), and after another 600 seconds There is a method of predicting Y=η 1-present and X=time (seconds) in . Furthermore, at this time, there is a possibility that η 1 will be over- or under-predicted beyond the range of the maximum value η 1-max and minimum value η 1-min of η 1 known from past results, so the prediction formula A possible method would be to combine this with conditional branching to ensure that the predicted value does not constantly exceed the maximum and minimum ranges.
 再生樹脂の製造を続けていくにつれ、前サブプロセス(第1-5b-2工程)により新たなデータが蓄積されていく。本サブプロセスにおいて、制御部130は、新たなデータの蓄積に伴い、予測式を更新していくことが好ましい。このとき、制御部は、過去に蓄積されたすべてのデータを用いて新たな予測式を作成していってもよいし、直近のデータ、たとえば現時点から所定時間(たとえば10分以上40分以下の時間)だけ遡った過去のデータのみを用いて新たな予測式を作成していってもよい。あるいは、蓄積されたデータのうち所定の個数のデータを抜き取って新たな予測式を作成していってもよい。 As the production of recycled resin continues, new data is accumulated from the previous sub-process (Step 1-5b-2). In this sub-process, it is preferable that the control unit 130 updates the prediction formula as new data is accumulated. At this time, the control unit may create a new prediction formula using all the data accumulated in the past, or the control unit may create a new prediction formula using all the data accumulated in the past, or the control unit may create a new prediction formula using all the data accumulated in the past. A new prediction formula may be created using only past data that goes back by (time). Alternatively, a new prediction formula may be created by extracting a predetermined number of data from the accumulated data.
 2-4.回収樹脂の粘度η1-presentの予測(第1-5b-4工程:工程S150g)
 本サブプロセスにおいて、制御部130は、前サブプロセス(第1-5b-3工程)で作成された予測式を用いて、現時点においてシリンダ111に供給される回収樹脂(第1樹脂)の粘度η1-presentを予測する。
2-4. Prediction of viscosity η 1-present of recovered resin (Step 1-5b-4: Step S150g)
In this sub-process, the control unit 130 uses the prediction formula created in the previous sub-process (step 1-5b-3) to determine the viscosity η of the recovered resin (first resin) supplied to the cylinder 111 at the current moment. 1-Predict present .
 具体的には、制御部130は、現時点における時刻(再生樹脂の製造開始からの経過時間)を、上記予測式に代入し、得られたηの値を、現時点における回収樹脂(第1樹脂)の粘度η1-presentだとする。 Specifically, the control unit 130 substitutes the current time (time elapsed from the start of production of recycled resin) into the above prediction formula, and uses the obtained value of ) has a viscosity η 1-present .
 2-5.添加樹脂の供給量の決定(第1-5b-5工程:工程S150h)
 本サブプロセスにおいて、制御部130は、前サブプロセス(第1-5b-4工程)で算出された回収樹脂(第1樹脂)の粘度η1-presentに基づき、再生樹脂の粘度が所望の粘度になるように添加樹脂(第2樹脂および第3樹脂)の供給量を決定する。
2-5. Determining the supply amount of added resin (Step 1-5b-5: Step S150h)
In this sub-process, the control unit 130 controls the viscosity of the recycled resin to a desired viscosity based on the viscosity η 1-present of the recovered resin (first resin) calculated in the previous sub-process (step 1-5b-4). The supply amount of the added resin (second resin and third resin) is determined so that the following results are obtained.
 本サブプロセスにおいて添加樹脂(第2樹脂および第3樹脂)の供給量を決定する方法は、第1の実施形態における第1-5a-2工程と同様とすることができる。 The method for determining the supply amount of the added resin (second resin and third resin) in this sub-process can be the same as in step 1-5a-2 in the first embodiment.
 2-6.添加樹脂の供給量の変更(第1-5b-6工程:工程S150i)
 本サブプロセスにおいて、制御部130は、前サブプロセス(第1-5b-5工程)で決定された供給量の第2樹脂および第3樹脂がシリンダ111の内部に供給されるように、ホッパー115からの添加樹脂(第2樹脂および第3樹脂)の供給量を変更する。
2-6. Change in supply amount of added resin (Step 1-5b-6: Step S150i)
In this sub-process, the control unit 130 controls the hopper 115 so that the second resin and the third resin in the supply amounts determined in the previous sub-process (step 1-5b-5) are supplied into the cylinder 111. The supply amount of the added resin (second resin and third resin) is changed.
 本サブプロセスにおいて添加樹脂(第2樹脂および第3樹脂)の供給量を決定する方法は、第1の実施形態における第1-5a-3工程と同様とすることができる。 The method for determining the supply amount of the added resin (second resin and third resin) in this sub-process can be the same as in step 1-5a-3 in the first embodiment.
 なお、本実施形態では、制御部130は、現時点における回収樹脂(第1樹脂)の粘度η1-presentを予測し、これに応じた添加樹脂(第2樹脂および第3樹脂)の供給量を決定していた。これの他に、所定時間先における回収樹脂(第1樹脂)の粘度η1-presentを予測して、これに応じた添加樹脂(第2樹脂および第3樹脂)の供給量を予め決定しておき、所定時間後の添加樹脂(第2樹脂および第3樹脂)の供給量を予め決定しておいた供給量に変更してもよい。 In the present embodiment, the control unit 130 predicts the viscosity η 1-present of the recovered resin (first resin) at the present time, and adjusts the supply amount of the added resins (second resin and third resin) accordingly. It had been decided. In addition to this, the viscosity η 1-present of the recovered resin (first resin) at a predetermined time ahead is predicted, and the supply amount of the added resins (second resin and third resin) is determined in advance according to this. The supply amount of the added resin (second resin and third resin) after a predetermined time may be changed to a predetermined supply amount.
 (効果)
 本実施形態によれば、予測式により予測された、精度がより高い回収樹脂(第1樹脂)の粘度η1-presentを用いて添加樹脂の供給量を決定することができるため、粘度がさらに均一化された再生樹脂を得ることができる。
(effect)
According to the present embodiment, the supply amount of the added resin can be determined using the more accurate viscosity η 1-present of the recovered resin (first resin) predicted by the prediction formula, so that the viscosity is further reduced. A homogenized recycled resin can be obtained.
 3.第3の実施形態
 第1の実施形態および第2の実施形態では、混練後の樹脂の粘度をもとに添加樹脂の量を変更することにより、得られる再生樹脂の粘度を均一化した。これに対し、本実施形態では、制御部130がさらに別の制御を行うことにより、再生樹脂の粘度のさらなる均一化を達成する。なお、本実施形態において制御部130が行う制御は、第1の実施形態または第2の実施形態における制御とは独立して、かつ平行して行うことができる。
3. Third Embodiment In the first embodiment and the second embodiment, the viscosity of the obtained recycled resin was made uniform by changing the amount of added resin based on the viscosity of the resin after kneading. In contrast, in the present embodiment, the control unit 130 performs further control to achieve further uniformity of the viscosity of the recycled resin. Note that the control performed by the control unit 130 in this embodiment can be performed independently of and in parallel with the control in the first embodiment or the second embodiment.
 図6は、本実施形態における制御部130の処理を示すフローチャートである。本実施形態において、制御部130は、まず粘度計120が測定した再生樹脂の粘度ηを示すデータを受け取り、当該データを保存する(第3-1工程、工程S310)。所定量の粘度ηが蓄積されたら、蓄積された粘度ηをもとに、粘度ηの経時変化の変動率を算出する(第3-2工程、工程S320)。そして、算出された変動率が許容範囲内か否かを判断し(第3-3工程、工程S330)、許容範囲内でないときに、再生樹脂の粘度ηの変動を抑制する方法を実行するか、あるいは提示する(第3-4工程、工程S340)。なお、制御部130は、ROM136に格納されたプログラムをRAM134に記憶させ、当該プログラムを実行することにより、これらの工程を行う。以下、各工程について説明する。 FIG. 6 is a flowchart showing the processing of the control unit 130 in this embodiment. In this embodiment, the control unit 130 first receives data indicating the viscosity η d of the recycled resin measured by the viscometer 120, and stores the data (Step 3-1, Step S310). Once a predetermined amount of viscosity η d has been accumulated, the rate of change in the viscosity η d over time is calculated based on the accumulated viscosity η d (step 3-2, step S320). Then, it is determined whether the calculated variation rate is within the allowable range (step 3-3, step S330), and when it is not within the allowable range, a method for suppressing the variation in the viscosity η d of the recycled resin is executed. or present it (Step 3-4, Step S340). Note that the control unit 130 performs these steps by storing a program stored in the ROM 136 in the RAM 134 and executing the program. Each step will be explained below.
 3-1.粘度ηの保存(第3-1工程:工程S310)
 本工程において、制御部130は、粘度計120が測定した再生樹脂の粘度ηを示すデータを受け取り、当該データを、測定した時間とともに、RAM134または記憶部138に保存する。時間の経過とともに、粘度ηと時間とがセットになったデータが蓄積されていく。
3-1. Preservation of viscosity η d (Step 3-1: Step S310)
In this step, the control unit 130 receives data indicating the viscosity η d of the recycled resin measured by the viscometer 120, and stores the data in the RAM 134 or the storage unit 138 along with the measurement time. As time passes, data in which the viscosity η d and time are set is accumulated.
 3-2.粘度ηの変動率の算出(第3-2工程:工程S320)
 前工程(第3-1工程)において蓄積したデータの量が所定量となった後、本工程において、制御部130は、蓄積されたデータをもとに、粘度ηの経時変化における変動率を算出する。変動率の算出方法は特に限定されず、たとえば、粘度ηの最大値と最小値との間の差(変動幅)を粘度ηdの平均値(あるいは目標とする粘度ηfinal)で除算してもよいし、粘度ηの経時変化を示す近似式を作成して当該近似式における粘度ηの変動率を求めてもよい。
3-2. Calculation of variation rate of viscosity η d (Step 3-2: Step S320)
After the amount of data accumulated in the previous step (Step 3-1) reaches a predetermined amount, in this step, the control unit 130 determines the rate of change in the viscosity η d over time based on the accumulated data. Calculate. The method of calculating the fluctuation rate is not particularly limited, and for example, the difference (fluctuation width) between the maximum value and minimum value of the viscosity η d is divided by the average value of the viscosity η d (or the target viscosity η final ). Alternatively, an approximate expression indicating the change over time of the viscosity η d may be created and the fluctuation rate of the viscosity η d based on the approximate expression may be determined.
 3-3.粘度ηの変動率の判断(第3-3工程:工程S330)
 本工程において、制御部130は、前工程(第3-2工程)で算出した変動率が、予め定められている許容可能な変動率の範囲に含まれているかどうかを判断する。許容可能な変動率は、再生樹脂の用途等に応じて任意に定めることができる。そして、算出された変動率が許容可能な範囲に含まれていると判断されたときは、再生樹脂の粘度は十分に均一化されているとみなすことができるので、制御部130は本工程における処理を終了する。
3-3. Determination of the fluctuation rate of viscosity η d (Step 3-3: Step S330)
In this step, the control unit 130 determines whether the fluctuation rate calculated in the previous step (step 3-2) is within a predetermined range of allowable fluctuation rates. The allowable rate of variation can be arbitrarily determined depending on the use of the recycled resin, etc. Then, when it is determined that the calculated fluctuation rate is within the allowable range, it can be considered that the viscosity of the recycled resin is sufficiently uniform, so that the control unit 130 Finish the process.
 3-4.変動抑制方法の実行・提示(第3-4工程:工程S340)
 前工程において、算出された変動率が許容可能な範囲に含まれていないと判断されたとき、制御部130は、再生樹脂の粘度ηの変動を抑制する方法を実行する、あるいは変動を抑制する方法を作業者に提示する。
3-4. Execution and presentation of variation suppression method (3rd-4th step: step S340)
In the previous step, when it is determined that the calculated variation rate is not within the allowable range, the control unit 130 executes a method of suppressing the variation in the viscosity η d of the recycled resin, or suppresses the variation. Show workers how to do this.
 たとえば、シリンダ111の内部に供給される回収樹脂の粘度ηの変動を抑制すれば(たとえば、変動周期をより長くすれば)、得られる再生樹脂の粘度ηの変動も抑制することができる。そのため、本工程において、制御部130は、供給される回収樹脂の粘度ηの変動を抑制するために、貯蔵部114が有する攪拌機114aの回転速度を速めたりして、貯蔵部114における再生樹脂の攪拌の度合いを高めてもよい。 For example, if fluctuations in the viscosity η 1 of the recovered resin supplied to the inside of the cylinder 111 are suppressed (for example, by making the fluctuation cycle longer), it is also possible to suppress fluctuations in the viscosity η d of the obtained recycled resin. . Therefore, in this process, the control unit 130 increases the rotational speed of the stirrer 114a included in the storage unit 114 in order to suppress fluctuations in the viscosity η 1 of the recovered resin to be supplied, so that the recycled resin in the storage unit 114 is increased. The degree of stirring may be increased.
 あるいは、シリンダ111の内部への回収樹脂の供給と、当該供給された回収樹脂により得られる再生樹脂の粘度ηの測定と、の間の間隔を短くして、より近い過去における回収樹脂の粘度ηを再生樹脂の粘度ηから算出できるようにしてもよい。これにより、回収樹脂の粘度ηの変動により生じる、算出された回収樹脂の粘度と、その時点における回収樹脂の粘度と、の差を小さくすることができ、工程S150bや工程S150hにおいて決定された量の添加樹脂を投入することにより得られる再生樹脂の粘度ηを、目標とする粘度ηfinalにより近いものとすることもできる。 Alternatively, by shortening the interval between supplying the recovered resin into the interior of the cylinder 111 and measuring the viscosity η d of the recycled resin obtained by the supplied recovered resin, the viscosity of the recovered resin in the more recent past may be reduced. η 1 may be calculated from the viscosity η d of the recycled resin. As a result, it is possible to reduce the difference between the calculated viscosity of the recovered resin and the viscosity of the recovered resin at that point, which is caused by fluctuations in the viscosity η 1 of the recovered resin. It is also possible to make the viscosity η d of the recycled resin obtained by adding the amount of additive resin closer to the target viscosity η final .
 具体的には、本工程において、制御部130は、スクリュー112の回転速度を速めたりして、シリンダ111の内部における再生樹脂と添加樹脂との混練時間をより短くしてもよい。また、添加樹脂を供給するホッパー115の位置を、押出機の下流側に設置することにより、シリンダ111の内部における再生樹脂と添加樹脂との混練時間をより短くしてもよい。混練機110は、ホッパー113およびホッパー115を、シリンダ111に沿って樹脂の流通方向に位置を変更可能な構成として、制御部130の制御により、ホッパー113およびホッパー115の位置を変更することで、シリンダ111の内部における再生樹脂と添加樹脂との混練時間を変更可能な構成としてもよい。なお、本明細書において、混練時間とは回収樹脂に2種類以上の添加樹脂を添加されてから粘度が計測されるまでの時間を意味する。 Specifically, in this step, the control unit 130 may increase the rotational speed of the screw 112 to further shorten the kneading time of the recycled resin and the added resin inside the cylinder 111. Moreover, the kneading time of the recycled resin and the added resin inside the cylinder 111 may be further shortened by installing the hopper 115 that supplies the added resin on the downstream side of the extruder. The kneading machine 110 has a configuration in which the positions of the hopper 113 and the hopper 115 can be changed in the flow direction of the resin along the cylinder 111, and by changing the positions of the hopper 113 and the hopper 115 under the control of the control unit 130, The kneading time of the recycled resin and the added resin inside the cylinder 111 may be configured to be variable. In this specification, the kneading time means the time from when two or more kinds of additive resins are added to the recovered resin until the viscosity is measured.
 たとえば、シリンダ111の内部における回収樹脂および添加樹脂の混練時間(回収樹脂および添加樹脂の両方がシリンダ111の内部に供給されてから、押出部116から押し出されるまでの時間)は、1分以上50分以下とすることができるが、3分以上30分以下であることが好ましく、5分以上20分以下であることがより好ましい。 For example, the kneading time of the recovered resin and the added resin inside the cylinder 111 (the time from when both the recovered resin and the added resin are supplied to the inside of the cylinder 111 until they are extruded from the extrusion section 116) is 1 minute or more and 50 minutes. Although the time can be set to 3 minutes or less, it is preferably 3 minutes or more and 30 minutes or less, and more preferably 5 minutes or more and 20 minutes or less.
 あるいは、シリンダ111の内部に供給する回収樹脂(第1樹脂)の体積が、供給される全樹脂に対して占める体積分率φをより小さくし、添加樹脂の体積分率(φ+φ)をより大きくしても、得られる再生樹脂の粘度ηの変動を抑制することができる。そのため、本工程において、制御部130は、ホッパー113から供給される回収樹脂(第1樹脂)の量を減らしたり、ホッパー115から供給される添加樹脂(第2樹脂および第3樹脂)の量を増やしたり、これらの両方の制御を行ったりして、回収樹脂(第1樹脂)の体積分率φをより小さくしてもよい。 Alternatively, the volume fraction φ 1 of the recovered resin (first resin) supplied into the cylinder 111 with respect to the total resin supplied may be made smaller, and the volume fraction of the added resin (φ 23 ) can suppress fluctuations in the viscosity η d of the obtained recycled resin. Therefore, in this step, the control unit 130 reduces the amount of recovered resin (first resin) supplied from the hopper 113 or reduces the amount of added resin (second resin and third resin) supplied from the hopper 115. The volume fraction φ 1 of the recovered resin (first resin) may be made smaller by increasing the volume fraction φ 1 or by controlling both of these.
 あるいは、貯蔵部114の容量をより大きくすることで、貯蔵部114の内部における回収樹脂の粘度ηの変動をより小さくしたり、シリンダ111の容量をより小さくしたり、スクリュー112の長さ(L)と直径(D)をの比率を変更したりすることで、シリンダ111の内部における回収樹脂および添加樹脂の混練時間を短くしたりすることもできる。このとき、制御部130は、入出力インターフェース142を介して、再生樹脂の粘度ηの変動が大きいことと、それに対し上記したような対策を推奨することを表示(提示)させるための信号を、外部のディスプレイに送信してもよい。 Alternatively, by increasing the capacity of the storage section 114, fluctuations in the viscosity η 1 of the recovered resin inside the storage section 114 can be made smaller, the capacity of the cylinder 111 can be made smaller, or the length of the screw 112 ( The kneading time of the recovered resin and the added resin inside the cylinder 111 can also be shortened by changing the ratio between L) and the diameter (D). At this time, the control unit 130 sends a signal via the input/output interface 142 to display (present) that the fluctuation in the viscosity η d of the recycled resin is large and that the above-mentioned countermeasures are recommended. , may be sent to an external display.
 たとえば、貯蔵部114の容量は、シリンダ111の容量よりも大きくすることができ、シリンダ111の容量の3倍以上であることが好ましく、シリンダの容量の5倍以上であることがより好ましい。 For example, the capacity of the storage section 114 can be larger than the capacity of the cylinder 111, preferably three times or more the capacity of the cylinder 111, and more preferably five times or more the capacity of the cylinder.
 なお、本実施形態では、制御部130が、再生樹脂の粘度ηの変動を抑制するための制御を行った。これとは反対に、制御部130は、算出された変動率が許容範囲内であったときに、省エネルギー化のために攪拌の度合いを弱めたり、よりしっかりとした混練をするためにシリンダ内部における回収樹脂および添加樹脂の混練時間をより長くしたり、より少ない添加樹脂による効率的なリサイクルを達成するために回収樹脂の割合をより多くしたりしてもよい。 Note that in this embodiment, the control unit 130 performed control to suppress fluctuations in the viscosity η d of the recycled resin. On the contrary, when the calculated rate of variation is within the allowable range, the control unit 130 reduces the degree of stirring to save energy, or controls the inside of the cylinder to knead more thoroughly. The kneading time of the recovered resin and added resin may be made longer, or the proportion of recovered resin may be increased to achieve efficient recycling with less added resin.
 (効果)
 本実施形態によれば、粘度がさらに均一化された再生樹脂を得ることができる。
(effect)
According to this embodiment, it is possible to obtain a recycled resin with a more uniform viscosity.
 [その他の実施形態]
 なお、上述の各実施形態はそれぞれ本発明の一例を示すものであり、本発明は上述の各実施形態に限定されるものではなく、本発明の思想の範囲内において、他の種々多様な各実施形態も可能であることは言うまでもない。
[Other embodiments]
It should be noted that each of the above-mentioned embodiments shows an example of the present invention, and the present invention is not limited to each of the above-mentioned embodiments. It goes without saying that other embodiments are also possible.
 たとえば、上述の各実施形態では、混練装置100は、押出部116から押し出さて樹脂流路117を流通する再生樹脂の粘度を、粘度計120により測定していた。しかし、混練装置100は、シリンダ111の内部におけるこれらの樹脂の粘度を測定する粘度計を有し、シリンダ111の内部において混練されている樹脂の粘度を測定してもよい。このとき測定する粘度は、再生樹脂および添加樹脂が供給された後の粘度であればよい。第3の実施形態に示したように、再生樹脂および添加樹脂の供給後、再生樹脂の粘度ηを測定するまでの時間が短いほうが、再生樹脂の粘度ηをより効率的に均一化することができる。この観点から、シリンダ111の内部において粘度を測定することは、再生樹脂の粘度ηの均一化に寄与するため好ましい。 For example, in each of the embodiments described above, the kneading device 100 measures the viscosity of the recycled resin extruded from the extrusion section 116 and flowing through the resin flow path 117 using the viscometer 120. However, the kneading device 100 may include a viscometer that measures the viscosity of these resins inside the cylinder 111 to measure the viscosity of the resin being kneaded inside the cylinder 111. The viscosity measured at this time may be the viscosity after the recycled resin and added resin are supplied. As shown in the third embodiment, the shorter the period of time between supplying the recycled resin and additive resin until measuring the viscosity η d of the recycled resin, the more efficiently the viscosity η d of the recycled resin can be made uniform. be able to. From this point of view, it is preferable to measure the viscosity inside the cylinder 111 because it contributes to making the viscosity η d of the recycled resin uniform.
 また、上述の各実施形態では、ポリエチレンとポリプロピレンとを含む回収樹脂に、ポリエチレンまたはポリプロピレンである添加樹脂を添加していたが、使用する樹脂種はこれらに限られない。本発明では、回収樹脂および添加樹脂が、ポリアミド、ポリスチレン、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、ポリ塩化ビニル(PVC)、ポリカーボネート、およびポリエステルなどを含む多様な樹脂のうち1種またはこれらの組合せであり得る。これらの樹脂は、オフグレード材や分離選別された回収材であってもよい。二酸化炭素排出量削減の観点から、植物資源を原料とするバイオマスプラスチックやマスバランス方式でバイオマス原料を一部含むプラスチックや生分解性プラスチックを用いることもできる。当然に、製造される再生樹脂もこれらの樹脂を含み得る。 Furthermore, in each of the embodiments described above, an additive resin such as polyethylene or polypropylene is added to the recovered resin containing polyethylene and polypropylene, but the type of resin used is not limited to these. In the present invention, the recovered resin and the additive resin are one or more of various resins including polyamide, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS), polyvinyl chloride (PVC), polycarbonate, and polyester. It can be a combination of These resins may be off-grade materials or separated and sorted recovered materials. From the perspective of reducing carbon dioxide emissions, it is also possible to use biomass plastics made from plant resources, plastics that partially contain biomass raw materials in a mass balance method, and biodegradable plastics. Naturally, the recycled resins produced may also contain these resins.
 また、上述の各実施形態では、Double-Reptation 理論により供給された回収樹脂の粘度η1-pastの逆算、およびηに基づく添加樹脂の供給量(第2樹脂および第3樹脂の体積分率φおよびφ)の決定を行っていたが、高分子をブレンドする際の、各高分子の量と、混合物の粘度と、の関係を示す他の理論を用いてもよい。 In addition, in each of the above-mentioned embodiments, the viscosity η 1-past of the supplied recovered resin is back calculated based on the Double-Reptation theory, and the supply amount of the added resin based on η 1 (the volume fraction of the second resin and the third resin φ 2 and φ 3 ), other theories describing the relationship between the amount of each polymer and the viscosity of the mixture when blending polymers may be used.
 また、上記第2の実施形態では、回収樹脂に対し、2種類の添加樹脂を添加していたが、3種類またはそれ以上の種類の添加樹脂を添加してもよい。このとき、2種類の添加樹脂の添加量のみを変更し、その他の添加樹脂の量を一定にすることで、上記計算を3種類以上の添加樹脂を添加するときにも拡張することができる。また、安定剤、酸化防止剤、結晶核剤などの添加剤、ゴムやタルク、炭酸カルシウムなどの充填剤、ガラス繊維、炭素繊維、有機繊維などの強化繊維材料をシリンダ111添加することもできる。 Furthermore, in the second embodiment, two types of additive resins are added to the recovered resin, but three or more types of additive resins may be added. At this time, by changing only the amounts of the two types of additive resins and keeping the amounts of the other additive resins constant, the above calculation can be extended to the case where three or more types of additive resins are added. Additionally, additives such as stabilizers, antioxidants, and crystal nucleating agents, fillers such as rubber, talc, and calcium carbonate, and reinforcing fiber materials such as glass fibers, carbon fibers, and organic fibers can also be added to the cylinder 111.
 また、上述の各実施形態では、シリンダ111に回収樹脂を添加していたが、回収樹脂のみならず、バージン材をシリンダ111に添加してもよいし、あるいは粘度が未知の天然樹脂やバイオマスプラスチックをシリンダ111に添加してもよい。また、ポリエチレンとポリプロピレンの共重合体などの相溶化剤として、液状のエチレン・プロピレンゴム、ペレット状のエチレン・プロピレンゴム、エチレン・ブテンゴム、プロピレン・ブテンゴム、プロピレン・ブテン・エチレンゴムをシリンダ111に添加しても良い。 Further, in each of the above embodiments, the recovered resin is added to the cylinder 111, but in addition to the recovered resin, virgin material may also be added to the cylinder 111, or natural resin or biomass plastic with unknown viscosity may be added. may be added to the cylinder 111. Additionally, liquid ethylene-propylene rubber, pellet-like ethylene-propylene rubber, ethylene-butene rubber, propylene-butene rubber, and propylene-butene-ethylene rubber are added to the cylinder 111 as compatibilizers for copolymers of polyethylene and polypropylene, etc. You may do so.
 また、上述の各実施形態において、押出部は、シート状、フィルム状、ロッド状、プレート状、パイプ状、異形断面成形品、およびストランド状などを含む公知のいかなる形状に、再生樹脂を押し出してもよい。また、押出部の後段にカッターなどを配置して、押し出された再生樹脂をペレット状に加工してもよい。あるいは、押出部の後段に公知の成形機を配置して、押し出された再生樹脂を所定の形状に成形加工してもよい。 In each of the above embodiments, the extrusion section extrudes the recycled resin into any known shape including sheet, film, rod, plate, pipe, irregular cross-section molded product, strand, etc. Good too. Alternatively, a cutter or the like may be disposed downstream of the extrusion section to process the extruded recycled resin into pellets. Alternatively, a known molding machine may be disposed downstream of the extrusion section to mold the extruded recycled resin into a predetermined shape.
 また、制御部130は、入出力インターフェース142から受け付けた、回収樹脂の回収時の状態(回収元、回収時期、保存期間、使用期間)と、第1-5a-1工程(工程S150a)や第1-5b-1工程(工程150b)で算出された回収樹脂の粘度ηと、の関係を保存し、これらを教師データとした機械学習により、回収樹脂の回収時の状態から、回収樹脂の粘度ηを推定する推定モデルを生成してもよい。そして、この推定モデル、あるいは予め作成済の上記推定モデルを用いて、回収樹脂の回収時の状態から、回収樹脂の粘度ηを出力してもよい。また、上記の各工程を繰り返し行うことにより算出される回収樹脂の粘度ηと、この回収樹脂の回収時の状態と、に基づいて、再学習により上記推定モデルを更新していってもよい。 Further, the control unit 130 receives the state of the collected resin at the time of collection (collection source, collection time, storage period, usage period) and the 1-5a-1 step (step S150a) and the 1-5a-1 step (step S150a). The relationship between the viscosity η 1 of the recovered resin and An estimation model for estimating the viscosity η 1 may be generated. Then, using this estimation model or the previously created estimation model, the viscosity η 1 of the recovered resin may be output from the state at the time of recovery of the recovered resin. Furthermore, the estimation model may be updated by relearning based on the viscosity η 1 of the recovered resin calculated by repeating each of the above steps and the state of the recovered resin at the time of recovery. .
 [シミュレーション]
 供給される回収樹脂の粘度ηが、中心値が2000Pas、振幅±500Pasとして、所定の周期で変動していると仮定し、粘度ηが800Pas(一定)の添加樹脂(第2樹脂)と、粘度ηが5000Pas(一定)の添加樹脂(第3樹脂)と、を混練機に添加して混練機で混練し、その後に押出したときの、押出により得られる再生樹脂の粘度ηの経時変化をシミュレートした。
[simulation]
Assuming that the viscosity η 1 of the supplied recovered resin fluctuates at a predetermined period with a center value of 2000 Pas and an amplitude ±500 Pas, the added resin (second resin) has a viscosity η 2 of 800 Pas (constant). , an added resin (third resin) with a viscosity η 3 of 5000 Pas (constant), are added to a kneader, kneaded in the kneader, and then extruded, the viscosity η d of the recycled resin obtained by extrusion is Changes over time were simulated.
 シミュレーションの条件は、以下の通りである。
 第2樹脂: ポリプロピレン 粘度η=800Pas、MFR=30g/10分
 第3樹脂: ポリプロピレン:粘度η=5000Pas、MFR=3.0g/10分
 樹脂の混合物の溶融状態での密度: 760kg/m
 回収樹脂貯蔵部(ホッパー)の体積: 1m
 混練機: 押出機(φ90mm、L/D=35、濾過部を含んだ内部体積0.023m
 吐出量:100kg/時
The conditions for the simulation are as follows.
Second resin: Polypropylene Viscosity η 2 = 800 Pas, MFR = 30 g/10 min Third resin: Polypropylene: Viscosity η 3 = 5000 Pas, MFR = 3.0 g/10 min Density of resin mixture in molten state: 760 kg/m 3
Volume of recovered resin storage section (hopper): 1m3
Kneading machine: Extruder (φ90mm, L/D=35, internal volume including filtration part 0.023m 3 )
Discharge amount: 100kg/hour
 なお、各樹脂の粘度は、測定温度230℃、測定時のせん断速度1.0(1/s)として測定した粘度とした。MFRはJIS7210(2014年)に準拠し2.16kg荷重、190℃条件で測定した値とした。また、混練機に供給した全樹脂の体積に対する、回収樹脂の供給量の体積分率をφ、第2樹脂の供給量の体積分率をφ、第3樹脂の供給量の体積分率をφ(φ+φ+φ=1)とした。このとき、得られる再生樹脂の目標とする粘度ηfinalを2200Pasとし、再生樹脂の粘度ηがηfinalとなるように、下記計算例に示す制御を行って、第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φを連続的に変化させていった。 The viscosity of each resin was measured at a measurement temperature of 230° C. and a shear rate of 1.0 (1/s) at the time of measurement. MFR was a value measured under 2.16 kg load and 190° C. conditions in accordance with JIS 7210 (2014). In addition, the volume fraction of the supply amount of the recovered resin is φ 1 , the volume fraction of the supply amount of the second resin is φ 2 , and the volume fraction of the third resin supply amount is the volume fraction of the supply amount of the third resin with respect to the volume of the total resin supplied to the kneader. was set to φ 3123 =1). At this time, the target viscosity η final of the obtained recycled resin is set to 2200 Pas, and the control shown in the calculation example below is performed so that the viscosity η d of the recycled resin becomes η final . The fraction φ 2 and the volume fraction φ 3 of the supply amount of the third resin were continuously changed.
 [計算例1](実施例)
 回収樹脂の粘度η1の変動周期を120分とし、φ=0.5、φ=0.3、φ=0.2とし、混練機中における回収樹脂および添加樹脂の混練時間を600秒としたときの、再生樹脂の粘度ηの経時変化をシミュレートした。具体的には、測定された再生樹脂の粘度ηと、600秒前に供給した第2樹脂の供給量の体積分率φおよび第3樹脂の供給量の体積分率φを用いて、下記式(1)により、600秒前に供給した回収樹脂の粘度η1-pastを逆算した。そして、下記式(1)により、現時点(再生樹脂の粘度ηを測定した時点)で供給する回収樹脂の粘度がη1-past(600秒前の粘度として算出された値)であるときに得られる再生樹脂の粘度ηが目標とする粘度ηfinalとなるような、第2樹脂の供給量の体積分率φおよび第3樹脂の供給量の体積分率φを算出し、φおよびφを算出された値に変更していった。
[Calculation example 1] (Example)
The fluctuation period of the viscosity η1 of the recovered resin was 120 minutes, φ 1 = 0.5, φ 2 = 0.3, φ 3 = 0.2, and the kneading time of the recovered resin and added resin in the kneader was 600 seconds. The change over time in the viscosity η d of the recycled resin was simulated. Specifically, using the measured viscosity η d of the recycled resin, the volume fraction φ 2 of the supply amount of the second resin supplied 600 seconds ago, and the volume fraction φ 3 of the supply amount of the third resin, , the viscosity η 1-past of the recovered resin supplied 600 seconds ago was back calculated using the following formula (1). Then, according to the following formula (1), when the viscosity of the recovered resin to be supplied at the present moment (at the time when the viscosity η d of the recycled resin is measured) is η 1-past (value calculated as the viscosity 600 seconds ago), The volume fraction φ 2 of the supply amount of the second resin and the volume fraction φ 3 of the supply amount of the third resin are calculated so that the viscosity η d of the obtained recycled resin becomes the target viscosity η final , and φ 2 and φ3 were changed to the calculated values.
 回収樹脂の粘度ηは変動するので、得られる再生樹脂の粘度ηも変動していく。変動する再生樹脂の粘度ηに基づいて、600秒前に供給した回収樹脂の粘度η1-pastの逆算、および逆算により得られた回収樹脂の粘度η1-pastが現時点でのηであると仮定しての第2樹脂の供給量の体積分率φおよび第3樹脂の供給量の体積分率φの算出を連続的に行い続けた。そして、回収樹脂の供給量の体積分率φは一定にしたまま、供給する第2樹脂の供給量の体積分率、および第3樹脂の供給量の体積分率を、算出された体積分率φおよび体積分率φに連続的に変更していった。 Since the viscosity η 1 of the recovered resin changes, the viscosity η d of the obtained recycled resin also changes. Based on the changing viscosity η d of the recycled resin, the viscosity η 1-past of the recovered resin supplied 600 seconds ago is calculated back, and the viscosity η 1-past of the recovered resin obtained by the back calculation is calculated at the current η 1 . The volume fraction φ 2 of the supply amount of the second resin and the volume fraction φ 3 of the supply amount of the third resin were continuously calculated on the assumption that there was a certain amount. Then, while keeping the volume fraction φ 1 of the supply amount of the recovered resin constant, the volume fraction of the supply amount of the second resin to be supplied and the volume fraction of the supply amount of the third resin are changed to the calculated volume fraction. The ratio φ 2 and the volume fraction φ 3 were successively changed.
 図7は、このときのη、算出された600秒前のη1-past(算出された値を、算出時から600秒前にプロットしている。)、測定されたη、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。 FIG. 7 shows η 1 at this time, the calculated η 1-past 600 seconds before (the calculated value is plotted 600 seconds before the calculation), the measured η d , and the supply It is a simulation result which shows the change of the volume fraction (phi) 2 of the supply amount of the 2nd resin, and the volume fraction (phi) 3 of the supply amount of the 3rd resin which were supplied by changing the quantity.
 測定された再生樹脂の粘度ηに基づいて第2樹脂の供給量の体積分率φおよび第3樹脂の供給量の体積分率φを変更していくことで、φおよびφの変更を行わないとき(計算例11)よりも再生樹脂の粘度ηの変動率が小さくなった。供給される回収樹脂の粘度ηの振幅が25%(500Pas/2000Pas)であるのに対し、本計算例における、樹脂の吐出開始(運転開始から600秒後)から3時間の間の再生樹脂の粘度ηの変動率は14.0%だった。 By changing the volume fraction φ 2 of the supply amount of the second resin and the volume fraction φ 3 of the supply amount of the third resin based on the measured viscosity η d of the recycled resin, φ 2 and φ 3 The rate of variation in the viscosity η d of the recycled resin was smaller than when no change was made (calculation example 11). While the amplitude of the viscosity η 1 of the supplied recovered resin is 25% (500 Pas/2000 Pas), in this calculation example, the recycled resin during 3 hours from the start of resin discharge (600 seconds after the start of operation) The variation rate of the viscosity η d was 14.0%.
 [計算例2](実施例)
 回収樹脂の粘度ηの変動周期を240分とし、他の条件は変えずに、計算例1と同様のシミュレーションを行った。図8は、このときの回収樹脂の粘度η、算出された600秒前の回収樹脂の粘度η1-past、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。
[Calculation example 2] (Example)
A simulation similar to Calculation Example 1 was performed with the fluctuation period of the viscosity η 1 of the recovered resin set to 240 minutes and other conditions unchanged. FIG. 8 shows the viscosity η 1 of the recovered resin at this time, the calculated viscosity η 1-past of the recovered resin 600 seconds ago, the measured viscosity η d of the recycled resin, and the amount of the recycled resin supplied after being changed. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
 回収樹脂の粘度ηの変動周期を計算例1よりも長くすると、再生樹脂の粘度ηの変動率がより小さくなった。本計算例における再生樹脂の粘度ηの変動率は6.8%だった。 When the period of variation in the viscosity η 1 of the recovered resin was made longer than in Calculation Example 1, the rate of variation in the viscosity η d of the recycled resin became smaller. The fluctuation rate of the viscosity η d of the recycled resin in this calculation example was 6.8%.
 [計算例3](実施例)
 回収樹脂の粘度ηの変動周期を480分とし、他の条件は変えずに、計算例1と同様のシミュレーションを行った。図9は、このときの回収樹脂の粘度η、算出された600秒前の回収樹脂の粘度η1-past、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。
[Calculation example 3] (Example)
A simulation similar to Calculation Example 1 was performed with the fluctuation period of the viscosity η 1 of the recovered resin set to 480 minutes and other conditions unchanged. FIG. 9 shows the viscosity η 1 of the recovered resin at this time, the calculated viscosity η 1-past of the recovered resin 600 seconds before, the measured viscosity η d of the recycled resin, and the amount of the recycled resin supplied with the changed supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
 回収樹脂の粘度ηの変動周期をさらに長くすると、再生樹脂の粘度ηの変動率がさらに小さくなった。本計算例における再生樹脂の粘度ηの変動率は3.1%だった。 When the period of variation in the viscosity η 1 of the recovered resin was further lengthened, the rate of variation in the viscosity η d of the recycled resin was further reduced. The fluctuation rate of the viscosity η d of the recycled resin in this calculation example was 3.1%.
 計算例1~計算例3から、得られる再生樹脂の粘度に基づいて供給すべき2種類の添加樹脂の体積分率を計算して、次に供給する2種類の添加樹脂の体積分率を変更していくことで、回収樹脂の粘度ηの変動に由来する再生樹脂の粘度ηの変動を抑制できることがわかった。 From Calculation Examples 1 to 3, calculate the volume fractions of the two types of additive resins to be supplied based on the viscosity of the obtained recycled resin, and then change the volume fractions of the two types of additive resins to be supplied. It has been found that by doing so, it is possible to suppress fluctuations in the viscosity η d of the recycled resin resulting from fluctuations in the viscosity η 1 of the recovered resin.
 また、回収樹脂の粘度ηの変動をより小さくすることで、再生樹脂の粘度ηの変動率もより小さくなることがわかった。このことから、回収樹脂を貯留する貯蔵部の容積を大きくしたり、貯蔵部で回収樹脂を攪拌したりして、回収樹脂の粘度ηの変動を小さくすることが、再生樹脂の粘度ηの安定化に寄与することがわかった。 Furthermore, it was found that by making the variation in the viscosity η 1 of the recovered resin smaller, the rate of variation in the viscosity η d of the recycled resin also became smaller. From this, it is possible to reduce the fluctuation in the viscosity η 1 of the recycled resin by increasing the volume of the storage section that stores the recovered resin or by stirring the recovered resin in the storage section . It was found that this contributes to the stabilization of
 [計算例4](実施例)
 混練機における回収樹脂および添加樹脂の混練時間を300秒とし、他の条件は変えずに、計算例1と同様のシミュレーションを行った。図10は、このときの回収樹脂の粘度η、算出された300秒前の回収樹脂の粘度η1-past、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。
[Calculation example 4] (Example)
A simulation similar to Calculation Example 1 was performed with the kneading time of the recovered resin and added resin in the kneader being 300 seconds, and other conditions being unchanged. FIG. 10 shows the viscosity η 1 of the recovered resin at this time, the calculated viscosity η 1-past of the recovered resin 300 seconds ago, the measured viscosity η d of the recycled resin, and the viscosity η 1 of the recovered resin at this time, as well as the viscosity η d of the recycled resin supplied after changing the supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
 混練機における回収樹脂および添加樹脂の混練時間を短くすると、再生樹脂の粘度ηの変動率が計算例1よりも小さくなった。本計算例における再生樹脂の粘度ηの変動率は7.0%だった。 When the kneading time of the recovered resin and the added resin in the kneader was shortened, the rate of variation in the viscosity η d of the recycled resin became smaller than in Calculation Example 1. The fluctuation rate of the viscosity η d of the recycled resin in this calculation example was 7.0%.
 [計算例5](実施例)
 混練機における回収樹脂および添加樹脂の混練時間を300秒とし、回収樹脂の粘度ηの変動周期を240分とし、他の条件は変えずに、計算例1と同様のシミュレーションを行った。図11は、このときの回収樹脂の粘度η、算出された300秒前の回収樹脂の粘度η1-past、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。
[Calculation example 5] (Example)
A simulation similar to Calculation Example 1 was performed with the kneading time of the recovered resin and added resin in the kneader being 300 seconds, the fluctuation period of the viscosity η 1 of the recovered resin being 240 minutes, and other conditions unchanged. FIG. 11 shows the viscosity η 1 of the recovered resin at this time, the calculated viscosity η 1-past of the recovered resin 300 seconds before, the measured viscosity η d of the recycled resin, and the viscosity η 1 of the recovered resin at this time, as well as the viscosity η d of the recycled resin that was supplied after changing the supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
 混練機における回収樹脂および添加樹脂の混練時間を短くすると、再生樹脂の粘度ηの変動率が計算例2よりも小さくなった。また、回収樹脂の粘度ηの変動周期を計算例4よりも長くすると、再生樹脂の粘度ηの変動率がより小さくなった。本計算例における再生樹脂の粘度ηの変動率は3.4%だった。 When the kneading time of the recovered resin and the added resin in the kneader was shortened, the rate of variation in the viscosity η d of the recycled resin became smaller than in Calculation Example 2. Furthermore, when the period of variation in the viscosity η 1 of the recovered resin was made longer than in Calculation Example 4, the rate of variation in the viscosity η d of the recycled resin became smaller. The fluctuation rate of the viscosity η d of the recycled resin in this calculation example was 3.4%.
 [計算例6](実施例)
 混練機における回収樹脂および添加樹脂の混練時間を300秒とし、回収樹脂の粘度ηの変動周期を480分とし、他の条件は変えずに、計算例1と同様のシミュレーションを行った。図12は、このときの回収樹脂の粘度η、算出された300秒前の回収樹脂の粘度η1-past、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。
[Calculation example 6] (Example)
A simulation similar to Calculation Example 1 was performed with the kneading time of the recovered resin and the added resin in the kneader being 300 seconds, the fluctuation period of the viscosity η 1 of the recovered resin being 480 minutes, and other conditions unchanged. FIG. 12 shows the viscosity η 1 of the recovered resin at this time, the calculated viscosity η 1-past of the recovered resin 300 seconds before, the measured viscosity η d of the recycled resin, and the viscosity η 1 of the recovered resin at this time, as well as the viscosity η d of the recycled resin that was supplied after changing the supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
 混練機における回収樹脂および添加樹脂の混練時間を短くすると、再生樹脂の粘度ηの変動率が計算例3よりも小さくなった。また、回収樹脂の粘度ηの変動周期を計算例5よりも長くすると、再生樹脂の粘度ηの変動率がさらに小さくなった。本計算例における再生樹脂の粘度ηの変動率は1.6%だった。 When the kneading time of the recovered resin and the added resin in the kneader was shortened, the rate of variation in the viscosity η d of the recycled resin became smaller than in Calculation Example 3. Furthermore, when the period of variation in the viscosity η 1 of the recovered resin was made longer than in Calculation Example 5, the rate of variation in the viscosity η d of the recycled resin became even smaller. The fluctuation rate of the viscosity η d of the recycled resin in this calculation example was 1.6%.
 計算例4~計算例6から、混練機における回収樹脂および添加樹脂の混練時間を短くすることで、再生樹脂の粘度ηの変動率も小さくなることがわかった。このことから、混練機の容積を小さくしたり、樹脂の流動速度を速くしたりすることが、再生樹脂の粘度ηの安定化に寄与することがわかった。 From Calculation Examples 4 to 6, it was found that by shortening the kneading time of the recovered resin and added resin in the kneader, the rate of variation in the viscosity η d of the recycled resin also became smaller. From this, it was found that reducing the volume of the kneader and increasing the resin flow rate contributed to stabilizing the viscosity η d of the recycled resin.
 また、計算例4~計算例6からも、回収樹脂の粘度ηの変動を小さくすることで、再生樹脂の粘度ηの変動率も小さくなることがわかった。このことから、回収樹脂を貯留する貯蔵部の容積を大きくしたり、貯蔵部で回収樹脂を攪拌したりして、回収樹脂の粘度ηの変動を小さくすることが、再生樹脂の粘度ηの安定化に寄与することがわかった。 Further, from Calculation Examples 4 to 6, it was found that by reducing the fluctuation in the viscosity η 1 of the recovered resin, the rate of fluctuation in the viscosity η d of the recycled resin also decreased. From this, it is possible to reduce the fluctuation in the viscosity η 1 of the recycled resin by increasing the volume of the storage section that stores the recovered resin or by stirring the recovered resin in the storage section . It was found that this contributes to the stabilization of
 [計算例7](実施例)
 回収樹脂の供給量の体積分率φ、第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φをそれぞれ、φ=0.3、φ=0.3、φ=0.4とし、他の条件は変えずに、計算例1と同様のシミュレーションを行った。図13は、このときの回収樹脂の粘度η、算出された600秒前の回収樹脂の粘度η1-past、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。
[Calculation example 7] (Example)
The volume fraction φ 1 of the supply amount of the recovered resin, the volume fraction φ 2 of the supply amount of the second resin, and the volume fraction φ 3 of the supply amount of the third resin are respectively set as φ 1 =0.3, φ 2 =0.3 and φ 3 =0.4, and the same simulation as in Calculation Example 1 was performed without changing the other conditions. FIG. 13 shows the viscosity η 1 of the recovered resin at this time, the calculated viscosity η 1-past of the recovered resin 600 seconds ago, the measured viscosity η d of the recycled resin, and the viscosity η 1 of the recovered resin at this time, as well as the viscosity η d of the recycled resin that was supplied after changing the supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
 回収樹脂の供給量の体積分率φを少なくすると、再生樹脂の粘度ηの変動率が計算例1よりも小さくなった。本計算例における再生樹脂の粘度ηの変動率は8.5%だった。 When the volume fraction φ 1 of the supply amount of recovered resin was decreased, the rate of variation in the viscosity η d of the recycled resin became smaller than in Calculation Example 1. The fluctuation rate of the viscosity η d of the recycled resin in this calculation example was 8.5%.
 [計算例8](実施例)
 回収樹脂の供給量の体積分率φ、第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φをそれぞれ、φ=0.3、φ=0.3、φ=0.4とし、回収樹脂の粘度ηの変動周期を240分とし、他の条件は変えずに、計算例1と同様のシミュレーションを行った。図14は、このときの回収樹脂の粘度η、算出された600秒前の回収樹脂の粘度η1-past、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。
[Calculation example 8] (Example)
The volume fraction φ 1 of the supply amount of the recovered resin, the volume fraction φ 2 of the supply amount of the second resin, and the volume fraction φ 3 of the supply amount of the third resin are respectively set as φ 1 =0.3, φ 2 = 0.3, φ 3 = 0.4, the fluctuation period of the viscosity η 1 of the recovered resin was 240 minutes, and the same simulation as in Calculation Example 1 was performed without changing the other conditions. FIG. 14 shows the viscosity η 1 of the recovered resin at this time, the calculated viscosity η 1-past of the recovered resin 600 seconds ago, the measured viscosity η d of the recycled resin, and the viscosity η 1 of the recovered resin at this time, as well as the viscosity η d of the recycled resin supplied after changing the supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
 回収樹脂の供給量の体積分率φを少なくすると、再生樹脂の粘度ηの変動率が計算例2よりも小さくなった。また、回収樹脂の粘度ηの変動周期を計算例7よりも長くすると、再生樹脂の粘度ηの変動率がより小さくなった。本計算例における再生樹脂の粘度ηの変動率は4.2%だった。 When the volume fraction φ 1 of the supply amount of recovered resin was decreased, the rate of variation in the viscosity η d of the recycled resin became smaller than in Calculation Example 2. Furthermore, when the period of variation in the viscosity η 1 of the recovered resin was made longer than in Calculation Example 7, the rate of variation in the viscosity η d of the recycled resin became smaller. The fluctuation rate of the viscosity η d of the recycled resin in this calculation example was 4.2%.
 [計算例9](実施例)
 回収樹脂の供給量の体積分率φ、第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φをそれぞれ、φ=0.3、φ=0.3、φ=0.4とし、回収樹脂の粘度ηの変動周期を480分とし、他の条件は変えずに、計算例1と同様のシミュレーションを行った。図15は、このときの回収樹脂の粘度η、算出された600秒前の回収樹脂の粘度η1-past、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。
[Calculation example 9] (Example)
The volume fraction φ 1 of the supply amount of the recovered resin, the volume fraction φ 2 of the supply amount of the second resin, and the volume fraction φ 3 of the supply amount of the third resin are respectively set as φ 1 =0.3, φ 2 = 0.3, φ 3 = 0.4, the fluctuation period of the viscosity η 1 of the recovered resin was set to 480 minutes, and the same simulation as in Calculation Example 1 was performed without changing the other conditions. FIG. 15 shows the viscosity η 1 of the recovered resin at this time, the calculated viscosity η 1-past of the recovered resin 600 seconds ago, the measured viscosity η d of the recycled resin, and the viscosity η 1 of the recovered resin at this time, as well as the viscosity η d of the recycled resin that was supplied after changing the supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
 回収樹脂の供給量の体積分率φを少なくすると、再生樹脂の粘度ηの変動率が計算例3よりも小さくなった。また、回収樹脂の粘度ηの変動周期を計算例8よりも長くすると、再生樹脂の粘度ηの変動率がより小さくなった。本計算例における再生樹脂の粘度ηの変動率は1.9%だった。 When the volume fraction φ 1 of the supply amount of recovered resin was decreased, the rate of variation in the viscosity η d of the recycled resin became smaller than in Calculation Example 3. Furthermore, when the period of variation in the viscosity η 1 of the recovered resin was made longer than in Calculation Example 8, the rate of variation in the viscosity η d of the recycled resin became smaller. The fluctuation rate of the viscosity η d of the recycled resin in this calculation example was 1.9%.
 計算例7~計算例9から、回収樹脂の供給量の体積分率φをより小さくすることで、再生樹脂の粘度ηの変動率がより小さくなることがわかった。このことから、回収樹脂の供給量の体積分率φを制御することで、再生樹脂の粘度ηを安定化できることがわかった。 From Calculation Examples 7 to 9, it was found that by making the volume fraction φ 1 of the supply amount of recovered resin smaller, the fluctuation rate of the viscosity η d of the recycled resin becomes smaller. From this, it was found that the viscosity η d of the recycled resin could be stabilized by controlling the volume fraction φ 1 of the supply amount of the recovered resin.
 また、計算例7~計算例9からも、回収樹脂の粘度ηの変動をより小さくすることで、再生樹脂の粘度ηの変動率もより小さくなることがわかった。このことから、回収樹脂を貯留する貯蔵部の容積を大きくしたり、貯蔵部で回収樹脂を攪拌したりして、回収樹脂の粘度η1の変動を小さくすることが、再生樹脂の粘度ηの安定化に寄与することがわかった。 Further, from Calculation Examples 7 to 9, it was found that by reducing the fluctuation in the viscosity η 1 of the recovered resin, the rate of fluctuation in the viscosity η d of the recycled resin also became smaller. From this, it is possible to reduce the fluctuation in the viscosity η1 of the recycled resin by increasing the volume of the storage section that stores the recovered resin or stirring the recovered resin in the storage section . It was found that this contributes to stabilization.
 [計算例10](実施例)
 計算例1の条件で回収樹脂、第2樹脂および第3樹脂を混練するものとした。測定された再生樹脂の粘度ηと、600秒前に供給した第2樹脂の供給量の体積分率φおよび第3樹脂の供給量の体積分率φを用いての、式(1)による600秒前に供給した回収樹脂の粘度η1-pastの逆算を、樹脂の吐出開始(運転開始から600秒後)から、120秒ごとに行った。そして、得られたそれぞれの粘度η1-pastとそのときの経過時間をもとに、回収樹脂の粘度ηの経時変化を示す近似式を作成した。なお、このとき、過去5回(600秒)の逆算で得られた回収樹脂の粘度η1-pastを移動平均して平滑化し、移動平均された過去600秒のη1-pastを一次近似式Y=AX+B(Yはηを、Xは時間(秒)を示す。)に近似した。
[Calculation example 10] (Example)
The recovered resin, second resin, and third resin were kneaded under the conditions of Calculation Example 1. The formula ( 1 ), the viscosity η 1-past of the recovered resin supplied 600 seconds ago was calculated every 120 seconds from the start of resin discharge (600 seconds after the start of operation). Then, based on the obtained viscosity η 1-past and the elapsed time at that time, an approximate expression representing the change over time in the viscosity η 1 of the recovered resin was created. In addition, at this time, the viscosity η 1-past of the recovered resin obtained by back calculation of the past 5 times (600 seconds) is smoothed by moving average, and the moving averaged η 1-past of the past 600 seconds is expressed as a linear approximation formula. It was approximated as Y=AX+B (Y indicates η 1 and X indicates time (seconds)).
 この一次近似式を用いて、600秒後における回収樹脂の粘度(600秒後におけるη1-present)を予測した。そして、式(1)により、600秒後における回収樹脂の粘度ηが上記予測された値η1-presentであるときに、得られる再生樹脂の粘度ηを目標とする粘度ηfinal(2200Pas)とするための、600秒後に供給する第2樹脂の供給量の体積分率φおよび第3樹脂の供給量の体積分率φを算出した。そして、算出された体積分率に応じた量の第2樹脂および第3樹脂を、600秒後に供給するものとした。この制御を経時的に連続して行い、第2樹脂の供給量の体積分率φおよび第2樹脂の供給量の体積分率φを変更していった。なお、過去600秒のηをもとに、一次近似式は随時更新していった。 Using this first-order approximation formula, the viscosity of the recovered resin after 600 seconds (η 1-present after 600 seconds) was predicted. Then, according to equation (1), when the viscosity η 1 of the recovered resin after 600 seconds is the predicted value η 1−present , the viscosity η d of the obtained recycled resin is the target viscosity η final (2200 Pas ), the volume fraction φ 2 of the supply amount of the second resin and the volume fraction φ 3 of the supply amount of the third resin to be supplied after 600 seconds were calculated. Then, the second resin and the third resin were supplied in amounts corresponding to the calculated volume fractions after 600 seconds. This control was performed continuously over time, and the volume fraction φ 2 of the supply amount of the second resin and the volume fraction φ 3 of the supply amount of the second resin were changed. Note that the first-order approximation formula was updated as needed based on η 1 for the past 600 seconds.
 図16は、このときの回収樹脂の粘度η、算出された600秒前の回収樹脂の粘度η1-past、予測された600秒後における回収樹脂の粘度η1-present、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。なお、本計算例では、η1-pastとη1-presentとがほぼ重なる。図16にほぼ重複して表されたこれら2つの計算結果のうち、実線がであり、破線がη1-presentである。 FIG. 16 shows the viscosity η 1 of the recovered resin at this time, the calculated viscosity η 1-past of the recovered resin 600 seconds before, the predicted viscosity η 1-present of the recovered resin 600 seconds later, and the measured regeneration. These are simulation results showing changes in the viscosity η d of the resin, the volume fraction φ 2 of the supply amount of the second resin supplied with the supply amount changed, and the volume fraction φ 3 of the supply amount of the third resin. . Note that in this calculation example, η 1-past and η 1-present almost overlap. Of these two calculation results that are almost overlapped in FIG. 16, the solid line is η 1-present, and the broken line is η 1-present .
 図16は、このときの回収樹脂の粘度η、予測された600秒後における回収樹脂の粘度η1-present、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。 FIG. 16 shows the viscosity η 1 of the recovered resin at this time, the predicted viscosity η 1-present of the recovered resin after 600 seconds, the measured viscosity η d of the recycled resin, and the viscosity η 1 of the recovered resin at this time , as well as the viscosity η d of the recycled resin that was supplied after changing the supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
 近似式をもとに回収樹脂の粘度ηを予測し、予測値を用いて第2樹脂の供給量の体積分率φおよび第3樹脂の供給量の体積分率φを変更することで、再生樹脂の粘度ηの変動率がさらに小さくなった。本計算例における再生樹脂の粘度ηの変動率は1.0%だった。 Predicting the viscosity η 1 of the recovered resin based on the approximate formula, and using the predicted value to change the volume fraction φ 2 of the supply amount of the second resin and the volume fraction φ 3 of the supply amount of the third resin. Therefore, the rate of variation in the viscosity η d of the recycled resin was further reduced. The fluctuation rate of the viscosity η d of the recycled resin in this calculation example was 1.0%.
 計算例10から、粘度ηの予測値をもとに第2樹脂の供給量の体積分率φおよび第3樹脂の供給量の体積分率φを変更することで、再生樹脂の粘度ηの変動率をさらに小さくできることがわかった。 From calculation example 10, by changing the volume fraction φ 2 of the supply amount of the second resin and the volume fraction φ 3 of the supply amount of the third resin based on the predicted value of the viscosity η 1 , the viscosity of the recycled resin can be adjusted. It has been found that the fluctuation rate of η d can be further reduced.
 [計算例11](比較例)
 計算例1の条件で回収樹脂、第2樹脂および第3樹脂を混練するものとした。測定された再生樹脂の粘度ηに基づく、第2樹脂の供給量の体積分率φおよび第3樹脂の供給量の体積分率φの変更は、行わず、第2樹脂および第3樹脂の供給量は一定とした。図17は、このときの回収樹脂の粘度η、算出された600秒前の回収樹脂の粘度η1-past、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。
[Calculation example 11] (comparative example)
The recovered resin, second resin, and third resin were kneaded under the conditions of Calculation Example 1. Based on the measured viscosity η d of the recycled resin, the volume fraction φ 2 of the supply amount of the second resin and the volume fraction φ 3 of the supply amount of the third resin are not changed; The amount of resin supplied was constant. FIG. 17 shows the viscosity η 1 of the recovered resin at this time, the calculated viscosity η 1-past of the recovered resin 600 seconds before, the measured viscosity η d of the recycled resin, and the amount of the recycled resin supplied with the changed supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
 本計算例における再生樹脂の粘度ηdの変動率は23.0%だった。 The variation rate of the viscosity ηd of the recycled resin in this calculation example was 23.0%.
 [計算例12](比較例)
 回収樹脂の供給量の体積分率φ、第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φを、φ=0.5、φ=0.2、φ=0.3とした。測定された再生樹脂の粘度ηに基づく、第2樹脂の供給量の体積分率φおよび第3樹脂の供給量の体積分率φの変更は、行わず、第2樹脂および第3樹脂の供給量は一定とした。他の条件は変えず、計算例1と同様のシミュレーションを行った。図18は、このときの回収樹脂の粘度η、算出された600秒前の回収樹脂の粘度η1-past、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。
[Calculation example 12] (comparative example)
The volume fraction φ 1 of the supply amount of the recovered resin, the volume fraction φ 2 of the supply amount of the second resin, and the volume fraction φ 3 of the supply amount of the third resin are defined as φ 1 =0.5, φ 2 = 0.2, and φ 3 =0.3. Based on the measured viscosity η d of the recycled resin, the volume fraction φ 2 of the supply amount of the second resin and the volume fraction φ 3 of the supply amount of the third resin are not changed; The amount of resin supplied was constant. A simulation similar to Calculation Example 1 was performed without changing other conditions. FIG. 18 shows the viscosity η 1 of the recovered resin at this time, the calculated viscosity η 1-past of the recovered resin 600 seconds ago, the measured viscosity η d of the recycled resin, and the amount of the recycled resin supplied with the changed supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
 本計算例における再生樹脂の粘度ηdの変動率は26.9%だった。 The variation rate of the viscosity ηd of the recycled resin in this calculation example was 26.9%.
 [計算例13](比較例)
 回収樹脂の供給量の体積分率φ、第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φを、φ=0.3、φ=0.3、φ=0.4とした。測定された再生樹脂の粘度ηに基づく、第2樹脂の供給量の体積分率φおよび第3樹脂の供給量の体積分率φの変更は、行わず、第2樹脂および第3樹脂の供給量は一定とした。他の条件は変えず、計算例1と同様のシミュレーションを行った。図19は、このときの回収樹脂の粘度η、算出された600秒前の回収樹脂の粘度η1-past、測定された再生樹脂の粘度η、ならびに供給量を変更されて供給された第2樹脂の供給量の体積分率φ、および第3樹脂の供給量の体積分率φの変化を示すシミュレーション結果である。
[Calculation example 13] (comparative example)
The volume fraction φ 1 of the supply amount of recovered resin, the volume fraction φ 2 of the supply amount of the second resin, and the volume fraction φ 3 of the supply amount of the third resin are defined as φ 1 =0.3, φ 2 = 0.3, and φ 3 =0.4. Based on the measured viscosity η d of the recycled resin, the volume fraction φ 2 of the supply amount of the second resin and the volume fraction φ 3 of the supply amount of the third resin are not changed; The amount of resin supplied was constant. A simulation similar to Calculation Example 1 was performed without changing other conditions. FIG. 19 shows the viscosity η 1 of the recovered resin at this time, the calculated viscosity η 1-past of the recovered resin 600 seconds ago, the measured viscosity η d of the recycled resin, and the viscosity η 1 of the recovered resin at this time, as well as the viscosity η d of the recycled resin that was supplied after changing the supply amount. It is a simulation result which shows the change of volume fraction (phi) 2 of the supply amount of 2nd resin, and volume fraction (phi) 3 of the supply amount of 3rd resin.
 本計算例における再生樹脂の粘度ηdの変動率は16.7%だった。 The rate of variation in the viscosity ηd of the recycled resin in this calculation example was 16.7%.
 計算例11~計算例13から、測定された再生樹脂の粘度ηに基づく、第2樹脂の供給量の体積分率φおよび第3樹脂の供給量の体積分率φの変更を行わないと、再生樹脂の粘度ηの変動率はさほど小さくならないことがわかった。 From Calculation Examples 11 to 13, the volume fraction φ 2 of the supply amount of the second resin and the volume fraction φ 3 of the supply amount of the third resin are changed based on the measured viscosity η d of the recycled resin. It has been found that, without it, the rate of variation in the viscosity η d of the recycled resin does not become so small.
 本出願は、2022年8月31日出願の特願2022-138078号の優先権を主張する。当該出願の出願当初の明細書、請求の範囲および図面に記載された事項は、参照により本出願に援用される。 This application claims priority of Japanese Patent Application No. 2022-138078 filed on August 31, 2022. The matters described in the original specification, claims, and drawings of this application are incorporated by reference into this application.
 本発明の混練装置によれば、回収樹脂に添加樹脂を添加して、粘度を均一化した再生樹脂を得る際の、得られる再生樹脂の粘度の均一化を、1つの混練機のみを使用して実施することもできる。本発明の混練装置は、コンシューマー材やオフグレード材から得られる再生樹脂の粘度を均一化させ、多様な用途への使用が容易であるような再生樹脂に再生することができるため、これらの樹脂の再活用の幅を広げ、樹脂のリサイクル効率の向上に寄与すると期待される。また、その際に使用する混練機を1つのみとして、さらに省スペース化を可能として、再生樹脂の製造をより容易に行うことを可能とすると期待される。 According to the kneading apparatus of the present invention, when adding an additive resin to the recovered resin to obtain a recycled resin with a uniform viscosity, the viscosity of the obtained recycled resin can be made uniform by using only one kneading machine. It can also be carried out. The kneading device of the present invention can homogenize the viscosity of recycled resin obtained from consumer materials and off-grade materials, and can recycle these resins into recycled resins that can be easily used in a variety of applications. It is expected that this will expand the scope of reuse of resin and contribute to improving the recycling efficiency of resin. In addition, by using only one kneading machine, it is expected that it will be possible to further save space and make it possible to manufacture recycled resin more easily.
 100 混練装置
 110 混練機
 111 シリンダ
 112 スクリュー
 113 ホッパー
 114 貯蔵部
 114a 攪拌機
 115 ホッパー
 115a 第2樹脂供給部
 115b 第3樹脂供給部
 116 押出部
 117 樹脂流路
 120 粘度計
 130 制御部
 132 CPU
 134 RAM
 136 ROM
 138 記憶部
 142 入出力インターフェース
 

 
100 Kneading device 110 Kneader 111 Cylinder 112 Screw 113 Hopper 114 Storage section 114a Stirrer 115 Hopper 115a Second resin supply section 115b Third resin supply section 116 Extrusion section 117 Resin flow path 120 Viscometer 130 Control section 132 CPU
134 RAM
136 ROM
138 Storage unit 142 Input/output interface

Claims (20)

  1.  回収樹脂を混練機に供給する工程と、
     粘度が異なる2種類以上の添加樹脂を前記混練機に供給する工程と、
     前記回収樹脂と前記2種類以上の添加樹脂とを混練して再生樹脂を得る工程と、
     前記混練の開始後に、前記混練されている樹脂または混練により得られた再生樹脂の粘度を測定する工程と、
     前記測定された粘度に基づき、前記2種類以上の添加樹脂のそれぞれの供給量を変更する工程と、
     を有する、再生樹脂の製造方法。
    a step of supplying the recovered resin to a kneader;
    a step of supplying two or more types of additive resins having different viscosities to the kneading machine;
    a step of kneading the recovered resin and the two or more types of added resin to obtain a recycled resin;
    After the start of the kneading, measuring the viscosity of the kneaded resin or the recycled resin obtained by the kneading;
    a step of changing the supply amount of each of the two or more types of additive resins based on the measured viscosity;
    A method for producing recycled resin, comprising:
  2.  前記測定された粘度に基づき、前記回収樹脂の供給前の攪拌の度合いを変化させる、請求項1に記載の再生樹脂の製造方法。 The method for producing recycled resin according to claim 1, wherein the degree of stirring before supplying the recovered resin is changed based on the measured viscosity.
  3.  前記測定された粘度に基づき、前記混練機における前記回収樹脂と前記2種類以上の添加樹脂との混練時間を変化させる、請求項1または2に記載の再生樹脂の製造方法。 The method for producing recycled resin according to claim 1 or 2, wherein the kneading time of the recovered resin and the two or more types of added resins in the kneader is changed based on the measured viscosity.
  4.  前記測定された粘度から、前記供給された回収樹脂の粘度を算出する工程を有し、
     前記供給量を変更する工程は、前記算出された回収樹脂の粘度に基づいて決定された供給量に、前記2種類以上の添加樹脂のそれぞれの供給量を変更する工程である、
     請求項1~3のいずれか1項に記載の再生樹脂の製造方法。
    a step of calculating the viscosity of the supplied recovered resin from the measured viscosity,
    The step of changing the supply amount is a step of changing the supply amount of each of the two or more types of additive resin to the supply amount determined based on the calculated viscosity of the recovered resin,
    The method for producing recycled resin according to any one of claims 1 to 3.
  5.  前記混練機における前記回収樹脂と前記2種類以上の添加樹脂との混練時間は、3分以上30分以下である、請求項1~4のいずれか1項に記載の再生樹脂の製造方法。 The method for producing recycled resin according to any one of claims 1 to 4, wherein the time for kneading the recovered resin and the two or more types of added resin in the kneader is 3 minutes or more and 30 minutes or less.
  6.  前記再生樹脂は、ポリエチレン、ポリプロピレン、ポリアミド、ポリスチレン、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、ポリ塩化ビニル(PVC)、ポリカーボネート、およびポリエステルからなる群から選択される少なくとも1種の樹脂を含む、
     請求項1~5のいずれか1項に記載の再生樹脂の製造方法。
    The recycled resin includes at least one resin selected from the group consisting of polyethylene, polypropylene, polyamide, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS), polyvinyl chloride (PVC), polycarbonate, and polyester. ,
    The method for producing recycled resin according to any one of claims 1 to 5.
  7.  前記2種類以上の添加樹脂は、
     メルトフローレートがより小さい第2樹脂と、
     メルトフローレートがより大きい第3樹脂と、を含み、
     前記第2樹脂および前記第3樹脂の、ASTM D1238(2013年)に準拠して測定されるメルトフローレート(MFR)はいずれも1g/10分以上300g/10分以下である、
     請求項1~6のいずれか1項に記載の再生樹脂の製造方法。
    The two or more types of additive resins are:
    a second resin having a smaller melt flow rate;
    a third resin having a higher melt flow rate;
    The melt flow rate (MFR) of the second resin and the third resin measured in accordance with ASTM D1238 (2013) is 1 g/10 minutes or more and 300 g/10 minutes or less,
    The method for producing recycled resin according to any one of claims 1 to 6.
  8.  同一条件で測定される前記第2樹脂のメルトフローレートと前記第3樹脂のメルトフローレートとの比(第2樹脂のMFR/第3樹脂のMFR)は、2以上100以下である、
     請求項7に記載の再生樹脂の製造方法。
    The ratio of the melt flow rate of the second resin to the melt flow rate of the third resin (MFR of the second resin/MFR of the third resin) measured under the same conditions is 2 or more and 100 or less,
    The method for producing recycled resin according to claim 7.
  9.  前記回収樹脂の供給量は、前記再生樹脂の全体積に対して10体積%以上70体積%以下である、請求項1~8のいずれか1項に記載の再生樹脂の製造方法。 The method for producing recycled resin according to any one of claims 1 to 8, wherein the supply amount of the recovered resin is 10% by volume or more and 70% by volume or less based on the total volume of the recycled resin.
  10.  スクリューを有するシリンダと、
     回収樹脂を前記シリンダに供給する第1供給部と、
     粘度が互いに異なる2種類以上の添加樹脂を前記シリンダに供給する第2供給部と、を有し、
     前記回収樹脂と前記2種類以上の添加樹脂とを前記シリンダの内部で混練する混練機と、
     前記混練機により混練されている樹脂、または混練機による混練により得られた再生樹脂、の粘度を測定する粘度計と、
     前記粘度計が測定した粘度に基づき、前記第2供給部からの前記2種類以上の添加樹脂のそれぞれの供給量を変更する制御部と、
     を有する、再生樹脂の製造装置。
    a cylinder having a screw;
    a first supply unit that supplies recovered resin to the cylinder;
    a second supply section that supplies two or more types of additive resins having different viscosities to the cylinder,
    a kneader that kneads the recovered resin and the two or more types of additive resins inside the cylinder;
    a viscometer that measures the viscosity of the resin being kneaded by the kneader or the recycled resin obtained by kneading by the kneader;
    a control unit that changes the supply amount of each of the two or more types of additive resin from the second supply unit based on the viscosity measured by the viscometer;
    Recycled resin manufacturing equipment.
  11.  前記第1供給部は、前記シリンダに供給される回収樹脂を貯蔵する貯蔵部を有し、
     前記貯蔵部は、前記回収樹脂を攪拌する攪拌機を有する、
     請求項10に記載の再生樹脂の製造装置。
    The first supply unit has a storage unit that stores the recovered resin to be supplied to the cylinder,
    The storage unit includes a stirrer that stirs the recovered resin.
    The recycled resin manufacturing apparatus according to claim 10.
  12.  前記貯蔵部は、前記シリンダの容量よりも大きい容積を有する、請求項11に記載の再生樹脂の製造装置。 The recycled resin manufacturing apparatus according to claim 11, wherein the storage section has a volume larger than the capacity of the cylinder.
  13.  前記貯蔵部の容量は、前記シリンダの容量の5倍以上である、請求項11または12に記載の再生樹脂の製造装置。 The recycled resin manufacturing apparatus according to claim 11 or 12, wherein the capacity of the storage section is five times or more the capacity of the cylinder.
  14.  前記制御部は、前記粘度計が測定した粘度に基づき、前記攪拌機による前記回収樹脂の攪拌の度合いを変化させる、請求項11~13のいずれか1項に記載の再生樹脂の製造装置。 The recycled resin manufacturing apparatus according to any one of claims 11 to 13, wherein the control unit changes the degree of stirring of the recovered resin by the stirrer based on the viscosity measured by the viscometer.
  15.  前記制御部は、前記粘度計が測定した粘度に基づき、前記シリンダの内部における前記回収樹脂と前記2種類以上の添加樹脂との混練時間を変化させる、請求項10~14のいずれか1項に記載の再生樹脂の製造装置。 The control unit according to any one of claims 10 to 14, wherein the control unit changes the kneading time of the recovered resin and the two or more types of added resins inside the cylinder based on the viscosity measured by the viscometer. The apparatus for producing the recycled resin described above.
  16.  前記制御部は、前記測定された粘度から、前記供給された回収樹脂の粘度を算出し、前記算出された回収樹脂の粘度に基づいて決定された供給量に、前記2種類以上の添加樹脂のそれぞれの供給量を変更する、請求項10~15のいずれか1項に記載の再生樹脂の製造装置。 The control unit calculates the viscosity of the supplied recovered resin from the measured viscosity, and adds the two or more types of additive resin to the supplied amount determined based on the calculated viscosity of the recovered resin. The recycled resin manufacturing apparatus according to any one of claims 10 to 15, wherein the respective supply amounts are changed.
  17.  前記制御部は、前記測定された粘度から、前記供給された回収樹脂の粘度を算出し、前記算出された回収樹脂の粘度と、前記回収樹脂の回収時の状態と、を教師データとして、前記回収時の状態から予測される回収樹脂の粘度を推定する推定モデルを機械学習により生成する、
     請求項10~16のいずれか1項に記載の再生樹脂の製造装置。
    The control unit calculates the viscosity of the supplied recovered resin from the measured viscosity, and uses the calculated viscosity of the recovered resin and the state of the recovered resin at the time of recovery as training data. Generate an estimation model using machine learning to estimate the viscosity of recovered resin predicted from the state at the time of recovery.
    The apparatus for producing recycled resin according to any one of claims 10 to 16.
  18.  前記スクリューは、長さ(L)と直径(D)との比率(L/D)が20以上80以下である、請求項10~17のいずれか1項に記載の再生樹脂の製造装置。 The recycled resin manufacturing apparatus according to any one of claims 10 to 17, wherein the screw has a length (L) to diameter (D) ratio (L/D) of 20 or more and 80 or less.
  19.  回収樹脂と、粘度が異なる2種類以上の添加樹脂と、を混練して再生樹脂を製造する際に、前記2種類以上の添加樹脂の供給量を決定するコンピュータに、
     前記混練されている樹脂または混練により得られた再生樹脂から測定された粘度のデータを受け付けることと、
     前記粘度を測定された樹脂または再生樹脂の製造に用いた、前記回収樹脂の供給量、前記2種類以上の添加樹脂のそれぞれの供給量、および前記2種類以上の添加樹脂のそれぞれの粘度に基づいて、前記粘度を測定された樹脂または再生樹脂の粘度が目標とする粘度になるような前記2種類以上の添加樹脂のそれぞれの供給量を決定することと、
     を実行させるプログラム。
    When producing recycled resin by kneading the recovered resin and two or more types of additive resins having different viscosities, a computer that determines the supply amount of the two or more types of additive resins,
    receiving viscosity data measured from the kneaded resin or recycled resin obtained by kneading;
    Based on the supply amount of the recovered resin, the supply amount of each of the two or more types of additive resins, and the viscosity of each of the two or more types of additive resins used in the production of the resin or recycled resin whose viscosity was measured. determining the supply amount of each of the two or more types of additive resins such that the viscosity of the resin whose viscosity was measured or the recycled resin becomes a target viscosity;
    A program to run.
  20.  前記供給量を決定するときに、
     前記受け付けた粘度のデータに基づいて、前記回収樹脂の粘度を算出することと、
     前記算出された回収樹脂の粘度に基づいて、前記2種類以上の添加樹脂のそれぞれの供給量を決定することと、
     を前記コンピュータに実行させる、請求項19に記載のプログラム。
    When determining the supply amount,
    Calculating the viscosity of the recovered resin based on the received viscosity data;
    Determining the supply amount of each of the two or more types of additive resin based on the calculated viscosity of the recovered resin;
    The program according to claim 19, which causes the computer to execute.
PCT/JP2023/022994 2022-08-31 2023-06-21 Recycled resin production method, recycled resin production device, and program WO2024048031A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-138078 2022-08-31
JP2022138078 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048031A1 true WO2024048031A1 (en) 2024-03-07

Family

ID=90099404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022994 WO2024048031A1 (en) 2022-08-31 2023-06-21 Recycled resin production method, recycled resin production device, and program

Country Status (1)

Country Link
WO (1) WO2024048031A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534037A (en) * 2011-11-04 2014-12-18 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Recycled resin composition and disposable medical device manufactured therefrom
JP2021137979A (en) * 2020-03-02 2021-09-16 三井化学株式会社 Kneading device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534037A (en) * 2011-11-04 2014-12-18 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Recycled resin composition and disposable medical device manufactured therefrom
JP2021137979A (en) * 2020-03-02 2021-09-16 三井化学株式会社 Kneading device

Similar Documents

Publication Publication Date Title
JP2686592B2 (en) Elastic composition production process
Salleh et al. Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites
Xu et al. Effects of die geometry on cell nucleation of PS foams blown with CO2
Lima et al. Rheological properties of ground tyre rubber based thermoplastic elastomeric blends
RU2741976C2 (en) Molecular modification of polyethylene resin
JP2003002997A (en) Method for producing foam and foam
Abeykoon et al. The effect of materials' rheology on process energy consumption and melt thermal quality in polymer extrusion
JP7029917B2 (en) Granulation machine, granulation method and processing method
DK2129719T3 (en) Lavviskøs polymerblanding
Xin et al. Crystallization behavior and foaming properties of polypropylene containing ultra‐high molecular weight polyethylene under supercritical carbondioxide
JP2021137979A (en) Kneading device
EP3640002A1 (en) Screw shape estimation apparatus, screw shape estimation method, and screw shape estimation program
WO2024048031A1 (en) Recycled resin production method, recycled resin production device, and program
CN101423640B (en) Plastic rubber material and preparation method thereof and application thereof on refrigerating appliance internal lining
TW202411041A (en) Recycled resin manufacturing method, recycled resin manufacturing device and program
JP5086383B2 (en) Screw extruder simulation device and screw extruder simulation program
CN117841332A (en) Apparatus for producing extruded silicone intermediates, use of co-rotating twin screw extruders, and method for producing virgin silicone extrudates
Sutanto et al. The use of experimental design to study the responses of continuous devulcanization processes
Covas et al. A miniature extrusion line for small scale processing studies
McAfee et al. A novel approach to dynamic modelling of polymer extrusion for improved process control
CN112895527B (en) Preparation method of high-temperature-resistant modified asphalt waterproof coiled material and waterproof coiled material
JP2019069585A (en) Automatic startup control method of twin screw extruder
WO2022259476A1 (en) Kneading apparatus
US20100168335A1 (en) Method for producing polymer mixtures
JP2010254837A (en) Method for predicting particle size distribution of particle included in polymer-water emulsion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859801

Country of ref document: EP

Kind code of ref document: A1