WO2024046471A9 - Usp1抑制剂 - Google Patents

Usp1抑制剂 Download PDF

Info

Publication number
WO2024046471A9
WO2024046471A9 PCT/CN2023/116528 CN2023116528W WO2024046471A9 WO 2024046471 A9 WO2024046471 A9 WO 2024046471A9 CN 2023116528 W CN2023116528 W CN 2023116528W WO 2024046471 A9 WO2024046471 A9 WO 2024046471A9
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
ring
alkyl
pharmaceutically acceptable
trifluoromethyl
Prior art date
Application number
PCT/CN2023/116528
Other languages
English (en)
French (fr)
Other versions
WO2024046471A1 (zh
Inventor
覃华
石谷沁
张宇星
徐一鸣
郝俊国
陈昫
冯昊
祝盼虎
付家胜
孙维梅
孙大庆
Original Assignee
上海齐鲁制药研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海齐鲁制药研究中心有限公司 filed Critical 上海齐鲁制药研究中心有限公司
Publication of WO2024046471A1 publication Critical patent/WO2024046471A1/zh
Publication of WO2024046471A9 publication Critical patent/WO2024046471A9/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains three hetero rings
    • C07D513/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the present application belongs to the field of medicinal chemistry, and relates to novel compounds with USP1 inhibitory activity, pharmaceutical compositions containing the compounds, useful intermediates for preparing the compounds, and methods for using the compounds of the present application to treat USP1 target-mediated related diseases.
  • Ubiquitin is a small and highly conserved protein composed of 76 amino acids that binds to substrate proteins (including itself) via a three-step enzymatic reaction. The initial covalent attachment occurs primarily between the C-terminal glycine of ubiquitin and the ⁇ -amino group of a lysine residue of the target protein. Additional ubiquitin molecules can be attached to one of the seven internal lysines of ubiquitin, resulting in different ubiquitin chain topologies. The biological outcome of ubiquitination is determined by the length and the linkage topology.
  • ubiquitination is a reversible process counterregulated by enzymes called deubiquitinating enzymes (DUBs), which catalyze the removal of ubiquitin from modified proteins. More importantly, dysfunction of ubiquitin-dependent signaling pathways has been implicated in various human diseases, suggesting that inhibition of ubiquitin pathway components is a novel therapeutic target for drug discovery.
  • DRBs deubiquitinating enzymes
  • the ubiquitin-proteasome system offers additional opportunities for therapeutic intervention with the potential for increased specificity and improved clinical efficacy.
  • the most obvious targets include enzymes involved in ubiquitin conjugation and deconjugation (i.e., ubiquitin ligases and DUBs), upstream processes of proteasome-mediated protein degradation.
  • ubiquitin-specific protease 1 USP1
  • USP1 associates with UAF1 (USP1-associated factor 1) to generate the heterodimeric USP1/UAF1 complex required for deubiquitinase activity.
  • the USP1/UAF1 complex has been shown to regulate tolerance to DNA cross-linker-induced DNA damage through deubiquitination of PCNA (proliferating cell nuclear antigen) 11 and FANCD2 (Fanconi anemia complementation group D2), proteins that function in translesion synthesis and Fanconi anemia pathways, respectively.
  • PCNA proliferating cell nuclear antigen
  • FANCD2 Feanconi anemia complementation group D2
  • the first aspect of the present application provides a compound represented by formula (II'), its isomers and pharmaceutically acceptable salts thereof,
  • Xa is C or N
  • Ring A is a benzene ring, a 5-6 membered heteroaryl ring, a C 5-6 cycloalkyl ring or a 5-6 membered heterocyclyl ring;
  • Ra is each independently deuterium, halogen, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy , oxo, cyano, amino, hydroxyl, aminosulfonyl, C 1-4 alkylsulfonyl, carbamoyl, C 1-4 alkylamino, C 3-6 cycloalkyl, C 1-4 alkylsulfonylamino, dimethylphosphonyl , -C 1-4 alkyl-OH, -COOC 1-4 alkyl, C 1-4 alkyl-SO 2 -NR f -, HO-C 1-4 alkyl - SO 2 -NR f -, 3-6 membered heterocyclyl, -C 1-4 haloal
  • R b is hydrogen, C 1-4 alkyl
  • Ring B is a benzene ring, a 5-10 membered heteroaryl ring, or a 5-10 membered heterocyclyl ring;
  • R c is each independently halogen, C 1-4 alkyl, C 1-4 alkoxy, C 3-6 cycloalkyl, C 1-4 haloalkyl, C 1-4 haloalkoxy, or deuterated C 1-4 alkyl; n is 0, 1, 2, 3, or 4;
  • Ring D is a benzene ring, a 5-6 membered heteroaryl ring, or a 9-18 membered fused heterocyclyl ring;
  • Re is deuterium, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, ring C, or halogen, wherein ring C may be substituted with one R d ;
  • the ring C is a 5-10 membered heteroaryl ring, or an 8-10 membered heterocyclyl ring containing
  • L 1 is C 1-4 alkylene, C 3-6 cycloalkylene or a chemical bond
  • the compound of formula (II'), its isomers and pharmaceutically acceptable salts thereof characterized in that ring D is
  • the compound of formula (II'), its isomers and pharmaceutically acceptable salts thereof characterized in that ring D is
  • the compound of formula (II'), its isomers and pharmaceutically acceptable salts thereof characterized in that ring D is selected from
  • the compound of formula (II'), its isomers and pharmaceutically acceptable salts thereof are characterized in that Re is -CF 3 ,
  • the compound of the above formula (II'), its isomers and pharmaceutically acceptable salts thereof are characterized in that Re is -OCH 3 , -F, -D or -CH 3 .
  • the compound of the above formula (II'), its isomers and pharmaceutically acceptable salts thereof are characterized in that Re is selected from -CF 3 .
  • Xa is C or N
  • Xb , Xc , and Xd are each independently CH, N, or CR';R' is halogen, C1-4 alkyl, C1-4 haloalkyl, or C1-4 alkoxy; Ring A is a benzene ring, a 5-6-membered heteroaryl ring, a C5-6 cycloalkyl ring, or a 5-6-membered heterocyclyl ring; Ra is each independently deuterium, halogen, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy , oxo, cyano, amino, hydroxyl, aminosulfonyl, C1-4 alkylsulfonyl, carbamoyl, C1-4 alkylamino, C3-6 cycloalkyl, C1-4 alkylsulfonylamino, dimethylphosphonyl, -C1-4 alkyl-OH, -COOC1-4 alkyl, C1-4 alkyl- SO2 -
  • n 0, 1, 2, 3 or 4;
  • R b is hydrogen, C 1-4 alkyl
  • Ring B is a benzene ring, a 5-10 membered heteroaryl ring, or a 5-10 membered heterocyclyl ring;
  • R c is independently halogen, C 1-4 alkyl, C 1-4 alkoxy, C 3-6 cycloalkyl, C 1-4 haloalkyl, or C 1-4 haloalkoxy;
  • n is 0, 1, 2, 3, or 4;
  • Ring C is a 5-10 membered heteroaryl ring containing 1-4 nitrogen atoms;
  • R d is independently C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, deuterated C 1-4 alkyl;
  • l is 0, 1, 2, 3 or 4;
  • L 1 is C 1-4 alkylene, C 3-6 cycloalkylene or a chemical bond.
  • the present application also provides a compound represented by formula (I'-1), its isomers and pharmaceutically acceptable salts thereof,
  • X b , X c , and X d are each independently CH, N, or CR', and R' is halogen or C 1-4 alkoxy;
  • Ring A is a benzene ring, pyridine or a C 5-6 cycloalkyl ring;
  • Ra is independently halogen, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy , oxo, cyano, amino, hydroxyl, aminosulfonyl, C 1-4 alkylsulfonyl, carbamoyl, C 1-4 alkylamino, C 3-6 cycloalkyl, C 1-4 alkylsulfonylamino, dimethylphosphonyl, -C 1-4 alkyl- OH, -COOC 1-4 alkyl, C 1-4 alkyl-SO 2 -NR f -, HO-C 1-4 alkyl - SO 2 -NR f - , 3-6 membered heterocyclyl, -C 1-4 haloalkyl-OH, (C 1-4 alkyl) 2 P(O)-, The C atom in the C
  • R b is hydrogen, C 1-4 alkyl
  • Ring B is a 5-6 membered heteroaryl ring, a 5-10 membered heterocyclyl ring;
  • R c is each independently C 1-4 alkyl, C 1-4 alkoxy, C 3-6 cycloalkyl, or halogen;
  • n is 0, 1, 2, 3, or 4;
  • Ring C is a 5-6 membered heteroaryl ring containing 1-4 nitrogen atoms;
  • R d is independently C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy; l is 0, 1, 2, 3 or 4;
  • L 1 is C 1-4 alkylene or C 3-6 cycloalkylene.
  • X b , X c , and X d are each independently CH, N, or CR', and R' is halogen or C 1-4 alkoxy;
  • Ring A is a benzene ring, pyridine or a C 5-6 cycloalkyl ring;
  • Ra is independently deuterium, halogen, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, cyano, amino, aminosulfonyl, methylsulfonyl, -COOC 1-4 alkyl, -C 1-4 alkyl-OH, carbamoyl;
  • m is 0, 1, 2, 3 or 4;
  • R b is hydrogen, C 1-4 alkyl
  • Ring B is a 5-6 membered heteroaryl ring;
  • R c is independently C 1-4 alkyl, C 1-4 alkoxy, C 3-6 cycloalkyl, halogen;
  • n is 0, 1, 2, 3 or 4;
  • Ring C is a 5-6 membered heteroaryl ring containing 1-4 nitrogen atoms;
  • R d is independently C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy; l is 0, 1, 2, 3 or 4;
  • L 1 is C 1-4 alkylene or C 3-6 cycloalkylene.
  • the compounds of the above formula (II’), (I’) and (I’-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring A is a benzene ring or a 5-6-membered heteroaryl ring.
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring A is
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring A is
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring A is
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring A is
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring A is selected from
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that R' is independently -OCH 3 or -F.
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that Ra is independently -F, -OCH3 , -CF3 , -COOCH3 , -C( CH3 ) 2 -OH, -CHF2 , -CN, -Cl, -NH 2 , CH 3 -NH-S(O) 2 -, NH 2 -S(O) 2 -.
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that Ra is independently -F, -OCH 3 , or -CF 3 .
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that Ra is independently -COOCH3 , -C( CH3 ) 2 -OH, -CHF2 .
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that Ra is independently -CH3 , -OH, -Br , -CH2CH3 , -OCH(CH 3 ) 2 , D. -CD 3 ,
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof, are characterized by the structural unit for
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof, are characterized by the structural unit for
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents connection with ring B, and b represents connection with L1 .
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from Wherein a represents connection with ring B, and b represents connection with L1 .
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from Wherein a represents connection with ring B, and b represents connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from Wherein a represents connection with ring B, and b represents connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from Wherein a represents connection with ring B, and b represents connection with L1 .
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof, are characterized by the structural unit for
  • a represents the connection with ring B
  • b represents the connection with L1 .
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compounds of the above formula (II') and (I'), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from Wherein a represents the connection with ring B, and b represents the connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents connection with ring B, and b represents connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents connection with ring B, and b represents connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for Wherein a represents connection with ring B, and b represents connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from Wherein a represents connection with ring B, and b represents connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from Wherein a represents connection with ring B, and b represents connection with L1 .
  • the compound of formula (I'-1), its isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit Selected from Wherein a represents connection with ring B, and b represents connection with L1 .
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that R b is hydrogen.
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring B is
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring B is
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring B is
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring B is
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that R c is independently CH 3 O-, Cl-, CH(CH 3 ) 2 -, -OCHF 2 , -CF 3 .
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that R c is independently -OCH 3 , -CH(CH 3 ) 2 , -Cl.
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that R c is independently -CH 3 , -OCD 3 , .
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring C is
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring C is
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring C is
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring C is
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that ring C is
  • the compounds of formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that R d is independently -CF 3 , -CH 3 , -CH 2 CH 3 , -CH(CH 3 ) 2 , -OCH 2 CH 3 , -CD 3 .
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that R d is independently -CF 3 , -CH 3 , or -CH(CH 3 ) 2 .
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that R d is independently -CH 2 CH 3 .
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that R d is independently -Cl,
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that R d is independently Br or -F.
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized by the structural unit for
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that L1 is -CH2- , -CH( CH3 )-, -C( CH3 ) 2- ,
  • the compounds of formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that L1 is -CH2- , -CH( CH3 )-, or -C( CH3 ) 2- .
  • the compounds of the above formula (II'), (I') and (I'-1), their isomers and pharmaceutically acceptable salts thereof are characterized in that L 1 is -CH(C 2 H 5 )- or a chemical bond.
  • Ra , Rc , Rd , Re , L1 and m are the same as defined above in the present application; and X is selected from C, N or O.
  • Ra , Rc , Rd , L1 and m are the same as defined above in the present application.
  • Ra , Rc , Rd and m are the same as defined above in the present application.
  • Ra , Rc , Rd , Re and m are the same as defined above in the present application; and X is selected from C, N or O.
  • Ra , Rc , Rd , Re and m are the same as defined above in the present application.
  • the second aspect of the present application provides a method for preparing a compound:
  • Ring A, X b , X c , Ring C , R b , R c , and R d are as defined above in the present application;
  • Compound 1' is obtained by reacting SM1 and SM2 under base and catalyst conditions, wherein the base is selected from sodium carbonate, potassium carbonate, K 3 PO 4 , Na 2 CO 3 , CsF, Cs 2 CO 3 , t-Bu-Na, etc., and the catalyst is selected from Pd(PPh 3 ) 4 , Pd(dppf)Cl 2 , etc.;
  • Compound 2' is obtained by reacting compound 1' with 1,2-bis(diphenylphosphino)ethane;
  • Compound 3' is obtained by a substitution reaction between compound 2' and SM3 under alkaline conditions, wherein the base is selected from sodium hydride, sodium hydroxide, potassium hydroxide, sodium tert-butoxide, potassium tert-butoxide, etc.;
  • Compound 4' is obtained by coupling reaction of compound 3' and SM4 under base and catalyst conditions, the base is selected from sodium carbonate, potassium carbonate, K3PO4, Na2CO3 , CsF , Cs2CO3 , t-Bu-Na, etc., and the catalyst is selected from Pd( PPh3 ) 4 , Pd(dppf) Cl2 , etc.
  • X b , X c , Ring C, R c , R d , and Ra are as defined above in this application;
  • Compound 5' is obtained by reacting SM5 under base and catalyst conditions, wherein the base is selected from sodium carbonate, potassium carbonate, K 3 PO 4 , Na 2 CO 3 , CsF, Cs 2 CO 3 , t-Bu-Na, etc., and the catalyst is selected from Pd(PPh 3 ) 4 , Pd(dppf)Cl 2 , etc.;
  • Compound 6' is obtained by reacting compound 5' with 1,2-bis(diphenylphosphino)ethane;
  • Compound 7' is obtained by a substitution reaction between compound 6' and SM3 under alkaline conditions, wherein the base is selected from sodium hydride, sodium hydroxide, potassium hydroxide, sodium tert-butoxide, potassium tert-butoxide, etc.;
  • Compound 8' is obtained by reacting compound 7' under the conditions of base and catalyst, the base is selected from sodium carbonate, potassium carbonate, K 3 PO 4 , Na 2 CO 3 , CsF, Cs 2 CO 3 , t-Bu-Na, etc., and the catalyst is selected from Pd(PPh 3 ) 4 , Pd(dppf)Cl 2 , etc.;
  • the third aspect of the present application provides a pharmaceutical composition, which contains a therapeutically effective amount of the above-mentioned compound, its isomer or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
  • “Pharmaceutically acceptable carrier” refers to a medium generally acceptable in the art for delivering biologically active agents to animals, particularly mammals, including, for example, adjuvants, excipients or excipients, such as diluents, preservatives, fillers, flow regulators, disintegrants, wetting agents, emulsifiers, suspending agents, sweeteners, flavoring agents, aromatics, antibacterial agents, antifungal agents, lubricants and dispersants, depending on the nature of the mode of administration and the dosage form.
  • Pharmaceutically acceptable carriers are formulated within the scope of ordinary technicians in the field according to a large number of factors.
  • compositions containing the agent include, but are not limited to: the type and nature of the active agent to be formulated, the subject to whom the composition containing the agent is to be administered, the intended route of administration of the composition, and the target therapeutic indication.
  • Pharmaceutically acceptable carriers include both aqueous and non-aqueous media and a variety of solid and semi-solid dosage forms. In addition to the active agent, such carriers include many different ingredients and additives, and such additional ingredients included in the prescription for various reasons (e.g., stabilizing the active agent, adhesives, etc.) are well known to ordinary technicians in the field.
  • the fourth aspect of the present application provides the use of the above-mentioned compound, its isomer or pharmaceutically acceptable salt thereof or the above-mentioned pharmaceutical composition in the preparation of a drug for treating USP1 target-mediated related diseases.
  • the related diseases mediated by the USP1 target include cellular inflammatory diseases, neurodegenerative diseases, and cancer.
  • the compounds of the present application have significant USP1 enzyme inhibitory activity and can be used for the treatment of cancer.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and animals without excessive toxicity, irritation, allergic response, or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a derivative of the present invention compound prepared with a relatively non-toxic acid or base. These salts can be prepared during the synthesis, separation, and purification of the compound, or the purified free form of the compound can be used alone to react with a suitable acid or base.
  • the compound contains a relatively acidic functional group, it reacts with an alkali metal, alkaline earth metal hydroxide or an organic amine to obtain a base addition salt, including cations based on alkali metals and alkaline earth metals and non-toxic ammonium, quaternary ammonium and amine cations, and also covers amino acid salts.
  • the compound contains a relatively basic functional group, it reacts with an organic acid or an inorganic acid to obtain an acid addition salt.
  • excipient generally refers to carriers, diluents and/or vehicles required to formulate an effective pharmaceutical composition.
  • an effective preventive or therapeutic amount refers to a sufficient amount of the compound of the present application or its pharmaceutically acceptable salt to treat the disorder at a reasonable effect/risk ratio applicable to any medical treatment and/or prevention.
  • the total daily dosage of the compound represented by Formula II' of the present application or its pharmaceutically acceptable salt and composition must be determined by the attending physician within the scope of sound medical judgment.
  • the specific therapeutically effective dosage level must be determined based on a variety of factors, including the disorder being treated and the severity of the disorder; the activity of the specific compound used; the specific composition used; the patient's age, weight, general health, sex and diet; the administration time, route of administration and excretion rate of the specific compound used; the duration of treatment; drugs used in combination or concomitantly with the specific compound used; and similar factors known in the medical field.
  • the practice in the art is to start the dose of the compound from a level lower than that required to obtain the desired therapeutic effect and gradually increase the dose until the desired effect is obtained.
  • the term "5-10 membered heteroaryl” means a monocyclic or bicyclic group consisting of 5-10 ring atoms with a conjugated ⁇ electron system, wherein 1, 2, 3 or 4 ring atoms are heteroatoms independently selected from O, S and N, and the rest are carbon atoms.
  • the nitrogen atom is optionally quaternized, and the nitrogen and sulfur heteroatoms may be optionally oxidized (i.e., NO and S(O) p , p is 1 or 2).
  • the 5-6 membered heteroaryl may be attached to the rest of the molecule via a heteroatom or a carbon atom.
  • Examples of the 5-6 membered heteroaryl group include, but are not limited to, pyrrolyl (including N-pyrrolyl, 2-pyrrolyl and 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrazolyl and 3-pyrazolyl, etc.), imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl and 5-oxazolyl, etc.), triazolyl (1H-1,2,3-triazolyl, 2H-1,2, 3-triazolyl, 1H-1,2,4-triazolyl and 4H-1,2,4-triazolyl, etc.), tetrazolyl, isoxazolyl (3-isoxazolyl, 4-isoxazolyl and 5-isoxazolyl, etc.), thiazolyl (including 2-thiazolyl, 4-thiazo
  • fused heterocyclic group refers to a saturated or partially saturated non-aromatic cyclic group formed by two or more cyclic structures sharing two adjacent atoms, containing at least one ring atom as a heteroatom; the heteroatom is generally selected from N, O, S; the ring carbon atoms and heteroatoms in the fused heterocyclic ring can be further oxidized to form a cyclic group containing C(O), NO, SO, S(O) 2 groups, which is also included in the definition of heterocyclic groups in this application.
  • non-aromatic in this definition means that the group does not have aromaticity when it exists independently.
  • the 11-14 membered fused heterocyclic group described in the present application includes "11-14 membered saturated fused heterocyclic group" and "11-14 membered partially saturated fused heterocyclic group”; the fused mode can be 5-6 membered heterocyclic group and 5-6 membered heterocyclic group, 5-6 membered heterocyclic group and 5-6 membered cycloalkyl group, benzo 5-6 membered heterocyclic group, benzo 5-6 membered saturated heterocyclic group, 5-6 membered heteroaryl and 5-6 membered heterocyclic group, 5-6 membered heteroaryl and 5-6 membered saturated heterocyclic group, benzo 5-6 membered heterocyclic group and 5-6 membered heterocyclic group, 5-6 membered heteroaryl and 5-6 membered heterocyclic group, 5-6 membered heteroaryl and 5-6 membered heterocyclic group, benzo 5-6 membered cycloalkyl and 5-6 membered heterocyclic group, 5-6 membered heteroaryl
  • heterocyclic group refers to a substituted or unsubstituted saturated or unsaturated non-aromatic ring and contains 1-3 heteroatoms selected from N, O or S. Any carbon atom group or heteroatom in the heterocyclic group may be oxidized, for example, the carbon atom group forms -C(O)-.
  • heterocyclic group refers to a non-aromatic cyclic group derived from removing a hydrogen atom and containing at least one heteroatom as a ring atom; including saturated or partially saturated monocyclic heterocyclic groups; the heterocyclic group is independent of the connection position (i.e., it can be bonded through a carbon atom or a heteroatom).
  • heterocyclic groups include, but are not limited to
  • cycloalkyl refers to a saturated monocyclic or polycyclic hydrocarbon group.
  • the cycloalkyl group is preferably a C 3-12 cycloalkyl group, more preferably a C 3-8 cycloalkyl group, and further preferably a C 5-6 cycloalkyl group.
  • Examples of cycloalkyl groups include, but are not limited to, cyclopentyl and cyclohexyl groups.
  • cycloalkylene refers to a divalent radical formed by removing a hydrogen atom from a cycloalkyl group.
  • halogen means a fluorine, chlorine, bromine or iodine atom.
  • C 1-4 alkyl is used to refer to a C 1-4 straight or branched saturated hydrocarbon group.
  • alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, and the like.
  • alkylene refers to a saturated straight or branched aliphatic hydrocarbon group, which is a residue derived from the same carbon atom or two different carbon atoms of an alkane radical by removing two hydrogen atoms, and is a straight or branched group containing 1 to 20 carbon atoms, preferably 1 to 12 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12) carbon atoms, and more preferably 1 to 4 carbon atoms.
  • Alkylene groups include, but are not limited to, methylene (—CH 2 -), 1,1-ethylene (—CH(CH 3 )—), 1,2-ethylene (—CH 2 CH 2 )—, 1,1-propylene (—CH(CH 2 CH 3 )—), 1,2-propylene (—CH 2 CH(CH 3 )—), 1,3-propylene (—CH 2 CH 2 CH 2 —), 1,4-butylene (—CH 2 CH 2 CH 2 CH 2 —), and the like.
  • C 1-4 haloalkyl refers to an alkyl group in which one or more hydrogen atoms are substituted by a halogen atom. Examples include but are not limited to monofluoromethyl, difluoromethyl, trifluoromethyl, trichloromethyl, tribromomethyl, 2,2,2-trifluoroethyl, 2,2,2-trichloroethyl and the like.
  • C 1-4 alkoxy refers to a C 1-4 alkyl group attached via an oxygen bridge, and compounds include but are not limited to methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, and tert-butoxy.
  • -C 1-4 alkyl-OH refers to a C 1-4 alkyl group substituted with a hydroxyl group. Examples of such groups include, but are not limited to, -CH 2 -OH, -(CH 2 ) 2 -OH, and -CH(CH 3 ) 2 -OH.
  • C 3-6 cycloalkyl refers to a 3-6 membered monocyclic alkyl group.
  • monocyclic alkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
  • 5-6 membered heteroaryl containing 1-4 nitrogen atoms refers to a ring in which the carbon atoms are replaced by 1, 2, 3 or 4 nitrogen atoms. Examples include but are not limited to
  • FIG1 shows the tumor growth of mice in groups G1 to G4 in Test Example 5 of the present application
  • FIG. 2 shows the changes in body weight of mice in groups G1 to G4 in Test Example 5 of the present application.
  • the compounds of the present application can be prepared by a variety of synthesis methods known to those skilled in the art, including the specific embodiments listed below, embodiments formed by combining them with other chemical synthesis methods, and equivalent substitution methods known to those skilled in the art. Preferred embodiments include but are not limited to the examples of the present application.
  • the structures of the compounds of the present application are determined by nuclear magnetic resonance (NMR) or/and liquid chromatography-mass spectrometry (LC-MS), or ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS).
  • NMR chemical shift ( ⁇ ) is given in parts per million (ppm).
  • NMR is measured using a Bruker Neo 400M or Bruker Ascend 400 nuclear magnetic resonance instrument, and the measurement solvents are deuterated dimethyl sulfoxide (DMSO-d 6 ), deuterated methanol (CD 3 OD) and deuterated chloroform (CDCl 3 ), heavy water (D 2 O), and the internal standard is tetramethylsilane (TMS).
  • LC-MS Liquid chromatography-mass spectrometry
  • Ultra-high performance liquid chromatography-mass spectrometry was determined using a Waters UPLC H-class SQD mass spectrometer (with electrospray ionization as the ion source).
  • HPLC determinations were performed using Waters e2695-2998 or Waters ARC and Agilent 1260 or Agilent Poroshell HPH high performance liquid chromatography.
  • Preparative HPLC used Waters 2555-2489 (10 ⁇ m, ODS 250 cm ⁇ 5 cm) or GILSON Trilution LC.
  • the starting materials in the examples of the present application are known and can be purchased on the market, or can be synthesized by or according to methods known in the art.
  • room temperature refers to about 20-30°C.
  • Step A 3,3-dibromo-1,1,1-trifluoropropane-2-one (144 g, 0.54 mol) and sodium acetate (80 g, 0.97 mol) were dissolved in water (320 mL) at room temperature. Subsequently, the solution was heated to 90°C and stirred for 0.5 hours. Then the reaction system was cooled to 0°C, and a mixed solution of methyl 4-formylbenzoate (80 g, 0.49 mol) and methanol (120 mL) containing 28 wt% ammonia (400 mL) was slowly added dropwise to the reaction solution. Finally, the reaction system was stirred for 16 hours at room temperature.
  • Step B Methyl 4-(4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (69 g, 0.25 mol) and cesium carbonate (250 g, 0.76 mol) were dissolved in acetonitrile (1.2 L) at room temperature and stirred for 2 hours. Subsequently, 2-iodopropane (64.9 g, 0.38 mol) was added to the above solution, and the reaction system was heated to 50°C and stirred for 24 hours. The reaction system was then cooled to 0°C and 2-iodopropane (21.6 g, 0.13 mol) was added. The reaction system was then stirred at 50°C for 4 hours.
  • reaction solution was added to ice water (1.5L) to quench, the mixed solution was extracted with ethyl acetate (500mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (150mL). Then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 33g of methyl 4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate.
  • Step C Under nitrogen protection at room temperature, methyl 4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (33 g, 0.11 mol) was dissolved in dry tetrahydrofuran (528 mL). Subsequently, 2.5 M (mol/L) lithium aluminum hydride solution (85 mL, 0.22 mol) was slowly added dropwise to the above solution at 0°C. The reaction system was then stirred at room temperature for 1 hour.
  • Step A Dissolve (4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)phenyl)methanol (700 mg, 2.46 mmol) in dichloromethane (12.5 mL) at room temperature. Then, triphenylphosphine (1.29 g, 4.93 mmol), sodium bicarbonate (414 mg, 4.93 mmol) and carbon tetrabromide (1.63 g, 4.93 mmol) were added to the above solution in sequence. The reaction system was then stirred at room temperature for 2 hours.
  • Step A Under nitrogen protection at room temperature, compound 4-chloro-6-methoxypyrimidine (25 g, 172.94 mmol), cyclopropylboronic acid (25.25 g, 294 mmol), 1,1'-bis(diphenylphosphino)ferrocenepalladium dichloride (6.3 g, 8.68 mmol), potassium phosphate (73.42 g, 345.88 mmol) and silver oxide (20.04 g, 86.47 mmol) were dissolved in 1,4-dioxane (868 mL). The solution was then heated to 90°C and stirred for 16 hours.
  • Step B Under nitrogen protection at -20°C, 4-cyclopropyl-6-methoxypyrimidine (45 g, 299.64 mmol) was dissolved in ethanol (1.5 L). Subsequently, liquid bromine (240 g, 1.5 mol) was slowly added dropwise to the above solution. The reaction system was then stirred at room temperature for 16 hours.
  • the reaction solution was concentrated by distillation under reduced pressure.
  • the crude product was slurried with ethyl acetate, filtered, and the filter cake was collected.
  • the filter cake was then added to water (150 mL), stirred at 0°C, and saturated sodium bicarbonate solution was added dropwise until the pH of the solution system reached 7.
  • the mixed solution was filtered, the filter cake was rinsed with water (150 mL ⁇ 2 times), the filter cake was collected, and concentrated under reduced pressure to obtain 56 g 5-bromo-4-cyclopropyl-6-methoxypyrimidine.
  • Step C Under nitrogen protection at room temperature, 5-bromo-4-cyclopropyl-6-methoxypyrimidine (15.0 g, 65.79 mmol) and triisopropyl borate (16.08 g, 85.53 mmol) were dissolved in toluene/tetrahydrofuran (150 mL/45 mL). Subsequently, the reaction solution was cooled to -78°C, stirred for 30 minutes, and 2.5 M n-butyl lithium solution (34.2 mL, 85.53 mmol) was slowly added dropwise and stirred for 30 minutes. Then the reaction system was heated to -20°C and stirred for 1 hour.
  • reaction solution was added into ice water (100 mL) to quench, and then the mixed solution was filtered and the filter cake was rinsed with water (20 mL ⁇ 3 times) to obtain 9.7 g (4-cyclopropyl-6-methoxypyrimidin-5-yl) boronic acid.
  • Step A Methyl 4-(4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (5 g, 18.45 mmol) and potassium carbonate (5.1 g, 36.7 mmol) were dissolved in N,N-dimethylformamide (92 mL) at room temperature. The reaction system was then cooled to 0°C and iodomethane (3.14 g, 22.14 mmol) was slowly added dropwise. The reaction system was then stirred at room temperature for 1 hour.
  • Step B Methyl 4-(1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (3.2 g, 11.26 mmol) was dissolved in tetrahydrofuran (28 mL) at room temperature. Then, the reaction system was cooled to 0°C and lithium aluminum tetrahydride (2.14 g, 56.32 mmol) was slowly added dropwise. The reaction system was then stirred at room temperature for 2 hours.
  • Step C Under nitrogen protection at room temperature, (4-(1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl)phenyl)methanol (2.6 g, 10.12 mmol), sodium bicarbonate (1.7 g, 20.24 mmol), and triphenylphosphine (5.3 g, 20.24 mmol) were dissolved in dichloromethane (51 mL). Subsequently, the reaction system was cooled to 0°C and carbon tetrabromide (6.7 g, 20.24 mmol) was slowly added. The reaction system was then warmed to room temperature and stirred for 2 hours.
  • Step A Under nitrogen protection at 0°C, dissolve methyl 4-(4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (700 mg, 2.59 mmol) and sodium hydride (156 mg, 3.89 mmol) in dry N,N-dimethylformamide (13 mL) and stir for 30 minutes. Then slowly add iodoethane (606.6 mg, 3.89 mmol) dropwise to the above system, warm the reaction system to room temperature, and continue stirring for 1 hour.
  • iodoethane 606.6 mg, 3.89 mmol
  • Step B Under an ice-water bath and nitrogen protection, methyl 4-(1-ethyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (300 mg, 1.00 mmol) was dissolved in dry tetrahydrofuran (5 mL). Subsequently, lithium aluminum hydride (0.8 mL, 2.00 mmol) was slowly added to the above reaction solution, and the reaction system was warmed to room temperature and stirred for 2 hours.
  • Step C In an ice-water bath, under nitrogen protection, (4-(1-ethyl-4-(trifluoromethyl)-1H-imidazol-2-yl)phenyl)methanol (200 mg, 0.74 mmol), triphenylphosphine (390 mg, 1.48 mmol), sodium bicarbonate (125 mg, 1.48 mmol) and carbon tetrabromide (390 mg, 1.48 mmol) were dissolved in dichloromethane (3.7 mL). The reaction system was then stirred at room temperature for 1 hour.
  • Step A 1-bromo-2-nitrobenzene (500 mg, 2.49 mmol), (2-chloropyrimidin-5-yl)boric acid (590 mg, 3.74 mmol), sodium carbonate (792 mg, 7.47 mmol) and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium dichloromethane complex (305 mg, 0.37 mmol) were dissolved in 1,4-dioxane/water (11 mL/1.4 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 90°C for 3 hours under nitrogen protection.
  • reaction solution was added to ice water (20 mL) to quench.
  • the mixed solution was extracted with ethyl acetate (20 mL ⁇ 3 times), the organic phases were combined, the organic phases were washed with saturated brine (15 mL ⁇ 2 times), then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain a residue.
  • the obtained residue was purified by silica gel column chromatography to obtain 500 mg 2-chloro-5-(2-nitrophenyl)pyrimidine.
  • Step B 2-Chloro-5-(2-nitrophenyl)pyrimidine (500 mg, 2.13 mmol) and 1,2-bis(diphenylphosphino)ethane (1.06 g, 2.66 mmol) were dissolved in 1,2-dichlorobenzene (7.1 mL) at room temperature, and the reaction system was stirred at 160° C. for 1 hour.
  • Step A 4-amino-5-bromo-2-chloropyrimidine (1.0 g, 4.83 mmol), 1-cyclopenteneboronic acid pinacol ester (1.4 g, 7.25 mmol), potassium phosphate (2.6 g, 12.08 mmol) and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium dichloromethane complex (389 mg, 0.48 mmol) were dissolved in 1,4-dioxane/water (15 mL/3 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 90 ° C for 3 hours under nitrogen protection.
  • reaction solution was added to ice water (20 mL) to quench.
  • the mixed solution was extracted with ethyl acetate (20 mL ⁇ 3 times), the organic phases were combined, the organic phases were washed with saturated brine (15 mL ⁇ 2 times), then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain a residue.
  • the obtained residue was purified by silica gel column chromatography to obtain 600 mg 2-chloro-5-(cyclopentyl-1-en-1-yl)pyrimidin-4-amine.
  • Step B At 0°C, 2-chloro-5-(cyclopentyl-1-en-1-yl)pyrimidin-4-amine (100 mg, 0.51 mmol) was dissolved in tetrahydrofuran (2 mL) and water (1 mL), and then N-bromosuccinimide (100 mg, 0.56 mmol) was added and stirred for 1 hour. Then, 2M aqueous sodium hydroxide solution (0.2 mL) was added and stirring was continued for 30 minutes.
  • Step A 3,3-dibromo-1,1,1-trifluoropropane-2-one (40.2 g, 0.15 mol) and sodium acetate (12.25 g, 0.15 mol) were dissolved in water (36 mL) at room temperature. Subsequently, the solution was heated to 90 ° C and stirred for 0.5 hours. Then, the reaction system was cooled to 0 ° C, and a mixed solution of 4-formyl-3-methoxybenzoic acid methyl ester (10 g, 51.54 mmol), 28 wt% ammonia water (45 mL) and methanol (135 mL) was slowly added dropwise to the reaction solution. Finally, the reaction system was stirred for 16 hours at room temperature.
  • Step B At room temperature, methyl 3-methoxy-4-(4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (6 g, 0.02 mol) and cesium carbonate (19.7 g, 0.06 mol) were dissolved in acetonitrile (65 mL) and stirred for 2 hours. Subsequently, 2-iodopropane (5.1 g, 0.03 mol) was added to the above solution, the temperature was raised to 50°C, and stirred for 24 hours. Then the reaction system was lowered to 0°C, 2-iodopropane (5.1 g, 0.03 mol) was added, the temperature was raised to 50°C, and stirring was continued for 4 hours.
  • 2-iodopropane 5.1 g, 0.03 mol
  • reaction solution was added to ice water (300 mL) to quench, the mixed solution was extracted with ethyl acetate (100 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (50 mL). Then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 6.9 g of methyl 4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)-3-methoxybenzoate.
  • Step C Under nitrogen protection at 0°C, methyl 4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)-3-methoxybenzoate (2.9 g, 8.48 mmol) was dissolved in dry tetrahydrofuran (30 mL). Subsequently, lithium aluminum hydride solution (6.8 mL, 17 mmol) was slowly added dropwise to the above solution. The reaction system was then stirred at room temperature for 1 hour.
  • reaction solution was slowly added dropwise to ice water (100 mL) to quench, filtered, and the filter cake was rinsed with ethyl acetate (50 mL ⁇ 3 times).
  • the filtrate was extracted with ethyl acetate (50 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (150 mL). Then it was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • Step D (4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)-3-methoxyphenyl)methanol (500 mg, 1.59 mmol), sodium bicarbonate (269 mg, 3.2 mmol) and triphenylphosphine (840 mg, 3.2 mmol) were dissolved in dry dichloromethane (8 mL) at 0°C. Subsequently, carbon tetrabromide (1.06 g, 3.2 mmol) was slowly added to the reaction solution. The reaction system was then stirred at room temperature for 1 hour.
  • Step A 4-bromo-2-fluoro-6-methoxybenzaldehyde (4 g, 17 mmol), triethylamine (12.38 g, 0.12 mol) and 1,1-bis(diphenylphosphino)ferrocenepalladium dichloride (1.34 g, 18 mmol) were dissolved in methanol (120 mL) at room temperature. Subsequently, the carbon monoxide was replaced by air under vacuum three times, and the reaction solution was heated to 90°C and stirred for 24 hours.
  • Step B 3,3-dibromo-1,1,1-trifluoropropane-2-one (6.72 g, 25 mmol) and sodium acetate (2.06 g, 25 mmol) were dissolved in water (7 mL) at room temperature. The solution was then heated to 90°C and stirred for 0.5 hours. The reaction system was then cooled to 0°C, and a mixed solution of methyl 3-fluoro-4-formyl-5-methoxybenzoate (1.98 g, 9 mmol), 28 wt% ammonia water (17 mL) and methanol (45 mL) was slowly added dropwise to the reaction solution, heated to room temperature, and stirred for 16 hours.
  • Step C Methyl 3-fluoro-5-methoxy-4-(4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (2.06 g, 6.5 mmol) and cesium carbonate (6.31 g, 19 mmol) were dissolved in acetonitrile (25 mL) at room temperature and stirred for 2 hours. Subsequently, 2-iodopropane (1.65 g, 9.7 mmol) was added to the above solution, heated to 50°C, and stirred for 24 hours. Then, the reaction system was cooled to 0°C, 2-iodopropane (1 g, 5.9 mmol) was added, heated to 50°C, and stirred for 4 hours.
  • reaction solution was added to ice water (50 mL) to quench, the mixed solution was extracted with ethyl acetate (20 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (50 mL). Then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 1.84 g methyl 3-fluoro-4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)-5-methoxybenzoate.
  • Step D Under nitrogen protection at 0°C, methyl 3-fluoro-4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)-5-methoxybenzoate (1.84 g, 5.1 mmol) was dissolved in dry tetrahydrofuran (25 mL). Subsequently, lithium aluminum hydride solution (4.2 mL, 0.01 mol) was slowly added dropwise to the above solution. The reaction system was then stirred at room temperature for 1 hour.
  • reaction solution was slowly added dropwise to ice water (100 ml) to quench, filtered, and the filter cake was rinsed with ethyl acetate (50 mL ⁇ 3 times).
  • the filtrate was extracted with ethyl acetate (50 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (150 mL). Then it was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • Step E At 0°C, under nitrogen protection, (3-fluoro-4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)-5-methoxyphenyl)methanol (500 mg, 1.5 mmol), sodium bicarbonate (269 mg, 3.2 mmol) and triphenylphosphine (840 mg, 3.2 mmol) were dissolved in dry dichloromethane (8 mL). Subsequently, carbon tetrabromide (1.06 g, 3.2 mmol) was slowly added to the above reaction solution. The reaction system was then stirred at room temperature for 1 hour.
  • Step A 4-chloro-1H-pyrazole (5 g, 0.049 mol), 2-iodopropane (20 g, 0.118 mol) and cesium carbonate (33 g, 0.1 mol) were dissolved in acetonitrile (40 mL) at room temperature, and the reaction system was stirred at 80°C for 2 hours.
  • Step B At 0°C, under nitrogen protection, 4-chloro-1-isopropyl-1H-pyrazole (2g, 0.014mol) was dissolved in tetrahydrofuran (14mL). Subsequently, n-butyl lithium (11.2mL, 0.017mol) was added dropwise to the above solution, warmed to room temperature, and stirred for 1 hour. Then the reaction solution was cooled to -78°C, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.45g, 0.018mol) was slowly added dropwise, warmed to room temperature, and stirred for 2 hours.
  • Step A Under nitrogen protection at 0°C, methyl 4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (300 mg, 0.96 mmol) was dissolved in dry tetrahydrofuran (5 mL). Subsequently, tetraisopropyl titanate (327 mg, 1.15 mmol) and ethylmagnesium bromide (0.46 mL, 1.15 mmol) were added to the above solution in sequence, and the reaction system was stirred at room temperature for 16 hours.
  • reaction solution was added to ice water (30 mL) to quench, filtered, and the filtrate was extracted with ethyl acetate (20 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (30 mL ⁇ 2 times). Then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 220 mg 1-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)phenyl)propan-1-ol.
  • Step B At 0°C, under nitrogen protection, 1-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)phenyl)propan-1-ol (220 mg, 0.71 mmol), triphenylphosphine (372 mg, 1.42 mmol) and sodium bicarbonate (119 mg, 1.42 mmol) were dissolved in dichloromethane (4 mL). Subsequently, carbon tetrabromide (471 mg, 1.42 mmol) was slowly added to the above reaction solution. The reaction system was then stirred at room temperature for 30 minutes.
  • Step A Methyl 2-(trifluoromethyl)imidazo[2,1-a]isoquinoline-8-carboxylate (52 mg, 0.18 mmol) was dissolved in tetrahydrofuran (0.9 mL) at room temperature. Then, lithium aluminum hydride (0.14 mL, 0.35 mmol) was added to the solution at 0°C. The reaction system was then stirred at room temperature for 1 hour.
  • reaction solution was slowly added to ice water (20 mL) to quench. Filter, extract the filtrate with ethyl acetate (10 mL ⁇ 3 times), and combine the organic phases. Then dry with anhydrous sodium sulfate, filter, and concentrate under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 32 mg of (2-(trifluoromethyl)imidazo[2,1-a]isoquinolin-8-yl)methanol.
  • Step B (2-(Trifluoromethyl)imidazo[2,1-a]isoquinolin-8-yl)methanol (53 mg, 0.20 mmol) was dissolved in dichloromethane (1 mL) at room temperature. Subsequently, triphenylphosphine (157.4 mg, 0.60 mmol), sodium bicarbonate (33.6 mg, 0.40 mmol) and carbon tetrabromide (199 mg, 0.60 mmol) were added to the reaction system in sequence at 0°C. The reaction system was then stirred at room temperature for 1.5 hours.
  • Step A Dissolve 3,3-dibromo-1,1,1-trifluoropropane-2-one (17.5 g, 65.35 mmol) and sodium acetate (5.35 g, 65.35 mmol) in water (19.8 mL) at room temperature and stir at 90°C for 1 hour. Then cool the reaction mixture to 0°C, add a mixed solution of 5-formyl-1H-pyrrole-2-carboxylic acid methyl ester (10 g, 65.35 mmol) in aqueous ammonia/methanol (59.5 mL/178 mL), and stir at room temperature for 18 hours.
  • Step B Dissolve 5-(4-(trifluoromethyl)-1H-imidazol-2-yl)-1H-pyrrole-2-carboxylic acid methyl ester (2.6 g, 10.25 mmol) and cesium carbonate (10 g, 30.76 mmol) in acetonitrile (50 mL) at room temperature and stir for 2 hours. Then add 1,3-diiodopropane (4.5 g, 15.3 mmol) to the above reaction solution, heat to 50°C and stir for 48 hours.
  • Step C Methyl 2-(trifluoromethyl)-6,7-dihydro-5H-imidazo[1,2-a]pyrrolo[2,1-c][1,4]diazepine-9-carboxylate (1.4 g, 4.68 mmol) was dissolved in tetrahydrofuran (23 mL) at room temperature. Then, lithium aluminum hydride (3.74 mL, 9.36 mmol) was added to the solution at 0°C. The reaction system was then stirred at room temperature for 0.5 hours.
  • reaction solution was slowly added to ice water (40 mL) to quench, the mixed solution was extracted with ethyl acetate (30 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated sodium chloride aqueous solution (20 mL ⁇ 2 times). Then it was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 680 mg (2-(trifluoromethyl)-6,7-dihydro-5H-imidazo[1,2-a]pyrrolo[2,1-c][1,4]diazepin-9-yl)methanol.
  • Step A Methyl 5-(4-(trifluoromethyl)-1H-imidazol-2-yl)-1H-pyrrole-2-carboxylate (2 g, 7.72 mmol) and cesium carbonate (7.54 g, 23.15 mmol) were dissolved in acetonitrile (50 mL) at room temperature and stirred for 2 hours. Subsequently, 1,2-dibromoethane (1.45 g, 7.72 mmol) was added to the reaction solution. The reaction system was then stirred at 50°C for 48 hours.
  • Step B Methyl 2-(trifluoromethyl)-5,6-dihydroimidazo[1,2-a]pyrrolo[2,1-c]pyrazine-8-carboxylate (850 mg, 2.98 mmol) was dissolved in dry tetrahydrofuran (30 mL) at room temperature. Subsequently, lithium aluminum hydride (2.24 mL, 4.47 mmol) was added to the solution at 0°C. The reaction system was then stirred at room temperature for 0.5 hours.
  • reaction solution was slowly added to ice water (40 mL) to quench, and the mixed solution was extracted with ethyl acetate (30 mL ⁇ 3 times), and the organic phases were combined and washed with saturated sodium chloride aqueous solution (20 mL ⁇ 2 times). Then it was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 590 mg (2-(trifluoromethyl)-5,6-dihydroimidazo[1,2-a]pyrrolo[2,1-c]pyrazine-8-yl)methanol.
  • Step A Dissolve 3,3-dibromo-1,1,1-trifluoropropane-2-one (55.5 g, 205.72 mmol) in water (65 mL) at room temperature. Then, add sodium acetate (16.9 g, 205.72 mmol) to the above solution, heat to 90 ° C, and stir for 1 hour. Then cool the above solution to 0 ° C, and slowly add 5-bromo-2-formylbenzoic acid methyl ester (25 g, 102.86 mmol) dissolved in a mixed solution of methanol (685 mL) and ammonia water (150 mL). Finally, the reaction system is stirred at 100 ° C for 2 hours.
  • Step B Dissolve 5-bromo-2-(4-(trifluoromethyl)-1H-imidazol-2-yl)benzoic acid (36 g, 107.78 mmol) in dry tetrahydrofuran (500 mL) at 0°C. Then, slowly add borane in tetrahydrofuran (216 mL, 215.27 mmol) dropwise to the solution. The reaction system is then stirred at room temperature for 2 hours.
  • Step C (5-bromo-2-(4-(trifluoromethyl)-1H-imidazol-2-yl)phenyl)methanol (12.3 g, 38.44 mmol) was dissolved in dichloromethane (192 mL) at 0°C. Subsequently, triethylamine (10.7 mL, 76.88 mmol) and methanesulfonyl chloride (6.6 g, 57.66 mmol) were added to the solution in sequence. The reaction system was then stirred at room temperature for 1 hour.
  • Step D 5-bromo-2-(4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl methanesulfonate (14.5 g, 42.90 mmol) was dissolved in N,N-dimethylformamide (214 mL) at room temperature. Subsequently, cesium carbonate (16.8 g, 51.48 mmol) was added to the above solution. The reaction system was then stirred at 50°C for 1 hour.
  • Step E 7-bromo-2-(trifluoromethyl)-5H-imidazo[2,1-a]isoindole (930 mg, 3.08 mmol) was dissolved in methanol (35 mL) at room temperature. Subsequently, triethylamine (4.2 mL, 30.8 mmol) and [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium dichloromethane complex (251 mg, 0.31 mmol) were added to the above solution in sequence. The reaction system was then stirred at 85°C under 40 kg of carbon monoxide gas pressure for 24 hours.
  • Step F Methyl 2-(trifluoromethyl)-5H-imidazo[2,1-a]isoindole-7-carboxylate (400 mg, 1.42 mmol) was dissolved in dry tetrahydrofuran (7 mL) at 0°C. Then, lithium aluminum hydride (1.13 mL, 2.84 mmol) was slowly added dropwise to the solution. The reaction system was then stirred at room temperature for 1 hour.
  • reaction solution was poured into ice water (20 mL) to quench.
  • the mixed solution was extracted with ethyl acetate (30 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (20 mL ⁇ 2 times). Then it was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • the resulting residue was purified by silica gel column chromatography to obtain 120 mg (2-(trifluoromethyl)-5H-imidazo[2,1-a]isoindol-7-yl)methanol.
  • Step G (2-(Trifluoromethyl)-5H-imidazo[2,1-a]isoindol-7-yl)methanol (120 mg, 0.47 mmol) was dissolved in dichloromethane (2.4 mL) at 0°C. Triphenylphosphine (371 mg, 1.42 mmol), sodium bicarbonate (79 mg, 0.94 mmol) and carbon tetrabromide (471 mg, 1.42 mmol) were then added to the solution. The reaction system was then stirred at room temperature for 1 hour.
  • Step A 3-bromo-4-formylbenzoic acid (100 g, 436.7 mmol) was dissolved in water (2.7 L) at room temperature. Potassium carbonate (90.4 g, 655.1 mmol) and iodomethane (68.2 g, 480.4 mmol) were then added to the solution in sequence. The reaction system was then stirred for 2 hours.
  • Step B Dissolve 3,3-dibromo-1,1,1-trifluoropropane-2-one (188.7 g, 699.3 mmol) in water (340 mL) at room temperature. Then, add sodium acetate (57.5 g, 416.1 mmol) to the above solution, heat to 90°C, and stir for 1 hour. Then cool the reaction solution to 0°C, and add a mixture of 3-bromo-4-formylbenzoic acid methyl ester (85 g, 349.7 mmol) in methanol/ammonia water (1020 mL/340 mL) dropwise. Finally, stir the reaction system at 100°C for 2 hours.
  • Step C Under nitrogen protection at 0°C, methyl 3-bromo-4-(4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (96.7 g, 277.0 mmol) was dissolved in N,N-dimethylformamide (185 mL). Subsequently, potassium carbonate (80.7 g, 583.9 mmol) and 3-bromoprop-1-ene (40.3 g, 333.1 mmol) were added to the solution in sequence. The reaction system was then stirred at 25°C for 20 hours.
  • Step D Under nitrogen protection at 0°C, methyl 4-(1-allyl-4-(trifluoromethyl)-1H-imidazol-2-yl)-3-bromobenzoate (107 g, 275.0 mmol) was dissolved in 1,4-dioxane/water (1370 mL/228 mL).
  • potassium carbonate (76.2 g, 551.3 mmol), potassium trifluoro(vinyl)borate (96.1 g, 717.4 mmol), 2-dicyclohexylphosphine-2',6'-dimethoxybiphenyl (11.3 g, 27.5 mmol) and palladium acetate (6.2 g, 27.5 mmol) were added to the above solution in sequence.
  • the reaction system was then stirred at 85°C for 4 hours.
  • Step E Under nitrogen protection at 0°C, methyl 4-(1-allyl-4-(trifluoromethyl)-1H-imidazol-2-yl)-3-vinylbenzoate (61.4 g, 182.6 mmol) was dissolved in dichloromethane (730 mL). Subsequently, (1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinyl)dichloro(o-isopropoxybenzylidene)ruthenium (8.5 g, 13.7 mmol) was added to the above solution. The reaction system was then stirred at 25°C for 3 hours.
  • Step F Methyl 2-(trifluoromethyl)-5H-benzo[c]imidazo[1,2-a]azepine-9-carboxylate (39.0 g, 125.8 mmol) and 10% palladium on carbon (8.0 g) were dissolved in methanol (132 mL) at room temperature and the reaction system was stirred under hydrogen atmosphere for 18 hours.
  • Step G Under nitrogen protection at 0°C, methyl 2-(trifluoromethyl)-6,7-dihydro-5H-benzo[c]imidazo[1,2-a]azepine-9-carboxylate (37.2 g, 120.0 mmol) was dissolved in tetrahydrofuran (600 mL). Subsequently, 2.5 M lithium aluminum tetrahydride solution (72 mL) was slowly added dropwise to the above solution. The reaction system was then stirred at room temperature for 30 minutes.
  • Step H Under nitrogen protection at 0°C, (2-(trifluoromethyl)-6,7-dihydro-5H-benzo[c]imidazo[1,2-a]azepine-9-yl)methanol (30.0 g, 106.3 mmol) was dissolved in 1,2-dichloroethane (530 mL). Subsequently, thionyl chloride (37.9 g, 319 mmol) was slowly added dropwise to the above solution. The reaction system was then stirred at 50°C for 20 minutes.
  • Step A 1-bromo-2-nitrobenzene (500 mg, 2.49 mmol), (2-chloropyrimidin-5-yl)boric acid (590 mg, 3.74 mmol), sodium carbonate (792 mg, 7.47 mmol) and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium dichloromethane complex (305 mg, 0.37 mmol) were dissolved in 1,4-dioxane/water (11 mL/1.4 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 90°C for 3 hours under nitrogen protection.
  • reaction solution was added to ice water (20 mL) to quench.
  • the mixed solution was extracted with ethyl acetate (20 mL ⁇ 3 times), the organic phases were combined, the organic phases were washed with saturated brine (15 mL ⁇ 2 times), then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain a residue.
  • the obtained residue was purified by silica gel column chromatography to obtain 500 mg 2-chloro-5-(2-nitrophenyl)pyrimidine.
  • Step B 2-Chloro-5-(2-nitrophenyl)pyrimidine (500 mg, 2.13 mmol) and 1,2-bis(diphenylphosphino)ethane (1.06 g, 2.66 mmol) were dissolved in 1,2-dichlorobenzene (7.1 mL) at room temperature, and the reaction system was stirred at 160° C. for 1 hour.
  • Step C Under nitrogen protection at room temperature, 2-chloro-9H-pyrimido[4,5-b]indole (200 mg, 0.99 mmol) was dissolved in tetrahydrofuran (5 mL). Then, sodium hydride (47 mg, 1.18 mmol) was added to the above solution at 0°C, stirred for 30 minutes, and then 2-(4-(bromomethyl)phenyl)-1-methyl-4-(trifluoromethyl)-1H imidazole (345 mg, 1.08 mmol) was added. Then the reaction system was stirred at room temperature for 2 hours.
  • Step D 2-chloro-9-(4-(1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-9H-pyrimido[4,5-b]indole (70 mg, 0.16 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (47 mg, 0.24 mmol), sodium carbonate (34 mg, 0.32 mmol) and [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium dichloromethane complex (19 mg, 0.02 mmol) were dissolved in 1,4-dioxane/water (3.2 mL/0.4 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 100°C for 3 hours under microwave conditions.
  • Step A Under nitrogen protection at room temperature, (2-chloropyrimidin-5-yl)boronic acid (437 mg, 2.81 mmol) was dissolved in dry 1,4-dioxane/water (8.4 mL/0.93 mL). Subsequently, 1-bromo-2-nitrobenzene (378 mg, 1.87 mmol), sodium carbonate (595 mg, 5.61 mmol) and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium dichloromethane complex (230 mg, 0.28 mmol) were added to the above solution in sequence. The nitrogen was replaced by vacuum evacuation 3 times, and the reaction system was heated to 90°C and stirred for 16 hours.
  • Step B Dissolve 2-chloro-5-(2-nitrophenyl)pyrimidine (280 mg, 1.19 mmol) in 1,2-dichlorobenzene (4 mL) at room temperature. Then, add 1,2-bis(diphenylphosphino)ethane (593 mg, 1.49 mmol) to the above solution. Vacuum air to replace nitrogen three times, heat the reaction system to 160°C, and stir for 2 hours.
  • Step C Under nitrogen protection at room temperature, 2-chloro-9H-pyrimido[4,5-b]indole (120 mg, 0.59 mmol) was dissolved in dry tetrahydrofuran (2 mL). Then, sodium hydride (29 mg, 0.71 mmol) was added to the above solution at 0°C and stirred for 30 minutes. Then 2-(4-(bromomethyl)phenyl)-1-isopropyl-4-(trifluoromethyl)-1H-imidazole (160 mg, 0.65 mmol) was added, the mixture was warmed to room temperature and stirred for 2 hours.
  • Step D 2-Chloro-9-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-9H-pyrimido[4,5-b]indole (60 mg, 0.13 mmol) was dissolved in dry 1,4-dioxane/water (0.9 mL/0.1 mL) at room temperature under nitrogen protection.
  • (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid 50 mg, 0.27 mmol
  • cesium carbonate 83 mg, 0.27 mmol
  • chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (20 mg, 0.03 mmol) were added in sequence.
  • the nitrogen was replaced by vacuum evacuation 3 times, and the reaction system was heated to 100°C and stirred for 3 hours.
  • Step A (2-chloropyrimidin-5-yl)boric acid (1 g, 6.33 mmol), 2-bromo-3-nitropyridine (857 mg, 4.2 mmol) and sodium carbonate (1.34 g, 12.64 mmol) were dissolved in 1,4-dioxane/water (21 mL/2.3 mL) at room temperature. Subsequently, dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium (513 mg, 0.6 mmol) was added to the above solution, and the air was evacuated and replaced with nitrogen 4 times. The reaction system was heated to 100°C and stirred for 16 hours.
  • reaction solution was added to ice water (30 mL) to quench, the mixed solution was extracted with ethyl acetate (20 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (15 mL). Then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 600 mg 2-chloro-5-(3-nitropyridin-2-yl)pyrimidine.
  • Step B Dissolve 2-chloro-5-(3-nitropyridin-2-yl)pyrimidine (600 mg, 2.54 mmol) and 1,2-bis(diphenylphosphino)ethane (1.26 g, 3.18 mmol) in 1,2-dichlorobenzene (13 mL) at room temperature. Vacuum air to replace nitrogen 4 times, heat the reaction system to 160°C, and stir for 2 hours.
  • reaction solution was added to ice water (30 mL) to quench, the mixed solution was extracted with ethyl acetate (20 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (15 mL). Then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 400 mg 2-chloro-9H-pyrido [2', 3': 4, 5] pyrrolo [2, 3-d] pyrimidine.
  • Step C Under nitrogen protection at room temperature, 2-chloro-9H-pyrido[2',3':4,5]pyrrolo[2,3-d]pyrimidine (400 mg, 1.96 mmol), (4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)phenyl)methanol (555 mg, 1.96 mmol) and triphenylphosphine (771 mg, 2.94 mmol) were dissolved in dry tetrahydrofuran (10 mL). Subsequently, diisopropyl azodicarboxylate (594 mg, 2.94 mmol) was slowly added dropwise to the above solution at 0°C. The reaction system was then stirred at room temperature for 2 hours.
  • Step D 2-Chloro-9-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-9H-pyrido[2',3':4,5]pyrrolo[2,3-d]pyrimidine (250 mg, 0.53 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boronic acid (210 mg, 1.07 mmol) and cesium carbonate (346 mg, 1.06 mmol) were dissolved in 1,4-dioxane/water (3 mL/0.3 mL) at room temperature.
  • chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) 85 mg, 0.11 mmol
  • Step A 2-bromo-1-fluoro-3-nitrobenzene (914 mg, 4.15 mmol), (2-chloropyrimidin-5-yl)boric acid (985 mg, 6.23 mmol), sodium carbonate (1.32 g, 12.45 mmol) and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium dichloromethane complex (508 mg, 0.62 mmol) were dissolved in 1,4-dioxane/water (20.7 mL/2.3 mL) at room temperature. The air was replaced with nitrogen by vacuum evacuation 3 times, and the reaction system was stirred at 90°C for 3 hours.
  • reaction solution was added to ice water (40 mL) to quench.
  • the mixed solution was extracted with ethyl acetate (30 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (60 mL ⁇ 2 times). Then it was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 516 mg 2-chloro-5-(2-fluoro-6-nitrophenyl)pyrimidine.
  • Step B 2-Chloro-5-(2-fluoro-6-nitrophenyl)pyrimidine (400 mg, 1.58 mmol) and 1,2-bis(diphenylphosphino)ethane (786 mg, 1.97 mmol) were dissolved in 1,2-dichlorobenzene (7.9 mL) at room temperature, and the reaction system was stirred at 160°C for 1 hour.
  • Step C Under nitrogen protection at room temperature, 2-chloro-5-fluoro-9H-pyrimido[4,5-b]indole (226 mg, 1.02 mmol) and 2-(4-(bromomethyl)phenyl)-1-isopropyl-4-(trifluoromethyl)-1H-imidazole (283 mg, 0.82 mmol) were dissolved in N,N-dimethylformamide (5 mL). Subsequently, potassium carbonate (281 mg, 2.04 mmol) was added to the above solution. The reaction system was then stirred at 50°C for 2 hours.
  • Step D 2-chloro-5-fluoro-9-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-9H-pyrimido[4,5-b]indole (200 mg, 0.41 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (239 mg, 1.23 mmol), cesium carbonate (200 mg, 0.62 mmol) and [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium dichloromethane complex (65 mg, 0.08 mmol) were dissolved in 1,4-dioxane/water (2 mL/0.2 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 100°C for 3 hours under microwave conditions.
  • Step A 1-bromo-4-fluoro-2-nitrobenzene (1.50 g, 6.85 mmol), (2-chloropyrimidin-5-yl)boric acid (1.62 g, 10.27 mmol), sodium carbonate (2.18 g, 20.55 mmol) and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium dichloromethane complex (840 mg, 1.03 mmol) were dissolved in 1,4-dioxane/water (31 mL/3.5 mL) at room temperature. The air was replaced with nitrogen by vacuum evacuation 3 times, and the reaction system was stirred at 90°C for 3 hours.
  • Step B 2-Chloro-5-(4-fluoro-2-nitrophenyl)pyrimidine (1.1 g, 4.34 mmol) and 1,2-bis(diphenylphosphino)ethane (2.16 g, 5.43 mmol) were dissolved in 1,2-dichlorobenzene (15 mL) at room temperature. The reaction system was then stirred at 160°C for 2 hours.
  • Step C Under nitrogen protection at room temperature, 2-chloro-7-fluoro-9H-pyrimidin[4,5-b]indole (261 mg, 1.18 mmol), 2-(4-(bromomethyl)phenyl)-1-isopropyl-4-(trifluoromethyl)-1H imidazole (490 mg, 1.42 mmol) and potassium carbonate (326 mg, 2.36 mmol) were dissolved in N,N-dimethylformamide (6 mL). The reaction system was then stirred at 50° C. for 2 hours.
  • Step D 2-Chloro-7-fluoro-9-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-9H-pyrimidin[4,5-b]indole (130 mg, 0.27 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (156 mg, 0.80 mmol), cesium carbonate (174 mg, 0.53 mmol) and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (42 mg, 0.05 mmol) were dissolved in 1,4-dioxane/water (1.2 mL/0.13 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 90
  • Step A 1-bromo-3-fluoro-2-nitrobenzene (1 g, 4.54 mmol), (2-chloropyrimidin-5-yl)boric acid (1.79 g, 6.82 mmol), sodium carbonate (1.45 g, 13.63 mmol) and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium dichloromethane complex (498 mg, 0.68 mmol) were dissolved in 1,4-dioxane/water (19.8 mL/2.2 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 90°C for 3 hours.
  • Step B 2-Chloro-5-(3-fluoro-2-nitrophenyl)pyrimidine (500 mg, 1.97 mmol) and 1,2-bis(diphenylphosphino)ethane (979 mg, 2.46 mmol) were dissolved in 1,2-dichlorobenzene (7.1 mL) at room temperature, and the reaction system was stirred at 160°C for 1 hour.
  • Step C Under nitrogen protection at room temperature, 2-chloro-8-fluoro-9H-pyrimidin[4,5-b]indole (60 mg, 0.27 mmol) and anhydrous potassium carbonate (75 mg, 0.54 mmol) were dissolved in N,N-dimethylformamide (3 mL). Subsequently, 2-(4-(bromomethyl)phenyl)-1-isopropyl-4-(trifluoromethyl)-1H imidazole (113 mg, 0.31 mmol) was added to the above solution. The reaction system was then stirred at room temperature for 2 hours.
  • Step D 2-Chloro-8-fluoro-9-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-9H-pyrimidin[4,5-b]indole (90 mg, 0.184 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (107.8 mg, 0.55 mmol), cesium carbonate (120 mg, 0.37 mmol) and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (22 mg, 0.03 mmol) were dissolved in 1,4-dioxane/water (0.8 mL/0.08 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at
  • Step A (2-chloropyrimidin-5-yl)boric acid (1.5 g, 9.49 mmol), 1-bromo-4-methoxy-2-nitrobenzene (1.5 g, 6.49 mmol) and sodium carbonate (2.1 g, 19.81 mmol) were dissolved in 1,4-dioxane/water (32 mL/3.5 mL) at room temperature. Subsequently, dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium (0.8 g, 0.98 mmol) was added to the above solution, and the air was replaced with nitrogen by vacuum evacuation 4 times, and stirred at 100°C for 16 hours.
  • reaction solution was added to ice water (30 mL) to quench, the mixed solution was extracted with ethyl acetate (20 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (15 mL). Then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 740 mg 2-chloro-5-(4-methoxy-2-nitrophenyl)pyrimidine.
  • Step B 2-chloro-5-(4-methoxy-2-nitrophenyl)pyrimidine (740 mg, 2.79 mmol) and 1,2-bis(diphenylphosphino)ethane (2.22 g, 5.58 mmol) were dissolved in 1,2-dichlorobenzene (14 mL) at room temperature. The air was evacuated and replaced with nitrogen 4 times, and the reaction system was stirred at 160°C for 2 hours.
  • Step C 2-chloro-7-methoxy-9H-pyrimidin[4,5-b]indole (440 mg, 1.89 mmol), 2-(4-(bromomethyl)phenyl)-1-isopropyl-4-(trifluoromethyl)-1H imidazole (410 mg, 1.13 mmol) and potassium carbonate (521 mg, 3.78 mmol) were dissolved in dry N,N-dimethylformamide (10 mL) at room temperature under nitrogen protection. The reaction system was stirred at 50° C. for 2 hours.
  • Step D 2-Chloro-9-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-7-methoxy-9H-pyrimidin[4,5-b]indole (70 mg, 0.14 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (84 mg, 0.43 mmol) and cesium carbonate (70 mg, 0.21 mmol) were dissolved in 1,4-dioxane/water (1 mL/0.1 mL) at room temperature.
  • chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) 22 mg, 0.03 mmol
  • Step A 1-bromo-2-nitro-4-(trifluoromethyl)benzene (1 g, 3.70 mmol), (2-chloropyrimidin-5-yl)boric acid (879 mg, 5.60 mmol), sodium carbonate (1.2 g, 11.1 mmol) and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium dichloromethane complex (406 mg, 0.56 mmol) were dissolved in 1,4-dioxane/water (18 mL/2 mL) at room temperature. The air was replaced with nitrogen by vacuum evacuation 3 times, and the reaction system was stirred at 90 ° C for 16 hours.
  • Step B 2-Chloro-5-(4-trifluoromethyl-2-nitrophenyl)pyrimidine (620 mg, 2.04 mmol) and 1,2-bis(diphenylphosphino)ethane (1.1 g, 2.55 mmol) were dissolved in 1,2-dichlorobenzene (9.5 mL) at room temperature, and the reaction system was stirred at 160°C for 2 hours.
  • Step C Under nitrogen protection at room temperature, 2-chloro-7-(trifluoromethyl)-9H-pyrimidin[4,5-b]indole (220 mg, 0.81 mmol) and anhydrous potassium carbonate (223.6 mg, 1.62 mmol) were dissolved in N,N-dimethylformamide (5 mL). Subsequently, 2-(4-(bromomethyl)phenyl)-1-isopropyl-4-(trifluoromethyl)-1H-imidazole (337 mg, 0.97 mmol) was added to the above solution. The reaction system was then stirred at 55°C for 2 hours.
  • Step D 2-Chloro-9-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-7-(trifluoroethyl)-9H-pyrimidin[4,5-b]indole (270 mg, 0.50 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (294 mg, 1.51 mmol), cesium carbonate (327 mg, 1.0 mmol) and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (60 mg, 0.075 mmol) were dissolved in 1,4-dioxane/water (2.5 mL/0.25 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the
  • Step A Under nitrogen protection at room temperature, 2-(4-(bromomethyl)phenyl)-1-ethyl-4-(trifluoromethyl)-1H imidazole (200 mg, 0.60 mmol), 2-chloro-9H-pyrimidin[4,5-b]indole (245 mg, 1.20 mmol) and potassium carbonate (182 mg, 1.20 mmol) were dissolved in N,N-dimethylformamide (4 mL). The reaction system was then heated to 50°C and stirred for 2 hours.
  • Step B 2-chloro-9-(4-(1-ethyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-9H-pyrimidin[4,5-b]indole (110 mg, 0.24 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (94 mg, 0.48 mmol), cesium carbonate (158 mg, 0.48 mmol) and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (38 mg, 0.05 mmol) were dissolved in 1,4-dioxane/water (1.1 mL/0.12 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 90°C under microwave conditions for 3
  • Step A 4-Hydrazinobenzoic acid (5 g, 32.9 mmol) and ethyl 4,4,4-trifluoro-3-oxobutanoate (6 g, 32.9 mmol) were dissolved in methanol/hydrochloric acid (73 mL/14.6 mL) at room temperature, and the reaction system was stirred at room temperature for 3 hours.
  • Step B Under nitrogen protection at room temperature, dissolve methyl 4-(5-hydroxy-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzoate (5 g, 17.5 mmol) in N,N-dimethylformamide (87 mL). Then, add sodium hydride (1.39 g, 34.96 mmol) to the above solution and stir for 30 minutes. Then slowly add iodoethane (5.4 g, 34.96 mmol) dropwise and stir at room temperature for 1 hour.
  • Step C Under nitrogen protection at 0°C, dissolve methyl 4-(5-ethoxy-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzoate (3.7 g, 11.78 mmol) in tetrahydrofuran (59 mL). Then, add lithium aluminum hydride (9.4 mL, 23.56 mmol) to the solution and continue stirring for 30 minutes.
  • reaction solution was slowly added dropwise to ice water (150 mL) to quench, filtered, and the filtrate was extracted with ethyl acetate (50 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated saline solution (150 mL ⁇ 2 times). Then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 3 g (4-(5-ethoxy-3-(trifluoromethyl)-1H-pyrazol-1-yl)phenyl)methanol.
  • Step D Under nitrogen protection at 0°C, (4-(5-ethoxy-3-(trifluoromethyl)-1H-pyrazol-1-yl)phenyl)methanol (1.5 g, 5.24 mmol) was dissolved in dichloromethane (26 mL). Subsequently, triphenylphosphine (2.7 g, 10.48 mmol), sodium bicarbonate (880 mg, 10.48 mmol) and carbon tetrabromide (3.46 g, 10.48 mmol) were added to the above solution in sequence. The reaction system was then stirred at room temperature for 30 minutes.
  • Step E 1-(4-(bromomethyl)phenyl)-5-ethoxy-3-(trifluoromethyl)-1H-pyrazole (43.9 mg, 0.13 mmol), 2-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-9H-pyrimido[4,5-b]indole (40 mg, 0.13 mmol) and potassium carbonate (34.7 mg, 0.26 mmol) were dissolved in N,N-dimethylformamide (1 mL) at room temperature. The air was replaced with nitrogen by vacuum evacuation 3 times, and the reaction system was stirred at 50°C for 2 hours.
  • Step A (2-nitrophenyl)boronic acid (1.03 g, 6.15 mmol), 5-bromo-2-chloro-4-methylpyrimidine (850 mg, 4.10 mmol), sodium carbonate (1.3 g, 12.3 mmol) and [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium dichloromethane complex (450 mg, 0.61 mmol) were dissolved in 1,4-dioxane/water (21 mL/2.3 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 90°C for 16 hours.
  • Step B 2-Chloro-4-methyl-5-(2-nitrophenyl)pyrimidine (600 mg, 2.41 mmol) and 1,2-bis(diphenylphosphino)ethane (1198.8 mg, 3.01 mmol) were dissolved in 1,2-dichlorobenzene (12 mL) at room temperature, and the reaction system was stirred at 160° C. for 2 hours.
  • Step C Under nitrogen protection at room temperature, 2-chloro-4-methyl-9H-pyrimidin[4,5-b]indole (150 mg, 0.69 mmol) and anhydrous potassium carbonate (190.2 mg, 1.38 mmol) were dissolved in N,N-dimethylformamide (5 mL). Subsequently, 2-(4-(bromomethyl)phenyl)-1-isopropyl-4-(trifluoromethyl)-1H-imidazole (286.7 mg, 0.83 mmol) was added to the above solution. The reaction system was then stirred at 55°C for 2 hours.
  • Step D 2-Chloro-9-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-4-methyl-9H-pyrimidin[4,5-b]indole (180 mg, 0.37 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (145 mg, 0.75 mmol), cesium carbonate (243 mg, 0.75 mmol) and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (59 mg, 0.08 mmol) were dissolved in 1,4-dioxane/water (1.7 mL/0.20 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 90°C under
  • Example 12 (S)-2-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-9-(1-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)phenyl)ethyl)-9H-pyrimidin[4,5-b]indole and (R)-2-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-9-(1-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)phenyl)ethyl)-9H-pyrimidin[4,5-b]indole
  • Step A Dissolve (4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)phenyl)methanamine (2.25 g, 7.96 mmol) and ethyl 2,4-dichloropyrimidine-5-carboxylate (1.76 g, 7.96 mmol) in acetonitrile (40 mL) at 0°C. Then, slowly add N,N-diisopropylethylamine (267 mg, 2.07 mmol) dropwise to the reaction solution. Then continue to stir the reaction system for 1 hour.
  • reaction solution was added to ice water (100 mL) to quench.
  • the mixed solution was extracted with ethyl acetate (40 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (20 mL ⁇ 2 times). Then it was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • Step B Ethyl 2-chloro-4-((4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)amino)pyrimidine-5-carboxylate (2.4 g, 4.9 mmol) and lithium hydroxide (413 mg, 9.8 mmol) were dissolved in tetrahydrofuran/water (12.5 mL/12.5 mL) at 0° C. The reaction system was then stirred at room temperature for 2 hours.
  • Step C 2-Chloro-4-((4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)amino)pyrimidine-5-carboxylic acid (2.2 g, 5.01 mmol), diphenylphosphoryl azide (1.38 g, 5.01 mmol) and triethylamine (506 mg, 5.01 mmol) were dissolved in N,N-dimethylacetamide (25 mL) at room temperature. The reaction system was then stirred at 115°C for 16 hours.
  • Step D 2-chloro-9-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-7,9-dihydro-8H-purin-8-one (2.2 g, 5.05 mmol) and triethylamine (1 g, 10.09 mmol) were dissolved in phosphorus oxychloride (25 mL) at 0°C under nitrogen. The reaction system was then stirred at 140°C for 24 hours.
  • Step E Under nitrogen protection at room temperature, 2,8-dichloro-9-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-9H-purine (70 mg, 0.15 mmol) was dissolved in ammonia methanol (2 mL, 7 M). The reaction system was then stirred at 80° C. for 2 hours.
  • Step F 2-Chloro-9-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-9H-purine-8-amine (25 mg, 0.06 mmol) and 2-chloroacetaldehyde (71 mg, 0.36 mmol) were dissolved in N,N-dimethylacetamide (2 mL) at room temperature under nitrogen protection. The reaction system was then stirred at 100° C. for 18 hours.
  • Step G 2-Chloro-9-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-9H-imidazolin[2,1-f]purine (8 mg, 0.02 mmol) was dissolved in 1,4-dioxane/water (0.5 mL/0.05 mL) at room temperature.
  • (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (8 mg, 0.04 mmol), cesium carbonate (7 mg, 0.02 mmol) and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (3 mg, 0.004 mmol) were added to the above reaction solution in sequence. The air was evacuated and replaced with nitrogen 4 times, and the reaction system was heated to 90°C under microwave conditions and stirred for 2 hours.
  • Step A 4-methoxybenzaldehyde (13 g, 95.59 mmol) and triethylamine (21 g, 210.3 mmol) were dissolved in dichloromethane (200 mL) at room temperature. The reaction solution was then cooled to 0°C, and glycine methyl ester (17 g, 191.2 mmol) and anhydrous sodium sulfate (50 g, 352.1 mmol) were added to the reaction solution. The reaction system was then stirred at room temperature for 16 hours.
  • Step B At 0°C, methyl 2-((4-methoxybenzylidene)amino)acetate (18 g, 86.96 mmol) was dissolved in methanol (200 mL). Then, sodium borohydride (4.96 g, 130.44 mmol) was slowly added. The reaction system was then stirred at room temperature for 2 hours.
  • Step C (4-methoxybenzyl)glycine methyl ester (15 g, 71.77 mmol), 4-chloro-2-(methylthio)pyrimidine-5-carbaldehyde (13.4 g, 71.77 mmol) and triethylamine (8.7 g, 86.12 mmol) were dissolved in tetrahydrofuran (360 mL) at room temperature. The reaction system was then stirred at room temperature for 16 hours.
  • Step D Under nitrogen protection at room temperature, N-(5-formyl-2-(methylthio)pyrimidin-4-yl)-N-(4-methoxybenzyl)glycine methyl ester (16.5 g, 45.71 mmol) was dissolved in dry toluene (160 mL). Then, sodium hydride (7.31 g, 182.83 mmol) was slowly added to the above solution under ice-water bath conditions. The reaction system was then stirred at 70°C for 2 hours.
  • Step E 7-(4-methoxybenzyl)-2-(methylthio)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid methyl ester (10 g, 29.15 mmol) was dissolved in dry dichloromethane (147 mL) at room temperature. Subsequently, lithium aluminum tetrahydride (1 mol/L) (59.30 ml, 59.30 mmol) was added to the reaction solution at -78°C. The reaction system was then reacted at -78°C for 30 minutes.
  • reaction solution was added to ice water (500 mL) to quench.
  • the mixed solution was extracted with ethyl acetate (100 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (100 mL ⁇ 2 times). Then it was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • the resulting residue was purified by silica gel column chromatography to obtain 10 g (7-(4-methoxybenzyl)-2-(methylthio)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)methanol.
  • Step F Dissolve (7-(4-methoxybenzyl)-2-(methylthio)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)methanol (10 g, 31.75 mmol) and manganese dioxide (13.65 g, 158.75 mmol) in dichloromethane (635 mL) at room temperature. Vacuum the air to replace nitrogen three times, and stir the reaction system at room temperature for 2 hours.
  • Step G 7-(4-methoxybenzyl)-2-(methylthio)-7H-pyrrolo[2,3-d]pyrimidine-6-carbaldehyde (8 g, 25.56 mmol) was dissolved in N,N-dimethylformamide (128 mL) at room temperature. Then, N-chlorosuccinimide (5.12 g, 38.34 mmol) was slowly added to the above solution. The reaction system was then stirred at 50°C for 2 hours.
  • Step H 5-chloro-7-(4-methoxybenzyl)-2-(methylthio)-7H-pyrrolo[2,3-d]pyrimidine-6-carbaldehyde (3.5 g, 10.09 mmol) and sulfur powder (65 mg, 2.02 mmol) were dissolved in ammonia/methanol solution (4 mol/L, 34 mL) at room temperature. The reaction system was then stirred at 80°C for 6 hours.
  • Step I 4-(4-methoxybenzyl)-6-(methylthio)-4H-isothiazolo[5',4':4,5]pyrrolo[2,3-d]pyrimidine (2.9 g, 8.48 mmol) was dissolved in dry dichloromethane solution (43 mL) at room temperature. Then, m-chloroperbenzoic acid (3.22 g, 18.66 mmol) was slowly added to the reaction system at -78°C. The reaction system was then stirred at room temperature for 4 hours.
  • Step J 4-(4-methoxybenzyl)-6-(methylsulfonyl)-4H-isothiazolo[5',4':4,5]pyrrolo[2,3-d]pyrimidine (1.8 g, 4.81 mmol) was dissolved in dry 1,4-dioxane solution (16 mL) at room temperature. Ammonia/methanol solution (4 mol/L, 48 mL) was then added to the solution. The reaction system was then stirred at 80°C for 4 hours.
  • Step K 4-(4-methoxybenzyl)-4H-isothiazolo[5',4':4,5]pyrrolo[2,3-d]pyrimidin-6-amine (840 mg, 2.70 mmol) was dissolved in dry dichloromethane solution (68 mL) at room temperature. Subsequently, trimethylsilyl chloride (910 mg, 8.37 mmol) and tert-butyl nitrite (1.37 g, 13.23 mmol) were added to the above solution in an ice-water bath. The reaction system was then stirred at room temperature for 16 hours.
  • Step L 6-Chloro-4-(4-methoxybenzyl)-4H-isothiazolo[5',4':4,5]pyrrolo[2,3-d]pyrimidine (390 mg, 1.18 mmol) was dissolved in trifluoromethanesulfonic acid (8 mL) at room temperature and the reaction system was stirred at 65°C for 2 hours.
  • Step M 6-chloro-4H-isothiazolo[5',4':4,5]pyrrolo[2,3-d]pyrimidine (200 mg, 0.95 mmol), 2-(4-(bromomethyl)phenyl)-1-methyl-4-(trifluoromethyl)-1H-imidazole (303 mg, 0.95 mmol) and potassium carbonate (263 mg, 1.90 mmol) were dissolved in N,N-dimethylformamide (5 mL) under nitrogen protection at room temperature. The reaction system was then stirred at 50° C. for 2 hours.
  • Step N 6-chloro-4-(4-(1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-4H-isothiazolo[5',4':4,5]pyrrolo[2,3-d]pyrimidine (170 mg, 0.38 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boronic acid (110 mg, 0.57 mmol), cesium carbonate (186 mg, 0.57 mmol) and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (60 mg, 0.08 mmol) were dissolved in 1,4-dioxane/water (2.7 mL/0.3 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was
  • Step A Under nitrogen protection at room temperature, 5-bromo-2-chloropyrimidine-4-amine (108 g, 518 mmol) was dissolved in 1,4-dioxane/water (2119 mL/235 mL). Subsequently, 3-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborane-2-yl)benzonitrile (150 g, 570 mmol), sodium carbonate (110 g, 1036 mmol) and [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium dichloromethane complex (38 g, 46.6 mmol) were added to the above solution in sequence. The reaction system was then stirred at 90°C for 16 hours.
  • Step B Under nitrogen protection at room temperature, 4-(4-amino-2-chloropyrimidin-5-yl)-3-chlorobenzonitrile (94.6 g, 358 mmol) was dissolved in 1,4-dioxane/water (1394 mL/232 mL).
  • (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (69.5 g, 358 mmol), cesium carbonate (233 g, 716 mmol) and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (36.5 g, 46.5 mmol) were added to the above solution in sequence. The reaction system was then stirred at 90°C for 16 hours.
  • Step C 2-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-9H-pyrimido[4,5-b]indole-7-carbonitrile (53.8 g, 157.2 mmol) was dissolved in N,N-dimethylformamide (436 mL) at room temperature. Subsequently, cesium carbonate (114 g, 349.2 mmol) and 9-(chloromethyl)-2-(trifluoromethyl)-6,7-dihydro-5H-benzo[c]imidazo[1,2-a]azepine (26.2 g, 87.3 mmol) were added to the reaction system in sequence. The reaction system was then stirred at 45°C for 16 hours.
  • Step A 1-oxo-2,3-dihydro-1H-indene-5-carboxylic acid methyl ester (1 g, 5.26 mmol) was dissolved in methanol (27.5 mL) at room temperature. Then, sodium borohydride (420 mg, 10.53 mmol) was slowly added to the above solution at 0°C. The reaction system was then stirred at room temperature for 1 hour.
  • reaction solution was slowly added dropwise to ice water (50 mL) to quench, filtered, and the filtrate was extracted with ethyl acetate (50 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated saline solution (50 mL ⁇ 2 times). Then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 1 g of 1-hydroxy-2,3-dihydro-1H-indene-5-carboxylic acid methyl ester.
  • Step B Under nitrogen protection, 1-hydroxy-2,3-dihydro-1H-indene-5-carboxylic acid methyl ester (710 mg, 3.68 mmol), 3,4-dihydro-2H-pyran (621.25 mg, 7.40 mmol) and p-toluenesulfonic acid pyridinium salt (95 mg, 0.37 mmol) were dissolved in dichloromethane (18.50 mL) at room temperature. The reaction system was then stirred at 60°C for 1 hour.
  • Step C Under nitrogen protection at 0°C, 1-((tetrahydro-2H-pyran-2-yl)oxy)-2,3-dihydro-1H-indene-5-carboxylic acid methyl ester (850 mg, 2.90 mmol) was dissolved in tetrahydrofuran (15.50 mL). Subsequently, lithium aluminum hydride (2.5 mL, 6.18 mmol) was slowly added to the above solution. The reaction system was then stirred at room temperature for 1 hour.
  • reaction solution was slowly added dropwise to ice water (100 mL) to quench, filtered, and the filtrate was extracted with ethyl acetate (50 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated saline solution (100 mL ⁇ 2 times). Then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 690 mg (1-((tetrahydro-2H-pyran-2-yl)oxy)-2,3-dihydro-1H-inden-5-yl)methanol.
  • Step D (1-((tetrahydro-2H-pyran-2-yl)oxy)-2,3-dihydro-1H-inden-5-yl)methanol (690 mg, 2.78 mmol) and manganese dioxide (2.42 g, 27.82 mmol) were dissolved in dichloromethane (14 mL) under nitrogen at room temperature. The reaction system was then stirred at 60° C. for 1 hour.
  • Step E 3,3-dibromo-1,1,1-trifluoropropane-2-one (833.05 mg, 3.09 mmol) and sodium acetate (460 mg, 5.61 mmol) were dissolved in water (14 mL) at room temperature, heated to 90°C, and stirred for 0.5 hours. Then, the temperature was lowered to 0°C, and a mixture of 1-((tetrahydro-2H-pyran-2-yl)oxy)-2,3-dihydro-1H-indene-5-carboxaldehyde (690 mg, 2.80 mmol) in aqueous ammonia/methanol (49 mL/15 mL) was added to the solution. The reaction system was then stirred at room temperature for 16 hours.
  • reaction solution was slowly added dropwise to ice water (200 mL) to quench, the mixed solution was extracted with ethyl acetate (100 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated saline solution (100 mL ⁇ 2 times). Then dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to obtain 590 mg of 2-(1-((tetrahydro-2H-pyran-2-yl)oxy)-2,3-dihydro-1H-inden-5-yl)-4-(trifluoromethyl)-1H-imidazole.
  • Step F 2-(1-((tetrahydro-2H-pyran-2-yl)oxy)-2,3-dihydro-1H-inden-5-yl)-4-(trifluoromethyl)-1H-imidazole (590 mg, 1.67 mmol) and potassium carbonate (461.30 mg, 3.34 mmol) were dissolved in N,N-dimethylformamide (8.40 mL) at room temperature. Subsequently, iodomethane (617.08 mg, 4.35 mmol) was added to the above solution at 0°C. The reaction system was then stirred at room temperature for 4 hours.
  • reaction solution was slowly added dropwise to ice water (100 mL) to quench.
  • the mixed solution was extracted with ethyl acetate (50 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated saline solution (50 mL ⁇ 2 times). Then it was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • Step G At room temperature, under nitrogen protection, dissolve 1-methyl-2-(1-((tetrahydro-2H-pyran-2-yl)oxy)-2,3-dihydro-1H-inden-5-yl)-4-(trifluoromethyl)-1H-imidazole (400 mg, 1.09 mmol) and p-toluenesulfonic acid (41.53 mg, 0.22 mmol) in methanol (6 mL), raise the temperature to 60°C, and stir for 2 hours.
  • reaction solution was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to obtain 180 mg 5-(1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl)-2,3-dihydro-1H-inden-1-ol.
  • Step H Under nitrogen protection at room temperature, 5-(1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl)-2,3-dihydro-1H-indene-1-ol (80 mg, 0.28 mmol), 2-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-9H-pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine (90.21 mg, 0.28 mmol) and triphenylphosphine (111.49 mg, 0.43 mmol) were dissolved in anhydrous tetrahydrofuran (1.5 mL). Subsequently, diisopropyl azodicarboxylate (85.96 mg, 0.43 mmol) was slowly added dropwise to the above solution at 0°C. The reaction system was then stirred at room temperature for 1 hour.
  • Step A Under nitrogen protection at room temperature, (2-(trifluoromethyl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepine-9-yl)methanol (70 mg, 0.25 mmol), 2-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-9H-pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine (79 mg, 0.25 mmol) and triphenylphosphine (97 mg, 0.37 mmol) were dissolved in dry tetrahydrofuran (1.5 mL). Subsequently, diisopropyl azodicarboxylate (75 mg, 0.37 mmol) was slowly added dropwise to the above solution under ice-water bath conditions. The reaction system was then stirred at room temperature for 1 hour.
  • Step A Dissolve methyl 3-hydroxy-4-(4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (1.13 g, 3.95 mmol) and cesium carbonate (3.9 g, 11.85 mmol) in acetonitrile (20 mL) at room temperature and stir for 1 hour. Then, add 1,2-dibromoethane (3.7 g, 19.76 mmol) to the above reaction system, raise the temperature to 60°C, and continue stirring for 12 hours.
  • Step B Under nitrogen protection at 0°C, dissolve methyl 2-(trifluoromethyl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepine-9-carboxylate (453 mg, 1.45 mmol) in tetrahydrofuran (7.3 mL). Then, slowly add lithium aluminum tetrahydride (1.2 mL, 2.9 mmol) to the above solution, warm to room temperature, and continue stirring for 30 minutes.
  • Step C At 0°C, under nitrogen, (2-(trifluoromethyl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepine-9-yl)methanol (50 mg, 0.18 mmol), triphenylphosphine (92 mg, 0.35 mmol) and 2-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-9H-pyrimido[4,5-b]indole-7-carbonitrile (90 mg, 0.26 mmol) were dissolved in dry tetrahydrofuran (4.9 mL). Subsequently, diisopropyl azodicarboxylate (71 mg, 0.35 mmol) was slowly added dropwise to the above solution. The reaction system was then stirred at room temperature for 1 hour.
  • Step A Methyl 4-(4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (2 g, 7.4 mmol) was dissolved in N,N-dimethylformamide (37 mL) at room temperature. The solution was then cooled to 0°C, and potassium carbonate (2.05 g, 14.8 mmol) and iodomethane-D 3 (1.29 g, 8.89 mmol) were added in sequence. The reaction system was then stirred at room temperature for 1 hour.
  • Step B Under nitrogen protection at 0°C, methyl 4-(1-(methyl-d3)-4-(trifluoromethyl)-1H-imidazol-2-yl)benzoate (1.6 g, 5.57 mmol) was dissolved in tetrahydrofuran (28 mL). Subsequently, 2M lithium aluminum tetrahydride solution (4.8 mL) was slowly added dropwise to the above solution. The reaction system was then stirred at room temperature for 30 minutes.
  • Step C (4-(1-(methyl-d3)-4-(trifluoromethyl)-1H-imidazol-2-yl)phenyl)methanol (300 mg, 1.16 mmol) was dissolved in dichloromethane (5.8 mL) at room temperature. Subsequently, the solution was cooled to 0°C, and triphenylphosphine (607 mg, 2.32 mmol), sodium bicarbonate (187 mg, 1.16 mmol) and carbon tetrabromide (767 mg, 2.32 mmol) were added in sequence. The reaction system was then stirred at room temperature for 2 hours.
  • Step D 2-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-9H-pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine (74 mg, 0.22 mmol) was dissolved in N,N-dimethylformamide (1.2 mL) at 0°C under nitrogen protection. Then, sodium hydride (37 mg, 0.88 mmol) was added to the above solution and stirred for 20 minutes. Then, 2-(4-(bromomethyl)phenyl)-1-(methyl-d3)-4-(trifluoromethyl)-1H-imidazole (70 mg, 0.22 mmol) was added, the mixture was warmed to room temperature, and stirring was continued for 30 minutes.
  • Step A (2-isopropylphenyl)boronic acid (170 mg, 1.04 mmol), 2-chloro-5-(3-chloropyridin-4-yl)-N-(2,4-dimethoxybenzyl)pyrimidin-4-amine (400 mg, 1.04 mmol), cesium carbonate (676 mg, 2.07 mmol) and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (163 mg, 0.21 mmol) were dissolved in 1,4-dioxane/water (4.40 mL/0.74 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 90 ° C for 8 hours under microwave conditions.
  • Step B 9-(2,4-dimethoxybenzyl)-2-(2-isopropylphenyl)-9H-pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine (80 mg, 0.21 mmol) was dissolved in trifluoroacetic acid (3 mL) at room temperature and the reaction system was stirred for 12 hours.
  • Step C 2-(2-isopropylphenyl)-9H-pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine (70 mg, 0.24 mmol) was dissolved in dry N,N-dimethylformamide (1.5 mL) at 0°C under nitrogen. Sodium hydride (58 mg, 0.97 mmol) was then added to the solution and stirred for 20 minutes. 2-(4-(bromomethyl)phenyl)-1-methyl-4-(trifluoromethyl)-1H-imidazole (77 mg, 0.24 mmol) was then added, the mixture was warmed to room temperature and stirred for 10 minutes.
  • Step A (2-isopropylpyridin-3-yl)boric acid (500 mg, 2.02 mmol), 2-chloro-5-(3-chloropyridin-4-yl)-N-(2,4-dimethoxybenzyl)pyrimidin-4-amine (790 mg, 2.02 mmol), cesium carbonate (1.32 g, 04.05 mmol) and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (320 mg, 0.41 mmol) were dissolved in 1,4-dioxane/water (8.70 mL/1.45 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 90 ° C for 16 hours under microwave conditions.
  • Step B 9-(2,4-dimethoxybenzyl)-2-(2-isopropylpyridin-3-yl)-9H-pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine (210 mg, 0.48 mmol) was dissolved in trifluoroacetic acid (4 mL) at room temperature and the reaction system was stirred for 16 hours.
  • Step C 2-(2-isopropylpyridin-3-yl)-9H-pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine (157 mg, 0.54 mmol) was dissolved in dry N,N-dimethylformamide (2.7 mL) at 0°C under nitrogen. Sodium hydride (87 mg, 2.17 mmol) was then added to the solution and stirred for 20 minutes. 2-(4-(bromomethyl)phenyl)-1-methyl-4-(trifluoromethyl)-1H-imidazole (172 mg, 0.54 mmol) was then added, the mixture was warmed to room temperature and stirred for 10 minutes.
  • Step A Dissolve 4-methoxy-1H-pyrazole (6.0 g, 61.2 mmol) and potassium carbonate (33.8 g, 244.8 mmol) in N,N-dimethylformamide (250 ml) at room temperature and stir for 30 minutes. Then, add cyclobutyl bromide (24.6 g, 183.6 mmol) dropwise to the solution, heat to 70°C, and stir for 24 hours.
  • Step B Dissolve 1-cyclobutyl-4-methoxy-1H-pyrazole (580 mg, 3.81 mmol) in dry tetrahydrofuran (40 mL) at -78 °C under nitrogen protection. Then, slowly add 2.5 M n-butyl lithium solution (2.0 mL, 5.0 mmol) to the above solution and stir for 1 hour. Then add 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborane (922 mg, 4.95 mmol) dropwise, warm to room temperature, and continue stirring for 2 hours.
  • Step C (1-cyclobutyl-4-methoxy-1H-pyrazol-5-yl)boronic acid (84 mg, 0.43 mmol), 2-chloro-5-(3-chloropyridin-4-yl)-N-(2,4-dimethoxybenzyl)pyrimidin-4-amine (168 mg, 0.43 mmol), cesium carbonate (281 mg, 0.86 mmol) and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (84 mg, 0.08 mmol) were dissolved in 1,4-dioxane/water (1.85 mL/0.31 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 90°C under microwave conditions for 12 hours.
  • Step D Dissolve 2-(1-cyclobutyl-4-methoxy-1H-pyrazol-5-yl)-9-(2,4-dimethoxybenzyl)-9H-pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine (110 mg, 0.23 mmol) in trifluoroacetic acid (3 mL) at room temperature, bring to room temperature, and stir for 12 hours.
  • Step E 2-(1-cyclobutyl-4-methoxy-1H-pyrazol-5-yl)-9H-pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine (100 mg, 0.31 mmol) was dissolved in dry N,N-dimethylformamide (1.6 mL) at 0°C under nitrogen. Sodium hydride (50 mg, 1.25 mmol) was then added to the solution and stirred for 20 minutes. 2-(4-(bromomethyl)phenyl)-1-methyl-4-(trifluoromethyl)-1H-imidazole (99 mg, 0.31 mmol) was then added, the mixture was warmed to room temperature and stirred for 10 minutes.
  • Step A At 0°C, N-(2-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-9-(4-(1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-9H-pyrimido[4,5-b]indol-7-yl)methanesulfonamide (80 mg, 0.12 mmol) was dissolved in N,N-dimethylformamide (1.2 mL) under nitrogen protection. Subsequently, sodium hydride (8.8 mg, 0.22 mmol) was added to the above solution and stirred for 0.5 hours. Then, iodomethane (31 mg, 0.22 mmol) was slowly added dropwise, the temperature was raised to room temperature, and stirred for 10 minutes.
  • Step A Under nitrogen protection at room temperature, N-(2-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-9H-pyrimido[4,5-b]indol-7-yl)-N-((2-(trimethylsilyl)ethoxy)methyl)methanesulfonamide (366 mg, 0.68 mmol) was dissolved in N,N-dimethylformamide (6.8 mL). Subsequently, the solution was cooled to 0°C, sodium hydride (48.8 mg, 1.22 mmol) was slowly added, and stirred for 0.5 hours.
  • Step B N-(2-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-9-((2-(trifluoromethyl)-6,7-dihydro-5H-benzo[c]imidazo[1,2-a]azepine-9-yl)methyl)-9H-pyrimido[4,5-b]indol-7-yl)-N-(2-(trimethylsilyl)ethoxy)methylmethyl)methanesulfonamide (350 mg, 0.43 mmol) was dissolved in dichloromethane (4 mL) at room temperature. Then, the solution was cooled to 0°C, trifluoroacetic acid (4 mL) was slowly added dropwise, the temperature was raised to room temperature, and stirred for 1 hour.
  • Example 8 The target compounds shown in Table 1 were prepared by referring to the synthesis method of Example 8:
  • Example 141 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-8-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-2-methyl-2,8-dihydropyrazolo[4',3':4,5]pyrrolo[2,3-d]pyrimidine
  • Step A 3-chloro-1H-pyrazole (5 g, 49.0 mmol) was dissolved in N,N-dimethylformamide (50 mL) at 0°C. N-iodosuccinimide (14.3 g, 63.7 mmol) was then slowly added to the solution. The reaction system was then stirred at room temperature for 2 hours.
  • Step B Under nitrogen protection at 0°C, 3-chloro-4-iodo-1H-pyrazole (3.5 g, 15.35 mmol) was dissolved in dry tetrahydrofuran (77 mL). Then, sodium hydride (60% content) (1.2 g, 30.70 mmol) was slowly added to the above solution and stirred for 30 minutes. Then, iodomethane (4.3 g, 30.70 mmol) was slowly added dropwise, the mixture was warmed to room temperature and stirred for 1 hour.
  • Step C Dissolve 3-chloro-4-iodo-1-methyl-1H-pyrazole (1.6 g, 6.61 mmol) in dry tetrahydrofuran (33 mL) at room temperature. Then, slowly add 2M isopropylmagnesium chloride (10.5 mL, 21.02 mmol) solution to the above solution and stir for 1 hour. Then add 2-methoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborane (4.43 mg, 28.03 mmol) and continue stirring for 1 hour.
  • Step D 3-chloro-1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborol-2-yl)-1H-pyrazole (2 g, 8.23 mmol), 5-bromo-2-chloro-N-(2,4-dimethoxybenzyl)pyrimidin-4-amine (1.5 g, 4.12 mmol) and sodium carbonate (0.87 g, 8.23 mmol) were dissolved in 1,4-dioxane/water (20 mL/2.2 mL) at room temperature.
  • Step E 2-chloro-5-(3-chloro-1-methyl-1H-pyrazol-4-yl)-N-(2,4-dimethoxybenzyl)pyrimidin-4-amine (780 mg, 1.98 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (386 mg, 1.98 mmol) and cesium carbonate (1.29 g, 3.96 mmol) were dissolved in 1,4-dioxane/water (10 mL/1.7 mL) at room temperature.
  • chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) 312 mg, 0.40 mmol
  • Step F 5-(3-chloro-1-methyl-1H-pyrazol-4-yl)-4'-cyclopropyl-N-(2,4-dimethoxybenzyl)-6'-methoxy-[2,5'-bipyrimidine]-4-amine (650 mg, 1.28 mmol), N,N'-dimethylethylenediamine (68 mg, 0.77 mmol) and potassium carbonate (353 mg, 2.56 mmol) were dissolved in acetonitrile (6.4 mL) at room temperature. Subsequently, cuprous iodide (73 mg, 0.38 mmol) was added, and the air was replaced with nitrogen by vacuum evacuation 3 times. The reaction system was stirred at 120°C for 16 hours.
  • Step G Under nitrogen protection at room temperature, 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-8-(2,4-dimethoxybenzyl)-2-methyl-2,8-dihydropyrazolo[4',3':4,5]pyrrolo[2,3-d]pyrimidine (180 mg, 0.38 mmol) was dissolved in trifluoroacetic acid (8 mL). The reaction system was then stirred at 85° C. for 16 hours.
  • Step H Under nitrogen protection at 0°C, 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-2-methyl-2,8-dihydropyrazolo[4',3':4,5]pyrrolo[2,3-d]pyrimidine (100 mg, 0.31 mmol) was dissolved in dry N,N-dimethylformamide (1.5 mL). Then, sodium hydride (content 60%) (50 mg, 1.24 mmol) was slowly added to the above solution and stirred for 0.5 hours.
  • Example 142 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-8-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-1,8-dihydropyrazolo[4',3':4,5]pyrrolo[2,3-d]pyrimidine
  • Step A 3-chloro-1H-pyrazole (5 g, 49.02 mmol) was dissolved in N,N-dimethylformamide (50 mL) at 0°C. Then, N-iodosuccinimide (14.3 g, 63.73 mmol) was slowly added to the solution. The reaction system was then stirred at room temperature for 2 hours.
  • Step B Under nitrogen protection at room temperature, 3-chloro-4-iodo-1H-pyrazole (4 g, 17.54 mmol) was dissolved in N,N-dimethylformamide (88 mL). Then, sodium hydride (1.05 g, 26.32 mmol) was added to the above solution in an ice-water bath and stirred for 30 minutes. Then 2-(trimethylsilyl)ethoxymethyl chloride (4.4 g, 26.32 mmol) was slowly added, the temperature was raised to room temperature, and stirred for 1 hour.
  • reaction solution was added to ice water (500 mL) to quench.
  • the mixed solution was extracted with ethyl acetate (80 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (60 mL ⁇ 2 times). Then it was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • the resulting residue was purified by silica gel column chromatography to obtain 5 g 3-chloro-4-iodo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole.
  • Step C Dissolve 3-chloro-4-iodo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (5 g, 13.97 mmol) in dry tetrahydrofuran solution (70 mL) at room temperature. Then, add 2M isopropylmagnesium chloride (22.5 mL, 44.70 mmol) to the above solution and stir for 1 hour. Then slowly add 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborane (9.5 g, 60.07 mmol) dropwise and continue stirring for 1 hour.
  • reaction solution was added to ice water (100 mL) to quench.
  • the mixed solution was extracted with ethyl acetate (50 mL ⁇ 3 times), the organic phases were combined, and the organic phases were washed with saturated brine (60 mL ⁇ 2 times). Then it was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • the resulting residue was purified by silica gel column chromatography to obtain 4 g 3-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole.
  • Step D 3-Chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (4 g, 11.17 mmol), (5-bromo-2-chloro-N-(2,4-dimethoxybenzyl)pyrimidin-4-amine (2 g, 5.59 mmol), sodium carbonate (1.18 g, 11.17 mmol) and [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium dichloromethane complex (915 mg, 1.12 mmol) were dissolved in 1,4-dioxane/water (54 mL/6 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 100°C for 2 hours.
  • Step E 2-Chloro-5-(3-chloro-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazol-4-yl)-N-(2,4-dimethoxybenzyl)pyrimidin-4-amine (3 g, 5.89 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (2.3 g, 11.78 mmol), cesium carbonate (2.9 g, 8.84 mmol) and chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (2.3 g, 2.95 mmol) were dissolved in 1,4-dioxane/water (54 mL/9 mL) at room temperature. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at
  • Step F 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-8-(2,4-dimethoxybenzyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1,8-dihydropyrazolo[4',3':4,5]pyrrolo[2,3-d]pyrimidine (200 mg, 0.34 mmol) was dissolved in trifluoroacetic acid (3 mL) at room temperature. The reaction was stirred at 85°C for 5 hours.
  • Step G 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-1,8-dihydropyrazolo[4',3':4,5]pyrrolo[2,3-d]pyrimidine (25 mg, 0.08 mmol), 2-(4-(bromomethyl)phenyl)-1-isopropyl-4-(trifluoromethyl)-1H-imidazole (28 mg, 0.08 mmol) and potassium carbonate (23 mg, 0.16 mmol) were dissolved in N,N-dimethylformamide (1 mL) at room temperature. The reaction system was then stirred at 50°C for 2 hours.
  • Example 143 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-8-(4-(1-isopropyl-4-(trifluoromethyl)-1H-imidazol-2-yl)benzyl)-1-methyl-1,8-dihydropyrazolo[4',3':4,5]pyrrolo[2,3-d]pyrimidine
  • Step A Under nitrogen protection at 0°C, 3-chloro-4-iodo-1H-pyrazole (112 g, 491 mmol) was dissolved in dry tetrahydrofuran (1.4 L). Then, sodium hydride (42 g, 1.05 mol) was slowly added to the above solution and stirred for 30 minutes. Then, iodomethane (104 g, 736 mmol) was added dropwise, the temperature was raised to room temperature, and stirring was continued for 4 hours.
  • Step B Dissolve 5-chloro-4-iodo-1-methyl-1H-pyrazole (3 g, 12.39 mmol) in dry tetrahydrofuran (62 mL) at room temperature. Then, add 2M isopropylmagnesium chloride solution (19.7 mL, 39.4 mmol) dropwise to the solution and stir for 1 h. Then add 2-methoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborane (6.72 g, 52.5 mmol) and continue stirring for 1 hour.
  • Step C 5-chloro-1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborol-2-)-1H-pyrazole (2 g, 8.23 mmol), 5-bromo-2-chloro-N-(2,4-dimethoxybenzyl)pyrimidin-4-amine (1.5 g, 4.12 mmol) and sodium carbonate (0.87 g, 8.23 mmol) were dissolved in 1,4-dioxane/water (20 mL/2.2 mL) at room temperature.
  • Step D 2-chloro-5-(5-chloro-1-methyl-1H-pyrazol-4-yl)-N-(2,4-dimethoxybenzyl)pyrimidin-4-amine (1.8 g, 4.57 mmol), (4-cyclopropyl-6-methoxypyrimidin-5-yl)boric acid (891 mg, 4.57 mmol) and cesium carbonate (3 g, 9.14 mmol) were dissolved in 1,4-dioxane/water (23 mL/2.3 mL) at room temperature.
  • chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (644 mg, 0.91 mmol) was added to the above solution.
  • the air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 90°C under microwave conditions for 16 hours.
  • Step E 5-(5-chloro-1-methyl-1H-pyrazol-4-yl)-4'-cyclopropyl-N-(2,4-dimethoxybenzyl)-6'-methoxy-[2,5'-bipyrimidine]-4-amine (800 mg, 1.58 mmol), N,N'-dimethylethylenediamine (278 mg, 3.16 mmol) and potassium carbonate (404 mg, 3.16 mmol) were dissolved in N,N-dimethylformamide (8 mL) at room temperature. Subsequently, cuprous iodide (300 mg, 1.58 mmol) was added to the above solution. The air was evacuated and replaced with nitrogen three times, and the reaction system was stirred at 120°C for 16 hours.
  • Step F 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-8-(2,4-dimethoxybenzyl)-1-methyl-1,8-dihydropyrazolo[4',3':4,5]pyrrolo[2,3-d]pyrimidine (520 mg, 1.1 mmol) was dissolved in trifluoroacetic acid (6 mL) at room temperature under nitrogen protection. The reaction system was then stirred at 85°C for 8 hours.
  • Step G Under nitrogen protection at 0°C, 6-(4-cyclopropyl-6-methoxypyrimidin-5-yl)-1-methyl-1,8-dihydropyrazolo[4',3':4,5]pyrrolo[2,3-d]pyrimidine (50 mg, 0.16 mmol) was dissolved in N,N-dimethylformamide (1.0 mL). Then, sodium hydride (25 mg, 0.62 mmol) was added to the above solution and stirred for 20 minutes.
  • Example 142 The target compounds shown in Table 2 were prepared by referring to the synthesis method of Example 142:
  • room temperature refers to about 20-30°C.
  • USP1 enzyme activity detection experiment was used to screen USP1i compounds.
  • Test sample the compound in Table 3 of the present application, whose structural formula and preparation method are shown in the above examples.
  • step (4) Add 10 ⁇ L of the substrate solution prepared in step (4) to each well to start the reaction.
  • the final reaction system is 200 nL of the test compound + 10 uL of the enzyme solution + 10 uL of the substrate solution.
  • the final concentration of the enzyme is 0.05 nM, and the final concentration of the substrate solution is 300 nM. Centrifuge for 30 s and shake for 30 s.
  • Inhibition rate % (maximum signal value - target signal value) / (maximum signal value - minimum signal value) ⁇ 100;
  • the maximum signal value represents the luminescent signal intensity of the positive control well without the compound of the present application
  • the minimum signal value represents the luminescent signal intensity of the negative control well without the enzyme
  • the target signal value represents the luminescent signal intensity of the test compound.
  • Equation (II): Y Bottom + (Top-Bottom) / (1 + (IC 50 /X) ⁇ HillSlope)
  • Y is the inhibition percentage
  • X is the compound concentration
  • Bottom is the lowest inhibition rate
  • Top is the highest inhibition rate
  • HillSlope is the slope.
  • the compounds of the examples of the present application have a good inhibitory effect on USP1, and their IC 50 values are generally lower than 1000 nanomolar (nM); the IC 50 values of some of the compounds of the examples of the present application are lower than 100 nM, and more preferably the IC 50 values of the compounds of the examples of the present application are lower than 50 nM, or even lower than 10 nM.
  • the inhibition results of some of the compounds of the examples of the present application on USP1 are shown in Table 3.
  • NCI-H1693 cells were purchased from ATCC (Cat. No. CRL-5866) and cultured in a 37°C, 5% CO 2 (containing 5% CO 2 and 95% air) cell culture incubator; 1640 complete medium: 94wt% RPMI-1640 liquid medium (Gibco Cat. No. 11875-093), 5wt% FBS (Gibco Cat. No. 10099-141), 1wt% Pen Strep (Gibco Cat. No. 15070-063); fluorescent 384-well plate (Perkin Elmer, Cat. No. 6007279); trypsin (Gibco Cat. No. 25200056); CTG buffer ( 2.0 Cell Viability Assay, Promega, Catalog No.: G9241).
  • test sample (concentration: 3.33 mM, dissolved in DMSO) was diluted with 10 uM as the highest starting concentration, and then diluted in 9 gradients (10000 nM, 3333 nM, 1111 nM, 370 nM, 123 nM, 41 nM, 13.7 nM, 4.6 nM, 1.5 nM) at a ratio of 1:3 for drug addition treatment.
  • 9 gradients (10000 nM, 3333 nM, 1111 nM, 370 nM, 123 nM, 41 nM, 13.7 nM, 4.6 nM, 1.5 nM
  • the cells were placed in a 37°C, 5% CO 2 (containing 5% CO 2 by volume and the rest being air) incubator for further culture for 6 days. After 6 days, 25 ⁇ L CTG buffer was added to each well for CTG detection, and the plate was read and analyzed using an ELISA reader.
  • the average inhibition rate of the positive control duplicate wells was set as the relative inhibition rate of 100%;
  • the average value of negative control duplicate wells was set as the relative inhibition rate 0%.
  • the CTG readings were converted into relative inhibition rates, and the inhibition rates (inhibition %) of the cells at various concentrations of the compounds were calculated according to the following formula.
  • Inhibition% (b-x)/(b-a ⁇ 100%;
  • concentrations and inhibition rates corresponding to 10000nM, 3333nM, 1111nM, 370nM, 123nM, 41nM, 13.7nM, 4.6nM, and 1.5nM were statistically analyzed and calculated based on Log10 (compound concentration).
  • mice Male CD1 mice were used as test animals to study the compounds of the present application after intravenous injection and oral administration. Plasma samples were collected at specific time points, and the concentration of the compound in plasma was detected by LC-MS/MS. Drug metabolism and pharmacokinetic (DMPK) parameters were calculated to evaluate the pharmacokinetic characteristics of the compounds of the present application in mouse plasma.
  • DMPK pharmacokinetic
  • mice Male CD1 mice, weighing 20-30 g, supplied by Vital River.
  • Administration information of the compounds of this application 3 mice in each of the IV group (intravenous injection group) and the PO group (oral group), the dosage is 1 mg/kg for the IV group, the dosage volume is 5 mL/kg, and the dosage is 10 mg/kg for the PO group, the dosage volume is 10 mL/kg.
  • the administration solvent is 5 vol% DMSO + 10 vol% Solutol (Kolliphor HS 15) + 85 vol% Saline (normal saline).
  • mice After administration to mice, 0.02-0.03 mL of blood was collected from the saphenous vein at 0.083, 0.25, 0.5, 1, 2, 4, 8, and 24 h in the IV group and at 0.25, 0.5, 1, 2, 4, 8, and 24 h in the PO group.
  • the blood was placed in EDTA-K2 tubes, centrifuged at 4000 g for 5 min at 4°C to separate plasma, and stored at -80°C until sample analysis.
  • Test Example 4 Pharmacokinetics of the compound of the present application in male Beagle dogs
  • Male Beagle dogs were used as test animals to study the pharmacokinetic characteristics of the compounds of the present application in dog plasma after intravenous injection and oral administration. Plasma samples were collected at specific time points, and the concentration of the compounds in plasma was detected by LC-MS/MS. DMPK parameters were calculated.
  • the present application shows 6 compounds; the structural formula and preparation method of compound 58 and compound 88 are shown in the above examples; the structural formula of KSQ-4279 is:
  • Administration information of the compounds of this application 3 dogs in each of the IV group (intravenous injection group) and the PO group (oral group), the dosage was 0.2 mg/kg in the IV group, the dosage volume was 0.5 mL/kg, and the dosage was 3 mg/kg in the PO group, the dosage volume was 3 mL/kg.
  • the administration solvent was 5 vol% DMSO + 10 vol% Solutol (Kolliphor HS 15) + 85 vol% Saline (normal saline).
  • 0.5 mL of blood was collected from the cephalic vein at 0.083, 0.25, 0.5, 1, 2, 4, 8, and 24 h for the IV group and at 0.25, 0.5, 1, 2, 4, 8, and 24 h for the PO group.
  • the blood was placed in EDTA-K2 tubes, centrifuged at 2000 g for 10 min at 2-8 °C to separate plasma, and stored at -80 °C until sample analysis.
  • mice Female BALB/c nude mice were used as test animals. After oral administration of the compounds of the present application, tumors were measured and weighed regularly to study the tumor growth inhibition and tolerance in different dosing groups. After the study, plasma and tumors were collected at specific time points for pharmacokinetic analysis/pharmacodynamic analysis (PK/PD) analysis.
  • PK/PD pharmacokinetic analysis/pharmacodynamic analysis
  • Compound KSQ4279 has the structural formula:
  • Tumor-bearing mouse tumor (R10P8) was purchased from Sino-US Crown Biotechnology (Beijing) Co., Ltd.; Ubiquityl-PCNA (Lys164) (D5C7P) mAb antibody was purchased from Cell Siganaling, catalog number: 13439S; PCNA (PC10) antibody was purchased from Santa Cruz, catalog number: sc-56.
  • mice Female BALB/c nude mice, weight 21-25 g, supplier: Beijing Ankai Yibo Biotechnology Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本申请提供一类式(II')所示的具有USP1抑制活性的新型化合物,含有所述化合物的药物组合物、制备所述化合物的有用中间体以及利用本申请化合物治疗USP1靶点介导的相关疾病方法。

Description

USP1抑制剂
本申请请求于2022年9月2日提交中国专利局、申请号为CN202211069731.2、发明名称“USP1抑制剂”的中国专利申请,2022年10月18日提交中国专利局、申请号为CN202211272140.5、发明名称“USP1抑制剂”的中国专利申请,2023年1月18日提交中国专利局、申请号为CN202310084635.3、发明名称“USP1抑制剂”的中国专利申请,2023年4月18日提交中国专利局、申请号为CN202310416682.3、发明名称“USP1抑制剂”的中国专利申请,2023年6月25日提交中国专利局、申请号为CN202310755391.7、发明名称“USP1抑制剂”的中国专利申请,2023年8月25日提交中国专利局、申请号为CN202311082622.9、发明名称“USP1抑制剂”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于药物化学领域,涉及具有USP1抑制活性的新型化合物,含有所述化合物的药物组合物、制备所述化合物的有用中间体,以及利用本申请化合物治疗USP1靶点介导的相关疾病的方法。
背景技术
泛素是一种由76个氨基酸组成的小而高度保守的蛋白,通过三步酶促反应与底物蛋白(包括自身)结合。最初的共价附着主要发生在泛素的C-末端甘氨酸和靶蛋白的赖氨酸残基的ε-氨基之间。另外的泛素分子可以连接到泛素的七种内部赖氨酸之一,导致不同的泛素链拓扑结构。泛素化的生物学结果是由长度和连接拓扑决定的。与其他类型的翻译后修饰类似,泛素化是一种被称为去泛素化酶(DUBs)的酶反调节的可逆过程,其催化从修饰的蛋白质中去除泛素。更重要的是,泛素依赖性信号通路的功能障碍与各种人类疾病有关,提示抑制泛素途径成分是药物发现的新的治疗靶点。
泛素-蛋白酶体***为治疗干预提供了额外的机会,可以提高特异性和改善临床疗效的可能性。最明显的目标包括参与泛素缀合和去缀合(即泛素连接酶和DUBs)的酶,蛋白酶体介导的蛋白降解的上游过程。在DUBs中,泛素特异性蛋白酶1(USP1)因参与调节DNA损伤反应途径而成为一个有吸引力的抗癌靶点。USP1与UAF1(USP1相关因子1)结合,产生去泛素化酶活性所需的异二聚体USP1/UAF1复合物。已经显示USP1/UAF1复合物通过PCNA(增殖细胞核抗原)11和FANCD2(Fanconi贫血互补组D2)的去泛素化来调节DNA交联剂诱导的DNA损伤的耐受性,其分别是在跨损伤合成和Fanconi贫血途径中起作用的蛋白质。
目前根据此类作用机制进行的研究很多,但是并未发现USP1抑制剂类药物上市,因此急需开发有效的USP1抑制剂应用于临床患者。
发明内容
本申请第一方面提供了式(II’)所示化合物、其异构体及其药学上可接受的盐,
其中,
Xa为C或N;
环A为苯环、5-6元杂芳基环、C5-6环烷基环或5-6元杂环基环;Ra各自独立的为氘、卤素、C1-4烷基、C1-4卤代烷基、C1-4烷氧基、氧代基、氰基、氨基、羟基、氨基磺酰基、C1-4烷基磺酰基、氨基甲酰基、C1-4烷基氨基、C3-6环烷基、C1-4烷基磺酰氨基、二甲基膦酰基、-C1-4烷基-OH、-COOC1-4烷基、C1-4烷基-SO2-NRf-、HO-C1-4烷基-SO2-NRf-、3-6元杂环基、-C1-4卤代烷基-OH、(C1-4烷基)2P(O)-、氘代C1-4烷基、4-6元杂环烷基;所述C1-4烷基、C1-4卤代烷基中C原子可以任意被N、O替代;Rf为C3-6环烷基、C1-4烷基;m为0、1、2、3或4;
Rb为氢、C1-4烷基;
环B为苯环、5-10元杂芳基环、5-10元杂环基环;Rc各自独立的为卤素、C1-4烷基、C1-4烷氧基、C3-6环烷基、C1-4卤代烷基、C1-4卤代烷氧基、氘代C1-4烷基;n为0、1、2、3或4;环D为苯环、5-6元杂芳基环或9-18元稠杂环基环;Re为氘、C1-4烷基、C1-4卤代烷基、C1-4烷氧基、环C或卤素,其中环C可以被l个Rd取代;所述环C为含有1-4个氮原子的5-10元杂芳基环、8-10稠杂环基环;所述Rd各自独立的为C1-4烷基、C1-4卤代烷基、C1-4烷氧基、氘代C1-4烷基、C3-6环烷基;l为1、2、3或4;p为1、2、3或4;
L1为C1-4亚烷基、C3-6亚环烷基或化学键;
当环A为5-6元杂芳基环时,结构单元不为
当环A为5-6元杂环基环时,结构单元不为
在本申请的一些方案中,上述式(II’)化合物、其异构体及其药学上可接受的盐,其特征在于环D为
在本申请的一些方案中,上述式(II’)化合物、其异构体及其药学上可接受的盐,其特征在于环D为
在本申请的一些方案中,上述式(II’)化合物、其异构体及其药学上可接受的盐,其特征在于环D选自
在本申请的一些方案中,上述式(Ⅱ’)化合物、其异构体及其药学上可接受的盐,其特征在于Re为-CF3
在本申请的一些方案中,上述式(Ⅱ’)化合物、其异构体及其药学上可接受的盐,其特征在于Re为-OCH3、-F、-D、-CH3
在本申请的一些方案中,上述式(Ⅱ’)化合物、其异构体及其药学上可接受的盐,其特征在于Re选自-CF3
本申请还提供了式(I’)所示化合物、其异构体及其药学上可接受的盐:
其中,
Xa为C或N;
Xb、Xc、Xd各自独立的为CH、N或CR’,R’为卤素、C1-4烷基、C1-4卤代烷基、C1-4烷氧基;环A为苯环、5-6元杂芳基环、C5-6环烷基环或5-6元杂环基环;Ra各自独立的为氘、卤素、C1-4烷基、C1-4卤代烷基、C1-4烷氧基、氧代基、氰基、氨基、羟基、氨基磺酰基、C1-4烷基磺酰基、氨基甲酰基、C1-4烷基氨基、C3-6环烷基、C1-4烷基磺酰氨基、二甲基膦酰基、-C1-4烷基-OH、-COOC1-4烷基、C1-4烷基-SO2-NRf-、HO-C1-4烷基-SO2-NRf-、3-6元杂环基、-C1-4卤代烷基-OH、(C1-4烷基)2P(O)-、所述C1-4烷基、C1-4卤代烷基中C原子可以任意被N、O替代;Rf为C3-6环烷基、C1-4烷基;
m为0、1、2、3或4;
Rb为氢、C1-4烷基;
环B为苯环、5-10元杂芳基环、5-10元杂环基环;Rc各自独立的为卤素、C1-4烷基、C1-4烷氧基、C3-6环烷基、C1-4卤代烷基、C1-4卤代烷氧基;n为0、1、2、3或4;
环C为含有1-4个氮原子的5-10元杂芳基环;Rd各自独立的为C1-4烷基、C1-4卤代烷基、C1-4烷氧基、氘代C1-4烷基;l为0、1、2、3或4;
L1为C1-4亚烷基、C3-6亚环烷基或化学键。
当环A为5-6元杂芳基时,结构单元不为
当环A为5-6元杂环基时,结构单元不为
本申请还提供了式(I’-1)所示的化合物、其异构体及其药学上可接受的盐,
其中,
Xb、Xc、Xd各自独立的为CH、N或CR’,R’为卤素、C1-4烷氧基;
环A为苯环、吡啶或C5-6环烷基环;Ra各自独立的为卤素、C1-4烷基、C1-4卤代烷基、C1-4烷氧基、氧代基、氰基、氨基、羟基、氨基磺酰基、C1-4烷基磺酰基、氨基甲酰基、C1-4烷基氨基、C3-6环烷基、C1-4烷基磺酰氨基、二甲基膦酰基、-C1-4烷基-OH、-COOC1-4烷基、C1-4烷基-SO2-NRf-、HO-C1-4烷基-SO2-NRf-、3-6元杂环基、-C1-4卤代烷基-OH、(C1-4烷基)2P(O)-、所述C1-4烷基、C1-4卤代烷基中C原子可以任意被N、O替代;Rf为C3-6环烷基、C1-4烷基;m为0、1、2、3或4;
Rb为氢、C1-4烷基;
环B为5-6元杂芳基环、5-10元杂环基环;Rc各自独立的为C1-4烷基、C1-4烷氧基、C3-6环烷基、卤素;n为0、1、2、3或4;
环C为含有1-4个氮原子的5-6元杂芳基环;Rd各自独立的为C1-4烷基、C1-4卤代烷基、C1-4烷氧基;l为0、1、2、3或4;
L1为C1-4亚烷基、C3-6亚环烷基。
在本申请的一些方案中,式(I’-1)所示的化合物、其异构体及其药学上可接受的盐,
其中,
Xb、Xc、Xd各自独立的为CH、N或CR’,R’为卤素、C1-4烷氧基;
环A为苯环、吡啶或C5-6环烷基环;Ra各自独立的为氘、卤素、C1-4烷基、C1-4卤代烷基、C1-4烷氧基、氰基、氨基、氨基磺酰基、甲磺酰基、-COOC1-4烷基、-C1-4烷基-OH、氨基甲酰基;m为0、1、2、3或4;
Rb为氢、C1-4烷基;
环B为5-6元杂芳基环;Rc各自独立的为C1-4烷基、C1-4烷氧基、C3-6环烷基、卤素;n为0、1、2、3或4;
环C为含有1-4个氮原子的5-6元杂芳基环;Rd各自独立的为C1-4烷基、C1-4卤代烷基、C1-4烷氧基;l为0、1、2、3或4;
L1为C1-4亚烷基、C3-6亚环烷基。
在本申请的一些方案中,上述式(II’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于,环A为苯环、5-6元杂芳基环。
在本申请的一些方案中,上述式(II’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于,环A为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环A为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环A为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环A为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环A选自
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于R’各自独立的为-OCH3、-F。
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Ra各自独立的为-F、-OCH3、-CF3、-COOCH3、-C(CH3)2-OH、-CHF2、-CN、-Cl、-NH2CH3-NH-S(O)2-、NH2-S(O)2-。
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Ra各自独立的为-F、-OCH3、-CF3
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Ra各自独立的为-COOCH3、-C(CH3)2-OH、-CHF2
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Ra各自独立的为-CH3、-OH、-Br、-CH2CH3 -OCH(CH3)2D、-CD3
在本申请的一些方案中,上述式(Ⅱ’)及(I’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)及(I’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)及(I’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)及(I’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)及(I’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)及(I’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自
在本申请的一些方案中,上述式(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)及(Ⅰ’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元 其中a代表与环B连接,b代表与L1连接。
在本申请的一些方案中,上述式(Ⅱ’)及(Ⅰ’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元其中a代表与环B相连接,b代表与L1连接。
在本申请的一些方案中,上述式(Ⅱ’)及(Ⅰ’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元其中a代表与环B相连接,b代表与L1连接。
在本申请的一些方案中,上述式(Ⅱ’)及(Ⅰ’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元 其中a代表与环B相连,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅱ’)及(Ⅰ’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自 其中a代表与环B相连,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅱ’)及(Ⅰ’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自
在本申请的一些方案中,上述式(Ⅱ’)及(Ⅰ’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自 其中a代表与环B相连,b代表与L1相连接。
在本申请的一些方案中,上述式(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元 其中a代表与环B连接,b代表与L1连接。
在本申请的一些方案中,上述式(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元 其中a代表与环B相连接,b代表与L1相连接。
在本申请的一些方案中,上述式(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元其中a代表与环B相连接,b代表与L1连接。
在本申请的一些方案中,上述式(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元其中a代表与环B相连接,b代表与L1连接。
在本申请的一些方案中,上述式(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元 其中a代表与环B相连接,b代表与L1连接。
在本申请的一些方案中,上述式(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自其中a代表与环B相连接,b代表与L1连接。
在本申请的一些方案中,上述式(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自其中a代表与环B相连,b代表与L1相连接。
在本申请的一些方案中,上述式(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自其中a代表与环B相连,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅱ’)及(I’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元 其中a代表与环B相连接,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅱ’)及(I’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元 其中a代表与环B相连接,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅱ’)及(Ⅰ’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元 其中a代表与环B相连接,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅱ’)及(Ⅰ’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
其中a代表与环B相连接,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅱ’)及(Ⅰ’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自 其中a代表与环B相连接,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅱ’)及(Ⅰ’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自其中a代表与环B相连接,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅱ’)及(Ⅰ’)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自 其中a代表与环B相连接,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅰ’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元 其中a代表与环B相连,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅰ’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元 其中a代表与环B相连,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅰ’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元 其中a代表与环B相连,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅰ’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自 其中a代表与环B相连,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅰ’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自其中a代表与环B相连,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅰ’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元选自 其中a代表与环B相连,b代表与L1相连接。
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Rb为氢。
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环B为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环B为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环B为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环B为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Rc各自独立的为CH3O-、Cl-、CH(CH3)2-、-OCHF2、-CF3
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Rc各自独立的为-OCH3-CH(CH3)2、-Cl。
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Rc各自独立的为-CH3、-OCD3、。
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环C为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环C为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环C为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环C为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于环C为
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Rd各自独立的为-CF3、-CH3、-CH2CH3、-CH(CH3)2、-OCH2CH3、-CD3
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Rd各自独立的为-CF3、-CH3、-CH(CH3)2
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Rd各自独立的为-CH2CH3
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Rd各自独立的为-Cl、
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于Rd各自独立的为Br、-F。
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于结构单元
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于L1为-CH2-、-CH(CH3)-、-C(CH3)2-、
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于L1为-CH2-、-CH(CH3)-、-C(CH3)2-。
在本申请的一些方案中,上述式(Ⅱ’)、(I’)及(I’-1)化合物、其异构体及其药学上可接受的盐,其特征在于L1为-CH(C2H5)-或为化学键。
本申请还提供了下列所示化合物、其异构体及其药学上可接受的盐,
其中Ra、Rc、Rd、Re、L1、m同本申请前述所定义;X选自C、N或者O。
本申请还提供了下列所示化合物、其异构体及其药学上可接受的盐,
其中Ra、Rc、Rd、L1、m同本申请前述所定义。
本申请还提供了下列所示化合物、其异构体及其药学上可接受的盐,
其中Ra、Rc、Rd、m同本申请前述所定义。
本申请还提供了下列所示化合物、其异构体及其药学上可接受的盐,
其中Ra、Rc、Rd、Re、m同本申请前述所定义;X选自C、N或者O。
本申请还提供了下列所示化合物、其异构体及其药学上可接受的盐,
其中Ra、Rc、Rd、Re、m同本申请前述所定义。
本申请还提供了下列所示化合物、其异构体及其药学上可接受的盐,
本申请第二方面提供了化合物的制备方法:
制备方法一
其中,环A、Xb、Xc、环CRb、Rc、Rd如上述本申请所定义;
化合物1’由SM1和SM2在碱、催化剂条件下反应得到,所述碱选自碳酸钠、碳酸钾、K3PO4、Na2CO3、CsF、Cs2CO3、t-Bu-Na等,所述催化剂选自Pd(PPh3)4、Pd(dppf)Cl2等;
化合物2’由化合物1’和1,2-双(二苯基膦基)乙烷反应得到;
化合物3’由化合物2’和SM3在碱性条件下发生取代反应获得,所述碱选自氢化钠、氢氧化钠、氢氧化钾,叔丁醇钠、叔丁醇钾等;
化合物4’由化合物3’和SM4在碱和催化剂条件下偶联反应获得,所述碱选自碳酸钠、碳酸钾、K3PO4、Na2CO3、CsF、Cs2CO3、t-Bu-Na等,所述催化剂选自Pd(PPh3)4、Pd(dppf)Cl2等。
制备方法二
其中,Xb、Xc、环C、Rc、Rd、Ra如上述本申请所定义;
化合物5’由SM5在碱、催化剂条件下反应得到,所述碱选自碳酸钠、碳酸钾、K3PO4、Na2CO3、CsF、Cs2CO3、t-Bu-Na等,所述催化剂选自Pd(PPh3)4、Pd(dppf)Cl2等;
化合物6’由化合物5’和1,2-双(二苯基膦基)乙烷反应得到;
化合物7’由化合物6’和SM3在碱性条件下发生取代反应获得,所述碱选自氢化钠、氢氧化钠、氢氧化钾,叔丁醇钠、叔丁醇钾等;
化合物8’由化合物7’在碱、催化剂条件下反应得到,所述碱选自碳酸钠、碳酸钾、K3PO4、Na2CO3、CsF、Cs2CO3、t-Bu-Na等,所述催化剂选自Pd(PPh3)4、Pd(dppf)Cl2等;
本申请第三方面提供一种药物组合物,其含有治疗有效量的上述化合物、其异构体或其药学上可接受的盐及药学上可接受的载体。
“药学上可接受的载体”指本领域通常可接受的用于将生物活性药剂递送给动物、特别是哺乳动物的介质,根据给药方式和剂型的性质包括例如佐剂、赋形剂或赋形物,例如稀释剂、防腐剂、填充剂、流动调节剂、崩解剂、润湿剂、乳化剂、助悬剂、甜味剂、调味剂、芳香剂、抗菌剂、抗真菌剂、润滑剂和分散剂。药学上可接受的载体在本领域普通技术人员的眼界范围内根据大量因素配制。其包括但不限于:配制的活性药剂的类型和性质,要将含有该药剂的组合物给药的对象,组合物的预期给药途径,和目标治疗适应症。药学上可接受的载体包括含水介质和非水介质这两者以及多种固体和半固体剂型。除了活性药剂以外,这样的载体包括许多不同的成分和添加剂,因多种原因(例如稳定活性药剂、粘合剂等)在处方中包括的这样的另外的成分对于本领域普通技术人员是众所周知的。
本申请第四方面提供上述化合物、其异构体或其药学上可接受的盐或上述的药物组合物在制备治疗USP1靶点介导的相关疾病药物中的应用。
在本申请的一些方案中,所述USP1靶点介导的相关疾病包括细胞炎性疾病、神经退行性疾病、癌症。
技术效果
本申请化合物有明显的USP1酶学抑制活性,可用于癌症的治疗。
说明和定义
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。
术语“药学上可接受的”指在合理的医学判断范围内适合与人类和动物的组织接触使用而无过度的毒性、刺激、过敏反应或其它的问题或并发症,与合理的收益/风险比相当的那些化合物、材料、组合物和/或剂型。
术语“药学上可接受的盐”是指本申请化合物与相对无毒的酸或碱制备得到的衍生物。这些盐可以在化合物合成、分离、纯化期间就被制备,或者单独使用经过纯化的化合物的游离形式与适合的酸或碱反应。当化合物中含有相对酸性的官能团时,与碱金属、碱土金属氢氧化物或有机胺反应得到碱加成盐,包括基于碱金属与碱土金属的阳离子以及无毒的铵、季铵和胺阳离子,还涵盖氨基酸的盐等。当化合物中含有相对碱性的官能团时,与有机酸或无机酸反应得到酸加成盐。
术语“赋形剂”通常是指配制有效的药物组合物所需要载体、稀释剂和/或介质。
术语“有效预防或治疗量”是指本申请化合物或其药学上可接受的盐以适用于任何医学治疗和/或预防的合理效果/风险比治疗障碍的足够量的化合物。但应认识到,本申请式Ⅱ’所示化合物或其药学上可接受的盐和组合物的总日用量须由主诊医师在可靠的医学判断范围内作出决定。对于任何具体的患者,具体的治疗有效剂量水平须根据多种因素而定,所述因素包括所治疗的障碍和该障碍的严重程度;所采用的具体化合物的活性;所采用的具体组合物;患者的年龄、体重、一般健康状况、性别和饮食;所采用的具体化合物的给药时间、给药途径和***率;治疗持续时间;与所采用的具体化合物组合使用或同时使用的药物;及医疗领域公知的类似因素。例如,本领域的做法是,化合物的剂量从低于为得到所需治疗效果而要求的水平开始,逐渐增加剂量,直到得到所需的效果。
除非另有规定,术语“5-10元杂芳基”,表示由5-10个环原子组成的具有共轭π电子体系的单环或双环基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子。其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O)p,p是1或2)。5-6元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述5-6元杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、***基(1H-1,2,3-***基、2H-1,2,3-***基、1H-1,2,4-***基和4H-1,2,4-***基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、噻吩基(包括2-噻吩基和3-噻吩基)、吡啶基、嘧啶基、苯并咪唑基等。
除非另有规定,术语所述的“稠杂环基”是指由两个或两个以上环状结构彼此共用两个相邻的原子所形成的、含有至少一个环原子为杂原子的、饱和或部分饱和的非芳香性环状基团;所述杂原子一般选自N、O、S;所述稠杂环中的环碳原子以及杂原子可以被进一步氧代,形成含有C(O)、NO、SO、S(O)2基团的环状基团,也包含在本申请所述杂环基的定义范围内。该定义所述的“非芳香性”是指该基团独立存在时不具有芳香性。本申请所述11-14元稠杂环基包括“11-14元饱和稠杂环基”和“11-14元部分饱和稠杂环基”;稠和方式可以为5-6元杂环基并5-6元杂环基、5-6元杂环基并5-6元环烷基、苯并5-6元杂环基、苯并5-6元饱和杂环基、5-6元杂芳基并5-6元杂环基、5-6元杂芳基并5-6元饱和杂环基、苯并5-6元杂环基并5-6元杂环基、5-6元杂芳基并5-6元杂环基并5-6元杂环基、苯并5-6元环烷基并5-6元杂环基、5-6元杂芳基并5-6元环烷基并5-6元杂环基;所述的稠杂环基的具体实例包括但不限于:
除非另有规定,术语“杂环基”是指取代或未取代的饱和或不饱和的非芳香环,且包含1-3个选自N、O或S的杂原子,所述杂环基中的任意碳原子团或杂原子可以被氧代,例如碳原子团形成-C(O)-。本申请所述的“杂环基”是指含有至少一个杂原子作为环原子、去除一个氢原子所衍生的、非芳族的环状基团;包括饱和或部分饱和的单环杂环基;所述杂环基与连接位置无关(即,可以通过碳原子或杂原子结合)。“杂环基”实例包括但不限于
除非另有规定,“环烷基”是指饱和的单环或多环烃基。环烷基优选C3-12环烷基,更优选C3-8环烷基,进一步优选C5-6环烷基,环烷基的实例包括但不限于,环戊基、环己基。
除非另有规定,“亚环烷基”是指环烷基进一步去掉一个氢原子形成的二价基团。
除非另有规定,术语“卤素”表示氟、氯、溴或碘原子。
除非另有规定,术语“C1-4的烷基”用于表示C1-4直链或支链的饱和烃基。烷基的实例包括,但不限于甲基、乙基、正丙基、异丙基、丁基、异丁基等。
除非另有规定,“亚烷基”是指指饱和的直链或支链脂肪族烃基,其为从母体烷的相同碳原子或两个不同的碳原子上除去两个氢原子所衍生的残基,其为包含1至20个碳原子的直链或支链基团,优选含有1至12个(例如1、2、3、4、5、6、7、8、9、10、11和12个)碳原子,更优选含有1至4个碳原子的亚烷基。亚烷基包括但不限于亚甲基(-CH2-)、1,1-亚乙基(-CH(CH3)-)、1,2-亚乙基(-CH2CH2)-、1,1-亚丙基(-CH(CH2CH3)-)、1,2-亚丙基(-CH2CH(CH3)-)、1,3-亚丙基(-CH2CH2CH2-)、1,4-亚丁基(-CH2CH2CH2CH2-)等。
除非另有规定,术语“C1-4卤代烷基”是指一个或多个氢原子被卤原子取代的烷基,实例包括但不仅限于一氟甲基、二氟甲基、三氟甲基、三氯甲基、三溴甲基、2,2,2-三氟乙基,2,2,2三氯乙基等。
除非另有规定,术语“C1-4烷氧基”是指通过氧桥连接的C1-4烷基,化合物包括但不限于甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基。
除非另有规定,术语“-C1-4烷基-OH”是是指有一个羟基取代的C1-4烷基,这些基团的实例包括但不限于,-CH2-OH、-(CH2)2-OH、-CH(CH3)2-OH。
除非另有规定,“C3-6环烷基”是指3-6元单环烷基,这些单环烷基的实例包括但不限于,环丙基、环丁基、环戊基、环己基、环庚基、环辛基。
除非另有规定,术语“含有1-4个氮原子的5-6元杂芳基”是指环中C被1,2,3或者4个氮原子替换,实例包括但不仅限于
除非另有规定,结构中表示可以是单键或双键。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1显示了本申请测试例5中G1至G4组小鼠肿瘤生长的情况;
图2显示了本申请测试例5中G1至G4组小鼠体重变化的情况。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本领域技术人员基于本申请所获得的所有其他实施例,都属于本申请保护的范围。
本申请的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本申请的实施例。
本申请所使用的溶剂可经市售获得。
本申请的化合物结构是通过核磁共振(NMR)或/和液质联用色谱(LC-MS),或超高效液质联用色谱(UPLC-MS)来确定的。NMR化学位移(δ)以百万分之一(ppm)的单位给出。NMR的测定是用Bruker Neo 400M或者Bruker Ascend 400核磁仪器,测定溶剂为氘代二甲基亚砜(DMSO-d6),氘代甲醇(CD3OD)和氘代氯仿(CDCl3),重水(D2O),内标为四甲基硅烷(TMS)。
液质联用色谱LC-MS的测定用Agilent 1260-6125B single quadrupole mass spectrometer,质谱仪(离子源为电喷雾离子化)。
超高效液质联用色谱UPLC-MS的测定用Waters UPLC H-class SQD质谱仪(离子源为电喷雾离子化)。
HPLC的测定使用Waters e2695-2998或Waters ARC和Agilent 1260或Agilent Poroshell HPH高效液相色谱。
制备HPLC使用Waters 2555-2489(10μm,ODS 250cm×5cm)或GILSON Trilution LC。
手性HPLC测定使用waters acquity UPC2;柱子为Daicel chi环Clpak AD-H(5um,4.6×250mm)。
超临界流体色谱(SFC)使用waters SFC 80Q。
本申请实施例中的起始原料是已知的并且可以在市场上买到,或者可以采用或按照本领域已知的方法来合成。
在无特殊说明的情况下,本申请的所有反应均在连续的磁力搅拌下,在干燥氮气或氩气气氛下进行,溶剂为干燥溶剂,反应温度单位为摄氏度(℃)。
下面通过实施例对本申请进行详细描述,但并不意味着对本申请任何不利限制。本申请的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本申请的实施例。对本领域的技术人员而言,在不脱离本申请精神和范围的情况下针对本申请具体实施方式进行各种变化和改进将是显而易见的。
一、制备方法
如本申请所用,室温是指约20-30℃。
中间体INT-1:(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苯基)甲醇
步骤A:在室温条件下,将3,3-二溴-1,1,1-三氟丙烷-2-酮(144g,0.54mol)和醋酸钠(80g,0.97mol)溶于水(320mL)中。随后,将上述溶液升温至90℃,搅拌0.5小时。然后反应体系降至0℃,将4-甲酰基苯甲酸甲酯(80g,0.49mol)和含28wt%氨水(400mL)的甲醇(120mL)混合溶液缓慢滴加到上述反应溶液中。最后该反应体系在室温条件下继续搅拌16小时。
LCMS监测显示原料消失后,将反应液过滤,滤饼用乙酸乙酯(100mL×3次)淋洗。然后收集滤液,减压浓缩。所得残余物经硅胶柱层析纯化得到104g 4-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯。
MS(ESI)M/Z:271.0[M+H]+.
步骤B:在室温条件下,将4-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(69g,0.25mol)和碳酸铯(250g,0.76mol)溶于乙腈(1.2L)中,搅拌2小时。随后,2-碘代丙烷(64.9g,0.38mol)加入到上述溶液中,将反应体系加热至50℃,并搅拌24小时。接着将反应体系降至0℃,继续加入2-碘代丙烷(21.6g,0.13mol)。然后该反应体系在50℃搅拌4小时。
LCMS监测显示原料消失后,将反应溶液加入到冰水(1.5L)淬灭,混合液用有乙酸乙酯(500mL×3次)萃取,合并有机相,有机相用饱和食盐水(150mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到33g 4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯。
MS(ESI)M/Z:313.2[M+H]+.
步骤C:在室温条件下,氮气保护,将4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(33g,0.11mol)溶于干燥四氢呋喃(528mL)中。随后,在0℃下,向上述溶液中缓慢滴加2.5M(mol/L)氢化铝锂溶液(85mL,0.22mol)。然后该反应体系在室温条件下继续搅拌1小时。
LCMS监测显示原料消失后,将反应液缓慢滴加到冰水(1L)淬灭,过滤,滤饼用乙酸乙酯(100mL×3次)洗涤。滤液用有乙酸乙酯(500mL×3次)萃取,合并有机相,有机相用饱和食盐水(150mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到28g(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苯基)甲醇。
MS(ESI)M/Z:285.1[M+H]+.
1H NMR(400MHz,CDCl3):δ7.47-7.32(m,5H),4.72(s,2H),4.59-4.46(m,1H),2.97(br,1H),1.44(d,J=6.8Hz,6H).
中间体INT-2:2-(4-(溴甲基)苯基)-1-异丙基-4-(三氟甲基)-1H咪唑
步骤A:在室温条件下,将(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苯基)甲醇(700mg,2.46mmol)溶于二氯甲烷(12.5mL)中。然后,向上述溶液中依次加入三苯基膦(1.29g,4.93mmol)、碳酸氢钠(414mg,4.93mmol)和四溴化碳(1.63g,4.93mmol)。然后该反应体系在室温条件下继续搅拌2小时。
LCMS监测显示原料消失后,向反应液中加入水(20mL)淬灭,混合液用有二氯甲烷(10mL×3次)萃取,合并有机相,有机相用饱和食盐水(60mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到820mg 2-(4-(溴甲基)苯基)-1-异丙基-4-(三氟甲基)-1H咪唑。
MS(ESI)M/Z:347.2[M+H]+.
中间体INT-3:(4-环丙基-6-甲氧基嘧啶-5-基)硼酸
步骤A:在室温条件下,氮气保护,将化合物4-氯-6-甲氧基嘧啶(25g,172.94mmol)、环丙基硼酸(25.25g,294mmol)、1,1'-双二苯基膦二茂铁二氯化钯(6.3g,8.68mmol)、磷酸钾(73.42g,345.88mmol)和氧化银(20.04g,86.47mmol)溶于1,4-二氧六环(868mL)中。然后将上述溶液升温至90℃,搅拌16小时。
LCMS监测显示原料消失后,趁热过滤,滤液减压浓缩。向所得残留物中加水(500mL)淬灭,混合液用二氯甲烷(100mL×3次)萃取,合并有机相,有机相用饱和食盐水(150mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到18.3g 4-环丙基-6-甲氧基嘧啶。
MS(ESI)M/Z:151.2[M+H]+.
步骤B:在-20℃条件下,氮气保护,将4-环丙基-6-甲氧基嘧啶(45g,299.64mmol)溶于乙醇(1.5L)中。随后,向上述溶液中缓慢滴加液溴(240g,1.5mol)。然后该反应体系在室温下继续搅拌16小时。
LCMS监测显示原料消失后,将上述反应液减压蒸馏浓缩。所得粗品用乙酸乙酯打浆,过滤,收集滤饼。然后将滤饼加入到水(150mL)中,并在0℃下搅拌,滴加饱和碳酸氢钠溶液至溶液体系pH至7。最后将混合液过滤,滤饼用水(150mL×2次)淋洗,收集滤饼,减压浓缩,得到56g 5-溴-4-环丙基-6-甲氧基嘧啶。
MS(ESI)M/Z:230.1[M+H]+.
1H NMR(400MHz,DMSO-d6)δ8.53(s,1H),3.99(s,3H),2.50-2.44(m,1H),1.16-1.09(m,2H),1.08-1.02(m,2H).
步骤C:在室温条件下,氮气保护,将5-溴-4-环丙基-6-甲氧基嘧啶(15.0g,65.79mmol)和硼酸三异丙酯(16.08g,85.53mmol)溶于甲苯/四氢呋喃(150mL/45mL)中。随后,将上述反应液将至-78℃,搅拌30分钟,并缓慢滴加2.5M正丁基锂溶液(34.2mL,85.53mmol),搅拌30分钟。然后反应体系升温至-20℃,继续搅拌1小时。
LCMS监测显示原料消失后,将反应液加入到冰水(100mL)中淬灭,然后将混合液过滤,滤饼用水(20mL×3次)淋洗,得到9.7g(4-环丙基-6-甲氧基嘧啶-5-基)硼酸。
MS(ESI)M/Z:195.0[M+H]+.
中间体INT-4:2-(4-(溴甲基)苯基)-1-甲基-4-(三氟甲基)-1H咪唑
步骤A:在室温条件下,将4-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(5g,18.45mmol)和碳酸钾(5.1g,36.7mmol)溶于N,N-二甲基甲酰胺(92mL)中。随后,将反应体系降至0℃,缓慢滴加碘甲烷(3.14g,22.14mmol)。然后该反应体系在室温条件下继续搅拌1小时。
LCMS监测显示原料消失后,向反应液中加入水(200mL)淬灭,混合液用有乙酸乙酯(60mL×3次)萃取,合并有机相,有机相用饱和食盐水(100mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到3.2g 4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯。
MS(ESI)M/Z:285.0[M+H]+.
步骤B:在室温条件下,将4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(3.2g,11.26mmol)溶于四氢呋喃(28mL)中。随后,将反应体系降至0℃,缓慢滴加四氢铝锂(2.14g,56.32mmol)。然后该反应体系在室温条件下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加入冰水(100mL)淬灭,混合液用有乙酸乙酯(60mL×3次)萃取,合并有机相,有机相用饱和食盐水(30mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到2.6g(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苯基)甲醇。
MS(ESI)M/Z:257.0[M+H]+.
步骤C:在室温条件下,氮气保护,将(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苯基)甲醇(2.6g,10.12mmol)、碳酸氢钠(1.7g,20.24mmol)、三苯基膦(5.3g,20.24mmol)溶于二氯甲烷(51mL)中。随后,将反应体系降至0℃,缓慢加入四溴化碳(6.7g,20.24mmol)。然后该反应体系升至室温,继续搅拌2小时。
LCMS监测显示原料消失后,向反应液中加入冰水(100mL)淬灭,混合液用有二氯甲烷(50mL×3次)萃取,合并有机相,有机相用饱和食盐水(80mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到2.4g(2-(4-(溴甲基)苯基)-1-甲基-4-(三氟甲基)-1H咪唑。
MS(ESI)M/Z:319.0[M+H]+.
中间体INT-5:2-(4-(溴甲基)苯基)-1-乙基-4-(三氟甲基)-1H咪唑
步骤A:在0℃条件下,氮气保护,将4-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(700mg,2.59mmol)和氢化钠(156mg,3.89mmol)溶于干燥N,N-二甲基甲酰胺(13mL)中,搅拌30分钟。然后向上述体系中缓慢滴加碘乙烷(606.6mg,3.89mmol),反应体系升至室温,继续搅拌1小时。
LCMS监测显示原料消失后,向反应液中加入到冰水(60mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到300mg 4-(1-乙基-4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯。
MS(ESI)M/Z:299.0[M+H]+.
步骤B:在冰水浴条件下,氮气保护,将4-(1-乙基-4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(300mg,1.00mmol)溶于干燥四氢呋喃(5mL)中。随后,氢化铝锂(0.8mL,2.00mmol)缓慢加入到上述反应液中,反应体系升至室温,搅拌2小时。
LCMS监测显示原料消失后,向反应液中加入到冰水(30mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(10mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到210mg(4-(1-乙基-4-(三氟甲基)-1H-咪唑-2-基)苯基)甲醇。
MS(ESI)M/Z:271.0[M+H]+.
步骤C:在冰水浴条件下,氮气保护,将(4-(1-乙基-4-(三氟甲基)-1H-咪唑-2-基)苯基)甲醇(200mg,0.74mmol)、三苯基膦(390mg,1.48mmol)、碳酸氢钠(125mg,1.48mmol)和四溴化碳(390mg,1.48mmol)溶于二氯甲烷(3.7mL)中。然后该反应体系在室温条件下搅拌1小时。
LCMS监测显示原料消失后,向反应溶液中加水(50mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到230mg 2-(4-(溴甲基)苯基)-1-乙基-4-(三氟甲基)-1H咪唑。
MS(ESI)M/Z:333.0[M+H]+.
中间体INT-6:2-氯-9H-嘧啶并[4,5-b]吲哚
步骤A:在室温条件下,将1-溴-2-硝基苯(500mg,2.49mmol)、(2-氯嘧啶-5-基)硼酸(590mg,3.74mmol)、碳酸钠(792mg,7.47mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(305mg,0.37mmol)溶于1,4-二氧六环/水(11mL/1.4mL)中。真空抽空气置换氮气3次,反应体系在氮气保护下90℃搅拌3小时。
LCMS监测显示原料消失后,将反应液加入到冰水(20mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(15mL×2次)洗涤,然后用无水硫酸钠干燥,过滤,减压浓缩得残余物。所得残余物经硅胶柱层析纯化得到500mg 2-氯-5-(2-硝基苯基)嘧啶。
MS(ESI)M/Z:236.0[M+H]+.
步骤B:在室温条件下,将2-氯-5-(2-硝基苯基)嘧啶(500mg,2.13mmol)和1,2-双(二苯基膦基)乙烷(1.06g,2.66mmol)溶于1,2-二氯苯(7.1mL)中。然后该反应体系在160℃搅拌1小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(10mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤,然后用无水硫酸钠干燥,过滤,减压浓缩得残余物。所得残余物经硅胶柱层析纯化得到200mg 2-氯-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:204.0[M+H]+.
中间体INT-7:2-氯-5,6,7,8-四氢环戊基[4,5]吡咯并[2,3-d]嘧啶
步骤A:在室温条件下,将4-氨基-5-溴-2-氯嘧啶(1.0g,4.83mmol)、1-环戊烯硼酸频哪醇酯(1.4g,7.25mmol)、磷酸钾(2.6g,12.08mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(389mg,0.48mmol)溶于1,4-二氧六环/水(15mL/3mL)中。真空抽空气置换氮气3次,反应体系在氮气保护下90℃搅拌3小时。
TLC监测显示原料消失后,将反应液加入到冰水(20mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(15mL×2次)洗涤,然后用无水硫酸钠干燥,过滤,减压浓缩得残余物。所得残余物经硅胶柱层析纯化得到600mg 2-氯-5-(环戊基-1-烯-1-基)嘧啶-4-胺。
MS(ESI)M/Z:196.1[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.91(s,1H),7.29(br,2H),6.09(t,J=2.2Hz,1H),2.65-2.57(m,2H),2.49-2.43(m,2H),1.91(p,J=7.5Hz,2H).
步骤B:在0℃下,将2-氯-5-(环戊基-1-烯-1-基)嘧啶-4-胺(100mg,0.51mmol)溶于四氢呋喃(2mL)和水(1mL)中,然后加入N-溴代丁二酰亚胺(100mg,0.56mmol),搅拌1小时。之后加入2M氢氧化钠水溶液(0.2mL),继续搅拌30分钟。
TLC监测显示原料消失后,向反应溶液中加冰水(10mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤,然后用无水硫酸钠干燥,过滤,减压浓缩得残余物。向残余物加入四氢呋喃(3mL),再加入三氟化硼***(217mg,1.53mmol),60℃搅拌3小时。
TLC监测显示原料消失后,向反应溶液中加饱和碳酸氢钠水溶液(50mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤,然后用无水硫酸钠干燥,过滤,减压浓缩得残余物。所得残余物经硅胶柱层析纯化得到60mg 2-氯-5,6,7,8-四氢环戊基[4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:194.1[M+H]+.
1H NMR(400MHz,DMSO-d6)δ12.19(s,1H),8.68(s,1H),2.87(t,J=7.1Hz,2H),2.78(t,J=7.1Hz,2H),2.48-2.39(m,2H).
中间体INT-8:2-(4-(溴甲基)-2-甲氧基苯基)-1-异丙基-4-(三氟甲基)-1H咪唑
步骤A:在室温条件下,将3,3-二溴-1,1,1-三氟丙烷-2-酮(40.2g,0.15mol)和醋酸钠(12.25g,0.15mol)溶于水(36mL)中。随后,将上述溶液升温至90℃,搅拌0.5小时。然后,将反应体系降至0℃,将4-甲酰基-3-甲氧基苯甲酸甲酯(10g,51.54mmol)、28wt%氨水(45mL)和甲醇(135mL)的混合溶液缓慢滴加到上述反应溶液中。最后,该反应体系在室温条件下继续搅拌16小时。
LCMS监测显示原料消失后,将反应液过滤,然后滤饼用乙酸乙酯/石油醚(v/v,3/1)淋洗,收集滤液,减压浓缩。所得残余物经硅胶柱层析纯化得到10.85g 3-甲氧基-4-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯。
MS(ESI)M/Z:301.0[M+H]+.
步骤B:在室温条件下,将3-甲氧基-4-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(6g,0.02mol)和碳酸铯(19.7g,0.06mol)溶于乙腈(65mL)中,搅拌2小时。随后,向上述溶液中加入2-碘代丙烷(5.1g,0.03mol),温度上升至50℃,并搅拌24小时。然后将反应体系降至0℃,继续加入2-碘代丙烷(5.1g,0.03mol),升至50℃,继续搅拌4小时。
LCMS监测显示原料消失后,将反应溶液加入到冰水(300mL)中淬灭,混合液用有乙酸乙酯(100mL×3次)萃取,合并有机相,有机相用饱和食盐水(50mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到6.9g 4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)-3-甲氧基苯甲酸甲酯。
MS(ESI)M/Z:343.0[M+H]+.
步骤C:在0℃条件下,氮气保护,将4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)-3-甲氧基苯甲酸甲酯(2.9g,8.48mmol)溶于干燥四氢呋喃(30mL)中。随后,氢化铝锂溶液(6.8mL,17mmol)缓慢滴加到上述溶液中。然后该反应体系在室温条件下继续搅拌1小时。
LCMS监测显示原料消失后,将反应液缓慢滴加到冰水(100mL)中淬灭,过滤,滤饼用乙酸乙酯(50mL×3次)淋洗。滤液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水(150mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到1.95g(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)-3-甲氧基苯基)甲醇。
MS(ESI)M/Z:315.4[M+H]+.
步骤D:在0℃下,将(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)-3-甲氧基苯基)甲醇(500mg,1.59mmol)、碳酸氢钠(269mg,3.2mmol)和三苯基膦(840mg,3.2mmol)溶于干燥二氯甲烷(8mL)中。随后,四溴化碳(1.06g,3.2mmol)缓慢加入到上述反应液中。然后该反应体系在室温条件下搅拌1小时。
LCMS监测显示原料消失后,向反应液中加入冰水(50mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(30mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得350mg 2-(4-(溴甲基)-2-甲氧基苯基)-1-异丙基-4-(三氟甲基)-1H咪唑。
MS(ESI)M/Z:377.2[M+H]+.
中间体INT-9:2-(4-(溴甲基)-2-氟-6-甲氧基苯基)-1-异丙基-4-(三氟甲基)-1H咪唑
步骤A:在室温条件下,将4-溴-2-氟-6-甲氧基苯甲醛(4g,17mmol)、三乙胺(12.38g,0.12mol)和1,1-双(二苯基膦)二茂铁二氯化钯(1.34g,18mmol)溶于甲醇(120mL)中。随后,真空抽空气置换一氧化碳3次,将反应液升温至90℃,搅拌24小时。
LCMS监测显示原料消失后,将反应液过滤,减压浓缩。所得残余物经硅胶柱层析纯化得1.98g 3-氟-4-甲酰基-5-甲氧基苯甲酸甲酯。
MS(ESI)M/Z:213.0[M+H]+.
步骤B:在室温条件下,将3,3-二溴-1,1,1-三氟丙烷-2-酮(6.72g,25mmol)和醋酸钠(2.06g,25mmol)溶于水(7mL)中。随后,将上述溶液升温至90℃,搅拌0.5小时。然后反应体系降至0℃,将3-氟-4-甲酰基-5-甲氧基苯甲酸甲酯(1.98g,9mmol)、28wt%氨水(17mL)和甲醇(45mL)的混合溶液缓慢滴加到上述反应溶液中,升至室温,继续搅拌16小时。
LCMS监测显示原料消失后,将反应液过滤,然后滤饼用乙酸乙酯/石油醚(v/v,3/1)淋洗,收集滤液,减压浓缩。所得残余物经硅胶柱层析纯化得到2.06g 3-氟-5-甲氧基-4-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯。
MS(ESI)M/Z:319.0[M+H]+.
步骤C:在室温条件下,将3-氟-5-甲氧基-4-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(2.06g,6.5mmol)和碳酸铯(6.31g,19mmol)溶于乙腈(25mL)中,搅拌2小时。随后,向上述溶液中加入2-碘代丙烷(1.65g,9.7mmol),加热至50℃,并搅拌24小时。然后将反应体系降至0℃,继续加入2-碘代丙烷(1g,5.9mmol),加热至50℃,搅拌4小时。
LCMS监测显示原料消失后,将反应溶液加入到冰水(50mL)中淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(50mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到1.84g 3-氟-4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)-5-甲氧基苯甲酸甲酯。
MS(ESI)M/Z:361.0[M+H]+.
步骤D:在0℃下,氮气保护,将3-氟-4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)-5-甲氧基苯甲酸甲酯(1.84g,5.1mmol)溶于干燥四氢呋喃(25mL)中。随后,向上述溶液中加入缓慢滴加氢化铝锂溶液(4.2mL,0.01mol)。然后该反应体系在室温条件下继续搅拌1小时。
LCMS监测显示原料消失后,将反应液缓慢滴加到冰水(100ml)中淬灭,过滤,滤饼用乙酸乙酯(50mL×3次)淋洗。滤液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水(150mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到1.38g(3-氟-4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)-5-甲氧基苯基)甲醇。
MS(ESI)M/Z:333.2[M+H]+.
步骤E:在0℃下,氮气保护,将(3-氟-4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)-5-甲氧基苯基)甲醇(500mg,1.5mmol)、碳酸氢钠(269mg,3.2mmol)和三苯基膦(840mg,3.2mmol)溶于干燥二氯甲烷(8mL)中。随后,向上述反应液中缓慢加入四溴化碳(1.06g,3.2mmol)。然后该反应体系在室温条件下搅拌1小时。
LCMS监测显示原料消失后,向反应液中加入水(50mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(30mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得350mg 2-(4-(溴甲基)-2-氟-6-甲氧基苯基)-1-异丙基-4-(三氟甲基)-1H咪唑。
MS(ESI)M/Z:395.2[M+H]+.
中间体INT-10:4-氯-1-异丙基-5-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)-1H吡唑
步骤A:在室温条件下,将4-氯-1H-吡唑(5g,0.049mol)、2-碘丙烷(20g,0.118mol)和碳酸铯(33g,0.1mol)溶于乙腈(40mL)中。然后反应体系在80℃下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加入冰水(100mL)淬灭,混合液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水(30mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到3.62g 4-氯-1-异丙基-1H-吡唑。
MS(ESI)M/Z:145.2[M+H]+.
步骤B:在0℃下,氮气保护,将4-氯-1-异丙基-1H-吡唑(2g,0.014mol)溶于四氢呋喃(14mL)中。随后,向上述溶液中滴加正丁基锂(11.2mL,0.017mol),升至室温,搅拌1小时。然后将反应液降至-78℃,缓慢滴加2-异丙氧基-4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷(3.45g,0.018mol),升至室温,搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加饱和氯化铵水溶液(40mL)淬灭。混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到2.4g 4-氯-1-异丙基-5-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)-1H吡唑。
MS(ESI)M/Z:271.0[M+H]+.
中间体INT-11:2-(4-(1-溴丙基)苯基)-1-异丙基-4-(三氟甲基)-1H咪唑
步骤A:在0℃下,氮气保护,将4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(300mg,0.96mmol)溶于干燥四氢呋喃(5mL)中。随后,向上述溶液中依次加入钛酸四异丙酯(327mg,1.15mmol)和乙基溴化镁(0.46mL,1.15mmol),然后反应体系在室温条件下继续搅拌16小时。
LCMS监测显示原料消失后,将反应溶液加入到冰水(30mL)中淬灭,过滤,滤液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(30mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到220mg 1-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苯基)丙-1-醇。
MS(ESI)M/Z:313.2[M+H]+.
步骤B:在0℃下,氮气保护,将1-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苯基)丙-1-醇(220mg,0.71mmol)、三苯基膦(372mg,1.42mmol)和碳酸氢钠(119mg,1.42mmol)溶于二氯甲烷(4mL)中。随后,四溴化碳(471mg,1.42mmol)缓慢加入到上述反应液中。然后该反应体系在室温下继续搅拌30分钟。
LCMS监测显示原料消失后,向反应溶液中加冰水(50mL)淬灭。混合液用二氯甲烷(20mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到80mg 2-(4-(1-溴丙基)苯基)-1-异丙基-4-(三氟甲基)-1H咪唑。
MS(ESI)M/Z:375.0[M+H]+.
中间体INT-12:8-(溴甲基)-2-(三氟甲基)咪唑并[2,1-a]异喹啉
步骤A:在室温条件下,将2-(三氟甲基)咪唑并[2,1-a]异喹啉-8-甲酸甲酯(52mg,0.18mmol)溶于四氢呋喃(0.9mL)中。随后,在0℃下,向上述溶液中加入氢化铝锂(0.14mL,0.35mmol)。然后该反应体系在室温条件下搅拌1小时。
LCMS监测显示原料消失后,将反应液缓慢加入到冰水(20mL)中淬灭。过滤,滤液用乙酸乙酯(10mL×3次)萃取,合并有机相。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到32mg(2-(三氟甲基)咪唑并[2,1-a]异喹啉-8-基)甲醇。
MS(ESI)M/Z:267.2[M+H]+.
步骤B:在室温条件下,将(2-(三氟甲基)咪唑并[2,1-a]异喹啉-8-基)甲醇(53mg,0.20mmol)溶于二氯甲烷(1mL)中。随后,在0℃下,向反应体系中依次加入三苯基膦(157.4mg,0.60mmol)、碳酸氢钠(33.6mg,0.40mmol)和四溴化碳(199mg,0.60mmol)。然后该反应体系在室温条件下搅拌1.5小时。
LCMS监测显示原料消失后,向反应液中加入水(20mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水(30mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到37.8mg 8-(溴甲基)-2-(三氟甲基)咪唑并[2,1-a]异喹啉。
MS(ESI)M/Z:329.0[M+H]+.
中间体INT-13:(2-(三氟甲基)-6,7-二氢-5H-咪唑并[1,2-a]吡咯并[2,1-c][1,4]二氮杂-9-基)甲醇
步骤A:在室温条件下,将3,3-二溴-1,1,1-三氟丙烷-2-酮(17.5g,65.35mmol)和醋酸钠(5.35g,65.35mmol)溶于水(19.8mL)中,并在90℃下搅拌1小时。然后将上述反应液将至0℃,加入5-甲酰基-1H-吡咯-2-羧酸甲酯(10g,65.35mmol)的氨水/甲醇(59.5mL/178mL)混合溶液,并在室温下搅拌18小时。
LCMS监测显示原料消失后,将混合溶液减压浓缩,向所得浓缩液中加冰水(200mL)。混合液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水(90mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到5.9g 5-(4-(三氟甲基)-1H-咪唑-2-基)-1H-吡咯-2-羧酸甲酯。
MS(ESI)M/Z:260.0[M+H]+.
步骤B:在室温条件下,将5-(4-(三氟甲基)-1H-咪唑-2-基)-1H-吡咯-2-羧酸甲酯(2.6g,10.25mmol)和碳酸铯(10g,30.76mmol)溶于乙腈(50mL)中,搅拌2小时。然后向上述反应液中加入1,3-二碘丙烷(4.5g,15.3mmol),升温至50℃,搅拌48小时。
LCMS监测显示原料消失后,将反应液减压浓缩,向所得残余物中加入冰水(100mL)淬灭,混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。得到1.4g 2-(三氟甲基)-6,7-二氢-5H-咪唑并[1,2-a]吡咯并[2,1-c][1,4]二氮杂-9-甲酸甲酯。
MS(ESI)M/Z:300.1[M+H]+.
步骤C:在室温条件下,将2-(三氟甲基)-6,7-二氢-5H-咪唑并[1,2-a]吡咯并[2,1-c][1,4]二氮杂-9-甲酸甲酯(1.4g,4.68mmol)溶于四氢呋喃(23mL)中。随后,在0℃下,向上述溶液中加氢化铝锂(3.74mL,9.36mmol)。然后该反应体系在室温条件下搅拌0.5小时。
LCMS监测显示原料消失后,将反应溶液缓慢加入到冰水(40mL)中淬灭,混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和氯化钠水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到680mg(2-(三氟甲基)-6,7-二氢-5H-咪唑并[1,2-a]吡咯并[2,1-c][1,4]二氮杂-9-基)甲醇。
MS(ESI)M/Z:272.1[M+H]+.
中间体INT-14:(2-(三氟甲基)-5,6-二氢咪唑并[1,2-a]吡咯并[2,1-c]吡嗪-8-基)甲醇
步骤A:在室温条件下,将5-(4-(三氟甲基)-1H-咪唑-2-基)-1H-吡咯-2-羧酸甲酯(2g,7.72mmol)和碳酸铯(7.54g,23.15mmol)溶于乙腈(50mL)中,搅拌2小时。随后,向上述反应液中加入1,2-二溴乙烷(1.45g,7.72mmol)。然后该反应体系在50℃下搅拌48小时。
LCMS监测显示原料消失后,将反应液减压浓缩,向所得残余物中加入冰水(100mL)淬灭,混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。得到860mg 2-(三氟甲基)-5,6-二氢咪唑并[1,2-a]吡咯并[2,1-c]吡嗪-8-甲酸甲酯。
MS(ESI)M/Z:286.2[M+H]+.
步骤B:在室温条件下,将2-(三氟甲基)-5,6-二氢咪唑并[1,2-a]吡咯并[2,1-c]吡嗪-8-甲酸甲酯(850mg,2.98mmol)溶于干燥四氢呋喃(30mL)中。随后,在0℃下,向上述溶液中加入氢化铝锂(2.24mL,4.47mmol)。然后该反应体系在室温条件下搅拌0.5小时。
LCMS监测显示原料消失后,将反应溶液缓慢加入到冰水(40mL)中淬灭,混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和氯化钠水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到590mg(2-(三氟甲基)-5,6-二氢咪唑并[1,2-a]吡咯并[2,1-c]吡嗪-8-基)甲醇。
MS(ESI)M/Z:258.2[M+H]+.
1H NMR(400MHz,DMSO-d6):δ7.82(d,J=1.2Hz,1H),6.50(d,J=3.6Hz,1H),6.11(d,J=3.6Hz,1H),5.10(t,J=5.2Hz,1H),4.48(d,J=5.2Hz,2H),4.39-4.33(m,2H),4.32-4.276(m,2H).
中间体INT-15:7-(溴甲基)-2-(三氟甲基)-5H-咪唑并[2,1-a]异吲哚
步骤A:在室温条件下,将3,3-二溴-1,1,1-三氟丙烷-2-酮(55.5g,205.72mmol)溶于水(65mL)中。随后,向上述溶液中依次加入醋酸钠(16.9g,205.72mmol),升温至90℃,搅拌1小时。然后将上述溶液降温至0℃,缓慢滴加5-溴-2-甲酰基苯甲酸甲酯(25g,102.86mmol)溶于甲醇(685mL)和氨水(150mL)混合溶液。最后该反应体系在100℃下搅拌2小时。
LCMS监测显示原料消失后,将反应液减压浓缩,向所得残余物中加水(100mL)淬灭。混合液用乙酸乙酯(200mL×3次)萃取,合并有机相,然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经打浆得到41g 5-溴-2-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸。
MS(ESI)M/Z:334.9[M+H]+.
步骤B:在0℃下,将5-溴-2-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸(36g,107.78mmol)溶于干燥四氢呋喃(500mL)中。随后,向上述溶液中缓慢滴加硼烷的四氢呋喃溶液(216mL,215.27mmol)。然后该反应体系在室温条件下搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加水(200mL)淬灭。混合液用乙酸乙酯(300mL×3次)萃取,合并有机相,有机相用饱和食盐水(300mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到12.3g(5-溴-2-(4-(三氟甲基)-1H-咪唑-2-基)苯基)甲醇。
MS(ESI)M/Z:321.0[M+H]+.
步骤C:在0℃下,将(5-溴-2-(4-(三氟甲基)-1H-咪唑-2-基)苯基)甲醇(12.3g,38.44mmol)溶于二氯甲烷(192mL)中。随后,向上述溶液中依次加入三乙胺(10.7mL,76.88mmol)和甲基磺酰氯(6.6g,57.66mmol)。然后该反应体系在室温条件下搅拌1小时。
LCMS监测显示原料消失后,向反应溶液中加水(200mL)淬灭。混合液用乙酸乙酯(200mL×3次)萃取,合并有机相,有机相用饱和食盐水(200mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩得到14.5g 5-溴-2-(4-(三氟甲基)-1H-咪唑-2-基)苄基甲磺酸酯。
MS(ESI)M/Z:399.0[M+H]+.
步骤D:在室温条件下,将5-溴-2-(4-(三氟甲基)-1H-咪唑-2-基)苄基甲磺酸酯(14.5g,42.90mmol)溶于N,N-二甲基甲酰胺(214mL)中。随后,向上述溶液中加入碳酸铯(16.8g,51.48mmol)。然后该反应体系在50℃下搅拌1小时。
LCMS监测显示原料消失后,向反应溶液中加水(600mL)淬灭。混合液用乙酸乙酯(200mL×3次)萃取,合并有机相,有机相用饱和食盐水(200mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到1.83g 7-溴-2-(三氟甲基)-5H-咪唑并[2,1-a]异吲哚和异构体500mg 7-溴-3-(三氟甲基)-5H-咪唑并[2,1-a]异吲哚。
MS(ESI)M/Z:303.0[M+H]+.
1H NMR(400MHz,DMSO-d6):δ8.15(d,J=0.8Hz,1H),7.92(d,J=0.8Hz,1H),7.75(d,J=8.0Hz,1H),7.70(dd,J=8.4,1.8Hz,1H),5.17(s,2H).
步骤E:在室温条件下,将7-溴-2-(三氟甲基)-5H-咪唑并[2,1-a]异吲哚(930mg,3.08mmol)溶于甲醇(35mL)中。随后,向上述溶液中依次加入三乙胺(4.2mL,30.8mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(251mg,0.31mmol)。然后该反应体系在40公斤一氧化碳气体压力、85℃下搅拌24小时。
LCMS监测显示原料消失后,将反应液减压浓缩。所得残余物经硅胶柱层析纯化得到400mg 2-(三氟甲基)-5H-咪唑并[2,1-a]异吲哚-7-甲酸甲酯。
MS(ESI)M/Z:283.1[M+H]+.
步骤F:在0℃下,将2-(三氟甲基)-5H-咪唑并[2,1-a]异吲哚-7-甲酸甲酯(400mg,1.42mmol)溶于干燥的四氢呋喃(7mL)中。随后,向上述溶液中缓慢滴加氢化铝锂(1.13mL,2.84mmol)。然后该反应体系在室温条件下搅拌1小时。
LCMS监测显示原料消失后,将反应液倒入冰水(20mL)中淬灭。混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到120mg(2-(三氟甲基)-5H-咪唑并[2,1-a]异吲哚-7-基)甲醇。
MS(ESI)M/Z:255.1[M+H]+.
步骤G:在0℃下,将(2-(三氟甲基)-5H-咪唑并[2,1-a]异吲哚-7-基)甲醇(120mg,0.47mmol)溶于二氯甲烷(2.4mL)中。随后,向上述溶液中依次加入三苯基磷(371mg,1.42mmol)、碳酸氢钠(79mg,0.94mmol)和四溴化碳(471mg,1.42mmol)。然后该反应体系在室温条件下搅拌1小时。
LCMS监测显示原料消失后,向反应溶液中加水(10mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到100mg 7-(溴甲基)-2-(三氟甲基)-5H-咪唑并[2,1-a]异吲哚。
MS(ESI)M/Z:317.0[M+H]+.
中间体INT-16:9-(氯甲基)-2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂平
反应路线:
操作步骤:
步骤A:在室温条件下,将3-溴-4-甲酰基苯甲酸(100g,436.7mmol)溶于水(2.7L)中。随后,向上述溶液中依次加入碳酸钾(90.4g,655.1mmol)和碘甲烷(68.2g,480.4mmol)。然后该反应体系继续搅拌2小时。
LCMS监测显示原料消失后,将反应液倒入冰水中,析出固体,并过滤。所得滤饼干燥,得到95g 3-溴-4-甲酰基苯甲酸甲酯。
MS(ESI)M/Z:243.0[M+H]+.
步骤B:在室温条件下,将3,3-二溴-1,1,1-三氟丙烷-2-酮(188.7g,699.3mmol)溶于水(340mL)中。随后,向上述溶液中加入醋酸钠(57.5g,416.1mmol),升温至90℃,搅拌1小时。然后将反应液降至0℃,滴加3-溴-4-甲酰基苯甲酸甲酯(85g,349.7mmol)的甲醇/氨水(1020mL/340mL)混合物。最后该反应体系在100℃条件下搅拌2小时。
LCMS监测显示原料消失后,将反应液减压浓缩,过滤。所得滤饼经石油醚/乙酸乙酯打浆,得到87g 3-溴-4-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯。
MS(ESI)M/Z:349.0[M+H]+.
步骤C:在0℃条件下,氮气保护,将3-溴-4-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(96.7g,277.0mmol)溶于N,N-二甲基甲酰胺(185mL)中。随后,向上述溶液中依次加入碳酸钾(80.7g,583.9mmol)和3-溴丙-1-烯(40.3g,333.1mmol)。然后该反应体系在25℃条件下搅拌20小时。
LCMS监测显示原料消失后,向反应液中加入水(800mL)淬灭。混合物用乙酸乙酯(300mL×3次)萃取,合并所有有机相,有机相用饱和食盐水(500mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到83.0g 4-(1-烯丙基-4-(三氟甲基)-1H-咪唑-2-基)-3-溴苯甲酸甲酯。
MS(ESI)M/Z:389.0[M+H]+.
步骤D:在0℃条件下,氮气保护,将4-(1-烯丙基-4-(三氟甲基)-1H-咪唑-2-基)-3-溴苯甲酸甲酯(107g,275.0mmol)溶于1,4-二氧六环/水(1370mL/228mL)中。随后,向上述溶液中依次加入碳酸钾(76.2g,551.3mmol)、三氟(乙烯基)硼酸钾(96.1g,717.4mmol)、2-双环己基膦-2',6'-二甲氧基联苯(11.3g,27.5mmol)和醋酸钯(6.2g,27.5mmol)。然后该反应体系在85℃条件下搅拌4小时。
LCMS监测显示原料消失后,将反应液过滤,滤饼用乙酸乙酯(150mL×2次)淋洗,收集滤液,减压浓缩。向残余物中加入水(300mL)稀释,混合物用乙酸乙酯(700mL×3次)萃取,合并所有有机相,有机相用饱和食盐水(400mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到48.4g 4-(1-烯丙基-4-(三氟甲基)-1H-咪唑-2-基)-3-乙烯基苯甲酸甲酯。
MS(ESI)M/Z:337.2[M+H]+.
步骤E:在0℃条件下,氮气保护,将4-(1-烯丙基-4-(三氟甲基)-1H-咪唑-2-基)-3-乙烯基苯甲酸甲酯(61.4g,182.6mmol)溶于二氯甲烷(730mL)中。随后,向上述溶液中加入(1,3-双(2,4,6-三甲基苯基)-2-咪唑烷亚基)二氯(邻异丙氧基苯亚甲基)合钌(8.5g,13.7mmol)。然后该反应体系在25℃条件下搅拌3小时。
LCMS监测显示原料消失后,将反应液减压浓缩,过滤,滤饼用二氯甲烷淋洗,收集固体,干燥,得到39.0g 2-(三氟甲基)-5H-苯并[c]咪唑并[1,2-a]氮杂-9-甲酸甲酯。
MS(ESI)M/Z:309.2[M+H]+.
步骤F:在室温条件下,将2-(三氟甲基)-5H-苯并[c]咪唑并[1,2-a]氮杂-9-甲酸甲酯(39.0g,125.8mmol)和10%钯碳(8.0g)溶于甲醇(132mL)中。然后该反应体系在氢气氛围下搅拌18小时。
LCMS监测显示原料消失后,将反应液过滤,收集滤液,减压浓缩,得到37.2g 2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂-9-甲酸甲酯。
MS(ESI)M/Z:311.2[M+H]+.
步骤G:在0℃条件下,氮气保护,将2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂-9-甲酸甲酯(37.2g,120.0mmol)溶于四氢呋喃(600mL)中。随后,向上述溶液中缓慢滴加2.5M四氢铝锂溶液(72mL)。然后该反应体系在室温条件下继续搅拌30分钟。
LCMS监测显示原料消失后,向反应液中加入水(100mL)淬灭。混合物过滤,滤饼用乙酸乙酯(100mL×2次)淋洗,收集滤液,分层。所得水相用乙酸乙酯(200mL×3次)萃取,合并所有有机相,有机相用饱和食盐水(300mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经打浆纯化,得到30g(2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂啉-9-基)甲醇。
MS(ESI)M/Z:283.3[M+H]+.
步骤H:在0℃条件下,氮气保护,将(2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂啉-9-基)甲醇(30.0g,106.3mmol)溶于1,2-二氯乙烷(530mL)中。随后,向上述溶液中缓慢滴加二氯亚砜(37.9g,319mmol)。然后该反应体系在50℃条件下搅拌20分钟。
LCMS监测显示原料消失后,将反应液减压浓缩,残余物经打浆纯化,得到30.4g 9-(氯甲基)-2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂平。
MS(ESI)M/Z:301.2[M+H]+.
实施例1:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚
反应路线:
操作步骤:
步骤A:在室温条件下,将1-溴-2-硝基苯(500mg,2.49mmol)、(2-氯嘧啶-5-基)硼酸(590mg,3.74mmol)、碳酸钠(792mg,7.47mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(305mg,0.37mmol)溶于1,4-二氧六环/水(11mL/1.4mL)中。真空抽空气置换氮气3次,反应体系在氮气保护下90℃搅拌3小时。
LCMS监测显示原料消失后,将反应液加入到冰水(20mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(15mL×2次)洗涤,然后用无水硫酸钠干燥,过滤,减压浓缩得残余物。所得残余物经硅胶柱层析纯化得到500mg 2-氯-5-(2-硝基苯基)嘧啶。
MS(ESI)M/Z:236.0[M+H]+.
步骤B:在室温条件下,将2-氯-5-(2-硝基苯基)嘧啶(500mg,2.13mmol)和1,2-双(二苯基膦基)乙烷(1.06g,2.66mmol)溶于1,2-二氯苯(7.1mL)中。然后该反应体系在160℃搅拌1小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(10mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤,然后用无水硫酸钠干燥,过滤,减压浓缩得残余物。所得残余物经硅胶柱层析纯化得到200mg 2-氯-9H-嘧啶并[4,5-b]吲哚。
MS(ESI)M/Z:204.0[M+H]+.
步骤C:在室温条件下,氮气保护,将2-氯-9H-嘧啶并[4,5-b]吲哚(200mg,0.99mmol)溶于四氢呋喃(5mL)中。随后,0℃下向上述溶液中加入氢化钠(47mg,1.18mmol),搅拌30分钟,再加入2-(4-(溴甲基)苯基)-1-甲基-4-(三氟甲基)-1H咪唑(345mg,1.08mmol)。然后该反应体系在室温下继续搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(10mL)淬灭。混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤,然后用无水硫酸钠干燥,过滤,减压浓缩得残余物。所得残余物经硅胶柱层析纯化得到300mg 2-氯-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚。
MS(ESI)M/Z:442.0[M+H]+.
步骤D:在室温条件下,将2-氯-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚(70mg,0.16mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(47mg,0.24mmol)、碳酸钠(34mg,0.32mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(19mg,0.02mmol)溶于1,4-二氧六环/水(3.2mL/0.4mL)中。真空抽空气置换氮气3次,反应体系在100℃微波条件下搅拌3小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(30mL)淬灭。混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水(60mL×2次)洗涤,然后用无水硫酸钠干燥,过滤,减压浓缩得残留物。所得残留物经制备型高效液相色谱纯化。收集产品,减压除去溶剂,得到15.62mg 2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚。
MS(ESI)M/Z:556.0[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.65(s,1H),8.71(s,1H),8.37(d,J=8.0Hz,1H),7.90(s,1H),7.85(d,J=8.0Hz,1H),7.70-7.56(m,3H),7.54-7.33(m,3H),5.80(s,2H),3.88(s,3H),3.71(s,3H),1.80-1.65(m,1H),1.12-0.96(m,2H),0.91-0.74(m,2H).
实施例2:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚
反应路线:
操作步骤:
步骤A:在室温条件下,氮气保护,将(2-氯嘧啶-5-基)硼酸(437mg,2.81mmol)溶于干燥1,4-二氧六环/水(8.4mL/0.93mL)中。随后,向上述溶液中依次加入1-溴-2-硝基苯(378mg,1.87mmol)、碳酸钠(595mg,5.61mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(230mg,0.28mmol)。真空抽空气置换氮气3次,反应体系加热至90℃,搅拌16小时。
LCMS监测显示原料消失后,向反应液中加入水(50mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩得残余物。所得残余物经硅胶柱层析纯化得到280mg 2-氯-5-(2-硝基苯基)嘧啶。
MS(ESI)M/Z:236.0[M+H]+.
步骤B:在室温条件下,将2-氯-5-(2-硝基苯基)嘧啶(280mg,1.19mmol)溶于1,2-二氯苯(4mL)中。随后,向上述溶液中加入1,2-双(二苯基膦基)乙烷(593mg,1.49mmol)。真空抽空气置换氮气3次,反应体系加热至160℃,搅拌2小时。
LCMS监测显示原料消失后,将反应溶液减压浓缩。所得残余物经硅胶柱层析纯化得到120mg 2-氯-9H-嘧啶并[4,5-b]吲哚。
MS(ESI)M/Z:204.0[M+H]+.
步骤C:在室温条件下,氮气保护,将2-氯-9H-嘧啶并[4,5-b]吲哚(120mg,0.59mmol)溶于干燥四氢呋喃(2mL)中。随后,在0℃下,向上述溶液中加入氢化钠(29mg,0.71mmol),并搅拌30分钟。然后加入2-(4-(溴甲基)苯基)-1-异丙基-4-(三氟甲基)-1H咪唑(160mg,0.65mmol),升至室温,继续搅拌2小时。
LCMS监测显示原料消失后,将反应溶液减压浓缩,向所得残余物中加入冰水(30mL)淬灭,混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水(15mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到60mg 2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚。
MS(ESI)M/Z:470.0[M+H]+.
步骤D:在室温条件下,氮气保护,将2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚(60mg,0.13mmol)溶于干燥1,4-二氧六环/水(0.9mL/0.1mL)中。随后,依次加入(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(50mg,0.27mmol)、碳酸铯(83mg,0.27mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(20mg,0.03mmol)。真空抽空气置换氮气3次,反应体系微波加热至100℃搅拌3小时。
LCMS监测显示原料消失后,向反应液中加入水(30mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,减压除去溶剂,得7.66mg 2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚。
MS(ESI)M/Z:583.8[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.66(s,1H),8.70(s,1H),8.37(d,J=8.0Hz,1H),8.14(s,1H),7.87(d,J=8.4Hz,1H),7.64(t,J=7.8Hz,1H),7.54-7.38(m,5H),5.81(s,2H),4.44-4.30(m,1H),3.87(s,3H),1.75-1.69(m,1H),1.35(d,J=6.8Hz,6H),1.10-1.01(m,2H),0.88-0.79(m,2H).
实施例3:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-吡啶并[2',3':4,5]吡咯并[2,3-d]嘧啶
反应路线:
操作步骤:
步骤A:在室温条件下,将(2-氯嘧啶-5-基)硼酸(1g,6.33mmol)、2-溴-3-硝基吡啶(857mg,4.2mmol)和碳酸钠(1.34g,12.64mmol)溶于1,4-二氧六环/水(21mL/2.3mL)中。随后,向上述溶液中加入二氯[1,1'-二(二苯基膦)二茂铁]钯(513mg,0.6mmol),真空抽空气置换氮气4次,反应体系加热至100℃,搅拌16小时。
LCMS监测显示原料消失后,将反应溶液加入到冰水(30mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(15mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到600mg 2-氯-5-(3-硝基吡啶-2-基)嘧啶。
MS(ESI)M/Z:237.0[M+H]+.
步骤B:在室温条件下,将2-氯-5-(3-硝基吡啶-2-基)嘧啶(600mg,2.54mmol)和1,2-双(二苯基膦基)乙烷(1.26g,3.18mmol)溶于1,2-二氯苯(13mL)中。真空抽空气置换氮气4次,反应体系加热至160℃,搅拌2小时。
LCMS监测显示原料消失后,将反应溶液加入到冰水(30mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(15mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到400mg 2-氯-9H-吡啶并[2',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:205.2[M+H]+.
步骤C:在室温条件下,氮气保护,将2-氯-9H-吡啶并[2',3':4,5]吡咯并[2,3-d]嘧啶(400mg,1.96mmol)、(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苯基)甲醇(555mg,1.96mmol)和三苯基膦(771mg,2.94mmol)溶于干燥的四氢呋喃(10mL)中。随后,在0℃下,向上述溶液中缓慢滴加偶氮二甲酸二异丙酯(594mg,2.94mmol)。然后该反应体系在室温条件下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加入水(30mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(15mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到250mg 2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-吡啶并[2',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:470.8[M+H]+.
步骤D:在室温条件下,将2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-吡啶并[2',3':4,5]吡咯并[2,3-d]嘧啶(250mg,0.53mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(210mg,1.07mmol)和碳酸铯(346mg,1.06mmol)溶于1,4-二氧六环/水(3mL/0.3mL)中。随后,向上述溶液中加入氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(85mg,0.11mmol)。真空抽空气置换氮气4次,反应体系在100℃微波条件下搅拌3小时。
LCMS监测显示原料消失后,向反应液中加入水(30mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,减压除去溶剂,得到7.35mg的2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-吡啶并[2',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:585.0[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.70(s,1H),8.72(s,1H),8.70(dd,J=4.8,1.2Hz,1H),8.37(dd,J=8.4,1.2Hz,1H),8.15(d,J=1.2Hz,1H),7.66(dd,J=8.4,4.8Hz,1H),7.50(brs,4H),5.85(s,2H),4.45-4.32(m,1H),3.88(s,3H),1.80-1.70(m,1H),1.35(d,J=6.4Hz,6H),1.11-1.03(m,2H),0.89-0.79(m,2H).
实施例4:2-(4-环丙基-6-甲氧基嘧啶-5-基)-5-氟-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶[4,5-b]吲哚
反应路线:
操作步骤:
步骤A:在室温条件下,将2-溴-1-氟-3-硝基苯(914mg,4.15mmol)、(2-氯嘧啶-5-基)硼酸(985mg,6.23mmol)、碳酸钠(1.32g,12.45mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(508mg,0.62mmol)溶于1,4-二氧六环/水(20.7mL/2.3mL)中。真空抽空气置换氮气3次,反应体系在90℃下搅拌3小时。
LCMS监测显示原料消失后,将反应液加入到冰水(40mL)中淬灭。混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水(60mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到516mg 2-氯-5-(2-氟-6-硝基苯基)嘧啶。
MS(ESI)M/Z:254.0[M+H]+.
步骤B:在室温条件下,将2-氯-5-(2-氟-6-硝基苯基)嘧啶(400mg,1.58mmol)和1,2-双(二苯基膦基)乙烷(786mg,1.97mmol)溶于1,2-二氯苯(7.9mL)中。然后该反应体系在160℃下搅拌1小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(30mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到276mg 2-氯-5-氟-9H-嘧啶并[4,5-b]吲哚。
MS(ESI)M/Z:222.0[M+H]+.
步骤C:在室温条件下,氮气保护,将2-氯-5-氟-9H-嘧啶并[4,5-b]吲哚(226mg,1.02mmol)和2-(4-(溴甲基)苯基)-1-异丙基-4-(三氟甲基)-1H-咪唑(283mg,0.82mmol)溶于N,N-二甲基甲酰胺(5mL)中。随后,向上述溶液中加入碳酸钾(281mg,2.04mmol)。然后该反应体系在50℃下继续搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(40mL)淬灭,混合液用乙酸乙酯(15mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到220mg 2-氯-5-氟-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚。
MS(ESI)M/Z:488.0[M+H]+.
步骤D:在室温条件下,将2-氯-5-氟-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚(200mg,0.41mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(239mg,1.23mmol)、碳酸铯(200mg,0.62mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(65mg,0.08mmol)溶于1,4-二氧六环/水(2mL/0.2mL)中。真空抽空气置换氮气3次,反应体系在100℃微波条件下搅拌3小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(30mL)淬灭,混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水(60mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,减压除去溶剂,得到16.09mg 2-(4-环丙基-6-甲氧基嘧啶-5-基)-5-氟-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:602.4[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.52(s,1H),8.71(s,1H),8.15(d,J=1.2Hz,1H),7.76(d,J=8.0Hz,1H),7.71-7.63(m,1H),7.52-7.47(m,4H),7.31-7.26(m,1H),5.83(s,2H),4.44-4.33(m,1H),3.88(s,3H),1.78-1.69(m,1H),1.35(d,J=6.4Hz,6H),1.10-1.02(m,2H),0.88-0.80(m,2H).
实施例5:2-(4-环丙基-6-甲氧基嘧啶-5-基)-7-氟-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶[4,5-b]吲哚
反应路线:
操作步骤:
步骤A:在室温条件下,将1-溴-4-氟-2-硝基苯(1.50g,6.85mmol)、(2-氯嘧啶-5-基)硼酸(1.62g,10.27mmol)、碳酸钠(2.18g,20.55mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(840mg,1.03mmol)溶于1,4-二氧六环/水(31mL/3.5mL)中。真空抽空气置换氮气3次,反应体系在90℃条件下搅拌3小时。
LCMS监测显示原料消失后,向反应液中加入到冰水(60mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到1.1g 2-氯-5-(4-氟-2-硝基苯基)嘧啶。
MS(ESI)M/Z:253.8[M+H]+.
步骤B:在室温条件下,将2-氯-5-(4-氟-2-硝基苯基)嘧啶(1.1g,4.34mmol)和1,2-双(二苯基膦基)乙烷(2.16g,5.43mmol)溶于1,2-二氯苯(15mL)中。然后该反应体系在160℃条件下搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(50mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到261mg 2-氯-7-氟-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:221.9[M+H]+.
步骤C:在室温条件下,氮气保护,将2-氯-7-氟-9H-嘧啶[4,5-b]吲哚(261mg,1.18mmol)、2-(4-(溴甲基)苯基)-1-异丙基-4-(三氟甲基)-1H咪唑(490mg,1.42mmol)和碳酸钾(326mg,2.36mmol)溶于N,N-二甲基甲酰胺(6mL)中。然后该反应体系在50℃下继续搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加水(30mL)淬灭,混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(30mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到170mg 2-氯-7-氟-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:487.8[M+H]+.
步骤D:在室温条件下,将2-氯-7-氟-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶[4,5-b]吲哚(130mg,0.27mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(156mg,0.80mmol)、碳酸铯(174mg,0.53mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(42mg,0.05mmol)溶于1,4-二氧六环/水(1.2mL/0.13mL)中。真空抽空气置换氮气3次,反应体系在90℃微波条件下搅拌3小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(30mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(30mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,减压除去溶剂,得到17.11mg 2-(4-环丙基-6-甲氧基嘧啶-5-基)-7-氟-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:602.0[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.65(s,1H),8.70(s,1H),8.41(dd,J=8.6,5.4Hz,1H),8.15(d,J=1.2Hz,1H),7.85(dd,J=10.0,2.4Hz,1H),7.54-7.46(m,4H),7.33-7.26(m,1H),5.79(s,2H),4.45-4.31(m,1H),3.87(s,3H),1.75-1.66(m,1H),1.35(d,J=6.8Hz,6H),1.09-1.00(m,2H),0.88-0.77(m,2H).
实施例6:2-(4-环丙基-6-甲氧基嘧啶-5-基)-8-氟-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶[4,5-b]吲哚
反应路线:
操作步骤:
步骤A:在室温条件下,将1-溴-3-氟-2-硝基苯(1g,4.54mmol)、(2-氯嘧啶-5-基)硼酸(1.79g,6.82mmol)、碳酸钠(1.45g,13.63mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(498mg,0.68mmol)溶于1,4-二氧六环/水(19.8mL/2.2mL)中。真空抽空气置换氮气3次,反应体系在90℃条件下搅拌3小时。
LCMS监测显示原料消失后,向反应液中加入到冰水(20mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(15mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到500mg 2-氯-5-(3-氟-2-硝基苯基)嘧啶。
MS(ESI)M/Z:254.0[M+H]+.
步骤B:在室温条件下,将2-氯-5-(3-氟-2-硝基苯基)嘧啶(500mg,1.97mmol)和1,2-双(二苯基膦基)乙烷(979mg,2.46mmol)溶于1,2-二氯苯(7.1mL)中。然后该反应体系在160℃下搅拌1小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(10mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到60mg 2-氯-8-氟-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:222.0[M+H]+.
步骤C:在室温条件下,氮气保护,将2-氯-8-氟-9H-嘧啶[4,5-b]吲哚(60mg,0.27mmol)和无水碳酸钾(75mg,0.54mmol)溶于N,N-二甲基甲酰胺(3mL)中。随后,向上述溶液中加入2-(4-(溴甲基)苯基)-1-异丙基-4-(三氟甲基)-1H咪唑(113mg,0.31mmol)。然后该反应体系在室温下搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(10mL)淬灭,混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到90mg 2-氯-8-氟-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:488.3[M+H]+.
步骤D:在室温条件下,将2-氯-8-氟-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶[4,5-b]吲哚(90mg,0.184mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(107.8mg,0.55mmol)、碳酸铯(120mg,0.37mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(22mg,0.03mmol)溶于1,4-二氧六环/水(0.8mL/0.08mL)中。真空抽空气置换氮气3次,反应体系在90℃微波条件下搅拌2.5小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(30mL)淬灭,混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水(60mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,减压除去溶剂,得到4.89mg 2-(4-环丙基-6-甲氧基嘧啶-5-基)-8-氟-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:602.2[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.75(s,1H),8.71(s,1H),8.24(d,J=7.6Hz,1H),8.15(d,J=0.8Hz,1H),7.55-7.46(m,3H),7.45-7.35(m,3H),5.86(s,2H),4.45-4.32(m,1H),3.87(s,3H),1.77-1.68(m,1H),1.36(d,J=6.8Hz,6H),1.09-1.02(m,2H),0.88-0.81(m,2H).
实施例7:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-7-甲氧基-9H-嘧啶[4,5-b]吲哚
反应路线:
操作步骤:
步骤A:在室温条件下,将(2-氯嘧啶-5-基)硼酸(1.5g,9.49mmol)、1-溴-4-甲氧基-2-硝基苯(1.5g,6.49mmol)和碳酸钠(2.1g,19.81mmol)溶于1,4-二氧六环/水(32mL/3.5mL)中。随后,向上述溶液中加入二氯[1,1'-二(二苯基膦)二茂铁]钯(0.8g,0.98mmol),真空抽空气置换氮气4次,在100℃下搅拌16小时。
LCMS监测显示原料消失后,将反应溶液加入到冰水(30mL)中淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(15mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到740mg 2-氯-5-(4-甲氧基-2-硝基苯基)嘧啶。
MS(ESI)M/Z:266.0[M+H]+.
步骤B:在室温条件下,将2-氯-5-(4-甲氧基-2-硝基苯基)嘧啶(740mg,2.79mmol)和1,2-双(二苯基膦基)乙烷(2.22g,5.58mmol)溶于1,2-二氯苯(14mL)中。真空抽空气置换氮气4次,反应体系在160℃下搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加入到冰水(30mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(15mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到440mg 2-氯-7-甲氧基-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:234.0[M+H]+.
步骤C:在室温条件下,氮气保护,将2-氯-7-甲氧基-9H-嘧啶[4,5-b]吲哚(440mg,1.89mmol)、2-(4-(溴甲基)苯基)-1-异丙基-4-(三氟甲基)-1H咪唑(410mg,1.13mmol)和碳酸钾(521mg,3.78mmol)溶于干燥的N,N-二甲基甲酰胺(10mL)中。该反应体系在50℃下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加入到冰水(50mL)淬灭,混合液用乙酸乙酯(150mL×3次)萃取,合并有机相,有机相用饱和食盐水(25mL)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到70mg 2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-7-甲氧基-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:500.0[M+H]+.
步骤D:在室温条件下,将2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-7-甲氧基-9H-嘧啶[4,5-b]吲哚(70mg,0.14mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(84mg,0.43mmol)和碳酸铯(70mg,0.21mmol)溶于1,4-二氧六环/水(1mL/0.1mL)中。随后,向上述溶液中加入氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(22mg,0.03mmol)。真空抽空气置换氮气4次,反应体系在90℃微波条件下搅拌3小时。
LCMS监测显示原料消失后,向反应液中加入水(30mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,减压除去溶剂,得到9.8mg的2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-7-甲氧基-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:614.0[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.51(s,1H),8.69(s,1H),8.24(d,J=8.4Hz,1H),8.14(s,1H),7.49(brs,4H),7.43(d,J=2.0Hz,1H),7.04(dd,J=8.8,2.4Hz,1H),5.78(s,2H),4.45-4.32(m,1H),3.90(s,3H),3.86(s,3H),1.74-1.66(m,1H),1.35(d,J=6.4Hz,6H),1.07-1.00(m,2H),0.85-0.78(m,2H).
实施例8:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-7-(三氟乙基)-9H-嘧啶[4,5-b]吲哚
反应路线:
操作步骤:
步骤A:在室温条件下,将1-溴-2-硝基-4-(三氟甲基)苯(1g,3.70mmol)、(2-氯嘧啶-5-基)硼酸(879mg,5.60mmol)、碳酸钠(1.2g,11.1mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(406mg,0.56mmol)溶于1,4-二氧六环/水(18mL/2mL)中。真空抽空气置换氮气3次,反应体系在90℃条件下搅拌16小时。
LCMS监测显示原料消失后,向反应液中加入到冰水(20mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(15mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到620mg 2-氯-5-(4-三氟甲基-2-硝基苯基)嘧啶。
MS(ESI)M/Z:304.0[M+H]+.
步骤B:在室温条件下,将2-氯-5-(4-三氟甲基-2-硝基苯基)嘧啶(620mg,2.04mmol)和1,2-双(二苯基膦基)乙烷(1.1g,2.55mmol)溶于1,2-二氯苯(9.5mL)中。随后,该反应体系在160℃条件下搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(30mL)淬灭,混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到220mg 2-氯-7-(三氟甲基)-9H嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:272.0[M+H]+.
步骤C:在室温条件下,氮气保护,将2-氯-7-(三氟甲基)-9H嘧啶[4,5-b]吲哚(220mg,0.81mmol)和无水碳酸钾(223.6mg,1.62mmol)溶于N,N-二甲基甲酰胺(5mL)中。随后,向上述溶液中加入2-(4-(溴甲基)苯基)-1-异丙基-4-(三氟甲基)-1H咪唑(337mg,0.97mmol)。然后该反应体系在55℃条件下搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(10mL)淬灭,混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到450mg 2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-7-(三氟乙基)-9H嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:538.0[M+H]+.
步骤D:在室温条件下,将2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-7-(三氟乙基)-9H嘧啶[4,5-b]吲哚(270mg,0.50mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(294mg,1.51mmol)、碳酸铯(327mg,1.0mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(60mg,0.075mmol)溶于1,4-二氧六环/水(2.5mL/0.25mL)中。真空抽空气置换氮气3次,反应体系在90℃微波条件下搅拌2.5小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(30mL)淬灭。混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水(60mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,除去溶剂得到27.13mg 2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-7-(三氟乙基)-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:652.0[M+H]+.
1H NMR(400MHz,DMSO)δ9.82(s,1H),8.72(s,1H),8.62(d,J=8.0Hz,1H),8.35(s,1H),8.15(d,J=1.2Hz,1H),7.80(d,J=8.0Hz,1H),7.52-7.46(m,4H),5.93(s,2H),4.42-4.32(m,1H),3.87(s,3H),1.76-1.68(m,1H),1.35(d,J=6.8Hz,6H),1.09-1.03(m,2H),0.86-0.79(m,2H).
实施例9:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-乙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶[4,5-b]吲哚
步骤A:在室温条件下,氮气保护,将2-(4-(溴甲基)苯基)-1-乙基-4-(三氟甲基)-1H咪唑(200mg,0.60mmol)、2-氯-9H-嘧啶[4,5-b]吲哚(245mg,1.20mmol)和碳酸钾(182mg,1.20mmol)溶于N,N-二甲基甲酰胺(4mL)中。随后,该反应体系升至50℃,继续搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加水(30mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到130mg 2-氯-9-(4-(1-乙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:455.8[M+H]+.
步骤B:在室温条件下,将2-氯-9-(4-(1-乙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H嘧啶[4,5-b]吲哚(110mg,0.24mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(94mg,0.48mmol)、碳酸铯(158mg,0.48mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(38mg,0.05mmol)溶于1,4-二氧六环/水(1.1mL/0.12mL)中。真空抽空气置换氮气3次,反应体系在90℃、微波条件下搅拌3小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(30mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(30mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,除去溶剂得到55.00mg 2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-乙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:570.1[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.66(s,1H),8.71(s,1H),8.37(d,J=7.6Hz,1H),7.99(d,J=1.2Hz,1H),7.86(d,J=8.0Hz,1H),7.63(t,J=7.6Hz,1H),7.56(d,J=8.4Hz,2H),7.48(d,J=8.4Hz,2H),7.44(t,J=8.0Hz,1H),5.80(s,2H),4.01(q,J=7.2Hz,2H),3.87(s,3H),1.77-1.68(m,1H),1.26(t,J=7.2Hz,3H),1.10-1.02(m,2H),0.89-0.80(m,2H).
实施例10:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(5-乙氧基-3-(三氟甲基)-1H-吡唑-1-基)苄基)-9H-嘧啶基[4,5-b]吲哚
反应路线:
操作步骤:
步骤A:在室温条件下,将4-肼基苯甲酸(5g,32.9mmol)和4,4,4-三氟-3-氧代丁酸乙酯(6g,32.9mmol)溶于甲醇/盐酸(73mL/14.6mL)中。然后反应体系在室温条件下搅拌3小时。
LCMS监测显示原料消失后,将反应液减压浓缩。所得残余物经硅胶柱层析纯化得到8.3g 4-(5-羟基-3-(三氟甲基)-1H-吡唑-1-基)苯甲酸甲酯。
MS(ESI)M/Z:287.0[M+H]+.
步骤B:在室温条件下,氮气保护,将4-(5-羟基-3-(三氟甲基)-1H-吡唑-1-基)苯甲酸甲酯(5g,17.5mmol)溶于N,N-二甲基甲酰胺(87mL)中。随后,向上述溶液中加入氢化钠(1.39g,34.96mmol),搅拌30分钟。然后缓慢滴加碘乙烷(5.4g,34.96mmol),并在室温条件下搅拌1小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(250mL)淬灭。混合液用乙酸乙酯(80mL×3次)萃取,合并有机相,有机相用饱和食盐水(250mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到3.7g 4-(5-乙氧基-3-(三氟甲基)-1H-吡唑-1-基)苯甲酸甲酯。
MS(ESI)M/Z:315.0[M+H]+.
步骤C:在0℃条件下,氮气保护,将4-(5-乙氧基-3-(三氟甲基)-1H-吡唑-1-基)苯甲酸甲酯(3.7g,11.78mmol)溶于四氢呋喃(59mL)中。随后,向上述溶液中加入氢化铝锂(9.4mL,23.56mmol),并继续搅拌30分钟。
LCMS监测显示原料消失后,将反应溶液缓慢滴加到冰水(150mL)中淬灭,过滤,滤液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(150mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到3g(4-(5-乙氧基-3-(三氟甲基)-1H-吡唑-1-基)苯基)甲醇。
MS(ESI)M/Z:287.0[M+H]+.
步骤D:在0℃条件下,氮气保护,将(4-(5-乙氧基-3-(三氟甲基)-1H-吡唑-1-基)苯基)甲醇(1.5g,5.24mmol)溶于二氯甲烷(26mL)中。随后,向上述溶液中依次加入三苯基膦(2.7g,10.48mmol)、碳酸氢钠(880mg,10.48mmol)和四溴化碳(3.46g,10.48mmol)。然后该反应体系在室温下继续搅拌30分钟。
LCMS监测显示原料消失后,向反应溶液中加冰水(150mL)淬灭。混合液用二氯甲烷(50mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(150mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到1.8g 1-(4-(溴甲基)苯基)-5-乙氧基-3-(三氟甲基)-1H-吡唑。
MS(ESI)M/Z:348.8[M+H]+.
步骤E:在室温条件下,将1-(4-(溴甲基)苯基)-5-乙氧基-3-(三氟甲基)-1H-吡唑(43.9mg,0.13mmol)、2-(4-环丙基-6-甲氧基嘧啶-5-基)-9H-嘧啶并[4,5-b]吲哚(40mg,0.13mmol)和碳酸钾(34.7mg,0.26mmol)溶于N,N-二甲基甲酰胺(1mL)中。真空抽空气置换氮气3次,反应体系在50℃下搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加水(40mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水(25mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,除去溶剂得到17.29mg 2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(5-乙氧基-3-(三氟甲基)-1H-吡唑-1-基)苄基)-9H-嘧啶基[4,5-b]吲哚。
MS(ESI)M/Z:586.2[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.65(s,1H),8.70(s,1H),8.37(d,J=8.0Hz,1H),7.85(d,J=8.0Hz,1H),7.65-7.58(m,3H),7.49-7.42(m,3H),6.42(s,1H),5.78(s,2H),4.25(q,J=6.8Hz,2H),3.87(s,3H),1.77-1.65(m,1H),1.30(t,J=6.8Hz,3H),1.10-1.00(m,2H),0.89-0.76(m,2H).
实施例11:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-4-甲基-9H-嘧啶[4,5-b]吲哚
反应路线:
操作步骤:
步骤A:在室温条件下,将(2-硝基苯基)硼酸(1.03g,6.15mmol)、5-溴-2-氯-4-甲基嘧啶(850mg,4.10mmol)、碳酸钠(1.3g,12.3mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(450mg,0.61mmol)溶于1,4-二氧六环/水(21mL/2.3mL)中。真空抽空气置换氮气3次,反应体系在90℃条件下搅拌16小时。
LCMS监测显示原料消失后,向反应液中加入冰水(40mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(15mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到600mg 2-氯-4-甲基-5-(2-硝基苯基)嘧啶。
MS(ESI)M/Z:250.0[M+H]+.
步骤B:在室温条件下,将2-氯-4-甲基-5-(2-硝基苯基)嘧啶(600mg,2.41mmol)和1,2-双(二苯基膦基)乙烷(1198.8mg,3.01mmol)溶于1,2-二氯苯(12mL)中。随后,该反应体系在160℃条件下搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(40mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到320mg 2-氯-4-甲基-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:218.0[M+H]+
步骤C:在室温条件下,氮气保护,将2-氯-4-甲基-9H-嘧啶[4,5-b]吲哚(150mg,0.69mmol),无水碳酸钾(190.2mg,1.38mmol)溶于N,N-二甲基甲酰胺(5mL)中。随后,向上述溶液中加入2-(4-(溴甲基)苯基)-1-异丙基-4-(三氟甲基)-1H咪唑(286.7mg,0.83mmol)。然后该反应体系在55℃条件下搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(30mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到220mg 2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-4-甲基-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:484.0[M+H]+.
步骤D:在室温条件下,将2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-4-甲基-9H-嘧啶[4,5-b]吲哚(180mg,0.37mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(145mg,0.75mmol)、碳酸铯(243mg,0.75mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(59mg,0.08mmol)溶于1,4-二氧六环/水(1.7mL/0.20mL)中。真空抽空气置换氮气3次,反应体系在90℃微波条件下搅拌2.5小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(30mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,除去溶剂得到88.80mg 2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-4-甲基-9H-嘧啶[4,5-b]吲哚。
MS(ESI)M/Z:598.2[M+H]+.
1H NMR(400MHz,DMSO)δ8.70(s,1H),8.27(d,J=7.6Hz,1H),8.14(d,J=0.8Hz,1H),7.88(d,J=8.0Hz,1H),7.63(t,J=7.6Hz,1H),7.52-7.41(m,5H),5.81(s,2H),4.43-4.30(m,1H),3.87(s,3H),3.03(s,3H),1.74-1.63(m,1H),1.35(d,J=6.8Hz,6H),1.09-1.00(m,2H),0.90-0.77(m,2H).
实施例12:(S)-2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(1-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苯基)乙基)-9H-嘧啶[4,5-b]吲哚和(R)-2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(1-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苯基)乙基)-9H-嘧啶[4,5-b]吲哚
参考实施例8制备方法制备,并手性拆分得到(合成报告中缺少手性条件)。产品经手性超临界流体色谱(supeicriticalfluid chromatography,SFC)分离,分离条件:手性柱Daicel IG-3(25×250mm,10um);流动相:二氧化碳/甲醇[0.2%氨(7M氨甲醇溶液)],得27.65mg化合物13-P1(出峰时间1.77min)和32.27mg化合物13-P2(出峰时间3.27min)
化合物13-P1:
MS(ESI)M/Z:598.1[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.65(s,1H),8.70(s,1H),8.37(d,J=8.0Hz,1H),8.15(d,J=0.8Hz,1H),7.68(d,J=8.4Hz,1H),7.60-7.47(m,5H),7.41(t,J=7.4Hz,1H),6.55(q,J=7.2Hz,1H),4.47-4.31(m,1H),3.87(s,3H),2.15(d,J=7.2Hz,3H),1.82-1.67(m,1H),1.36(dd,J=6.6,1.8Hz,6H),1.11-1.01(m,2H),0.90-0.77(m,2H).
化合物13-P2:
MS(ESI)M/Z:598.2[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.65(s,1H),8.70(s,1H),8.37(d,J=7.6Hz,1H),8.15(d,J=0.8Hz,1H),7.68(d,J=8.4Hz,1H),7.58-7.48(m,5H),7.41(t,J=7.6Hz,1H),6.55(q,J=7.2Hz,1H),4.46-4.35(m,1H),3.87(s,3H),2.15(d,J=7.2Hz,3H),1.80-1.69(m,1H),1.36(dd,J=6.6,1.7Hz,6H),1.09-1.01(m,2H),0.92-0.79(m,2H).
实施例13:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-咪唑啉[2,1-f]嘌呤
反应路线
操作步骤:
步骤A:在0℃下,将(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苯基)甲胺(2.25g,7.96mmol)和2,4-二氯嘧啶-5-羧酸乙酯(1.76g,7.96mmol)溶于乙腈(40mL)中。随后,向上述反应液中缓慢滴加N,N-二异丙基乙胺(267mg,2.07mmol)。然后该反应体系继续搅拌1小时。
LCMS监测显示原料消失后,将反应溶液中加入到冰水(100mL)中淬灭。混合液用乙酸乙酯(40mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到2.4g 2-氯-4-((4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)氨基)嘧啶-5-羧酸乙酯。
MS(ESI)M/Z:468.0[M+H]+.
1H NMR(400MHz,DMSO-d6)δ9.05(t,J=6.2Hz,1H),8.67(s,1H),8.17(d,J=1.2Hz,1H),7.54(d,J=8.0Hz,2H),7.49(d,J=8.4Hz,2H),4.78(d,J=6.4Hz,2H),4.53-4.42(m,1H),4.34(q,J=7.2Hz,2H),1.40(d,J=6.8Hz,6H),1.33(t,J=7.2Hz,3H).
步骤B:在0℃下,将2-氯-4-((4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)氨基)嘧啶-5-羧酸乙酯(2.4g,4.9mmol)和氢氧化锂(413mg,9.8mmol)溶于四氢呋喃/水(12.5mL/12.5mL)中。然后该反应体系在室温条件下搅拌2小时。
LCMS监测显示原料消失后,将反应液减压浓缩,所得残余物加入到冰水(30mL)中淬灭。在0℃下,混合液用3M稀盐酸调节pH至3-4,过滤,滤饼用水(20mL×3次)淋洗,收集滤饼,减压浓缩得到2.2g 2-氯-4-((4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)氨基)嘧啶-5-羧酸。
MS(ESI)M/Z:440.0[M+H]+.
步骤C:在室温条件下,将2-氯-4-((4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)氨基)嘧啶-5-羧酸(2.2g,5.01mmol)、叠氮磷酸二苯酯(1.38g,5.01mmol)和三乙胺(506mg,5.01mmol)溶于N,N-二甲基乙酰胺(25mL)中。然后该反应体系在115℃下搅拌16小时。
LCMS监测显示原料消失后,将反应液减压浓缩。所得残余物经硅胶柱层析纯化得到1.4g 2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-7,9-二氢-8H-嘌呤-8-酮。
MS(ESI)M/Z:437.0[M+H]+.
步骤D:在0℃下,氮气保护,将2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-7,9-二氢-8H-嘌呤-8-酮(2.2g,5.05mmol)和三乙胺(1g,10.09mmol)溶于三氯氧磷(25mL)中。然后该反应体系在140℃下搅拌24小时。
LCMS监测显示原料消失后,将反应液减压浓缩。所得残留物加冰水(100mL)淬灭。混合液用乙酸乙酯(40mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经硅胶柱层析纯化得到70mg 2,8-二氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘌呤。
MS(ESI)M/Z:455.0[M+H]+.
步骤E:在室温条件下,氮气保护,将2,8-二氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘌呤(70mg,0.15mmol)溶于氨甲醇(2mL,7M)中。然后该反应体系在80℃下搅拌2小时。
LCMS监测显示原料消失后,将反应液减压浓缩。所得残留物经硅胶柱层析纯化得到50mg 2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘌呤-8-胺。
MS(ESI)M/Z:436.0[M+H]+.
步骤F:在室温条件下,氮气保护,将2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘌呤-8-胺(25mg,0.06mmol)和2-氯乙醛(71mg,0.36mmol)溶于N,N-二甲基乙酰胺(2mL)中。然后该反应体系在100℃下搅拌18小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(50mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经硅胶柱层析纯化得到8mg 2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-咪唑啉[2,1-f]嘌呤。
MS(ESI)M/Z:460.0[M+H]+.
步骤G:在室温条件下,将2-氯-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-咪唑啉[2,1-f]嘌呤(8mg,0.02mmol)溶于1,4-二氧六环/水(0.5mL/0.05mL)中。随后,向上述反应液中依次加入(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(8mg,0.04mmol)、碳酸铯(7mg,0.02mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(3mg,0.004mmol)。真空抽空气置换氮气4次,反应体系在微波条件下加热至90℃,继续搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(50mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,得到2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-咪唑啉[2,1-f]嘌呤。
MS(ESI)M/Z:574.2[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.24(s,1H),8.70(s,1H),8.16(d,J=1.4Hz,1H),7.91(d,J=1.7Hz,1H),7.58(d,J=8.4Hz,2H),7.53(d,J=8.3Hz,2H),7.20(d,J=1.6Hz,1H),5.52(s,2H),4.48-4.35(m,1H),3.86(s,3H),1.79-1.67(m,1H),1.37(d,J=6.6Hz,7H),1.10-1.01(m,2H),0.89-0.79(m,2H).
实施例14:6-(4-环丙基-6-甲氧基嘧啶-5-基)-4-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶
反应路线
操作步骤:
步骤A:在室温条件下,将4-甲氧基苯甲醛(13g,95.59mmol)和三乙胺(21g,210.3mmol)溶于二氯甲烷(200mL)中。随后,将反应液降温至0℃,甘氨酸甲酯(17g,191.2mmol)和无水硫酸钠(50g,352.1mmol)加入到上述反应液中。然后该反应体系在室温条件下搅拌16小时。
LCMS监测显示原料消失后,过滤,减压浓缩。得到20g 2-((4-甲氧基亚苄基)氨基)乙酸甲酯。
MS(ESI)M/Z:208.1[M+H]+.
步骤B:在0℃下,将2-((4-甲氧基亚苄基)氨基)乙酸甲酯(18g,86.96mmol)溶于甲醇(200mL)中。随后,缓慢加入硼氢化钠(4.96g,130.44mmol)。然后反应体系在室温条件下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加入冰水(500mL)淬灭。混合液用乙酸乙酯(200mL×3次)萃取,合并有机相,有机相用饱和食盐水(100mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到15g(4-甲氧基苄基)甘氨酸甲酯。
MS(ESI)M/Z:210.1[M+H]+.
步骤C:在室温条件下,将(4-甲氧基苄基)甘氨酸甲酯(15g,71.77mmol)、4-氯-2-(甲硫基)嘧啶-5-甲醛(13.4g,71.77mmol)和三乙胺(8.7g,86.12mmol)溶于四氢呋喃(360mL)中。然后该反应体系在室温条件下搅拌16小时。
LCMS监测显示原料消失后,向反应液中加入冰水(300mL)淬灭。混合液用乙酸乙酯(100mL×3次)萃取,合并有机相,有机相用饱和食盐水(50mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到22g N-(5-甲酰基-2-(甲硫基)嘧啶-4-基)-N-(4-甲氧基苄基)甘氨酸甲酯。
MS(ESI)M/Z:362.0[M+H]+.
步骤D:在室温条件下,氮气保护,将N-(5-甲酰基-2-(甲硫基)嘧啶-4-基)-N-(4-甲氧基苄基)甘氨酸甲酯(16.5g,45.71mmol)溶于干燥甲苯(160mL)中。随后,在冰水浴条件下,向上述溶液中缓慢加入氢化钠(7.31g,182.83mmol)。然后该反应体系在70℃下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加冰水(500mL)淬灭。混合液用乙酸乙酯(100mL×3次)萃取,合并有机相,有机相用饱和食盐水(100mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到10g 7-(4-甲氧基苄基)-2-(甲硫基)-7H-吡咯并[2,3-d]嘧啶-6-羧酸甲酯。
MS(ESI)M/Z:344.0[M+H]+.
步骤E:在室温条件下,将7-(4-甲氧基苄基)-2-(甲硫基)-7H-吡咯并[2,3-d]嘧啶-6-羧酸甲酯(10g,29.15mmol)溶于干燥二氯甲烷(147mL)中。随后,在-78℃条件下,四氢铝锂(1moL/L)(59.30ml,59.30mmol)加入到上述反应液中。然后反应体系在-78℃下反应30分钟。
LCMS监测显示原料消失后,将反应液加入到冰水(500mL)中淬灭。混合液用乙酸乙酯(100mL×3次)萃取,合并有机相,有机相用饱和食盐水(100mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到10g(7-(4-甲氧基苄基)-2-(甲硫基)-7H-吡咯并[2,3-d]嘧啶-6-基)甲醇。
MS(ESI)M/Z:316.0[M+H]+.
步骤F:在室温条件下,将(7-(4-甲氧基苄基)-2-(甲硫基)-7H-吡咯并[2,3-d]嘧啶-6-基)甲醇(10g,31.75mmol)和二氧化锰(13.65g,158.75mmol)溶于二氯甲烷(635mL)中。真空抽空气置换氮气3次,反应体系在室温条件下搅拌2小时。
LCMS监测显示原料消失后,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到8g 7-(4-甲氧基苄基)-2-(甲硫基)-7H-吡咯并[2,3-d]嘧啶-6-甲醛。
MS(ESI)M/Z:314.0[M+H]+.
步骤G:在室温条件下,将7-(4-甲氧基苄基)-2-(甲硫基)-7H-吡咯并[2,3-d]嘧啶-6-甲醛(8g,25.56mmol)溶于N,N-二甲基甲酰胺(128mL)中。随后,相上述溶液中,缓慢加入N-氯代丁二酰亚胺(5.12g,38.34mmol)。然后该反应体系在50℃下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加冰水(500mL)淬灭。混合液用乙酸乙酯(100mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(100mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到3.5g 5-氯-7-(4-甲氧基苄基)-2-(甲硫基)-7H-吡咯并[2,3-d]嘧啶-6-甲醛。
MS(ESI)M/Z:348.0[M+H]+.
步骤H:在室温条件下,将5-氯-7-(4-甲氧基苄基)-2-(甲硫基)-7H-吡咯并[2,3-d]嘧啶-6-甲醛(3.5g,10.09mmol)和硫粉(65mg,2.02mmol)溶于氨/甲醇溶液(4mol/L,34mL)中。然后该反应体系在80℃下搅拌6小时。
LCMS监测显示原料消失后,向反应液中加冰水(40mL)淬灭。混合液用乙酸乙酯(60mL×3次)萃取,合并有机相,有机相用饱和食盐水(100mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到2.9g 4-(4-甲氧基苄基)-6-(甲硫基)-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:343.0[M+H]+.
步骤I:在室温条件下,将4-(4-甲氧基苄基)-6-(甲硫基)-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶(2.9g,8.48mmol)溶于干燥二氯甲烷溶液(43mL)中。随后,在-78℃下,间氯过氧苯甲酸(3.22g,18.66mmol)缓慢加入到上述反应体系中。然后该反应体系在室温条件下搅拌4小时。
LCMS监测显示原料消失后,向反应液中加冰水(100mL)淬灭。混合液用二氯甲烷(60mL×3次)萃取,合并有机相,有机相用饱和食盐水(100mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到1.8g 4-(4-甲氧基苄基)-6-(甲基磺酰基)-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:375.0[M+H]+.
步骤J:在室温条件下,将4-(4-甲氧基苄基)-6-(甲基磺酰基)-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶(1.8g,4.81mmol)溶于干燥1,4-二氧六环溶液(16mL)中。随后,向上述溶液中加入氨/甲醇溶液(4mol/L,48mL)。然后该反应体系在80℃下搅拌4小时。
LCMS监测显示原料消失后,减压浓缩。所得残余物经硅胶柱层析纯化得到840mg 4-(4-甲氧基苄基)-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶-6-胺。
MS(ESI)M/Z:312.0[M+H]+.
步骤K:在室温条件下,将4-(4-甲氧基苄基)-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶-6-胺(840mg,2.70mmol)溶于干燥二氯甲烷溶液(68mL)中。随后,在冰水浴条件下,向上述溶液中依次加入三甲基氯硅烷(910mg,8.37mmol)和亚硝酸特丁酯(1.37g,13.23mmol)。然后该反应体系在室温条件下搅拌16小时。
LCMS监测显示原料消失后,向反应液中加冰水(40mL)淬灭。混合液用二氯甲烷(60mL×3次)萃取,合并有机相,有机相用饱和食盐水(100mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到390mg 6-氯-4-(4-甲氧基苄基)-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:331.0[M+H]+.
步骤L:在室温条件下,将6-氯-4-(4-甲氧基苄基)-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶(390mg,1.18mmol)溶于三氟甲磺酸(8mL)中。然后该反应体系在65℃下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加冰水(10mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(60mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到200mg粗品6-氯-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:211.0[M+H]+.
步骤M:在室温条件下,氮气保护,将6-氯-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶(200mg,0.95mmol)、2-(4-(溴甲基)苯基)-1-甲基-4-(三氟甲基)-1H-咪唑(303mg,0.95mmol)和碳酸钾(263mg,1.90mmol)溶于N,N-二甲基甲酰胺(5mL)中。然后该反应体系在50℃下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加冰水(50mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(60mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到170mg 6-氯-4-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:449.0[M+H]+.
步骤N:在室温条件下,将6-氯-4-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶(170mg,0.38mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(110mg,0.57mmol)、碳酸铯(186mg,0.57mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(60mg,0.08mmol)溶于1,4-二氧六环/水(2.7mL/0.3mL)中。真空抽空气置换氮气3次,反应体系在100℃微波条件下反应2小时。
LCMS监测显示原料消失后,向反应液中加冰水(50mL)淬灭。混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水(60mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,得到17.95mg 6-(4-环丙基-6-甲氧基嘧啶-5-基)-4-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-4H-异噻唑并[5',4':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:563.6[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.73(s,1H),9.08(s,1H),8.71(s,1H),7.91(d,J=1.2Hz,1H),7.67(d,J=8.4Hz,2H),7.54(d,J=8.4Hz,2H),5.82(s,2H),3.88(s,3H),3.73(s,3H),1.77-1.68(m,1H),1.10-1.04(m,2H),0.90-0.83(m,2H).
实施例15:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-((2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂啉-9基)甲基)-9H-嘧啶并[4,5-b]吲哚-7-腈
反应路线:
操作步骤:
步骤A:在室温条件下,氮气保护,将5-溴-2-氯嘧啶-4-胺(108g,518mmol)溶于1,4-二氧六环/水(2119mL/235mL)中。随后,向上述溶液中依次加入3-氯-4-(4,4,5,5-四甲基-1,3,2-二恶硼烷-2-基)苄腈(150g,570mmol)、碳酸钠(110g,1036mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(38g,46.6mmol)。然后反应体系在90℃下搅拌16小时。
LCMS监测显示原料消失后,将反应液过滤,收集滤液,减压浓缩,所得残余物用乙酸乙酯/石油醚打浆,所得滤饼再次用乙腈/水打浆,得到粗品94.6g 4-(4-氨基-2-氯嘧啶-5-基)-3-氯苯甲腈。
MS(ESI)M/Z:265.0[M+H]+.
步骤B:在室温条件下,氮气保护,将4-(4-氨基-2-氯嘧啶-5-基)-3-氯苯甲腈(94.6g,358mmol)溶于1,4-二氧六环/水(1394mL/232mL)中。随后,向上述溶液中依次加入(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(69.5g,358mmol)、碳酸铯(233g,716mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(36.5g,46.5mmol)。然后该反应体系在90℃下搅拌16小时。
LCMS监测显示原料消失后,将反应液过滤,减压浓缩,所得残余物用乙酸乙酯/石油醚打浆,滤饼用水淋洗,干燥,得到粗品118g 2-(4-环丙基-6-甲氧基嘧啶-5-基)-9H-嘧啶并[4,5-b]吲哚-7-腈。
MS(ESI)M/Z:343.2[M+H]+.
步骤C:在室温条件下,将2-(4-环丙基-6-甲氧基嘧啶-5-基)-9H-嘧啶并[4,5-b]吲哚-7-腈(53.8g,157.2mmol)溶于N,N-二甲基甲酰胺(436mL)中。随后,向反应体系依次加入碳酸铯(114g,349.2mmol)和9-(氯甲基)-2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂平(26.2g,87.3mmol)。然后该反应体系在45℃下搅拌16小时。
LCMS监测显示原料消失后,将反应液加入水(900mL)中,析出固体,所得固体经硅胶柱层析纯化得到20.42g 2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-((2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂啉-9基)甲基)-9H-嘧啶并[4,5-b]吲哚-7-腈。
MS(ESI)M/Z:607.2[M+H]+.
1H NMR(400MHz,DMSO-d6)δ9.82(s,1H),8.72(s,1H),8.59(d,J=8.4Hz,1H),8.50(s,1H),7.96(d,J=0.8Hz,1H),7.86(dd,J=8.0,1.2Hz,1H),7.62(d,J=8.0Hz,1H),7.41(d,J=0.8Hz,1H),7.33(dd,J=8.0,1.6Hz,1H),5.81(s,2H),3.95(t,J=6.8Hz,2H),3.87(s,3H),2.60(t,J=7.0Hz,2H),2.27-2.15(m,2H),1.77-1.67(m,1H),1.10-1.02(m,2H),0.88-0.77(m,2H).
实施例16:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(5-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)-2,3-二氢-1H-茚-1-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶
反应路线:
操作步骤:
步骤A:在室温条件下,将1-氧代-2,3-二氢-1H-茚-5-羧酸甲酯(1g,5.26mmol)溶于甲醇(27.5mL)中。随后,在0℃下,向上述溶液中缓慢加入硼氢化钠(420mg,10.53mmol)。然后该反应体系在室温条件下搅拌1小时。
LCMS监测显示原料消失后,将反应溶液缓慢滴加到冰水(50mL)中淬灭,过滤,滤液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(50mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到1g 1-羟基-2,3-二氢-1H-茚-5-羧酸甲酯。
MS(ESI)M/Z:193.1[M+H]+.
步骤B:在室温条件下,氮气保护,将1-羟基-2,3-二氢-1H-茚-5-羧酸甲酯(710mg,3.68mmol)、3,4-二氢-2H-吡喃(621.25mg,7.40mmol)和对甲苯磺酸吡啶盐(95mg,0.37mmol)溶于二氯甲烷(18.50mL)中。然后该反应体系在60℃下搅拌1小时。
LCMS监测显示原料消失后,将反应溶液减压浓缩。所得残余物经硅胶柱层析纯化得到850mg 1-((四氢-2H-吡喃-2-基)氧基)-2,3-二氢-1H-茚-5-羧酸甲酯。
MS(ESI)M/Z:299.2[M+23]+.
步骤C:在0℃下,氮气保护,将1-((四氢-2H-吡喃-2-基)氧基)-2,3-二氢-1H-茚-5-羧酸甲酯(850mg,2.90mmol)溶于四氢呋喃(15.50mL)中。随后,向上述溶液中缓慢加入氢化铝锂(2.5mL,6.18mmol)。然后该反应体系在室温条件下搅拌1小时。
LCMS监测显示原料消失后,将反应溶液缓慢滴加到冰水(100mL)中淬灭,过滤,滤液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(100mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到690mg(1-((四氢-2H-吡喃-2-基)氧基)-2,3-二氢-1H-茚-5-基)甲醇。
MS(ESI)M/Z:271.2[M+H]+.
步骤D:在室温条件下,氮气保护,将(1-((四氢-2H-吡喃-2-基)氧基)-2,3-二氢-1H-茚-5-基)甲醇(690mg,2.78mmol)和二氧化锰(2.42g,27.82mmol)溶于二氯甲烷(14mL)中。然后该反应体系在60℃下搅拌1小时。
LCMS监测显示原料消失后,将反应溶液趁热过滤,滤液减压浓缩,得到690mg 1-((四氢-2H-吡喃-2-基)氧基)-2,3-二氢-1H-茚-5-甲醛。
MS(ESI)M/Z:247.2[M+H]+.
步骤E:在室温条件下,将3,3-二溴-1,1,1-三氟丙烷-2-酮(833.05mg,3.09mmol)和醋酸钠(460mg,5.61mmol)溶于水(14mL)中,升至90℃,搅拌0.5小时。随后,降至0℃,向上述溶液中加入1-((四氢-2H-吡喃-2-基)氧基)-2,3-二氢-1H-茚-5-甲醛(690mg,2.80mmol)的氨水/甲醇(49mL/15mL)混合液。然后该反应体系在室温条件下搅拌16小时。
LCMS监测显示原料消失后,将反应溶液缓慢滴加到冰水(200mL)中淬灭,混合液用乙酸乙酯(100mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(100mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到590mg2-(1-((四氢-2H-吡喃-2-基)氧基)-2,3-二氢-1H-茚-5-基)-4-(三氟甲基)-1H-咪唑。
MS(ESI)M/Z:353.2[M+H]+.
步骤F:在室温条件下,将2-(1-((四氢-2H-吡喃-2-基)氧基)-2,3-二氢-1H-茚-5-基)-4-(三氟甲基)-1H-咪唑(590mg,1.67mmol)和碳酸钾(461.30mg,3.34mmol)溶于N,N-二甲基甲酰胺(8.40mL)中。随后,在0℃下,向上述溶液中加入碘甲烷(617.08mg,4.35mmol)。然后该反应体系在室温条件下搅拌4小时。
LCMS监测显示原料消失后,将反应溶液缓慢滴加到冰水(100mL)中淬灭。混合液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(50mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到400mg 1-甲基-2-(1-((四氢-2H-吡喃-2-基)氧基)-2,3-二氢-1H-茚-5-基)-4-(三氟甲基)-1H-咪唑。
MS(ESI)M/Z:367.2[M+H]+.
步骤G:在室温条件下,氮气保护,将1-甲基-2-(1-((四氢-2H-吡喃-2-基)氧基)-2,3-二氢-1H-茚-5-基)-4-(三氟甲基)-1H-咪唑(400mg,1.09mmol)和对甲苯磺酸(41.53mg,0.22mmol)溶于甲醇(6mL)中,升至60℃,搅拌2小时。
LCMS监测显示原料消失后,将反应溶液减压浓缩,所得残余物经硅胶柱层析纯化得到180mg 5-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)-2,3-二氢-1H-茚-1-醇。
MS(ESI)M/Z:283.1[M+H]+.
步骤H:在室温条件下,氮气保护,将5-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)-2,3-二氢-1H-茚-1-醇(80mg,0.28mmol)、2-(4-环丙基-6-甲氧基嘧啶-5-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶(90.21mg,0.28mmol)和三苯基膦(111.49mg,0.43mmol)溶于无水四氢呋喃(1.5mL)中。随后,在0℃下,向上述溶液中缓慢滴加偶氮二甲酸二异丙酯(85.96mg,0.43mmol)。然后该反应体系在室温条件下搅拌1小时。
LCMS监测显示原料消失后,向反应溶液中加水(40mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水(25mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。得到28.22mg 2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(5-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)-2,3-二氢-1H-茚-1-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:583.3[M+H]+.
1H NMR(400MHz,DMSO-d6):δ9.82(s,1H),8.71(s,1H),8.58(d,J=5.2Hz,1H),8.53-8.22(m,2H),7.94(s,1H),7.80(s,1H),7.48(d,J=8.0Hz,1H),7.03(d,J=7.6Hz,1H),6.92(t,J=8.4Hz,1H),3.86(s,3H),3.79(s,3H),3.47-3.36(m,1H),3.27-3.14(m,1H),2.86-2.75(m,1H),2.71-2.57(m,1H),1.80-1.68(m,1H),1.12-1.00(m,2H),0.93-0.80(m,2H).
实施例17:9-((2-(4-环丙基-6-甲氧基嘧啶-5-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶-9-基)甲基)-2-(三氟甲基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧杂氮
反应路线
操作步骤:
步骤A:在室温条件下,氮气保护,将(2-(三氟甲基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧杂氮-9-基)甲醇(70mg,0.25mmol)、2-(4-环丙基-6-甲氧基嘧啶-5-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶(79mg,0.25mmol)和三苯基膦(97mg,0.37mmol)溶于干燥四氢呋喃(1.5mL)中。随后,在冰水浴条件下,向上述溶液中缓慢滴加偶氮二甲酸二异丙酯(75mg,0.37mmol)。然后该反应体系在室温下搅拌1小时。
LCMS监测显示原料消失后,向上述反应溶液中加冰水(20mL)淬灭,混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。得到48.59mg9-((2-(4-环丙基-6-甲氧基嘧啶-5-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶-9-基)甲基)-2-(三氟甲基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧杂氮。
MS(ESI)M/Z:585.2[M+H]+.
1H NMR(400MHz,DMSO-d6)δ9.81(s,1H),9.27(s,1H),8.73(s,1H),8.63(d,J=5.2Hz,1H),8.34(d,J=5.2Hz,1H),8.26(d,J=8.0Hz,1H),7.94(d,J=0.8Hz,1H),7.20(dd,J=8.4,1.6Hz,1H),7.04(d,J=1.6Hz,1H),5.80(s,2H),4.47-4.38(m,4H),3.89(s,3H),1.79-1.70(m,1H),1.13-1.04(m,2H),0.93-0.85(m,2H).
实施例18:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-((2-(三氟甲基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧杂氮杂-9-基)甲基)-9H-嘧啶并[4,5-b]吲哚-7-甲腈
反应路线
操作步骤:
步骤A:在室温条件下,将3-羟基-4-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(1.13g,3.95mmol)和碳酸铯(3.9g,11.85mmol)溶于乙腈(20mL)中,搅拌1小时。随后,向上述反应体系中加入1,2-二溴乙烷(3.7g,19.76mmol),升至60℃,继续搅拌12小时。
LCMS监测显示原料消失后,将反应液过滤,滤饼用乙酸乙酯洗涤,合并滤液,减压浓缩。所得残余物经硅胶柱层析纯化得到453mg 2-(三氟甲基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧杂氮-9-甲酸甲酯。
MS(ESI)M/Z:313.2[M+H]+.
步骤B:在0℃下,氮气保护,将2-(三氟甲基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧杂氮-9-甲酸甲酯(453mg,1.45mmol)溶于四氢呋喃(7.3mL)中。随后,向上述溶液中缓慢滴加四氢铝锂(1.2mL,2.9mmol),升至室温,继续搅拌30分钟。
LCMS监测显示原料消失后,向反应液中加入冰水(50mL)淬灭,过滤,滤饼用乙酸乙酯(20mL×2次)洗涤。收集滤液,分层,水相用乙酸乙酯(30mL×3次)萃取,合并有机相,有机相用饱和食盐水(40mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到200mg(2-(三氟甲基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧杂氮-9-基)甲醇。
MS(ESI)M/Z:285.3[M+H]+.
步骤C:在0℃下,氮气保护,将(2-(三氟甲基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧杂氮-9-基)甲醇(50mg,0.18mmol)、三苯基膦(92mg,0.35mmol)和2-(4-环丙基-6-甲氧基嘧啶-5-基)-9H-嘧啶并[4,5-b]吲哚-7-甲腈(90mg,0.26mmol)溶于干燥四氢呋喃(4.9mL)中。随后,向上述溶液中缓慢滴加偶氮二甲酸二异丙酯(71mg,0.35mmol)。然后该反应体系在室温下搅拌1小时。
LCMS监测显示原料消失后,向反应液中加入冰水(50mL)淬灭。混合液用乙酸乙酯(30mL×3次)萃取,合并有机相,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。得到38.75mg 2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-((2-(三氟甲基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧杂氮杂-9-基)甲基)-9H-嘧啶并[4,5-b]吲哚-7-甲腈。
MS(ESI)M/Z:609.2[M+H]+.
1H NMR(400MHz,DMSO-d6)δ9.81(s,1H),8.72(s,1H),8.57(d,J=8.0Hz,1H),8.52(s,1H),8.25(d,J=8.4Hz,1H),7.94(s,1H),7.85(d,J=8.0Hz,1H),7.20(dd,J=8.4,1.6Hz,1H),7.03(s,1H),5.76(s,2H),4.42(s,4H),3.88(s,3H),1.79-1.70(m,1H),1.12-1.04(m,2H),0.92-0.82(m,2H).
实施例19:2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-(甲基-d3)-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶
反应路线
操作步骤:
步骤A:在室温条件下,将4-(4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(2g,7.4mmol)溶于N,N-二甲基甲酰胺(37mL)中。随后,将上述溶液降到0℃,依次加入碳酸钾(2.05g,14.8mmol)和碘甲烷-D3(1.29g,8.89mmol)。然后该反应体系在室温条件下搅拌1小时。
LCMS监测显示原料消失后,向反应液中加入水(200mL)淬灭。混合液用乙酸乙酯(80mL×3次)萃取,合并有机相,有机相用饱和食盐水(80mL×2次)洗涤。合并有机相,所得残余物经硅胶柱层析纯化得到1.6g 4-(1-(甲基-d3)-4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯。
MS(ESI)M/Z:288.3[M+H]+
步骤B:在0℃下,氮气保护,将4-(1-(甲基-d3)-4-(三氟甲基)-1H-咪唑-2-基)苯甲酸甲酯(1.6g,5.57mmol)溶于四氢呋喃(28mL)中。随后,向上述溶液中缓慢滴加2M四氢铝锂溶液(4.8mL)。然后该反应体系在室温条件下继续搅拌30分钟。
LCMS监测显示原料消失后,向反应液中加入水(100mL)淬灭。将混合物过滤,滤渣用乙酸乙酯(70mL×2次)淋洗,收集滤液,分层。水相用乙酸乙酯(60mL×3次)萃取,合并所有有机相,有机相用饱和食盐水(50mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到1.34g(4-(1-(甲基-d3)-4-(三氟甲基)-1H-咪唑-2-基)苯基)甲醇。
MS(ESI)M/Z:260.2[M+H]+.
步骤C:在室温条件下,将(4-(1-(甲基-d3)-4-(三氟甲基)-1H-咪唑-2-基)苯基)甲醇(300mg,1.16mmol)溶于二氯甲烷(5.8mL)中。随后,将上述溶液降至0℃,依次加入三苯基膦(607mg,2.32mmol)、碳酸氢钠(187mg,1.16mmol)和四溴化碳(767mg,2.32mmol)。然后该反应体系在室温下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加入水(30mL)淬灭。混合液用二氯甲烷(20mL×3次)萃取,合并有机相,有机相用饱和食盐水(30mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到210mg 2-(4-(溴甲基)苯基)-1-(甲基-d3)-4-(三氟甲基)-1H-咪唑。
MS(ESI)M/Z:322.0[M+H]+.
步骤D:在0℃下,氮气保护,将2-(4-环丙基-6-甲氧基嘧啶-5-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶(74mg,0.22mmol)溶于N,N-二甲基甲酰胺(1.2mL)中。随后,向上述溶液中加入氢化钠(37mg,0.88mmol),搅拌20分钟。然后加入2-(4-(溴甲基)苯基)-1-(甲基-d3)-4-(三氟甲基)-1H-咪唑(70mg,0.22mmol),升至室温,继续搅拌30分钟。
LCMS监测显示原料消失后,向反应液中加入水(30mL)淬灭。混合液用乙酸乙酯(10mL×2次)洗涤,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。得到25.35mg 2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-(甲基-d3)-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:560.3[M+H]+.
1H NMR(400MHz,DMSO-d6)δ9.82(s,1H),9.30(s,1H),8.73(s,1H),8.64(d,J=5.2Hz,1H),8.35(dd,J=5.2,0.8Hz,1H),7.90(d,J=1.2Hz,1H),7.67(d,J=8.4Hz,2H),7.53(d,J=8.0Hz,2H),5.88(s,2H),3.89(s,3H),1.79-1.70(m,1H),1.12-1.04(m,2H),0.92-0.82(m,2H).
实施例20:2-(2-异丙基苯基)-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶
[根据细则26改正 25.03.2024]
反应路线:
操作步骤:
步骤A:在室温条件下,将(2-异丙基苯基)硼酸(170mg,1.04mmol)、2-氯-5-(3-氯吡啶-4-基)-N-(2,4-二甲氧基苄基)嘧啶-4-胺(400mg,1.04mmol)、碳酸铯(676mg,2.07mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(163mg,0.21mmol)溶于1,4-二氧六环/水(4.40mL/0.74mL)中。真空抽空气置换氮气3次,反应体系在90℃微波条件下搅拌8小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(20mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到85mg 9-(2,4-二甲氧基苄基)-2-(2-异丙基苯基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:439.2[M+H]+.
步骤B:在室温条件下,将9-(2,4-二甲氧基苄基)-2-(2-异丙基苯基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶(80mg,0.21mmol)溶于三氟乙酸(3mL)中。然后该反应体系继续搅拌12小时。
LCMS监测显示原料消失后,将反应溶液减压浓缩。所得残余物经硅胶柱层析纯化得到76mg 2-(2-异丙基苯基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:289.1[M+H]+.
步骤C:在0℃下,氮气保护,将2-(2-异丙基苯基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶(70mg,0.24mmol)溶于干燥N,N-二甲基甲酰胺(1.5mL)中。随后,向上述溶液中加入氢化钠(58mg,0.97mmol),搅拌20分钟。然后加入2-(4-(溴甲基)苯基)-1-甲基-4-(三氟甲基)-1H-咪唑(77mg,0.24mmol),升至室温,继续搅拌10分钟。
LCMS监测显示原料消失后,将反应液过滤,滤液减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,得到11.73mg 2-(2-异丙基苯基)-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:527.2[M+H]+.
1H NMR(400MHz,DMSO-d6)δ9.79(s,1H),9.22(s,1H),8.62(d,J=5.2Hz,1H),8.33(d,J=5.2Hz,1H),7.90(s,1H),7.73(d,J=8.0Hz,1H),7.67(d,J=8.4Hz,2H),7.54-7.43(m,4H),7.37-7.30(m,1H),5.89(s,2H),3.72(s,3H),3.67-3.55(m,1H),1.17(d,J=6.8Hz,6H).
实施例21:2-(2-异丙基吡啶-3-基)-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶
反应路线
操作步骤:
步骤A:在室温条件下,将(2-异丙基吡啶-3-基)硼酸(500mg,2.02mmol)、2-氯-5-(3-氯吡啶-4-基)-N-(2,4-二甲氧基苄基)嘧啶-4-胺(790mg,2.02mmol)、碳酸铯(1.32g,04.05mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(320mg,0.41mmol)溶于1,4-二氧六环/水(8.70mL/1.45mL)中。真空抽空气置换氮气3次,反应体系在90℃微波条件下搅拌16小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(20mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到235mg 9-(2,4-二甲氧基苄基)-2-(2-异丙基吡啶-3-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:440.2[M+H]+.
步骤B:在室温条件下,将9-(2,4-二甲氧基苄基)-2-(2-异丙基吡啶-3-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶(210mg,0.48mmol)溶于三氟乙酸(4mL)中。然后该反应体系继续搅拌16小时。
LCMS监测显示原料消失后,将反应溶液减压浓缩。所得残余物经硅胶柱层析纯化得到167mg 2-(2-异丙基吡啶-3-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:291.2[M+H]+.
步骤C:在0℃下,氮气保护,将2-(2-异丙基吡啶-3-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶(157mg,0.54mmol)溶于干燥N,N-二甲基甲酰胺(2.7mL)中。随后,向上述溶液中加入氢化钠(87mg,2.17mmol),搅拌20分钟。然后加入2-(4-(溴甲基)苯基)-1-甲基-4-(三氟甲基)-1H-咪唑(172mg,0.54mmol),升至室温,继续搅拌10分钟。
LCMS监测显示原料消失后,将反应液过滤,滤液减压浓缩。所得残留物经制备型高效液相色谱纯化。收集产品,得到62.29mg 2-(2-异丙基吡啶-3-基)-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:528.2[M+H]+.
1H NMR(400MHz,DMSO-d6)δ9.82(s,1H),9.24(s,1H),8.68(dd,J=4.6,1.8Hz,1H),8.63(d,J=5.2Hz,1H),8.35(dd,J=5.2,0.4Hz,1H),8.19(dd,J=7.6,1.8Hz,1H),7.90(d,J=1.2Hz,1H),7.68(d,J=8.4Hz,2H),7.48(d,J=8.0Hz,2H),7.40(dd,J=8.0,4.8Hz,1H),5.91(s,2H),3.86-3.75(m,1H),3.73(s,3H),1.22(d,J=6.4Hz,6H).
实施例22:2-(1-环丁基-4-甲氧基-1H-吡唑-5-基)-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶
反应路线
操作步骤:
步骤A:在室温条件下,将4-甲氧基-1H-吡唑(6.0g,61.2mmol)、碳酸钾(33.8g,244.8mmol)溶于N,N-二甲基甲酰胺(250ml)中,搅拌30分钟。随后,向上述溶液中滴加环丁基溴(24.6g,183.6mmol),升至70℃,搅拌24小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(800mL)淬灭。混合液用乙酸乙酯(250mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(250mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到600mg 1-环丁基-4-甲氧基-1H-吡唑。
MS(ESI)M/Z:153.2[M+H]+.
步骤B:在-78℃下,氮气保护,将1-环丁基-4-甲氧基-1H-吡唑(580mg,3.81mmol)溶于干燥四氢呋喃(40mL)中。随后,向上述溶液中缓慢滴加2.5M正丁基锂溶液(2.0mL,5.0mmol),搅拌1小时。然后再滴加2-异丙氧基-4,4,5,5-四甲基-1,3,2-二氧杂硼烷(922mg,4.95mmol),升至室温,继续搅拌2小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(20mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到600mg(1-环丁基-4-甲氧基-1H-吡唑-5-基)硼酸。
MS(ESI)M/Z:197.2[M+H]+.
步骤C:在室温条件下,将(1-环丁基-4-甲氧基-1H-吡唑-5-基)硼酸(84mg,0.43mmol)、2-氯-5-(3-氯吡啶-4-基)-N-(2,4-二甲氧基苄基)嘧啶-4-胺(168mg,0.43mmol)、碳酸铯(281mg,0.86mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(84mg,0.08mmol)溶于1,4-二氧六环/水(1.85mL/0.31mL)中。真空抽空气置换氮气3次,反应体系在90℃、微波条件下搅拌12小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(20mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到115mg 2-(1-环丁基-4-甲氧基-1H-吡唑-5-基)-9-(2,4-二甲氧基苄基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:471.2[M+H]+.
步骤D:在室温条件下,将2-(1-环丁基-4-甲氧基-1H-吡唑-5-基)-9-(2,4-二甲氧基苄基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶(110mg,0.23mmol)溶于三氟乙酸(3mL)中,升至室,搅拌12小时。
LCMS监测显示原料消失后,将反应溶液减压浓缩。所得残余物经硅胶柱层析纯化得到100mg 2-(1-环丁基-4-甲氧基-1H-吡唑-5-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:321.2[M+H]+.
步骤E:在0℃下,氮气保护,将2-(1-环丁基-4-甲氧基-1H-吡唑-5-基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶(100mg,0.31mmol)溶于干燥N,N-二甲基甲酰胺(1.6mL)中。随后,向上述溶液中加入氢化钠(50mg,1.25mmol),搅拌20分钟。然后加入2-(4-(溴甲基)苯基)-1-甲基-4-(三氟甲基)-1H-咪唑(99mg,0.31mmol),升至室温,继续搅拌10分钟。
LCMS监测显示原料消失后,将反应液减压浓缩。所得残留物经制备型高效液相色谱纯化。得到15.44mg 2-(1-环丁基-4-甲氧基-1H-吡唑-5-基)-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-吡啶并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:559.2[M+H]+.
1H NMR(400MHz,DMSO-d6)δ9.75(s,1H),9.27(s,1H),8.61(d,J=5.2Hz,1H),8.29(d,J=5.2Hz,1H),7.90(d,J=0.8Hz,1H),7.69(d,J=8.4Hz,2H),7.60(s,1H),7.57(d,J=8.4Hz,2H),5.89(s,2H),5.68-5.56(m,1H),3.84(s,3H),3.72(s,3H),2.61-2.53(m,2H),2.31-2.19(m,2H),1.79-1.54(m,2H).
实施例23:N-(2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚-7-基)-N-甲基甲磺酰胺
反应路线
操作步骤:
步骤A:在0℃下,氮气保护将N-(2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚-7-基)甲磺酰胺(80mg,0.12mmol)溶于N,N-二甲基甲酰胺(1.2mL)中。随后,向上述溶液中加入氢化钠(8.8mg,0.22mmol),搅拌0.5小时。然后缓慢滴加碘甲烷(31mg,0.22mmol),升至室温,搅拌10分钟。
LCMS监测显示原料消失后,向反应液中加入水(20mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经制备型高效液相色谱纯化。得到42.99mg N-(2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-(4-(1-甲基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-9H-嘧啶并[4,5-b]吲哚-7-基)-N-甲基甲磺酰胺。
MS(ESI)M/Z:663.2[M+H]+.
1H NMR(400MHz,DMSO-d6)δ9.65(s,1H),8.71(s,1H),8.38(d,J=8.4Hz,1H),7.95(d,J=2.0Hz,1H),7.90(d,J=1.2Hz,1H),7.64(d,J=8.4Hz,2H),7.54-7.45(m,3H),5.80(s,2H),3.88(s,3H),3.71(s,3H),3.36(s,3H),3.00(s,3H),1.76-1.67(m,1H),1.10-1.01(m,2H),0.89-0.81(m,2H).
实施例24:N-(2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-((2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂-9-基)甲基)-9H-嘧啶并[4,5-b]吲哚-7-基)甲磺酰胺
反应路线
操作步骤:
步骤A:在室温条件下,氮气保护,将N-(2-(4-环丙基-6-甲氧基嘧啶-5-基)-9H-嘧啶并[4,5-b]吲哚-7-基)-N-((2-(三甲基甲硅烷基)乙氧基)甲基)甲磺酰胺(366mg,0.68mmol)溶于N,N-二甲基甲酰胺(6.8mL)中。随后,将上述溶液降至0℃,缓慢加入氢化钠(48.8mg,1.22mmol),搅拌0.5小时。然后加入9-(溴甲基)-2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂(233mg,0.68mmol),升至室温,搅拌10分钟。
LCMS监测显示原料消失后,向反应液中加入水(20mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到350mg N-(2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-((2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂-9-基)甲基)-9H-嘧啶并[4,5-b]吲哚-7-基)-N-(2-(三甲硅基)乙氧基)甲基甲基)甲磺酰胺。
MS(ESI)M/Z:805.2[M+H]+.
步骤B:在室温条件下,将N-(2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-((2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂-9-基)甲基)-9H-嘧啶并[4,5-b]吲哚-7-基)-N-(2-(三甲硅基)乙氧基)甲基甲基)甲磺酰胺(350mg,0.43mmol)溶于二氯甲烷(4mL)中。随后,将上述溶液降至0℃,缓慢滴加三氟乙酸(4mL),升至室温,搅拌1小时。
LCMS监测显示原料消失后,向反应液中加入水(30mL)淬灭。混合液用乙酸乙酯(15mL×3次)萃取,合并有机相,有机相依次用饱和碳酸氢钠溶液(15mL)和饱和食盐水(30mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经二氯甲烷/乙酸乙酯纯化得到168.30mg N-(2-(4-环丙基-6-甲氧基嘧啶-5-基)-9-((2-(三氟甲基)-6,7-二氢-5H-苯并[c]咪唑并[1,2-a]氮杂-9-基)甲基)-9H-嘧啶并[4,5-b]吲哚-7-基)甲磺酰胺。
MS(ESI)M/Z:675.2[M+H]+.
1H NMR(400MHz,DMSO-d6)δ10.12(s,1H),9.56(s,1H),8.71(s,1H),8.28(d,J=8.4Hz,1H),7.96(d,J=1.2Hz,1H),7.61(d,J=8.0Hz,1H),7.58(d,J=1.6Hz,1H),7.39(s,1H),7.27-7.23(m,2H),5.70(s,2H),3.95(t,J=6.8Hz,2H),3.87(s,3H),3.04(s,3H),2.61(t,J=7.0Hz,2H),2.28-2.15(m,2H),1.77-1.67(m,1H),1.10-1.02(m,2H),0.90-0.79(m,2H).
实施例25-140
参考上述实施例8的合成方法制备如下表1中的目标化合物:
表1
实施例141:6-(4-环丙基-6-甲氧基嘧啶-5-基)-8-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-2-甲基-2,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶
反应路线
操作步骤:
步骤A:在0℃条件下,将3-氯-1H-吡唑(5g,49.0mmol)溶于N,N-二甲基甲酰胺(50mL)中。随后向上述溶液中缓慢加入N-碘代丁二酰亚胺(14.3g,63.7mmol)。然后该反应体系在室温条件下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加入冰水(200mL)淬灭。混合液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水(35mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到11g 3-氯-4-碘-1H-吡唑。
MS(ESI)M/Z:229.0[M+H]+.
步骤B:在0℃条件下,氮气保护,将3-氯-4-碘-1H-吡唑(3.5g,15.35mmol)溶于干燥的四氢呋喃(77mL)中。随后,向上述溶液中缓慢加入氢化钠(含量60%)(1.2g,30.70mmol),搅拌30分钟。然后缓慢滴加碘甲烷(4.3g,30.70mmol),升至室温,搅拌1小时。
LCMS监测显示原料消失后,向反应液中加入冰水(150mL)淬灭。混合液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到2g 3-氯-4-碘-1-甲基-1H-吡唑。
MS(ESI)M/Z:243.0[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.93(s,1H),3.81(s,3H).
步骤C:在室温条件下,将3-氯-4-碘-1-甲基-1H-吡唑(1.6g,6.61mmol)溶于干燥的四氢呋喃(33mL)中。随后,向上述溶液中缓慢滴加2M异丙基氯化镁(10.5mL,21.02mmol)溶液,搅拌1小时。然后加入2-甲氧基-4,4,5,5-四甲基-1,3,2-二氧杂硼烷(4.43mg,28.03mmol),继续搅拌1小时。
LCMS监测显示原料消失后,向反应液中加入水(150mL)淬灭。混合液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到2g 3-氯-1-甲基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼-2-基)-1H-吡唑。
MS(ESI)M/Z:243.2[M+H]+.
步骤D:在室温条件下,将3-氯-1-甲基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼-2-基)-1H-吡唑(2g,8.23mmol)、5-溴-2-氯-N-(2,4-二甲氧基苄基)嘧啶-4-胺(1.5g,4.12mmol)和碳酸钠(0.87g,8.23mmol)溶于1,4-二氧六环/水(20mL/2.2mL)中。随后,向上述溶液中加入[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(0.33g,0.41mmol),真空抽空气置换氮气3次,该反应体系在90℃条件下搅拌16小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(50mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和氯化钠水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到780mg 2-氯-5-(3-氯-1-甲基-1H-吡唑-4-基)-N-(2,4-二甲氧基苄基)嘧啶-4-胺。
MS(ESI)M/Z:394.2[M+H]+.
步骤E:在室温条件下,将2-氯-5-(3-氯-1-甲基-1H-吡唑-4-基)-N-(2,4-二甲氧基苄基)嘧啶-4-胺(780mg,1.98mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(386mg,1.98mmol)和碳酸铯(1.29g,3.96mmol)溶于1,4-二氧六环/水(10mL/1.7mL)中。随后,向上述溶液中加入氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(312mg,0.40mmol),真空抽空气置换氮气3次,反应体系在90℃微波条件下搅拌3小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(50mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和氯化钠水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到650mg 5-(3-氯-1-甲基-1H-吡唑-4-基)-4'-环丙基-N-(2,4-二甲氧基苄基)-6'-甲氧基-[2,5'-双嘧啶]-4-胺。
MS(ESI)M/Z:508.2[M+H]+.
步骤F:在室温条件下,将5-(3-氯-1-甲基-1H-吡唑-4-基)-4'-环丙基-N-(2,4-二甲氧基苄基)-6'-甲氧基-[2,5'-双嘧啶]-4-胺(650mg,1.28mmol)、N,N'-二甲基乙二胺(68mg,0.77mmol)和碳酸钾(353mg,2.56mmol)溶于乙腈(6.4mL)中。随后,加入碘化亚铜(73mg,0.38mmol),真空抽空气置换氮气3次,该反应体系在120℃条件下搅拌16小时。
LCMS监测显示原料消失后,将反应液过滤,滤液减压浓缩。所得残余物经硅胶柱层析纯化得到180mg 6-(4-环丙基-6-甲氧基嘧啶-5-基)-8-(2,4-二甲氧基苄基)-2-甲基-2,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:472.2[M+H]+.
步骤G:在室温条件下,氮气保护,将6-(4-环丙基-6-甲氧基嘧啶-5-基)-8-(2,4-二甲氧基苄基)-2-甲基-2,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶(180mg,0.38mmol)溶于三氟乙酸(8mL)中。然后该反应体系在85℃条件下搅拌16小时。
LCMS监测显示原料消失后,减压浓缩。所得残余物经硅胶柱层析纯化得到120mg 6-(4-环丙基-6-甲氧基嘧啶-5-基)-2-甲基-2,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:322.2[M+H]+.
步骤H:在0℃条件下,氮气保护,将6-(4-环丙基-6-甲氧基嘧啶-5-基)-2-甲基-2,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶(100mg,0.31mmol)溶于干燥的N,N-二甲基甲酰胺(1.5mL)中。随后,向上述溶液中缓慢加入氢化钠(含量60%)(50mg,1.24mmol),搅拌0.5小时。然后加入2-(4-(溴甲基)苯基)-1-异丙基-4-(三氟甲基)-1H-咪唑(162mg,0.47mmol),升至50℃,继续搅拌16小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(30mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。得到25.98mg 6-(4-环丙基-6-甲氧基嘧啶-5-基)-8-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-2-甲基-2,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶(化合物88)。
MS(ESI)M/Z:588.3[M+H]+.
1H NMR(400MHz,DMSO-d6)δ9.14(s,1H),8.68(s,1H),8.26(s,1H),8.16(d,J=1.2Hz,1H),7.51(d,J=8.4Hz,2H),7.46(d,J=8.4Hz,2H),5.51(s,2H),4.45-4.36(m,1H),4.05(s,3H),3.85(s,3H),1.76-1.67(m,1H),1.37(d,J=6.4Hz,6H),1.08-1.00(m,2H),0.87-0.80(m,2H).
实施例142:6-(4-环丙基-6-甲氧基嘧啶-5-基)-8-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-1,8-二氢吡唑[4',3':4,5]吡咯并[2,3-d]嘧啶
反应路线:
操作步骤:
步骤A:在0℃下,将3-氯-1H-吡唑(5g,49.02mmol)溶于N,N-二甲基甲酰胺(50mL)中。随后,向上述溶液中缓慢加入N-碘代丁二酰亚胺(14.3g,63.73mmol)。然后该反应体系在室温条件下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加入冰水(200mL)淬灭。混合液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水(35mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到11g 3-氯-4-碘-1H-吡唑。
MS(ESI)M/Z:229.0[M+H]+.
步骤B:在室温条件下,氮气保护,将3-氯-4-碘-1H-吡唑(4g,17.54mmol)溶于N,N-二甲基甲酰胺(88mL)中。随后,在冰水浴条件下,向上述溶液中加入氢化钠(1.05g,26.32mmol),搅拌30分钟。然后缓慢加入2-(三甲基硅烷基)乙氧甲基氯(4.4g,26.32mmol),升至室温,搅拌1小时。
LCMS监测显示原料消失后,将反应液加入到冰水(500mL)中淬灭。混合液用乙酸乙酯(80mL×3次)萃取,合并有机相,有机相用饱和食盐水(60mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到5g 3-氯-4-碘-1-((2-(三甲基甲硅烷基)乙氧基)甲基)-1H-吡唑。
MS(ESI)M/Z:359.0[M+H]+.
步骤C:在室温条件下,将3-氯-4-碘-1-((2-(三甲基甲硅烷基)乙氧基)甲基)-1H-吡唑(5g,13.97mmol)溶于干燥四氢呋喃溶液(70mL)中。随后,向上述溶液中加入2M异丙基氯化镁(22.5mL,44.70mmol),搅拌1小时。然后缓慢滴加2-异丙氧基-4,4,5,5-四甲基-1,3,2-二氧杂硼烷(9.5g,60.07mmol),继续搅拌1小时。
LCMS监测显示原料消失后,将反应液加入到冰水(100mL)中淬灭。混合液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水(60mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到4g 3-氯-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)-1-((2-(三甲基甲硅烷基)乙氧基)甲基)-1H-吡唑。
MS(ESI)M/Z:359.2[M+H]+.
步骤D:在室温条件下,将3-氯-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)-1-((2-(三甲基甲硅烷基)乙氧基)甲基)-1H-吡唑(4g,11.17mmol)、(5-溴-2-氯-N-(2,4-二甲氧基苄基)嘧啶-4-胺(2g,5.59mmol)、碳酸钠(1.18g,11.17mmol)和[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(915mg,1.12mmol)溶于1,4-二氧六环/水(54mL/6mL)中。真空抽空气置换氮气3次,反应体系在100℃下搅拌2小时。
LCMS监测显示原料消失后,将反应液过滤,滤液减压浓缩。所得残余物经硅胶柱层析纯化得到3g 2-氯-5-(3-氯-1-((2-(三甲基甲硅烷基)乙氧基)甲基)-1H-吡唑-4-基)-N-(2,4-二甲氧基苄基)嘧啶-4-胺。
MS(ESI)M/Z:510.2[M+H]+.
步骤E:在室温条件下,将2-氯-5-(3-氯-1-((2-(三甲基甲硅烷基)乙氧基)甲基)-1H-吡唑-4-基)-N-(2,4-二甲氧基苄基)嘧啶-4-胺(3g,5.89mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(2.3g,11.78mmol)、碳酸铯(2.9g,8.84mmol)和氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(2.3g,2.95mmol)溶于1,4-二氧六环/水(54mL/9mL)中。真空抽空气置换氮气3次,该反应体系在130℃下搅拌16小时。
LCMS监测显示原料消失后,将反应液过滤,滤液减压浓缩。所得残余物经硅胶柱层析纯化得到240mg 6-(4-环丙基-6-甲氧基嘧啶-5-基)-8-(2,4-二甲氧基苄基)-1-((2-(三甲基甲硅烷基)乙氧基)甲基)-1,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:588.2[M+H]+.
步骤F:在室温条件下,将6-(4-环丙基-6-甲氧基嘧啶-5-基)-8-(2,4-二甲氧基苄基)-1-((2-(三甲基甲硅烷基)乙氧基)甲基)-1,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶(200mg,0.34mmol)溶于三氟乙酸(3mL)中。然后该反应体系在85℃下搅拌5小时。
LCMS监测显示原料消失后,将反应液减压浓缩。所得残余物经硅胶柱层析纯化得到70mg 6-(4-环丙基-6-甲氧基嘧啶-5-基)-1,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:308.2[M+H]+.
步骤G:在室温条件下,将6-(4-环丙基-6-甲氧基嘧啶-5-基)-1,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶(25mg,0.08mmol)、2-(4-(溴甲基)苯基)-1-异丙基-4-(三氟甲基)-1H-咪唑(28mg,0.08mmol)和碳酸钾(23mg,0.16mmol)溶于N,N-二甲基甲酰胺(1mL)中。然后该反应体系在50℃下搅拌2小时。
LCMS监测显示原料消失后,向反应液中加冰水(30mL)淬灭。混合液用乙酸乙酯(10mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。得到3.60mg 6-(4-环丙基-6-甲氧基嘧啶-5-基)-8-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-1,8-二氢吡唑[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:574.2[M+H]+.
1H NMR(400MHz,DMSO-d6)δ13.17(s,1H),9.13(s,1H),8.68(s,1H),8.30(s,1H),8.15(s,1H),7.53-7.46(m,4H),5.53(s,2H),4.45-4.34(m,1H),3.86(s,3H),1.76-1.66(m,1H),1.36(d,J=6.8Hz,6H),1.07-1.00(m,2H),0.91-0.80(m,2H).
实施例143:6-(4-环丙基-6-甲氧基嘧啶-5-基)-8-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-1-甲基-1,8-二氢吡唑[4',3':4,5]吡咯并[2,3-d]嘧啶
反应路线
操作步骤:
步骤A:在0℃条件下,氮气保护,将3-氯-4-碘-1H-吡唑(112g,491mmol)溶于干燥的四氢呋喃(1.4L)中。随后,向上述溶液中缓慢加入氢化钠(42g,1.05mol),搅拌30分钟。然后再滴加碘甲烷(104g,736mmol),升至室温,继续搅拌4小时。
LCMS监测显示原料消失后,向反应液中加入冰水(5L)淬灭。混合液用乙酸乙酯(1000mL×3次)萃取,合并有机相,有机相用饱和食盐水(600mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到23g 5-氯-4-碘-1-甲基-1H-吡唑。
MS(ESI)M/Z:243.0[M+H]+.
1H NMR(400MHz,DMSO-d6)δ7.64(s,1H),3.87(s,3H).
步骤B:在室温条件下,将5-氯-4-碘-1-甲基-1H-吡唑(3g,12.39mmol)溶于干燥的四氢呋喃(62mL)中。随后,向上述溶液中滴加2M异丙基氯化镁溶液(19.7mL,39.4mmol),搅拌1h。然后再加入2-甲氧基-4,4,5,5-四甲基-1,3,2-二氧杂硼烷(6.72g,52.5mmol),继续搅拌1小时。
LCMS监测显示原料消失后,向反应液中加入水(150mL)淬灭。混合液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和食盐水(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到2.1g 5-氯-1-甲基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼-2-)-1H-吡唑。
MS(ESI)M/Z:243.2[M+H]+.
步骤C:在室温条件下,将5-氯-1-甲基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼-2-)-1H-吡唑(2g,8.23mmol)、5-溴-2-氯-N-(2,4-二甲氧基苄基)嘧啶-4-胺(1.5g,4.12mmol)和碳酸钠(0.87g,8.23mmol)溶于1,4-二氧六环/水(20mL/2.2mL)中。随后,向上述溶液中加入[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(0.33g,0.41mmol)。真空抽空气置换氮气3次,该反应体系在90℃条件下搅拌16小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(50mL)淬灭。混合液用乙酸乙酯(20mL×3次)萃取,合并有机相,有机相用饱和氯化钠水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到1.8g 2-氯-5-(5-氯-1-甲基-1H-吡唑-4-基)-N-(2,4-二甲氧基苄基)嘧啶-4-胺。
MS(ESI)M/Z:394.2[M+H]+.
步骤D:在室温条件下,将2-氯-5-(5-氯-1-甲基-1H-吡唑-4-基)-N-(2,4-二甲氧基苄基)嘧啶-4-胺(1.8g,4.57mmol)、(4-环丙基-6-甲氧基嘧啶-5-基)硼酸(891mg,4.57mmol)和碳酸铯(3g,9.14mmol)溶于1,4-二氧六环/水(23mL/2.3mL)中。随后,向上述溶液中加入氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II)(644mg,0.91mmol)。真空抽空气置换氮气3次,反应体系在90℃、微波条件下搅拌16小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(150mL)淬灭。混合液用乙酸乙酯(50mL×3次)萃取,合并有机相,有机相用饱和氯化钠水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残余物经硅胶柱层析纯化得到800mg 5-(5-氯-1-甲基-1H-吡唑-4-基)-4'-环丙基-N-(2,4-二甲氧基苄基)-6'-甲氧基-[2,5'-双嘧啶]-4-胺。
MS(ESI)M/Z:508.8[M+H]+.
步骤E:在室温条件下,将5-(5-氯-1-甲基-1H-吡唑-4-基)-4'-环丙基-N-(2,4-二甲氧基苄基)-6'-甲氧基-[2,5'-双嘧啶]-4-胺(800mg,1.58mmol)、N,N'-二甲基乙二胺(278mg,3.16mmol)和碳酸钾(404mg,3.16mmol)溶于N,N-二甲基甲酰胺(8mL)中。随后,向上述溶液中加入碘化亚铜(300mg,1.58mmol)。真空抽空气置换氮气3次,该反应体系在120℃条件下搅拌16小时。
LCMS监测显示原料消失后,将反应液过滤,滤液减压浓缩。所得残余物经硅胶柱层析纯化得到520mg 6-(4-环丙基-6-甲氧基嘧啶-5-基)-8-(2,4-二甲氧基苄基)-1-甲基-1,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:472.2[M+H]+.
步骤F:在室温条件下,氮气保护,将6-(4-环丙基-6-甲氧基嘧啶-5-基)-8-(2,4-二甲氧基苄基)-1-甲基-1,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶(520mg,1.1mmol)溶于三氟乙酸(6mL)中。然后该反应体系在85℃条件下搅拌8小时。
LCMS监测显示原料消失后,将上述反应液减压浓缩。所得残余物经硅胶柱层析纯化得到250mg 6-(4-环丙基-6-甲氧基嘧啶-5-基)-1-甲基-1,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:322.2[M+H]+.
步骤G:在0℃条件下,氮气保护,将6-(4-环丙基-6-甲氧基嘧啶-5-基)-1-甲基-1,8-二氢吡唑并[4',3':4,5]吡咯并[2,3-d]嘧啶(50mg,0.16mmol)溶于N,N-二甲基甲酰胺(1.0mL)中。随后,向上述溶液中加入氢化钠(25mg,0.62mmol),搅拌20分钟。然后再加入2-(4-(溴甲基)苯基)-1-异丙基-4-(三氟甲基)-1H咪唑(60mg,0.17mmol),升至室温,继续搅拌1小时。
LCMS监测显示原料消失后,向反应溶液中加冰水(50mL)淬灭。混合液用乙酸乙酯(15mL×3次)萃取,合并有机相,有机相用饱和食盐水溶液(20mL×2次)洗涤。然后用无水硫酸钠干燥,过滤,减压浓缩。所得残留物经制备型高效液相色谱纯化。纯化条件如下,制备柱:YMC-Actus Triart C18 20.0mm×150mm;流动相:水(含有0.1%碳酸氢铵)和乙腈。得到22.69mg 6-(4-环丙基-6-甲氧基嘧啶-5-基)-8-(4-(1-异丙基-4-(三氟甲基)-1H-咪唑-2-基)苄基)-1-甲基-1,8-二氢吡唑[4',3':4,5]吡咯并[2,3-d]嘧啶。
MS(ESI)M/Z:588.2[M+H]+.
1H NMR(400MHz,DMSO-d6)δ9.22(s,1H),8.67(s,1H),8.16(d,J=0.8Hz,1H),7.95(s,1H),7.54(d,J=8.0Hz,2H),7.35(d,J=8.0Hz,2H),5.85(s,2H),4.49-4.33(m,1H),3.97(s,3H),3.85(s,3H),1.74-1.65(m,1H),1.37(d,J=6.8Hz,6H),1.06-0.99(m,2H),0.86-0.78(m,2H).
实施例144-166
参考上述实施例142的合成方法制备如下表2中的目标化合物:
表2
二、生物活性测试
如本申请所用,室温是指约20-30℃。
测试例1 USP1酶活力实验方法
1.实验方案:
采用USP1酶活检测实验筛选USP1i化合物。
1.1实验材料:重组人His6-USP1/His6-UAF1复合蛋白(R&D,目录号E-568-050);泛素罗丹明110(Ub-Rho)(R&D,目录号U-555-050);荧光384孔板(Perkin Elmer,货号6007279)。
1.2供试品:本申请表3化合物,其结构式、制备方法见上述实施例。
1.3实验过程:
(1)准备1×检测缓冲液(改良的Tris缓冲液,组成组分:50mM Tris-HCl(pH 7.8)(Sigma,货号:T2569-1L),0.01%Tween-20(Sigma,货号:P2287-100ML),1mM DTT(Sigma,货号:D0632-10G),0.01%BSA(Sigma,货号:B2064-100G),0.5mM EDTA(Invitrogen,货号:15575020))。
(2)化合物稀释:使用二甲基亚砜(DMSO,纯度为100%)配制10mM(mol/L)待测化合物溶液;将待测化合物溶液3倍梯度稀释至10个浓度,最高浓度为10mM;通过Echo声波移液***分别将稀释后的待测化合物溶液转移到荧光384孔板,每个浓度设定2个复孔,DMSO终浓度为1vol%;待测化合物溶液的终浓度为10000nM,3333nM,1111nM,370nM,123nM,41nM,13.7nM,4.6nM,1.5nM,0.5nM。
(3)制备酶溶液:在1×检测缓冲液中制备酶溶液。
(4)准备底物溶液:在1×检测缓冲液中加入泛素罗丹明110(Ub-Rho),形成底物溶液。
(5)取10μL步骤(3)制备得到的酶溶液转移至荧光384孔板。
(6)在室温下孵育1小时。
(7)每孔加入10μL步骤(4)制备得到的底物溶液开始反应,反应终体系为200nL待测化合物+10uL酶溶液+10uL底物溶液,酶的终浓度是0.05nM,底物溶液的终浓度是300nM,离心30s,振摇30s。
(8)在多功能酶标仪SpectraMax Paradigm上读取板30分钟,激发波长为480nm,发射波长为540nm。
(9)收集有关SpectraMax Paradigm的数据。
(10)曲线拟合:
使用等式(I)在Excel中拟合数据以获得抑制值;
等式(I):抑制率%=(最大信号值-目标信号值)/(最大信号值-最小信号值)×100;
其中,最大信号值表示不加本申请化合物的阳性对照孔的发光信号强度;最小信号值表示不加酶的阴性对照孔的发光信号强度;目标信号值表示供试品化合物的发光信号强度。
使用等式(II)拟合XL-Fit中的数据以获得IC50值;
等式(II):Y=Bottom+(Top-Bottom)/(1+(IC50/X)×HillSlope)
其中,Y是抑制百分比,X是化合物浓度;Bottom为最低抑制率;Top为最高抑制率;HillSlope为斜率。
2.实验结果:
经测定,本申请实施例化合物对USP1有很好的抑制作用,其IC50值一般低于1000纳摩尔(nM);部分本申请实施例化合物的IC50值低于100nM,更为优选的本申请实施例化合物的IC50值低于50nM,甚至低于10nM。本申请部分实施例化合物对USP1的抑制结果见表3。
表3酶学抑制结果
3.结论:
从上述实验结果可以看出,本申请实施例制备的化合物,对USP1有很好的抑制作用,是有效的USP1抑制剂。
测试例2 USP1CTG测试方法
1.实验方案
使用NCI-H1693细胞杀伤实验的方式对USP1i化合物的体外生物学活性进行验证。
1.1实验材料:
NCI-H1693细胞购自ATCC(货号:CRL-5866),培养于37℃,5%CO2(含体积分数为5%的CO2,95%的空气)细胞培养箱;1640完全培养基:94wt%RPMI-1640液体培养基(Gibco货号:11875-093),5wt%FBS(Gibco货号:10099-141),1wt%Pen Strep(Gibco货号:15070-063);荧光384孔板(Perkin Elmer,货号:6007279);胰酶((Gibco货号:25200056);CTG buffer(2.0Cell Viability Assay,Promega,货号:G9241)。
1.2供试品:
本申请表4化合物;其中化合物58和化合物88的结构式、制备方法见上述实施例;
对比化合物1结构式为:
对比化合物2结构式为:
1.3实验过程:
(1)将75cm2培养瓶中的NCI-H1693细胞使用2mL胰酶进行消化2-3min后,使用2mL1640完全培养基进行中和。使用离心机1200rpm,离心5min。去除上清保留细胞沉淀,使用4mL 1640完全培养基将细胞沉淀进行重悬。取500μL细胞悬液用Vi-CELL-XR细胞计数仪进行细胞计数。
(2)使用Multidrop仪器,以每孔500个NCI-H1693细胞(每孔包含40μL 1640完全培养基)的密度接种在荧光384孔板中,24小时后加药。
(3)使用超微量加样器,将供试品(浓度:3.33mM,溶于DMSO)依次以10uM为最高起始浓度,依次以1:3的比例梯度稀释9个梯度(10000nM,3333nM,1111nM,370nM,123nM,41nM,13.7nM,4.6nM,1.5nM),进行加药处理,每个浓度设置两个复孔;设置阳性对照及空白对照各9个孔,阳性对照为10μM阳性化合物的复孔,空白对照为DMSO复孔。
(4)将加药完成后的细胞放入37℃,5%CO2(含体积分数为5%的CO2,其余为空气)培养箱继续培养6天,6天后每孔加入25μL CTG buffer进行CTG检测,使用酶标仪进行读板分析。
(5)对CTG读值进行分析:
以阳性对照复孔的抑制率的平均值设置为相对抑制率100%;
以阴性对照复孔的平均值设置为相对抑制率0%。
将CTG读值转换为相对抑制率,按照以下公式对化合物各个浓度对于细胞的抑制率(inhibition%)进行换算。
Inhibition%=(b-x)/(b-a×100%;
a=CTG value(最高浓度孔)
b=CTG value(空白对照孔)
x=CTG value(x nM)
(6)使用GraphPad PRISM 8对IC50进行计算。
将10000nM,3333nM,1111nM,370nM,123nM,41nM,13.7nM,4.6nM,1.5nM对应的浓度及抑制率进行统计。以Log10(化合物浓度)对其进行统计计算。
将数据输入值GraphPad PRISM 8中,选择“Analysis”,选择“Nonlinear regression(curve fit)”,选择“Log(inhibitor)vs.response-Variable slope”,选择计算公式,按照以下公式对其进行计算:Y=Bottom+(Top-Bottom)/(1+10^((LogIC50-X)×HillSlope))
X:Log10(化合物复合浓度)
Y:对应响应
Top and Bottom:对应Y相同单位的对应响应
注意:
-如果X还不是剂量的对数,返回并转换数据。
-如果减去了任何基础响应,将Bottom限制为常量值0.0。
对数据进行拟合,得到IC50值。
根据数据具体情况对拟合条件进行调整。对Bottom,TOP及HillSlope进行适当的Constraint条件调整,以达到最符合实际情况的曲线。
2.实验结果:
本申请部分实施例化合物对NCI-H1693细胞的抑制结果见表4。
表4 NCI-H1693细胞抑制结果
3.结论:
从上述实验结果可以看出,本申请化合物具有明显的细胞抑制活性。
测试例3本申请化合物在雄性CD1小鼠体内药代动力学测定
1.实验方案:
以雄性CD1小鼠为受试动物,研究本申请化合物经静脉注射和口服给药后,在特定时间点收集血浆样品,LC-MS/MS检测血浆中化合物浓度,计算药物代谢与药物动力学(DMPK)参数,评价本申请化合物在小鼠体内血浆的药代动力学特征。
1.1实验药品:
本申请表5化合物;其中化合物88的结构式、制备方法见上述实施例;对比化合物1结构式为:
1.2实验动物:
雄性CD1小鼠,体重20~30g,供货商为Vital River。
1.3给药:
本申请化合物给药信息:IV组(静脉注射组)和PO组(口服组)各3只小鼠,给药剂量为IV组1mg/kg,给药体积为5mL/kg,PO组为10mg/kg,给药体积为10mL/kg。给药溶媒为5vol%DMSO+10vol%Solutol(Kolliphor HS 15)+85vol%Saline(生理盐水)。
1.4样品采集:
小鼠给药后,IV组在0.083、0.25、0.5、1、2、4、8和24小时,PO组在0.25、0.5、1、2、4、8和24小时,通过隐静脉采血各0.02~0.03mL,置于EDTA-K2试管中,于4℃、4000g离心5分钟分离血浆,于-80℃保存直至样品分析。
1.5样品处理:
小鼠血浆样品处理:
1)10μL血浆样品加入200μL乙腈沉淀,涡旋混合30秒后,于4℃3900rpm离心15分钟。
2)取处理后上清液用水3倍稀释后,通过LC/MS/MS分析待测化合物的浓度。
2.实验结果:
表5
3.结论:
从上述实验结果可以看出,本申请的化合物与对照化合物相比,具有明显的药代动力学优势。
测试例4本申请化合物在雄性Beagle犬体内药代动力学测定
1.实验方案:
以雄性Beagle犬为受试动物,研究本申请化合物经静脉注射和口服给药后,在特定时间点收集血浆样品,LC-MS/MS检测血浆中化合物浓度,计算DMPK参数,评价本申请化合物在犬体内血浆的药代动力学特征。
1.1实验药品:
本申请表6化合物;其中化合物58、化合物88的结构式、制备方法见上述实施例;KSQ-4279结构式为:
1.2实验动物:
雄性Beagle犬,体重9~13kg,供货商为北京玛斯生物技术有限公司。
1.3给药:
本申请化合物给药信息:IV组(静脉注射组)和PO组(口服组)各3只犬,给药剂量为IV组0.2mg/kg,给药体积为0.5mL/kg,PO组为3mg/kg,给药体积为3mL/kg。给药溶媒为5vol%DMSO+10vol%Solutol(Kolliphor HS 15)+85vol%Saline(生理盐水)。
1.4样品采集:
犬给药后,IV组分别在0.083、0.25、0.5、1、2、4、8和24小时,PO组分别在0.25、0.5、1、2、4、8和24小时,通过头静脉采血各0.5mL,置于EDTA-K2试管中,于2~8℃、2000g离心10min分离血浆,于-80℃保存直至样品分析。
1.5样品处理:
犬血浆样品处理:
1)50μL血浆样品加入200μL乙腈沉淀,涡旋混合30秒后,于4℃3900rpm离心15分钟。
2)取处理后上清液用水3倍稀释后,通过LC/MS/MS分析待测化合物的浓度。
2.实验结果:
表6
注:表6中“CL”为总体清除率;“AUClast”为从0时到最终可定量时间点的血药浓度-时间曲线下面积。
3.结论:
从上述实验结果可以看出,本申请化合物与对照化合物相比,清除率水平和药物暴露量具有明显优势。
测试例5 OV0589移植瘤模型(PDX)药效实验
1.实验方案:
以雌性BALB/c nude小鼠为受试动物,研究本申请化合物口服给药后,定期量瘤称重,研究不同给药组肿瘤生长抑制情况及耐受情况,研究结束后在特定时间点采集血浆及肿瘤,进行药代动力学分析/药效动力学(PK/PD)分析。
1.1实验药品:
化合物58,其结构式、制备方法见上述实施例;
化合物KSQ4279,其结构式为:
1.2实验材料:
荷瘤鼠肿瘤(R10P8)购于中美冠科生物技术(北京)有限公司;Ubiquityl-PCNA(Lys164)(D5C7P)mAb抗体购于Cell Siganaling公司,货号:13439S;PCNA(PC10)抗体购于Santa Cruz公司,货号:sc-56。
1.3实验动物:
雌性BALB/c nude小鼠,体重21~25g,供货商:北京安凯毅博生物技术有限公司。
2.实验步骤:
在温度20~26℃,湿度30-70%,昼夜交替光照饲养条件下,下荷瘤鼠肿瘤(R10P8)生长至直径达到约1cm(肿瘤大小达到50~800mm3)时,将肿瘤收集并切割成约2~3mm3的肿瘤块,并将肿瘤块(R10P8)接种于雌性BALB/c nude小鼠右前肩胛处皮下。定期观察小鼠体内肿瘤生长情况,接种后35天,待肿瘤(R10P9)生长至平均体积约150mm3(入组范围86.54mm3~262.96mm3)根据肿瘤大小和小鼠体重,使用StudyDirectorTM(版本号3.1.399.19,供应商Studylog System,Inc.,S.San Francisco,CA,USA)进行随机分组,分组次日给药。
将12只小鼠随机分为4组,分别为G1至G4组。G1组为溶媒对照组,溶媒为:10vol%DMSO+20vol%Solutol+70vol%Water+5vol%DMSO+10vol%Solutol+85vol%Saline;G2组为口服给药KSQ4279,给药剂量为100mg/kg(mpk),给药溶媒为5vol%DMSO+10vol%Solutol+85vol%Saline;G3组为口服给药化合物58,给药剂量为30mg/kg,给药溶媒为10vol%DMSO+20vol%Solutol+70vol%Water;G4组为口服给药化合物58,给药剂量为100mg/kg,给药溶媒为10vol%DMSO+20vol%Solutol+70vol%Water。
定期观察小鼠体内肿瘤生长情况,丈量肿瘤体积(结果见图1),以及定期观察小鼠的体重变化情况(结果见图2),给药36天后,采集血浆及肿瘤,进行PK/PD分析。
PK检测如前测试例3所述进行小鼠体内药代动力学测定。
PD检测:最后一次给药8h后采集肿瘤样品,将肿瘤样品分为50-100mg重量的肿瘤样本。使用ddH2O配置1×组织裂解液,随后以每mg样品加入20uL的组织裂解液(Cell Signaling Cell Lysis Buffer(10×)货号:#9803)的比例加入组织裂解液。使用组织研磨仪对肿瘤样品进行研磨。将研磨完毕后的肿瘤样品裂解液置于冰上裂解30min。随后使用离心机12000rpm,4℃离心15min。保留样品上清。使用蛋白质印迹检测实验的方式对样品中的PD标志物(Ubiquityl-PCNA/PCNA)进行检测。
3.实验结果:
图1显示了G1至G4组小鼠肿瘤生长的情况,从图1可以看出,给药化合物58(给药剂量为100mg/kg)对肿瘤生长的抑制效果最好,其次是给药化合物58(给药剂量为30mg/kg),给药KSQ4279(给药剂量为100mg/kg)对肿瘤生长的抑制效果明显不如给药化合物58(给药剂量为100mg/kg)和给药化合物58(给药剂量为30mg/kg)。图2显示了G1至G4组小鼠体重变化的情况,从图2中可以看出,G1-G4各组小鼠体重变化均在正常范围内,均具有良好的耐受性。
表7为G2至G4组小鼠肿瘤生长抑制率统计结果,从表7可以看出,给药化合物58(给药剂量为100mg/kg)对肿瘤生长的抑制效果最好,其次是给药化合物58(给药剂量为30mg/kg),给药KSQ4279(给药剂量为100mg/kg)对肿瘤生长的抑制效果明显不如给药化合物58(给药剂量为100mg/kg)和给药化合物58(给药剂量为30mg/kg)。
表7肿瘤生长抑制率统计结果注:“TGI%”为肿瘤生长抑制率;TGI%=[1-ΔT/C]×100%,ΔT/C=(mean(T)-mean(T0))/(mean(C)-mean(C0)),T及C分别是给药组及溶媒对照组第38天时的平均肿瘤体积,T0及C0分别是给药组及溶媒对照组第0天时的平均肿瘤体积。
4.结论:
从以上数据可知,和对照化合物相比,本申请化合物在抑制肿瘤生长方面具有明显优势,且给药剂量明显低于对照化合物。

Claims (24)

  1. 一种式(II’)所示的化合物、其异构体及其药学上可接受的盐,
    其中,
    Xa为C或N;
    环A为苯环、5-6元杂芳基环、C5-6环烷基环或5-6元杂环基环;Ra各自独立的为氘、卤素、C1-4烷基、C1-4卤代烷基、C1-4烷氧基、氧代基、氰基、氨基、羟基、氨基磺酰基、C1-4烷基磺酰基、氨基甲酰基、C1-4烷基氨基、C3-6环烷基、C1-4烷基磺酰氨基、二甲基膦酰基、-C1-4烷基-OH、-COOC1-4烷基、C1-4烷基-SO2-NRf-、HO-C1-4烷基-SO2-NRf-、3-6元杂环基、-C1-4卤代烷基-OH、(C1-4烷基)2P(O)-、氘代C1-4烷基、4-6元杂环烷基;所述C1-4烷基、C1-4卤代烷基中C原子可以任意被N、O替代;Rf为C3-6环烷基、C1-4烷基;m为0、1、2、3或4;
    Rb为氢、C1-4烷基;
    环B为苯环、5-10元杂芳基环、5-10元杂环基环;Rc各自独立的为卤素、C1-4烷基、C1-4烷氧基、C3-6环烷基、C1-4卤代烷基、C1-4卤代烷氧基、氘代C1-4烷基;n为0、1、2、3或4;环D为苯环、5-6元杂芳基环或9-18元稠杂环基环;Re为氘、C1-4烷基、C1-4卤代烷基、C1-4烷氧基、环C或卤素,其中环C可以被l个Rd取代;所述环C为含有1-4个氮原子的5-10元杂芳基环、8-10稠杂环基环;所述Rd各自独立的为C1-4烷基、C1-4卤代烷基、C1-4烷氧基、氘代C1-4烷基、C3-6环烷基;l为1、2、3或4;p为1、2、3或4;
    L1为C1-4亚烷基、C3-6亚环烷基或化学键;
    当环A为5-6元杂芳基环时,结构单元不为
    当环A为5-6元杂环基环时,结构单元不为
  2. 根据权利要求1所述的化合物、其异构体及其药学上可接受的盐,具有下式(I’)所示的结构:
    其中,
    Xa为C或N;
    Xb、Xc、Xd各自独立的为CH、N或CR’,R’为卤素、C1-4烷基、C1-4卤代烷基、C1-4烷氧基;环A为苯环、5-6元杂芳基环、C5-6环烷基环或5-6元杂环基环;Ra各自独立的为氘、卤素、C1-4烷基、C1-4卤代烷基、C1-4烷氧基、氧代基、氰基、氨基、羟基、氨基磺酰基、C1-4烷基磺酰基、氨基甲酰基、C1-4烷基氨基、C3-6环烷基、C1-4烷基磺酰氨基、二甲基膦酰基、-C1-4烷基-OH、-COOC1-4烷基、C1-4烷基-SO2-NRf-、HO-C1-4烷基-SO2-NRf-、3-6元杂环基、-C1-4卤代烷基-OH、(C1-4烷基)2P(O)-、所述C1-4烷基、C1-4卤代烷基中C原子可以任意被N、O替代;Rf为C3-6环烷基、C1-4烷基;
    m为0、1、2、3或4;
    Rb为氢、C1-4烷基;
    环B为苯环、5-10元杂芳基环、5-10元杂环基环;Rc各自独立的为卤素、C1-4烷基、C1-4烷氧基、C3-6环烷基、C1-4卤代烷基、C1-4卤代烷氧基;n为0、1、2、3或4;
    环C为含有1-4个氮原子的5-10元杂芳基环;Rd各自独立的为C1-4烷基、C1-4卤代烷基、C1-4烷氧基、氘代C1-4烷基;l为0、1、2、3或4;
    L1为C1-4亚烷基、C3-6亚环烷基或化学键。
  3. 根据权利要求1所述的化合物、其异构体及其药学上可接受的盐,具有下式(I’-1)所示的结构:
    其中,
    Xb、Xc、Xd各自独立的为CH、N或CR’,R’为卤素、C1-4烷氧基;
    环A为苯环、吡啶或C5-6环烷基环;Ra各自独立的为氘、卤素、C1-4烷基、C1-4卤代烷基、C1-4烷氧基、氧代基、氰基、氨基、羟基、氨基磺酰基、C1-4烷基磺酰基、氨基甲酰基、C1-4烷基氨基、C3-6环烷基、C1-4烷基磺酰氨基、二甲基膦酰基、-C1-4烷基-OH、-COOC1-4烷基、C1-4烷基-SO2-NRf-、HO-C1-4烷基-SO2-NRf-、3-6元杂环基、-C1-4卤代烷基-OH、(C1-4烷基) 2P(O)-、所述C1-4烷基、C1-4卤代烷基中C原子可以任意被N、O替代;Rf为C3-6环烷基、C1-4烷基;m为0、1、2、3或4;
    Rb为氢、C1-4烷基;
    环B为5-6元杂芳基环、5-10元杂环基环;Rc各自独立的为C1-4烷基、C1-4烷氧基、C3-6环烷基、卤素;n为0、1、2、3或4;
    环C为含有1-4个氮原子的5-6元杂芳基环;Rd各自独立的为C1-4烷基、C1-4卤代烷基、C1-4烷氧基;l为0、1、2、3或4;
    L1为C1-4亚烷基、C3-6亚环烷基。
  4. 根据权利要求1所述的化合物、其异构体及其药学上可接受的盐,其特征在于,环D为
  5. 根据权利要求1所述的化合物、其异构体及其药学上可接受的盐,其特征在于,Re为-CF3-OCH3、-F、-D、-CH3
  6. 根据权利要求1~5任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,环A为
  7. 根据权利要求1~6任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,Ra为-F、-OCH3、-CF3、-COOCH3、-C(CH3)2-OH、-CHF2、-CN、-Cl、-NH2CH3-NH-S(O)2-、NH2-S(O)2-、-CH3、-OH、-Br、-CH2CH3 CH(CH3)2 -OCH(CH3)2D、-CD3
  8. 根据权利要求1~7任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于结构单元或结构单元
  9. 根据权利要求1~8任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,结构单元或结构单元 其中a代表与环B连接,b代表与L1连接。
  10. 根据权利要求1~9任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,结构单元或结构单元 其中a代表与环B连接,b代表与L1连接。
  11. 根据权利要求1~10任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,Rb为氢。
  12. 根据权利要求1~11任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,环B为
  13. 根据权利要求1~12任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,Rc为-OCH3-CH(CH3)2、-Cl、-OCHF2、-CF3-CH3、-OCD3
  14. 根据权利要求1~13任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,结构单元
  15. 根据权利要求1~14任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,环C为
  16. 根据权利要求1~15任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,Rd为-CF3、-CH3、-CH2CH3、-CH(CH3)2、-OCH2CH3、-CD3、-Cl、Br、-F。
  17. 根据权利要求1~16任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,结构单元
  18. 根据权利要求1~17任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,L1为-CH2-、-CH(CH3)-、-C(CH3)2-、-CH(C2H5)-、或为化学键。
  19. 根据权利要求1~18任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,化合物、其异构体及其药学上可接受的盐选自如下所示的结构,

    其中Ra、Rc、Rd、Re、L1、m同上述所定义;X选自C、N或者O。
  20. 根据权利要求1~18任一项所述的化合物、其异构体及其药学上可接受的盐,其特征在于,化合物、其异构体及其药学上可接受的盐选自如下所示的结构,
    其中Ra、Rc、Rd、Re、m同上述所定义;X选自C、N或者O。
  21. 根据权利要求1~20任一项所述的化合物、其异构体及其药学上可接受的盐,选自如下所示的结构:
















  22. 一种药物组合物,其包含权利要求1~21任一项所述的化合物、其异构体或其药学上可接受的盐及药学上可接受的载体。
  23. 根据权利要求1~21任一项所述的化合物、其异构体或其药学上可接受的盐或权利要求22所述的药物组合物在制备治疗USP1靶点介导的相关疾病药物中的应用。
  24. 根据权利要求23所述的应用,所述USP1靶点介导的相关疾病包括细胞炎性疾病、神经退行性疾病、癌症。
PCT/CN2023/116528 2022-09-02 2023-09-01 Usp1抑制剂 WO2024046471A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202211069731.2 2022-09-02
CN202211069731 2022-09-02
CN202211272140.5 2022-10-18
CN202211272140 2022-10-18
CN202310084635 2023-01-18
CN202310084635.3 2023-01-18
CN202310416682.3 2023-04-18
CN202310416682 2023-04-18
CN202310755391.7 2023-06-25
CN202310755391 2023-06-25
CN202311082622 2023-08-25
CN202311082622.9 2023-08-25

Publications (2)

Publication Number Publication Date
WO2024046471A1 WO2024046471A1 (zh) 2024-03-07
WO2024046471A9 true WO2024046471A9 (zh) 2024-05-02

Family

ID=90100455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116528 WO2024046471A1 (zh) 2022-09-02 2023-09-01 Usp1抑制剂

Country Status (1)

Country Link
WO (1) WO2024046471A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021007179A (es) * 2018-12-20 2021-09-28 Ksq Therapeutics Inc Pirazolopirimidinas sustituidas y purinas sustituidas y su uso como inhibidores de proteasa procesadora especifica de ubiquitina 1 (usp1).
WO2022174184A1 (en) * 2021-02-15 2022-08-18 Tango Therapeutics, Inc. Pyrrolo[3,2-d]pyrimidine compounds and methods of use in the treatment of cancer
WO2022228399A1 (zh) * 2021-04-27 2022-11-03 山东轩竹医药科技有限公司 三并环类usp1抑制剂及其用途

Also Published As

Publication number Publication date
WO2024046471A1 (zh) 2024-03-07

Similar Documents

Publication Publication Date Title
TWI737681B (zh) 新穎經取代6,7-二氫-5h-苯并[7]輪烯化合物,其製備方法及其治療用途
TWI622595B (zh) 充當抗癌劑的經取代核苷衍生物
CN112135824A (zh) 作为免疫调节剂的杂环化合物
CN103038233B (zh) 吡啶酮和氮杂吡啶酮化合物及使用方法
TWI545122B (zh) 吡唑喹噁啉激酶抑制劑
WO2021169990A1 (zh) 用于癌症治疗的kras抑制剂
CN104812762B (zh) 取代的环状嘧啶和三嗪以及它们的用途
CN105121427B (zh) 吡啶基和稠合吡啶基***酮衍生物
KR101734606B1 (ko) 질소-함유 헤테로아릴 유도체
TW201811799A (zh) 吡唑并嘧啶化合物及其用途
JP2021505553A (ja) 新規化合物及び疾患の治療のためのその医薬組成物
WO2022214053A1 (zh) 泛素特异性蛋白酶1(usp1)抑制剂
TWI672304B (zh) 作爲酪胺酸激酶抑制劑之經取代的乙炔基雜雙環化合物
JP2014528482A (ja) Iii型受容体チロシンキナーゼの調節因子としての複素環式化合物及びその使用
CN114423753A (zh) 作为cd38抑制剂的杂双环酰胺
CN110753692A (zh) 作为h-pgds抑制剂的化学化合物
CN114728975A (zh) 唑稠合的哒嗪-3(2h)-酮衍生物
WO2022033544A1 (zh) 取代的杂芳基化合物及其组合物和用途
WO2020238776A1 (zh) 取代的稠合双环类衍生物、其制备方法及其在医药上的应用
TW201927787A (zh) 吡咯並三嗪化合物及抑制tam激酶之方法
WO2024046471A9 (zh) Usp1抑制剂
KR20220038696A (ko) 폴리방향족 우레아 유도체 및 근육 질환 치료에서의 이들의 용도
WO2023280254A1 (zh) 一种tead抑制剂
WO2023217230A1 (zh) 驱动蛋白kif18a抑制剂及其应用
WO2019223777A1 (zh) 一种含有芳胺基取代的吡咯并嘧啶类化合物、制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859498

Country of ref document: EP

Kind code of ref document: A1