WO2024046219A1 - 信息处理方法、装置、通信设备及可读存储介质 - Google Patents

信息处理方法、装置、通信设备及可读存储介质 Download PDF

Info

Publication number
WO2024046219A1
WO2024046219A1 PCT/CN2023/114826 CN2023114826W WO2024046219A1 WO 2024046219 A1 WO2024046219 A1 WO 2024046219A1 CN 2023114826 W CN2023114826 W CN 2023114826W WO 2024046219 A1 WO2024046219 A1 WO 2024046219A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
pulse
amplitude
information
configuration information
Prior art date
Application number
PCT/CN2023/114826
Other languages
English (en)
French (fr)
Inventor
黄伟
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024046219A1 publication Critical patent/WO2024046219A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/103Chirp modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques

Definitions

  • This application belongs to the field of communication technology, and specifically relates to an information processing method, device, communication equipment and readable storage medium.
  • high-order modulation is one of the effective ways to improve spectral efficiency.
  • Traditional high-order modulations such as Quadrature Amplitude Modulation (QAM) and Amplitude Phase Shift Keying (APSK) are absolute modulations, and their modulation performance is susceptible to factors such as channel multipath, phase noise, and frequency offset. Influence. Therefore, when using high-order modulation such as QAM and APSK, the transmitter needs to send a pilot signal for demodulation, and the receiver needs to perform channel estimation and channel equalization before demodulation can be completed, otherwise poor demodulation performance will occur. In this case, how to implement high-order modulation to improve spectral efficiency while simplifying the signal processing process is an urgent problem that needs to be solved.
  • QAM Quadrature Amplitude Modulation
  • APSK Amplitude Phase Shift Keying
  • Embodiments of the present application provide an information processing method, device, communication equipment and readable storage medium, which can solve the problem of how to simplify the signal processing process while implementing high-order modulation to improve spectrum efficiency.
  • the first aspect provides an information processing method, including:
  • the first device determines modulation parameters of the first modulation, the first modulation being a joint modulation of differential amplitude modulation and pulse modulation;
  • the first device performs the first modulation on the first information according to the modulation parameter to obtain a first signal
  • the first device sends the first signal to the second device.
  • the second aspect provides an information processing method, including:
  • a second device determines demodulation parameters of the first modulation, the first modulation being a combined modulation of differential amplitude modulation and pulse modulation;
  • the second device receives a first signal from the first device
  • the second device demodulates the first signal according to the demodulation parameter to obtain first information.
  • the third aspect provides an information processing method, including:
  • the third device sends the first configuration information to the first device, and/or sends the second configuration information to the second device;
  • the first configuration information is used to configure the modulation parameters of the first modulation
  • the second configuration information is used to configure the modulation parameters or demodulation parameters of the first modulation
  • the first modulation is differential amplitude modulation and pulse modulation. joint modulation.
  • an information processing device applied to the first device, including:
  • a first determination module configured to determine the modulation parameters of the first modulation, where the first modulation is a joint modulation of differential amplitude modulation and pulse modulation;
  • a modulation module configured to perform the first modulation on the first information according to the modulation parameter to obtain a first signal
  • the first sending module is used to send the first signal to the second device.
  • an information processing device is provided, applied to a second device, including:
  • a second determination module configured to determine the demodulation parameters of the first modulation, where the first modulation is a joint modulation of differential amplitude modulation and pulse modulation;
  • a receiving module configured to receive the first signal from the first device
  • a demodulation module configured to demodulate the first signal according to the demodulation parameters to obtain first information.
  • a sixth aspect provides an information processing device applied to a third device, including:
  • a second sending module configured to send first configuration information to the first device and/or send second configuration information to the second device
  • the first configuration information is used to configure the modulation parameters of the first modulation
  • the second configuration information is used to configure the modulation parameters or demodulation parameters of the first modulation
  • the first modulation is differential amplitude modulation and pulse modulation. joint modulation.
  • a communication device including a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the first The steps of the method described in the first aspect, or the steps of the method described in the second aspect, or the steps of the method described in the third aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method as described in the first aspect are implemented, or as in the second aspect. The steps of the method described in the second aspect, or the steps of the method described in the third aspect.
  • a chip in a ninth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. or the steps of the method described in the second aspect, or the steps of the method described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method as described in the first aspect
  • a communication system in an eleventh aspect, includes at least two of a first device, a second device, and a third device.
  • the first device is used to implement the method as described in the first aspect.
  • the second device is used to implement the steps of the method described in the second aspect, and the third device is used to implement the steps of the method described in the third aspect.
  • the first device may determine the modulation parameter of the first modulation, which is a joint modulation of differential amplitude modulation and pulse modulation, and perform the first modulation on the first information according to the modulation parameter, Get and send the first signal. Therefore, with the joint modulation of differential amplitude modulation and pulse modulation, spectrum efficiency can be improved while ensuring high power efficiency, and due to the use of differential amplitude modulation, the communication system can have better resistance to channel multipath and signal interference. Therefore, the transmitter does not need to send pilots and the receiver does not need to perform channel estimation and channel equalization to complete signal demodulation, thereby simplifying the signal processing process.
  • the modulation parameter of the first modulation which is a joint modulation of differential amplitude modulation and pulse modulation
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2A is a block diagram of a single-base backscatter communication system applicable to the embodiment of the present application
  • Figure 2B is a block diagram of a bistatic backscatter communication system applicable to the embodiment of the present application.
  • Figure 3A is a schematic diagram of modulation of second-order PAM in the embodiment of the present application.
  • Figure 3B is a modulation schematic diagram of fourth-order PAM in the embodiment of the present application.
  • Figure 4 is a schematic diagram of 8-PPM modulation in the embodiment of the present application.
  • Figure 5 is a schematic diagram of the modulation of (8,2)-MPPM in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the modulation of MPAPM in the embodiment of the present application.
  • Figure 7 is a schematic diagram of the modulation of 4DPPM in the embodiment of the present application.
  • Figure 8A is a schematic diagram of DPIM modulation without protection time slots in the embodiment of the present application.
  • Figure 8B is a schematic diagram of DPIM modulation under protected time slots in the embodiment of the present application.
  • Figure 9 is a flow chart of an information processing method provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of DAPM modulation in the embodiment of the present application.
  • Figure 11A is a schematic diagram of DAPM demodulation in the embodiment of the present application.
  • Figure 11B is a schematic diagram of 2DASK demodulation in the embodiment of the present application.
  • Figure 12 is a schematic diagram of 2DASK+8PPM joint modulation in the embodiment of the present application.
  • Figure 13 is a schematic diagram of 4DASK+8MPPM joint modulation in the embodiment of the present application.
  • Figure 14 is a schematic diagram of the joint modulation of 2DASK+4DPIM in the embodiment of the present application.
  • Figure 15 is a schematic diagram of the joint modulation of 2DASK+16DHPIM in the embodiment of the present application.
  • Figure 16 is a flow chart of another information processing method provided by an embodiment of the present application.
  • Figure 17 is a flow chart of another information processing method provided by an embodiment of the present application.
  • Figure 18 is a schematic structural diagram of an information processing device provided by an embodiment of the present application.
  • Figure 19 is a schematic structural diagram of another information processing device provided by an embodiment of the present application.
  • Figure 20 is a schematic structural diagram of another information processing device provided by an embodiment of the present application.
  • Figure 21 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably.
  • the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies, such as new radio interfaces. (New Radio, NR) system, or 6th Generation ( 6th Generation, 6G) communication system, etc.
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a Wireless Fidelity (WiFi) node, etc.
  • the base station may be called a Node B or an Evolved Node B.
  • eNB access point
  • base transceiver station Base Transceiver Station (BTS)
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • home B-node home evolved B-node
  • transmitting receiving point Transmitting Receiving Point, TRP
  • TRP Transmitting Receiving Point
  • Backscatter Communication refers to a backscatter communication device that uses radio frequency signals from other devices or the environment to perform signal modulation to transmit its own information. It is a relatively typical passive IoT device.
  • the basic building blocks and main functions of the backscatter communication transmitter include:
  • -Antenna unit used to receive radio frequency signals and control commands, and at the same time used to send modulated backscattered signals.
  • This module is used for backscatter communication equipment to collect radio frequency energy, or other energy collection, including but not limited to solar energy, kinetic energy, mechanical energy, thermal energy, etc.
  • the energy harvesting module it may also include a battery power supply module.
  • the backscatter communication device is a semi-passive device. The energy harvesting module or energy supply module supplies power to all other modules in the device.
  • -Microcontroller including controlling baseband signal processing, energy storage or data scheduling status, switch switching, system synchronization, etc.
  • -Signal receiving module used to demodulate control commands or data sent by the backscatter communication receiving end or other network nodes.
  • Channel coding and signal modulation are performed under the control of the controller, and the modulation is achieved by selecting different load impedances under the control of the controller through the selection switch.
  • -Memory or sensing module used to store identification (ID) information, location information or sensing data of the device.
  • the future backscatter communication transmitter can also integrate tunnel diode amplifier modules, low-noise amplifier modules, etc. to improve the receiving sensitivity and transmit power of the transmitter.
  • the basic building blocks and main functions of the backscatter communication receiver include:
  • -Antenna unit used to receive the modulated backscattered signal.
  • -Backscatter signal detection module used to detect the backscatter signal sent by the backscatter communication transmitter, including but not limited to Amplitude Shift Keying (ASK) detection, Phase-shift keying (Phase- Shift Keying (PSK) detection, frequency shift keying (Frequency-Shift Keying (FSK)) detection or quadrature amplitude modulation (Quadrature Amplitude Modulation, QAM) detection, etc.
  • ASK Amplitude Shift Keying
  • PSK Phase-shift keying
  • QAM Quadrature amplitude Modulation
  • -Demodulation and decoding module Demodulate and decode the detected signal to restore the original information stream.
  • Backscatter communication equipment controls the reflection coefficient ⁇ of the modulation circuit by adjusting its internal impedance, thereby changing the amplitude, frequency, phase, etc. of the incident signal to achieve signal modulation.
  • the reflection coefficient of the signal can be characterized as:
  • backscatter communication equipment can be traditional radio frequency identification Tags in Radio Frequency Identification (RFID), or Passive/Semi-passive Internet of Things (IoT). For convenience, they are collectively referred to as BSC equipment here.
  • RFID Radio Frequency Identification
  • IoT Internet of Things
  • FIG. 2A shows a schematic diagram of a Monostatic Backscatter Communication System (MBCSs) to which embodiments of the present application can be applied.
  • the MBCS system includes a BSC sending device (such as a tag) and a reader.
  • the reader contains an RF source and a BSC receiving device.
  • the RF source is used to generate RF signals to power the BSC sending device/Tag. .
  • the BSC transmitting device backscatters the modulated RF signal, and the BSC receiving device in the Reader receives the backscattered signal and demodulates the signal. Since the RF radio frequency signal sent from the BSC transmitting equipment will go through the double distance effect caused by the signal attenuation of the round-trip signal, the energy of the signal is attenuated greatly. Therefore, the MBCS system is generally used for short-distance backscatter communication, such as traditional RFID. application.
  • FIG. 2B shows a schematic diagram of a bistatic backscatter communication system (Bistatic Backscatter Communication Systems, BBCSs) applicable to the embodiment of the present application.
  • Bistatic Backscatter Communication Systems MBCSs
  • the RF radio frequency source, BSC transmitting equipment and BSC receiving equipment in the BBCS system are separated, so the problem of large round-trip signal attenuation can be avoided.
  • the performance of the BBCS communication system can be further improved through reasonable placement of RF sources.
  • the ambient backscatter communication system ABCSs is also a type of bistatic backscatter communication system, but unlike the BBCS system where the RF source is a dedicated signal RF source, the RF source in the ABCS system can be available RF sources in the environment, such as TV towers, cellular base stations, WiFi signals, Bluetooth signals, etc.
  • Scenarios applicable to the embodiments of this application include but are not limited to backscatter communications.
  • Pulse position modulation refers to pulse position modulation (Pulse Position Modulation, PPM), differential pulse position modulation (Differential Pulse Position Modulation, DPPM), digital pulse interval modulation (Digital Pulse Interval Modulation, DPIM) and their various combinations and thus Various pulse position modulation methods evolved.
  • PPM Pulse Position Modulation
  • DPPM differential pulse position modulation
  • DPIM Digital Pulse Interval Modulation
  • pulse-type position modulation can achieve relatively high power efficiency, the modulation method is simple, and the hardware circuit is easy to implement. The following takes several typical pulse-type position modulations as examples to illustrate.
  • Pulse amplitude modulation PAM is a modulation method in which the amplitude of the pulse carrier changes with the baseband signal.
  • This modulation system is simple to implement and can be demodulated based on a non-coherent demodulator.
  • Figure 3A shows the modulation diagram of second-order PAM, in which high level represents "1" and low level represents "0". This modulation method can also be called On-off Keying (OOK). Or binary amplitude keying (Amplitude Shift Keying, ASK).
  • Figure 3B shows the modulation diagram of fourth-order PAM.
  • a fourth-order amplitude pulse signal is used to carry information bits. Each pulse signal can carry two information bits.
  • Pulse position modulation PPM is a modulation method with simple coding and high power efficiency.
  • PPM modulates the relative position (ie, phase) of a pulse in a signal pulse sequence, so that the relative position of the pulse changes with the baseband signal, but the amplitude and width of each pulse in the sequence remain unchanged.
  • Figure 4 shows the modulation diagram of 8-PPM.
  • Each frame is divided into 8 Time slots, pulse signals are only sent on one time slot within a frame at a time, and the amplitudes of these pulses are the same. Modulation is achieved by changing the relative positions of these pulses on the time slots within the frame to carry information bits. As shown in Figure 4, in the first frame, the pulse is sent on the 5th time slot, then the pulse can carry bit "100"; in the second frame, the pulse is sent on the 2nd time slot, then the pulse can Carrying bit "001".
  • MPPM Multiple Pulse Position Modulation
  • Multi-pulse position modulation MPPM is one of the optimized modulation methods of PPM modulation and has higher frequency band utilization. Unlike PPM modulation, which only sends one pulse in one time slot of each frame, MPPM modulates the relative positions (i.e. phases) of multiple pulses in the signal pulse sequence so that the relative positions of the multiple pulses change with the baseband signal. , but the amplitude and width of each pulse in the sequence remain unchanged.
  • Figure 5 shows a 2-pulse 8-PPM modulation diagram, which can be recorded as (8,2)-MPPM. Each frame is divided into 8 time slots, and each time the two time slots in the same frame are sent. Different pulse signals, and changing the relative position arrangement and combination of the two pulses on the time slot within the frame to achieve modulation.
  • log 2 28 4.8 bits can be carried in one frame, while traditional 8-PPM transmits 3 bits in one frame. Therefore, MPPM can achieve data transmission with higher frequency band utilization.
  • MPAPM Multiple Pulse Amplitude Position Modulation
  • Multi-pulse position-amplitude modulation MPAPM is one of the improved methods of MPPM modulation. Based on MPPM, information modulation is achieved by modulating the amplitude of each pulse, thereby further improving the frequency band utilization of the system.
  • Figure 6 shows a modulation diagram of a fourth-order PAM-(8,2)-MPPM. The amplitude of the pulse on the time slot is one of four amplitudes. Therefore, compared with Figure 5, these two pulses can An additional 4 bits are added to MPPM, so 8.8 bits can be carried in one frame.
  • Differential pulse position modulation DPPM is an improved PPM modulation method, which retains the low level before a single pulse and removes the low level after a single pulse on the basis of PPM.
  • Figure 7 is a schematic diagram of a 4DPPM modulation. Therefore, compared with PPM, under the premise of the same number of time slots, DPPM modulation has a higher duty cycle; during the same information transmission process, DPPM modulation occupies less bandwidth than PPM, improving data transmission efficiency.
  • pulse position modulation PPM in addition to the above-mentioned MPPM, MPAPM, and DPPM, there are many other variants, including but not limited to: Overlapping Pulse Positioning Modulation (OPPM), dual Dual Duration Pulse Positioning Modulation (DDPPM), Dual Amplitude Pulse Positioning Modulation (DAPPM), Shorten Pulse Positioning Modulation (SPPM), Separated Double Pulse Positioning Modulation, SDPPM), etc.
  • OPPM Overlapping Pulse Positioning Modulation
  • DDPPM Dual Dual Duration Pulse Positioning Modulation
  • DAPPM Dual Amplitude Pulse Positioning Modulation
  • SPPM Shorten Pulse Positioning Modulation
  • SDPPM Separated Double Pulse Positioning Modulation
  • the pulse modulation mentioned above is all based on pulse position.
  • loading information by using the number of empty time slots between two adjacent pulses instead of the absolute position of the pulse is another option, such as Digital Pulse Interval Modulation (Digital Pulse Interval Modulation).
  • Interval Modulation, DPIM Digital Pulse Interval Modulation
  • the number of time slots included in the DPIM frame symbol is not fixed.
  • the DPIM symbol is represented by the starting time slot pulse and several subsequent empty time slots.
  • the number of empty time slots is based on the ten corresponding to the binary source. Decide based on hexadecimal data.
  • L-DPIM the log 2 2L bits of each frame symbol are mapped into L possible symbol structures, and the symbol lengths are different.
  • the minimum and maximum symbol lengths are T s and L ⁇ T s respectively, where T s is a single Slot size.
  • a guard time slot can be added after each DPIM symbol, so that the minimum and maximum symbol lengths are 2T s and (L+1) ⁇ T s respectively.
  • Figure 8A shows a schematic diagram of the modulation of 4DPIM in an unprotected time slot
  • Figure 8B shows a schematic diagram of the modulation of 4DPIM in a protected time slot.
  • DPIM modulation In addition to the above-mentioned single-pulse DPIM modulation, there are many variants of DPIM modulation, including but not limited to: Double-headed Pulse Interval Modulation (DH-PIM), Dual Pulse Pulse Interval Modulation, DPPIM), dual-amplitude Pulse Interval Modulation, DAPIM, fixed-length digital pulse interval modulation (Fixed-length Digital Pulse Interval Modulation, FDPIM), fixed-length dual-amplitude pulse interval modulation (Fixed-length Dual-amplitude Pulse Interval Modulation, FDAPIM), etc.
  • DH-PIM Double-headed Pulse Interval Modulation
  • DPPIM Dual Pulse Pulse Interval Modulation
  • DAPIM dual-amplitude Pulse Interval Modulation
  • fixed-length digital pulse interval modulation Fixed-length Digital Pulse Interval Modulation, FDPIM
  • FDPIM Fixed-length dual-amplitude pulse interval modulation
  • FDAPIM
  • the embodiments of this application propose a joint modulation of differential amplitude modulation (Differential Amplitude Shift Keying, DASK) and pulse modulation.
  • This joint modulation can It is called Differential Amplitude Pulse Modulation (DAPM), and by designing modulation and demodulation methods, signaling processes, configuration parameters, etc., the communication system can flexibly realize joint modulation and demodulation of differential amplitude modulation and pulse modulation. .
  • DAPM Differential Amplitude Pulse Modulation
  • Figure 9 is a flow chart of an information processing method provided by an embodiment of the present application.
  • the method is applied to a first device.
  • the first device is the sending end/modulation end in the communication system, and can optionally be a terminal.
  • the BSC sending equipment includes but is not limited to tags, passive or semi-passive Internet of Things IoT devices, etc.
  • the method includes the following steps:
  • Step 91 The first device determines the modulation parameters of the first modulation, where the first modulation is a joint modulation of differential amplitude modulation and pulse modulation;
  • Step 92 The first device performs first modulation on the first information according to the modulation parameter to obtain the first signal;
  • Step 93 The first device sends the first signal to the second device.
  • the pulse modulation can be pulse position/interval modulation, or any pulse modulation introduced above, such as PAM, PPM, DPPM, DPIM, etc., which is not limited.
  • the modulation parameters of the first modulation may include, but are not limited to, amplitude division factors, initial amplitude values, modulation types, modulation orders, etc.
  • the first information is bit information to be modulated, which may be an input bit stream or the like.
  • the above-mentioned second device is the receiving end/demodulating end in the communication system, and can optionally be the BSC receiving device in the BSC system, including but not limited to a reader/writer device, etc.
  • the first modulation may be called differential amplitude pulse modulation (Differential Amplitude Pulse Modulation, DAPM).
  • DAPM differential amplitude pulse modulation
  • the first device can determine the modulation parameter of the first modulation, which is a joint modulation of differential amplitude modulation and pulse modulation, and perform the first step on the first information based on the modulation parameter. Modulate, obtain and send the first signal. Therefore, with the joint modulation of differential amplitude modulation and pulse modulation, spectrum efficiency can be improved while ensuring high power efficiency, and due to the use of differential amplitude modulation, the communication system can have better resistance to channel multipath and signal interference. Therefore, the transmitter does not need to send pilots and the receiver does not need to perform channel estimation and channel equalization to complete signal demodulation, thereby simplifying the signal processing process.
  • the modulation parameter of the first modulation which is a joint modulation of differential amplitude modulation and pulse modulation
  • the above-mentioned process of performing first modulation on the first information may include:
  • the first device performs serial-to-parallel conversion on the bit information in the first information according to the modulation parameter, obtains the first bit information and the second bit information, and maps the first bit information to obtain the amplitude difference coefficient at the first moment, according to The second bit information is mapped to obtain the pulse modulation symbol at the first moment; wherein the first bit information is differential amplitude modulation bit information.
  • the amplitude difference coefficient at the first moment is obtained according to the mapping of the first bit information, it can be based on the preset The corresponding relationship between the differential amplitude modulation bit information and the amplitude difference coefficient is mapped; the second bit information is pulse symbol modulation bit information, and the pulse modulation symbol at the first moment is obtained based on the second bit information mapping, which can be based on the preset The corresponding relationship between the pulse symbol modulation bit information and the pulse modulation symbol is mapped; the serial-to-parallel conversion is to convert the serial bit information into parallel bit information, that is, convert the bit information in the first information into the first bit information and the second bit information;
  • the first device determines the pulse amplitude at the first moment based on the amplitude difference coefficient at the first moment and the pulse amplitude at the second moment.
  • the second moment is the moment immediately preceding the first moment.
  • the first moment and the third moment are The second moment is the moment when the pulse modulation symbol exists; for example, the first moment is the current moment t, and the second moment is the previous moment t-1;
  • the first device determines the modulation symbol at the first moment based on the pulse amplitude at the first moment and the pulse modulation symbol at the first moment, where the modulation symbol is a symbol after joint modulation of the differential amplitude and the pulse.
  • the joint modulation of differential amplitude modulation and pulse modulation of the first information can be achieved.
  • the amplitude difference coefficient at the first moment and the pulse amplitude at the second moment may be multiplied, Get the pulse amplitude at the first moment.
  • the pulse amplitude at the first moment and the pulse modulation symbol at the first moment may be multiplied, Obtain the modulation symbol at the first moment, that is, obtain the symbol after joint modulation of differential amplitude and pulse.
  • the above pulse modulation may be single amplitude pulse modulation or constant amplitude pulse modulation.
  • the above pulse modulation may include at least one of the following:
  • Pulse interval modulation Pulse interval modulation, pulse position modulation and/or differential pulse interval modulation
  • the first modulation that is, DAPM
  • DAPM is a joint modulation of differential amplitude modulation and pulse modulation. Differential amplitude modulation is performed on each pulse in DAPM so that the amplitude information of the pulse can also carry bit information.
  • the set expression mapped by DAPM in space can be as follows:
  • Na represents the number or order of amplitude modulation states
  • m a represents the number of bits required for amplitude modulation.
  • N p represents the number of phase pulse states (such as pulse position or pulse interval)
  • m p represents the number of bits required for pulse modulation.
  • m ma +
  • m p represents the number of bits required for DAPM modulation.
  • represents the amplitude division factor in DAPSK modulation.
  • the amplitude division factor ⁇ in DAPM modulation can be determined according to the modulation type, the modulation state number M and the channel state, and the amplitude value of the DAPM modulation can be determined by ⁇ .
  • Table 1 gives an example of the ⁇ value under different modulation types, modulation orders, and channel states.
  • M-DAPM modulation can be implemented in two steps: first, obtain the amplitude difference coefficient ⁇ k at the current moment (such as time k) based on the bit stream mapping of m a bits, and map the bits of m p bits into The flow mapping obtains the pulse modulation (such as pulse interval, position, etc.
  • the specific modulation process may include: after the m-bit input bit stream undergoes serial-to-parallel conversion, a m a- bit differential amplitude modulation bit stream and an m p -bit pulse symbol modulation bit stream are formed, and then the m a- bit
  • the differential amplitude modulation bit stream of is generated through amplitude mapping to generate the amplitude difference coefficient ⁇ k at the current moment, and the pulse symbol modulation bit stream of m p bits is mapped through the pulse position/interval to generate the pulse modulation symbol p k at the current moment; after that, Multiply the amplitude difference coefficient ⁇ k with the amplitude a k-1 of the pulse at the previous moment (which is obtained by taking the modulus of the modulation symbol s k-1 at the previous moment) to obtain the amplitude a k of the pulse at the current moment, and add a Multiply k and p k to obtain the modulated symbol s k at the current moment,
  • the modulation type is jointly implemented by 2DASK modulation and 8DPIM modulation. This can be extended to other modulation types and combinations without limitation.
  • the amplitude 2DASK modulation process is to multiply the amplitude difference coefficient ⁇ k with the amplitude modulation value a k-1 at the previous moment to obtain the amplitude modulation value a k at the current moment
  • the corresponding relationship between the amplitude modulation bits and ⁇ k can be shown in Table 2 below. shown.
  • 8-MPPM is modulated by 2-pulse and 8-PPM, which can be recorded as (8,2)-MPPM.
  • Each frame is divided into 8 time slots. Different pulse signals are sent on the two time slots in the same frame each time, and the relative position arrangement and combination of the two pulses on the time slots within the frame are changed to achieve modulation.
  • 8-MPPM can be implemented using existing methods, so I won’t go into too much detail here.
  • Table 3 the mapping table between modulated input bits and amplitude difference coefficients can be shown in Table 3 below.
  • the modulation type is jointly implemented by 4DASK modulation and 4-DPPM modulation.
  • the low level before a single pulse is retained in 4-DPPM modulation, and the low level after a single pulse is removed. Therefore, the number of time slots representing a 4-DPPM symbol is not fixed.
  • the specific modulation principle can be referred to the existing technology, and will not be introduced too much here.
  • the mapping table shown in Table 3 above can be used.
  • the demodulation process of DAPM is the inverse process of modulation, which requires dedifferentiating the pulse amplitude and demodulating the position/interval of the pulse.
  • the receiving end demodulates the pulse amplitude and pulse position/interval simultaneously.
  • DASK demodulation will inversely map out the m a bit bit stream (i.e., bit information)
  • pulse Position/interval demodulation will inversely map out the m p -bit bit stream; then, the m a- bit bit stream and the m p -bit bit stream are converted into parallel-to-serial conversion and then synthesized into an output bit stream.
  • r k (t) can be expressed as:
  • ⁇ k is the amplitude of the pulse
  • is the mapped time slot sequence, and its value is 0 or 1
  • p(t) is The amplitude is 1 and the width is rectangular pulse
  • T is the period.
  • L may not be fixed and is specifically related to each pulse modulation type.
  • the 2DASK demodulation process is shown in Figure 11B.
  • the received signal r k (t) undergoes a pulse modulus operation to obtain the amplitude value ⁇ k of r k (t).
  • the m a- bit bit stream can be demodulated and recovered.
  • the value of the decision threshold can be as follows:
  • DAPM The first modulation in this application, that is, DAPM, will be described below with reference to specific embodiments.
  • Embodiment 1 Fixed number of time slots + single pulse
  • each pulse has 8 possible slot positions within a symbol period, and each pulse has two possible amplitudes 1 and ⁇ , so each pulse can carry 4 bits of information.
  • the first symbol period As an example, that is, there is a pulse with an amplitude of 1 at the 5th time slot position in the symbol period, but if the amplitude value of the previous pulse in the symbol period is ⁇ , Therefore, it represents the bit information "1100", in which the first bit "1" indicates that the amplitude value in 2DASK is 1, and the corresponding amplitude difference coefficient is 1/ ⁇ ; the remaining three bit information is "100", indicating that the pulse is The fifth slot position in the symbol period.
  • the pulses in other symbol periods represent bit information in the same manner as the pulses in the first symbol period, which will not be described again here.
  • Embodiment 2 Fixed number of time slots + multiple pulses
  • the number of time slots representing pulse symbols is fixed, and there are two or more pulses in each pulse symbol time slot.
  • This type of pulse modulation is mainly based on MPPM modulation and dual pulse interval modulation (Dual pulse interval modulation). Mainly Pulse Pulse Interval Modulation, DPPIM), etc.
  • each pulse symbol period has 8 time slot positions. Different pulse signals are sent on the two time slots in each symbol period, and the two pulses are changed in The relative positions on the time slots within the symbol period are arranged and combined to achieve modulation.
  • the amplitude information of each pulse carries 2 bits of information, and the relative position combination of the pulses within a symbol period carries 4.8 bits of information.
  • the specific pulse modulation form is shown in Figure 13. The specific modulation method is similar to the above embodiment. Here No longer.
  • Embodiment 3 Non-fixed number of time slots + single pulse
  • the number of time slots representing the pulse symbol period is not fixed, and there is only a single pulse in each pulse symbol time slot.
  • This type of pulse modulation is mainly based on DPPM, DPIM and the corresponding variant DDPPM. Taking the 8-DAPM formed by 2DASK+4DPIM (protected time slot) joint modulation as an example, the number of time slots in each pulse symbol period is not fixed.
  • the DPIM symbol consists of a starting time slot pulse and several subsequent attached space-times. Slot representation, the number of empty slots is determined based on the decimal data corresponding to the binary source.
  • each pulse has two possible amplitudes 1 and ⁇ , so each pulse symbol period can carry 3 bits of information. For example, as shown in Figure 14, taking the second symbol period as an example, the last two bits "01" in the bit information "101" in this symbol period indicate that the symbol period has three time slots, one of which is a guard time slot.
  • the first time slot is a pulse, and the second time slot has no pulse; the first bit "1" in the "101" bit information indicates that the pulse amplitude value is ⁇ (the pulse amplitude value of the previous symbol period is 1).
  • the specific modulation process can refer to the previous scheme and will not be described again here.
  • Embodiment 4 Non-fixed number of time slots + multi-pulse
  • the number of time slots representing the pulse symbol period is not fixed, and there are multiple (greater than or equal to 2) pulses in each pulse symbol time slot.
  • This type of pulse modulation mainly includes double-headed pulse interval modulation (Double pulse interval modulation). -headed pulse interval modulation, DHPIM), etc.
  • Each symbol in DHPIM modulation consists of a header time slot and subsequent empty time slots.
  • the fixed length of the header time slot is ( ⁇ +1) time slots ( ⁇ is a positive integer), which can be divided into two situations: ⁇ /2 time slots and ( ⁇ /2+1) time slots; ⁇ time slots and 1 time slot.
  • l is the decimal number corresponding to the decimal data.
  • the header time slot composition is the previous situation, and the number of subsequent empty time slots is l; when l ⁇ 2 L-1 , the header time slot composition is l
  • the time slot combination is the latter case, and the number of subsequent empty time slots is (2 L-1 -1-l).
  • the first device can independently determine the modulation parameters of the first modulation (that is, DAPM), or can determine the modulation parameters of the first modulation based on the configuration of other devices, as described below.
  • the first device may determine the modulation parameters of the first modulation according to at least one of the following:
  • First configuration information received from a third device the first configuration information is used to configure the modulation parameters of the first modulation (that is, DAPM);
  • the third device is a device different from the first device and the second device, such as It can be a system-side or network-side device, etc.;
  • Default configuration information and/or factory setting information of the first device for example, the default configuration information is the default configured modulation parameters, and the factory setting information is the factory configured modulation parameters;
  • Default configuration information and/or factory setting information of the second device for example, the default configuration information is the default configured modulation parameters, and the factory setting information is the factory configured modulation parameters.
  • the modulation parameters of the first modulation can be flexibly determined, thereby making it applicable to different channel environments, amplitude modulation/ The ability to modulate pulses and/or backscatter communications under transmit and receive antennas, etc.
  • the first device may determine the modulation parameters of the first modulation according to the first configuration information received from the third device; or, according to the capabilities of the first device and/or the second device, channel state information and the first Default configuration information and/or factory setting information of the device/second device, etc., determine the modulation parameters of the first modulation; or, determine part of the modulation parameters of the first modulation according to the first configuration information received from the third device, and at the same time, determine the modulation parameters of the first modulation according to the first configuration information received from the third device.
  • the capabilities, channel status information, and default configuration information and/or factory setting information of the first device/second device, etc., of the first device and/or the second device determine some modulation parameters of the first modulation.
  • the first configuration information may include at least one of the following:
  • the modulation type represents a combination of differential amplitude modulation and pulse modulation;
  • the pulse modulation is, for example, pulse position/interval modulation, such as single amplitude/constant amplitude pulse modulation;
  • the above amplitude division factors can be called power division factors.
  • the modulation order in the first configuration information may include at least one of the following:
  • the modulation order of pulse modulation in the first modulation is, for example, pulse position/interval modulation;
  • the modulation order of the first modulation is the modulation order of the first modulation.
  • the modulation order in the first configuration information may include any of the following:
  • the modulation order of DASK is M, and the modulation order of pulse interval/position modulation is N;
  • the modulation order of pulse interval/position modulation is N, and the modulation order of DAPM is M ⁇ N;
  • the modulation order of DASK is M
  • the modulation order of pulse interval/position modulation is N
  • the modulation order of DAPM is M ⁇ N.
  • the first configuration information may be carried through at least one of the following: Layer 1 signaling, Medium Access Control Control Element (MAC CE), Radio Resource Control (Radio Resource Control, RRC) Signaling etc.
  • This layer 1 signaling is, for example, downlink control information (Downlink Control Information, DCI), secondary link control information (Sidelink Control Information, SCI), or preamble sequence.
  • the capabilities of the first device and/or the second device may include at least one of the following:
  • the amplitude modulation capability of the first device and/or the second device includes at least one of the following: the amplitude information of the supported adjustable reflected signal, the number of states of continuous amplitude modulation and corresponding continuous features, discrete amplitude modulation and the status of corresponding discrete features. Quantity, etc.;
  • the ability of the first device and/or the second device to adjust pulses includes, for example, at least one of the following: adjusting the time slot position, time slot interval, etc. of the pulse.
  • the modulation parameters corresponding to the first modulation can be accurately determined.
  • the capabilities of the first device and/or the second device may also include respective antenna capabilities to consider the transceiver capabilities of the transceiver when determining the modulation parameters of the first modulation (such as amplitude division factors, etc.).
  • the first device may report the capability of the first device to the second device and/or the third device, where the capability includes at least one of the following: the amplitude modulation capability of the first device and the pulse adjustment capability of the first device.
  • the capability includes at least one of the following: the amplitude modulation capability of the first device and the pulse adjustment capability of the first device.
  • the first device after entering the connected state, reports its capability information to the second device and/or the third device through signaling.
  • the signaling information is, for example, UE Capability Inquiry-UE Capability Information.
  • the first device after entering the connected state, reports its capability information to the second device and/or the third device through signaling information.
  • the signaling information is, for example, UE Assistance Information.
  • the first device actively reports its capability information to the second device and/or the third device through a signaling message.
  • the signaling message is, for example, an Initial UE message (Initial UE message).
  • the above channel state information may include at least one of the following:
  • Historical channel state information such as channel state information recorded when the first device and/or the second device were stationed
  • Real-time channel state information of the first device and/or the second device may be estimated or information state information obtained through other methods.
  • the first device may send second information to the second device, where the second information is used to indicate the modulation parameters or demodulation parameters of the first modulation, so that the second device can determine the demodulation parameters corresponding to the first modulation. parameter.
  • the second information may include at least one of the following:
  • the modulation type represents a combination of differential amplitude modulation and pulse modulation;
  • the pulse modulation is, for example, pulse position/interval modulation, such as single amplitude/constant amplitude pulse modulation;
  • the amplitude division factor may be determined based on at least one of the modulation type of the first modulation, channel state information and modulation order, for example, further determined in combination with a preset mapping table.
  • the modulation order in the second information may include at least one of the following:
  • the modulation order of pulse modulation in the first modulation is, for example, pulse position/interval modulation;
  • the modulation order of the first modulation is the modulation order of the first modulation.
  • the modulation order in the second information may include any of the following:
  • the modulation order of DASK is M, and the modulation order of pulse interval/position modulation is N;
  • the modulation order of pulse interval/position modulation is N, and the modulation order of DAPM is M ⁇ N;
  • the modulation order of DASK is M
  • the modulation order of pulse interval/position modulation is N
  • the modulation order of DAPM is M ⁇ N.
  • the first device may send the second information to the second device through at least one of the following: Layer 1 signaling, MAC CE, RRC signaling.
  • the layer 1 signaling is, for example, DCI, SCI or preamble sequence.
  • Figure 16 is a flow chart of an information processing method provided by an embodiment of the present application. The method is applied to a second device.
  • the second device is the receiving end/demodulating end in the communication system. It can be optionally Terminal, network side equipment or BSC receiving equipment in the BSC system.
  • the BSC receiving equipment includes but is not limited to reader/writer equipment, etc.
  • the method includes the following steps:
  • Step 161 The second device determines the demodulation parameters of the first modulation, where the first modulation is a joint modulation of differential amplitude modulation and pulse modulation;
  • Step 162 The second device receives the first signal from the first device
  • Step 163 The second device demodulates the first signal according to the demodulation parameters to obtain the first information.
  • the pulse modulation can be pulse position/interval modulation, or any pulse modulation introduced above, such as PAM, PPM, DPPM, DPIM, etc., which is not limited.
  • the demodulation parameters of the first modulation are the same as the corresponding modulation parameters, which may include but are not limited to amplitude division factors, initial amplitude values, modulation types, modulation orders, etc.
  • the first information is bit information to be modulated, which may be an input bit stream or the like.
  • the above-mentioned first device is the transmitting end/modulating end in the communication system, and can optionally be the BSC transmitting device in the BSC system, including but not limited to tags, passive or semi-passive Internet of Things IoT devices. wait.
  • the first modulation may be referred to as differential amplitude pulse modulation DAPM.
  • the second device can determine the demodulation parameters of the first modulation, which is a joint modulation of differential amplitude modulation and pulse modulation, and perform the demodulation on the first signal according to the demodulation parameters. Demodulation. Therefore, with the joint modulation of differential amplitude modulation and pulse modulation, spectrum efficiency can be improved while ensuring high power efficiency, and due to the use of differential amplitude modulation, the communication system can have better resistance to channel multipath and signal interference. Therefore, the transmitter does not need to send pilots and the receiver does not need to perform channel estimation and channel equalization to complete signal demodulation, thus simplifying the signal processing process.
  • the demodulation parameters of the first modulation which is a joint modulation of differential amplitude modulation and pulse modulation
  • the above process of demodulating the first signal may include:
  • the second device performs differential amplitude demodulation on the first signal according to the demodulation parameters to obtain the first bit information, and performs pulse demodulation on the first signal to obtain the second bit information;
  • the second device performs parallel-to-serial conversion on the first bit information and the second bit information to obtain the first information.
  • the second device can independently determine the demodulation parameters of the first modulation (that is, DAPM), or can determine the demodulation parameters of the first modulation based on the configuration of other devices and/or the instructions of the first device. as follows.
  • the second device may determine the demodulation parameters of the first modulation according to at least one of the following:
  • Second configuration information received from a third device the second configuration information is used to configure the modulation parameters or demodulation parameters of the first modulation;
  • the third device is a device different from the first device and the second device, such as It can be a system-side or network-side device, etc.;
  • Second information received from the first device the second information is used to indicate the modulation parameters or demodulation parameters of the first modulation; since the demodulation parameters are the same as the corresponding modulation parameters, therefore, based on the second information indicated
  • the modulation parameters can be used to determine the demodulation parameters;
  • Default configuration information and/or factory setting information of the first device for example, the default configuration information is the default configured modulation parameters, and the factory setting information is the factory configured modulation parameters;
  • Default configuration information and/or factory setting information of the second device for example, the default configuration information is the default configured modulation parameters, and the factory setting information is the factory configured modulation parameters.
  • the demodulation parameters of the first modulation can be flexibly determined, thereby making it applicable to different channel environments, amplitude modulation/pulse adjustment capabilities, and/or backscatter communication under transceiver antennas, etc.
  • the first configuration information may include at least one of the following:
  • the modulation type represents a combination of differential amplitude modulation and pulse modulation;
  • the pulse modulation is, for example, pulse position/interval modulation, such as single amplitude/constant amplitude pulse modulation;
  • the above amplitude division factors can be called power division factors.
  • the modulation order in the first configuration information may include at least one of the following:
  • the modulation order of pulse modulation in the first modulation is, for example, pulse position/interval modulation;
  • the modulation order of the first modulation is the modulation order of the first modulation.
  • the modulation order in the first configuration information may include any of the following:
  • the modulation order of DASK is M, and the modulation order of pulse interval/position modulation is N;
  • the modulation order of pulse interval/position modulation is N, and the modulation order of DAPM is M ⁇ N;
  • the modulation order of DASK is M
  • the modulation order of pulse interval/position modulation is N
  • the modulation order of DAPM is M ⁇ N.
  • the second information may include at least one of the following:
  • the modulation type represents a combination of differential amplitude modulation and pulse modulation;
  • the pulse modulation is, for example, pulse position/interval modulation, such as single amplitude/constant amplitude pulse modulation;
  • the modulation order in the second information may include at least one of the following:
  • the modulation order of pulse modulation in the first modulation is, for example, pulse position/interval modulation;
  • the modulation order of the first modulation is the modulation order of the first modulation.
  • the modulation order in the second information may include any of the following:
  • the modulation order of DASK is M, and the modulation order of pulse interval/position modulation is N;
  • the modulation order of pulse interval/position modulation is N, and the modulation order of DAPM is M ⁇ N;
  • the modulation order of DASK is M
  • the modulation order of pulse interval/position modulation is N
  • the modulation order of DAPM is M ⁇ N.
  • the above channel state information may include at least one of the following:
  • Historical channel state information such as channel state information recorded when the first device and/or the second device were stationed
  • Real-time channel state information of the first device and/or the second device may be estimated or information state information obtained through other methods.
  • the second device may determine the demodulation parameters of the first modulation based on the second configuration information received from the third device; or may determine the demodulation parameters of the first modulation based on the second information received from the first device. parameters; alternatively, the demodulation parameters of the first modulation may be determined according to the second configuration information received from the third device and the second information received from the first device.
  • any of the following methods may be used:
  • the second configuration information includes: modulation type, modulation order, and amplitude division factor ⁇ ; the second information includes: initial amplitude value a 0 ;
  • the second configuration information includes: modulation type, modulation order, and initial amplitude value a 0 ; the second information includes: amplitude division factor ⁇ ;
  • the second configuration information includes: modulation type, initial amplitude value a 0 , and amplitude division factor ⁇ ; the second information includes: modulation order;
  • the second configuration information includes: modulation type, modulation order, initial amplitude value a 0 , and amplitude division factor ⁇ ; the second information includes: modulation type;
  • the second configuration information includes: modulation type and modulation order; the second information includes: initial amplitude value a 0 and amplitude division factor ⁇ ;
  • the second configuration information includes: modulation type, initial amplitude value a 0 ; the second information includes: modulation order, amplitude division factor ⁇ ;
  • the second configuration information includes: modulation type, amplitude division factor ⁇ ; the second information includes: initial amplitude value a 0 , modulation order;
  • the second configuration information includes: amplitude division factor ⁇ , modulation order; the second information includes: initial amplitude value a 0 , modulation type;
  • the second configuration information includes: initial amplitude value a 0 and modulation order; the second information includes: amplitude division factor ⁇ and modulation type;
  • the second configuration information includes: initial amplitude value a 0 and amplitude division factor ⁇ ; the second information includes: modulation type and modulation order;
  • the second information includes: modulation type, modulation order, and amplitude division factor ⁇ ; the second configuration information includes: Initial amplitude value a 0 ;
  • the second information includes: modulation type, modulation order, and initial amplitude value a 0 ; the second configuration information includes: amplitude division factor ⁇ ;
  • the second information includes: modulation type, initial amplitude value a 0 , and amplitude division factor ⁇ ; the second configuration information includes: modulation order;
  • the second information includes: modulation type, modulation order, initial amplitude value a 0 , and amplitude division factor ⁇ ; second configuration information: modulation type.
  • the capabilities of the first device and/or the second device may include at least one of the following:
  • the amplitude modulation capability of the first device and/or the second device includes at least one of the following: the amplitude information of the supported adjustable reflected signal, the number of states of continuous amplitude modulation and corresponding continuous features, discrete amplitude modulation and the status of corresponding discrete features. Quantity, etc.;
  • the ability of the first device and/or the second device to adjust pulses includes, for example, at least one of the following: adjusting the time slot position, time slot interval, etc. of the pulse.
  • the demodulation parameters of the first modulation can be accurately determined.
  • the capabilities of the first device and/or the second device may also include respective antenna capabilities to consider the transceiver capabilities of the transceiver when determining the modulation parameters of the first modulation (such as amplitude division factors, etc.).
  • the second information is received by the second device through at least one of the following: layer 1 signaling, MAC CE, and RRC signaling.
  • the layer 1 signaling is, for example, DCI, SCI or preamble sequence.
  • the second configuration information may be carried through at least one of the following: layer 1 signaling, MAC CE, and RRC signaling.
  • the layer 1 signaling is, for example, DCI, SCI or preamble sequence.
  • the second device may report the capabilities of the second device to the first device and/or the third device, where the capabilities include at least one of the following: the amplitude modulation capability of the second device, and the pulse adjustment capability of the second device.
  • the capabilities include at least one of the following: the amplitude modulation capability of the second device, and the pulse adjustment capability of the second device.
  • the second device after entering the connected state, reports its capability information to the first device and/or the third device through signaling.
  • the signaling information is, for example, UE Capability Inquiry-UE Capability Information.
  • the second device after entering the connected state, reports its capability information to the first device and/or the third device through signaling information.
  • the signaling information is, for example, UE Assistance Information.
  • the second device actively reports its capability information to the first device and/or the third device through a signaling message, such as an Initial UE message.
  • Figure 17 is a flow chart of an information processing method provided by an embodiment of the present application.
  • the method is applied to a third device.
  • the third device is a device different from the first device and the second device. For example, it can It is a system-side or network-side device, etc.
  • the method includes the following steps:
  • Step 171 The third device sends the first configuration information to the first device, and/or sends the second configuration information to the second device.
  • the first configuration information is used to configure the modulation parameters of the first modulation
  • the second configuration information is used to configure the modulation parameters or demodulation parameters of the first modulation
  • the first modulation is differential amplitude modulation. and pulse modulation combined modulation.
  • the pulse modulation may be pulse position/interval modulation, or any pulse modulation introduced above, such as PAM, PPM, DPPM, DPIM, etc., which is not limited.
  • the demodulation parameters of the first modulation are the same as the corresponding modulation parameters, which may include but are not limited to amplitude division factors, initial amplitude values, modulation types, modulation orders, etc.
  • the third device can send the first configuration information to the first device through at least one of the following: layer 1 signaling, MAC CE, and RRC signaling.
  • the layer 1 signaling is, for example, DCI, SCI or preamble sequence.
  • the third device can send the second configuration information to the second device through at least one of the following: layer 1 signaling, MAC CE, and RRC signaling.
  • the layer 1 signaling is, for example, DCI, SCI or preamble sequence.
  • the modulation parameters/demodulation parameters of the first modulation can be configured for the first device and/or the second device, so that with the joint modulation of differential amplitude modulation and pulse modulation, spectrum efficiency can be improved while ensuring high power efficiency.
  • the communication system can be better resistant to the effects of channel multipath and signal interference, so that the transmitter does not need to send pilots and the receiver does not need to perform channel estimation and channel equalization. Signal demodulation, thereby simplifying signal processing.
  • the configuration of the modulation parameters/demodulation parameters of the first modulation may include any of the following:
  • the third device sends the first configuration information to the first device, and at the same time sends the second configuration information to the second device, and the first device does not send the second information to the second device; at this time, the first device can according to the first configuration
  • the information determines the modulation parameters of the first modulation
  • the second device can determine the demodulation parameters of the first modulation according to the second configuration information
  • the third device sends the first configuration information to the first device, but does not send the second configuration information to the second device, and the first device sends the second information to the second device; at this time, at this time, the first device can The first configuration information determines the modulation parameters of the first modulation, and the second device can determine the demodulation parameters of the first modulation based on the second information;
  • the third device sends the first configuration information to the first device, and at the same time sends the second configuration information to the second device, and the first device sends the second information to the second device; at this time, the first device can use the first configuration information to To determine the modulation parameters of the first modulation, the second device may jointly determine the complete demodulation parameters of the first modulation according to the second configuration information and the second information.
  • the first device when the third device does not send the first configuration information to the first device, the first device can autonomously determine the modulation parameters of the first modulation.
  • the first device when the third device does not send the second configuration information to the second device, can independently determine the demodulation parameters of the first modulation, or can determine the demodulation parameters of the first modulation according to the instructions of the first device. parameter.
  • the first configuration information may include at least one of the following:
  • the modulation type represents a combination of differential amplitude modulation and pulse modulation;
  • the pulse modulation is, for example, pulse position/interval modulation, such as single amplitude/constant amplitude pulse modulation;
  • the above amplitude division factors can be called power division factors.
  • the modulation order in the first configuration information may include at least one of the following:
  • the modulation order of pulse modulation in the first modulation is, for example, pulse position/interval modulation;
  • the modulation order of the first modulation is the modulation order of the first modulation.
  • the modulation order in the first configuration information may include any of the following:
  • the modulation order of DASK is M, and the modulation order of pulse interval/position modulation is N;
  • the modulation order of pulse interval/position modulation is N, and the modulation order of DAPM is M ⁇ N;
  • the modulation order of DASK is M
  • the modulation order of pulse interval/position modulation is N
  • the modulation order of DAPM is M ⁇ N.
  • the second configuration information may include at least one of the following:
  • the modulation type represents a combination of differential amplitude modulation and pulse modulation;
  • the pulse modulation is, for example, pulse position/interval modulation, such as single amplitude/constant amplitude pulse modulation;
  • the above amplitude division factors can be called power division factors.
  • the modulation order in the second configuration information may include at least one of the following:
  • the modulation order of pulse modulation in the first modulation is, for example, pulse position/interval modulation;
  • the modulation order of the first modulation is the modulation order of the first modulation.
  • the modulation order in the second configuration information may include any of the following:
  • the modulation order of DASK is M, and the modulation order of pulse interval/position modulation is N;
  • the modulation order of pulse interval/position modulation is N, and the modulation order of DAPM is M ⁇ N;
  • the modulation order of DASK is M
  • the modulation order of pulse interval/position modulation is N
  • the modulation order of DAPM is M ⁇ N.
  • the third device determines the modulation parameter or demodulation parameter of the first modulation according to at least one of the following:
  • Default configuration information and/or factory setting information of the first device for example, the default configuration information is the default configured modulation parameters, and the factory setting information is the factory configured modulation parameters;
  • Default configuration information and/or factory setting information of the second device for example, the default configuration information is the default configured modulation parameters, and the factory setting information is the factory configured modulation parameters.
  • the capabilities of the first device and/or the second device may include at least one of the following:
  • the amplitude modulation capability of the first device and/or the second device includes at least one of the following: the amplitude information of the supported adjustable reflected signal, the number of states of continuous amplitude modulation and corresponding continuous features, discrete amplitude modulation and the status of corresponding discrete features. Number of states, etc.;
  • the ability of the first device and/or the second device to adjust pulses includes, for example, at least one of the following: adjusting the time slot position, time slot interval, etc. of the pulse.
  • the modulation parameters/demodulation parameters of the first modulation can be accurately determined.
  • the capabilities of the first device and/or the second device may also include respective antenna capabilities to consider the transceiver capabilities of the transceiver when determining the modulation parameters of the first modulation (such as amplitude division factors, etc.).
  • the above channel state information may include at least one of the following:
  • Historical channel state information such as channel state information recorded when the first device and/or the second device were stationed
  • Real-time channel state information of the first device and/or the second device may be estimated or information state information obtained through other methods.
  • the execution subject may be an information processing device.
  • an information processing device executing an information processing method is used as an example to illustrate the information processing device provided by the embodiments of the present application.
  • Figure 18 is a schematic structural diagram of an information processing device provided by an embodiment of the present application.
  • the device is applied to a first device.
  • the first device is the sending end/modulation end in the communication system, and can optionally be a terminal.
  • the BSC sending equipment includes but is not limited to tags, passive or semi-passive Internet of Things IoT devices, etc.
  • the information processing device 180 includes:
  • the first determination module 181 is used to determine the modulation parameters of the first modulation, where the first modulation is a joint modulation of differential amplitude modulation and pulse modulation;
  • Modulation module 182 configured to perform the first modulation on the first information according to the modulation parameter to obtain a first signal
  • the first sending module 183 is used to send the first signal to the second device.
  • the modulation module 182 includes:
  • a modulation unit configured to perform serial-to-parallel conversion on the bit information in the first information according to the modulation parameter, obtain the first bit information and the second bit information, and map the first bit information to obtain the first moment.
  • the amplitude difference coefficient is mapped according to the second bit information to obtain the pulse modulation symbol at the first moment;
  • a first determination unit configured to determine the pulse amplitude at the first time according to the amplitude difference coefficient at the first time and the pulse amplitude at the second time, where the second time is the time immediately preceding the first time. , the first moment and the second moment are the moments when pulse modulation symbols exist;
  • a second determination unit configured to determine the modulation symbol at the first moment according to the pulse amplitude at the first moment and the pulse modulation symbol at the first moment, where the modulation symbol is a differential amplitude and pulse jointly modulated symbol.
  • the first determining unit is further configured to multiply the amplitude difference coefficient at the first time and the pulse amplitude at the second time to obtain the pulse amplitude at the first time.
  • the second determining unit is further configured to multiply the pulse amplitude at the first time and the pulse modulation symbol at the first time to obtain the modulation symbol at the first time.
  • the pulse modulation is single amplitude pulse modulation or constant amplitude pulse modulation.
  • the pulse modulation includes at least one of the following:
  • Pulse interval modulation Pulse interval modulation, pulse position modulation and/or differential pulse interval modulation
  • the first determination module 181 is specifically configured to determine the modulation parameter according to at least one of the following:
  • First configuration information received from a third device the first configuration information being used to configure the modulation parameters of the first modulation
  • the capabilities of the first device and/or the second device are The capabilities of the first device and/or the second device;
  • the first configuration information includes at least one of the following:
  • Modulation type the modulation type represents the combination of the differential amplitude modulation and the pulse modulation
  • the capabilities of the first device and/or the second device include at least one of the following:
  • the amplitude modulation capability of the first device and/or the second device is not limited to the amplitude modulation capability of the first device and/or the second device.
  • the ability of the first device and/or the second device to regulate pulses is not limited.
  • the first sending module 183 is also configured to send second information to the second device, where the second information is used to indicate the modulation parameters or demodulation parameters of the first modulation.
  • the second information includes at least one of the following:
  • Modulation type the modulation type represents the combination of the differential amplitude modulation and the pulse modulation
  • the amplitude division factor is determined according to at least one of the modulation type of the first modulation, channel state information, and modulation order.
  • the modulation order includes at least one of the following:
  • the modulation order of the first modulation is the modulation order of the first modulation.
  • the first sending module 183 is also configured to send the second information through at least one of the following:
  • Layer 1 signaling media access control control unit MAC CE, radio resource control RRC signaling.
  • the information processing device 180 also includes:
  • a first reporting module configured to report the capabilities of the first device to the second device and/or the third device;
  • the capabilities of the first device include at least one of the following:
  • the first device has the ability to regulate pulses.
  • the information processing device 180 provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 9 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Figure 19 is a schematic structural diagram of an information processing device provided by an embodiment of the present application.
  • the device is applied to a second device.
  • the second device is the receiving end/demodulation end in the communication system. It can be optionally Terminal, network side equipment or BSC receiving equipment in the BSC system.
  • the BSC receiving equipment includes but is not limited to reader/writer equipment, etc.
  • the information processing device 190 includes:
  • the second determination module 191 is used to determine the demodulation parameters of the first modulation, where the first modulation is a joint modulation of differential amplitude modulation and pulse modulation;
  • the receiving module 192 is used to receive the first signal from the first device
  • Demodulation module 193 is used to demodulate the first signal according to the demodulation parameters to obtain first information.
  • the demodulation module 193 includes:
  • a demodulation unit configured to perform differential amplitude demodulation on the first signal according to the demodulation parameter to obtain first bit information, and perform pulse demodulation on the first signal to obtain second bit information;
  • a conversion unit configured to perform parallel-to-serial conversion on the first bit information and the second bit information to obtain the first information.
  • the second determination module 191 is specifically configured to determine the demodulation parameters according to at least one of the following:
  • Second configuration information received from a third device the second configuration information being used to configure the modulation parameters or demodulation parameters of the first modulation
  • the second information received from the first device, the second information being used to indicate modulation parameters or demodulation parameters of the first modulation
  • the capabilities of the first device and/or the second device are The capabilities of the first device and/or the second device;
  • the second configuration information includes at least one of the following:
  • Modulation type the modulation type represents the combination of the differential amplitude modulation and the pulse modulation
  • the second information includes at least one of the following:
  • Modulation type the modulation type represents the combination of the differential amplitude modulation and the pulse modulation
  • the modulation order includes at least one of the following:
  • the modulation order of the first modulation is the modulation order of the first modulation.
  • the capabilities of the first device and/or the second device include at least one of the following:
  • the amplitude modulation capability of the first device and/or the second device is not limited to the amplitude modulation capability of the first device and/or the second device.
  • the ability of the first device and/or the second device to regulate pulses is not limited.
  • the information processing device 190 also includes:
  • a second reporting module configured to report the capabilities of the second device to the first device and/or the third device
  • the capabilities of the second device include at least one of the following:
  • the second device has the ability to regulate pulses.
  • the information processing device 190 provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 16 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Figure 20 is a schematic structural diagram of an information processing device provided by an embodiment of the present application.
  • the device is applied to a third device.
  • the third device is a device different from the first device and the second device. For example, it can It is a system-side or network-side device, etc.
  • the information processing device 200 includes:
  • the second sending module 201 is used to send the first configuration information to the first device and/or send the second configuration information to the second device;
  • the first configuration information is used to configure the modulation parameters of the first modulation
  • the second configuration information is used to configure the modulation parameters or demodulation parameters of the first modulation
  • the first modulation is differential amplitude modulation and pulse modulation. joint modulation.
  • the first configuration information includes at least one of the following:
  • Modulation type the modulation type represents the combination of the differential amplitude modulation and the pulse modulation
  • the second configuration information includes at least one of the following:
  • Modulation type the modulation type represents the combination of the differential amplitude modulation and the pulse modulation
  • the modulation order includes at least one of the following:
  • the modulation order of the first modulation is the modulation order of the first modulation.
  • the information processing device 200 also includes:
  • a third determination module configured to determine the modulation parameter or demodulation parameter of the first modulation according to at least one of the following:
  • the capabilities of the first device and/or the second device are The capabilities of the first device and/or the second device;
  • the capabilities of the first device and/or the second device include at least one of the following:
  • the amplitude modulation capability of the first device and/or the second device is not limited to the amplitude modulation capability of the first device and/or the second device.
  • the ability of the first device and/or the second device to regulate pulses is not limited.
  • the second sending module 201 is also configured to: send the first configuration information to the first device through at least one of the following: layer 1 signaling, MAC CE, and RRC signaling;
  • the second configuration information to the second device through at least one of the following: layer 1 signaling, MAC CE, and RRC signaling.
  • the information processing device 200 provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 17 and achieve the same technical effect. To avoid duplication, details will not be described here.
  • this embodiment of the present application also provides a communication device 210, which includes a processor 211 and a memory 212.
  • the memory 212 stores programs or instructions that can be run on the processor 211.
  • the communication device 210 may be the above-mentioned first device, second device or third device.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above information processing method embodiment is implemented, and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above information processing method embodiments. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored In the storage medium, the computer program/program product is executed by at least one processor to implement each process of the above information processing method embodiment, and can achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Embodiments of the present application also provide a communication system, which includes at least two of a first device, a second device, and a third device.
  • the first device can be used to implement information processing as described in Figure 9 above.
  • the second device can be used to implement the steps of the information processing method as described in Figure 16 above, and the third device can be used to implement the steps of the information processing method as described in Figure 17 above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请公开了一种信息处理方法、装置、通信设备及可读存储介质,属于通信技术领域,本申请实施例的信息处理方法包括:第一设备确定第一调制的调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;根据所述调制参数,对第一信息进行所述第一调制,获得第一信号;向第二设备发送所述第一信号。

Description

信息处理方法、装置、通信设备及可读存储介质
相关申请的交叉引用
本申请主张在2022年08月31日在中国提交的中国专利申请No.202211056954.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信息处理方法、装置、通信设备及可读存储介质。
背景技术
在信号调制中,高阶调制是提升频谱效率的有效方式之一。传统的正交幅度调制(Quadrature Amplitude Modulation,QAM)、幅度相位调制(Amplitude Phase Shift Keying,APSK)等高阶调制属于绝对调制,调制性能易受信道多径、相位噪声、频率偏移等因素的影响。因此在采用QAM、APSK等高阶调制时,发送端需要发送用于解调的导频信号,同时接收端需要进行信道估计与信道均衡之后才能完成解调,否则会发生解调性能差。这种情况下,如何在实现高阶调制提升频谱效率的同时,简化信号处理过程是目前急需解决的问题。
发明内容
本申请实施例提供一种信息处理方法、装置、通信设备及可读存储介质,能够解决如何在实现高阶调制提升频谱效率的同时,简化信号处理过程的问题。
第一方面,提供了一种信息处理方法,包括:
第一设备确定第一调制的调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;
所述第一设备根据所述调制参数,对第一信息进行所述第一调制,获得第一信号;
所述第一设备向第二设备发送所述第一信号。
第二方面,提供了一种信息处理方法,包括:
第二设备确定第一调制的解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;
所述第二设备从第一设备接收第一信号;
所述第二设备根据所述解调制参数,对所述第一信号进行解调制,得到第一信息。
第三方面,提供了一种信息处理方法,包括:
第三设备向第一设备发送第一配置信息,和/或向第二设备发送第二配置信息;
其中,所述第一配置信息用于配置第一调制的调制参数,所述第二配置信息用于配置第一调制的调制参数或解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制。
第四方面,提供了一种信息处理装置,应用于第一设备,包括:
第一确定模块,用于确定第一调制的调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;
调制模块,用于根据所述调制参数,对第一信息进行所述第一调制,获得第一信号;
第一发送模块,用于向第二设备发送所述第一信号。
第五方面,提供了一种信息处理装置,应用于第二设备,包括:
第二确定模块,用于确定第一调制的解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;
接收模块,用于从第一设备接收第一信号;
解调模块,用于根据所述解调制参数,对所述第一信号进行解调制,得到第一信息。
第六方面,提供了一种信息处理装置,应用于第三设备,包括:
第二发送模块,用于向第一设备发送第一配置信息,和/或向第二设备发送第二配置信息;
其中,所述第一配置信息用于配置第一调制的调制参数,所述第二配置信息用于配置第一调制的调制参数或解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制。
第七方面,提供了一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者如第二方面所述的方法的步骤,或者如第三方面所述的方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者如第二方面所述的方法的步骤,或者如第三方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或者如第二方面所述的方法的步骤,或者如第三方面所述的方法的步骤。
第十方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者如第二方面所述的方法的步骤,或者如第三方面所述的方法的步骤。
第十一方面,提供了一种通信***,所述通信***包括第一设备、第二设备、第三设备中的至少两个,所述第一设备用于实现如第一方面所述的方法的步骤,所述第二设备用于实现如第二方面所述的方法的步骤,所述第三设备用于实现如第三方面所述的方法的步骤。
在本申请实施例中,第一设备可以确定第一调制的调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制,并根据该调制参数,对第一信息进行第一调制,获得并发送第一信号。由此,借助差分幅度调制和脉冲调制的联合调制,可以在保证高功率效率的同时提升频谱效率,且由于采用了差分幅度调制,可以使得通信***具有更好的抗信道多径、信号干扰的影响,从而使得发送端不需要发送导频且接收端不需要进行信道估计和信道均衡的情况下完成信号解调,从而简化信号处理过程。
附图说明
图1是本申请实施例可应用的一种无线通信***的框图;
图2A是本申请实施例可应用的一种单基地反向散射通信***的框图;
图2B是本申请实施例可应用的一种双基地反向散射通信***的框图;
图3A是本申请实施例中的2阶PAM的调制示意图;
图3B是本申请实施例中的4阶PAM的调制示意图;
图4是本申请实施例中的8-PPM的调制示意图;
图5是本申请实施例中的(8,2)-MPPM的调制示意图;
图6是本申请实施例中的MPAPM的调制示意图;
图7是本申请实施例中的4DPPM的调制示意图;
图8A是本申请实施例中无保护时隙下的DPIM调制示意图;
图8B是本申请实施例中有保护时隙下的DPIM调制示意图;
图9是本申请实施例提供的一种信息处理方法的流程图;
图10是本申请实施例中的DAPM调制示意图;
图11A是本申请实施例中的DAPM解调制示意图;
图11B是本申请实施例中的2DASK解调示意图;
图12是本申请实施例中的2DASK+8PPM的联合调制示意图;
图13是本申请实施例中的4DASK+8MPPM的联合调制示意图;
图14是本申请实施例中的2DASK+4DPIM的联合调制示意图;
图15是本申请实施例中的2DASK+16DHPIM的联合调制示意图;
图16是本申请实施例提供的另一种信息处理方法的流程图;
图17是本申请实施例提供的另一种信息处理方法的流程图;
图18是本申请实施例提供的一种信息处理装置的结构示意图;
图19是本申请实施例提供的另一种信息处理装置的结构示意图;
图20是本申请实施例提供的另一种信息处理装置的结构示意图;
图21是本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术,比如新空口(New Radio,NR)***,或第6代(6th Generation,6G)通信***等。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver  Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇。
为了便于理解本申请实施例,首先说明以下内容。
反向散射通信(Backscatter Communication,BSC)是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输自己信息,是一种比较典型的无源物联设备。反向散射通信发送端的基本构成模块及主要功能包括:
-天线单元:用于接收射频信号、控制命令,同时用于发送调制的反向散射信号。
-能量采集模块或供能模块:该模块用于反向散射通信设备进行射频能量采集,或者其它能量采集,包括但不限于太阳能、动能、机械能、热能等。另外除了包括能量采集模块,也可能包括电池供能模块,此时反向散射通信设备为半无源设备。能量采集模块或供能模块给设备中的其它所有模块进行供电。
-微控制器:包括控制基带信号处理、储能或数据调度状态、开关切换、***同步等。
-信号接收模块:用于解调反向散射通信接收端或是其它网络节点发送的控制命令或数据等。
-信道编码和调制模块:在控制器的控制下进行信道编码和信号调制,并通过选择开关在控制器的控制下通过选择不同的负载阻抗来实现调制。
-存储器或传感模块:用于存储设备的标识(Identification,ID)信息、位置信息或是传感数据等。
除了上述典型的构成模块之外,未来的反向散射通信发送端还可以集成隧道二极管放大器模块、低噪声放大器模块等,用于提升发送端的接收灵敏度和发送功率。
可选的,反向散射通信接收端的基本构成模块及主要功能包括:
-天线单元:用于接收调制的反向散射信号。
-反向散射信号检波模块:用于对反向散射通信发送端发送的反向散射信号进行检波,包括但不限于幅移键控(Amplitude Shift Keying,ASK)检波、相移键控(Phase-Shift Keying,PSK)检波、频移键控(Frequency-Shift Keying,FSK)检波或正交振幅调制(Quadrature Amplitude Modulation,QAM)检波等。
-解调和解码模块:对检波出的信号进行解调制和解码,以恢复出原始信息流。
反向散射通信设备通过调节其内部阻抗来控制调制电路的反射系数Γ,从而改变入射信号的幅度、频率、相位等,实现信号的调制。其中信号的反射系数可表征为:
其中,Z0为天线特性阻抗,Z1是负载阻抗,j表示复数,θT表示相位。假设入射信号为Sin(t),则输出信号为因此,通过合理的控制反射系数可实现对应的幅度调制、频率调制或相位调制。基于此,反向散射通信设备,可以是传统射频识别 标识(Radio Frequency Identification,RFID)中的标签(Tag),或者是无源或半无源物联网(Passive/Semi-passive Internet of Things,IoT)。为了方便,这里统称为BSC设备。
图2A示出了本申请实施例可应用的一种单基地反向散射通信***(Monostatic Backscatter Communication System,MBCSs)的示意图。MBCS***包括BSC发送设备(比如标签Tag)和读写器Reader,读写器Reader中包含RF射频源和BSC接收设备,RF射频源用于产生RF射频信号从而来给BSC发送设备/Tag供能。BSC发送设备反向散射经过调制后的RF射频信号,Reader中的BSC接收设备接收到该反向散射信号后进行信号解调。由于从BSC发送设备发送出去的RF射频信号会经过往返信号的信号衰减引起的双倍远近效应,因而信号的能量衰减大,因而MBCS***一般用于短距离的反向散射通信,比如传统的RFID应用。
图2B示出了本申请实施例可应用的一种双基地反向散射通信***(Bistatic Backscatter Communication Systems,BBCSs)的示意图。不同于单基地反向散射通信***(Monostatic Backscatter Communication System,MBCSs),BBCS***中的RF射频源、BSC发送设备和BSC接收设备是分开的,故可以避免往返信号衰减大的问题。另外,通过合理的放置RF射频源的位置可以进一步提高BBCS通信***的性能。值得注意的是,环境反向散射通信***ABCSs也是双基地反向散射通信***的一种,但与BBCS***中的射频源为专用的信号射频源不同,ABCS***中的射频源可以是可用的环境中的射频源,比如:电视塔、蜂窝基站、WiFi信号、蓝牙信号等。
本申请实施例适用的场景包括但不限于反向散射通信等。
脉冲类位置调制是指脉冲位置调制(Pulse Position Modulation,PPM)、差分脉冲位置调制(Differential Pulse Position Modulation,DPPM)、数字脉冲间隔调制(Digital Pulse Interval Modulation,DPIM)及其各种组合以及由此演变而成的各种脉冲位置调制方式。总体来说,脉冲类位置调制可以获得比较高的功率效率,且调制方式简单,硬件电路实现方便。下面以几种比较典型的脉冲类位置调制为例进行说明。
1)脉冲幅度调制(Pulse Amplitude Modulation,PAM)
脉冲幅度调制PAM是一种脉冲载波的幅度随基带信号变化的调制方式。该调制方式***实现简单,并且可以基于非相干解调器实现解调。如图3A所示为2阶PAM的调制示意图,其中用高电平表示“1”,用低电平表示“0”,该调制方式也可以称为开关键控(On-off Keying,OOK)或二进制振幅键控(Amplitude Shift Keying,ASK)。如图3B所示为4阶PAM的调制示意图,用4阶幅度的脉冲信号来承载信息比特,每个脉冲信号都可以携带两个信息比特。
2)脉冲位置调制(Pulse Position Modulation,PPM)
脉冲位置调制PPM是一种编码简单、功率效率高的调制方式。PPM通过调制信号脉冲序列中一个脉冲的相对位置(即相位),使该脉冲的相对位置随基带信号变化,但序列中各脉冲的幅度和宽度均不变。如图4所示为8-PPM的调制示意图,将每个帧分成8个 时隙,每次只在一个帧内的一个时隙上发送脉冲信号,并且这些脉冲的幅度相同,通过改变这些脉冲在帧内时隙上的相对位置来携带信息比特,从而实现调制。如图4所示,第一帧内,脉冲在第5个时隙上发送,则该脉冲可以携带比特“100”;第二帧内,脉冲在第2个时隙上发送,则该脉冲可以携带比特“001”。
3)多脉冲位置调制(Multiple Pulse Position Modulation,MPPM)
多脉冲位置调制MPPM是PPM调制的优化调制方式之一,并且具有更高的频带利用率。不同于PPM调制中的只在每一帧的一个时隙上发送一个脉冲,MPPM通过调制信号脉冲序列中多个脉冲的相对位置(即相位),使该多个脉冲的相对位置随基带信号变化,但序列中各脉冲的幅度和宽度均不变。如图5所示为一种2脉冲8-PPM的调制示意图,可记为(8,2)-MPPM,每一帧内分成8个时隙,每次同一帧内的两个时隙上发送不同的脉冲信号,并且改变这两个脉冲在帧内时隙上的相对位置排列组合来实现调制。每一帧内8个时隙上的2个脉冲之间的相对位置排列组合个数为因此一帧内可以携带log228=4.8个比特,而传统8-PPM在一帧内传输3比特。因此,MPPM能够实现更高频带利用率的数据传输。
4)多脉冲位置-幅度调制(Multiple Pulse Amplitude Position Modulation,MPAPM)
多脉冲位置-幅度调制MPAPM是MPPM调制的改进方式之一,在MPPM的基础上通过调制每个脉冲的幅度来实现信息调制,从而进一步提高***的频带利用率。如图6所示为一种4阶PAM-(8,2)-MPPM的调制示意图,时隙上脉冲的幅度为四种幅度中的一种,因此相比于图5,这两个脉冲可以在MPPM上的基础上额外增加4个比特,因此一帧内可以携带8.8个比特。
5)差分脉冲位置调制(Differential Pulse Position Modulation,DPPM)
差分脉冲位置调制DPPM是一种改进的PPM调制方式,其在PPM的基础上保留单个脉冲之前的低电平和去掉单个脉冲之后的低电平,如图7所示为一种4DPPM调制示意图。因此相比于PPM,在相同的时隙数的前提下,DPPM调制方式具有更高的占空比;在相同的信息传输过程中,DPPM调制所占用带宽比PPM减少,提高了数据传输效率。
需指出的,在脉冲位置调制PPM中,除了上述提到的MPPM、MPAPM、DPPM之外,还有其它的很多变种,包括但不限于:重叠脉冲位置调制(Overlapping Pulse Positioning Modulation,OPPM)、双宽脉冲位置调制(Dual Duration Pulse Positioning Modulation,DDPPM)、双幅度脉冲位置调制(Dual Amplitude Pulse Positioning Modulation,DAPPM)、缩短脉冲位置调制(Shorten Pulse Positioning Modulation,SPPM)、分离双脉冲位置调制(Separated Double Pulse Positioning Modulation,SDPPM)等。
上述提到的脉冲调制都是基于脉冲位置的,然而通过利用两个相邻脉冲之间的空时隙数目取代脉冲的绝对位置来加载信息也是另外一种选择,如数字脉冲间隔调制(Digital Pulse Interval Modulation,DPIM)。DPIM帧符号中所包含的时隙个数不是固定的,DPIM符号由起始时隙脉冲和其后的若干个空时隙表示,空时隙的个数根据二进制信源对应的十 进制数据来判定。在L-DPIM中,每帧符号的log22L位被映射成L种可能的符号结构,并且符号长度不同,最小及最大的符号长度分别为Ts和L·Ts,其中Ts为单个时隙大小。此外,为了尽可能降低数据传输过程中码间干扰的影响,可在每个DPIM符号后面加上一个保护时隙,这样最小和最大符号长度分别为2Ts和(L+1)·Ts。如图8A所示为一种无保护时隙下的4DPIM的调制示意图,如图8B所示为一种有保护时隙下的4DPIM的调制示意图。
除了上述单脉冲的DPIM调制之外,还有很多DPIM调制的变种,包括但不限于:双头脉冲间隔调制(Double-headed Pulse Interval Modulation,DH-PIM)、双脉冲间隔调制(Dual Pulse Pulse Interval Modulation,DPPIM)、双幅度脉冲间隔调制(Dual-amplitude Pulse Interval Modulation,DAPIM)、定长数字脉冲间隔调制(Fixed-length Digital Pulse Interval Modulation,FDPIM)、定长双幅度脉冲间隔调制(Fixed-length Dual-amplitude Pulse Interval Modulation,FDAPIM)等。
为了解决如何在实现高阶调制提升频谱效率的同时,简化信号处理过程的问题,本申请实施例中提出了差分幅度调制(Differential Amplitude Shift Keying,DASK)和脉冲调制的联合调制,此联合调制可称为差分幅度脉冲调制(Differential Amplitude Pulse Modulation,DAPM),并通过设计调制和解调方法、信令流程、配置参数等,使得通信***能够灵活的实现差分幅度调制和脉冲调制的联合调制和解调制。基于此联合调制,可在保证高功率效率的同时提高频谱效率,且由于采用了差分幅度调制和脉冲调制(比如脉冲位置/间隔调制),使得发送端不需要发送导频且接收端不需要进行信道估计和信道均衡的情况下完成信号解调,从而可以简化信号处理过程。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信息处理方法、装置、通信设备及可读存储介质进行详细地说明。
请参见图9,图9是本申请实施例提供的一种信息处理方法的流程图,该方法应用于第一设备,该第一设备为通信***中的发送端/调制端,可选为终端、网络侧设备或BSC***中的BSC发送设备,该BSC发送设备包括但不限于标签Tag、无源或半无源的物联网IoT设备等。如图9所示,该方法包括如下步骤:
步骤91:第一设备确定第一调制的调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;
步骤92:第一设备根据所述调制参数,对第一信息进行第一调制,获得第一信号;
步骤93:第一设备向第二设备发送所述第一信号。
本实施例中,所述脉冲调制可选为脉冲位置/间隔调制,可选为上述介绍的任一脉冲调制,比如PAM、PPM、DPPM、DPIM等,对此不作限定。所述第一调制的调制参数可以包括但不限于幅度分割因子、初始幅度值、调制类型、调制阶数等。所述第一信息为待调制比特信息,可选为输入比特流等。
一些实施例中,上述的第二设备为通信***中的接收端/解调端,可选为BSC***中的BSC接收设备,包括但不限于读写器设备等。
一些实施例中,所述第一调制可称为差分幅度脉冲调制(Differential Amplitude Pulse Modulation,DAPM)。
本申请实施例的信息处理方法,第一设备可以确定第一调制的调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制,并根据该调制参数,对第一信息进行第一调制,获得并发送第一信号。由此,借助差分幅度调制和脉冲调制的联合调制,可以在保证高功率效率的同时提升频谱效率,且由于采用了差分幅度调制,可以使得通信***具有更好的抗信道多径、信号干扰的影响,从而使得发送端不需要发送导频且接收端不需要进行信道估计和信道均衡的情况下完成信号解调,从而简化信号处理过程。
可选的,上述对第一信息进行第一调制的过程可以包括:
第一设备根据所述调制参数,对第一信息中的比特信息进行串并转化,获得第一比特信息和第二比特信息,并根据第一比特信息映射得到第一时刻的幅度差分系数,根据第二比特信息映射得到第一时刻的脉冲调制符号;其中,所述第一比特信息为差分幅度调制比特信息,在根据第一比特信息映射得到第一时刻的幅度差分系数时,可以基于预设的差分幅度调制比特信息与幅度差分系数的对应关系映射得到;所述第二比特信息为脉冲符号调制比特信息,在根据第二比特信息映射得到第一时刻的脉冲调制符号,可以基于预设的脉冲符号调制比特信息与脉冲调制符号的对应关系映射得到;所述串并转化为将串行比特信息转化为并行比特信息,即将第一信息中的比特信息转化为第一比特信息和第二比特信息;
第一设备根据第一时刻的幅度差分系数和第二时刻的脉冲幅度,确定第一时刻的脉冲幅度,所述第二时刻为第一时刻的上一个时刻,所述第一时刻和所述第二时刻为存在脉冲调制符号的时刻;比如,第一时刻为当前时刻t,第二时刻为上一个时刻t-1;
第一设备根据第一时刻的脉冲幅度和第一时刻的脉冲调制符号,确定第一时刻的调制符号,所述调制符号为差分幅度和脉冲联合调制后的符号。
这样,可以基于幅度映射和脉冲映射过程,可以实现对第一信息的差分幅度调制和脉冲调制的联合调制。
一些实施例中,在根据第一时刻的幅度差分系数和第二时刻的脉冲幅度,确定第一时刻的脉冲幅度时,可以将第一时刻的幅度差分系数和第二时刻的脉冲幅度相乘,获得第一时刻的脉冲幅度。
一些实施例中,在根据第一时刻的脉冲幅度和第一时刻的脉冲调制符号,确定第一时刻的调制符号时,可以将第一时刻的脉冲幅度和第一时刻的脉冲调制符号相乘,获得第一时刻的调制符号,即获得差分幅度和脉冲联合调制后的符号。
可选的,上述脉冲调制可以为单幅度脉冲调制或恒幅度脉冲调制。
可选的,上述脉冲调制可以包括以下至少一项:
单脉冲调制或多脉冲调制;
脉冲间隔调制、脉冲位置调制和/或差分脉冲间隔调制;
固定时隙脉冲调制或非固定时隙脉冲调制。
本申请实施例中,第一调制即DAPM为差分幅度调制和脉冲调制的联合调制,对于对DAPM中的每个脉冲进行差分幅度调制,可使得脉冲的幅度信息也可以携带比特信息。
DAPM在空间中映射的集合表达式可以如下所示:
上述式中,Na表示幅度调制的状态数量或者阶数,ma表示幅度调制所需的比特数。Np表示相位脉冲的状态(比如脉冲位置或脉冲间隔)数量,mp表示脉冲调制所需的比特数。M=Na·Np表示DAPM调制的所有状态的数量,m=ma+mp表示DAPM调制所需的比特数。α表示DAPSK调制中的幅度分割因子。
DAPM调制中的幅度分割因子α可以是根据调制类型、调制的状态数M和信道状态来确定的,并且可以由α确定DAPM调制的幅度值。表1给出了一种α值在不同调制类型、调制阶数、信道状态下的取值示例。
表1
上述表1中,Rayleigh为瑞利分布,上述Rician为莱斯分布。
一种可能的实现方案中,M-DAPM调制可以分成两个步骤实现:首先根据ma位的比特流映射得到当前时刻(如时刻k)的幅度差分系数γk,并将mp位的比特流映射得到当前时刻的脉冲调制(比如脉冲间隔、位置等调制)符号pk;然后将得到的幅度差分系数γk与上一个时刻(如时刻k-1)脉冲的幅度ak-1相乘,得到当前时刻脉冲的幅度ak,之后与当 前时刻的脉冲调制符号pk相乘,得到当前时刻调制后的符号sk,如图10所示。
如图10所示,具体的调制流程可包括:m位输入比特流经过串并转化之后,形成ma位的差分幅度调制比特流和mp位的脉冲符号调制比特流,然后将ma位的差分幅度调制比特流经幅度映射后生成当前时刻的幅度差分系数γk,和将mp位的脉冲符号调制比特流经脉冲位置/间隔映射后生成当前时刻的脉冲调制符号pk;之后,将幅度差分系数γk与上一个时刻脉冲的幅度ak-1(此由上一个时刻的调制符号sk-1经取模得到)相乘,得到当前时刻脉冲的幅度ak,并将ak与pk相乘,得到当前时刻调制后的符号sk,如下所示:
sk=ak·pk=γk·ak-1·pk
其中,当前时刻脉冲的幅度为:ak=γk·ak-1
以16-DAPM为例,并且调制类型是由2DASK调制和8DPIM调制联合实现,此可扩展到其它的调制类型和组合方式,对此不作限定。8DPIM调制采用现有的8DPIM调制方式进行调制即可,包括有保护时隙或无保护时隙两种,这里不做过多的介绍。以2DASK调制的幅度分割因子α=2为例,结合8DPIM调制,DAPM的调制幅度值最大值不超过2。由于幅度2DASK调制过程是将幅度差分系数γk与前一个时刻的幅度调制值ak-1相乘得到当前时刻的幅度调制值ak,因此幅度调制比特与γk的对应关系可如下表2所示。当输入的幅度比特为1,前一个时刻的幅度调制值ak-1=1时,则当前时刻的幅度调制值ak=γk·ak-1=1×α=2,表示幅度由低电平幅度调制到高电平幅度。当前一个时刻的幅度调制值ak-1=2,当前的输入比特为1时,则当前时刻的幅度调制值ak=γk·ak-1=α×1/α=1,表示幅度由高电平幅度调制到低电平幅度,以此来保持高低电平幅度之间的相互转换。
表2
以32-DAPM为例,并且调制类型是由4DASK调制和8-MPPM调制联合实现。其中,8-MPPM为2-pulse和8-PPM调制,可记为(8,2)-MPPM。每一帧内分成8个时隙,每次同一个帧内的两个时隙上发送不同的脉冲信号,并且改变这两个脉冲在帧内时隙上的相对位置排列组合来实现调制。具体的关于8-MPPM可采用已有的方式进行,这里不做过多的介绍。对于4DASK调制,调制的输入比特与幅度差分系数的映射表可如下表3所示。
表3

以16-DAPM为例,并且调制类型是由4DASK调制和4-DPPM调制联合实现。其中,4-DPPM调制中保留单个脉冲之前的低电平,去掉单个脉冲之后的低电平,因此表征一个4-DPPM的符号的时隙数是不固定的。其具体的调制原理可以参考已有技术,这里不做过多的介绍。而对于4DASK,可采用上述表3所示的映射表。
DAPM的解调过程是调制的逆过程,需要对脉冲幅度进行解差分,并且对脉冲的位置/间隔进行解调制。如图11A所示,接收端接收到信号rk(t)后,分别同时进行脉冲幅度和脉冲位置/间隔解调,DASK解调会逆映射出ma位比特流(即比特信息),脉冲位置/间隔解调会逆映射出mp位比特流;之后,ma位比特流和mp位比特流经并串转化后合成输出比特流。其中rk(t)可以表示为:
上式中,ρk为脉冲的幅度;cl∈{c0,c1,...,cL-1}为映射后的时隙序列,其值为0或者1;p(t)为幅值为1、宽度为的矩形脉冲;T为周期。对于不同的调制类型,L有可能不是固定的,具体的和每种脉冲调制类型相关。
以16-DAPM解调制为例,并且以调制类型是由2DASK调制和8DPIM调制联合实现,此可扩展到其它的调制类型和组合方式;解调端为2DASK解调和8DAPSK解调。2DASK解调过程如图11B所示,接收信号rk(t)经过脉冲取模运算,得到rk(t)的幅度值ρk,将幅度值ρk延时一个周期T的时间后,再与幅度值ρk做除法(此类似于对ρk取倒数),除法的结果会得到一个值,利用判决门限,就可解调恢复出ma位比特流。过程如下:
其中,|·|表示取模运算。得到之后需要经过判决门限后,才能解调恢复出ma位比特流,其中判决门限取值可如下:
当M=16时,根据调制过程中所定义的幅度分割因子来确定解调门限,比如根据调制编码过程中所定义的α=2,可知有:
至于8DPIM的解调过程可以采用现有的技术,这里不做过多的介绍。
类似的,对于由4DASK调制和8-MPPM调制联合实现的32-DAPM解调为例,其中 的4DASK的解调过程及对应阈值如下表4所示:
表4
下面结合具体实施例对本申请中的第一调制即DAPM进行说明。
实施例一:固定时隙数+单脉冲
由于脉冲幅度/间隔调制方式的多样性,因此使得DAPM的调制种类同样多样性。本实施例一以表征脉冲符号的时隙数固定,且每个脉冲符号时隙内只有单个脉冲,这一类的脉冲调制主要是以PPM调制为主。以2DASK+8PPM联合调制形成的16-DAPM为例,每个脉冲在一个符号周期内有8种可能的时隙位置,每个脉冲有两种可能的幅度1和α,因此每个脉冲可以携带4比特信息。比如图12所示,以第一个符号周期为例,该符号周期中的第5个时隙位置上有幅度为1的脉冲,并且该符号周期的上一个脉冲的幅度值为1,因此表征比特信息“0100”,其中第一个比特“0”表示2DASK中的幅度值为1,对应的幅度差分系数为1;剩下的三个比特信息为“100”,表示脉冲为符号周期中的第五个时隙位置。值得注意的是,同样以第一个符号周期为例,即该符号周期中的第5个时隙位置上有幅度为1的脉冲,但如果该符号周期的上一个脉冲的幅度值为α,因此表征比特信息“1100”,其中第一个比特“1”表示2DASK中的幅度值为1,对应的幅度差分系数为1/α;剩下的三个比特信息为“100”,表示脉冲为符号周期中的第五个时隙位置。其他符号周期中的脉冲表征比特信息的方式与第一个符号周期中的脉冲表征比特信息的方式相同,在此不再赘述。
实施例二:固定时隙数+多脉冲
本实施例二以表征脉冲符号的时隙数固定,且每个脉冲符号时隙内有两个或两个以上的脉冲,这一类的脉冲调制主要是以MPPM调制、双脉冲间隔调制(Dual Pulse Pulse Interval Modulation,DPPIM)等为主。以4DASK+8MPPM联合调制形成的32-DAPM为例,每个脉冲符号周期有8个时隙位置,每个符号周期内的两个时隙上发送不同的脉冲信号,并且改变这两个脉冲在符号周期内时隙上的相对位置排列组合来实现调制。每一帧内8个时隙上的2个脉冲之间的相对位置排列组合个数为另外每个脉冲有4中可能的幅度值1,α,α23;因此每个符号周期内可能携带2+log228=6.8个比特。其中每个脉冲的幅度信息携带2比特信息,一个符号周期内的脉冲的相对位置组合携带4.8比特信息,具体的脉冲调制形式可如图13所示,具体的调制方式与上述实施例类似,这里不再赘述。
实施例三:非固定时隙数+单脉冲
本实施例三以表征脉冲符号周期的时隙数非固定,且每个脉冲符号时隙内只有单个脉冲,这一类的脉冲调制主要是以DPPM、DPIM以及相应变种DDPPM为主。以2DASK+4DPIM(有保护时隙)联合调制形成的8-DAPM为例,每个脉冲符号周期的时隙数不是固定的,DPIM符号由起始时隙脉冲和其后附件的若干个空时隙表示,空时隙的个数根据二进制信源对应的十进制数据来判定,另外为了尽可能降低数据传输过程中码间干扰的影响,在每个DPIM符号后面加上一个保护时隙,这样最小和最大符号长度分别为2Ts和5Ts;另外每个脉冲有两种可能的幅度1和α,因此每个脉冲符号周期可以携带3比特信息。比如图14所示,以第二个符号周期为例,该符号周期中的比特信息“101”中的后面两个比特“01”表示该符号周期有三个时隙,其中一个为保护时隙,第一个时隙为脉冲,第二个时隙没有脉冲;“101”比特信息中的第一个比特“1”表示脉冲幅度值为α(上一个符号周期的脉冲幅度值为1)。具体的调制过程可以参考前面的方案,这里不再赘述。
实施例四:非固定时隙数+多脉冲
本实施例四以表征脉冲符号周期的时隙数非固定,且每个脉冲符号时隙内有多个(大于或等于2)脉冲,这一类的脉冲调制主要包含双头脉冲间隔调制(Double-headed pulse interval modulation,DHPIM)等。其中DHPIM调制中的每个符号由头部时隙与后续的空时隙组成。头部时隙固定长度为(β+1)个时隙(β为正整数),分两种情况:β/2个时隙和(β/2+1)个时隙;β个时隙和1个时隙。l为十进制数据对应的十进制数,当l<2L-1时,头部时隙组成为前一种情况,后续的空时隙个数为l;当l≥2L-1时,头部时隙组合为后一种情况,后续的空时隙的个数为(2L-1-1-l)。以2DASK+16DHPIM(β=1,2)组成的32DAPM为例,具体的脉冲调制形式可如图15所示。具体的关于2DASK与16DPIM的调制和解调过程可以参考前述过程,这里不再赘述。
本申请实施例中,第一设备可以自主确定第一调制(即DAPM)的调制参数,也可以基于其他设备的配置确定第一调制的调制参数,说明如下。
可选的,第一设备可以根据以下至少一项,确定第一调制的调制参数:
从第三设备接收的第一配置信息,所述第一配置信息用于配置第一调制(即DAPM)的调制参数;所述第三设备为不同于第一设备和第二设备的设备,比如可以为***端或网络侧设备等;
第一设备和/或第二设备的能力;
信道状态信息;
第一设备的默认配置信息和/或出厂设置信息;比如,该默认配置信息为默认配置好的调制参数,该出厂设置信息为出厂配置好的调制参数;
第二设备的默认配置信息和/或出厂设置信息;比如,该默认配置信息为默认配置好的调制参数,该出厂设置信息为出厂配置好的调制参数。
这样,可以灵活确定第一调制的调制参数,从而使其可适用于不同信道环境、调幅/ 调节脉冲的能力和/或收发天线下的反向散射通信等。
一些实施例中,第一设备可以根据从第三设备接收的第一配置信息,确定第一调制的调制参数;或者,根据第一设备和/或第二设备的能力、信道状态信息以及第一设备/第二设备的默认配置信息和/或出厂设置信息等,确定第一调制的调制参数;或者,根据从第三设备接收的第一配置信息,确定第一调制的部分调制参数,同时根据第一设备和/或第二设备的能力、信道状态信息以及第一设备/第二设备的默认配置信息和/或出厂设置信息等,确定第一调制的部分调制参数。
可选的,所述第一配置信息可以包括以下至少一项:
调制类型,所述调制类型表征差分幅度调制和脉冲调制的组合方式;所述脉冲调制比如为脉冲位置/间隔调制,比如为单幅度/恒幅度脉冲调制;
幅度分割因子α;
初始幅度值a0
调制阶数。
上述幅度分割因子可称为功率分割因子。
可选的,所述第一配置信息中的调制阶数可包括以下至少一项:
第一调制中的差分幅度调制DASK的调制阶数;
第一调制中的脉冲调制的调制阶数;此脉冲调制比如为脉冲位置/间隔调制;
第一调制的调制阶数。
一些实施例中,所述第一配置信息中的调制阶数可包括以下任一项:
DASK的调制阶数M,脉冲间隔/位置调制的调制阶数N;
DASK调制阶数M,DAPM的调制阶数M×N;
脉冲间隔/位置调制的调制阶数N,DAPM的调制阶数M×N;
DASK的调制阶数M,脉冲间隔/位置调制的调制阶数N,DAPM的调制阶数M×N。
可选的,所述第一配置信息可以通过以下至少一项承载:层1信令、媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)、无线资源控制(Radio Resource Control,RRC)信令等。该层1信令比如为下行控制信息(Downlink Control Information,DCI)、副链路控制信息(Sidelink Control Information,SCI)或者前导序列等。
可选的,第一设备和/或第二设备的能力可以包括以下至少一项:
第一设备和/或第二设备的调幅能力,比如包含以下至少之一:支持的可调节反射信号的幅度信息、连续调幅及对应的连续特征的状态数量、离散调幅及对应的离散特征的状态数量等;
第一设备和/或第二设备的调节脉冲的能力,比如包含以下至少之一:调节脉冲的时隙位置、时隙间隔等。
这样借助第一设备/第二设备的调幅能力和/或调节脉冲的能力,可以准确确定相应第一调制的调制参数。
可选的,第一设备和/或第二设备的能力还可包括各自的天线能力,以在确定第一调制的调制参数(比如幅度分割因子等)时考虑收发端的收发能力。
可选的,第一设备可以向第二设备和/或第三设备上报第一设备的能力,所述能力包括以下至少一项:第一设备的调幅能力、第一设备的调节脉冲的能力。这样可使得第二设备和/或第三设备获知第一设备的能力,以便辅助确定第一调制的调制参数。
一些实施例中,在进入连接态后,第一设备向第二设备和/或第三设备通过信令上报自己的能力信息,该信令信息比如为UE Capability Enquiry-UE Capability Information。
一些实施例中,在进入连接态后,第一设备向第二设备和/或第三设备通过信令信息上报自己的能力信息,该信令信息比如为UE Assistance Information。
一些实施例中,在初始注册或添加过程中,第一设备向第二设备和/或第三设备通过信令消息主动上报自己的能力信息,该信令消息比如为初始终端消息(Initial UE message)。
可选的,上述信道状态信息可以包括以下至少一项:
历史的信道状态信息,比如第一设备和/或第二设备驻留时记录的信道状态信息;
第一设备和/或第二设备实时的信道状态信息,比如可以是估计或是通过其它方式获得的信息状态信息。
本申请实施例中,第一设备可以向第二设备发送第二信息,所述第二信息用于指示第一调制的调制参数或解调制参数,以便第二设备确定第一调制对应的解调制参数。
可选的,所述第二信息可以包括以下至少一项:
调制类型,所述调制类型表征差分幅度调制和脉冲调制的组合方式;所述脉冲调制比如为脉冲位置/间隔调制,比如为单幅度/恒幅度脉冲调制;
幅度分割因子α;
初始幅度值a0
调制阶数。
可选的,所述幅度分割因子可以是根据第一调制的调制类型、信道状态信息和调制阶数中的至少一者确定,比如进一步结合预设的映射表确定。
可选的,所述第二信息中的调制阶数可包括以下至少一项:
第一调制中的差分幅度调制DASK的调制阶数;
第一调制中的脉冲调制的调制阶数;此脉冲调制比如为脉冲位置/间隔调制;
第一调制的调制阶数。
一些实施例中,所述第二信息中的调制阶数可包括以下任一项:
DASK的调制阶数M,脉冲间隔/位置调制的调制阶数N;
DASK调制阶数M,DAPM的调制阶数M×N;
脉冲间隔/位置调制的调制阶数N,DAPM的调制阶数M×N;
DASK的调制阶数M,脉冲间隔/位置调制的调制阶数N,DAPM的调制阶数M×N。
可选的,第一设备可以通过以下至少一项,向第二设备发送第二信息:层1信令、 MAC CE、RRC信令。该层1信令比如为DCI、SCI或者前导序列等。
请参见图16,图16是本申请实施例提供的一种信息处理方法的流程图,该方法应用于第二设备,该第二设备为通信***中的接收端/解调端,可选为终端、网络侧设备或BSC***中的BSC接收设备,该BSC接收设备包括但不限于读写器设备等。如图16所示,该方法包括如下步骤:
步骤161:第二设备确定第一调制的解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;
步骤162:第二设备从第一设备接收第一信号;
步骤163:第二设备根据所述解调制参数,对第一信号进行解调制,得到第一信息。
本实施例中,所述脉冲调制可选为脉冲位置/间隔调制,可选为上述介绍的任一脉冲调制,比如PAM、PPM、DPPM、DPIM等,对此不作限定。所述第一调制的解调制参数与相应调制参数相同,可以包括但不限于幅度分割因子、初始幅度值、调制类型、调制阶数等。所述第一信息为待调制比特信息,可选为输入比特流等。
一些实施例中,上述的第一设备为通信***中的发送端/调制端,可选为BSC***中的BSC发送设备,包括但不限于标签Tag、无源或半无源的物联网IoT设备等。
一些实施例中,所述第一调制可称为差分幅度脉冲调制DAPM。
本申请实施例的信息处理方法,第二设备可以确定第一调制的解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制,并根据该解调制参数,对第一信号进行解调制。由此,借助差分幅度调制和脉冲调制的联合调制,可以在保证高功率效率的同时提升频谱效率,且由于采用了差分幅度调制,可以使得通信***具有更好的抗信道多径、信号干扰的影响,从而使得发送端不需要发送导频且接收端不需要进行信道估计和信道均衡的情况下完成信号解调,从而简化信号处理过程。
可选的,上述对第一信号进行解调制的过程可以包括:
第二设备根据所述解调制参数,对第一信号进行差分幅度解调制,得到第一比特信息,和对第一信号进行脉冲解调制,得到第二比特信息;
第二设备对第一比特信息和第二比特信息进行并串转化,获得第一信息。
本申请实施例中,第二设备可以自主确定第一调制(即DAPM)的解调制参数,也可以基于其他设备的配置和/或第一设备的指示,确定第一调制的解调制参数,说明如下。
可选的,第二设备可以根据以下至少一项,确定第一调制的解调制参数:
从第三设备接收的第二配置信息,所述第二配置信息用于配置第一调制的调制参数或解调制参数;所述第三设备为不同于第一设备和第二设备的设备,比如可以为***端或网络侧设备等;
从第一设备接收的第二信息,所述第二信息用于指示所述第一调制的调制参数或解调制参数;由于解调制参数与相应调制参数相同,因此,基于此第二信息指示的调制参数即可确定解调制参数;
第一设备和/或第二设备的能力;
信道状态信息;
第一设备的默认配置信息和/或出厂设置信息;比如,该默认配置信息为默认配置好的调制参数,该出厂设置信息为出厂配置好的调制参数;
第二设备的默认配置信息和/或出厂设置信息;比如,该默认配置信息为默认配置好的调制参数,该出厂设置信息为出厂配置好的调制参数。
这样,可以灵活确定第一调制的解调制参数,从而使其可适用于不同信道环境、调幅/调节脉冲的能力和/或收发天线下的反向散射通信等。
可选的,所述第一配置信息可以包括以下至少一项:
调制类型,所述调制类型表征差分幅度调制和脉冲调制的组合方式;所述脉冲调制比如为脉冲位置/间隔调制,比如为单幅度/恒幅度脉冲调制;
幅度分割因子α;
初始幅度值a0
调制阶数。
上述幅度分割因子可称为功率分割因子。
可选的,所述第一配置信息中的调制阶数可包括以下至少一项:
第一调制中的差分幅度调制DASK的调制阶数;
第一调制中的脉冲调制的调制阶数;此脉冲调制比如为脉冲位置/间隔调制;
第一调制的调制阶数。
一些实施例中,所述第一配置信息中的调制阶数可包括以下任一项:
DASK的调制阶数M,脉冲间隔/位置调制的调制阶数N;
DASK调制阶数M,DAPM的调制阶数M×N;
脉冲间隔/位置调制的调制阶数N,DAPM的调制阶数M×N;
DASK的调制阶数M,脉冲间隔/位置调制的调制阶数N,DAPM的调制阶数M×N。
可选的,所述第二信息可以包括以下至少一项:
调制类型,所述调制类型表征差分幅度调制和脉冲调制的组合方式;所述脉冲调制比如为脉冲位置/间隔调制,比如为单幅度/恒幅度脉冲调制;
幅度分割因子α;
初始幅度值a0
调制阶数。
可选的,所述第二信息中的调制阶数可包括以下至少一项:
第一调制中的差分幅度调制DASK的调制阶数;
第一调制中的脉冲调制的调制阶数;此脉冲调制比如为脉冲位置/间隔调制;
第一调制的调制阶数。
一些实施例中,所述第二信息中的调制阶数可包括以下任一项:
DASK的调制阶数M,脉冲间隔/位置调制的调制阶数N;
DASK调制阶数M,DAPM的调制阶数M×N;
脉冲间隔/位置调制的调制阶数N,DAPM的调制阶数M×N;
DASK的调制阶数M,脉冲间隔/位置调制的调制阶数N,DAPM的调制阶数M×N。
可选的,上述信道状态信息可以包括以下至少一项:
历史的信道状态信息,比如第一设备和/或第二设备驻留时记录的信道状态信息;
第一设备和/或第二设备实时的信道状态信息,比如可以是估计或是通过其它方式获得的信息状态信息。
可选的,第二设备可以根据从第三设备接收的第二配置信息,确定第一调制的解调制参数;或者,可以根据从第一设备接收的第二信息,确定第一调制的解调制参数;或者,可以根据从第三设备接收的第二配置信息和从第一设备接收的第二信息,确定第一调制的解调制参数。
一些实施例中,当根据第二配置信息和第二信息确定第一调制的解调制参数时,可以采用如下任一种方式:
(I1)第二配置信息包括:调制类型、调制阶数、幅度分割因子α;第二信息包括:初始幅度值a0
(I2)第二配置信息包括:调制类型、调制阶数、初始幅度值a0;第二信息包括:幅度分割因子α;
(I3)第二配置信息包括:调制类型、、初始幅度值a0、幅度分割因子α;第二信息包括:调制阶数;
(I4)第二配置信息包括:调制类型、调制阶数、初始幅度值a0、幅度分割因子α;第二信息包括:调制类型;
(II1)第二配置信息包括:调制类型、调制阶数;第二信息包括:初始幅度值a0、幅度分割因子α;
(II2)第二配置信息包括:调制类型、初始幅度值a0;第二信息包括:调制阶数、幅度分割因子α;
(II3)第二配置信息包括:调制类型、幅度分割因子α;第二信息包括:初始幅度值a0、调制阶数;
(II4)第二配置信息包括:幅度分割因子α、调制阶数;第二信息包括:初始幅度值a0、调制类型;
(II5)第二配置信息包括:初始幅度值a0、调制阶数;第二信息包括:幅度分割因子α、调制类型;
(II6)第二配置信息包括:初始幅度值a0、幅度分割因子α;第二信息包括:调制类型、调制阶数;
(III1)第二信息包括:调制类型、调制阶数、幅度分割因子α;第二配置信息包括: 初始幅度值a0
(III2)第二信息包括:调制类型、调制阶数、初始幅度值a0;第二配置信息包括:幅度分割因子α;
(III3)第二信息包括:调制类型、、初始幅度值a0、幅度分割因子α;第二配置信息包括:调制阶数;
(III4)第二信息包括:调制类型、调制阶数、初始幅度值a0、幅度分割因子α;第二配置信息:调制类型。
可选的,第一设备和/或第二设备的能力可以包括以下至少一项:
第一设备和/或第二设备的调幅能力,比如包含以下至少之一:支持的可调节反射信号的幅度信息、连续调幅及对应的连续特征的状态数量、离散调幅及对应的离散特征的状态数量等;
第一设备和/或第二设备的调节脉冲的能力,比如包含以下至少之一:调节脉冲的时隙位置、时隙间隔等。
这样借助第一设备/第二设备的调幅能力和/或调节脉冲的能力,可以准确确定第一调制的解调制参数。
可选的,第一设备和/或第二设备的能力还可包括各自的天线能力,以在确定第一调制的调制参数(比如幅度分割因子等)时考虑收发端的收发能力。
可选的,所述第二信息为第二设备通过以下至少一项接收的:层1信令、MAC CE、RRC信令。该层1信令比如为DCI、SCI或者前导序列等。
可选的,所述第二配置信息可以通过以下至少一项承载:层1信令、MAC CE、RRC信令。该层1信令比如为DCI、SCI或者前导序列等。
可选的,第二设备可以向第一设备和/或第三设备上报第二设备的能力,所述能力包括以下至少一项:第二设备的调幅能力、第二设备的调节脉冲的能力。这样可使得第一设备和/或第三设备获知第二设备的能力,以便辅助确定第一调制的调制参数/解调制参数。
一些实施例中,在进入连接态后,第二设备向第一设备和/或第三设备通过信令上报自己的能力信息,该信令信息比如为UE Capability Enquiry-UE Capability Information。
一些实施例中,在进入连接态后,第二设备向第一设备和/或第三设备通过信令信息上报自己的能力信息,该信令信息比如为UE Assistance Information。
一些实施例中,在初始注册或添加过程中,第二设备向第一设备和/或第三设备通过信令消息主动上报自己的能力信息,该信令消息比如为Initial UE message。
请参见图17,图17是本申请实施例提供的一种信息处理方法的流程图,该方法应用于第三设备,该第三设备为不同于第一设备和第二设备的设备,比如可以为***端或网络侧设备等。如图17所示,该方法包括如下步骤:
步骤171:第三设备向第一设备发送第一配置信息,和/或向第二设备发送第二配置信息。
本实施例中,所述第一配置信息用于配置第一调制的调制参数,所述第二配置信息用于配置第一调制的调制参数或解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制。所述脉冲调制可选为脉冲位置/间隔调制,可选为上述介绍的任一脉冲调制,比如PAM、PPM、DPPM、DPIM等,对此不作限定。所述第一调制的解调制参数与相应调制参数相同,可以包括但不限于幅度分割因子、初始幅度值、调制类型、调制阶数等。
可选的,第三设备可以通过以下至少一项,向第一设备发送第一配置信息:层1信令、MAC CE、RRC信令。该层1信令比如为DCI、SCI或者前导序列等。
可选的,第三设备可以通过以下至少一项,向第二设备发送第二配置信息:层1信令、MAC CE、RRC信令。该层1信令比如为DCI、SCI或者前导序列等。
这样,可以实现为第一设备和/或第二设备配置第一调制的调制参数/解调制参数,从而借助差分幅度调制和脉冲调制的联合调制,可以在保证高功率效率的同时提升频谱效率,且由于采用了差分幅度调制,可以使得通信***具有更好的抗信道多径、信号干扰的影响,从而使得发送端不需要发送导频且接收端不需要进行信道估计和信道均衡的情况下完成信号解调,从而简化信号处理过程。
可选的,第一调制的调制参数/解调制参数的配置情况可以包括以下任一项:
1)第三设备向第一设备发送第一配置信息,同时向第二设备发送第二配置信息,第一设备不向第二设备发送第二信息;此时,第一设备可根据第一配置信息确定第一调制的调制参数,第二设备可根据第二配置信息确定第一调制的解调制参数;
2)第三设备向第一设备发送第一配置信息,但不向第二设备发送第二配置信息,第一设备向第二设备发送第二信息;此时,此时,第一设备可根据第一配置信息确定第一调制的调制参数,第二设备可根据第二信息确定第一调制的解调制参数;
3)第三设备向第一设备发送第一配置信息,同时向第二设备发送第二配置信息,第一设备向第二设备发送第二信息;此时,第一设备可根据第一配置信息确定第一调制的调制参数,第二设备可根据第二配置信息和第二信息联合确定第一调制的完整的解调制参数。
一些实施例中,当第三设备不向第一设备发送第一配置信息时,第一设备可以自主确定第一调制的调制参数。
一些实施例中,当第三设备不向第二设备发送第二配置信息时,第一设备可以自主确定第一调制的解调制参数,也可以根据第一设备的指示确定第一调制的解调制参数。
可选的,所述第一配置信息可以包括以下至少一项:
调制类型,所述调制类型表征差分幅度调制和脉冲调制的组合方式;所述脉冲调制比如为脉冲位置/间隔调制,比如为单幅度/恒幅度脉冲调制;
幅度分割因子α;
初始幅度值a0
调制阶数。
上述幅度分割因子可称为功率分割因子。
可选的,所述第一配置信息中的调制阶数可包括以下至少一项:
第一调制中的差分幅度调制DASK的调制阶数;
第一调制中的脉冲调制的调制阶数;此脉冲调制比如为脉冲位置/间隔调制;
第一调制的调制阶数。
一些实施例中,所述第一配置信息中的调制阶数可包括以下任一项:
DASK的调制阶数M,脉冲间隔/位置调制的调制阶数N;
DASK调制阶数M,DAPM的调制阶数M×N;
脉冲间隔/位置调制的调制阶数N,DAPM的调制阶数M×N;
DASK的调制阶数M,脉冲间隔/位置调制的调制阶数N,DAPM的调制阶数M×N。
可选的,所述第二配置信息可以包括以下至少一项:
调制类型,所述调制类型表征差分幅度调制和脉冲调制的组合方式;所述脉冲调制比如为脉冲位置/间隔调制,比如为单幅度/恒幅度脉冲调制;
幅度分割因子α;
初始幅度值a0
调制阶数。
上述幅度分割因子可称为功率分割因子。
可选的,所述第二配置信息中的调制阶数可包括以下至少一项:
第一调制中的差分幅度调制DASK的调制阶数;
第一调制中的脉冲调制的调制阶数;此脉冲调制比如为脉冲位置/间隔调制;
第一调制的调制阶数。
一些实施例中,所述第二配置信息中的调制阶数可包括以下任一项:
DASK的调制阶数M,脉冲间隔/位置调制的调制阶数N;
DASK调制阶数M,DAPM的调制阶数M×N;
脉冲间隔/位置调制的调制阶数N,DAPM的调制阶数M×N;
DASK的调制阶数M,脉冲间隔/位置调制的调制阶数N,DAPM的调制阶数M×N。
可选的,第三设备根据以下至少一项,确定第一调制的调制参数或解调制参数:
第一设备和/或第二设备的能力;
信道状态信息;
第一设备的默认配置信息和/或出厂设置信息;比如,该默认配置信息为默认配置好的调制参数,该出厂设置信息为出厂配置好的调制参数;
第二设备的默认配置信息和/或出厂设置信息;比如,该默认配置信息为默认配置好的调制参数,该出厂设置信息为出厂配置好的调制参数。
可选的,第一设备和/或第二设备的能力可以包括以下至少一项:
第一设备和/或第二设备的调幅能力,比如包含以下至少之一:支持的可调节反射信号的幅度信息、连续调幅及对应的连续特征的状态数量、离散调幅及对应的离散特征的状 态数量等;
第一设备和/或第二设备的调节脉冲的能力,比如包含以下至少之一:调节脉冲的时隙位置、时隙间隔等。
这样借助第一设备/第二设备的调幅能力和/或调节脉冲的能力,可以准确确定第一调制的调制参数/解调制参数。
可选的,第一设备和/或第二设备的能力还可包括各自的天线能力,以在确定第一调制的调制参数(比如幅度分割因子等)时考虑收发端的收发能力。
可选的,上述信道状态信息可以包括以下至少一项:
历史的信道状态信息,比如第一设备和/或第二设备驻留时记录的信道状态信息;
第一设备和/或第二设备实时的信道状态信息,比如可以是估计或是通过其它方式获得的信息状态信息。
本申请实施例提供的信息处理方法,执行主体可以为信息处理装置。本申请实施例中以信息处理装置执行信息处理方法为例,说明本申请实施例提供的信息处理装置。
请参见图18,图18是本申请实施例提供的一种信息处理装置的结构示意图,该装置应用于第一设备,该第一设备为通信***中的发送端/调制端,可选为终端、网络侧设备或BSC***中的BSC发送设备,该BSC发送设备包括但不限于标签Tag、无源或半无源的物联网IoT设备等。如图18所示,信息处理装置180包括:
第一确定模块181,用于确定第一调制的调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;
调制模块182,用于根据所述调制参数,对第一信息进行所述第一调制,获得第一信号;
第一发送模块183,用于向第二设备发送所述第一信号。
可选的,所述调制模块182包括:
调制单元,用于根据所述调制参数,对所述第一信息中的比特信息进行串并转化,获得第一比特信息和第二比特信息,并根据所述第一比特信息映射得到第一时刻的幅度差分系数,根据所述第二比特信息映射得到所述第一时刻的脉冲调制符号;
第一确定单元,用于根据所述第一时刻的幅度差分系数和第二时刻的脉冲幅度,确定所述第一时刻的脉冲幅度,所述第二时刻为所述第一时刻的上一个时刻,所述第一时刻和所述第二时刻为存在脉冲调制符号的时刻;
第二确定单元,用于根据所述第一时刻的脉冲幅度和所述第一时刻的脉冲调制符号,确定所述第一时刻的调制符号,所述调制符号为差分幅度和脉冲联合调制后的符号。
可选的,所述第一确定单元还用于:将所述第一时刻的幅度差分系数和所述第二时刻的脉冲幅度相乘,获得所述第一时刻的脉冲幅度。
可选的,所述第二确定单元还用于:将所述第一时刻的脉冲幅度和所述第一时刻的脉冲调制符号相乘,获得所述第一时刻的调制符号。
可选的,所述脉冲调制为单幅度脉冲调制或恒幅度脉冲调制。
可选的,所述脉冲调制包括以下至少一项:
单脉冲调制或多脉冲调制;
脉冲间隔调制、脉冲位置调制和/或差分脉冲间隔调制;
固定时隙脉冲调制或非固定时隙脉冲调制。
可选的,所述第一确定模块181具体用于:根据以下至少一项,确定所述调制参数:
从第三设备接收的第一配置信息,所述第一配置信息用于配置所述第一调制的调制参数;
所述第一设备和/或所述第二设备的能力;
信道状态信息;
所述第一设备的默认配置信息和/或出厂设置信息;
所述第二设备的默认配置信息和/或出厂设置信息。
可选的,所述第一配置信息包括以下至少一项:
调制类型,所述调制类型表征所述差分幅度调制和所述脉冲调制的组合方式;
幅度分割因子;
初始幅度值;
调制阶数。
可选的,所述第一设备和/或所述第二设备的能力包括以下至少一项:
所述第一设备和/或所述第二设备的调幅能力;
所述第一设备和/或所述第二设备的调节脉冲的能力。
可选的,所述第一发送模块183还用于:向所述第二设备发送第二信息,所述第二信息用于指示所述第一调制的调制参数或解调制参数。
可选的,所述第二信息包括以下至少一项:
调制类型,所述调制类型表征所述差分幅度调制和所述脉冲调制的组合方式;
幅度分割因子;
初始幅度值;
调制阶数。
可选的,所述幅度分割因子根据所述第一调制的调制类型、信道状态信息和调制阶数中的至少一者确定。
可选的,所述调制阶数包括以下至少一项:
所述第一调制中的差分幅度调制的调制阶数;
所述第一调制中的脉冲调制的调制阶数;
所述第一调制的调制阶数。
可选的,所述第一发送模块183还用于:通过以下至少一项,发送所述第二信息:
层1信令、媒体接入控制控制单元MAC CE、无线资源控制RRC信令。
可选的,信息处理装置180还包括:
第一上报模块,用于向所述第二设备和/或第三设备上报所述第一设备的能力;
其中,所述第一设备的能力包括以下至少一项:
所述第一设备的调幅能力;
所述第一设备的调节脉冲的能力。
本申请实施例提供的信息处理装置180能够实现图9所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参见图19,图19是本申请实施例提供的一种信息处理装置的结构示意图,该装置应用于第二设备,该第二设备为通信***中的接收端/解调端,可选为终端、网络侧设备或BSC***中的BSC接收设备,该BSC接收设备包括但不限于读写器设备等。如图19所示,信息处理装置190包括:
第二确定模块191,用于确定第一调制的解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;
接收模块192,用于从第一设备接收第一信号;
解调模块193,用于根据所述解调制参数,对所述第一信号进行解调制,得到第一信息。
可选的,所述解调模块193包括:
解调单元,用于根据所述解调制参数,对所述第一信号进行差分幅度解调制,得到第一比特信息,和对所述第一信号进行脉冲解调制,得到第二比特信息;
转化单元,用于对所述第一比特信息和第二比特信息进行并串转化,获得第一信息。
可选的,所述第二确定模块191具体用于:根据以下至少一项,确定所述解调制参数:
从第三设备接收的第二配置信息,所述第二配置信息用于配置所述第一调制的调制参数或解调制参数;
从所述第一设备接收的第二信息,所述第二信息用于指示所述第一调制的调制参数或解调制参数;
所述第一设备和/或所述第二设备的能力;
信道状态信息;
所述第一设备的默认配置信息和/或出厂设置信息;
所述第二设备的默认配置信息和/或出厂设置信息。
可选的,所述第二配置信息包括以下至少一项:
调制类型,所述调制类型表征所述差分幅度调制和所述脉冲调制的组合方式;
幅度分割因子;
初始幅度值;
调制阶数。
可选的,所述第二信息包括以下至少一项:
调制类型,所述调制类型表征所述差分幅度调制和所述脉冲调制的组合方式;
幅度分割因子;
初始幅度值;
调制阶数。
可选的,所述调制阶数包括以下至少一项:
所述第一调制中的差分幅度调制的调制阶数;
所述第一调制中的脉冲调制的调制阶数;
所述第一调制的调制阶数。
可选的,所述第一设备和/或所述第二设备的能力包括以下至少一项:
所述第一设备和/或所述第二设备的调幅能力;
所述第一设备和/或所述第二设备的调节脉冲的能力。
可选的,信息处理装置190还包括:
第二上报模块,用于向所述第一设备和/或第三设备上报所述第二设备的能力;
其中,所述第二设备的能力包括以下至少一项:
所述第二设备的调幅能力;
所述第二设备的调节脉冲的能力。
本申请实施例提供的信息处理装置190能够实现图16所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参见图20,图20是本申请实施例提供的一种信息处理装置的结构示意图,该装置应用于第三设备,该第三设备为不同于第一设备和第二设备的设备,比如可以为***端或网络侧设备等。如图20所示,信息处理装置200包括:
第二发送模块201,用于向第一设备发送第一配置信息,和/或向第二设备发送第二配置信息;
其中,所述第一配置信息用于配置第一调制的调制参数,所述第二配置信息用于配置第一调制的调制参数或解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制。
可选的,所述第一配置信息包括以下至少一项:
调制类型,所述调制类型表征所述差分幅度调制和所述脉冲调制的组合方式;
幅度分割因子;
初始幅度值;
调制阶数。
可选的,所述第二配置信息包括以下至少一项:
调制类型,所述调制类型表征所述差分幅度调制和所述脉冲调制的组合方式;
幅度分割因子;
初始幅度值;
调制阶数。
可选的,所述调制阶数包括以下至少一项:
所述第一调制中的差分幅度调制的调制阶数;
所述第一调制中的脉冲调制的调制阶数;
所述第一调制的调制阶数。
可选的,信息处理装置200还包括:
第三确定模块,用于根据以下至少一项,确定所述第一调制的调制参数或解调制参数:
所述第一设备和/或所述第二设备的能力;
信道状态信息;
所述第一设备的默认配置信息和/或出厂设置信息;
所述第二设备的默认配置信息和/或出厂设置信息。
可选的,所述第一设备和/或所述第二设备的能力包括以下至少一项:
所述第一设备和/或所述第二设备的调幅能力;
所述第一设备和/或所述第二设备的调节脉冲的能力。
可选的,所述第二发送模块201还用于:通过以下至少一项,向所述第一设备发送所述第一配置信息:层1信令、MAC CE、RRC信令;
和/或,通过以下至少一项,向所述第二设备发送所述第二配置信息:层1信令、MAC CE、RRC信令。
本申请实施例提供的信息处理装置200能够实现图17所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图21所示,本申请实施例还提供一种通信设备210,包括处理器211和存储器212,存储器212上存储有可在所述处理器211上运行的程序或指令,该程序或指令被处理器211执行时实现上述信息处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。可选的,该通信设备210可以为上述的第一设备、第二设备或第三设备。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信息处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,该处理器为上述实施例中所述的终端中的处理器。该可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信息处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储 在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信息处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信***,所述通信***包括第一设备、第二设备、第三设备中的至少两个,所述第一设备可用于实现如上图9所述的信息处理方法的步骤,所述第二设备可用于实现如上图16所述的信息处理方法的步骤,所述第三设备可用于实现如上图17所述的信息处理方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种信息处理方法,包括:
    第一设备确定第一调制的调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;
    所述第一设备根据所述调制参数,对第一信息进行所述第一调制,获得第一信号;
    所述第一设备向第二设备发送所述第一信号。
  2. 根据权利要求1所述的方法,其中,所述根据所述调制参数,对第一信息进行所述第一调制,获得第一信号,包括:
    所述第一设备根据所述调制参数,对所述第一信息中的比特信息进行串并转化,获得第一比特信息和第二比特信息,并根据所述第一比特信息映射得到第一时刻的幅度差分系数,根据所述第二比特信息映射得到所述第一时刻的脉冲调制符号;
    所述第一设备根据所述第一时刻的幅度差分系数和第二时刻的脉冲幅度,确定所述第一时刻的脉冲幅度,所述第二时刻为所述第一时刻的上一个时刻,所述第一时刻和所述第二时刻为存在脉冲调制符号的时刻;
    所述第一设备根据所述第一时刻的脉冲幅度和所述第一时刻的脉冲调制符号,确定所述第一时刻的调制符号,所述调制符号为差分幅度和脉冲联合调制后的符号。
  3. 根据权利要求2所述的方法,其中,所述根据所述第一时刻的幅度差分系数和第二时刻的脉冲幅度,确定所述第一时刻的脉冲幅度,包括:
    所述第一设备将所述第一时刻的幅度差分系数和所述第二时刻的脉冲幅度相乘,获得所述第一时刻的脉冲幅度。
  4. 根据权利要求2所述的方法,其中,所述根据所述第一时刻的脉冲幅度和所述第一时刻的脉冲调制符号,确定所述第一时刻的调制符号,包括:
    所述第一设备将所述第一时刻的脉冲幅度和所述第一时刻的脉冲调制符号相乘,获得所述第一时刻的调制符号。
  5. 根据权利要求1所述的方法,其中,所述脉冲调制为单幅度脉冲调制或恒幅度脉冲调制。
  6. 根据权利要求1至5任一项所述的方法,其中,所述脉冲调制包括以下至少一项:
    单脉冲调制或多脉冲调制;
    脉冲间隔调制、脉冲位置调制和/或差分脉冲间隔调制;
    固定时隙脉冲调制或非固定时隙脉冲调制。
  7. 根据权利要求1所述的方法,其中,所述确定第一调制的调制参数,包括:
    所述第一设备根据以下至少一项,确定所述调制参数:
    从第三设备接收的第一配置信息,所述第一配置信息用于配置所述第一调制的调制参数;
    所述第一设备和/或所述第二设备的能力;
    信道状态信息;
    所述第一设备的默认配置信息和/或出厂设置信息;
    所述第二设备的默认配置信息和/或出厂设置信息。
  8. 根据权利要求7所述的方法,其中,所述第一配置信息包括以下至少一项:
    调制类型,所述调制类型表征所述差分幅度调制和所述脉冲调制的组合方式;
    幅度分割因子;
    初始幅度值;
    调制阶数。
  9. 根据权利要求7所述的方法,其中,所述第一设备和/或所述第二设备的能力包括以下至少一项:
    所述第一设备和/或所述第二设备的调幅能力;
    所述第一设备和/或所述第二设备的调节脉冲的能力。
  10. 根据权利要求1所述的方法,所述方法还包括:
    所述第一设备向所述第二设备发送第二信息,所述第二信息用于指示所述第一调制的调制参数或解调制参数。
  11. 根据权利要求10所述的方法,其中,所述第二信息包括以下至少一项:
    调制类型,所述调制类型表征所述差分幅度调制和所述脉冲调制的组合方式;
    幅度分割因子;
    初始幅度值;
    调制阶数。
  12. 根据权利要求8或11所述的方法,其中,所述幅度分割因子根据所述第一调制的调制类型、信道状态信息和调制阶数中的至少一者确定。
  13. 根据权利要求8或11所述的方法,其中,所述调制阶数包括以下至少一项:
    所述第一调制中的差分幅度调制的调制阶数;
    所述第一调制中的脉冲调制的调制阶数;
    所述第一调制的调制阶数。
  14. 根据权利要求10所述的方法,其中,所述向所述第二设备发送第二信息,包括:
    所述第一设备通过以下至少一项,发送所述第二信息:
    层1信令、媒体接入控制控制单元MAC CE、无线资源控制RRC信令。
  15. 根据权利要求1所述的方法,所述方法还包括:
    所述第一设备向所述第二设备和/或第三设备上报所述第一设备的能力;
    其中,所述第一设备的能力包括以下至少一项:
    所述第一设备的调幅能力;
    所述第一设备的调节脉冲的能力。
  16. 一种信息处理方法,包括:
    第二设备确定第一调制的解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;
    所述第二设备从第一设备接收第一信号;
    所述第二设备根据所述解调制参数,对所述第一信号进行解调制,得到第一信息。
  17. 根据权利要求16所述的方法,其中,所述根据所述解调制参数,对所述第一信号进行解调制,得到第一信息,包括:
    所述第二设备根据所述解调制参数,对所述第一信号进行差分幅度解调制,得到第一比特信息,和对所述第一信号进行脉冲解调制,得到第二比特信息;
    所述第二设备对所述第一比特信息和第二比特信息进行并串转化,获得所述第一信息。
  18. 根据权利要求16所述的方法,其中,所述确定第一调制的解调制参数包括:
    所述第二设备根据以下至少一项,确定所述解调制参数:
    从第三设备接收的第二配置信息,所述第二配置信息用于配置所述第一调制的调制参数或解调制参数;
    从所述第一设备接收的第二信息,所述第二信息用于指示所述第一调制的调制参数或解调制参数;
    所述第一设备和/或所述第二设备的能力;
    信道状态信息;
    所述第一设备的默认配置信息和/或出厂设置信息;
    所述第二设备的默认配置信息和/或出厂设置信息。
  19. 根据权利要求18所述的方法,其中,所述第二配置信息包括以下至少一项:
    调制类型,所述调制类型表征所述差分幅度调制和所述脉冲调制的组合方式;
    幅度分割因子;
    初始幅度值;
    调制阶数;
    和/或,
    所述第二信息包括以下至少一项:
    调制类型,所述调制类型表征所述差分幅度调制和所述脉冲调制的组合方式;
    幅度分割因子;
    初始幅度值;
    调制阶数。
  20. 根据权利要求19所述的方法,其中,所述调制阶数包括以下至少一项:
    所述第一调制中的差分幅度调制的调制阶数;
    所述第一调制中的脉冲调制的调制阶数;
    所述第一调制的调制阶数。
  21. 根据权利要求18所述的方法,其中,所述第一设备和/或所述第二设备的能力包括以下至少一项:
    所述第一设备和/或所述第二设备的调幅能力;
    所述第一设备和/或所述第二设备的调节脉冲的能力。
  22. 根据权利要求16所述的方法,所述方法还包括:
    所述第二设备向所述第一设备和/或第三设备上报所述第二设备的能力;
    其中,所述第二设备的能力包括以下至少一项:
    所述第二设备的调幅能力;
    所述第二设备的调节脉冲的能力。
  23. 一种信息处理方法,包括:
    第三设备向第一设备发送第一配置信息,和/或向第二设备发送第二配置信息;
    其中,所述第一配置信息用于配置第一调制的调制参数,所述第二配置信息用于配置第一调制的调制参数或解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制。
  24. 根据权利要求23所述的方法,其中,所述第一配置信息包括以下至少一项:
    调制类型,所述调制类型表征所述差分幅度调制和所述脉冲调制的组合方式;
    幅度分割因子;
    初始幅度值;
    调制阶数;
    和/或,
    所述第二配置信息包括以下至少一项:
    调制类型,所述调制类型表征所述差分幅度调制和所述脉冲调制的组合方式;
    幅度分割因子;
    初始幅度值;
    调制阶数。
  25. 根据权利要求24所述的方法,其中,所述调制阶数包括以下至少一项:
    所述第一调制中的差分幅度调制的调制阶数;
    所述第一调制中的脉冲调制的调制阶数;
    所述第一调制的调制阶数。
  26. 根据权利要求23所述的方法,所述方法还包括:
    所述第三设备根据以下至少一项,确定所述第一调制的调制参数或解调制参数:
    所述第一设备和/或所述第二设备的能力;
    信道状态信息;
    所述第一设备的默认配置信息和/或出厂设置信息;
    所述第二设备的默认配置信息和/或出厂设置信息。
  27. 根据权利要求26所述的方法,其中,所述第一设备和/或所述第二设备的能力包 括以下至少一项:
    所述第一设备和/或所述第二设备的调幅能力;
    所述第一设备和/或所述第二设备的调节脉冲的能力。
  28. 根据权利要求23所述的方法,其中,所述向第一设备发送第一配置信息,包括:
    所述第三设备通过以下至少一项,向所述第一设备发送所述第一配置信息:层1信令、MAC CE、RRC信令;
    和/或,
    所述向第二设备发送第二配置信息,包括:
    所述第三设备通过以下至少一项,向所述第二设备发送所述第二配置信息:层1信令、MAC CE、RRC信令。
  29. 一种信息处理装置,包括:
    第一确定模块,用于确定第一调制的调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;
    调制模块,用于根据所述调制参数,对第一信息进行所述第一调制,获得第一信号;
    第一发送模块,用于向第二设备发送所述第一信号。
  30. 一种信息处理装置,包括:
    第二确定模块,用于确定第一调制的解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制;
    接收模块,用于从第一设备接收第一信号;
    解调模块,用于根据所述解调制参数,对所述第一信号进行解调制,得到第一信息。
  31. 一种信息处理装置,包括:
    第二发送模块,用于向第一设备发送第一配置信息,和/或向第二设备发送第二配置信息;
    其中,所述第一配置信息用于配置第一调制的调制参数,所述第二配置信息用于配置第一调制的调制参数或解调制参数,所述第一调制为差分幅度调制和脉冲调制的联合调制。
  32. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至15任一项所述的信息处理方法的步骤,或者如权利要求16至22任一项所述的信息处理方法的步骤,如权利要求23至28任一项所述的信息处理方法的步骤。
PCT/CN2023/114826 2022-08-31 2023-08-25 信息处理方法、装置、通信设备及可读存储介质 WO2024046219A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211056954.5 2022-08-31
CN202211056954.5A CN117675487A (zh) 2022-08-31 2022-08-31 信息处理方法、装置、通信设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024046219A1 true WO2024046219A1 (zh) 2024-03-07

Family

ID=90075750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114826 WO2024046219A1 (zh) 2022-08-31 2023-08-25 信息处理方法、装置、通信设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN117675487A (zh)
WO (1) WO2024046219A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9621185B1 (en) * 2016-12-27 2017-04-11 Egreen Technology Inc. Apparatus for differential amplitude pulse width modulation digital-to-analog conversion and method for encoding output signal thereof
TW202205837A (zh) * 2020-06-10 2022-02-01 美商高通公司 選擇傳輸配置
CN114665974A (zh) * 2022-02-28 2022-06-24 清华大学 信号调制和解调方法、发送设备及接收设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9621185B1 (en) * 2016-12-27 2017-04-11 Egreen Technology Inc. Apparatus for differential amplitude pulse width modulation digital-to-analog conversion and method for encoding output signal thereof
TW202205837A (zh) * 2020-06-10 2022-02-01 美商高通公司 選擇傳輸配置
CN114665974A (zh) * 2022-02-28 2022-06-24 清华大学 信号调制和解调方法、发送设备及接收设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG FEI-YUE; MING XIN-YUE; XU YONG-XIN; HUANG ZI-QIANG: "Research on Unite DAPPM with Turbo Code in Free Space Optical Communication", 2019 IEEE 19TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT), IEEE, 16 October 2019 (2019-10-16), pages 701 - 704, XP033683385, DOI: 10.1109/ICCT46805.2019.8947108 *

Also Published As

Publication number Publication date
CN117675487A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN110226340A (zh) 波束失败的上报方法、装置及存储介质
KR102543727B1 (ko) 프론트홀 인터페이스를 위한 제어 메시지들의 시그널링을 위한 장치
WO2021119987A1 (zh) 反射通信方法、激励器、反射器和接收器
WO2024017114A1 (zh) 反向散射通信方法、设备及可读存储介质
KR20230091166A (ko) 신호 구성 방법, 장치, 설비 및 저장 매체
JP7251634B2 (ja) Dmrs送信のための方法、基地局、及び端末デバイス
WO2024046219A1 (zh) 信息处理方法、装置、通信设备及可读存储介质
WO2023078358A1 (zh) 通信的方法和装置
WO2024046224A1 (zh) 信息处理方法、装置、通信设备及可读存储介质
CN116266806A (zh) 一种通信方法及装置
WO2024055953A1 (zh) 调制方法、装置及通信设备
WO2024131822A1 (zh) 传输方法、装置、设备及可读存储介质
WO2024131814A1 (zh) 传输方法、装置、设备及可读存储介质
WO2024098403A1 (zh) 无线通信的方法及设备
WO2024120252A1 (zh) 参数配置方法、装置、设备及可读存储介质
WO2024067191A1 (zh) 一种通信方法及装置
WO2024152892A1 (zh) 通信的方法和装置
WO2024131763A1 (zh) 传输方法、装置、设备及可读存储介质
WO2023039709A1 (zh) 资源配置方法、网络设备和零功耗终端
WO2024120246A1 (zh) 参数配置方法、装置、设备及可读存储介质
WO2024040589A1 (zh) 无线通信的方法及设备
WO2023246683A1 (zh) 信息发送方法、接收方法、装置、设备及可读存储介质
WO2024098404A1 (zh) 无线通信的方法和设备
WO2023060596A1 (zh) 信息指示方法、网络设备、终端、芯片和存储介质
WO2024145903A1 (zh) 通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859252

Country of ref document: EP

Kind code of ref document: A1