WO2024045900A1 - 空调及其制冷控制方法 - Google Patents

空调及其制冷控制方法 Download PDF

Info

Publication number
WO2024045900A1
WO2024045900A1 PCT/CN2023/106360 CN2023106360W WO2024045900A1 WO 2024045900 A1 WO2024045900 A1 WO 2024045900A1 CN 2023106360 W CN2023106360 W CN 2023106360W WO 2024045900 A1 WO2024045900 A1 WO 2024045900A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
air conditioner
stage
control method
refrigeration
Prior art date
Application number
PCT/CN2023/106360
Other languages
English (en)
French (fr)
Inventor
孟相宏
黄罡
张乃伟
孙升华
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2024045900A1 publication Critical patent/WO2024045900A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the technical field of air conditioning, and in particular to an air conditioner and a refrigeration control method thereof.
  • Air conditioners With the improvement of living standards, air conditioners have become an indispensable electrical product in homes and commercial settings. Air conditioners usually have a wealth of adjustment options for users to adjust. For example, users can adjust the target temperature, wind speed, air guide direction of the air guide plate (that is, the up and down air guide angle) of the air conditioner, and the air guide direction of the swing blades.
  • the purpose of the present invention is to solve at least one of the above-mentioned defects in the prior art and provide an air conditioner with a smart energy-saving control mode and a refrigeration control method thereof.
  • a further object of the present invention is to enable the air conditioner to speed up cooling while also meeting the user's comfort needs.
  • the present invention provides a refrigeration control method for an air conditioner, which includes the following steps:
  • the intelligent temperature control mode After receiving the start command of the intelligent temperature control mode, it enters the initial stage of cooling.
  • the preset first target temperature is used as the cooling target temperature;
  • the air conditioner is switched from the initial cooling stage to the mid-cooling stage, and the cooling target temperature in the mid-cooling stage is higher than the first target temperature;
  • the air conditioner is switched from the mid-cooling stage to the preset PMV mode.
  • the rotation speed of the fan of the air conditioner in the early cooling stage is greater than the rotation speed in the middle cooling stage.
  • the air swing range of the air guide plate and the swing blades of the air conditioner in the early cooling stage is greater than the swing range in the middle cooling stage.
  • the air guide plate and the swing blade are allowed to reciprocate in the maximum range
  • the air guide plate guides the air upward.
  • the air guide plate of the air conditioner is allowed to swing up and down.
  • the first switching condition is: the operation duration of the initial cooling stage reaches a first preset duration or the indoor ambient temperature is less than or equal to the first temperature threshold.
  • the second switching condition is: the operation duration of the mid-cooling stage reaches a second preset duration or the indoor ambient temperature is less than or equal to the second temperature threshold.
  • the first temperature threshold is greater than the refrigeration target temperature in the mid-cooling stage, and the second temperature threshold is less than the refrigeration target temperature in the mid-cooling stage.
  • the first preset duration ranges from 1 min to 5 min;
  • the second preset time period ranges from 18 minutes to 22 minutes.
  • the present invention also provides an air conditioner, which includes a controller.
  • the controller includes a processor and a memory.
  • the memory stores a computer program. When the computer program is executed by the processor, it is used to implement The refrigeration control method according to any of the above.
  • the air conditioner has an intelligent temperature control mode, and the intelligent temperature control mode is divided into multiple operating stages, and different operating stages play different roles. Rapid cooling is performed in the initial stage of refrigeration to rapidly drop the indoor ambient temperature. In the middle stage of refrigeration, appropriately increase the refrigeration target temperature to reduce compressor power. Finally, run the PMV mode to fine-tune the indoor ambient temperature to keep the indoor human body in a comfortable state.
  • the invention not only realizes rapid cooling of the indoor environment, but also meets the comfort needs of users, saves air conditioning energy consumption, and achieves the goal of energy conservation and emission reduction.
  • the refrigeration control method of the present invention realizes intelligent temperature control and automatic adjustment, eliminating the user's trouble of repeatedly adjusting various parameters and enhancing the user's intelligent experience.
  • Figure 1 is a schematic diagram of a refrigeration control method for an air conditioner according to an embodiment of the present invention
  • Figure 2 is a schematic block diagram of an air conditioner according to an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of an air conditioner according to an embodiment of the present invention.
  • Figure 4 is a schematic side enlarged view of the air conditioner shown in Figure 3 when the air outlet area is cut open;
  • FIG 5 is a schematic diagram of the air conditioner shown in Figure 4 after the air guide plate changes the air guide angle.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions that embody one or more elements for implementing the specified logical function(s).
  • Executable instructions may occur out of the order noted in the figures. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or acts. , or can be implemented using a combination of specialized hardware and computer instructions.
  • the present invention provides a refrigeration control method for an air conditioner.
  • the refrigeration control method of the embodiment of the present invention can be applied to wall-mounted machines, cabinet machines, window machines, patio machines or other various forms of air conditioners.
  • Figure 1 is a schematic diagram of a refrigeration control method for an air conditioner according to an embodiment of the present invention
  • Figure 2 is A schematic block diagram of an air conditioner according to an embodiment of the present invention.
  • the refrigeration control method of the air conditioner according to the embodiment of the present invention includes:
  • Step S102 Receive an instruction to turn on the intelligent temperature control mode.
  • the user when the user wants the air conditioner to operate in the intelligent temperature control mode, the user can perform corresponding operations on the remote control, wire controller, control panel of the air conditioner host, or other intelligent terminal equipment that is wirelessly connected to the air conditioner, so that it communicates with the controller 800 of the air conditioner. Send a command to turn on the intelligent temperature control mode.
  • Step S104 Start the initial stage of cooling.
  • the controller 800 of the air conditioner receives the start command of the intelligent temperature control mode, it controls the air conditioner to enter the initial stage of cooling.
  • the preset first target temperature is used as the cooling target temperature.
  • the first target temperature is lower than the cooling target temperature set by ordinary users.
  • the cooling target temperature is set lower to encourage the compressor to run at a higher frequency, so that the air conditioner has a greater cooling capacity and the indoor temperature drops faster, so that the indoor environment can get out of the hot state as soon as possible.
  • Step S106 Determine whether the preset first switching condition is met. If yes, execute step S108; if not, return to step S104.
  • Step S108 Run the middle stage of cooling.
  • the air conditioner when the preset first switching condition is met, the air conditioner is switched from the initial cooling stage to the mid-cooling stage, and the cooling target temperature in the mid-cooling stage is higher than the first target temperature. That is to say, after going through the initial stage of cooling, the indoor ambient temperature has dropped significantly. If the air conditioner continues to run quickly and with high power for cooling, the compressor will consume a lot of power and the air conditioner will consume too much power. Therefore, when the preset first switching condition is met, the air conditioner is switched to the mid-cooling stage in time, the cooling target temperature is increased, and the compressor frequency is reduced.
  • the first target temperature can be set to 22°C
  • the refrigeration target temperature in the middle stage of refrigeration can be set to 24°C.
  • the cooling target temperature is constant throughout the mid-cooling stage.
  • the refrigeration target temperature in the middle stage of refrigeration can also be made variable, so that it shows a decreasing trend according to a preset function.
  • Step S110 Determine whether the preset second switching condition is met. If yes, execute step S112; if not, return to step S108.
  • Step S112 Run the preset PMV mode.
  • the air conditioner is switched from the mid-cooling stage to the preset PMV mode in order to control the indoor environment.
  • the temperature is finely adjusted to keep it at the most comfortable level for the human body.
  • Thermal comfort index PMV is an evaluation index commonly used in the air-conditioning industry to characterize the human body's thermal response. It is currently the most widely used and most recognized thermal comfort evaluation index in the world. In the PMV evaluation system, in addition to the four objective factors of relative humidity, temperature, air flow rate, and average radiant temperature that affect human thermal comfort, the two subjective factors of human clothing thermal resistance and human metabolic rate also play a very important role. Role. The PMV index indicates the average index of the user group's votes for seven levels of thermal sensation (-3, -2, -1, 0, 1, 2, 3).
  • the PMV mode of the air conditioner refers to the operating mode in which the air conditioner automatically adjusts the operating parameters of the air conditioner based on the human body's PMV index and indoor and outdoor ambient temperatures and other environmental parameters, so that the indoor temperature is always stably maintained at a level that makes the human body feel most comfortable. Since this PMV mode is widely used in the air conditioning industry, the specific control scheme will not be described here.
  • the air conditioner has an intelligent temperature control mode.
  • the intelligent temperature control mode is divided into multiple operating stages, and different operating stages play different roles. Rapid cooling is performed in the initial stage of refrigeration to rapidly drop the indoor ambient temperature. In the middle stage of refrigeration, appropriately increase the refrigeration target temperature to reduce compressor power. Finally, run the PMV mode to fine-tune the indoor ambient temperature so that the human body in the room always remains comfortable.
  • the embodiments of the present invention not only realize rapid cooling of the indoor environment, but also meet the comfort needs of users, and also save the energy consumption of air conditioners, achieving the goal of energy conservation and emission reduction.
  • the refrigeration control method of the present invention realizes intelligent temperature control and automatic adjustment, eliminating the user's trouble of repeatedly adjusting various parameters and enhancing the user's intelligent experience.
  • the rotation speed of the fan 30 of the air conditioner in the early cooling stage is greater than the rotation speed in the middle cooling stage.
  • the fan 30 is used to urge the indoor air to enter the casing of the air conditioner, so that the air flow and the heat exchanger complete the heat exchange to form cold air or hot air, and then blow out through the air outlet.
  • the fan 30 in the initial stage of refrigeration, can be operated at the maximum speed (or called the strongest wind speed).
  • the fan 30 can be operated at an intermediate speed (or intermediate wind speed).
  • the air swing range of the air guide plate 50 and the swing blade 60 of the air conditioner in the early stage of cooling is larger than the swing range in the middle stage of cooling.
  • the air guide plate 50 and the swing blade 60 are allowed to reciprocate in the maximum range.
  • the air guide plate 50 is made to guide the air upward so that the cold air flows upward to prevent the cold wind from blowing directly on the human body. Make the human body feel uncomfortable.
  • the air guide plate 50 of the air conditioner when the PMV mode is running, the air guide plate 50 of the air conditioner is reciprocated up and down to make the indoor cold air distribution more dispersed, avoid uneven cooling and heating, and make the indoor environment more comfortable.
  • the aforementioned first switching condition is: the operation duration of the initial stage of cooling reaches the first preset duration or the indoor ambient temperature is less than or equal to the first temperature threshold. That is, if one of the two situations is satisfied, it can be determined that the first switching condition is satisfied.
  • the second switching condition is: the operation duration of the mid-cooling stage reaches the second preset duration or the indoor ambient temperature is less than or equal to the second temperature threshold.
  • the air conditioner may be provided with a temperature detection module 40 for detecting the indoor ambient temperature.
  • the temperature detection module 40 may be a temperature sensor.
  • the first temperature threshold is greater than the refrigeration target temperature in the mid-cooling stage, and the second temperature threshold is less than the refrigeration target temperature in the mid-cooling stage.
  • the first target temperature can be set to 22°C
  • the cooling target temperature in the mid-stage cooling stage can be set to 24°C
  • the first temperature threshold can be set to 26°C
  • the second temperature threshold can be set to 23°C.
  • the value range of the first preset duration is 1 min to 5 min, for example, 3 min.
  • the value range of the second preset time length is 18min to 22min, for example, 20min. Make the first preset time shorter to avoid long-term high-frequency operation of the compressor, which may lead to overcooling of the indoor temperature and excessive energy consumption of the compressor.
  • the present invention does not place any limitation on the form of the air conditioner.
  • the air conditioner can be a wall-mounted unit, a cabinet unit, a window unit, a patio unit or other various forms of air conditioners.
  • the air conditioner includes a controller 800.
  • the controller 800 includes a processor 810 and a memory 820.
  • the memory 820 stores a computer program 821.
  • the computer program 821 is executed by the processor 810, it is used to implement the refrigeration control method of the air conditioner in any embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of an air conditioner according to an embodiment of the present invention
  • Figure 4 is a schematic side enlarged view of the air conditioner shown in Figure 3 when the air outlet area is cut open
  • Figure 5 is an air guide of the air conditioner shown in Figure 4 Schematic diagram of the board 50 after changing the air guide angle.
  • the air conditioner is a wall-mounted air conditioner, and its air outlet 12 is provided with four air guide plates 50.
  • Each air guide plate 50 is rotatably installed around a horizontal transverse axis. shell Body 10.
  • the four air guide plates 50 are arranged into two groups along the length direction of the housing 10 , and each group includes two upper and lower air guide plates 50 . In other words, the four air guide plates 50 are arranged in a matrix.
  • Each of the four air guide plates 50 is equipped with a motor (not shown), and each motor is independently controlled by the controller 800 . In this way, the air conditioner's adjustment of the upper and lower air outlet angles is more detailed.
  • both the upper air guide plate 50 and the lower air guide plate 50 can be swung to expand the swing angle range, or as shown in Figure 5, the lower air guide plate 50 can be swung. 50 is in the closed position, so that the upper air guide plate 50 guides the air upward.
  • the air guide angles of the four air guide plates 50 can also be combined to obtain more air guide modes, which will not be described again here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调及其制冷控制方法,空调的制冷控制方法包括如下步骤:接收到智能控温模式的开启指令后,进入制冷初期阶段,在制冷初期阶段,以预设的第一目标温度为制冷目标温度;当满足预设的第一切换条件时,使空调从制冷初期阶段切换至制冷中期阶段,制冷中期阶段的制冷目标温度高于第一目标温度;当满足预设的第二切换条件时,使空调从制冷中期阶段切换至预设的PMV模式。实现了空调的智慧节能控制,既加快了制冷速度,又满足了用户的舒适性需求。

Description

空调及其制冷控制方法 技术领域
本发明涉及空气调节技术领域,特别涉及一种空调及其制冷控制方法。
背景技术
随着生活水平的提高,空调已经成为家庭和商用场合必不可少的电器产品。空调通常具有丰富的调节选项,以供用户调节。例如,用户可以对空调的目标温度、风速、导风板的导风方向(也即上下导风角度)和摆叶的导风方向进行调节。
但是,很多用户在使用空调时仅仅是设定目标温度,甚少关注或主动使用其他调节功能。还有些用户热衷于对空调的各种调节功能进行组合调节以及频繁地调节,但因缺少专业知识,反而难以获得最好的制冷效果。
发明内容
本发明的目的在于至少解决现有技术存在的上述缺陷之一,提供一种具有智慧节能控制模式的空调及其制冷控制方法。
本发明的进一步的目的是使空调既要加快制冷速度,又要满足用户的舒适性需求。
一方面,本发明提供了一种空调的制冷控制方法,其包括如下步骤:
接收到智能控温模式的开启指令后,进入制冷初期阶段,在所述制冷初期阶段,以预设的第一目标温度为制冷目标温度;
当满足预设的第一切换条件时,使所述空调从所述制冷初期阶段切换至制冷中期阶段,所述制冷中期阶段的制冷目标温度高于所述第一目标温度;
当满足预设的第二切换条件时,使所述空调从所述制冷中期阶段切换至预设的PMV模式。
可选地,所述空调的风机在所述制冷初期阶段时的转速大于在所述制冷中期阶段时的转速。
可选地,所述空调的导风板和摆叶在所述制冷初期阶段时的摆风范围大于在所述制冷中期阶段时的摆风范围。
可选地,在所述制冷初期阶段,使所述导风板和所述摆叶进行最大范围往复摆风;
在所述制冷中期阶段,使所述导风板向上导风。
可选地,在运行PMV模式时,使所述空调的导风板进行上下往复摆风。
可选地,所述第一切换条件为:所述制冷初期阶段运行时长达到第一预设时长或室内环境温度小于等于第一温度阈值。
可选地,所述第二切换条件为:所述制冷中期阶段运行时长达到第二预设时长或室内环境温度小于等于第二温度阈值。
可选地,所述第一温度阈值大于所述制冷中期阶段的制冷目标温度,所述第二温度阈值小于所述制冷中期阶段的制冷目标温度。
可选地,所述第一预设时长的取值范围为1min至5min;
所述第二预设时长的取值范围为18min至22min。
另一方面,本发明还提供了一种空调,其包括控制器,所述控制器包括处理器和存储器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时用于实现根据以上任一项所述的制冷控制方法。
本发明的空调的制冷控制方法中,空调具有智能控温模式,将智能控温模式分成多个运行阶段,不同的运行阶段发挥不同作用。在制冷初期阶段进行快速制冷,使室内环境温度快速下降。在制冷中期阶段,适当调高制冷目标温度,以减少压缩机功率。最后运行PMV模式,以便对室内环境温度进行微调,使室内人体保持舒适状态。
本发明既实现了室内环境的快速降温,又能满足用户的舒适性需求,而且还节约了空调能耗,实现了节能减排的目标。此外,本发明的制冷控制方法实现了智能控温和自动调节,免去了用户反复调节各项参数的麻烦,增强了用户的智能化体验。
进一步地,本发明的空调的制冷控制方法中,对不同的运行阶段设计了不同的风机转速档位和导风方案,以便与各运行阶段各自的制冷目标相匹配,达到最优的制冷效果。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调的制冷控制方法的示意图;
图2是本发明一个实施例的空调的示意性框图;
图3是根据本发明一个实施例的空调的结构示意图;
图4是图3所示空调在出风区域被剖开时的示意性侧视放大图;
图5是图4所示空调在导风板改变导风角度后的示意图。
具体实施方式
下面参照图1至图5来介绍本发明实施例的空调及其制冷控制方法。
附图中的流程图和框图显示了根据本发明的多个实施例的***、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的***来实现,或者可以用专用硬件与计算机指令的组合来实现。
本实施例提供的流程图并不旨在指示方法的操作将以任何特定的顺序执行,或者方法的所有操作都包括在所有的每种情况下。此外,方法可以包括附加操作。在本实施例方法提供的技术思路的范围内,可以对上述方法进行附加的变化。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。
本发明一方面提供了一种空调的制冷控制方法。本发明实施例的制冷控制方法可应用于壁挂机、柜机、窗机、天井机或其他各种形式的空调。
图1是根据本发明一个实施例的空调的制冷控制方法的示意图,图2是 本发明一个实施例的空调的示意性框图。
如图1和图2所示,本发明实施例的空调的制冷控制方法包括:
步骤S102:接收到智能控温模式的开启指令。
具体地,用户希望空调运行智能控温模式时,可对遥控器、线控器、空调主机的控制面板或者其他与空调进行无线连接的智能终端设备进行相应操作,使其向空调的控制器800发出智能控温模式的开启指令。
步骤S104:运行制冷初期阶段。
即,当空调的控制器800接收到智能控温模式的开启指令后,控制空调进入制冷初期阶段,在制冷初期阶段,以预设的第一目标温度为制冷目标温度。
该步骤中,第一目标温度是低于一般用户习惯设定的制冷目标温度。例如,一般用户习惯将制冷目标温度设定在25℃至29℃之间,故可将第一目标温度设置在18℃至23℃之间,例如设置为22℃。制冷初期阶段将制冷目标温度设置地较低,以便促使压缩机以更高频率运行,使得空调的制冷量更大,使室内温度更快速地下降,以使室内环境尽快脱离炎热的状态。
步骤S106:判断是否满足预设的第一切换条件。若是,执行步骤S108;若否,返回执行步骤S104。
步骤S108:运行制冷中期阶段。
也即,当满足预设的第一切换条件时,使空调从制冷初期阶段切换至制冷中期阶段,制冷中期阶段的制冷目标温度高于第一目标温度。也即,经历了制冷初期阶段,室内环境温度已经有了显著降低,如果继续使空调快速、大功率地制冷运行,压缩机功耗较大,空调耗电量太大。因此,当满足预设的第一切换条件时,便及时使空调切换运行制冷中期阶段,调高制冷目标温度,使压缩机降频。例如,在一种可选的方案中,可将第一目标温度设置为22℃,将制冷中期阶段的制冷目标温度设置为24℃。
在一些实施例中,整个制冷中期阶段的制冷目标温度为常数。在另一些实施例中,也可使制冷中期阶段的制冷目标温度为变量,使其以预设函数呈递减趋势。
步骤S110:判断是否满足预设的第二切换条件。若是,执行步骤S112;若否,返回执行步骤S108。
步骤S112:运行预设的PMV模式。
也即,当满足预设的第二切换条件时,判断室内环境已经达到或基本达到了一般用户所需要的舒适温度范围,便使空调从制冷中期阶段切换至预设的PMV模式,以便对室内温度进行精细化调节,使其保持在使人体感觉最舒适的水平。
热舒适度指标PMV是空调行业常用的用于表征人体热反应的评价指标,是当前国际上应用范围最广、认可度最高的热舒适评价指标。在PMV评价体系中,影响人体热舒适度的除了相对湿度、温度、空气流速、平均辐射温度这四个客观因素外,人体服装热阻和人体新陈代谢率这两个主观因素也扮演着非常重要的角色。PMV指数表明用户群体对于(-3、-2、-1、0、1、2、3)七个等级热感觉投票的平均指数。
空调的PMV模式指的是空调根据人体PMV指数以及室内室外环境温度等环境参数来对空调的运行参数进行自动调节的运行模式,以便使室内温度始终稳定地保持在使人体感觉最舒适的水平。由于这种PMV模式在空调行业被广泛采用,具体的控制方案在此不再赘述。
总之,本发明实施例的空调的制冷控制方法中,空调具有智能控温模式,智能控温模式分成多个运行阶段,不同的运行阶段发挥不同作用。在制冷初期阶段进行快速制冷,使室内环境温度快速下降。在制冷中期阶段,适当调高制冷目标温度,以降低压缩机功率。最后运行PMV模式,以便对室内环境温度进行微调,使室内人体始终保持舒适状态。
本发明实施例既实现了室内环境的快速降温,又能满足用户的舒适性需求,而且还节约了空调的能耗,实现了节能减排的目标。此外,本发明的制冷控制方法实现了智能控温和自动调节,免去了用户反复调节各项参数的麻烦,增强了用户的智能化体验。
进一步地,本发明的空调的制冷控制方法中,对不同的运行阶段设计了不同的风机转速档位和导风方案,以便与各运行阶段各自的制冷目标相匹配,达到最优的制冷效果。
具体地,在一些实施例中,使空调的风机30在制冷初期阶段时的转速大于在制冷中期阶段时的转速。风机30用于促使室内空气进入空调的壳体,使气流与换热器完成换热后形成冷风或热风,然后经出风口向外吹出。具体地,在制冷初期阶段,可使风机30以最大转速(或者称为最强风档)运行。在制冷中期阶段,可使风机30以中间转速(或者称为中间风档)运行。
在一些实施例中,使空调的导风板50和摆叶60在制冷初期阶段时的摆风范围大于在制冷中期阶段时的摆风范围。以便在制冷初期阶段使冷风更大范围地扩散,加快制冷速度。例如,在制冷初期阶段,使导风板50和摆叶60进行最大范围往复摆风,在制冷中期阶段,使导风板50向上导风,使冷风朝上流动,以避免冷风直吹人体,使人体感觉不适。
在一些实施例中,在运行PMV模式时,使空调的导风板50进行上下往复摆风,以使室内冷气分布更加分散,避免出现冷热不均的情况,使室内环境更加舒适。
在一些实施例中,前述的第一切换条件为:制冷初期阶段运行时长达到第一预设时长或室内环境温度小于等于第一温度阈值。也即,两种情况满足之一即可判定为满足了第一切换条件。第二切换条件为:制冷中期阶段运行时长达到第二预设时长或室内环境温度小于等于第二温度阈值。空调可设置有温度检测模块40,以用于检测室内环境温度。温度检测模块40可为温度传感器。
第一温度阈值大于制冷中期阶段的制冷目标温度,第二温度阈值小于制冷中期阶段的制冷目标温度。例如,在一个优选实施例中,可使第一目标温度设置为22℃,使制冷中期阶段的制冷目标温度设置为24℃,使第一温度阈值设置为26℃,使第二温度阈值设置为23℃。
第一预设时长的取值范围为1min至5min,例如3min。第二预设时长的取值范围为18min至22min,例如20min。使第一预设时长偏短,以避免压缩机长期高频运行,导致室内温度过冷、压缩机耗能过高。
本发明另一方面提供了一种空调。本发明对空调的形式不作任何限定,空调可为壁挂机、柜机、窗机、天井机或其他各种形式的空调。
空调包括控制器800,控制器800包括处理器810和存储器820,存储器820存储有计算机程序821,计算机程序821被处理器810执行时用于实现本发明任一实施例的空调的制冷控制方法。
图3是根据本发明一个实施例的空调的结构示意图;图4是图3所示空调在出风区域被剖开时的示意性侧视放大图;图5是图4所示空调在导风板50改变导风角度后的示意图。
如图3至图5所示,在一些实施例中,空调为壁挂式空调,其出风口12处设置有四个导风板50,每个导风板50可绕水平横向轴线转动地安装于壳 体10。四个导风板50沿壳体10的长度方向排列为两组,每组包括上下两个导风板50。换言之,四个导风板50呈矩阵式排列。四个导风板50各自匹配有电机(未图示),每个电机各自独立地接受控制器800的控制。如此,使得空调对于上下出风角度的调节更加细化。
例如图4所示,可使上侧的导风板50和下侧的导风板50都进行摆风,以扩大摆风角度范围,或者如图5所示,可使下侧的导风板50处于关闭位置,使上侧的导风板50向上导风。当然,还可通过对四个导风板50的导风角度进行组合,以获取更多的导风模式,在此不再一一赘述。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种空调的制冷控制方法,包括如下步骤:
    接收到智能控温模式的开启指令后,进入制冷初期阶段,在所述制冷初期阶段,以预设的第一目标温度为制冷目标温度;
    当满足预设的第一切换条件时,使所述空调从所述制冷初期阶段切换至制冷中期阶段,所述制冷中期阶段的制冷目标温度高于所述第一目标温度;
    当满足预设的第二切换条件时,使所述空调从所述制冷中期阶段切换至预设的PMV模式。
  2. 根据权利要求1所述的制冷控制方法,其中
    所述空调的风机在所述制冷初期阶段时的转速大于在所述制冷中期阶段时的转速。
  3. 根据权利要求1所述的制冷控制方法,其中
    所述空调的导风板和摆叶在所述制冷初期阶段时的摆风范围大于在所述制冷中期阶段时的摆风范围。
  4. 根据权利要求3所述的制冷控制方法,其中
    在所述制冷初期阶段,使所述导风板和所述摆叶进行最大范围往复摆风;
    在所述制冷中期阶段,使所述导风板向上导风。
  5. 根据权利要求1所述的制冷控制方法,其中
    在运行PMV模式时,使所述空调的导风板进行上下往复摆风。
  6. 根据权利要求1-5中任一项所述的制冷控制方法,其中
    所述第一切换条件为:所述制冷初期阶段运行时长达到第一预设时长或室内环境温度小于等于第一温度阈值。
  7. 根据权利要求6所述的制冷控制方法,其中
    所述第二切换条件为:所述制冷中期阶段运行时长达到第二预设时长或室内环境温度小于等于第二温度阈值。
  8. 根据权利要求7所述的制冷控制方法,其中
    所述第一温度阈值大于所述制冷中期阶段的制冷目标温度,所述第二温度阈值小于所述制冷中期阶段的制冷目标温度。
  9. 根据权利要求7或8所述的制冷控制方法,其中
    所述第一预设时长的取值范围为1min至5min;
    所述第二预设时长的取值范围为18min至22min。
  10. 一种空调,包括控制器,所述控制器包括处理器和存储器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时用于实现根据权利要求1至9中任一项所述的制冷控制方法。
PCT/CN2023/106360 2022-08-29 2023-07-07 空调及其制冷控制方法 WO2024045900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211043135.7 2022-08-29
CN202211043135.7A CN115325670B (zh) 2022-08-29 2022-08-29 空调及其制冷控制方法

Publications (1)

Publication Number Publication Date
WO2024045900A1 true WO2024045900A1 (zh) 2024-03-07

Family

ID=83927364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106360 WO2024045900A1 (zh) 2022-08-29 2023-07-07 空调及其制冷控制方法

Country Status (2)

Country Link
CN (1) CN115325670B (zh)
WO (1) WO2024045900A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115325670B (zh) * 2022-08-29 2024-04-23 青岛海尔空调器有限总公司 空调及其制冷控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324908A (ja) * 2003-04-21 2004-11-18 Matsushita Electric Works Ltd ビル設備制御装置
CN105042761A (zh) * 2015-05-29 2015-11-11 广东美的制冷设备有限公司 空调器及其的风速控制方法
CN112283902A (zh) * 2020-10-30 2021-01-29 海信(广东)空调有限公司 空调器控制方法和空调器
CN112283899A (zh) * 2020-10-30 2021-01-29 海信(广东)空调有限公司 空调器控制方法和空调器
CN112283900A (zh) * 2020-10-30 2021-01-29 海信(广东)空调有限公司 空调器及其控制方法
CN115325670A (zh) * 2022-08-29 2022-11-11 青岛海尔空调器有限总公司 空调及其制冷控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082782A (ja) * 1999-09-13 2001-03-30 Toshiba Corp 空調制御装置
CN104913443B (zh) * 2015-05-29 2017-10-13 广东美的制冷设备有限公司 空调器及其的风速控制方法
CN104930644B (zh) * 2015-05-29 2017-11-10 广东美的制冷设备有限公司 空调器及其的风速控制方法
JP7073242B2 (ja) * 2018-11-02 2022-05-23 フクシマガリレイ株式会社 店舗設備制御システム
CN111121165A (zh) * 2020-01-16 2020-05-08 中国扬子集团滁州扬子空调器有限公司 一种可上下送风的旋转式空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324908A (ja) * 2003-04-21 2004-11-18 Matsushita Electric Works Ltd ビル設備制御装置
CN105042761A (zh) * 2015-05-29 2015-11-11 广东美的制冷设备有限公司 空调器及其的风速控制方法
CN112283902A (zh) * 2020-10-30 2021-01-29 海信(广东)空调有限公司 空调器控制方法和空调器
CN112283899A (zh) * 2020-10-30 2021-01-29 海信(广东)空调有限公司 空调器控制方法和空调器
CN112283900A (zh) * 2020-10-30 2021-01-29 海信(广东)空调有限公司 空调器及其控制方法
CN115325670A (zh) * 2022-08-29 2022-11-11 青岛海尔空调器有限总公司 空调及其制冷控制方法

Also Published As

Publication number Publication date
CN115325670A (zh) 2022-11-11
CN115325670B (zh) 2024-04-23

Similar Documents

Publication Publication Date Title
EP2581675B1 (en) Ventilation and air-conditioning apparatus and method for controlling same
CN106556099B (zh) 多联机空调***的室内机的电子膨胀阀的控制方法
WO2024045899A1 (zh) 空调及其制冷控制方法
CN109724202B (zh) 空调器及其控制方法
CN110736145B (zh) 一种双风道空调及其除湿方法、***
CN107525217B (zh) 一种空调器控制方法、控制装置及空调器
WO2024045900A1 (zh) 空调及其制冷控制方法
CN108168018B (zh) 空调器制热控制方法
CN112413733A (zh) 一种新风空调运行控制方法及新风空调器
WO2023231454A1 (zh) 空调送风控制方法、控制装置、电子设备及空调
WO2019075821A1 (zh) 一种多媒体教室空调控制方法
CN110986322A (zh) 空调运行控制方法、控制装置及空调***
CN112524758A (zh) 壁挂式空调多阶送风控制方法
CN110736143B (zh) 一种双风道空调及其除湿方法、***
CN114963426A (zh) 一种空调器恒温除湿方法、***、存储介质及空调器
WO2024114586A1 (zh) 空调及其控制方法
JPWO2020035913A1 (ja) 空調装置、制御装置、空調方法及びプログラム
CN105202693A (zh) 一种空调射频遥控控制方法
CN110274388B (zh) 一种暖风机及其控制方法
JP3785866B2 (ja) 空気調和装置
CN114963428A (zh) 一种空调器恒温除湿控制方法、***及恒温除湿空调器
CN113091132A (zh) 一种双出风新风空调室内机、新风空调及其控制方法
CN110986319A (zh) 一种空调节能控制方法
CN114216218B (zh) 一种空调器的降功率控制方法及空调器
CN114322242B (zh) 空调器及其空调温湿度控制方法、控制装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858938

Country of ref document: EP

Kind code of ref document: A1