WO2024045795A1 - 一种电机、动力总成及车辆 - Google Patents

一种电机、动力总成及车辆 Download PDF

Info

Publication number
WO2024045795A1
WO2024045795A1 PCT/CN2023/101966 CN2023101966W WO2024045795A1 WO 2024045795 A1 WO2024045795 A1 WO 2024045795A1 CN 2023101966 W CN2023101966 W CN 2023101966W WO 2024045795 A1 WO2024045795 A1 WO 2024045795A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
electrical connector
motor
outlet
winding structure
Prior art date
Application number
PCT/CN2023/101966
Other languages
English (en)
French (fr)
Inventor
郑阳
周朝
李宏斌
闫柯宇
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024045795A1 publication Critical patent/WO2024045795A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • This application relates to the field of motor technology, and in particular to a motor, a powertrain and a vehicle.
  • flat wire motors have been increasingly used in the field of new energy vehicles.
  • Flat wire motors have the advantages of high copper content, conducive to heat dissipation of motor windings, improved winding voltage resistance, and reduced winding end length, which can improve the torque density and power density of the motor. Therefore, flat wire motors have good application prospects in new energy electric vehicles.
  • the motor includes a stator.
  • the stator includes a stator core and a winding structure wound on the stator core.
  • the winding structure can be a multi-phase winding structure. Taking a three-phase motor as an example, the winding structure can include a U-phase winding structure and a V-phase winding structure. and W-phase winding structure.
  • the outlet ends of the three-phase winding structure can be connected to lead copper bars respectively, for example, they correspond to U-phase lead copper bars, V-phase lead copper bars and W-phase lead copper bars respectively.
  • the two ends of the lead copper bars are respectively It has solder points and a welding surface, and the lead-out copper bar is connected to the winding structure through the solder points, and connected to the terminal through the welding surface, so as to achieve connection with the control components of the vehicle's powertrain through the terminal.
  • the U phase lead wire copper bar, V phase lead wire copper bar and W phase lead wire copper bar can be spaced apart from each other and formed by injection molding to form an integral structure. The solder joints and welding surfaces are exposed. Injection molded parts for connection.
  • the exposed solder joints will reduce the insulation safety of the motor.
  • the distance between the solder joints and the motor shell is relatively large, resulting in a larger motor size.
  • This application provides a motor, a powertrain and a vehicle.
  • the motor has high insulation safety. Under the condition that the insulation safety distance is met, the volume of the motor is effectively reduced, which is conducive to the miniaturization of the motor.
  • a first aspect of the present application provides a motor, including a stator core and a multi-phase winding structure wound around the stator core.
  • Each phase winding structure includes a first outlet end, and the first outlet end of each phase winding structure is connected to the same Pinout connections for phase winding structures.
  • the motor also includes a first injection molding structure.
  • the first injection molding structure includes a first injection molding part and a plurality of first bus bars.
  • Each first bus bar includes a first main body part and a first electrical connector.
  • the first injection molding part wraps a plurality of first bus bars.
  • the first main body part of the first bus bar is arranged to fix a plurality of first bus bars, and the plurality of first bus bars are arranged at intervals along the circumferential direction of the winding structure, and the first electrical connectors of each first bus bar correspond to It is electrically connected to the first outlet end of each phase winding structure, so that the winding structure can be electrically connected to a control unit such as the powertrain through the first bus bar to control the power on the motor.
  • the first injection molded part can play a role in fixing the first bus bar, improve the stability of the first bus bar, reduce or avoid the movement of the first bus bar caused by vibration during assembly and operation of the motor, and ensure that the motor performance, and is conducive to maintaining a stable insulation distance between the first bus bars.
  • the first injection molded part wraps the first main parts of a plurality of spaced apart first bus bars, and the spaces between the first main parts of two adjacent first bus bars correspondingly connected with different phase winding structures are filled with insulating first injection molded materials. It can enhance the insulation effect between adjacent first bus bars, improve the insulation safety of the first bus bar, and meet the insulation safety distance requirements of high-voltage motors.
  • the motor also includes an insulating cover plate.
  • the insulating cover plate is arranged on the first injection molding structure.
  • the insulating cover plate covers the first electrical connector and the first outlet end. For example, it can completely cover the first electrical connector and the first outlet end facing away from the stator.
  • On one side of the iron core there is no exposed first electrical connector and first outlet end on the end surface of the stator in the axial direction.
  • the insulating cover plate can play a role as a barrier, and the first electrical connector and the first outlet terminal are respectively connected with each other.
  • the electrical clearance and creepage distance between the end covers effectively improve the insulation safety between the first electrical connector, the first outlet terminal and the end cover, and can better meet the insulation safety distance requirements of high-voltage motors. Moreover, it is helpful to reduce the length of the insulation distance set between the first electrical connector, the first outlet terminal and the end cover, saving money.
  • the end space of the motor along the axial direction reduces the size of the motor in the axial direction, which is beneficial to the miniaturization design of the motor.
  • the insulating cover plate can also completely cover the first electrical connector and the side of the first outlet end facing away from the axis of the stator core, and there is no exposed first electrical connector on the outer peripheral surface of the stator.
  • the electrical clearance and creepage distance between them effectively improve the insulation safety of the motor.
  • each phase winding structure further includes a second outlet terminal, and the second outlet terminal of each phase winding structure is connected to the neutral line of the same phase winding structure.
  • the second bus bar includes a plurality of connection end portions, the plurality of connection end portions are spaced apart along the circumference of the winding structure, each connection end portion has a second electrical connector, each connection end portion The second electrical connectors on the multi-phase winding structure are respectively connected to the second outlet terminals of each phase winding structure, so that the neutral points of the multi-phase winding structures can be electrically connected through the second busbar.
  • the insulating cover covers the second electrical connector and the second outlet end. For example, it can completely cover the side of the second electrical connector and the second outlet end facing away from the stator core, and there is no exposed end surface in the axial direction of the stator.
  • the second electrical connector and the second outlet terminal There is also an insulating cover plate between the second electrical connector, the second outlet terminal and the end cover respectively, which acts as a barrier and increases the electrical gap and creepage between the second electrical connector, the second outlet terminal and the end cover.
  • the electrical distance further improves the insulation safety of the motor. While meeting the high insulation safety distance requirements of high-voltage motors, it can further save the end space of the motor along the axial direction and realize the miniaturization design of the motor.
  • the insulating cover plate can also completely cover the side of the second electrical connector and the second outlet terminal facing away from the axis of the stator core, and there are no exposed second electrical connectors and second outlet terminals on the outer circumferential surface of the stator.
  • the second electrical connector, the second outlet terminal and the housing are respectively provided with an insulating cover plate that acts as a barrier, thereby increasing the insulation safety between the second electrical connector, the second outlet terminal and the housing, and further Improve the insulation safety of motors. While meeting the high insulation safety distance requirements of high-voltage motors, the size of the motor in the circumferential direction can be further saved, making it easier to realize miniaturized design of the motor.
  • the insulating cover plate includes a top plate and a side plate, the top plate is located on the side of the first injection molding structure facing away from the stator core, and the side plate is located on the side of the first injection molding structure facing away from the axis of the stator core,
  • the side plate is connected to the top plate, and the side plate and the top plate form an accommodation space.
  • the first electrical connector, the first outlet end, the second electrical connector and the second outlet end are located in the accommodation space. It has a good insulation barrier effect, which makes the motor have better insulation safety and is more conducive to miniaturization of the motor.
  • one end of the polyphase winding structure in the axial direction is a connection end, and the first outlet end and the second outlet end are respectively located outside the connection end in the axial direction.
  • the first injection molding structure is located outside the connecting end in the axial direction
  • the second bus bar is located on the outer peripheral side of the connecting end
  • the first electrical connector, the first outlet end, the second electrical connector and the second outlet end are distributed in the circumferential direction
  • the second outlet end of each phase winding structure and the second electrical connector corresponding to the second outlet end are arranged adjacent to the first outlet end of the phase winding structure and the first electrical connector corresponding to the first outlet end. It is beneficial to ensure the insulation safety of the motor.
  • the side of the top plate facing the first injection molded part has a plurality of isolation grooves, the first outlet end and the second outlet end of the same-phase winding structure, and the first outlet end and the second outlet end respectively.
  • the correspondingly connected first electrical connector and the second electrical connector are located in an isolation groove. That is to say, the first outlet terminals and the second outlet terminals of different phase winding structures and the corresponding first and second electrical connectors are located in different isolation slots, which increases the distance between different phase winding structures and The electrical clearance and creepage distance between the first electrical connector and the second electrical connector corresponding to different phase windings further improve the insulation safety of the motor.
  • a baffle is provided in the isolation groove, and the baffle separates the isolation groove into a first barrier groove and a second barrier groove, and the first outlet end and the first electrical connector are located in the first barrier.
  • the second outlet end and the second electrical connector are located in the second baffle groove.
  • the separator can isolate and insulate between the first outlet terminal of the same-phase winding structure and the first electrical connector connected thereto and the second outlet terminal and the second electrical connector connected thereto, thereby increasing the number of components in the same-phase winding structure.
  • the electrical gap and creepage distance between the first outlet end and the first electrical connector and the second outlet end and the second electrical connector further improve the insulation safety of the motor.
  • the insulating cover plate further includes end plates, the end plates are located on both sides of the top plate and the side plates in the circumferential direction, and the end plates are connected to the top plate and the side plates respectively.
  • the end plates cover both sides of the first injection molding structure in the circumferential direction, further closing the accommodation space, which is conducive to further increasing the distance between the first electrical connector, the second electrical connector and other metal structural parts in the motor. Creepage distance helps improve the insulation safety of the motor.
  • the top plate and the first injection molded part are detachably connected, which facilitates the disassembly and installation of the insulating cover plate, simplifies the assembly process, and improves installation efficiency.
  • a first clamping structure is provided on the top plate, and a second clamping structure is provided on the first injection molded part.
  • the top plate and the first injection molded part pass through the first clamping structure and the second clamping structure.
  • the connection is realized through cooperation, that is, the insulating cover plate is connected to the first injection molding structure through snap-fitting, which is easy to install and disassemble, and has high producibility.
  • the side of the top plate facing the first injection molded part has a raised first snapping wall and a second snapping wall, and there is an avoidance gap between the first snapping wall and the second snapping wall.
  • the first clamping wall and the second clamping wall have protrusions on opposite sides to form the first clamping structure
  • the first injection molded part has a protruding clamping portion on the outer peripheral side, and the two opposite sides of the clamping portion There are grooves on the side to form a second snap-in structure.
  • the first snap-in wall and the second snap-in wall can deform to a certain extent under external force, which can facilitate the first snap-in structure on the first snap-in wall and the second snap-in wall and the second snap-in connection on the snap portion.
  • the structural snap-fit makes it easier to disassemble or assemble, which is helpful to further improve assembly efficiency.
  • the first clamping structures are respectively located on one end of the first clamping wall and the second clamping wall facing away from the top plate, and the second clamping structures are respectively located on an end of the clamping portion facing away from the top plate.
  • the snap-in part is located in the avoidance gap, which is conducive to enhancing the snap-in strength of the first snap-in structure and the second snap-in structure, thereby enhancing the assembly fastness of the first injection molded part and the insulating cover plate, and ensuring the stability of the insulation.
  • the opposite sides of the clamping part also have guide slopes.
  • the guide slopes are located on the side of the second clamping structure facing away from the stator core, from the end of the clamping part facing the top plate to the clamping part. One end is facing away from the top plate, and the two guide slopes are inclined in opposite directions.
  • the two guide slopes can have a figure-eight structure, and the guide slope is located on the side of the second snap-in structure facing away from the stator core, so that the first snap-in structure of the insulating cover plate can snap-fit with the second snap-in structure after passing through the guide bevels.
  • the guide slope plays a good guiding role and facilitates assembly.
  • a first positioning structure is further provided on the top plate, and a second positioning structure that cooperates with the first positioning structure is provided on the first injection molded part.
  • the first positioning structure and the second positioning structure cooperate in positioning to facilitate accurate assembly between the insulating cover plate and the first injection molding structure, which is beneficial to improving assembly efficiency.
  • the insulating cover plate also includes reinforcing members, and the reinforcing members are respectively connected to the top plate and the side plates to increase the strength of the insulating cover plate and ensure the insulation stability of the insulating cover plate.
  • a second injection molding structure is further included, and the second injection molding structure includes a temperature sensor, a second injection molding part, and a second bus bar.
  • the second busbar also includes a second main body. A plurality of connecting end portions are provided on the second main body.
  • the temperature sensor is disposed on one side of the second main body. The heat generated by the operation of the stator and winding structure can be transferred to the second main body. on the second bus and temperature sensor to detect the stator temperature.
  • the second injection molded part wraps the temperature sensor and the second main body part.
  • the second injection molded part plays a role in isolating and protecting the temperature sensor. It can effectively prevent the cooling liquid from directly contacting the temperature sensor and reduce the impact of the cooling liquid on the temperature sensor. , thereby reducing the feedback delay of the temperature sensor and improving the detection accuracy of the temperature sensor. Under the condition of realizing the detection of stator temperature, the effect of low delay and high accuracy is achieved.
  • the second busbar includes a thermal conductive member, the thermal conductive member is disposed on one side of the second main body, the thermal conductive member and one side of the second main body form an accommodating cavity, and the temperature sensor is located in the accommodating cavity. inside, and the temperature sensor is arranged in contact with at least one side of the thermal conductive member.
  • the heat conductive member can accommodate and fix the temperature sensor, so that the temperature sensor is fixedly arranged on the second bus bar.
  • the heat of the second busbar can also be transferred to the temperature sensor through the heat conductor, thereby increasing the heat transfer area between the temperature sensor and the second busbar, and further Reduce the feedback delay of temperature detection and improve detection accuracy.
  • the heat conductive member includes a connected bottom surface and a side surface, the bottom surface is connected to the second main body part, the side surface is opposite to the second main body part, and the bottom surface, the side surface and one side of the second main body part together form a receiving cavity.
  • the temperature sensor is attached to the bottom surface and side respectively, so that the temperature sensor can better fit with the thermal conductive parts, and has a large thermal contact area, achieving the purpose of small feedback delay and high detection accuracy.
  • the accommodation cavity includes a first cavity, a first cavity is formed between an end of the side facing away from the bottom surface and the second body part, and the temperature sensor is inserted into the accommodation cavity through the first cavity. Inside. In this way, the temperature sensor can be installed in the accommodation cavity through insertion, which facilitates assembly or disassembly.
  • the heat conductive member includes a bottom surface, a side surface and a top surface connected in sequence.
  • the bottom surface is connected to the second main body part, the side surface is opposite to the second main body part, and the end of the top surface facing away from the side surface faces the second main body part.
  • Extended, the bottom surface, side surfaces, top surface and one side of the second main body jointly form a receiving cavity, and the temperature sensor is respectively attached to the bottom surface, side surface and top surface, further increasing the contact surface between the temperature sensor and the heat conductive member, thereby further Reduce the feedback delay of temperature detection and improve detection accuracy.
  • the accommodation cavity has a first opening and a second opening opposite to each other, and the temperature sensor is inserted into the accommodation cavity through the first opening, thereby realizing the insertion and assembly of the temperature sensor and facilitating assembly. and disassembly implementation.
  • the heat conductive member is also provided with a spring piece structure.
  • the spring piece structure includes a fixed end and an elastic end.
  • the fixed end is connected to the heat conductive member.
  • the elastic end is located on one side of the fixed end along the temperature sensor insertion direction.
  • the first end of the end is connected to the fixed end, and the second end of the elastic end extends into the accommodation cavity.
  • the temperature sensor is provided with a plug-in slot for cooperating with the elastic piece structure, and the elastic end is inserted into the plug-in slot.
  • the elastic end will be squeezed, thereby enabling the insertion of the temperature sensor. Insert the temperature sensor into the receiving cavity, and the elastic end can be inserted into the insertion slot.
  • the temperature sensor is fixed through the cooperation of the elastic end and the insertion slot, and the rebound force of the elastic end can also act on the temperature. sensor, and press the temperature sensor so that the temperature sensor can better fit with the first main body.
  • the first injection molding structure further includes a temperature sensor, the temperature sensor is attached to one side of the first main body part, and the first injection molded part wraps the temperature sensor and the first main body part.
  • the first injection molded part can also isolate and protect the temperature sensor, reduce the impact of the cooling liquid on the temperature sensor, and achieve the purpose of temperature detection with low delay and high accuracy under the condition of detecting the stator temperature.
  • a third injection molding structure is also included.
  • the third injection molding structure includes a temperature sensor, a third injection molded part and a first outlet end.
  • the temperature sensor is attached to one side of the first outlet end.
  • the third injection molding structure The package temperature sensor and part of the first outlet terminal are set. It can also protect the temperature sensor and achieve low delay and high accuracy under the condition of detecting the stator temperature.
  • the first busbar further includes a first end and a second end, the first end is provided with a first electrical connector, and the second end has an electrical connection surface.
  • each terminal including a first connecting part, a second connecting part and a bendable body part, the first connecting part and the second connecting part are located at both ends of the body part, the first connecting part is electrically connected surface electrical connection, thereby realizing the connection between the winding structure and the terminal, so that the winding structure can be electrically connected to the control unit through the terminal.
  • the bendable body part can achieve avoidance during assembly. For example, when assembling end caps, fuel injection rings and other structures, the body part can be bent so that it is in a vertical state (parallel to the axial direction of the stator core) to achieve avoidance, which is convenient. After the assembly of the end caps and the like is completed, the body part can be bent to form a bent structure to facilitate connection with the first busbar and the control unit.
  • the extension direction of the first connection part is parallel to the axial direction of the stator core to facilitate electrical connection between the first connection part and the first bus
  • the extension direction of the second connection part is parallel to the axial direction of the winding structure.
  • the radial direction is parallel to facilitate the electrical connection between the second connection part and the control unit.
  • the body part forms a bending structure, and in the axial direction of the stator core, the height of the end of the bending structure facing away from the stator core is higher than the height of the second connecting part from the stator core, so that the bending structure Having a large bending and adjustment space gives the second connection part greater flexibility in adjustment, which facilitates the alignment of the second connection part and the control unit to achieve electrical connection, and can reduce the assembly time of the terminals and the control unit. Difficulty.
  • a plurality of stator slots are provided on the stator core, and the plurality of stator slots are arranged at intervals along the circumferential direction of the stator core.
  • the winding structure is wound on the stator slots, and the winding structure is in contact with the stator slot.
  • Insulating parts are arranged between the inner walls, and the insulating parts play the role of insulating and isolating the winding structure and the stator core to ensure the insulation safety of the motor.
  • the insulating member is arranged around the side wall of the stator slot, and the first end and the tail end of the insulating member along the circumferential direction at least partially overlap to form an overlapping structure, which helps to improve the winding structure and the stator core.
  • the electrical clearance and creepage distance between them improve the insulation safety of the motor.
  • the expansion space is specifically added in the stator slot to accommodate the overlapping structure, which can accommodate the overlapping structure with larger size and thickness, that is, It is beneficial to increase the overlapping area between the first end and the tail end of the insulator, which can further improve the insulation safety of the motor to meet the insulation safety requirements of high-voltage motors.
  • a second aspect of the present application provides a power assembly, including a reduction mechanism and any one of the above motors, and the motor is connected to the reduction mechanism.
  • a third aspect of the present application provides a vehicle, including a vehicle body and any one of the above motors, and the motor is arranged on the vehicle body.
  • Figure 1 is a schematic structural diagram of a stator in a motor provided by an embodiment of the present application
  • Figure 2 is a schematic assembly diagram of the stator core and winding structure in a motor provided by the embodiment of the present application;
  • Figure 3 is an enlarged view of the partial structure of part B in Figure 2;
  • Figure 4 is a schematic structural diagram of a first busbar in a motor provided by an embodiment of the present application.
  • Figure 5 is a schematic assembly diagram of the first injection molding structure in a motor provided by an embodiment of the present application.
  • Figure 6 is a schematic assembly diagram of the stator core, winding structure and first injection molding structure in a motor provided by the embodiment of the present application;
  • Figure 7 is a schematic structural diagram of a top view of a stator in a motor provided by an embodiment of the present application.
  • Figure 8 is an enlarged view of the partial structure of part A in Figure 1;
  • Figure 9 is a partially disassembled schematic diagram of the stator core, the first injection molding structure and the insulating cover plate in a motor provided by the embodiment of the present application;
  • Figure 10 is a schematic assembly diagram of the stator core, the first injection molding structure and the insulating cover plate in a motor provided by the embodiment of the present application;
  • Figure 11 is a schematic diagram of the assembly structure of the first injection molding structure, the insulating cover plate and the terminals in a motor provided by the embodiment of the present application;
  • Figure 12 is a schematic structural diagram of another terminal of a motor provided by an embodiment of the present application.
  • Figure 13 is a schematic side structural view of a terminal in a motor provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of the disassembled structure of the stator core, the first injection molding structure and the insulating cover plate in a motor provided by the embodiment of the present application;
  • Figure 15 is a schematic cross-sectional partial structural diagram of a stator in a motor provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of the back of an insulating cover plate in a motor provided by an embodiment of the present application.
  • Figure 17 is another schematic diagram of the first injection molding structure in a motor provided by an embodiment of the present application.
  • Figure 18 is a partial cross-sectional structural schematic diagram of a first injection molded part and an insulating cover plate snap-fitted in a motor provided by an embodiment of the present application;
  • Figure 19 is a schematic front structural view of an insulating cover plate in a motor provided by an embodiment of the present application.
  • Figure 20 is another structural schematic diagram of the first injection molding structure in a motor provided by an embodiment of the present application.
  • Figure 21 is a partial structural schematic side view of a stator in a motor provided by an embodiment of the present application.
  • Figure 22 is a schematic diagram of the assembly structure of the second busbar and temperature sensor in a motor provided by an embodiment of the present application;
  • Figure 23 is a schematic diagram of a second injection molding structure in a motor provided by an embodiment of the present application.
  • Figure 24 is an enlarged schematic diagram of a partial structure of the assembly of the second busbar and temperature sensor in a motor provided by an embodiment of the present application;
  • Figure 25 is a schematic structural diagram of a thermal conductive member on the second busbar in a motor provided by an embodiment of the present application.
  • Figure 26 is a schematic structural diagram of a temperature sensor in a motor provided by an embodiment of the present application.
  • Figure 27 is a partial cross-sectional structural schematic diagram of the assembly of the second busbar and temperature sensor in a motor provided by the embodiment of the present application;
  • Figure 28 is a schematic partial structural diagram of the cross-section along plane A-A in Figure 24;
  • Figure 29 is a partial structural schematic diagram of the second busbar in another motor provided by the embodiment of the present application.
  • Figure 30 is a schematic structural diagram of a second busbar in yet another motor provided by an embodiment of the present application.
  • Figure 31 is a schematic diagram of the assembly structure of yet another second busbar and temperature sensor provided by the embodiment of the present application.
  • Figure 32 is a schematic cross-sectional structural diagram along plane B-B in Figure 30;
  • Figure 33 is a schematic structural diagram of yet another temperature sensor in a motor provided by an embodiment of the present application.
  • Figure 34 is a schematic structural diagram of another second busbar in a motor provided by an embodiment of the present application.
  • Figure 35 is a schematic cross-sectional structural diagram along the C-C plane in Figure 34;
  • Figure 36 is a schematic structural diagram of another thermal conductive component in a motor provided by an embodiment of the present application.
  • Figure 37 is a schematic structural diagram of a second busbar in yet another motor provided by an embodiment of the present application.
  • Figure 38 is yet another structural schematic diagram of the second busbar in yet another motor provided by an embodiment of the present application.
  • Figure 39 is an enlarged view of the partial structure of part C in Figure 10;
  • Figure 40a is a schematic cross-sectional view of the assembly of stator slots and insulating parts in a motor provided by an embodiment of the present application;
  • Figure 40b is a schematic cross-sectional view of a stator slot in a motor provided by an embodiment of the present application.
  • Figure 40c is a schematic cross-sectional view of the assembly of stator slots and insulators in another motor provided by the embodiment of the present application;
  • Figure 40d is a schematic cross-sectional view of a stator slot in a motor provided by an embodiment of the present application.
  • Figure 40e is a schematic cross-sectional view of the insulating member in the stator slot of another motor provided by the embodiment of the present application;
  • Figure 40f is a schematic cross-sectional view of the assembly of stator slots and insulators in another motor provided by the embodiment of the present application.
  • 32a, 32b, 32c-first bus bar 321-first body part; 322-first end part; 3221-first electrical connector; 323-second end part; 3231-electrical connection surface;
  • 52-temperature sensor 521-detection body; 522-lead; 523-plug slot;
  • 53-second bus bar 531-second main body; 532a, 532b, 532c-connecting end; 5321-second electrical connector; 533-thermal conductor; 533a-bottom surface; 533b-side surface; 533c-top surface; 5331-first limiting structure; 5332-first guiding structure; 5333-second limiting structure; 5334-third limiting structure; 5335-fourth limiting structure; 5336-second guiding structure; 5337-third Guide structure; 5338-elastic structure; 5338a-fixed end; 5338b-elastic end; 5338c-extension end; 534-accommodating cavity; 534a-first cavity; 534b-second cavity;
  • a motor is an electromagnetic device that converts or transmits electrical energy based on the law of electromagnetic induction. Its main function is to generate driving torque and serve as a power source for electrical appliances or various machinery. Motors usually include round wire motors and flat wire motors. Flat wire motors specify that the sub-windings are wound by wider flat copper wires, while round wire motors specify that the sub-windings are wound by narrower round copper wires.
  • the flat wire motor has the advantages of increasing the copper content of the motor, improving the heat dissipation of the motor, and reducing the space at the winding end, the flat wire motor has become an important way to improve the motor torque density and power density and is used In the field of new energy vehicles, etc., to achieve the purpose of increasing the vehicle's cruising range, improving space utilization and reducing powertrain costs.
  • the motor mainly includes a casing.
  • the casing includes a casing and end covers located at both ends of the casing, such as a front end cover and a rear end cover.
  • the front end cover, the rear end cover and the casing together form a sealed cavity, and a stator can be provided in the cavity.
  • rotor and shaft one end of the rotating shaft can be extended out of the cavity through the front end cover to connect with external structures such as the deceleration mechanism.
  • the other end of the rotating shaft can be rotationally connected with the rear end cover.
  • the rotor can be sleeved on the rotating shaft, and the stator can be sleeved on the rotating shaft. on the outer circumference of the rotor.
  • the front end cover and the rear end cover are respectively located on both sides of the stator in the axial direction, and the housing surrounds the circumferential outside of the stator.
  • the rotor may include a rotor core and a winding structure wound around the rotor core.
  • the stator may include a stator core and a winding structure wound on the stator core to realize the electromagnetic conversion function of the motor.
  • the motor may also include other structural components to complete the overall structure of the motor.
  • the motor may also include a cooling channel, an oil injection ring, etc.
  • the cooling liquid such as oil coolant
  • a cooling oil passage can be formed between the stator and the casing. Oil inlets and oil outlets are provided at both ends of the cooling oil passage adjacent to the front end cover and the rear end cover.
  • the cooling oil can pass through the oil injection ring. It is sprayed from the oil inlet to the end of the stator and its winding structure, and the heat-exchanged cooling oil can flow out from the oil outlet.
  • Figure 1 is a schematic structural diagram of a stator in a motor provided by an embodiment of the present application.
  • the stator 100 includes a stator core 10.
  • the stator core 10 may be a hollow cylindrical structure, including circumferential, axial and radial directions.
  • the axial, circumferential and radial directions constitute a columnar structure. an orthogonal direction.
  • the axial direction of the stator core 10 is a cylindrical stator core.
  • the axis of the stator core 10 is the direction of the rotation center axis of the stator core 10, such as the axis L in Figure 1.
  • the circumferential direction of the stator core 10 is the circumferential direction.
  • the radial direction of the stator core 10 is perpendicular to the axial direction and is the radius or diameter direction of the end circle of the cylindrical stator core 10.
  • the circumferential, radial and axial directions of the motor can be consistent with the circumferential, radial and axial directions of the stator core 10. Axis parallel.
  • the stator core 10 is wound with a winding structure 20.
  • the winding structure 20 is distributed along the circumference of the stator core 10.
  • the formed winding structure 20 is also a hollow cylindrical structure.
  • the axis of the winding structure 20 is the stator core.
  • the axis of 10, the axial direction of the winding structure 20 is the axial direction of the stator core 10
  • the circumferential direction of the winding structure 20 is parallel to the circumferential direction of the stator core 10
  • the radial direction of the winding structure 20 is parallel to the radial direction of the stator core 10 .
  • the stator core 10 may be provided with a plurality of stator slots 11 , and the plurality of stator slots 11 may be distributed at intervals along the circumferential direction of the stator core 10 , and the extension direction of each stator slot 11 may be in line with the direction of the stator core 10 .
  • the axial directions are parallel, and the stator slots 11 can play a role in limiting and fixing the winding structure 20, so that the winding structure 20 can be wound on the stator core 10 through the stator slots 11.
  • FIG. 2 is a schematic assembly diagram of a stator core and winding structure in a motor provided by an embodiment of the present application.
  • FIG. 3 is an enlarged view of the partial structure of FIG. 2 .
  • the winding structure 20 can be a multi-phase winding structure.
  • the winding structure 20 can be a three-phase winding structure, for example, it can include a U-phase winding structure, a V-phase winding structure and a W-phase winding structure.
  • the winding end of each phase winding structure has a lead-out.
  • the lead wire can be connected to a first outlet terminal as the outlet terminal of the phase winding structure.
  • the U-phase winding structure has a first outlet terminal 21a
  • the V-phase winding structure has a first outlet terminal 21b
  • the W-phase winding structure has a first outlet terminal 21c.
  • the number of phases of the winding structure 20 may also be other numbers, such as five, six, etc., that is, the winding structure 20 may be a five-phase winding structure, a six-phase winding structure, etc.
  • the winding structure 20 may be a six-phase winding, and may include a U-phase winding structure, a V-phase winding structure, a W-phase winding structure, an A-phase winding structure, a B-phase winding structure, and a C-phase winding structure respectively.
  • each phase winding structure may include multiple branches connected in parallel, and each branch may be composed of multiple flat wire coils. Some of the coils are located inside the stator slot 11 and some are located outside the stator slot 11 .
  • One end of the multi-phase winding structure 20 along the axial direction is the connection end 20a. Multiple flat wire coils can be connected at the connection end 20a by welding or other methods to form the branch.
  • the ends of the multiple branches are the ends of the winding structure.
  • Each end The end of each branch of the phase winding structure has a lead wire, and each lead wire is connected to a first outlet terminal.
  • the U-phase winding structure as an example, it includes two branches, and the ends of the two branches The lead-out wires are respectively connected to first outlet terminals 21a.
  • the first outlet end may be located outside the connection end 20a of the winding structure 20 in the axial direction (the side facing away from the stator core 10), so as to facilitate the connection between the first outlet end and external structural components such as a control unit in the powertrain. Electrical connection to realize control of motor power, etc.
  • each phase winding structure may also include a neutral line.
  • the neutral line is a wire led from the neutral point of the winding structure.
  • the end of the neutral line may be connected to a second outlet terminal as the phase The neutral point outlet terminal of the winding structure.
  • the U-phase winding structure includes the second outlet terminal 22a
  • the V-phase winding structure includes the second outlet terminal 22b
  • the W-phase winding structure includes the second outlet terminal 22c.
  • each branch when each phase winding structure includes multiple branches connected in parallel, each branch has a neutral line, and the neutral lines are connected to the second outlet terminal. As shown in Figure 3, taking the U-phase winding structure as an example, it includes two branches, and the neutral lines of the two branches are respectively connected to the second outlet terminals 22a.
  • the second outlet terminal may also be located outside the connection end 20a of the polyphase winding structure 20 in the axial direction, so as to facilitate electrical connection between the second outlet terminals.
  • the motor may also include a plurality of first busbars, each first busbar corresponding to the first outlet end of each phase winding structure. connect.
  • the plurality of first bus bars are respectively the first bus bar 32 a , the first bus bar 32 b and the first bus bar 32 c .
  • the first bus bar 32 a , the first bus bar 32 b and the first bus bar 32 c Located on the connection end 20a of the winding structure 20, they may be arranged side by side in sequence along the circumferential direction of the winding structure 20.
  • the first outlet terminal 21a of the U-phase winding structure is connected to the first bus bar 32a
  • the first outlet terminal 21b of the V-phase winding structure is connected to the first bus bar 32b
  • the first outlet terminal 21c of the W-phase winding structure is connected to the first bus bar 32a.
  • a bus 32c is connected correspondingly.
  • Each busbar is also electrically connected to a control unit and the like, thereby electrically connecting the winding structure 20 to the control unit and the like.
  • FIG. 4 is a schematic structural diagram of a first bus bar in a motor provided by an embodiment of the present application.
  • each first bus bar may be a material with high conductivity.
  • the first bus bar may be a copper bar.
  • Each first bus bar may include a first main body part, a first end part and a second end part. As shown in FIG. 4 , taking the first bus bar 32a as an example, it includes a first main body part 321 , a first end part The first end 322 and the second end 323 may be located at two ends of the first main body part 321 respectively.
  • a first electrical connector 3221 may be provided on the first end 322. As shown in FIG. 3, the first bus bar 32a may pass through the first The electrical connector 3221 is electrically connected to the first outlet terminal 21a of the U-phase winding structure.
  • the first electrical connector 3221 may be a welding point formed by a protrusion on the first end 322, and the first electrical connector 3221 may be electrically connected to the first outlet terminal 21a by welding or other means.
  • the number of first electrical connectors on a first end portion may be one or multiple, and the number of first electrical connectors may correspond to the number of first outlet terminals of each phase winding structure, for example, U-phase
  • the winding structure includes two branches, each branch is connected to a first outlet terminal, and the first end 322 may have two first electrical connectors 3221 corresponding to the first outlet terminals of the two branches respectively. connect.
  • An electrical connection surface 3231 may be formed on the second end part 323.
  • the electrical connection surface 3231 may be an end surface parallel to the axial direction on one end of the second end part 323.
  • the stator 100 may also include terminals (terminal 60a in Figure 1 ), one end of the terminal can be electrically connected to the electrical connection surface 3231 through welding, etc., and the other end of the terminal can be electrically connected to a control unit, etc., so that the second end 323 can be electrically connected to an external structural component such as a control unit through the terminal.
  • the first bus bar 32a, the first bus bar 32b and the first bus bar 32c are respectively connected to the first outlet terminal 21a of the U-phase winding structure, the first outlet terminal 21b of the V-phase winding structure and the W-phase
  • the first bus bar 32a, the first bus bar 32b and the first bus bar 32c are suspended from the connection end 20a of the winding structure 20, resulting in poor stability.
  • a preset distance should be maintained between the first bus bar 32a, the first bus bar 32b and the first bus bar 32c, especially the adjacent first bus bar 32a and the first bus bar 32b.
  • There is a preset insulation distance between the adjacent first bus bars 32b and the first bus bars 32c that is, there is a preset insulation distance between the two adjacent first bus bars correspondingly connected with different phase winding structures.
  • the stator 100 may also include a second bus bar 53, and the second bus bar 53 is located on the connection end 20a. Specifically, the second bus bar 53 is located on the connection end 20a. The two bus bars 53 may be located on the outer peripheral side of the connection end 20a.
  • the second busbar 53 may include a plurality of spaced connection ends.
  • the plurality of connection ends may be arranged sequentially along the circumferential direction of the winding structure 20 .
  • Each connection end is connected to the second outlet end of each phase winding structure. .
  • the plurality of connection ends are respectively the connection end 532a, the connection end 532b and the connection end 532c.
  • the second outlet end 22a of the U-phase winding structure is connected to the connection end 532a correspondingly.
  • the V-phase winding structure The second outlet end 22b of the W-phase winding structure is connected correspondingly to the connection end 532b, and the second outlet end 22c of the W-phase winding structure is connected correspondingly to the connection end 532c.
  • a second electrical connector may be provided on the connection end of each second busbar, and the connection end is electrically connected to the second outlet end through the second electrical connector.
  • the connecting end 532 a is provided with a second electrical connector 5321 , and the connecting end 532 a is electrically connected to the second outlet terminal 22 a through the second electrical connector 5321 .
  • the second electrical connector 5321 may be a welding point formed by a protrusion on the connection end 532a, and the second electrical connector 5321 may be electrically connected to the second outlet end 22a by welding or other means.
  • the number of second electrical connectors on one connection end can also be one or more, and the number of second electrical connectors can correspond to the number of second outlet terminals of each phase winding structure, for example, U-phase winding structure 20 includes two branches, each branch is connected to a second outlet terminal, and the connecting end 532a may have two second electrical connectors 5321 to be connected to the second outlet terminals of the two branches respectively.
  • the method of sticking powder is used to achieve the insulation safety distance, such as heating the first bus bar, the second bus bar and the connecting ends of the winding structure, and putting them into the insulating powder, so that the welding parts between the coils,
  • the first bus bar, the second bus bar, the connection part between the first electrical connector and the first outlet terminal, the connection part between the second electrical connector and the second outlet terminal, etc. are all wrapped with insulating powder, and an insulating layer is formed after cooling. to the role of insulation protection.
  • Figure 5 is a schematic assembly diagram of the first injection molding structure in a motor provided by an embodiment of the present application.
  • the stator 100 may also include a first injection molding structure 30, and the first injection molding structure 30 is located at the connection end 20a ( 6 ), and as shown in FIG. 5 , the first injection molding structure 30 may include a first injection molding part 31 and the above-mentioned plurality of first bus bars (such as the first bus bar 32a, the first bus bar 32b, the first bus bar 32a, the first bus bar 32b, the first bus bar 32a, the first bus bar 32b, A bus 32c).
  • first bus bars such as the first bus bar 32a, the first bus bar 32b, the first bus bar 32a, the first bus bar 32b, the first bus bar 32a, the first bus bar 32b, A bus 32c.
  • the first injection molded part 31 is arranged to wrap the first main body parts of the plurality of first bus bars (shown in conjunction with FIG. 4 ), thereby fixing the plurality of first bus bars.
  • a bus bar, and a plurality of first bus bars are arranged at intervals along the circumferential direction of the winding structure 20 to maintain an insulation safety distance. In this way, there will also be a third bus bar in the gap between the first main parts of two adjacent first bus bars.
  • the first injection molded structure 30 formed by an injection molded part 31 can also extend along the circumferential direction of the winding structure 20, which facilitates assembly and is beneficial to further reducing the size of the motor in the radial direction.
  • the molding material of the first injection molded part 31 may be a material with high insulation properties, such as polypropylene, polyethylene, polyvinyl chloride, etc.
  • the plurality of first bus bars and the first injection molding part 31 may be injection molded to form an integral first injection molding structure 30 .
  • the first injection molded part 31 can play a role in fixing the first bus bar, improve the installation stability of the first bus bar, and reduce or avoid the vibration of the motor during assembly, operation, etc., which may cause the first bus bar to be damaged. Movement ensures the performance of the motor and is conducive to maintaining a stable insulation distance between the first bus bars.
  • the first injection molded part 31 wraps the first main parts of a plurality of spaced first bus bars, and the spaces between the first main parts of two adjacent first bus bars with different phase winding structures correspondingly connected are filled with insulation.
  • the first injection molded part 31 can enhance the insulation effect between adjacent first bus bars, improve the insulation safety of the first bus bar, and meet the insulation safety distance requirements of high-voltage motors. It is also beneficial to reduce the length of the insulation distance provided between the first bus bars and to reduce the volume size of the end portion of the stator 100 along the axial direction.
  • first injection molding structure 30 can be formed by injection molding, and the assembly on the winding structure 20 can be completed by directly connecting it to the first outlet terminal.
  • the structure and formation process are simple and facilitate production.
  • the plurality of first bus bars form an integral first injection molding structure 30 , which facilitates integral welding with the winding structure 20 and also helps simplify the assembly process of the stator 100 .
  • first end and the second end of the first bus bar may be located outside the first injection molded part.
  • first end 322 and the second end portion 323 are located outside the first injection molded part 31, thereby exposing the first electrical connection member 3221 and the electrical connection surface 3231 to realize electrical connection with the first outlet terminal and the control unit respectively.
  • Figure 6 is a schematic assembly diagram of a stator core, winding structure and first injection molding structure in a motor provided by an embodiment of the present application.
  • the first injection molding structure 30 and the winding structure 20 so that the first electrical connectors of the plurality of first bus bars are respectively connected to the first outlet ends of each phase winding structure 20.
  • the first The first electrical connector 3221 of the bus bar 32a is electrically connected to the first outlet terminal 21a, and the first electrical connector 3221 and the first outlet terminal 21a are in an exposed state.
  • the stator 100 is arranged in a receiving cavity surrounded by a shell and an end cover. The front end cover and the rear end cover are respectively located on both sides of the stator 100 in the axial direction.
  • the shell is sleeved on the outer peripheral side of the stator 100 .
  • the first electrical connector, the first outlet terminal and the housing need to maintain a preset insulation distance in the radial direction (that is, the radial direction of the motor).
  • the preset insulation distance between the outlet end and the end cover (front end cover and rear end cover) also needs to be maintained in the axial direction (that is, the axial direction of the motor), that is, the stator 100 and the end cover are in the axial direction, and
  • the stator 100 has a preset distance from the housing in the radial direction. Since the first electrical connector and the first outlet terminal are exposed and the insulation safety is poor, a long insulation safety distance needs to be set between the stator 100 and the housing and the end cover. Especially in high-voltage motors, the required insulation A larger safety distance will lead to an increase in the size of the motor in the axial and radial directions, making the motor larger in size and making it difficult to meet the miniaturization design of the motor.
  • Figure 7 is a schematic top structural view of a stator in a motor provided by an embodiment of the present application.
  • Figure 8 is an enlarged view of the partial structure of part A in Figure 1.
  • Figure 9 is a stator core and a stator in a motor provided by an embodiment of the present application.
  • Figure 10 is a schematic assembly diagram of the stator core, the first injection molding structure and the insulating cover plate in a motor provided by an embodiment of the present application.
  • Injection molding structure 30 to cover the first electrical connector and the first outlet terminal, so that there are no exposed first electrical connectors and first outlet terminals at least in the axial direction, or at least there are no exposed first electrical connectors and first outlet terminals in the circumferential direction. The exposed first electrical connector and the first outlet terminal.
  • the forming material of the insulating cover plate 40 may be a material with high insulating properties, such as polypropylene, polyethylene, polyvinyl chloride, etc.
  • the forming material of the insulating cover plate 40 may be the same as the forming material of the first injection molded part 31 .
  • the insulating cover plate 40 can also be formed by injection molding.
  • the insulating cover plate 40 can be located on the side of the first injection molding structure 30 facing away from the stator core 10 in the axial direction, and the insulating cover plate can also be located on the side of the first injection molding structure 30 facing away from the axis of the stator core 10 .
  • the insulating cover 40 can be disposed on the side of the first injection molding structure 30 facing away from the stator core, covering the first electrical connector and the first outlet end on the side facing away from the stator core in the axial direction, that is, on the shaft. Cover the first electrical connector and the first outlet terminal upward. For example, as shown in FIG.
  • the insulating cover plate 40 includes a top plate 41 , which may be located on the side of the first injection molding structure 30 facing away from the stator core 10 in the axial direction (y direction in the figure). 41 functions to cover the exposed first electrical connector (such as the first electrical connector 3221) and the first outlet terminal (such as the first outlet terminal 21a).
  • the top plate 41 can completely cover the first electrical connector and the first outlet terminal 21a in the axial direction.
  • the side of the first outlet end facing away from the stator core 10 does not have an exposed third end surface of the stator 100 in the axial direction. An electrical connector and a first outlet end (refer to Figure 7, the exposed first electrical connector cannot be observed).
  • the insulating cover 40 can act as a barrier. , increasing the electrical clearance and creepage distance between the first electrical connector, the first outlet terminal and the end cover respectively, effectively improving the insulation safety between the first electrical connector, the first outlet terminal and the end cover, It can better meet the insulation safety distance requirements of high-voltage motors. Moreover, it is beneficial to reduce the length of the insulation distance set between the first electrical connector, the first outlet end and the end cover, that is, reduce the axial distance between the stator 100 and the end cover, and save the axial end of the motor. space, reducing the size of the motor in the axial direction, which is beneficial to the miniaturization design of the motor.
  • the insulating cover 40 can be disposed on the side of the first injection molding structure 30 facing away from the axis of the stator core, covering the first electrical connector and the side of the first outlet end facing away from the axis of the stator core, that is, covering the first electrical connector in the circumferential direction. An electrical connector and the outside of the first outlet end.
  • the insulating cover plate 40 includes a side plate 42 , which may be located on a side of the first injection molding structure 30 circumferentially facing away from the axis of the stator core 10 .
  • the insulating cover plate 40 serves to cover the first electrical connection (such as the first electrical connection 3221) and the first outlet end (such as the first outlet end 21a).
  • the side plate 42 can completely cover the first electrical connection in the circumferential direction. As shown in FIG. 10 , there is no exposed first electrical connector on the outer peripheral surface of the stator 100 .
  • insulating covers 40 side plates 42 that can serve as barriers between the first electrical connector, the first outlet terminal and the housing.
  • the electrical gap and creepage distance between the first electrical connector, the first outlet terminal and the shell are effectively improved, which effectively improves the insulation safety of the motor and meets the high insulation safety distance requirements of high-voltage motors.
  • the upward size further facilitates the miniaturization design of the motor.
  • the insulating cover 40 can extend to the second electrical connector and the second outlet end to cover the second electrical connector and the second outlet end.
  • the insulating cover 40 can cover the second electrical connector and the side of the second outlet end facing away from the stator core in the axial direction.
  • the top plate 41 is located on the first injection molding structure 30 facing away from the stator core.
  • the top plate 41 can completely cover the second electrical connector (such as the second electrical connector 5321) and the second outlet end (such as the second outlet end 22a) facing away from the stator core 10 in the axial direction.
  • there is no exposed second electrical connector and second outlet end on the axial end surface of the stator 100 (refer to FIG. 8 ).
  • the creepage distance further improves the insulation safety of the motor. While meeting the high insulation safety distance requirements of high-voltage motors, it can further save the end space of the motor along the axial direction and realize the miniaturization design of the motor.
  • the insulating cover plate 40 can cover the side of the second electrical connector and the second outlet end facing away from the axis of the stator core.
  • the side plate 42 is located circumferentially away from the first injection molding structure 30 .
  • the side plate 42 can completely cover the second electrical connector (such as the second electrical connector 5321) and the second outlet end (such as the second outlet end 22a) in the circumferential direction away from the axis.
  • there are no exposed second electrical connectors and second outlet terminals on the outer peripheral surface of the stator 100 (refer to FIG. 10 ).
  • an insulating cover plate 40 that acts as a barrier between the second electrical connector, the second outlet terminal and the casing, thereby increasing the insulation safety between the second electrical connector, the second outlet terminal and the casing. Further improve the insulation safety of the motor. While meeting the high insulation safety distance requirements of high-voltage motors, the size of the motor in the circumferential direction can be further saved, making it easier to realize miniaturized design of the motor.
  • the insulating cover plate 40 can only cover the side of the first electrical connector and the first outlet terminal facing away from the stator core, or the insulating cover plate 40 can only cover the first electrical connector and the side of the first outlet terminal facing away from the stator core.
  • the side of the first outlet end facing away from the axis, or the insulating cover 40 can also cover the first electrical connector and the side of the first outlet end facing away from the stator core, and also cover the first electrical connector and the side of the first outlet end facing away from the stator core.
  • the first outlet end is on the side facing away from the axis.
  • the insulating cover plate 40 can also only cover the side of the second electrical connector and the second outlet terminal facing away from the stator core, or the insulating cover plate 40 can only cover the second electrical connector and the second outlet end.
  • the insulating cover 40 can cover both the second electrical connector and the second outlet end on the side facing away from the stator core, and also cover the second electrical connector and the first outlet end. The end is on the side facing away from the axis.
  • Figure 11 is a schematic diagram of the assembly structure of the first injection molding structure, the insulating cover plate and the terminals in a motor provided by an embodiment of the present application.
  • the insulating cover 40 not only covers the first electrical connector, the first outlet terminal, and the side of the second electrical connector and the second outlet terminal facing away from the stator core, but also covers the side of the second electrical connector and the second outlet terminal facing away from the stator core.
  • an electrical connector, a first outlet end, a second electrical connector and a second outlet end are on the side facing away from the axis.
  • the insulating cover plate 40 may include a top plate 41 and a side plate 42 that enclose a receiving space 40 a .
  • the top plate 41 is disposed on the first injection molding structure 30 and faces away from the stator core 10 in the axial direction.
  • the side plate 42 is disposed on the side facing away from the axis in the circumferential direction, so that the first injection molding structure 30 is located in the accommodating space 40a, so that the first electrical connector, the first outlet end, and the third The two electrical connectors and the second outlet terminal are located in the accommodation space 40a.
  • the top plate 41 covers the first electrical connector, the second The electrical connector, the first outlet end and the second outlet end face away from the stator core, and the side plate 42 covers the first electrical connector, the second electrical connector, the first outlet end and the second outlet end facing away from the stator.
  • One side of the core axis has a good insulation barrier effect, which makes the motor have better insulation safety and is more conducive to miniaturization of the motor.
  • the shapes of the side plates 42 and the top plate 41 can respectively be circular arc shapes extending in the circumferential direction, so that the entire insulating cover 40 extends in the circumferential direction, which facilitates assembly and further reduces the size of the motor in the circumferential direction.
  • the top plate 41 covers the side of the first injection molding structure 30 facing away from the stator core 10 in the axial direction.
  • the top plate 41 needs to avoid the second end and expose the second end to facilitate the control of the second end. Units and other connections.
  • the top plate 41 of the insulating cover 40 only covers part of the first injection molding structure 30, so that the second end of the first bus bar (such as the second end 323 of the first bus bar 32a) Located outside the side of the insulating cover plate 40 facing the axis of the stator core 10, the second end can be electrically connected to the control unit and the like through terminals.
  • the insulating cover plate 40 can also completely cover the first injection molding structure 30, and an escape hole can be opened at the position of the insulating cover plate 40 opposite to the second end, so that the second end can pass through the escape hole. The hole is exposed, and the connection terminal 20a is used to realize electrical connection with the control unit.
  • the number of terminals may correspond to the number of phases of the winding structure 20, with each terminal corresponding to a first busbar connection connected to each phase of the winding structure.
  • the terminals may include terminals 60a, 60b, and 60c.
  • the terminal 60a is electrically connected to the first bus 32a
  • the terminal 60b is electrically connected to the first bus 32b
  • the terminal 60c is electrically connected to the first bus 32a. Row 32c electrical connection.
  • FIG. 12 is a schematic structural diagram of another terminal of a motor provided by an embodiment of the present application.
  • FIG. 13 is a schematic side view structural diagram of one terminal of a motor provided by an embodiment of the present application.
  • each terminal may include a body part 63, a first connecting part 61 and a second connecting part 62, wherein the first connecting part 61 and the second end part 323 of the terminal 60a
  • the upper electrical connection surface 3231 is electrically connected
  • the second connection part 62 is electrically connected to the control unit.
  • a first assembly hole 621 may be opened in the second connection part 62 , and the second connection part 62 may be electrically connected to the control unit through the first assembly hole 621 .
  • the control unit may have a terminal block, and a second assembly hole may be opened on the terminal block.
  • the motor may also include a fixing member, and the fixing member may be connected to the first assembly hole 621 and the second assembly hole respectively, so that the winding structure 20 Connection to the control unit is possible via terminals.
  • the fixing members may be bolts, screws, etc., and the first assembly hole 621 and the second assembly hole may be threaded holes or light holes that can cooperate with the fixing members.
  • the body part 63 can be flexible and can be bent to form a bending structure 631 (see Figure 13).
  • the body part 63 can be bent so that the body part 63 is in a vertical state (see Figure 13). parallel to the axial direction) to achieve avoidance and facilitate the assembly of end covers, etc.
  • the body portion 63 can be bent to form a bending structure 631 to facilitate the connection between the first connecting portion 61 of the terminal and the first busbar.
  • the second connection part 62 is connected to the control unit.
  • the first connecting part 61 and the second connecting part 62 may have a certain hardness to facilitate electrical connection.
  • a sleeve 64 can be placed on the main body.
  • the sleeve 64 not only protects the main body, but also reduces damage to the main body due to bending.
  • the bushing 64 can be an insulating tube, which can play an insulating isolation role to improve the insulation safety of the motor.
  • the end of the bending structure 631 facing away from the stator core 10 may be farther from the stator core 10 than the second connecting part 62 .
  • the maximum height of the bending structure 631 is higher than the maximum height of the second connecting part 62, such as higher than h distance in Figure 13, so that the part of the bending structure 631 adjacent to the first connecting part 61 and the part adjacent to the second connecting part 62
  • the portions of the connecting portion 62 form an acute angle with each other.
  • the bending structure 631 has a large bending and adjustment space, which also gives the second connecting part 62 greater adjustable flexibility, which facilitates the alignment of the first assembly hole and the second assembly hole of the second connecting part 62. Realizing the electrical connection between the terminal and the control unit can reduce the difficulty of assembling the terminal and the control unit.
  • the forming material of the terminal may be a highly conductive material.
  • the terminal may be a metal piece made of copper foil.
  • the terminal is made of copper foil.
  • the terminal can be formed by stacking multiple layers of copper foil.
  • Harder copper sheets can be formed at both ends of the terminal by resistance welding or other methods to form the first connecting portion 61 and the second connecting portion 62 respectively, and the first connecting portion 61 and the second connecting portion 62 are located in the middle area.
  • the main part is not welded and has a certain degree of flexibility to achieve bending.
  • Figure 14 is a schematic diagram of the disassembled structure of the stator core, the first injection molding structure and the insulating cover plate in a motor provided by an embodiment of the present application.
  • Figure 15 is a partial structural schematic diagram of a section of the stator in a motor provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of the back of an insulating cover plate in a motor provided by an embodiment of the present application.
  • the first outlet terminal and the second outlet terminal of the winding structure 20 are both located at the connection end 20a of the winding structure 20, as It is convenient for the first bus bar and the second bus bar to be connected to the first outlet terminal and the second outlet terminal respectively.
  • the first injection molding structure 30 may be located on the side of the connecting end 20a facing away from the stator core in the axial direction
  • the second bus bar 53 may be located on the outer side of the connecting end 20a in the circumferential direction, that is, the third The two bus bars 53 are located on the outer peripheral side of the connection end 20a.
  • the first electrical connector, the first outlet terminal, the second electrical connector and the second outlet terminal may be distributed in the circumferential direction of the winding structure 20 at intervals.
  • the second outlet terminal of each phase winding structure is connected to the second outlet terminal.
  • the second electrical connector is disposed adjacent to the first outlet end of the phase winding structure and the first electrical connector connected to the first outlet end.
  • the second outlet terminal 22a and the second electrical connector 5321 are disposed closer to the first outlet terminal 21a and the first electrical connector 3221 to ensure insulation safety. .
  • an isolation groove 411 is formed on the insulating cover 40. Specifically, the top plate 41 faces the stator core 10. A plurality of isolation grooves 411 can be formed on one side (see Figure 16).
  • the first outlet end and the second outlet end of the same-phase winding structure, the first electrical connector connected to the first outlet end, and the second electrical connector connected to the second outlet end are located in an isolation groove, for example, see As shown in FIG. 15 , the first electrical connector 3221 , the first outlet terminal 21 c , the second electrical connector 5321 and the second outlet terminal 22 c are located in an isolation groove 411 . That is to say, the first outlet terminals and the second outlet terminals of different phase winding structures and the corresponding first and second electrical connectors are located in different isolation slots, which increases the distance between different phase winding structures and The electrical clearance and creepage distance between the first electrical connector and the second electrical connector corresponding to different phase winding structures further improve the insulation safety of the motor.
  • the side of the top plate 41 facing the stator core 10 can be recessed to form an isolation groove 411, and a protruding structure 419 can be formed on the side of the top plate 41 facing away from the stator core 10 corresponding to the isolation groove 411.
  • the isolation groove 411 can be extended to the protruding structure 419 to deepen the depth of the isolation groove 411 and improve the insulation isolation effect.
  • a baffle 412 can be provided in the isolation groove 411.
  • the baffle 412 can separate the isolation groove 411 into a first barrier groove 4111 and a second barrier groove 4112.
  • the first outlet of the same-phase winding structure The terminal and the first electrical connector connected to the first outlet terminal are located in the first barrier groove 4111, and the second outlet terminal and the second electrical connector connected to the second outlet terminal are located in the second barrier groove 4112. .
  • the first electrical connector 3221 and the first outlet terminal 21 c are located in the first barrier groove 4111
  • the second electrical connector 5321 and the second outlet terminal 22 c are located in the second barrier groove 4112 .
  • the separator can isolate and insulate between the first outlet terminal of the same-phase winding structure and the first electrical connector connected thereto and the second outlet terminal and the second electrical connector connected thereto, thereby increasing the number of components in the same-phase winding structure.
  • the electrical gap and creepage distance between the first outlet end and the first electrical connector and the second outlet end and the second electrical connector further improve the insulation safety of the motor.
  • the insulating cover plate 40 may also include end plates 43.
  • the end plates 43 are disposed on both sides of the top plate 41 and the side plates 42 in the circumferential direction (see Figure 14).
  • the end plates 43 can be respectively Connected to top plate 41 and side plate 42.
  • it can increase the strength of the insulating cover plate 40 and ensure the insulation stability of the insulating cover plate 40 .
  • the end plate 43 covers both sides of the first injection molding structure 30 in the circumferential direction, further closing the accommodation space 40a, which is conducive to further increasing the number of first and second electrical connectors and other metal structural parts in the motor. The creepage distance between them helps to improve the insulation safety of the motor.
  • Reinforcing members 44 may also be provided on the insulating cover 40 .
  • the reinforcing members 44 are respectively connected to the top plate 41 and the side plates 42 to increase the strength of the insulating cover 40 and ensure the insulation stability of the insulating cover 40 .
  • the insulating cover plate 40 and the first injection molded structure 30 can be assembled in various ways.
  • the insulating cover plate 40 can be disposed on the first injection molded part 31 in a non-removable manner such as bonding.
  • the insulating cover plate 40 can also be detachably assembled and connected with the first injection molded part 31 to facilitate the disassembly and installation of the insulating cover plate 40, which is conducive to simplifying the assembly process and improving installation efficiency.
  • the insulating cover may be provided with a first snap-in structure, and the first injection molded part may be provided with a second snap-in structure, and the insulating cover may be snap-connected by the first snap-in structure and the second snap-in structure. Cooperate with the first injection molded part to facilitate installation and disassembly.
  • a raised first snap-in wall 413 and a second snap-in wall 414 may be provided on the side of the top plate 41 facing the first injection molded part 31 .
  • the two clamping walls 414 are arranged oppositely, and there is an avoidance gap between the first clamping wall 413 and the second clamping wall 414.
  • the side of the connecting wall 414 facing the first clamping wall 413 may have protrusions respectively to form the first clamping structure 415 .
  • Figure 17 is another schematic diagram of the first assembly in a motor provided by an embodiment of the present application.
  • Figure 18 is a partial cross-sectional structure of the first injection molded part and the insulating cover plate snap-fitted in a motor provided by an embodiment of the present application.
  • Figure 19 is a schematic front structural view of an insulating cover plate in a motor provided by an embodiment of the present application.
  • Figure 20 is a further structure of the first injection molding structure of a motor provided by an embodiment of the present application. Schematic diagram.
  • a snap-in portion 311 can be formed on the first injection molded part 31. Specifically, the snap-in portion 311 is protrudingly disposed on a side of the first injection molded part 31 facing away from the axis (see Figure 14 ), the two opposite sides of the clamping portion 311 have grooves to form the second clamping structure 3111.
  • the convex first clamping structure 415 can be clamped in the recessed second clamping structure 3111 , thereby realizing the clamping fit between the first injection molded part 31 and the insulating cover 40 (top plate 41 ).
  • the avoidance gap between the first snap-in wall 413 and the second snap-in wall 414 can give the first snap-in wall 413 and the second snap-in wall 414 a certain space for movement, so that the first snap-in wall 413 and the second snap-in wall 414 can move.
  • the two clamping walls 414 can deform to a certain extent under external force, so as to facilitate the first clamping structure 415 on the first clamping wall 413 and the second clamping wall 414 and the second clamping structure 3111 on the clamping portion 311 Snap fit.
  • first clamping structure 415 can be respectively located on one end of the first clamping wall 413 and the second clamping wall 414 facing away from the top plate 41
  • second clamping structure 3111 can be located at the clamping portion 311 facing away from the top plate 41
  • the snap-in part 311 can be located in the avoidance gap between the first snap-in wall 413 and the second snap-in wall 414, which is conducive to strengthening the first snap-in structure 415 and the second snap-in structure 3111.
  • the clamping strength of the first clamping structure 415 and the second clamping structure 3111 enhances the assembly fastness of the first injection molded part 31 and the insulating cover 40 and ensures the stability of the insulation.
  • the two opposite sides of the clamping portion 311 in the circumferential direction may have guide slopes, such as guide slopes 3112 a respectively. and 3112b, from the end of the clamping portion 311 facing the top plate 41 to the end of the clamping portion 311 facing away from the top plate 41, the two guide slopes 3112 are inclined in opposite directions.
  • the two guide slopes can have a figure-eight structure, and the guide slopes are located at the third
  • the second snap-in structure 3111 faces away from the side of the stator core 10 so that the first snap-in structure 415 of the insulating cover 40 can snap-fit with the second snap-in structure 3111 after passing through the guide bevel.
  • the guide bevel plays a very good role. Guide function for easy assembly.
  • the top plate 41 can also be provided with first escape holes 417.
  • the first escape holes 417 can be respectively located on one side of the first snap-in wall 413 and the second snap-in wall 414, adjacent to the first snap-in wall. 413 and the second clamping wall 414 are provided so that during the injection molding process of the insulation cover 40 , the first clamping wall 413 and the second clamping wall 414 are injection molded through the first escape hole 417 .
  • the insulation cover 40 may also be provided with a second escape hole 418 , and the second escape hole 418 may be used to fix the lead 522 of the temperature sensor 52 .
  • a first positioning structure 416 can be provided on the top plate 41.
  • on the first injection molded part 31 can be provided with a second positioning structure 312.
  • the first positioning structure 416 and the second positioning structure 312 cooperate with each other to play a positioning role, so as to facilitate accurate assembly between the insulation cover 40 and the first injection molding structure 30, which is beneficial to lifting. Assembly efficiency.
  • the first positioning structure 416 may be a positioning hole, which may be provided through the top plate 41 , or the positioning hole may be a blind hole opened on a side of the top plate 41 facing the stator core 10 .
  • the second positioning structure 312 may be a raised positioning post, and the second positioning structure 312 may be inserted into the first positioning structure 416 to play a positioning role (refer to FIG. 18 ).
  • the first positioning structure 416 can be located between the first clamping wall 413 and the second clamping wall 414 (see FIG. 16 ), which can facilitate the clamping of the insulating cover 40 and the first injection molded part 31 while positioning. Matching, easier to assemble.
  • the motor in order to monitor the temperature of the stator to control the cooling of the stator, etc., the motor may also include a temperature sensor.
  • the temperature sensor may be disposed on the stator. Specifically, the temperature sensor may be disposed adjacent to the winding structure. And it is in direct or indirect contact with the winding structure to improve the accuracy of temperature monitoring during stator operation.
  • Figure 21 is a side view partial structural schematic diagram of a stator in a motor provided by an embodiment of the present application.
  • Figure 22 is a schematic diagram of a second injection molding structure in a motor provided by an embodiment of the present application.
  • Figure 23 is a schematic diagram of a second injection molding structure in a motor provided by an embodiment of the present application.
  • FIG. 24 is an enlarged schematic diagram of a partial structure of the assembly of a second busbar and a temperature sensor in a motor provided by an embodiment of the present application.
  • the stator 100 may further include a second injection molding structure 50.
  • the second injection molding structure 50 is disposed on the outer peripheral side of the connection end 20a of the winding structure 20.
  • the second injection molding structure 50 may include , the second injection molded part 51, the second bus bar 53 and the temperature sensor (not shown in the figure).
  • the second bus bar 53 may include a second main body part 531 and a plurality of connecting end parts (the connecting end parts in the figure 532a, connecting end portion 532b, connecting end portion 532c), a plurality of connecting end portions are provided on the second main body portion 531.
  • the second main body part 531 may be located on the outer peripheral side of the connecting end 20a.
  • the second main body part 531 may have an arc-shaped structure, and its extension direction may be parallel to the circumferential direction of the winding structure 20 to facilitate the second bus bar 53 (second The injection molding structure 50) is arranged on the circumferential side of the winding structure 20.
  • the temperature sensor 52 is disposed on one side 531 a of the second main body 531 .
  • the heat generated by the operation of the stator 100 and the winding structure 20 can be transferred to the second bus bar 53 and the temperature sensor 52 to detect the temperature of the stator 100 .
  • the second injection molded part 51 is wrapped around the temperature sensor 52 and the second main body part 531. As shown in FIG. 23, the connecting end part 532a, the connecting end part 532b, and the connecting end part 532c are located outside the second injection molded part 51, so that the connecting end parts
  • the second electrical connector (such as the second electrical connector 5321 on the connecting end 532a) is exposed to facilitate electrical connection.
  • the second injection molded part 51 plays a role in isolating and protecting the temperature sensor 52, and can effectively prevent the cooling liquid from directly contacting the temperature sensor 52, reducing the impact of the cooling liquid on the temperature sensor 52, thereby reducing the feedback delay of the temperature sensor 52.
  • the detection accuracy of the temperature sensor 52 is improved. Under the condition of realizing the temperature detection of the stator 100, the effect of low delay and high precision is achieved.
  • the second injection molded part 51 wraps the first main body part 321 of the second bus bar 53, which is beneficial to improving the insulation safety between the second bus bar 53 and the shell on the outer peripheral side of the stator 100, as well as the first bus bar. It is conducive to reducing the size of the motor in the radial and axial directions, and is conducive to the miniaturization design of the motor.
  • the molding material of the second injection molded part 51 may be a material with high insulation properties, such as polypropylene, polyethylene, polyvinyl chloride, etc.
  • the second bus bar 53 with the temperature sensor 52 fixed thereon and the second injection molded part 51 may be injection molded to form an integral second injection molded structure 50 .
  • the temperature sensor 52 can also be injection-molded with other structural components directly or indirectly connected to the winding structure 20 to form an injection-molded structure.
  • the temperature sensor can be attached to the first main body of the first busbar, and the first injection molded part wraps the temperature sensor and the first main part to form a first injection molded structure.
  • the first injection molded part can also play a role in the temperature sensor. The function of isolation protection reduces the impact of the cooling liquid on the temperature sensor, and achieves the purpose of temperature detection with low delay and high accuracy under the condition of detecting the stator temperature.
  • the stator may also include a third injection molded structure.
  • the third injection molded structure includes a third injection molded part, a temperature sensor and a first outlet end.
  • the temperature sensor may be attached to the first outlet end, and the third injection molded part wraps the temperature sensor.
  • the setting of the first outlet terminal can also protect the temperature sensor, and achieve the effect of low delay and high accuracy under the condition of detecting the stator temperature.
  • the temperature sensor 52 is disposed on the second bus bar 53 and forms the second injection molding structure 50 as an example for description.
  • a thermal conductive member 533 may be provided on the second main body part 531 .
  • the thermal conductive member 533 may be disposed on one side 531 a of the second main body part 531 .
  • the thermal conductive member 533 may be surrounded by one side of the second main body part 531 .
  • the temperature sensor 52 can be accommodated in the accommodation cavity 534 , and the temperature sensor 52 (detection body 521 ) can be attached to at least one side of the heat conductive member 533 .
  • the heat conductive member 533 can accommodate and fix the temperature sensor 52 so that the temperature sensor 52 is fixedly arranged on the second bus bar 53 .
  • the heat of the second bus bar 53 can also be transferred to the temperature sensor 52 through the heat conducting member 533, thereby increasing the relationship between the temperature sensor 52 and the second bus bar 53.
  • the heat transfer area further reduces the feedback delay of temperature detection and improves the accuracy of detection.
  • the temperature sensor 52 may include a detection body 521 and a lead 522 (see Figure 26).
  • the detection body 521 is used to detect temperature.
  • the detection body 521 may be connected to a control unit through the lead 522 to realize signal transmission.
  • the detection body 521 can be disposed on the second main body part 531 through the heat conduction part 533, and the detection body 521 is attached to the heat conduction part 533 and the second main body part 531.
  • the heat conductive member 533 may be integrally formed on the second main body part 531 during the formation of the second bus bar 53 .
  • the heat conductive member 533 can also be formed separately from the second bus bar 53 and then arranged on the second bus bar 53.
  • the specific arrangement method can be welding, bonding, snap-fitting, or threading. wait.
  • the specific structure and shape of the heat conductive member 533 can be various, as long as it can form an accommodating cavity 534 with the second main body 531 to fix the temperature sensor 52 .
  • FIG. 25 is a schematic structural diagram of a heat conductive member on the second busbar in a motor provided by an embodiment of the present application.
  • the heat conductive member 533 may include a bottom surface 533a and a side surface 533b.
  • the first end of the bottom surface 533a is connected to the second main body part 531
  • the bottom surface 533a is connected to the second body part 531 .
  • the second end is connected to the side surface 533b.
  • the side surface 533b can be arranged opposite to the second main body part 531.
  • the one surface 531a, the bottom surface 533a and the side surface 533b of the second main body part 531 together form an accommodating cavity 534.
  • the temperature sensor 52 is arranged in the accommodating cavity.
  • the temperature sensor 52 (detection body 521) can be arranged in close contact with the bottom surface 533a and the side surface 533b, so that the temperature sensor 52 can better fit with the heat conductive member 533, have a larger thermal contact area, and achieve feedback delay. Small, high detection accuracy.
  • the temperature sensor 52 can be disposed in the accommodation cavity 534 by being inserted.
  • a first cavity 534a can be formed by a gap between an end of the side surface 533b facing away from the bottom surface 533a and the second body portion 531 (see FIG. 24 ), if the first cavity 534a is located at one end of the accommodation cavity 534 along the axial direction, the temperature sensor 52 can be inserted into the accommodation cavity 534 through the first cavity 534a (the insertion direction is the direction of the arrow in the figure), which facilitates assembly. .
  • the heat conductive member 533 is also provided with an elastic piece structure 5338.
  • the elastic piece structure 5338 may include a fixed end 5338a and an elastic end 5338b.
  • the structure 5338 is provided on the heat conductive member 533 through a fixed end 5338a.
  • the fixed end 5338a can be provided on the side 533b of the heat conductive member 533, or the fixed end 5338a can also be provided on the bottom surface 533a of the heat conductive member 533.
  • the fixed end 5338a is disposed on the side 533b of the heat conductive member 533, there is a gap between the elastic end 5338b and the side 533b to satisfy the movement space for the elastic deformation of the elastic end 5338b.
  • Figure 26 is a schematic structural diagram of a temperature sensor in a motor provided by an embodiment of the present application.
  • Figure 27 is a partial cross-sectional structural diagram of the assembly of a second busbar and a temperature sensor in a motor provided by an embodiment of the present application.
  • Figure 28 is a diagram Schematic diagram of the partial structure of the section along the A-A plane in 24.
  • the temperature sensor 52 is provided with an insertion slot 523 for cooperating with the elastic piece structure 5338 .
  • the fixed end 5338a of the elastic piece structure 5338 is connected to the side 533b.
  • the elastic end 5338b of the elastic piece structure 5338 is located on one side of the fixed end 5338a along the insertion direction of the temperature sensor 52 (the direction of the arrow in the figure).
  • the third end of the elastic end 5338b One end is connected to the fixed end 5338a, and the second end of the elastic end 5338b extends obliquely into the accommodation cavity.
  • the elastic end 5338b When the temperature sensor 52 is inserted from the first cavity 534a, the elastic end 5338b will be squeezed.
  • the elastic end 5338b When the temperature sensor 52 is inserted into the accommodation cavity 534, as shown in Figure 27, the elastic end 5338b can be inserted into the insertion slot 523, and the elastic end 5338b can be inserted into the insertion slot 523.
  • the cooperation between the elastic end 5338b and the plug-in slot 523 realizes the fixation of the temperature sensor 52, and the rebound force of the elastic end 5338b can also act on the temperature sensor 52, compressing the temperature sensor 52, so that the temperature sensor 52 can better Fitted with the second main body part 531 .
  • the elastic piece structure 5338 can also include other shapes.
  • the elastic piece structure 5338 can also include an extension end 5338c.
  • the first end of the extension end 5338c can be connected to the elastic end 5338b, and the second end of the extension end 5338c can be Extending toward the outside of the accommodation cavity (see FIG. 34 ), the shape of the elastic piece structure 5338 is enriched to improve the flexibility of the assembly structure between the temperature sensor 52 and the second bus bar 53 .
  • the shape of the insertion slot 523 on the temperature sensor 52 can be changed according to the shape of the elastic piece structure 5338, so that the shape of the insertion slot 523 can match the shape of the elastic end 5338b, so as to facilitate the realization of the insertion slot 523 and the elastic end 5338b.
  • the plug-in fit between the elastic piece structures 5338 realizes the positioning with the temperature sensor 52 .
  • the heat conductive member 533 may also be provided with a first limiting structure 5331 .
  • the first limiting structure 5331 is used to limit the temperature sensor 52 from coming out of the first cavity 534 a.
  • the first limiting structure 5331 can be disposed on an end of the side 533b facing away from the bottom surface 533a, the first end of the first limiting structure 5331 can be connected to the side 533b, and the second end of the first limiting structure 5331 can face
  • the second main body part 531 extends so that the first limiting structure 5331 is inclined to the side 533b, and an inclined angle (not equal to zero degrees and ninety degrees) is formed between the first limiting structure 5331 and the side 533b.
  • a second cavity 534b is formed between the second end of the first limiting structure 5331 and the second main body 531, and the diameter of the second cavity 534b is smaller than the diameter of the first cavity 534a.
  • the first limiting structure 5331 is a relatively small sheet structure, which can be a metal sheet structure formed when the heat conductive part is formed.
  • the first limiting structure 5331 can be deformed under the action of external force, and the temperature sensor 52 can pass through it in sequence.
  • the second cavity 534b and the first cavity 534a are inserted into the accommodation cavity 534. Since the diameter of the second cavity 534b is small, it is difficult for the temperature sensor 52 to pass through the second cavity 534b and escape out of the accommodation cavity 534, thereby further limiting the temperature sensor 52 and improving the installation stability of the temperature sensor 52. .
  • Figure 29 is a partial structural schematic diagram of the second busbar in another motor provided by an embodiment of the present application.
  • a first guide structure 5332 can also be provided on the heat conductive member 533, and the first end of the first guide structure 5332 can be connected with the first limiting structure 5331.
  • the second end is connected so that the first guide structure 5332 is disposed on the first limiting structure 5331.
  • the second end of the first guide structure 5332 can extend in a direction away from the second main body 531, and the second guide structure 5336 can be inclined. Disposed between the side surface 533b and the second main body part 531, an inclined angle (not equal to zero degrees and ninety degrees) is formed between the second guide structure 5336 and the side surface 533b.
  • the gap distance between the first guide structure 5332 and the second main body part 531 may gradually decrease, thereby serving as a guide to facilitate the passage of the temperature sensor 52 through the first guide structure 5332.
  • a guide structure 5332, the second cavity 534b and the first cavity 534a are then inserted into the accommodation cavity 534.
  • Figure 30 is a schematic structural diagram of the second bus bar in another motor provided by the embodiment of the present application.
  • Figure 31 is a schematic diagram of the second bus bar provided by the embodiment of the present application.
  • Figure 32 is a schematic cross-sectional structural diagram along the BB plane in Figure 30.
  • the heat conductive member 533 may also include a top surface 533c, a bottom surface 533a, a side surface 533b and a top surface 533c connected in sequence, and the side surface 533b is opposite to the second main body part 531.
  • the bottom surface 533a can be connected to one surface and the side surface 533b of the second main body part 531 respectively.
  • the side surface 533b is connected to the top surface 533c.
  • An end of the top surface 533c facing away from the side surface 533b extends toward the second main body part 531.
  • the bottom surface 533a, the side surfaces 533b, the top surface 533c and the side surface 531a of the second main body part 531 can together form an accommodation cavity 534.
  • the temperature sensor 52 is disposed in the accommodation cavity 534, and the temperature sensor 52 (detection body) 521) can be attached to the bottom surface 533a, side surfaces 533b and top surface 533c respectively to further increase the contact surface between the temperature sensor 52 and the heat conductive member 533, thereby further reducing the feedback delay of temperature detection and improving the accuracy of detection. .
  • one end of the top surface 533c facing away from the side surface 533b can extend to the surface 531a of the second main body part 531 to abut or connect with the second main body part 531.
  • one end of the top surface 533c facing away from the side surface 533b can be connected with the second side surface 533b.
  • There is a gap between the main body parts 531 , and the second main body part 531 can enclose an accommodation cavity 534 for accommodating the temperature sensor 52 .
  • the temperature sensor 52 can also be arranged in the accommodation cavity 534 by being inserted.
  • the bottom surface 533a, the side surface 533b, the top surface 533c and the second main body part 531 can enclose an accommodation cavity 534 with openings at both ends.
  • the openings at both ends are respectively a first cavity 534a and a second cavity 534b (see Figure 37).
  • the first cavity 534a and the second cavity 534b may be located at both circumferential ends of the accommodation cavity 534.
  • the first cavity 534a may be located on a side of the second cavity 534b closer to the edge of the second bus 53.
  • the temperature sensor 52 can be inserted into the accommodation cavity 534 through the first cavity 534a to facilitate the assembly of the temperature sensor 52.
  • the thermal conductive member 533 may also be provided with an elastic piece structure 5338.
  • the elastic piece structure 5338 is fixedly connected to the thermal conductive member 533 through a fixed end 5338a.
  • the fixed end 5338a can be disposed on the side surface 533b, or the fixed end 5338a can also be disposed on the bottom surface 533a, or the fixed end 5338a can also be disposed on the top surface 533c.
  • the fixed end 5338a being disposed on the side 533b as an example, there is a gap between the elastic end 5338b and the side 533b to give the elastic end 5338b space for deformation.
  • the fixed end 5338a of the elastic piece structure 5338 is connected to the side 533b.
  • the elastic end 5338b is located on one side of the fixed end 5338a along the insertion direction of the temperature sensor 52 (the direction indicated by the arrow in Figure 31).
  • the first end of the elastic end 5338b is connected to the fixed end 5338a.
  • the second end of the elastic end 5338b extends obliquely into the accommodation cavity.
  • Figure 33 is a schematic structural diagram of yet another temperature sensor in a motor provided by an embodiment of the present application.
  • a plug-in slot 523 may be provided on the temperature sensor 52 , and the plug-in slot 523 and the elastic end 5338b can be plug-fitted.
  • the temperature sensor 52 is inserted into and squeezes the elastic end 5338b from the first cavity 534a.
  • the elastic end 5338b cooperates with the insertion slot 523 to fix the temperature sensor 52, and the elastic end 5338b plays the role of compressing the temperature sensor 52 so that the temperature sensor 52 can better fit with the second main body part 531 .
  • FIG. 34 is a schematic structural diagram of another temperature sensor in a motor provided by an embodiment of the present application
  • FIG. 35 is a schematic cross-sectional structural diagram along the C-C plane in FIG. 34 .
  • the elastic piece structure 5338 can also be in other structural forms.
  • the elastic piece structure 5338 can also include an extension end 5338c.
  • the first end of the extension end 5338c is connected to the elastic end 5338b, and the second end of the extension end 5338c faces
  • the accommodation cavity 534 extends outward, as shown in FIG. 35 , so that the shape of the elastic piece structure 5338 can be a hook shape, enriching the shape design of the elastic piece structure 5338 .
  • the shape of the insertion slot 523 can match the shape of the elastic piece structure 5338 to better position the temperature sensor 52.
  • Figure 36 is a schematic structural diagram of a heat conductive member in another motor provided by an embodiment of the present application.
  • Figure 37 is a schematic structural diagram of a second busbar in another motor provided by an embodiment of the present application.
  • Figure 38 is a schematic structural diagram of a second busbar in another motor provided by an embodiment of the present application. Another structural schematic diagram of the second busbar in yet another motor is provided.
  • the heat conductive member 533 can be provided with a second limiting structure 5333.
  • the second limiting structure 5333 is used to limit the temperature sensor 52 from coming out of the second cavity 534b. .
  • the second limiting structure 5333 is located on one end of the heat conductive member 533 adjacent to the second cavity 534b (see Figure 37).
  • the first end of the second limiting structure 5333 can be connected to the side 533b.
  • the second limiting structure 5333 can be connected to the side 533b.
  • the second end of the structure 5333 extends toward the second main body 531, so that the second limiting structure 5333 covers at least part of the second cavity 534b.
  • the second limiting structure 5333 plays a role of blocking and limiting, limiting the temperature sensor 52 from being able to pass through.
  • the second cavity 534b is protruded to improve the stability of the temperature sensor 52 in the accommodating cavity 534.
  • the second end of the second limiting structure 5333 can extend to the second main body 531 to abut or connect with the second main body 531 , or the second end of the second limiting structure 5333 can be connected to the second main body 531 . There may also be a gap distance between 531, which can limit the temperature sensor 52.
  • a third limiting structure 5334 and a fourth limiting structure 5335 can also be provided on the heat conductive member 533.
  • the structure 5334 and the fourth limiting structure 5335 are respectively located at one end of the heat conductive member 533 adjacent to the first cavity 534a.
  • the third limiting structure 5334 and the fourth limiting structure 5335 can be disposed in the accommodating cavity 534 to limit the temperature sensor 52 located in the accommodating cavity 534 to prevent it from coming out.
  • the third limiting structure 5334 and the fourth limiting structure 5335 can be arranged oppositely.
  • the third limiting structure 5334 and the fourth limiting structure 5335 can be respectively located on the opposite bottom surface 533a and top surface 533c. There is a gap between the limiting structure 5334 and the fourth limiting structure 5335 to avoid the temperature sensor 52 so that it can be inserted into the accommodation cavity 534 from the first cavity opening 534a.
  • the first end of the third limiting structure 5334 is connected to the bottom surface 533a.
  • the second end of the third limiting structure 5334 can extend obliquely toward the fourth limiting structure 5335.
  • An inclination can be formed between the third limiting structure 5334 and the bottom surface 533a.
  • Angle (not equal to zero degrees and ninety degrees).
  • the first end of the fourth limiting structure 5335 is connected to the top surface 533c, the second end of the fourth limiting structure 5335 can extend obliquely toward the third limiting structure 5334, and there can be between the fourth limiting structure 5335 and the top surface 533c.
  • the tilt angle (not equal to zero degrees and ninety degrees) is formed, so that the third limiting structure 5334 and the fourth limiting structure 5335 can form a figure-eight structure.
  • the second end of the third limiting structure 5334 and the second end of the fourth limiting structure 5335 form an opening with a smaller diameter.
  • the third limiting structure 5334 and the fourth limiting structure 5335 can be deformed under external force, and the temperature sensor 52 can be inserted into the accommodation cavity 534 through the first cavity 534a and the opening. Due to the small diameter of the opening, it is difficult for the temperature sensor 52 to escape out of the accommodating cavity 534, thereby limiting the temperature sensor 52.
  • the distance between the third limiting structure 5334 and the fourth limiting structure 5335 may gradually decrease.
  • the position can also serve as a guide to facilitate the temperature sensor 52 to be inserted into the accommodating cavity 534 .
  • the third limiting structure 5334 and the fourth limiting structure can also be located outside the accommodating cavity 534 , and can also play a role in limiting the temperature sensor 52 to prevent it from coming out.
  • the third limiting structure 5334 and the fourth limiting structure can also be located on the opposite bottom surface 533a and top surface 533c respectively.
  • the first end of the third limiting structure 5334 is connected to the bottom surface 533a.
  • the second end of the structure 5334 extends obliquely toward the fourth limiting structure 5335.
  • the first end of the fourth limiting structure 5335 is connected to the top surface 533c, the second end of the fourth limiting structure 5335 is inclined toward the third limiting structure 5334, and the second end of the third limiting structure 5334 and the fourth limiting structure
  • the second end of the structure 5335 can also form a small-diameter opening to limit the temperature sensor 52 and improve the stability of the temperature sensor 52 in the accommodation cavity 534 .
  • the thermal conductive member 533 may also include a second guide structure 5336 and a third guide structure 5337 that are oppositely arranged.
  • the second guide structure 5336 and the third guide structure 5337 may be respectively provided at the third limiting structure 5334 and the fourth limiting structure 5335. superior.
  • the first end of the second guide structure 5336 can be disposed on the second end of the third limiting structure 5334.
  • the second end of the second guide structure 5336 can extend obliquely toward the third guide structure 5337.
  • the second guide structure 5336 is in contact with the bottom surface.
  • a tilt angle (not equal to zero degrees and ninety degrees) can be formed between 533a.
  • the first end of the third guide structure 5337 can be disposed on the second end of the fourth limiting structure 5335.
  • the second end of the third guide structure 5337 can extend obliquely toward the second guide structure 5336.
  • the second guide structure 5336 is connected to the top end of the third guide structure 5337.
  • An inclined angle (not equal to zero degrees and ninety degrees) can be formed between the surfaces 533c, so that the second guide structure 5336 and the third guide structure 5337 can also form a figure-eight structure.
  • the distance between the second guide structure 5336 and the third guide structure 5337 can gradually decrease, thereby guiding the insertion of the temperature sensor 52 and facilitating the insertion of the temperature sensor 52 through the opening. in the accommodation cavity 534.
  • Figure 39 is an enlarged view of the partial structure of part C in Figure 10.
  • Figure 40a is a schematic cross-sectional view of the assembly of the stator slot and the insulator in a motor provided by an embodiment of the present application.
  • Figure 40b is a schematic diagram of the assembly of the stator slot and the insulator in a motor provided by an embodiment of the present application. Schematic cross-section of the stator slot.
  • the winding structure 20 is disposed in the stator slot 11.
  • an insulating member 70 is disposed between the winding structure 20 and the inner wall of the stator slot 11.
  • the insulating member 70 can surround The circumferential side walls of the stator slot 11 are provided, and the insulating member 70 wraps the coils of the winding structure 20 located in the stator slot 11 .
  • the insulating member 70 may be insulating paper, and plays the role of isolation and insulation between the winding structure 20 and the stator core 10 to ensure the performance of the motor.
  • the insulating member 70 may include a head end 71 and a tail end 72.
  • the head end 71 and the tail end 72 are two ends of the insulating member 70 in the circumferential direction.
  • the head end 71 and the tail end 72 may at least partially overlap. Forming the overlapping structure 70a helps to increase the electrical gap and creepage distance between the winding structure 20 and the stator core 10, thereby improving the insulation safety of the motor.
  • the head end 71 of the insulating member 70 can be located inside the tail end 72 (the side facing the notch 111) to form an overlapping structure 70a, or the tail end 72 can be located inside the head end 71 to form an overlapping structure 70a. .
  • an expansion space 11a can be formed in the stator slot 11.
  • the overlapping structure 70a can be accommodated in the expansion space 11a. That is to say, the expansion space can be increased in the stator slot 11 in a targeted manner.
  • 11a is used to accommodate the overlapping structure 70a, which can accommodate the overlapping structure 70a with a larger size and thickness, and is also conducive to increasing the overlapping area between the first end 71 and the tail end 72 of the insulating member 70, which can further improve the The insulation safety of the motor is to meet the insulation safety requirements of the high-voltage motor.
  • the stator slot 11 may include a slot 111, a slot bottom 112, and a circumferential side wall located between the slot 111 and the slot bottom 112.
  • the slot 111 is arranged facing the axis of the stator core 10, as shown in Figure 40b.
  • the expansion space 11a can be formed by recessing the groove bottom 112 of the stator groove 11 so that the overlapping structure 70a is located inside the groove bottom 112.
  • Figure 40c is a schematic cross-sectional view of the stator slot and the insulator assembly in another motor provided by the embodiment of the present application.
  • Figure 40d is a schematic cross-sectional view of the stator slot of the motor provided by the embodiment of the present application.
  • Figure 40e is a schematic cross-sectional view of the stator slot in the motor provided by the embodiment of the present application.
  • Another schematic cross-sectional view of the insulating member in the stator slot of the motor is provided.
  • FIG. 40f is a schematic cross-sectional view of the assembly of the stator slot and the insulating member in the motor provided by another embodiment of the present application.
  • the expansion space 11a can also be formed at any position of the stator slot 11.
  • the expansion space 11a can be partially formed at the slot bottom 112 and partially formed in the circumferential direction.
  • the side walls, such as the groove bottom 112 of the stator groove 11 and the side wall recesses thereby expand the space 11a, so that the overlapping structure 70a is partially located inside the groove bottom 112 and partially located inside the circumferential side wall.
  • the head end 71 of the insulating member 70 can be located inside the tail end 72, or, as shown in Figure 40e, the tail end 72 of the insulating member 70 can also be located at the head end 71 the inside of.
  • the expansion space 11a can also be formed on the circumferential side wall of the stator slot 11.
  • the expansion space 11a is formed in a recess in the side wall, so that the overlapping structure 70a is located inside the side wall.
  • Embodiments of the present application also provide a powertrain, which can be applied to electric vehicles/electric vehicles (EV), pure electric vehicles (PEV/BEV), hybrid electric vehicles (HEV), and range-extended electric vehicles (REEV). , plug-in hybrid electric vehicles (PHEV), new energy vehicles (New Energy Vehicle), etc., or can be used in battery management (Battery Management), motor & driver (Motor & Driver), power conversion (Power Converter) and other equipment.
  • EV electric vehicles/electric vehicles
  • PEV/BEV pure electric vehicles
  • HEV hybrid electric vehicles
  • REEV range-extended electric vehicles
  • PHEV plug-in hybrid electric vehicles
  • PHEV plug-in hybrid electric vehicles
  • New Energy Vehicle new energy vehicles
  • Power Converter Power Converter
  • the powertrain at least includes a reduction mechanism and any of the above-mentioned motors.
  • the motor can be connected to the reduction mechanism through a rotating shaft, and the reduction mechanism can also be integrated with the motor and use a reduction motor.
  • the powertrain may also include a control unit, and the control unit is electrically connected to the terminals on the motor to control the motor.
  • the powertrain may also include other structural components, such as clutches, heat exchangers, filters, etc.
  • Embodiments of the present application also provide a vehicle, which can be an electric vehicle/electric vehicle (EV), a pure electric vehicle (PEV/BEV), a hybrid electric vehicle (HEV), a range-extended electric vehicle (REEV), or a plug-in hybrid Automobiles (PHEV), new energy vehicles (New Energy Vehicle), etc.
  • a vehicle which can be an electric vehicle/electric vehicle (EV), a pure electric vehicle (PEV/BEV), a hybrid electric vehicle (HEV), a range-extended electric vehicle (REEV), or a plug-in hybrid Automobiles (PHEV), new energy vehicles (New Energy Vehicle), etc.
  • a vehicle which can be an electric vehicle/electric vehicle (EV), a pure electric vehicle (PEV/BEV), a hybrid electric vehicle (HEV), a range-extended electric vehicle (REEV), or a plug-in hybrid Automobiles (PHEV), new energy vehicles (New Energy Vehicle), etc.
  • EV electric vehicle/electric vehicle
  • PEV/BEV pure electric vehicle
  • HEV
  • the vehicle at least includes a vehicle body and any one of the above motors, and the motor is arranged on the vehicle body.
  • the vehicle body may be a vehicle frame, or the vehicle body may also include a vehicle frame and a vehicle cover arranged on the vehicle frame.
  • the vehicle may also include wheels and transmission components.
  • the motor may be connected to the transmission components, and the transmission components may be connected to the wheels.
  • the output power of the motor is transmitted to the wheels through the transmission components to cause the wheels to rotate.
  • the motor can be connected to a reduction mechanism, and the reduction mechanism is connected to the transmission component to control the movement of the wheel.
  • the vehicle may also include other structural components to complete its functionality. For example, braking components, direction operating structures, etc. may also be included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

本申请实施例提供一种电机、动力总成及车辆,电机包括定子铁芯和绕设在其上的绕组结构,还包括第一注塑结构,第一注塑结构包括第一注塑件和多个第一汇流排,第一汇流排上包括第一主体部和第一电连接件,每个第一汇流排的第一电连接件分别对应连接每相绕组结构的第一出线端,第一注塑件包裹第一汇流排的第一主体部设置,以固定第一汇流排。在第一注塑结构上设置有绝缘盖板,绝缘盖板覆盖裸露的第一电连接件和第一出线端,增加第一电连接件、第一出线端与电机端盖以及壳体之间的电气间隙和爬电距离,提升电机的绝缘安全性,且有利于电机的小型化设计。

Description

一种电机、动力总成及车辆
本申请要求于2022年09月02日提交中国专利局、申请号为202211070145.X、申请名称为“一种电机、动力总成及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,特别涉及一种电机、动力总成及车辆。
背景技术
近年来,扁线电机越来越多地应用于新能源汽车领域。扁线电机具有高铜满率、利于电机绕组散热、能够提高绕组的耐压能力以及降低绕组端部长度等方面的优势,进而可以提升电机的转矩密度和功率密度。因此,扁线电机在新能源电动汽车上具有良好的应用前景。
电机包括定子,定子包括定子铁芯以及绕设在定子铁芯上的绕组结构,绕组结构可以为多相绕组结构,以三相电机为例,绕组结构可以包括U相绕组结构、V相绕组结构和W相绕组结构。三相绕组结构的出线端可以分别连接有引出线铜排,例如分别对应为U相引出线铜排、V相引出线铜排和W相引出线铜排,引出线铜排的两端上分别具有焊点和焊接面,引出线铜排通过焊点与绕组结构连接,通过焊接面与端子连接,以通过端子实现与车辆的动力总成的控制组件等的连接。为加强绝缘以及固定引出线铜排,U相引出线铜排、V相引出线铜排和W相引出线铜排可以相互间隔并通过注塑件注塑形成一个整体结构,焊点和焊接面暴露在注塑件外,以用于实现连接。
然而,焊点的裸露会降低电机的绝缘安全性,为满足电机的绝缘安全距离要求,焊点与电机外壳之间的距离相对较大,导致电机的体积较大。
发明内容
本申请提供一种电机、动力总成及车辆,电机具有高的绝缘安全性,在满足绝缘安全距离的条件下,有效的减小了电机的体积,利于实现电机的小型化。
本申请的第一方面提供一种电机,包括定子铁芯和绕设在定子铁芯上的多相绕组结构,每相绕组结构包括第一出线端,每相绕组结构的第一出线端与同一相绕组结构的引出线连接。
电机还包括第一注塑结构,第一注塑结构包括第一注塑件和多个第一汇流排,每个第一汇流排包括第一主体部和第一电连接件,第一注塑件包裹多个第一汇流排的第一主体部设置,以固定多个第一汇流排,且多个第一汇流排沿绕组结构的周向间隔设置,每个第一汇流排的第一电连接件分别对应与每相绕组结构的第一出线端电连接,从而可以通过第一汇流排实现绕组结构与动力总成等的控制单元的电连接,以实现对电机通电等的控制。第一注塑件能够起到固定第一汇流排的作用,提升第一汇流排的设置稳定性,减小或避免电机在装配、运行等过程中的振动而导致第一汇流排的移动,保证电机的性能,并有利于使第一汇流排之间保有稳定的绝缘距离。
而且第一注塑件包裹多个间隔设置的第一汇流排的第一主体部,不同相绕组结构对应连接的两相邻第一汇流排的第一主体部之间就填充有绝缘的第一注塑件,能够加强相邻的第一汇流排之间的绝缘效果,提升第一汇流排的绝缘安全性,满足高压电机的绝缘安全距离要求。
电机还包括绝缘盖板,绝缘盖板设置在第一注塑结构上,绝缘盖板覆盖第一电连接件和第一出线端,如可以完全覆盖第一电连接件和第一出线端背向定子铁芯的一侧,在定子沿轴向的端部面不具有暴露的第一电连接件及第一出线端。这样在电机中,第一电连接件、第一出线端分别与端盖之间就具有绝缘盖板,绝缘盖板可以起到隔档作用,增加第一电连接件和第一出线端分别与端盖之间的电气间隙和爬电距离,有效的提升了第一电连接件、第一出线端和端盖之间的绝缘安全性,能够更好的满足高压电机的绝缘安全距离要求。而且有利于减小第一电连接件、第一出线端与端盖之间设置的绝缘距离长度,节省 电机沿轴向的端部空间,减小电机在轴向上的尺寸,利于电机的小型化设计。
绝缘盖板也可以完全覆盖第一电连接件和第一出线端背向定子铁芯轴线的一侧,在定子的外周面上不具有暴露的第一电连接件。这样在电机中,第一电连接件、第一出线端分别与壳体之间就具有能够起到隔档作用的绝缘盖板,增加了第一电连接件、第一出线端与壳体之间的电气间隙和爬电距离,有效的提升了电机的绝缘安全性。且有利于减小第一电连接件、第一出线端与壳体之间设置的绝缘距离长度,减小电机在周向上的尺寸,进一步有利于电机的小型化设计。
在一种可能的实现方式中,每相绕组结构还包括第二出线端,每相绕组结构的第二出线端与同一相绕组结构的中性线连接。
还包括第二汇流排,第二汇流排包括多个连接端部,多个连接端部沿绕组结构的周向间隔设置,每个连接端部上具有第二电连接件,每个连接端部上的第二电连接件分别对应与每相绕组结构的第二出线端连接,从而通过第二汇流排可以实现多相绕组结构间中性点的电连接。
绝缘盖板覆盖第二电连接件和第二出线端,如可以完全覆盖第二电连接件和第二出线端背向定子铁芯的一侧,在定子轴向的端部面不具有暴露的第二电连接件和第二出线端。使第二电连接件、第二出线端分别与端盖之间也具有绝缘盖板,起到隔档作用,增加第二电连接件、第二出线端与端盖之间的电气间隙和爬电距离,进一步提升电机的绝缘安全性,在满足高压电机高绝缘安全距离要求下,能够进一步节省电机沿轴向的端部空间,实现电机的小型化设计。
绝缘盖板也可以完全覆盖第二电连接件和第二出线端背向定子铁芯轴线的一侧,在定子的外周面上不具有暴露的第二电连接件和第二出线端。使第二电连接件、第二出线端分别与壳体之间具有起到隔档作用的绝缘盖板,增加第二电连接件、第二出线端与壳体之间的绝缘安全性,进一步提升电机的绝缘安全性。在满足高压电机高绝缘安全距离要求下,能够进一步节省电机在周向上的尺寸,更便于实现电机的小型化设计。
在一种可能的实现方式中,绝缘盖板包括顶板和侧板,顶板位于第一注塑结构背向定子铁芯的一侧,侧板位于第一注塑结构背向定子铁芯轴线的一侧,侧板与顶板连接,侧板和顶板围成容纳空间,第一电连接件、第一出线端、第二电连接件和第二出线端位于容纳空间内。具有很好的绝缘隔档作用,使电机具有更好的绝缘安全性,且更有利于实现电机的小型化。
在一种可能的实现方式中,多相绕组结构沿轴向的一端为连接端,第一出线端和第二出线端分别位于连接端沿轴向的外侧。
第一注塑结构位于连接端沿轴向的外侧,第二汇流排位于连接端的外周侧上,第一电连接件、第一出线端、第二电连接件和第二出线端分布在周向上,每相绕组结构的第二出线端、与第二出线端对应连接的第二电连接件邻近该相绕组结构的第一出线端、与第一出线端对应连接的第一电连接件设置,有利于保证电机的绝缘安全性。
在一种可能的实现方式中,顶板面向第一注塑件的一面上具有多个隔离槽,同相绕组结构的第一出线端和第二出线端,以及分别与第一出线端和第二出线端对应连接的第一电连接件和第二电连接件位于一个隔离槽内。也就是说,不同相绕组结构的第一出线端、第二出线端以及对应连接的第一电连接件和第二电连接件位于不同的隔离槽内,增加了不同相绕组结构之间、以及不同相绕组对应连接的第一电连接件、第二电连接件之间的电气间隙和爬电距离,进一步提升电机的绝缘安全性。
在一种可能的实现方式中,隔离槽内设置有挡板,挡板将隔离槽分隔为第一隔档槽和第二隔档槽,第一出线端和第一电连接件位于第一隔档槽内,第二出线端和第二电连接件位于第二隔档槽内。隔板可以对同相绕组结构的第一出线端及其连接的第一电连接件与第二出线端及其连接的第二电连接件间起到隔离绝缘的作用,增加了同相绕组结构内,第一出线端及第一电连接件和第二出线端及第二电连接件之间的电气间隙和爬电距离,进一步提升电机的绝缘安全性。
在一种可能的实现方式中,绝缘盖板还包括端板,端板位于顶板和侧板沿周向上的两侧,端板分别与顶板和侧板连接。一方面能够增加绝缘盖板的强度,保证绝缘盖板的绝缘稳定性。另一方面,端板将第一注塑结构沿周向上的两侧遮挡起来,进一步封闭容纳空间,有利于进一步增加第一电连接件和第二电连接件与电机中其他金属结构件之间的爬电距离,有助于提升电机的绝缘安全性。
在一种可能的实现方式中,顶板与第一注塑件可拆卸连接,便于绝缘盖板的拆卸与安装,有利于简化装配工艺,提升安装效率。
在一种可能的实现方式中,顶板上设置有第一卡接结构,第一注塑件上设置有第二卡接结构,顶板和第一注塑件通过第一卡接结构和第二卡接结构配合实现连接,也即绝缘盖板通过卡接配合的方式与第一注塑结构连接,便于安装拆卸,且具有较高的可生产实现性。
在一种可能的实现方式中,顶板面向第一注塑件的一面上具有凸起的第一卡接壁和第二卡接壁,第一卡接壁和第二卡接壁之间具有避让间隙,第一卡接壁和第二卡接壁相对的两侧面上具有凸起以形成第一卡接结构,第一注塑件的外周侧上具有凸起的卡接部,卡接部相对的两侧面上具有凹槽以形成第二卡接结构。第一卡接壁和第二卡接壁能够在外力下发生一定的形变,能够便于第一卡接壁和第二卡接壁上的第一卡接结构与卡接部上的第二卡接结构卡接配合,更加的便于拆卸或装配,有利于进一步提升装配效率。
在一种可能的实现方式中,第一卡接结构分别位于第一卡接壁上和第二卡接壁上背向顶板的一端,第二卡接结构分别位于卡接部上背向顶板的一端,卡接部位于避让间隙内,有利于增强第一卡接结构和第二卡接结构的卡接强度,从而增强第一注塑件和绝缘盖板的装配牢度,保证绝缘的稳定性。
在一种可能的实现方式中,卡接部相对的两侧面上还具有导向斜面,导向斜面位于第二卡接结构背向定子铁芯的一侧,从卡接部面向顶板的一端至卡接部背向顶板的一端,两个导向斜面朝向相背的方向倾斜。两导向斜面可以呈八字形结构,导向斜面位于第二卡接结构背向定子铁芯的一侧,以便于绝缘盖板的第一卡接结构经过导向斜面后与第二卡接结构卡接配合,导向斜面起到很好的导向作用,便于装配。
在一种可能的实现方式中,顶板上还设置有第一定位结构,第一注塑件上设置有与第一定位结构配合的第二定位结构。第一定位结构和第二定位结构定位配合起到定位作用,以便于绝缘盖板和第一注塑结构之间的准确装配,有利于提升装配效率。
在一种可能的实现方式中,绝缘盖板还包括加强件,加强件分别与顶板和侧板连接,以增加绝缘盖板的强度,保证绝缘盖板的绝缘稳定性。
在一种可能的实现方式中,还包括第二注塑结构,第二注塑结构包括温度传感器、第二注塑件和第二汇流排。第二汇流排还包括第二主体部,多个连接端部设置在第二主体部上,温度传感器贴合设置在第二主体部的一面上,定子及绕组结构运行产生的热量可以传递至第二汇流排和温度传感器上,以实现对定子温度的检测。
第二注塑件包裹温度传感器和第二主体部设置,第二注塑件对温度传感器起到隔离保护的作用,能够有效的阻挡冷却液体直接与温度传感器的接触,减小冷却液体对温度传感器的影响,从而减小温度传感器的反馈延时,提升温度传感器的检测准确性。在实现对定子温度检测的条件下,达到低延时高精度的效果。
在一种可能的实现方式中,第二汇流排包括导热件,导热件设置在第二主体部的一面上,导热件与第二主体部的一面围成容置腔,温度传感器位于容置腔内,且温度传感器与导热件的至少一面贴合设置。一方面,导热件能够对温度传感器起到容纳固定的作用,使温度传感器固定设置在第二汇流排上。另一方面,使温度传感器与导热件的至少一面贴合设置,第二汇流排的热量也可以通过导热件传递至温度传感器,增大温度传感器与第二汇流排之间热传递的面积,进一步减小温度检测的反馈延时,提升检测的准确性。
在一种可能的实现方式中,导热件包括连接的底面和侧面,底面与第二主体部连接,侧面与第二主体部相对,底面、侧面和第二主体部的一面共同围成容置腔,温度传感器分别与底面和侧面贴合,使温度传感器能够更好的与导热件贴合,具有较大的热接触面积,实现反馈延时小,检测准确性高的目的。
在一种可能的实现方式中,容置腔包括第一腔口,侧面背向底面的一端与第二主体部之间形成第一腔口,温度传感器通过第一腔口***设置在容置腔内。这样就使温度传感器可以通过插设的方式设置在容置腔内,便于装配或拆卸实现。
在一种可能的实现方式中,导热件包括依次连接的底面、侧面和顶面,底面与第二主体部连接,侧面与第二主体部相对,顶面背向侧面的一端朝向第二主体部延伸,底面、侧面、顶面和第二主体部的一面共同围成容置腔,温度传感器分别与底面、侧面和顶面贴合,进一步增加温度传感器与导热件的贴合接触面,从而进一步减小温度检测的反馈延时,并提升检测的准确性。
在一种可能的实现方式中,容置腔具有相对的第一腔口和第二腔口,温度传感器通过第一腔口***设置在容置腔内,实现温度传感器的插设装配,便于装配和拆卸实现。
在一种可能的实现方式中,导热件上还设置有弹片结构,弹片结构包括固定端和弹性端,固定端与导热件连接,弹性端位于固定端沿温度传感器***方向上的一侧,弹性端的第一端与固定端连接,弹性端的第二端延伸至容置腔内。温度传感器上设置有用于与弹片结构配合的插接槽,弹性端插设在插接槽内。温度传感器从第一腔口***会挤压弹性端,能够实现温度传感器的***。将温度传感器***至容置腔内,弹性端可以插设在插接槽内,通过弹性端和插接槽的配合就实现了对温度传感器的固定,而且弹性端的回弹作用力也可以作用与温度传感器,压紧温度传感器,使温度传感器能够更好的与第一主体部贴合。
在一种可能的实现方式中,第一注塑结构还包括温度传感器,温度传感器贴合设置在第一主体部的一面上,第一注塑件包裹温度传感器和第一主体部。第一注塑件也能够对温度传感器起到隔离保护的作用,减小冷却液体对温度传感器的影响,实现对定子温度检测的条件下,达到温度检测低延时高精度的目的。
在一种可能的实现方式中,还包括第三注塑结构,第三注塑结构包括温度传感器、第三注塑件和第一出线端,温度传感器贴合设置在第一出线端的一面上,第三注塑件包裹温度传感器和部分第一出线端设置。同样也能达到保护温度传感器的作用,在实现对定子温度检测的条件下,具有低延时高精度的效果。
在一种可能的实现方式中,第一汇流排还包括第一端部和第二端部,第一端部上设置有第一电连接件,第二端部上具有电连接面。
还包括多个端子,每个端子包括第一连接部、第二连接部和可折弯的本体部,第一连接部和第二连接部位于本体部的两端,第一连接部与电连接面电连接,从而实现绕组结构与端子的连接,使绕组结构可以通过端子与控制单元等电连接。
而可折弯的本体部可以在装配时实现避让,如装配端盖与喷油环等结构时,可弯折使本体部处于竖直状态(平行于定子铁芯轴向),实现避让,便于端盖等的装配,待装配完成后可弯折本体部使其形成弯折结构,以便于实现与第一汇流排及控制单元的连接。
在一种可能的实现方式中,第一连接部的延伸方向与定子铁芯的轴向平行,便于实现第一连接部与第一汇流的电连接,第二连接部的延伸方向与绕组结构的径向平行,便于实现第二连接部与控制单元等的电连接。
本体部形成弯折结构,且在定子铁芯的轴向上,弯折结构背向定子铁芯的一端距定子铁芯的高度高于第二连接部距定子铁芯的高度,使弯折结构具有较大的弯折和调整空间,也就赋予第二连接部较大的可调整灵活性,便于第二连接部与控制单元的对位实现电连接,能够减小端子与控制单元等装配的难度。
在一种可能的实现方式中,定子铁芯上开设有多个定子槽,多个定子槽沿定子铁芯的周向间隔设置,绕组结构绕设在定子槽上,且绕组结构与定子槽的内壁之间设置有绝缘件,绝缘件起到绝缘隔离绕组结构和定子铁芯的作用,以保证电机的绝缘安全性。
在一种可能的实现方式中,绝缘件环绕定子槽的侧壁设置,绝缘件沿环绕方向上的首端和尾端至少部分重合以形成搭边结构,有助于提升绕组结构与定子铁芯之间的电气间隙和爬电距离,提升电机的绝缘安全性。
定子槽内具有扩充空间,以容纳搭边结构,也就是说在定子槽内针对性的增加扩充空间,用于容纳搭边结构,可以实现对尺寸厚度较大的搭边结构的容纳,也就有利于增大绝缘件首端和尾端之间重合的面积,能够进一步提升电机的绝缘安全性,以满足高压电机的绝缘安全要求。
本申请的第二方面提供一种动力总成,包括减速机构和上述任一的电机,电机与减速机构连接。
本申请的第三方面提供一种车辆,包括车体和上述任一的电机,电机设置在车体上。
附图说明
图1为本申请实施例提供的一种电机中定子的结构示意图;
图2为本申请实施例提供的一种电机中定子铁芯和绕组结构的装配示意图;
图3为图2中B部分的局部结构放大图;
图4为本申请实施例提供的一种电机中第一汇流排的结构示意图;
图5为本申请实施例提供的一种电机中第一注塑结构的装配示意图;
图6为本申请实施例提供的一种电机中定子铁芯、绕组结构和第一注塑结构的装配示意图;
图7为本申请实施例提供的一种电机中定子的俯视结构示意图;
图8为图1中A部分的局部结构放大图;
图9为本申请实施例提供的一种电机中定子铁芯、第一注塑结构和绝缘盖板的局部拆分示意图;
图10为本申请实施例提供的一种电机中定子铁芯、第一注塑结构和绝缘盖板的装配示意图;
图11为本申请实施例提供的一种电机中第一注塑结构、绝缘盖板和端子的装配结构示意图;
图12为本申请实施例提供的一种电机另一端子的结构示意图;
图13为本申请实施例提供的一种电机中一端子的侧视结构示意图;
图14为本申请实施例提供的一种电机中定子铁芯、第一注塑结构和绝缘盖板的拆分结构示意图;
图15为本申请实施例提供的一种电机中定子的剖面局部结构示意图;
图16为本申请实施例提供的一种电机中绝缘盖板的背面结构示意图;
图17为本申请实施例提供的一种电机中第一注塑结构的另一示意图;
图18为本申请实施例提供的一种电机中在第一注塑件和绝缘盖板卡接配合的局部剖面结构示意图;
图19为本申请实施例提供的一种电机中绝缘盖板的正面结构示意图;
图20为本申请实施例提供的一种电机中第一注塑结构的再一结构示意图;
图21为本申请实施例提供的一种电机中定子的侧视局部结构示意图;
图22为本申请实施例提供的一种电机中第二汇流排和温度传感器的装配结构示意图;
图23为本申请实施例提供的一种电机中第二注塑结构的示意图;
图24为本申请实施例提供的一种电机中第二汇流排和温度传感器装配的局部结构放大示意图;
图25为本申请实施例提供的一种电机中第二汇流排上的导热件的结构示意图;
图26为本申请实施例提供的一种电机中温度传感器的结构示意图;
图27为本申请实施例提供的一种电机中第二汇流排和温度传感器装配的局部剖面结构示意图;
图28为图24中沿A-A面的剖面局部结构示意图;
图29为本申请实施例提供的另一种电机中第二汇流排的局部结构示意图;
图30为本申请实施例提供的再一种电机中第二汇流排的结构示意图;
图31为本申请实施例提供的再一种第二汇流排和温度传感器的装配结构示意图;
图32为图30中沿B-B面的剖面结构示意图;
图33为本申请实施例提供的再一种电机中温度传感器的结构示意图;
图34为本申请实施例提供的又一种电机中第二汇流排的结构示意图;
图35为图34中沿C-C面的剖面结构示意图;
图36为本申请实施例提供的又一种电机中导热件的结构示意图;
图37为本申请实施例提供的再一种电机中第二汇流排的一结构示意图;
图38为本申请实施例提供的再一种电机中第二汇流排的又一结构示意图;
图39为图10中C部分的局部结构放大图;
图40a为本申请实施例提供的一种电机中定子槽与绝缘件装配的剖面示意图;
图40b为本申请实施例提供的一种电机中定子槽的剖面示意图;
图40c为本申请实施例提供的另一种电机中定子槽与绝缘件装配的剖面示意图;
图40d为本申请实施例提供的一种电机中定子槽的剖面示意图;
图40e为本申请实施例提供的再一种电机中定子槽内绝缘件的剖面示意图;
图40f为本申请实施例提供的又一种电机中定子槽和绝缘件装配的剖面示意图。
附图标记说明:
100-定子;
10-定子铁芯;
11-定子槽;11a-扩充空间;111-槽口;112-槽底;
20-绕组结构;20a-连接端;
21a、21b、21c-第一出线端;
22a、22b、22c-第二出线端;
30-第一注塑结构;
31-第一注塑件;311-卡接部;3111-第二卡接结构;3112a、3112b-导向斜面;312-第二定位结构;
32a、32b、32c-第一汇流排;321-第一主体部;322-第一端部;3221-第一电连接件;323-第二端部;3231-电连接面;
40-绝缘盖板;40a-容纳空间;
41-顶板;411-隔离槽;412-挡板;4111-第一隔档槽;4112-第二隔档槽;413-第一卡接壁;414-第二卡接壁;415-第一卡接结构;416-第一定位结构;
42-侧板;43-端板;44-加强件;
50-第二注塑结构;
51-第二注塑件;
52-温度传感器;521-检测本体;522-引线;523-插接槽;
53-第二汇流排;531-第二主体部;532a、532b、532c-连接端部;5321-第二电连接件;533-导热件;533a-底面;533b-侧面;533c-顶面;5331-第一限位结构;5332-第一导向结构;5333-第二限位结构;5334-第三限位结构;5335-第四限位结构;5336-第二导向结构;5337-第三导向结构;5338-弹片结构;5338a-固定端;5338b-弹性端;5338c-延伸端;534-容置腔;534a-第一腔口;534b-第二腔口;
60a、60b、60c-端子;
61-第一连接部;62-第二连接部;63-本体部;631-弯折结构;64-套管;
70-绝缘件;70a-搭边结构;
71-首端;72-尾端。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
电机是一种依据电磁感应定律实现电能转换或传递的电磁装置,主要作用是产生驱动转矩,作为用电器或各种机械的动力源。电机通常包括圆线电机和扁线电机,扁线电机是指定子绕组是由宽度较宽的扁铜线绕设形成的,而圆线电机是指定子绕组是由较窄的圆铜线绕设形成的,由于扁线电机具有可以提升电机的铜满率、改善电机的散热和降低绕组端部的空间等优点,扁线电机已成为提升电机转矩密度和功率密度的重要方式,而被应用于新能源车辆领域等中,以达到提升车辆的续航里程、提升空间利用率和降低动力总成成本等目的。
而随着对车辆续航里程以及充电时间等的追求,为提升充电速度以及电机功率密度,越来越多的车辆驱动***采用高压平台。此外,电机运行过程中的热负荷也逐渐提升,电机的散热多采用油冷的方式实现,因而高压油冷型电机成为了一个重要的发展方向。
电机主要包括外壳,外壳包括壳体和位于壳体两端的端盖,例如前端盖和后端盖,前端盖、后端盖与壳体共同围成密封的腔体,在腔体内可以设置有定子、转子和转轴。其中,转轴的一端可以穿过前端盖伸出至腔体外,以与减速机构等外部结构实现连接,转轴的另一端可以与后端盖转动连接,转子可以套设在转轴上,定子可以套设在转子的外周上。也就是说,前端盖和后端盖分别位于定子沿轴向方向的两侧,壳体环绕在定子的周向外侧上,转子可以包括有转子铁芯和绕设在转子铁芯上的绕组结构,定子可以包括定子铁芯和绕设在定子铁芯上的绕组结构,以实现电机的电磁转换功能。
应当理解的是,电机还可以包括有其他的结构件,以完善电机的整体结构。如电机还可以包括冷却通道、喷油环等,冷却液体,例如油冷却液等,可以经过喷油环进入冷却通道内,以实现对定子的散热。示例性的,如在定子与壳体之间可以形成有冷却油道,冷却油道两端邻近前端盖和后端盖位置处设置有进油口和出油口,冷却油可以通过喷油环从进油口喷至定子及其绕组结构的端部,热交换后的冷却油可以从出油口流出。
图1为本申请实施例提供的一种电机中定子的结构示意图。
参见图1所示,定子100包括定子铁芯10,定子铁芯10可以为中空的圆柱状结构,包括有周向、轴向和径向,轴向、周向和径向构成柱状结构的三个正交方向。定子铁芯10的轴向是圆柱状定子铁芯 10的旋转中心轴的方向,定子铁芯10的轴线即为旋转中心轴,如图1中的轴线L。定子铁芯10的周向即为圆周方向。定子铁芯10的径向垂直于轴向,为圆柱状定子铁芯10端面圆的半径或直径方向,电机的周向、径向和轴向可以与定子铁芯10的周向、径向和轴向平行。
定子铁芯10上绕设有绕组结构20,绕组结构20沿着定子铁芯10的周向环绕分布,形成的绕组结构20也为中空的圆柱状结构,绕组结构20的轴线即为定子铁芯10的轴线,绕组结构20的轴向为定子铁芯10的轴向,绕组结构20的周向与定子铁芯10的周向平行,绕组结构20的径向与定子铁芯10的径向平行。
具体的,定子铁芯10上可以开设有多个定子槽11,多个定子槽11可以沿着定子铁芯10的周向间隔分布,每个定子槽11的延伸方向可以与定子铁芯10的轴向相平行,定子槽11可以对绕组结构20起到限位固定的作用,使绕组结构20可以通过定子槽11绕设在定子铁芯10上。
图2为本申请实施例提供的一种电机中定子铁芯和绕组结构的装配示意图,图3为图2的局部结构放大图。
绕组结构20可以为多相绕组结构,例如,绕组结构20可以为三相绕组结构,如可以包括U相绕组结构、V相绕组结构和W相绕组结构,每相绕组结构的绕设末端具有引出线,引出线可以连接有第一出线端,作为该相绕组结构的出线端。结合图2和图3所示,如U相绕组结构具有第一出线端21a,V相绕组结构具有第一出线端21b,W相绕组结构具有第一出线端21c。
当然,在一些其他示例中,绕组结构20的相数也可以是其他数目,例如五个、六个等,即绕组结构20可以为五相绕组结构、六相绕组结构等。如绕组结构20可以为六相绕组,可以分别包括U相绕组结构、V相绕组结构、W相绕组结构、A相绕组结构、B相绕组结构和C相绕组结构。
其中,需要说明的是,每相绕组结构可以包括有并联的多个支路,每个支路可以由多个扁线线圈组成,线圈部分位于定子槽11内,部分位于定子槽11外。多相绕组结构20沿轴向的一端为连接端20a,多个扁线线圈在连接端20a可以通过焊接等方式连接以形成该支路,多个支路的末端即为绕组结构的末端,每相绕组结构的每个支路的末端分别具有引出线,每个引出线均连接有第一出线端,例如,以U相绕组结构为例,包括有两个支路,两个支路末端的引出线分别连接有第一出线端21a。
第一出线端可以位于绕组结构20的连接端20a沿轴向的外侧(背向定子铁芯10的一侧),以便于第一出线端与如动力总成中的控制单元等外部结构件实现电连接,实现对电机通电等的控制。
继续参见图3所示,每相绕组结构还可以包括有中性线,中性线为从绕组结构的中性点引出的导线,中性线的末端可以连接有第二出线端,作为该相绕组结构的中性点出线端。例如,U相绕组结构包括第二出线端22a,V相绕组结构包括第二出线端22b,W相绕组结构包括第二出线端22c。
其中,每相绕组结构包括多个并联的支路时,每个支路分别具有中性线,中性线均连接有第二出线端。如图3中所示,以U相绕组结构为例,包括有两个支路,两个支路的中性线分别连接有第二出线端22a。
第二出线端也可以位于多相绕组结构20的连接端20a沿轴向的外侧,以便于实现第二出线端之间的电连接。
为实现绕组结构20与动力总成的控制单元等外部结构件的电连接,电机还可以包括有多个第一汇流排,每个第一汇流排与每相绕组结构的第一出线端分别对应连接。如参见图3所示,多个第一汇流排分别为第一汇流排32a、第一汇流排32b和第一汇流排32c,第一汇流排32a、第一汇流排32b和第一汇流排32c位于绕组结构20的连接端20a上,可以沿着绕组结构20的周向方向依次并排设置。U相绕组结构的第一出线端21a与第一汇流排32a对应连接,V相绕组结构的第一出线端21b与第一汇流排32b对应连接,W相绕组结构的第一出线端21c与第一汇流排32c对应连接。每个汇流排还分别与控制单元等电连接,从而将绕组结构20与控制单元等实现电连接。
图4为本申请实施例提供的一种电机中第一汇流排的结构示意图。
具体的,每个第一汇流排的成型材料可以为具有高导电性的材料,例如,第一汇流排可以为铜排。每个第一汇流排可以包括有第一主体部、第一端部和第二端部,参见图4所示,以第一汇流排32a为例,包括有第一主体部321、第一端部322和第二端部323,第一端部322和第二端部323可以分别位于第一主体部321的两端。
在第一端部322上可以设置有第一电连接件3221,结合图3所示,第一汇流排32a可以通过第一 电连接件3221与U相绕组结构的第一出线端21a电连接。示例性的,第一电连接件3221可以是在第一端部322上凸起形成的焊点,第一电连接件3221可以通过焊接等方式与第一出线端21a电连接。
其中,一个第一端部上的第一电连接件数量可以是一个或者也可以是多个,第一电连接件的数量可以与每相绕组结构的第一出线端数量对应,例如,U相绕组结构包括两个支路,每个支路对应连接一第一出线端,第一端部322上可以具有两个第一电连接件3221,以分别与两个支路的第一出线端对应连接。
第二端部323上可以形成有电连接面3231,电连接面3231可以是第二端部323的一端上与轴向平行的端面,定子100还可以包括有端子(如图1中的端子60a),端子的一端可以与电连接面3231通过焊接等方式电连接,端子的另一端可以与控制单元等电连接,使第二端部323通过端子实现与控制单元等外部结构件的电连接。
继续参见图3所示,第一汇流排32a、第一汇流排32b和第一汇流排32c分别与U相绕组结构的第一出线端21a、V相绕组结构的第一出线端21b和W相绕组结构的第一出线端21c连接时,第一汇流排32a、第一汇流排32b和第一汇流排32c悬挂在绕组结构20的连接端20a,稳定性较差。
此外,为保证电机的性能,第一汇流排32a、第一汇流排32b和第一汇流排32c之间应保有预设的距离,尤其是相邻的第一汇流排32a与第一汇流排32b之间,以及相邻的第一汇流排32b与第一汇流排32c之间,也即不同相绕组结构对应连接的两相邻第一汇流排之间具有预设的绝缘距离,使相邻的第一汇流排上的第一电连接件之间也保有绝缘距离,尤其是在高压电机中,对与不同相绕组结构连接的相邻第一汇流排及第一电连接件之间的绝缘要求较高,需保证较长的绝缘距离。
相应的,为实现多相绕组之间的中性线的连接,参见图3所示,定子100还可以包括有第二汇流排53,第二汇流排53位于连接端20a上,具体的,第二汇流排53可以位于连接端20a的外周侧上。
第二汇流排53可以包括有多个间隔的连接端部,多个连接端部可以沿绕组结构20的周向依次设置,每个连接端部分别对应与每相绕组结构的第二出线端连接。如图3所示,多个连接端部分别为连接端部532a、连接端部532b和连接端部532c,U相绕组结构的第二出线端22a与连接端部532a对应连接,V相绕组结构的第二出线端22b与连接端部532b对应连接,W相绕组结构的第二出线端22c与连接端部532c对应连接。
具体的,每个第二汇流排的连接端部上可以设置有第二电连接件,连接端部通过第二电连接件实现与第二出线端的电连接。例如,继续参见图3所示,以连接端部532a为例,连接端部532a上设置有第二电连接件5321,连接端部532a通过第二电连接件5321与第二出线端22a电连接。示例性的,第二电连接件5321可以是在连接端部532a上凸起形成的焊点,第二电连接件5321可以通过焊接等方式与第二出线端22a电连接。
其中,一个连接端部上的第二电连接件的数量也可以是一个或多个,第二电连接件的数量可以与每相绕组结构的第二出线端数量对应,例如,U相绕组结构20包括两个支路,每个支路对应连接一第二出线端,连接端部532a上可以具有两个第二电连接件5321,以分别与两个支路的第二出线端对应连接。
应当理解的是,第二汇流排分别与多个第一汇流排之间也应保有预设的绝缘距离,使第一电连接件和第二电连接件之间也具有绝缘安全距离,以保证电机的性能。
相关技术中,采用粘粉的方式来实现绝缘安全距离,如将第一汇流排、第二汇流排以及绕组结构的连接端加热,并将其放入绝缘粉末中,使线圈间的焊接部位、第一汇流排、第二汇流排、第一电连接件与第一出线端连接部位、第二电连接件与第二出线端连接部位等均包裹有绝缘粉,在冷却后形成绝缘层,起到绝缘防护的作用。
但这种绝缘防护方式工艺较为复杂,不便于批量生产,而且绝缘安全性能较差,难以满足高压电机的高绝缘安全要求,且第一汇流排、第二汇流排等的稳定性较差。
图5为本申请实施例提供的一种电机中第一注塑结构的装配示意图。
在本申请实施例中,为提升第一汇流排的设置稳固性,并提升绝缘安全性,定子100还可以包括有第一注塑结构30,第一注塑结构30位于绕组结构20的连接端20a(参照图6所示)上,参见图5所示,第一注塑结构30可以包括第一注塑件31和上述的多个第一汇流排(如第一汇流排32a、第一汇流排32b、第一汇流排32c)。
具体的,第一注塑件31包裹多个第一汇流排的第一主体部设置(结合图4所示),从而固定多个第 一汇流排,且多个第一汇流排沿绕组结构20的周向间隔设置,以保有绝缘安全距离,这样相邻两个第一汇流排的第一主体部之间的间隙内也会具有第一注塑件31,形成的第一注塑结构30也可以沿绕组结构20的周向延伸,便于装配实现且有利于进一步减小电机在径向方向上的尺寸。
其中,第一注塑件31的成形材料可以是绝缘性较高的材料,例如聚丙烯、聚乙烯、聚氯乙烯等。可以在第一注塑件31注塑成形时使多个第一汇流排与第一注塑件31注塑形成一个整体的第一注塑结构30。
一方面,第一注塑件31能够起到固定第一汇流排的作用,提升第一汇流排的设置稳定性,减小或避免电机在装配、运行等过程中的振动而导致第一汇流排的移动,保证电机的性能,且有利于使第一汇流排之间保有稳定的绝缘距离。
另一方面,第一注塑件31包裹多个间隔设置的第一汇流排的第一主体部,不同相绕组结构对应连接的两相邻第一汇流排的第一主体部之间就填充有绝缘的第一注塑件31,能够加强相邻的第一汇流排之间的绝缘效果,提升第一汇流排的绝缘安全性,满足高压电机的绝缘安全距离要求。还有利于减小第一汇流排之间设置的绝缘距离的长度,有利于减小定子100沿轴向的端部的体积尺寸。
此外,通过注塑的方式就可以形成第一注塑结构30,将其直接与第一出线端连接即可完成在绕组结构20上的装配,结构及形成工艺简单,便于生产实现。且多个第一汇流排形成一个整体的第一注塑结构30,便于实现与绕组结构20的整体焊接,也有利于简化定子100的装配工艺。
其中,需要说明的是,第一汇流排的第一端部和第二端部可以位于第一注塑件外,例如,参见图5所示,以第一汇流排32a为例,第一端部322和第二端部323位于第一注塑件31外,从而使第一电连接件3221和电连接面3231暴露出来,以分别实现与第一出线端和控制单元等的电连接。
图6为本申请实施例提供的一种电机中定子铁芯、绕组结构和第一注塑结构的装配示意图。
将第一注塑结构30与绕组结构20装配,使多个第一汇流排的第一电连接件分别与每相绕组结构20的第一出线端对应连接,例如,参见图6所示,第一汇流排32a的第一电连接件3221与第一出线端21a对应电连接,第一电连接件3221、第一出线端21a呈裸露的状态。将定子100设置在壳体和端盖围成的容纳腔内,前端盖和后端盖分别位于定子100沿轴向的两侧,壳体套设在定子100的外周侧上。为保证电机的绝缘安全性,第一电连接件及第一出线端与壳体在径向方向(也即电机的径向)上需保持预设的绝缘距离,第一电连接件及第一出线端与端盖之间(前端盖和后端盖)在轴向(也即电机的轴向)上也需保持预设的绝缘距离,也即定子100与端盖在轴向方向上、以及定子100与壳体在径向方向上具有预设的距离。而由于第一电连接件及第一出线端呈裸露状态,绝缘安全性较差,使定子100与壳体以及端盖需设置较远的绝缘安全距离,尤其是高压电机中,所要求的绝缘安全距离更大,就会导致电机的在轴向和径向上的尺寸增大,使电机的体积较大,难以满足电机的小型化设计。
图7为本申请实施例提供的一种电机中定子的俯视结构示意图,图8为图1中A部分的局部结构放大图,图9为本申请实施例提供的一种电机中定子铁芯、第一注塑结构和绝缘盖板的局部拆分示意图,图10为本申请实施例提供的一种电机中定子铁芯、第一注塑结构和绝缘盖板的装配示意图。
为提升电机的绝缘安全,并减小电机的体积,在本申请实施例中,参见图7和图8所示,定子100还可以包括有绝缘盖板40,绝缘盖板40盖设在第一注塑结构30上,以覆盖第一电连接件和第一出线端,使至少在轴向方向上不具有裸露的第一电连接件和第一出线端,或者,至少在周向方向上不具有裸露的第一电连接件和第一出线端。
绝缘盖板40的成形材料可以是具有高绝缘性能的材料,例如,可以是聚丙烯、聚乙烯、聚氯乙烯等,绝缘盖板40的成形材料可以与第一注塑件31的成形材料相同。绝缘盖板40也可以通过注塑成形的方式形成。
其中,绝缘盖板40可以位于第一注塑结构30沿轴向背向定子铁芯10的一侧、绝缘盖板也可以位于第一注塑结构30背向定子铁芯10轴线的一侧。例如,绝缘盖板40可以设置在第一注塑结构30背向定子铁芯的一侧,覆盖第一电连接件和第一出线端沿轴向背向定子铁芯的一侧,也即在轴向上覆盖第一电连接件和第一出线端。示例性的,参见图9所示,绝缘盖板40包括顶板41,顶板41可以位于第一注塑结构30沿轴向(如图中的y方向)背向定子铁芯10的一侧上,顶板41起到覆盖裸露的第一电连接件(如第一电连接件3221)和第一出线端(如第一出线端21a)作用,顶板41可以在轴向上完全覆盖第一电连接件和第一出线端背向定子铁芯10的一侧,在定子100沿轴向的端部面不具有暴露的第 一电连接件及第一出线端(参照图7所示,不能观察到暴露的第一电连接件)。
将定子100设置在容纳腔内并装配形成电机后,第一电连接件及第一出线端与端盖之间就具有绝缘盖板40(顶板41),绝缘盖板40可以起到隔档作用,增加第一电连接件和第一出线端分别与端盖之间的电气间隙和爬电距离,有效的提升了第一电连接件、第一出线端和端盖之间的绝缘安全性,能够更好的满足高压电机的绝缘安全距离要求。而且有利于减小第一电连接件、第一出线端与端盖之间设置的绝缘距离长度,也即减小定子100与端盖沿轴向上的距离,节省电机沿轴向的端部空间,减小电机在轴向上的尺寸,利于电机的小型化设计。
绝缘盖板40可以设置在第一注塑结构30背向定子铁芯轴线的一侧,覆盖第一电连接件和第一出线端背向定子铁芯轴线的一侧,也即在周向上覆盖第一电连接件和第一出线端的外侧。示例性的,结合图8和图9所示,绝缘盖板40包括侧板42,侧板42可以位于第一注塑结构30的周向背向定子铁芯10的轴线的一侧,绝缘盖板40的侧板42起到覆盖第一电连接件(如第一电连接件3221)和第一出线端(如第一出线端21a)的作用,侧板42可以在周向上完全覆盖第一电连接件和第一出线端背向轴线的一侧,参照图10所示,在定子100的外周面上不具有暴露的第一电连接件。
将定子100设置在容纳腔内并装配形成电机后,第一电连接件、第一出线端分别与壳体之间就具有能够起到隔档作用的绝缘盖板40(侧板42),增加了第一电连接件、第一出线端与壳体之间的电气间隙和爬电距离,有效的提升了电机的绝缘安全性,满足高压电机的高绝缘安全距离要求。且有利于减小第一电连接件、第一出线端与壳体之间设置的绝缘距离长度,也即减小定子100与定子100外周侧的壳体之间的距离,减小电机在周向上的尺寸,进一步有利于电机的小型化设计。
其中,绝缘盖板40可以延伸至第二电连接件和第二出线端处,以覆盖第二电连接件和第二出线端。绝缘盖板40可以覆盖第二电连接件和第二出线端沿轴向背向定子铁芯的一侧,示例性的,参见图9所示,顶板41位于第一注塑结构30背向定子铁芯10的一侧,顶板41可以在轴向上完全覆盖第二电连接件(如第二电连接件5321)和第二出线端(如第二出线端22a)背向定子铁芯10的一侧,在定子100轴向的端部面不具有暴露的第二电连接件和第二出线端(参照图8所示)。使第二电连接件、第二出线端分别与端盖之间也具有绝缘盖板40,起到隔档作用,增加第二电连接件、第二出线端与端盖之间的电气间隙和爬电距离,进一步提升电机的绝缘安全性,在满足高压电机高绝缘安全距离要求下,能够进一步节省电机沿轴向的端部空间,实现电机的小型化设计。
绝缘盖板40可以覆盖第二电连接件和第二出线端背向定子铁芯轴线的一侧,示例性的,继续参见图9所示,侧板42位于第一注塑结构30的周向背向定子铁芯10的轴线的一侧,侧板42可以在周向上完全覆盖第二电连接件(如第二电连接件5321)和第二出线端(如第二出线端22a)背向轴线的一侧,在定子100的外周面上不具有暴露的第二电连接件和第二出线端(参照图10所示)。使第二电连接件、第二出线端分别与壳体之间具有起到隔档作用的绝缘盖板40,增加第二电连接件、第二出线端与壳体之间的绝缘安全性,进一步提升电机的绝缘安全性。在满足高压电机高绝缘安全距离要求下,能够进一步节省电机在周向上的尺寸,更便于实现电机的小型化设计。
其中,需要说明的是,绝缘盖板40可以仅覆盖在第一电连接件和第一出线端背向定子铁芯的一侧,或者,绝缘盖板40可以仅覆盖在第一电连接件和第一出线端背向轴线的一侧上,或者,绝缘盖板40也可以即覆盖在第一电连接件和第一出线端背向定子铁芯的一侧,又覆盖第一电连接件和第一出线端背向轴线的一侧上。相应的,绝缘盖板40也可以仅覆盖在第二电连接件和第二出线端背向定子铁芯的一侧,或者,绝缘盖板40可以仅覆盖在第二电连接件和第二出线端背向轴线的一侧上,或者,绝缘盖板40也可以即覆盖在第二电连接件和第二出线端背向定子铁芯的一侧,又覆盖第二电连接件和第一出线端背向轴线的一侧上。
图11为本申请实施例提供的一种电机中第一注塑结构、绝缘盖板和端子的装配结构示意图。
在本申请实施例中,以绝缘盖板40即覆盖在第一电连接件、第一出线端、以及第二电连接件、第二出线端背向定子铁芯的一侧,又覆盖在第一电连接件、第一出线端、第二电连接件及第二出线端背向轴线的一侧上为例。参见图11所示,绝缘盖板40可以包括顶板41和侧板42,顶板41和侧板42围成容纳空间40a,顶板41设置在第一注塑结构30上沿轴向背向定子铁芯10的一侧,侧板42设置在第一注塑结构30的周向上背向轴线的一侧,使第一注塑结构30位于容纳空间40a内,从而使第一电连接件、第一出线端、第二电连接件和第二出线端位于容纳空间40a内。顶板41覆盖第一电连接件、第二 电连接件、第一出线端和第二出线端背向定子铁芯的一侧,侧板42覆盖第一电连接件、第二电连接件、第一出线端和第二出线端背向定子铁芯轴线的一侧,具有很好的绝缘隔档作用,使电机具有更好的绝缘安全性,且更有利于实现电机的小型化。
其中,侧板42和顶板41的形状分别可以为沿周向延伸的圆弧形,使整个绝缘盖板40沿周向延伸,便于装配实现且有利于进一步减小电机在周向上的尺寸。
应当理解的是,顶板41覆盖在第一注塑结构30沿轴向背向定子铁芯10的一侧,顶板41需避让第二端部,使第二端部露出,便于第二端部与控制单元等连接。例如,参见图11所示,绝缘盖板40的顶板41仅覆盖在部分第一注塑结构30上,使第一汇流排的第二端部(如第一汇流排32a的第二端部323)位于绝缘盖板40面向定子铁芯10轴线的一侧外,第二端部可以通过端子与控制单元等电连接。
当然,在一些其他示例中,绝缘盖板40也可以完全覆盖第一注塑结构30上,在绝缘盖板40与第二端部相对的部位可以开设有避让孔,使第二端部可以通过避让孔暴露出来,以连接端20a子实现与控制单元的电连接。
应当理解的是,端子的数量可以与绕组结构20的相数相对应,每个端子对应与每相绕组结构连接的第一汇流排连接。例如,参见图11所示,端子可以包括有端子60a、端子60b和端子60c,端子60a与第一汇流排32a电连接,端子60b与第一汇流排32b的电连接,端子60c与第一汇流排32c电连接。
图12为本申请实施例提供的一种电机另一端子的结构示意图,图13为本申请实施例提供的一种电机中一端子的侧视结构示意图。
以端子60a为例,参见图12所示,每个端子可以包括有本体部63、第一连接部61和第二连接部62,其中,端子60a的第一连接部61与第二端部323上的电连接面3231电连接,第二连接部62与控制单元电连接。
示例性的,第二连接部62上可以开设有第一装配孔621,第二连接部62可以通过第一装配孔621实现与控制单元的电连接。例如,控制单元可以具有接线座,接线座上可以开设有第二装配孔,电机还可以包括有固定件,固定件可以分别与第一装配孔621和第二装配孔连接,以使绕组结构20能够通过端子实现与控制单元的连接。其中,固定件可以是螺栓、螺钉等,第一装配孔621和第二装配孔可以是能够与固定件配合的螺纹孔或光孔等。
其中,本体部63可以是柔性的,能够折弯形成弯折结构631(参照图13所示),当装配端盖与喷油环等结构时,可弯折使本体部63处于竖直状态(平行于轴向),实现避让,便于端盖等的装配,待装配完成后可弯折本体部63使其形成弯折结构631,以便于端子的第一连接部61与第一汇流排连接,第二连接部62与控制单元连接。而第一连接部61和第二连接部62可以具有一定的硬度,以便于实现电连接。
为保护柔软的主体部,继续参见图12所示,在主体部上可以套设有套管64,套管64一方面对主体部起到防护作用,也能减小弯折对主体部的损伤。另一方面,套管64可以是绝缘管,能够起到绝缘隔离作用,以提升电机的绝缘安全性。
示例性的,参见图13所示,在定子铁芯的轴向上,弯折结构631背向定子铁芯10的一端距定子铁芯10的高度,可以比第二连接部62距定子铁芯10的高度高,弯折结构631的最大高度高于第二连接部62的最大高度,如高出图13中的h距离,使弯折结构631邻近第一连接部61的部分和邻近第二连接部62的部分之间呈锐角。弯折结构631具有较大的弯折和调整空间,也就赋予第二连接部62较大的可调整灵活性,便于第二连接部62的第一装配孔与第二装配孔的对位,实现端子与控制单元的电连接,能够减小端子与控制单元等装配的难度。
端子的成形材料可以是高导电性的材料,例如,端子可以是铜箔等组成的金属件,以端子为铜箔形成的结构为例。示例性的,端子可以由多层铜箔叠加形成,在端子的两端可以通过电阻焊接等方式形成较硬的铜片以分别形成第一连接部61和第二连接部62,而位于中间区域的主体部不焊接,具有一定的柔性,以实现折弯。
图14为本申请实施例提供的一种电机中定子铁芯、第一注塑结构和绝缘盖板的拆分结构示意图,图15为本申请实施例提供的一种电机中定子的剖面局部结构示意图,图16为本申请实施例提供的一种电机中绝缘盖板的背面结构示意图。
在本申请实施例中,绕组结构20的第一出线端和第二出线端均位于绕组结构20的连接端20a,为 便于第一汇流排和第二汇流排分别与第一出线端和第二出线端连接。参见图14所示,第一注塑结构30可以位于连接端20a上沿轴向背向定子铁芯的一侧,而第二汇流排53可以位于连接端20a端沿周向的外侧,也即第二汇流排53位于连接端20a的外周侧上。
第一电连接件、第一出线端、第二电连接件和第二出线端可以间隔分布在绕组结构20的周向上,每相绕组结构的第二出线端、与该第二出线端连接的第二电连接件邻近该相绕组结构的第一出线端以及与该第一出线端连接的第一电连接件设置。例如,参见图14所示,以U相绕组结构为例,第二出线端22a、第二电连接件5321更邻近于第一出线端21a、第一电连接件3221设置,以保证绝缘安全性。
为隔离不同相绕组结构及对应连接的第一电连接件和第二电连接件,参见图15所示,绝缘盖板40上形成有隔离槽411,具体的,在顶板41面向定子铁芯10的一面上可以形成有多个隔离槽411(参照图16所示)。
同相绕组结构的第一出线端和第二出线端,与该第一出线端连接的第一电连接件、与该第二出线端连接的第二电连接件位于一个隔离槽内,例如,参见图15所示,第一电连接件3221、第一出线端21c、第二电连接件5321和第二出线端22c位于一个隔离槽411内。也就是说,不同相绕组结构的第一出线端、第二出线端以及对应连接的第一电连接件和第二电连接件位于不同的隔离槽内,增加了不同相绕组结构之间、以及不同相绕组结构对应连接的第一电连接件、第二电连接件之间的电气间隙和爬电距离,进一步提升电机的绝缘安全性。
其中,参见图16所示,可以使顶板41面向定子铁芯10的一面凹陷形成隔离槽411,在顶板41背向定子铁芯10的一面上与隔离槽411对应的部位可以形成凸起结构419(参照图19所示),隔离槽411可以延伸至凸起结构419上,以加深隔离槽411的深度,提升绝缘隔离效果。
继续参见图16所示,在隔离槽411内可以设置有挡板412,挡板412可以将隔离槽411分隔为第一隔档槽4111和第二隔档槽4112,同相绕组结构的第一出线端以及与该第一出线端连接的第一电连接件位于第一隔档槽4111内,第二出线端以及与该第二出线端连接的第二电连接件位于第二隔档槽4112内。例如,结合图15所示,第一电连接件3221和第一出线端21c位于第一隔档槽4111内,第二电连接件5321和第二出线端22c位于第二隔档槽4112内。隔板可以对同相绕组结构的第一出线端及其连接的第一电连接件与第二出线端及其连接的第二电连接件间起到隔离绝缘的作用,增加了同相绕组结构内,第一出线端及第一电连接件和第二出线端及第二电连接件之间的电气间隙和爬电距离,进一步提升电机的绝缘安全性。
继续参见图16所示,绝缘盖板40还可以包括有端板43,端板43设置在顶板41和侧板42上沿周向的两侧(参照图14所示),端板43可以分别与顶板41和侧板42连接。一方面能够增加绝缘盖板40的强度,保证绝缘盖板40的绝缘稳定性。另一方面,端板43将第一注塑结构30沿周向上的两侧遮挡起来,进一步封闭容纳空间40a,有利于进一步增加第一电连接件和第二电连接件与电机中其他金属结构件之间的爬电距离,有助于提升电机的绝缘安全性。
在绝缘盖板40上还可以设置有加强件44,加强件44分别与顶板41和侧板42连接,以增加绝缘盖板40的强度,保证绝缘盖板40的绝缘稳定性。
本申请实施例中,绝缘盖板40与第一注塑结构30之间的装配方式可以是多种的,例如,绝缘盖板40可以通过粘接等不可拆卸的方式设置在第一注塑件31上。或者,绝缘盖板40也可以通过可拆卸的方式与第一注塑件31装配连接,便于绝缘盖板40的拆卸与安装,有利于简化装配工艺,提升安装效率。
例如,在绝缘盖板上可以设置有第一卡接结构,在第一注塑件上可以设置有第二卡接结构,绝缘盖板可以通过第一卡接结构和第二卡接结构的卡接配合实现与第一注塑件的连接,便于安装与拆卸。
示例性的,继续图16所示,在顶板41面向第一注塑件31的一面上可以设置有凸起的第一卡接壁413和第二卡接壁414,第一卡接壁413和第二卡接壁414相对设置,且第一卡接壁413和第二卡接壁414之间具有避让间隙,在第一卡接壁413面向第二卡接壁414的侧面上、以及第二卡接壁414面向第一卡接壁413的侧面上可以分别具有凸起以形成第一卡接结构415。
图17为本申请实施例提供的一种电机中第一装配的另一示意图,图18为本申请实施例提供的一种电机中在第一注塑件和绝缘盖板卡接配合的局部剖面结构示意图,图19为本申请实施例提供的一种电机中绝缘盖板的正面结构示意图,图20为本申请实施例提供的一种电机中第一注塑结构的再一结构 示意图。
参见图17所示,在第一注塑件31上可以形成有卡接部311,具体的,卡接部311凸起设置在第一注塑件31背向轴线的一侧上(参照图14所示),卡接部311相对的两侧面上具有凹槽以形成第二卡接结构3111。
结合图18所示,凸起的第一卡接结构415可以卡设在凹陷的第二卡接结构3111内,从而实现第一注塑件31和绝缘盖板40(顶板41)的卡接配合。其中,第一卡接壁413和第二卡接壁414之间的避让间隙,能够赋予第一卡接壁413和第二卡接壁414一定的活动空间,使第一卡接壁413和第二卡接壁414能够在外力下发生一定的形变,以便于第一卡接壁413和第二卡接壁414上的第一卡接结构415与卡接部311上的第二卡接结构3111卡接配合。
示例性的,第一卡接结构415可以分别位于第一卡接壁413和第二卡接壁414背向顶板41的一端上,第二卡接结构3111可以位于卡接部311背向顶板41的一端上,第一卡接结构415和第二卡接结构3111配合后,卡接部311可以位于第一卡接壁413和第二卡接壁414之间的避让间隙内,有利于增强第一卡接结构415和第二卡接结构3111的卡接强度,从而增强第一注塑件31和绝缘盖板40的装配牢度,保证绝缘的稳定性。
继续参见图18所示,为便于第一卡接结构415和第二卡接结构3111的卡接,卡接部311沿周向上相对的两个侧面上可以具有导向斜面,如分别为导向斜面3112a和3112b,从卡接部311面向顶板41的一端至卡接部311背向顶板41的一端,两个导向斜面3112朝向相背的方向倾斜,两导向斜面可以呈八字形结构,导向斜面位于第二卡接结构3111背向定子铁芯10的一侧,以便于绝缘盖板40的第一卡接结构415经过导向斜面后与第二卡接结构3111卡接配合,导向斜面起到很好的导向作用,便于装配。
参见图19所示,顶板41上还可以开设有第一避让孔417,第一避让孔417可以分别位于第一卡接壁413和第二卡接壁414的一侧,邻近第一卡接壁413和第二卡接壁414设置,以便于在注塑形成绝缘盖板40过程中,通过第一避让孔417注塑形成第一卡接壁413和第二卡接壁414。
绝缘盖板40上还可以开设有第二避让孔418,第二避让孔418可以用于固定温度传感器52的引线522。
此外,为便于绝缘盖板40和第一注塑结构30的装配,结合图18和图19所示,在顶板41上可以设置有第一定位结构416,参见图20所示,在第一注塑件31上可以设置有第二定位结构312,第一定位结构416和第二定位结构312定位配合起到定位作用,以便于绝缘盖板40和第一注塑结构30之间的准确装配,有利于提升装配效率。
其中,第一定位结构416可以是定位孔,定位孔可以贯穿顶板41设置,或者,定位孔也可以是开设在顶板41面向定子铁芯10一面上的盲孔。第二定位结构312可以是凸起的定位柱,第二定位结构312可以***设置在第一定位结构416内以起到定位的作用(参照图18所示)。
第一定位结构416可以位于第一卡接壁413和第二卡接壁414之间(参照图16所示),可以在定位的同时便于实现绝缘盖板40和第一注塑件31的卡接配合,更便于装配。
本申请实施例中,为对定子的温度进行监测,以实现对定子冷却的控制等,电机还可以包括有温度传感器,温度传感器可以设置在定子上,具体的,温度传感器可以邻近绕组结构设置,并与绕组结构直接或间接的接触,以提升对定子运转过程中温度监测的准确性。
目前,常见的温度传感器多设置在第二汇流排上,温度传感器一面与第二汇流排的一面贴合,其余面裸露在外。使用冷却油等冷却液体实现定子的冷却时,冷却液体会不可避免的与温度传感器接触,导致温度传感器的温度检测反馈延时较长,温度检测不准确。
图21为本申请实施例提供的一种电机中定子的侧视局部结构示意图,图22为本申请实施例提供的一种电机中第二注塑结构的示意图,图23为本申请实施例提供的一种电机中第二汇流排和温度传感器的装配结构示意图,图24为本申请实施例提供的一种电机中第二汇流排和温度传感器装配的局部结构放大示意图。
参见图21所示,本申请实施例中,定子100还可以包括有第二注塑结构50,第二注塑结构50设置在绕组结构20的连接端20a的外周侧,第二注塑结构50可以包括有、第二注塑件51、第二汇流排53和温度传感器(图中未示出)。
参见图22所示,第二汇流排53可以包括有第二主体部531和多个连接端部(如图中的连接端部 532a、连接端部532b、连接端部532c),多个连接端部设置在第二主体部531上。其中,第二主体部531可以位于连接端20a的外周侧上,第二主体部531可以为弧形结构,其延伸方向可以与绕组结构20的周向平行,便于第二汇流排53(第二注塑结构50)在绕组结构20的周侧设置。
温度传感器52贴合设置在第二主体部531的一面531a上,定子100及绕组结构20运行产生的热量可以传递至第二汇流排53和温度传感器52上,以实现对定子100温度的检测。第二注塑件51包裹温度传感器52和第二主体部531设置,结合图23所示,连接端部532a、连接端部532b、连接端部532c位于第二注塑件51外,以使连接端部上的第二电连接件(如连接端部532a上的第二电连接件5321)露出,便于实现电连接。
第二注塑件51对温度传感器52起到隔离保护的作用,能够有效的阻挡冷却液体直接与温度传感器52的接触,减小冷却液体对温度传感器52的影响,从而减小温度传感器52的反馈延时,提升温度传感器52的检测准确性。在实现对定子100温度检测的条件下,达到低延时高精度的效果。
此外,第二注塑件51包裹第二汇流排53的第一主体部321,有利于提升第二汇流排53与定子100外周侧的壳体、以及与第一汇流排之间的绝缘安全性,有利于减小电机在径向和轴向上的尺寸,利于电机的小型化设计。
其中,第二注塑件51的成形材料可以是绝缘性较高的材料,例如聚丙烯、聚乙烯、聚氯乙烯等。可以在第二注塑件51注塑成形时,使固定有温度传感器52的第二汇流排53与第二注塑件51注塑形成一个整体的第二注塑结构50。
应当理解的是,温度传感器52也可以和与绕组结构20直接或间接连接的其他结构件注塑形成一个注塑结构。例如,温度传感器可以贴合设置在第一汇流排的第一主体部上,通过第一注塑件包裹温度传感器和第一主体部形成第一注塑结构,第一注塑件也能够对温度传感器起到隔离保护的作用,减小冷却液体对温度传感器的影响,实现对定子温度检测的条件下,达到温度检测低延时高精度的目的。
或者,定子还可以包括有第三注塑结构,第三注塑结构包括第三注塑件、温度传感器和第一出线端,温度传感器可以贴合设置在第一出线端上,第三注塑件包裹温度传感器和第一出线端设置,同样也能达到保护温度传感器的作用,在实现对定子温度检测的条件下,具有低延时高精度的效果。
本申请实施例中,以温度传感器52设置在第二汇流排53上并形成第二注塑结构50为例进行说明。
继续参见图24所示,在第二主体部531上可以设置有导热件533,导热件533设置在第二主体部531的一面531a上,导热件533可以与第二主体部531的一面围成容置腔534,温度传感器52可以容纳设置在容置腔534内,温度传感器52(检测本体521)可以贴合在导热件533的至少一面上。
一方面,导热件533能够对温度传感器52起到容纳固定的作用,使温度传感器52固定设置在第二汇流排53上。另一方面,使温度传感器52与导热件533的至少一面贴合设置,第二汇流排53的热量也可以通过导热件533传递至温度传感器52,增大温度传感器52与第二汇流排53之间热传递的面积,进一步减小温度检测的反馈延时,提升检测的准确性。
其中,温度传感器52可以包括检测本体521和引线522(参照图26所示),检测本体521用于实现温度的检测,检测本体521可以通过引线522与控制单元等连接,以实现信号的传输,检测本体521可以通过导热件533设置在第二主体部531上,检测本体521与导热件533和第二主体部531贴合。
其中,导热件533可以是在形成第二汇流排53过程中在第二主体部531上一体形成的。当然,在一些其他示例中,导热件533也可以与第二汇流排53分体成形,然后设置在第二汇流排53上,具体的设置方式可以是焊接、粘接、卡接固定、螺纹固定等。
导热件533的具体结构和形状可以是多种的,能够与第二主体部531形成容置腔534以固定温度传感器52即可。
图25为本申请实施例提供的一种电机中第二汇流排上的导热件的结构示意图。
如在一种可能的实现方式中,参见图25所示,导热件533可以包括底面533a和侧面533b,结合图24所示,底面533a的第一端与第二主体部531连接,底面533a的第二端与侧面533b连接,侧面533b可以与第二主体部531相对设置,第二主体部531的一面531a、底面533a和侧面533b共同围成容置腔534,温度传感器52设置在容置腔534内,温度传感器52(检测本体521)可以与底面533a、侧面533b分别贴合设置,使温度传感器52能够更好的与导热件533贴合,具有较大的热接触面积,实现反馈延时小,检测准确性高的目的。
温度传感器52可以通过插设的方式设置在容置腔534内,例如,侧面533b背向底面533a的一端与第二主体部531之间具有间隙可以形成第一腔口534a(参照图24所示),如第一腔口534a位于容置腔534沿轴向的一端,温度传感器52可以通过第一腔口534a***设置在容置腔534内(***方向如图中箭头方向),便于装配实现。
为提升温度传感器52在第二汇流排53上的设置稳定性,继续参见图25所示,导热件533上还设置有弹片结构5338,弹片结构5338可以包括有固定端5338a和弹性端5338b,弹片结构5338通过固定端5338a设置在导热件533上,示例性的,固定端5338a可以设置在导热件533的侧面533b上,或者,固定端5338a也可以设置在导热件533的底面533a上。以固定端5338a设置在导热件533的侧面533b上为例,弹性端5338b与侧面533b之间存在间隙,以满足弹性端5338b弹性形变的移动空间。
图26为本申请实施例提供的一种电机中温度传感器的结构示意图,图27为本申请实施例提供的一种电机中第二汇流排和温度传感器装配的局部剖面结构示意图,图28为图24中沿A-A面的剖面局部结构示意图。
参见图26所示,在温度传感器52上开设有用于与弹片结构5338配合的插接槽523。结合图27所示,弹片结构5338的固定端5338a与侧面533b连接,弹片结构5338的弹性端5338b位于固定端5338a沿温度传感器52***方向(图中箭头方向)的一侧,弹性端5338b的第一端与固定端5338a连接,弹性端5338b的第二端倾斜延伸至容置腔内。
温度传感器52从第一腔口534a***会挤压弹性端5338b,将温度传感器52***至容置腔534内时,参见图27所示,弹性端5338b可以插设在插接槽523内,通过弹性端5338b和插接槽523的配合就实现了对温度传感器52的固定,而且弹性端5338b的回弹作用力也可以作用与温度传感器52,压紧温度传感器52,使温度传感器52能够更好的与第二主体部531贴合。
需要说明的是,弹片结构5338还可以包括其他形状结构,例如,弹片结构5338还可以包括有延伸端5338c,延伸端5338c的第一端可以与弹性端5338b连接,延伸端5338c的第二端可以朝向容置腔外延伸(参照图34所示),丰富弹片结构5338的形状,以提升温度传感器52与第二汇流排53之间装配结构的灵活性。
应当理解的是,温度传感器52上的插接槽523的形状可以根据弹片结构5338的形状而改变,使插接槽523的形状可以与弹性端5338b的形状匹配,以便于实现插接槽523与弹片结构5338之间的插接配合,实现与温度传感器52的定位。
继续参见图27所示,导热件533上还可以设置有第一限位结构5331,第一限位结构5331用于限制温度传感器52从第一腔口534a处脱出。具体的,第一限位结构5331可以设置在侧面533b上背向底面533a的一端,第一限位结构5331的第一端可以与侧面533b连接,第一限位结构5331的第二端可以朝向第二主体部531延伸,使第一限位结构5331倾斜于侧面533b设置,第一限位结构5331与侧面533b之间形成倾斜夹角(不等于零度和九十度)。
结合图28所示,第一限位结构5331的第二端就会与第二主体部531之间形成第二腔口534b,第二腔口534b的口径会小于第一腔口534a的口径。第一限位结构5331为尺寸相对较小的片状结构,可以是在导热件成型时形成的金属片结构,第一限位结构5331在外力作用下可以发生形变,温度传感器52可以依次穿过第二腔口534b和第一腔口534a***设置在容置腔534内。而由于第二腔口534b的口径较小,使温度传感器52难以穿过第二腔口534b脱出至容置腔534外,实现对温度传感器52的进一步限位,提升温度传感器52的设置稳定性。
图29为本申请实施例提供的另一种电机中第二汇流排的局部结构示意图。
为便于温度传感器52***容置腔534内,参见图29所示,导热件533上还可以设置有第一导向结构5332,第一导向结构5332的第一端可以与第一限位结构5331的第二端连接,使第一导向结构5332设置在第一限位结构5331上,第一导向结构5332的第二端可以朝向背向第二主体部531的方向延伸,第二导向结构5336可以倾斜于侧面533b和第二主体部531设置,第二导向结构5336与侧面533b之间形成倾斜夹角(不等于零度和九十度)。从第一导向结构5332的第二端至第一端的方向,第一导向结构5332与第二主体部531之间的间隙距离可以逐渐减小,从而起到导向作用,便于温度传感器52通过第一导向结构5332、第二腔口534b和第一腔口534a后***容置腔534内。
图30为本申请实施例提供的再一种电机中第二汇流排的结构示意图,图31为本申请实施例提供 的再一种第二汇流排和温度传感器的装配结构示意图,图32为图30中沿B-B面的剖面结构示意图。
在另一种可能的实现方式中,参见图30所示,导热件533还可以包括有顶面533c,底面533a、侧面533b和顶面533c依次连接,侧面533b与第二主体部531相对设置,底面533a可以分别与第二主体部531的一面和侧面533b连接,侧面533b与顶面533c连接,顶面533c背向侧面533b的一端朝向第二主体部531延伸。底面533a、侧面533b、顶面533c和第二主体部531的一面531a可以共同围成容置腔534,结合图31所示,温度传感器52设置在容置腔534内,温度传感器52(检测本体521)可以与底面533a、侧面533b和顶面533c分别贴合设置,进一步增加温度传感器52与导热件533的贴合接触面,从而进一步减小温度检测的反馈延时,并提升检测的准确性。
其中,顶面533c背向侧面533b的一端可以延伸至第二主体部531的一面531a上,与第二主体部531抵接或连接,或者,顶面533c背向侧面533b的一端可以与第二主体部531之间具有间隙,能够与第二主体部531围成用于容纳温度传感器52的容置腔534即可。
相应的,温度传感器52也可以通过插设的方式设置在容置腔534内,例如,底面533a、侧面533b、顶面533c和第二主体部531可以围成两端开口的容置腔534,两端的开口分别为第一腔口534a和第二腔口534b(参照图37所示)。第一腔口534a和第二腔口534b可以位于容置腔534沿周向的两端,第一腔口534a可以位于第二腔口534b更靠近第二汇流排53边缘的一侧,温度传感器52可以通过第一腔口534a***设置在容置腔534内,便于温度传感器52的装配。
为提升温度传感器52的设置稳定性,继续参见图31所示,导热件533上也可以设置有弹片结构5338,弹片结构5338通过固定端5338a与导热件533固定连接。固定端5338a可以设置在侧面533b上,或者,固定端5338a也可以设置在底面533a上,或者,固定端5338a也可以设置在顶面533c上。
结合图32所示,以固定端5338a设置在侧面533b上为例,弹性端5338b与侧面533b之间存在间隙,以赋予弹性端5338b形变的空间。弹片结构5338的固定端5338a与侧面533b连接,弹性端5338b位于固定端5338a沿温度传感器52***方向(图31中箭头所示方向)的一侧,弹性端5338b的第一端与固定端5338a连接,弹性端5338b的第二端倾斜延伸至容纳腔内。
图33为本申请实施例提供的再一种电机中温度传感器的结构示意图。
相应的,参见图33所示,在温度传感器52上可以开设有插接槽523,插接槽523与弹性端5338b能够插接配合。温度传感器52从第一腔口534a***挤压弹性端5338b,当温度传感器52插设在容置腔534内时,弹性端5338b与插接槽523配合实现对温度传感器52的固定,而且弹性端5338b起到压紧温度传感器52的作用,使温度传感器52可以更好的与第二主体部531贴合。
图34为本申请实施例提供的又一种电机中温度传感器的结构示意图,图35为图34中沿C-C面的剖面结构示意图。
弹片结构5338也可以是其他结构形式,例如,参见图34所示,弹片结构5338还可以包括有延伸端5338c,延伸端5338c的第一端与弹性端5338b连接,延伸端5338c的第二端朝向容置腔534外延伸,参见图35所示,使弹片结构5338的形状可以为对钩型的形状,丰富弹片结构5338的形状设计。
为便于实现插接槽523与弹片结构5338之间的插接配合,插接槽523的形状可以与弹片结构5338的形状相匹配,以更好的对温度传感器52实现定位。
图36为本申请实施例提供的又一种电机中导热件的结构示意图,图37为本申请实施例提供的再一种电机中第二汇流排的一结构示意图,图38为本申请实施例提供的再一种电机中第二汇流排的又一结构示意图。
参见图36所示,为进一步提升温度传感器52的设置稳定性,导热件533上可以设置有第二限位结构5333,第二限位结构5333用于限制温度传感器52从第二腔口534b脱出。具体的,第二限位结构5333位于导热件533上邻近第二腔口534b的一端(参照图37所示),第二限位结构5333的第一端可以与侧面533b连接,第二限位结构5333的第二端朝向第二主体部531延伸,使第二限位结构5333覆盖至少部分第二腔口534b,第二限位结构5333起到了阻挡限位的作用,限制温度传感器52不能从第二腔口534b脱出,以提升温度传感器52在容置腔534内的设置稳定性。
其中,第二限位结构5333的第二端可以延伸至第二主体部531上,与第二主体部531抵接或连接,或者,第二限位结构5333的第二端与第二主体部531之间也可以具有间隙距离,能够对温度传感器52起到限位作用即可。
为限制温度传感器52从第一腔口534a处脱出,示例性的,导热件533上还可以设置第三限位结构5334和第四限位结构5335,继续参见图36所示,第三限位结构5334和第四限位结构5335分别位于导热件533上邻近第一腔口534a的一端。
其中,第三限位结构5334和第四限位结构5335可以设置在容置腔534内,对位于容置腔534内的温度传感器52限位,以防止其脱出。示例性的,第三限位结构5334和第四限位结构5335可以相对设置,如第三限位结构5334和第四限位结构5335可以分别位于相对的底面533a和顶面533c上,第三限位结构5334和第四限位结构5335之间具有间隙,以避让温度传感器52,使其能够从第一腔口534a***容置腔534内。
第三限位结构5334的第一端与底面533a连接,第三限位结构5334的第二端可以朝向第四限位结构5335倾斜延伸,第三限位结构5334和底面533a之间可以形成倾斜夹角(不等于零度和九十度)。第四限位结构5335的第一端与顶面533c连接,第四限位结构5335的第二端可以朝向第三限位结构5334倾斜延伸,第四限位结构5335和顶面533c之间可以形成倾斜夹角(不等于零度和九十度),使第三限位结构5334和第四限位结构5335可以构成八字形结构。第三限位结构5334的第二端和第四限位结构5335的第二端形成口径较小的开口。第三限位结构5334和第四限位结构5335在外力下可发生形变,温度传感器52可以通过第一腔口534a以及该开口***容置腔534中。而由于该开口口径较小,使温度传感器52难以脱出至容置腔534外,实现对温度传感器52的限位。
此外,沿着温度传感器52***的方向(图中箭头的方向),第三限位结构5334和第四限位结构5335之间的距离可以逐渐减小,第三限位结构5334和第四限位还能够起到导向的作用,便于温度传感器52***设置在容置腔534内。
当然,在一些其他示例中,参见图37所示,第三限位结构5334和第四限位也可以位于容置腔534外,也能够对温度传感器52起到限位防止脱出的作用。结合图38所示,第三限位结构5334和第四限位也可以分别位于相对的底面533a和顶面533c上,第三限位结构5334的第一端与底面533a连接,第三限位结构5334的第二端朝向第四限位结构5335倾斜延伸。第四限位结构5335的第一端与顶面533c连接,第四限位结构5335的第二端朝向第三限位结构5334倾斜,第三限位结构5334的第二端和第四限位结构5335的第二端也能够形成小口径的开口,实现对温度传感器52的限位,提升温度传感器52在容置腔534内的设置稳定性。
由于小口径的开口位于第三限位结构5334和第四限位结构5335背向容置腔534的一端,为便于温度传感器52穿过该开口***容置腔534内,参见图38所示,导热件533还可以包括有相对设置的第二导向结构5336和第三导向结构5337,第二导向结构5336和第三导向结构5337可以分别设置在第三限位结构5334和第四限位结构5335上。
第二导向结构5336的第一端可以设置在第三限位结构5334的第二端上,第二导向结构5336的第二端可以朝向第三导向结构5337倾斜延伸,第二导向结构5336与底面533a之间可以形成倾斜夹角(不等于零度和九十度)。第三导向结构5337的第一端可以设置在第四限位结构5335的第二端上,第三导向结构5337的第二端可以朝向第二导向结构5336倾斜延伸,第二导向结构5336与顶面533c之间可以形成倾斜夹角(不等于零度和九十度),使第二导向结构5336和第三导向结构5337也可以构成八字形结构。沿温度传感器52***的方向上,第二导向结构5336和第三导向结构5337之间的距离可以逐渐减小,从而对温度传感器52的***可以起到导向的作用,便于温度传感器52通过开口***容置腔534内。
图39为图10中C部分的局部结构放大图,图40a为本申请实施例提供的一种电机中定子槽与绝缘件装配的剖面示意图,图40b为本申请实施例提供的一种电机中定子槽的剖面示意图。
本申请实施例中,绕组结构20设置在定子槽11内,参见图39所示,绕组结构20和定子槽11的内壁之间设置有绝缘件70,结合图40a所示,绝缘件70可以环绕定子槽11的周向侧壁设置,绝缘件70包裹位于定子槽11内的绕组结构20的线圈。绝缘件70可以是绝缘纸,在绕组结构20和定子铁芯10之间起到隔离绝缘的作用,以保证电机的性能。
参见图40a所示,绝缘件70可以包括有首端71和尾端72,首端71和尾端72为绝缘件70沿环绕方向上的两端,首端71和尾端72可以至少部分重合形成搭边结构70a,有助于提升绕组结构20与定子铁芯10之间的电气间隙和爬电距离,提升电机的绝缘安全性。
其中,绝缘件70的首端71可以位于尾端72的内侧(面向槽口111的一侧)形成搭边结构70a,或者,也可以是尾端72位于首端71的内侧形成搭边结构70a。
参见图40b所示,定子槽11内可以形成有扩充空间11a,结合图40a所示,搭边结构70a可以容纳在该扩充空间11a内,也就是说在定子槽11内针对性的增加扩充空间11a,用于容纳搭边结构70a,可以实现对尺寸厚度较大的搭边结构70a的容纳,也就有利于增大绝缘件70首端71和尾端72之间重合的面积,能够进一步提升电机的绝缘安全性,以满足高压电机的绝缘安全要求。
其中,定子槽11可以包括有槽口111、槽底112以及位于槽口111和槽底112之间的周向侧壁,槽口111面向定子铁芯10的轴线设置,参见图40b所示,可以在定子槽11的槽底112凹陷形成扩充空间11a,使搭边结构70a位于槽底112内侧。
图40c为本申请实施例提供的另一种电机中定子槽与绝缘件装配的剖面示意图,图40d为本申请实施例提供的一种电机中定子槽的剖面示意图,图40e为本申请实施例提供的再一种电机中定子槽内绝缘件的剖面示意图,图40f为本申请实施例提供的又一种电机中定子槽和绝缘件装配的剖面示意图。
当然,在一些其他示例中,扩充空间11a也可以形成于定子槽11的任意位置处,例如,结合图40c和图40d所示,扩充空间11a可以部分形成于槽底112,部分形成于周向侧壁,如在定子槽11的槽底112和侧壁凹陷从此扩充空间11a,使搭边结构70a部分位于槽底112内侧,部分位于周向侧壁内侧。在搭边结构70a中,参见图40c所示,绝缘件70的首端71可以位于尾端72的内侧,或者,参见图40e所示,也可以是绝缘件70的尾端72位于首端71的内侧。
或者,参见图40f所示,扩充空间11a也可以形成于定子槽11的周向侧壁上,如在侧壁凹陷形成扩充空间11a,使搭边结构70a位于侧壁内侧。
本申请实施例还提供一种动力总成,动力总成可以应用于电动车/电动汽车(EV)、纯电动汽车(PEV/BEV)、混合动力汽车(HEV)、增程式电动汽车(REEV)、插电式混合动力汽车(PHEV)、新能源汽车(New Energy Vehicle)等,或者,可以应用于电池管理(Battery Management)、电机&驱动(Motor&Driver)、功率变换(Power Converter)等设备中。
该动力总成至少包括减速机构以及上述任一的电机,电机可以通过转轴与减速机构相连,减速机构也可以和电机集成减速电机使用。
该动力总成还可以包括有控制单元,控制单元与电机上的端子电连接,以实现对电机的控制。
应当理解的是,动力总成还可以包括有其他的结构件,例如,还可以包括离合器、换热器、过滤器等。
本申请实施例还提供一种车辆,可以为电动车/电动汽车(EV)、纯电动汽车(PEV/BEV)、混合动力汽车(HEV)、增程式电动汽车(REEV)、插电式混合动力汽车(PHEV)、新能源汽车(New Energy Vehicle)等。
该车辆至少包括车体和上述任一的电机,电机设置在车体上。其中,车体可以是车架,或者,车体也可以包括车架和设置在车架上的车盖等。
车辆还可以包括车轮和传动部件,电机可以与传动部件连接,传动部件与车轮连接,电机输出动力通过传动部件传递给车轮,使车轮转动。其中,电机可以与减速机构相连,减速机构与传动部件相连,以实现对车轮运动的控制。
该车辆还可以包括其他结构件,以完整其功能。例如,还可以包括制动部件、方向操作结构等。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例各实施例技术方案的范围。

Claims (22)

  1. 一种电机,其特征在于,包括定子铁芯和绕设在所述定子铁芯上的多相绕组结构,每相所述绕组结构包括第一出线端,每相所述绕组结构的所述第一出线端与同一相所述绕组结构的引出线连接;
    还包括第一注塑结构,所述第一注塑结构包括第一注塑件和多个第一汇流排,每个所述第一汇流排包括第一主体部和第一电连接件,所述第一注塑件包裹多个所述第一汇流排的所述第一主体部设置,以固定多个所述第一汇流排,且多个所述第一汇流排沿所述绕组结构的周向间隔设置,每个所述第一汇流排的所述第一电连接件分别对应与每相所述绕组结构的所述第一出线端电连接;
    还包括绝缘盖板,所述绝缘盖板设置在所述第一注塑结构上,所述绝缘盖板覆盖所述第一电连接件和所述第一出线端。
  2. 根据权利要求1所述的电机,其特征在于,每相所述绕组结构还包括第二出线端,每相所述绕组结构的所述第二出线端与同一相所述绕组结构的中性线连接;
    还包括第二汇流排,所述第二汇流排包括多个连接端部,多个所述连接端部沿所述绕组结构的周向间隔设置,每个所述连接端部上具有第二电连接件,每个所述连接端部上的所述第二电连接件分别对应与每相所述绕组结构的所述第二出线端连接,所述绝缘盖板覆盖所述第二电连接件和所述第二出线端。
  3. 根据权利要求2所述的电机,其特征在于,所述绝缘盖板包括顶板和侧板,所述顶板位于所述第一注塑结构背向所述定子铁芯的一侧,所述侧板位于所述第一注塑结构背向所述定子铁芯轴线的一侧;
    所述侧板与所述顶板连接,所述侧板和所述顶板围成容纳空间,所述第一电连接件、所述第一出线端、所述第二电连接件和所述第二出线端位于所述容纳空间内。
  4. 根据权利要求3所述的电机,其特征在于,多相所述绕组结构沿轴向的一端为连接端,所述第一出线端和所述第二出线端分别位于所述连接端沿所述轴向的外侧;
    所述第一注塑结构位于所述连接端沿所述轴向的外侧,所述第二汇流排位于所述连接端的外周侧上,所述第一电连接件、所述第一出线端、所述第二电连接件和所述第二出线端分布在所述周向上;
    每相绕组结构的所述第二出线端、与所述第二出线端对应连接的所述第二电连接件邻近同一相绕组结构的第一出线端、与所述第一出线端对应连接的所述第一电连接件设置。
  5. 根据权利要求4所述的电机,其特征在于,所述顶板面向所述第一注塑件的一面上具有多个隔离槽;
    同相绕组结构的所述第一出线端和所述第二出线端,以及分别与所述第一出线端和所述第二出线端对应连接的所述第一电连接件和所述第二电连接件位于一个所述隔离槽内。
  6. 根据权利要求5所述的电机,其特征在于,所述隔离槽内设置有挡板,所述挡板将所述隔离槽分隔为第一隔档槽和第二隔档槽,所述第一出线端和所述第一电连接件位于所述第一隔档槽内,所述第二出线端和所述第二电连接件位于所述第二隔档槽内。
  7. 根据权利要求3-6任一所述的电机,其特征在于,所述绝缘盖板还包括端板,所述端板位于所述顶板和所述侧板沿所述周向上的两侧,所述端板分别与所述顶板和所述侧板连接。
  8. 根据权利要求3-6任一所述的电机,其特征在于,所述顶板与所述第一注塑件可拆卸连接。
  9. 根据权利要求8所述的电机,其特征在于,所述顶板上设置有第一卡接结构,所述第一注塑件上设置有第二卡接结构,所述顶板和所述第一注塑件通过所述第一卡接结构和所述第二卡接结构配合实现连接。
  10. 根据权利要求9所述的电机,其特征在于,所述顶板面向所述第一注塑件的一面上具有凸起的第一卡接壁和第二卡接壁,所述第一卡接壁和所述第二卡接壁之间具有避让间隙,所述第一卡接壁和所述第二卡接壁相对的两侧面上具有凸起以形成所述第一卡接结构;
    所述第一注塑件的外周侧上具有凸起的卡接部,所述卡接部相对的两侧面上具有凹槽以形成所述第二卡接结构。
  11. 根据权利要求10所述的电机,其特征在于,所述第一卡接结构分别位于所述第一卡接壁上和所述第二卡接壁上背向所述顶板的一端;
    所述第二卡接结构分别位于所述卡接部上背向所述顶板的一端,所述卡接部位于所述避让间隙内。
  12. 根据权利要求11所述的电机,其特征在于,所述卡接部相对的两侧面上还具有导向斜面;
    所述导向斜面位于所述第二卡接结构背向所述定子铁芯的一侧,从所述卡接部面向所述顶板的一端至所述卡接部背向所述顶板的一端,两个所述导向斜面朝向相背的方向倾斜。
  13. 根据权利要求2-12任一所述的电机,其特征在于,还包括第二注塑结构,所述第二注塑结构包括温度传感器、第二注塑件和所述第二汇流排;
    所述第二汇流排还包括第二主体部,多个所述连接端部设置在所述第二主体部上,所述温度传感器贴合设置在所述第二主体部的一面上,所述第二注塑件包裹所述温度传感器和所述第二主体部设置。
  14. 根据权利要求13所述的电机,其特征在于,所述第二汇流排包括导热件,所述导热件设置在所述第二主体部的一面上,所述导热件与所述第二主体部的一面围成容置腔,所述温度传感器位于所述容置腔内,且所述温度传感器与所述导热件的至少一面贴合设置。
  15. 根据权利要求14所述的电机,其特征在于,所述导热件包括连接的底面和侧面;
    所述底面与所述第二主体部连接,所述侧面与所述第二主体部相对,所述底面、所述侧面和所述第二主体部的一面共同围成所述容置腔,所述温度传感器分别与所述底面和所述侧面贴合。
  16. 根据权利要求14所述的电机,其特征在于,所述导热件包括依次连接的底面、侧面和顶面,所述底面与所述第二主体部连接,所述侧面与所述第二主体部相对,所述顶面背向所述侧面的一端朝向所述第二主体部延伸,所述底面、所述侧面、所述顶面和所述第二主体部的一面共同围成所述容置腔,所述温度传感器分别与所述底面、所述侧面和所述顶面贴合。
  17. 根据权利要求1-12任一所述的电机,其特征在于,所述第一注塑结构还包括温度传感器,所述温度传感器贴合设置在所述第一主体部的一面上,所述第一注塑件包裹所述温度传感器和所述第一主体部。
  18. 根据权利要求1-12任一所述的电机,其特征在于,还包括第三注塑结构,所述第三注塑结构包括温度传感器、第三注塑件和所述第一出线端;
    所述温度传感器贴合设置在所述第一出线端的一面上,所述第三注塑件包裹所述温度传感器和部分所述第一出线端设置。
  19. 根据权利要求1-18任一所述的电机,其特征在于,所述定子铁芯上开设有多个定子槽,多个所述定子槽沿所述定子铁芯的周向间隔设置,所述绕组结构绕设在所述定子槽上,且所述绕组结构与所述定子槽的内壁之间设置有绝缘件。
  20. 根据权利要求19所述的电机,其特征在于,所述绝缘件环绕所述定子槽的侧壁设置,所述绝缘件沿环绕方向上的首端和尾端至少部分重合以形成搭边结构;
    所述定子槽内具有扩充空间,以容纳所述搭边结构。
  21. 一种动力总成,其特征在于,包括减速机构和上述权利要求1-20任一所述的电机,所述电机与所述减速机构连接。
  22. 一种车辆,其特征在于,包括车体和上述权利要求1-20任一所述的电机,所述电机设置在所述车体上。
PCT/CN2023/101966 2022-09-02 2023-06-21 一种电机、动力总成及车辆 WO2024045795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211070145.X 2022-09-02
CN202211070145.XA CN115498798A (zh) 2022-09-02 2022-09-02 一种电机、动力总成及车辆

Publications (1)

Publication Number Publication Date
WO2024045795A1 true WO2024045795A1 (zh) 2024-03-07

Family

ID=84467900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101966 WO2024045795A1 (zh) 2022-09-02 2023-06-21 一种电机、动力总成及车辆

Country Status (2)

Country Link
CN (1) CN115498798A (zh)
WO (1) WO2024045795A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115498798A (zh) * 2022-09-02 2022-12-20 华为数字能源技术有限公司 一种电机、动力总成及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061345A (ja) * 2006-08-30 2008-03-13 Sumitomo Wiring Syst Ltd モータ用集中配電部材
CN104753196A (zh) * 2013-12-30 2015-07-01 三星电子株式会社 电机以及用于制造该电机的方法
CN112186934A (zh) * 2020-09-30 2021-01-05 恒大恒驰新能源汽车研究院(上海)有限公司 一种扁线电机的汇流排以及扁线电机
CN114362404A (zh) * 2021-12-16 2022-04-15 广东威灵电机制造有限公司 定子总成、电机及助力自行车
CN115498798A (zh) * 2022-09-02 2022-12-20 华为数字能源技术有限公司 一种电机、动力总成及车辆
CN218526201U (zh) * 2022-09-02 2023-02-24 华为数字能源技术有限公司 一种电机、动力总成及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061345A (ja) * 2006-08-30 2008-03-13 Sumitomo Wiring Syst Ltd モータ用集中配電部材
CN104753196A (zh) * 2013-12-30 2015-07-01 三星电子株式会社 电机以及用于制造该电机的方法
CN112186934A (zh) * 2020-09-30 2021-01-05 恒大恒驰新能源汽车研究院(上海)有限公司 一种扁线电机的汇流排以及扁线电机
CN114362404A (zh) * 2021-12-16 2022-04-15 广东威灵电机制造有限公司 定子总成、电机及助力自行车
CN115498798A (zh) * 2022-09-02 2022-12-20 华为数字能源技术有限公司 一种电机、动力总成及车辆
CN218526201U (zh) * 2022-09-02 2023-02-24 华为数字能源技术有限公司 一种电机、动力总成及车辆

Also Published As

Publication number Publication date
CN115498798A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
JP5501257B2 (ja) 回転電機ユニット
EP2244356B1 (en) Rotating electric machine for driving a vehicle and vehicle equipped with the same
CN106796928B (zh) 用于mosfet模块的基座表面
US20090184591A1 (en) Rotating Electrical Machine
WO2024045795A1 (zh) 一种电机、动力总成及车辆
CN107112848B (zh) 可径向地适应的相引线连接
TWI504112B (zh) Motor
CN111479716A (zh) 电驱动***
CN112953047B (zh) 一种阶梯斜槽的扁铜线油冷电机定子及电机
US20220311314A1 (en) Motor controller with capacitors surrounded, drive assembly and vehicle
CN214900380U (zh) 一种新型阶梯斜槽的扁铜线油冷电机定子及电机
CN113114053B (zh) 一种高电磁兼容等级的逆变器总成
CN218526201U (zh) 一种电机、动力总成及车辆
WO2024037314A1 (zh) 电动总成和具有其的车辆
CN109510407B (zh) 一种电机和控制器的集成***
CN113708668B (zh) 一种分立式igbt并联功率组件及双电机驱动***
CN215870969U (zh) 一种扁铜线油冷电机定子的端部集成模块及定子
CN220544772U (zh) 电机及汽车
CN214900381U (zh) 一种新型阶梯斜槽的扁铜线油冷电机定子铁心块及定子
JP7506779B2 (ja) 3相端子台、駆動アセンブリ、及び交通機関
JP7506778B2 (ja) 駆動アセンブリ、及び交通機関
EP4178087A1 (en) Conducting member, liquid-cooled conductive structure, motor, and electric car power assembly
CN216625426U (zh) 电机、动力总成及助力自行车
CN112953073B (zh) 一种扁铜线油冷电机定子的端部集成模块及定子
CN221175976U (zh) 一种电容模组双面散热的电机控制器、动力总成及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858834

Country of ref document: EP

Kind code of ref document: A1