WO2024045778A1 - 兼顾轨道高度调整任务的空间碎片碰撞规避方法以及装置 - Google Patents

兼顾轨道高度调整任务的空间碎片碰撞规避方法以及装置 Download PDF

Info

Publication number
WO2024045778A1
WO2024045778A1 PCT/CN2023/100915 CN2023100915W WO2024045778A1 WO 2024045778 A1 WO2024045778 A1 WO 2024045778A1 CN 2023100915 W CN2023100915 W CN 2023100915W WO 2024045778 A1 WO2024045778 A1 WO 2024045778A1
Authority
WO
WIPO (PCT)
Prior art keywords
orbit
target
control
spacecraft
strategy
Prior art date
Application number
PCT/CN2023/100915
Other languages
English (en)
French (fr)
Inventor
唐歌实
陈永志
赵磊
Original Assignee
北京航天驭星科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航天驭星科技有限公司 filed Critical 北京航天驭星科技有限公司
Publication of WO2024045778A1 publication Critical patent/WO2024045778A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories

Definitions

  • the invention belongs to the field of spacecraft control, and specifically relates to a space debris collision avoidance method and device that take into account orbit height adjustment tasks.
  • Space debris is space junk produced by human space activities. With the increasing frequency of space activities, the number of space debris has increased rapidly, which has posed a serious threat to the safety of human space assets and is a major challenge facing human space activities. According to the U.S. Earth orbit in 2016, the number of space debris with a size of more than 10 cm has reached 23,000; the number of debris with a size of 1 to 10 cm is about 500,000; the number of debris with a size of 1 to 10 mm is about 100 million , the number of fragments below 1 mm is tens of billions.
  • the propellant carried by a spacecraft is mainly used to ensure that the spacecraft runs on its target orbit.
  • the spacecraft deviates from its designed mission orbit due to various perturbation factors, or during the flight, it needs to adjust to another mission. While on orbit, this goal can be achieved by implementing orbit control.
  • orbit control For example, in order to overcome the lowering of the orbit of low-orbit satellites caused by atmospheric damping, it is usually necessary to regularly raise the orbital altitude to maintain the normal operation of the spacecraft; or after completing the earth remote sensing in a specific area, a remote sensing mission needs to be carried out in another area. This can be achieved by changing the operating cycle of the spacecraft to adjust its sub-satellite point trajectory. If space debris collision avoidance is only to avoid the collision of space debris without considering the mission target orbit requirements of the spacecraft during subsequent flights, a large amount of additional propellant will inevitably be consumed and the operational efficiency of the spacecraft will be greatly reduced.
  • the purpose of the embodiments of the present invention is to provide a space debris collision avoidance method and device that takes into account the orbit height adjustment task, and can solve the problem of wasting propellant and reducing the operational efficiency of the spacecraft in the current space debris avoidance scheme.
  • the present invention is implemented as follows:
  • embodiments of the present invention provide a space debris collision avoidance method that takes into account the task of orbit height adjustment, which is characterized by including:
  • the second time is earlier than the first time
  • the target strategy includes at least one of the following:
  • the method before obtaining the collision risk value between the spacecraft and space debris within the target time period, the method further includes:
  • the collision risk values between spacecraft and space debris within the acquisition target time period include:
  • the collision risk value between the spacecraft and space debris within the target time period is obtained based on the orbit-controlled ephemeris forecast and space data.
  • controlling the spacecraft with a target control strategy at the second moment includes:
  • a target control strategy is executed for the target orbit control arc segment.
  • the method after determining the target orbit control arc segment in the target orbit of the spacecraft in which the target control strategy can be executed based on the target factors, and before executing the target control strategy for the target orbit control arc segment , the method also includes:
  • the orbit control arc section in the target orbit of the spacecraft in which the target control strategy can be executed is re-determined based on the target factors.
  • the combined avoidance control includes at least two of the increasing orbit control amount, the decreasing orbit control amount, the increasing orbit control times and the decreasing orbit control times, at the second time
  • the method further includes:
  • a second target strategy is determined, and the second target strategy is the increasing orbit control amount, the decreasing orbit control amount, the Any of the above-mentioned increase in the number of orbit control times and the above-mentioned reduction in the number of orbit control times;
  • the target control strategy is determined to be combined avoidance control.
  • embodiments of the present invention provide a space debris collision avoidance device that takes into account the task of orbit height adjustment, including:
  • the first acquisition module is used to obtain the collision risk value between the spacecraft and space debris within the target time period when the spacecraft has continuous orbit change requirements;
  • a control module configured to control the spacecraft with a target control strategy at the second moment when the collision risk value at the first moment within the target duration is greater than the preset value
  • the second time is earlier than the first time
  • the target strategy includes at least one of the following:
  • the space debris collision avoidance device that takes into account the task of orbit height adjustment also includes:
  • the second acquisition module is used to obtain the orbit control strategy corresponding to the continuous orbit change requirement when the spacecraft has continuous orbit change requirements, and obtain the orbit control ephemeris forecast based on the orbit determination results in the orbit control control strategy. ;
  • the first determination module is specifically configured to obtain the collision risk value between the spacecraft and space debris within the target time period based on the orbit-controlled ephemeris forecast and space data.
  • control module also includes:
  • the first sub-module is used to determine the target factor according to the first moment
  • the second sub-module is used to determine the target orbit control arc segment in the target orbit of the spacecraft that can execute the target control strategy according to the target factors;
  • the third sub-module is used to execute the target control strategy for the target orbit control arc segment.
  • the space debris collision avoidance device that takes into account orbit height adjustment tasks also includes: a first determination module, configured to re-determine the distance within the target duration according to the target control strategy and the target orbit control arc section. The risk of collision between the spacecraft and the space debris;
  • the control module also includes a fourth sub-module, configured to execute a target control strategy for the target orbit control arc segment when the redetermined collision risk value is less than or equal to a preset value;
  • the orbit control arc section in the target orbit of the spacecraft in which the target control strategy can be executed is re-determined based on the target factors.
  • the combined avoidance control includes at least two of the increased orbit control amount, the reduced orbit control amount, the increased orbit control times, and the reduced orbit control times, and the orbit height adjustment task is taken into account
  • the space debris collision avoidance device also includes:
  • the second determination module is used to determine a second target strategy when the collision risk value at the first moment within the target duration is greater than the preset value.
  • the second target strategy is the increased orbit control amount, the Any one of said reducing the amount of orbit control, said increasing the number of orbit controls, and said reducing the number of orbit controls;
  • the target control strategy is determined to be combined avoidance control.
  • the collision risk value between the spacecraft and space debris within the target duration is obtained.
  • the collision risk value at the first moment within the target duration is greater than the preset value.
  • control the spacecraft with a target control strategy at a second time wherein the second time is earlier than the first time, and the target strategy includes at least one of the following: increasing the amount of orbit control, reducing Orbit control amount, increasing orbit control times, reducing orbit control times and combined avoidance control.
  • the continuous orbit change requirement of the spacecraft is taken into consideration, and the continuous orbit change parameters are taken into consideration when determining the control strategy. This can simultaneously take into account the continuous orbit change mission of the spacecraft and avoid the collision between the spacecraft and space debris, reducing the The propellant used for separate orbit control to avoid space debris collisions improves the operational efficiency of the spacecraft.
  • Figure 1 schematically shows the three-dimensional structural diagram of a solar photovoltaic water supply vehicle
  • Figure 1 is a schematic flow chart of a space debris collision avoidance method that takes into account the task of orbit height adjustment provided by an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a space debris collision avoidance device that takes into account the task of orbit height adjustment provided by an embodiment of the present invention.
  • first, second, etc. in the description and claims of the present invention are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that embodiments of the invention can be practiced in sequences other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • FIG. 1 there is shown a schematic flow chart of a space debris collision avoidance method that takes into account the orbit height adjustment task provided by an embodiment of the present invention.
  • the invention provides a space debris collision avoidance method that takes into account the task of orbit height adjustment, including:
  • the collision risk value between the spacecraft and the space debris is determined by comparing the orbit of the space debris within the target time period with the orbit of the spacecraft within the target time period. For example, the risk value is divided into 0-10, that is, 10 levels. If the orbit of the spacecraft coincides with the orbit of the space debris, the risk value is considered to be level 10; if the orbit of the spacecraft and the orbit of the space debris are close to a preset distance, the risk value is considered to be level 5; if If the distance between the spacecraft's orbit and the space debris' orbit is much greater than the preset value, the risk value is considered to be level 0.
  • the target duration is a period of time in the future.
  • the duration can be set by the staff or determined by the history of the spacecraft. For example, according to the history of the spacecraft, it is found that the spacecraft becomes an escape space every five days. For orbit change control due to debris collision, the target duration can be set to five days.
  • the continuous orbit change requirement of the spacecraft may be the continuous orbit change operation required for the tasks performed by the spacecraft.
  • the continuous orbit change requirement is for the orbit altitude adjustment task, such as the daily routine lowering of the spacecraft.
  • the orbit control process active orbit descent mission
  • the spacecraft's normal process of overcoming atmospheric damping attenuation to raise the orbit control orbit altitude maintenance, that is, irregular orbit raising missions, etc. This embodiment is not limited here.
  • the second time is earlier than the first time
  • the collision risk value needs to be determined at every moment within the target duration.
  • a target control strategy is determined, and the spacecraft is controlled with the target control strategy at the second time.
  • the second moment needs to be earlier than the first moment.
  • the first moment is the calculated collision moment between the spacecraft and the space debris. Therefore, the control of the spacecraft needs to be carried out before the collision event occurs, thereby changing the spacecraft's trajectory to avoid collisions with space debris.
  • the satellite in the orbital altitude maintenance (orbital raising from time to time) mission, based on factors such as the imaging resolution and camera focal length of the remote sensing satellite, the satellite needs a fixed altitude range, such as 480 km -520km. Due to the effect of space atmospheric resistance , causing the satellite orbit height to attenuate, requiring the orbit to be raised from time to time.
  • the target strategy in this case includes at least one of the following: increasing the amount of orbit control, reducing the amount of orbit control, increasing the number of orbit controls, reducing the number of orbit controls, and combined avoidance control.
  • the target strategy in this case is formulated based on the continuous orbit change requirements.
  • the original control strategy is to perform an orbit descent once that day. However, in order to avoid a collision event the next day, the number of orbit descents today is increased to allow the satellite to reach a lower altitude. To change the running trajectory to avoid collision events. Similar embodiments include reducing the number of orbit control times and combining avoidance control, etc., which are not limited in this embodiment.
  • the collision risk value between the spacecraft and space debris within the target duration is obtained, and the collision risk value at the first moment within the target duration is greater than the preset value.
  • the continuous orbit change requirement of the spacecraft is taken into consideration, and the continuous orbit change parameters are taken into consideration when determining the control strategy. This can simultaneously take into account the continuous orbit change mission of the spacecraft and avoid the collision between the spacecraft and space debris, reducing the The propellant used for separate orbit control to avoid space debris collisions improves the operational efficiency of the spacecraft.
  • step S102 before step S102, step 103 is also included:
  • the spacecraft When the spacecraft has continuous orbit change requirements, it needs to carry out continuous orbit change planning, obtain a control strategy for multiple orbit controls, and perform orbit control ephemeris prediction based on the orbit determination results.
  • Step 101 specifically includes: obtaining the collision risk value between the spacecraft and space debris within the target time period based on the orbit-controlled ephemeris forecast and space data.
  • orbit-controlled ephemeris forecast and space target data use the orbit-controlled ephemeris forecast and space target data to perform collision avoidance calculations, and determine the risk of collision based on the intersection distance and collision probability.
  • the collision risk value here includes the collision probability between the spacecraft and the space debris or the rendezvous distance between the spacecraft and the space debris; at this time, the collision risk value being greater than the preset value includes: the collision probability is greater than the first preset value or the intersection distance is less than the second preset value.
  • the first preset value is 10-4, that is, when the probability of collision between a spacecraft and space debris is greater than 10-4, it is considered If the collision risk value exceeds the threshold, orbit control is required, or only the rendezvous distance between the spacecraft and the space debris can be considered.
  • the second preset value is 200m, and when the distance between the spacecraft and the space debris is less than 200m, the collision risk is considered to exceed Threshold requires orbit control, and the two factors of collision probability and rendezvous distance can also be considered at the same time, and weights can be set for judgment to improve the accuracy of judgment of collision risk value.
  • step 102 can be performed through steps 1021-1023:
  • S1022 Determine the target orbit control arc segment in the target orbit of the spacecraft that can execute the target control strategy based on the target factors;
  • steps 1024-1025 can be performed:
  • S1024 Re-determine the collision risk value between the spacecraft and the space debris within the target duration according to the target control strategy and the target orbit control arc segment;
  • the orbit control arc section in the target orbit of the spacecraft in which the target control strategy can be executed is re-determined based on the target factors.
  • the orbit control strategy after the target control strategy is updated, and the orbit control ephemeris forecast is recalculated for collision avoidance calculation to determine whether the collision risk has been eliminated. If If it has been eliminated, integrate the latest avoidance strategy and guide the actual avoidance implementation; otherwise, return to the strategy formulation part and continue to look for arc segments that can be controlled by orbit.
  • the combined avoidance control includes at least two of the increasing orbit control amount, the decreasing orbit control amount, the increasing orbit control times, and the decreasing orbit control times.
  • step 104 is also included:
  • S104 When the collision risk value at the first moment within the target duration is greater than the preset value, determine a second target strategy.
  • the second target strategy is the increase in the orbit control amount and the decrease in the orbit control amount. , any one of said increasing the number of orbit control times and said reducing the number of orbit control times;
  • the target control strategy is determined to be combined avoidance control.
  • multi-mode avoidance strategies increasing the amount of orbit control, reducing the amount of orbit control, increasing the number of orbit controls, and reducing the number of orbit controls are single-mode avoidance strategies, and combined avoidance control is formulated as a multi-mode strategy.
  • multi-mode strategy formulation on the basis of single mode, a variety of options are added, which can be combined to increase the amount of control at a certain time, reduce the amount of control at a certain time, increase the number of orbit controls, reduce the number of orbit controls, etc., and combine Correction changes the orbit of the spacecraft to avoid the risk of collision.
  • multi-mode combined avoidance strategies when a single mode cannot eliminate the risk of collision, consider using the combined avoidance mode to formulate avoidance strategies.
  • a space debris collision avoidance device 20 that takes into account the task of orbit height adjustment provided by an embodiment of the present invention, including:
  • the first acquisition module 201 is used to obtain the collision risk value between the spacecraft and space debris within the target time period when the spacecraft has continuous orbit change requirements;
  • the control module 202 is configured to control the spacecraft with a target control strategy at the second moment when the collision risk value at the first moment within the target duration is greater than the preset value;
  • the second time is earlier than the first time
  • the target strategy includes at least one of the following:
  • the space debris collision avoidance device 20 that takes into account the task of orbit height adjustment also includes:
  • the second acquisition module 203 is used to obtain the orbit control strategy corresponding to the continuous orbit change requirement when the spacecraft has continuous orbit change requirements, and obtain the orbit control ephemeris according to the orbit determination result in the orbit control control strategy. forecast;
  • the first determination module 201 is specifically configured to obtain the collision risk value between the spacecraft and space debris within the target time period based on the orbit-controlled ephemeris forecast and space data.
  • control module 202 also includes:
  • the first sub-module 2021 is used to determine the target factor according to the first moment
  • the second sub-module 2022 is used to determine the target orbit control arc segment in the target orbit of the spacecraft that can execute the target control strategy according to the target factors;
  • the third sub-module 2023 is used to execute the target control strategy for the target orbit control arc segment.
  • the space debris collision avoidance device 20 that takes into account the orbit height adjustment task also includes: a first determination module 204, configured to re-determine the target time within the target duration according to the target control strategy and the target orbit control arc segment. The collision risk value between the spacecraft and the space debris;
  • the control module 202 also includes a fourth sub-module 2024, configured to execute a target control strategy for the target orbit control arc section when the redetermined collision risk value is less than or equal to the preset value;
  • the orbit control arc section in the target orbit of the spacecraft in which the target control strategy can be executed is re-determined based on the target factors.
  • the combined avoidance control includes at least two of the increased orbit control amount, the reduced orbit control amount, the increased orbit control times, and the reduced orbit control times, and the orbit height adjustment task is taken into account
  • the space debris collision avoidance device 20 also includes:
  • the second determination module 205 is configured to determine a second target strategy when the collision risk value at the first moment within the target duration is greater than the preset value.
  • the second target strategy is the increased orbit control amount, Any one of said reducing the amount of orbit control, said increasing the number of orbit controls, and said decreasing the number of orbit controls;
  • the target control strategy is determined to be combined avoidance control.
  • the first acquisition module is used to obtain the collision risk value between the spacecraft and space debris within the target time period when the spacecraft has continuous orbit change requirements
  • the control module is used to obtain the collision risk value between the spacecraft and space debris within the target time period. If the collision risk value at the first moment is greater than the preset value, control the spacecraft with a target control strategy at the second moment, wherein the second moment is earlier than the first moment, and the target strategy includes the following At least one of the following: increasing the amount of orbit control, reducing the amount of orbit control, increasing the number of orbit controls, reducing the number of orbit controls, and combined avoidance control.
  • the continuous orbit change requirement of the spacecraft is taken into consideration, and the continuous orbit change parameters are taken into consideration when determining the control strategy.
  • This can simultaneously take into account the continuous orbit change mission of the spacecraft and avoid the collision between the spacecraft and space debris, reducing the The propellant used for separate orbit control to avoid space debris collisions improves the operational efficiency of the spacecraft.
  • the virtual system in the embodiment of the present invention may be a device, or a component, integrated circuit, or chip in the terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种兼顾轨道高度调整任务的空间碎片碰撞规避方法,该方法包括:在航天器具有连续变轨需求的情况下,获取目标时长内航天器与空间碎片的碰撞风险值;在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,在第二时刻以目标控制策略控制所述航天器;其中,所述第二时刻早于所述第一时刻;所述目标策略包括以下至少一项:增加轨控量、减少轨控量、增加轨控次数、减少轨控次数和组合规避控制。以及实现该方法的装置。减少了由于规避空间碎片碰撞而单独进行变轨控制使用的推进剂,提高了航天器的运营效益。

Description

兼顾轨道高度调整任务的空间碎片碰撞规避方法以及装置 技术领域
本发明属于航天器控制领域,具体涉及一种基兼顾轨道高度调整任务的空间碎片碰撞规避方法以及装置。
背景技术
空间碎片是人类航天活动产生的太空垃圾。随着航天活动的日益频繁,空间碎片数量快速增加,已经对人类空间资产安全构成了严重威胁,是人类航天活动面临的重大挑战。根据2016年美国地球轨道中尺度在10 cm以上的空间碎片数量已达23000个;尺度在1~10 cm的碎片数量约为50万个;尺度在1~10 mm的碎片数量约为1亿个, 1 mm以下的碎片数量数以百亿计。
针对10 cm以上的空间碎片,其对航天器的撞击可导致航天器***、解体,彻底失效,但这类10cm以上的碎片是可以监测其运行轨道的,因此可以通过航天器的变轨来规避这类碎片产生的碰撞风险。然而,通过航天器变轨来规避碰撞风险,是需要付出宝贵的航天器变轨推进剂资源,比如国际空间站每次实施规避控制需要消耗30kg左右的推进剂。
通常航天器携带的推进剂主要用于保证航天器运行在其目标轨道上,当由于各种摄动因素导致航天器偏离其设计的任务轨道时,或者在飞行过程中,需要调整到另外的任务轨道上的时候,就可以通过实施轨道控制来实现该目标。比如为了克服大气阻尼导致的低轨道卫星的轨道降低,通常需要定期抬升轨道高度来维持航天器的正常运行;或者完成某一特定区域的对地遥感之后,需要对另外的区域进行遥感任务,则可以通过改变航天器的运行周期从而调整其星下点轨迹来实现。如果空间碎片碰撞规避仅仅为了规避空间碎片的碰撞而不考虑后续飞行中航天器的任务目标轨道的需求,势必会额外消耗大量的推进剂,大大降低航天器的运营效益。
公开于本申请背景技术部分的信息仅仅旨在加深对本申请的一般背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本发明实施例的目的是提供一种兼顾轨道高度调整任务的空间碎片碰撞规避方法及装置,能够解决目前空间碎片规避方案中浪费推进剂,降低航天器的运营效益的问题。
为了解决上述技术问题,本发明是这样实现的:
第一方面,本发明实施例提供了一种兼顾轨道高度调整任务的空间碎片碰撞规避方法,其特征在于,包括:
在航天器具有连续变轨需求的情况下,获取目标时长内航天器与空间碎片的碰撞风险值;
在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,在第二时刻以目标控制策略控制所述航天器;
其中,所述第二时刻早于所述第一时刻;
所述目标策略包括以下至少一项:
增加轨控量、减少轨控量、增加轨控次数、减少轨控次数和组合规避控制。
可选地,在所述获取目标时长内航天器与空间碎片的碰撞风险值之前,所述方法还包括:
在航天器具有连续变轨需求的情况下,获取连续变轨需求对应的轨控控制策略,根据所述轨控控制策略中的轨道确定结果得到带轨控星历预报;
所述获取目标时长内航天器与空间碎片的碰撞风险值包括:
根据所述带轨控星历预报和空间数据得到目标时长内航天器与空间碎片的碰撞风险值。
可选地,在第二时刻以目标控制策略控制所述航天器包括:
根据所述第一时刻确定目标因素;
根据所述目标因素确定航天器的目标轨道中可执行所述目标控制策略的目标轨控弧段;
对于所述目标轨控弧段执行目标控制策略。
可选地,在所述根据所述目标因素确定航天器的目标轨道中可执行所述目标控制策略的目标轨控弧段之后,在所述对于所述目标轨控弧段执行目标控制策略之前,所述方法还包括:
根据所述目标控制策略和所述目标轨控弧段重新确定所述目标时长内所述航天器与所述空间碎片的碰撞风险值;
在重新确定的碰撞风险值小于等于预设值的情况下,对于所述目标轨控弧段执行目标控制策略;
在所述碰撞风险值大于预设值的情况下,根据所述目标因素重新确定航天器的目标轨道中可执行所述目标控制策略的轨控弧段。
可选地,所述组合规避控制包括所述增加轨控量、所述减少轨控量、所述增加轨控次数和所述减少轨控次数中的至少两项,在所述在第二时刻以目标控制策略控制所述航天器之前,所述方法还包括:
在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,确定第二目标策略,所述第二目标策略为所述增加轨控量、所述减少轨控量、所述增加轨控次数和所述减少轨控次数中的任一项;
根据所述第二目标策略重新确定目标时长内航天器与空间碎片的碰撞风险值;
在重新确定后的碰撞风险值大于预设值得情况下,确定所述目标控制策略为组合规避控制。
第二方面,本发明实施例提供了一种兼顾轨道高度调整任务的空间碎片碰撞规避装置,包括:
第一获取模块,用于在航天器具有连续变轨需求的情况下,获取目标时长内航天器与空间碎片的碰撞风险值;
控制模块,用于在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,在第二时刻以目标控制策略控制所述航天器;
其中,所述第二时刻早于所述第一时刻;
所述目标策略包括以下至少一项:
增加轨控量、减少轨控量、增加轨控次数、减少轨控次数和组合规避控制。
可选地,所述兼顾轨道高度调整任务的空间碎片碰撞规避装置还包括:
第二获取模块,用于在航天器具有连续变轨需求的情况下,获取连续变轨需求对应的轨控控制策略,根据所述轨控控制策略中的轨道确定结果得到带轨控星历预报;
所述第一确定模块具体用于,根据所述带轨控星历预报和空间数据得到目标时长内航天器与空间碎片的碰撞风险值。
可选地,所述控制模块还包括:
第一子模块,用于根据所述第一时刻确定目标因素;
第二子模块,用于根据所述目标因素确定航天器的目标轨道中可执行所述目标控制策略的目标轨控弧段;
第三子模块 ,用于对于所述目标轨控弧段执行目标控制策略。
可选地,所述兼顾轨道高度调整任务的空间碎片碰撞规避装置还包括:第一确定模块,用于根据所述目标控制策略和所述目标轨控弧段重新确定所述目标时长内所述航天器与所述空间碎片的碰撞风险值;
控制模块还包括第四子模块,用于在重新确定的碰撞风险值小于等于预设值的情况下,对于所述目标轨控弧段执行目标控制策略;
在所述碰撞风险值大于预设值的情况下,根据所述目标因素重新确定航天器的目标轨道中可执行所述目标控制策略的轨控弧段。
可选地,所述组合规避控制包括所述增加轨控量、所述减少轨控量、所述增加轨控次数和所述减少轨控次数中的至少两项,所述兼顾轨道高度调整任务的空间碎片碰撞规避装置还包括:
第二确定模块,用于在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,确定第二目标策略,所述第二目标策略为所述增加轨控量、所述减少轨控量、所述增加轨控次数和所述减少轨控次数中的任一项;
根据所述第二目标策略重新确定目标时长内航天器与空间碎片的碰撞风险值;
在重新确定后的碰撞风险值大于预设值的情况下,确定所述目标控制策略为组合规避控制。
在本发明实施例中,在航天器具有连续变轨需求的情况下,获取目标时长内航天器与空间碎片的碰撞风险值,在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,在第二时刻以目标控制策略控制所述航天器,其中,所述第二时刻早于所述第一时刻,所述目标策略包括以下至少一项:增加轨控量、减少轨控量、增加轨控次数、减少轨控次数和组合规避控制。在规避空间碎片碰撞的方案中考虑到航天器连续变轨需求,在确定控制策略时考虑到连续变轨参数,可同时兼顾航天器的连续变轨任务和规避航天器与空间碎片碰撞,减少了由于规避空间碎片碰撞而单独进行变轨控制使用的推进剂,提高了航天器的运营效益。
附图说明
图1示意性示出了太阳能光电供水车的立体结构示意图;
图1是本发明实施例提供的一种兼顾轨道高度调整任务的空间碎片碰撞规避方法的流程示意图;
图2是本发明实施例提供的一种兼顾轨道高度调整任务的空间碎片碰撞规避装置的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例、参照附图做进一步说明。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。
下面结合附图,通过具体的实施例及其应用场景对本发明实施例提供的一种兼顾轨道高度调整任务的空间碎片碰撞规避方法进行详细地说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
实施例一
参照图1,示出了本发明实施例提供的一种兼顾轨道高度调整任务的空间碎片碰撞规避方法的流程示意图。
本发明提供的一种兼顾轨道高度调整任务的空间碎片碰撞规避方法,包括:
S101:在航天器具有连续变轨需求的情况下,获取目标时长内航天器与空间碎片的碰撞风险值。
需要说明的是,空间中一定规格的碎片(如10cm以上的碎片)是可以监测其运行轨道的。一种可能的实施方式中,通过对比空间碎片在目标时长内的运行轨道和航天器在目标时长内的运行轨道,确定出航天器与空间碎片碰撞风险值。举例来说,将风险值划分为0-10,也即10个等级。若航天器的运行轨道与空间碎片的运行轨道发生重合,则认为风险值为10级;若航天器的运行轨道与空间碎片的运行轨道靠近至预设距离,则认为风险值为5级;若航天器的运行轨道与空间碎片的运行轨道距离远远大于预设值,则认为风险值为0级。
本实施例中,目标时长为未来的一段时间内,该时长可以有工作人员设定,也可由航天器的历史情况确定,如根据航天器的历史记录,发现航天器每五天发生为躲避空间碎片碰撞而进行的变轨控制,则可设定目标时长为五天。
本实施例中,航天器的连续变轨需求可以为航天器执行的任务需要进行连续变轨操作,例如,连续变轨需求为用于进行轨道高度调整任务如:如航天器每天的例行降低轨道的控制过程(主动降轨任务),航天器正常的克服大气阻尼衰减进行抬升轨道控制的过程(轨道高度保持,即,不定期抬高轨道任务)等等。本实施例在此不做限定。
S102:在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,在第二时刻以目标控制策略控制所述航天器;
其中,所述第二时刻早于所述第一时刻;
本实施例中需要对于目标时长内的每一个时刻都进行碰撞风险值的判断。当发现在未来某个时刻(即,第一时刻)航天器将会出现与空间碎片有较高的碰撞风险的时候,确定目标控制策略,在第二时刻以目标控制策略控制所述航天器。
在本实施例中第二时刻需要早于第一时刻,第一时刻为计算的航天器与空间碎片发生的碰撞时刻,因此对于航天器的控制需要在碰撞事件发生之前进行,从而改变航天器的行进轨迹,以避免与空间碎片碰撞事件的发生。 举例来说,在轨道高度保持(不定期抬高轨道)任务中,基于遥感卫星的成像分辨率和相机焦距等因素的考虑,卫星需要固定高度范围,比如480 km -520km,由于空间大气阻力作用,导致卫星轨道高度衰减,需要不定期抬高轨道。在卫星运行过程中,常规计算发现第三天将有碰撞预警,于是需要规避(规避可以向上也可以向下),但结合未来比如说第十天需要抬高轨道的任务,于是在第二天就将轨道抬高,同时规避了第三天的碰撞预警和满足了抬高轨道的任务。
本案中目标策略包括以下至少一项:增加轨控量、减少轨控量、增加轨控次数、减少轨控次数和组合规避控制。
需要说明的是,本案中的目标策略根据连续变轨需求制定。
以某试验卫星任务举例来说,该卫星入轨后,需要从1000km附近的轨道高度降低到800km附近的目标轨道。然而,在每天的例行降低轨道的控制过程中,发现了按照预定的降轨控制该卫星第二天会与某空间碎片产生碰撞的风险。此时可以采用减小轨控量的控制策略,调整了当天的降轨控制策略,减少了轨道控制量,这样第二天的碰撞风险就降低到了碰撞风险的门限之外,从而规避了碰撞风险。类似地,在某低轨道卫星在正常的克服大气阻尼衰减进行抬升轨道控制的过程中,预测到第二天出现了与空间碎片的碰撞风险,而同时当前的轨道已经处于必须尽早抬升的状态了,此时可以采用增加轨控量的控制策略,所以就采用了增加抬升轨道的控制量,一方面规避了第二天的空间碎片碰撞风险,同时又由于增加了抬升轨道的控制量,因此可以维持更长的时间不进行抬升轨道的工作,同时也能够满足一段时间内的轨道高度符合任务目标轨道的可容纳的高度范围。
又一实施例中,在卫星的变轨任务中,原控制策略为当天进行一次降轨,但为了避免第二天发生的碰撞事件,增加今天的降轨次数,从而让卫星到达更低的高度以改变运行轨迹从而避免碰撞事件的发生。类似的实施例还有减小轨控次数和组合规避控制等,本实施例在此不做限制。
在本发明实施例中,在航天器具有连续变轨需求的情况下,获取目标时长内航天器与空间碎片的碰撞风险值,在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,在第二时刻以目标控制策略控制所述航天器,其中,所述第二时刻早于所述第一时刻,所述目标策略包括以下至少一项:增加轨控量、减少轨控量、增加轨控次数、减少轨控次数和组合规避控制。在规避空间碎片碰撞的方案中考虑到航天器连续变轨需求,在确定控制策略时考虑到连续变轨参数,可同时兼顾航天器的连续变轨任务和规避航天器与空间碎片碰撞,减少了由于规避空间碎片碰撞而单独进行变轨控制使用的推进剂,提高了航天器的运营效益。
在一种可能的实施方式中,步骤S102之前,还包括步骤103: 
S103:在航天器具有连续变轨需求的情况下,获取连续变轨需求对应的轨控控制策略,根据所述轨控控制策略中的轨道确定结果得到带轨控星历预报;
在航天器有连续变轨需求时,需要进行连续变轨规划,得到多次轨控的控制策略,结合轨道确定结果进行带轨控星历预报。
步骤101具体为:根据所述带轨控星历预报和空间数据得到目标时长内航天器与空间碎片的碰撞风险值。
可选的,使用带轨控星历预报同空间目标数据进行碰撞规避计算,根据交会距离和碰撞概率判断存在碰撞风险。
这里的碰撞风险值包括所述航天器与所述空间碎片的碰撞概率或所述航天器与所述空间碎片的交会距离;此时,所述碰撞风险值大于预设值包括:所述碰撞概率大于第一预设值或者所述交会距离小于第二预设值。
在进行碰撞风险值的评估时,可以仅考虑航天器与空间碎片的碰撞概率,例如第一预设值为10-4,也即当航天器与空间碎片的碰撞概率大于10-4时,认为碰撞风险值超过门限,需要进行轨道控制,也可以仅考虑航天器与空间碎片的交会距离,例如第二预设值为200m,则航天器与空间碎片的距离小于200m时,则认为碰撞风险超过门限,需要进行轨道控制,也可同时考虑碰撞概率和交会距离两个因素,并设定权重来进行判断,以提高碰撞风险值的判断的准确度。
在一种可能的实施方式中,步骤102可通过步骤1021-1023执行: 
S1021:根据所述第一时刻确定目标因素;
S1022:根据所述目标因素确定航天器的目标轨道中可执行所述目标控制策略的目标轨控弧段;
S1023:对于所述目标轨控弧段执行目标控制策略。
具体来说,从第一时刻(也即是与空间碎片的理论碰撞时刻)向前倒推,根据测控、光照、能源等约束条件,查找可以进行控制的轨控弧段,对该轨控弧段执行目标控制策略。
在一种可能的实施方式中,在步骤1022之后,步骤1023之前,可通过步骤1024-1025执行:
S1024:根据所述目标控制策略和所述目标轨控弧段重新确定所述目标时长内所述航天器与所述空间碎片的碰撞风险值;
S1025:在重新确定的碰撞风险值小于等于预设值的情况下,对于所述目标轨控弧段执行目标控制策略;
在所述碰撞风险值大于预设值的情况下,根据所述目标因素重新确定航天器的目标轨道中可执行所述目标控制策略的轨控弧段。
具体来说,查找可以进行控制的轨控弧段之后,对进行目标控制策略后的轨控策略进行更新,并重新计算带轨控星历预报进行碰撞规避计算,判断碰撞风险是否已经消除,如果已经消除,则整合最新规避策略并指导实际规避实施,否则重新回到策略制定部分,继续寻找可以进行轨道控制的弧段。
以增加控制量策略为例阐述。从理论碰撞时刻向前倒推,根据测控、光照、能源等约束条件,查找可以增加控制量的轨控弧段,对增加轨控量后的轨控策略进行更新,并重新计算带轨控星历预报进行碰撞规避计算,判断碰撞风险是否已经消除,如果已经消除,则整合最新规避策略并指导实际规避实施,否则重新回到策略制定部分,继续寻找可以增加控制量的弧段。
在一种可能的实施方式中,所述组合规避控制包括所述增加轨控量、所述减少轨控量、所述增加轨控次数和所述减少轨控次数中的至少两项,在步骤102之前,还包括步骤104:
S104: 在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,确定第二目标策略,所述第二目标策略为所述增加轨控量、所述减少轨控量、所述增加轨控次数和所述减少轨控次数中的任一项;
根据所述第二目标策略重新确定目标时长内航天器与空间碎片的碰撞风险值;
在重新确定后的碰撞风险值大于预设值的情况下,确定所述目标控制策略为组合规避控制。
具体来说,增加轨控量、减少轨控量、增加轨控次数、减少轨控次数为单模式规避策略,组合规避控制为多模式策略制定。对于多模式策略制定,则是在单模式的基础上,增加了多种选择,可以组合增加某次控制量、减少某次控制量、增加轨控次数、减少轨控次数等多种手段,组合修正改变航天器轨道,进而达到规避碰撞风险的目的。对于多模式组合规避策略制定,当单模式无法消除碰撞风险时,再考虑使用组合规避模式进行规避策略制定。
实施例二
参照图2,示出了本发明实施例提供的一种兼顾轨道高度调整任务的空间碎片碰撞规避装置20,包括:
第一获取模块201,用于在航天器具有连续变轨需求的情况下,获取目标时长内航天器与空间碎片的碰撞风险值;
控制模块202,用于在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,在第二时刻以目标控制策略控制所述航天器;
其中,所述第二时刻早于所述第一时刻;
所述目标策略包括以下至少一项:
增加轨控量、减少轨控量、增加轨控次数、减少轨控次数和组合规避控制。
可选地,所述兼顾轨道高度调整任务的空间碎片碰撞规避装置20还包括:
第二获取模块203,用于在航天器具有连续变轨需求的情况下,获取连续变轨需求对应的轨控控制策略,根据所述轨控控制策略中的轨道确定结果得到带轨控星历预报;
所述第一确定模块201具体用于,根据所述带轨控星历预报和空间数据得到目标时长内航天器与空间碎片的碰撞风险值。
可选地,所述控制模块202还包括:
第一子模块2021,用于根据所述第一时刻确定目标因素;
第二子模块2022,用于根据所述目标因素确定航天器的目标轨道中可执行所述目标控制策略的目标轨控弧段;
第三子模块2023,用于对于所述目标轨控弧段执行目标控制策略。
可选地,所述兼顾轨道高度调整任务的空间碎片碰撞规避装置20还包括:第一确定模块204,用于根据所述目标控制策略和所述目标轨控弧段重新确定所述目标时长内所述航天器与所述空间碎片的碰撞风险值;
控制模块202还包括第四子模块2024,用于在重新确定的碰撞风险值小于等于预设值的情况下,对于所述目标轨控弧段执行目标控制策略;
在所述碰撞风险值大于预设值的情况下,根据所述目标因素重新确定航天器的目标轨道中可执行所述目标控制策略的轨控弧段。
可选地,所述组合规避控制包括所述增加轨控量、所述减少轨控量、所述增加轨控次数和所述减少轨控次数中的至少两项,所述兼顾轨道高度调整任务的空间碎片碰撞规避装置20还包括:
第二确定模块205,用于在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,确定第二目标策略,所述第二目标策略为所述增加轨控量、所述减少轨控量、所述增加轨控次数和所述减少轨控次数中的任一项;
根据所述第二目标策略重新确定目标时长内航天器与空间碎片的碰撞风险值;
在重新确定后的碰撞风险值大于预设值的情况下,确定所述目标控制策略为组合规避控制。
在本发明实施例中,第一获取模块用于在航天器具有连续变轨需求的情况下,获取目标时长内航天器与空间碎片的碰撞风险值,控制模块用于在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,在第二时刻以目标控制策略控制所述航天器,其中,所述第二时刻早于所述第一时刻,所述目标策略包括以下至少一项:增加轨控量、减少轨控量、增加轨控次数、减少轨控次数和组合规避控制。在规避空间碎片碰撞的方案中考虑到航天器连续变轨需求,在确定控制策略时考虑到连续变轨参数,可同时兼顾航天器的连续变轨任务和规避航天器与空间碎片碰撞,减少了由于规避空间碎片碰撞而单独进行变轨控制使用的推进剂,提高了航天器的运营效益。
本发明实施例中的虚拟***可以是装置,也可以是终端中的部件、集成电路、或芯片。
此外,需要说明的是,以上所描述的装置实施例仅仅是示意性的,并不对本发明的保护范围构成限定,在实际应用中,本领域的技术人员可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的,此处不做限制。
注意,除非另有直接说明,否则本说明书(包含任何所附权利要求、摘要和附图)中所揭示的所有特征皆可由用于达到相同、等效或类似目的的可替代特征来替换。因此,除非另有明确说明,否则所公开的每一个特征仅是一组等效或类似特征的一个示例。在使用到的情况下,进一步地、较优地、更进一步地和更优地是在前述实施例基础上进行另一实施例阐述的简单起头,该进一步地、较优地、更进一步地或更优地后带的内容与前述实施例的结合作为另一实施例的完整构成。在同一实施例后带的若干个进一步地、较优地、更进一步地或更优地设置之间可任意组合的组成又一实施例。
另外,未在本实施例中详尽描述的技术细节,可参见本发明任意实施例所提供的智能认知方法和***,此处不再赘述。
以上仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种兼顾轨道高度调整任务的空间碎片碰撞规避方法,其特征在于,包括:
    在航天器具有连续变轨需求的情况下,获取目标时长内航天器与空间碎片的碰撞风险值;
    在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,在第二时刻以目标控制策略控制所述航天器;
    其中,所述第二时刻早于所述第一时刻;
    所述目标策略包括以下至少一项:
    增加轨控量、减少轨控量、增加轨控次数、减少轨控次数和组合规避控制。
  2. 根据权利要求1所述的兼顾轨道高度调整任务的空间碎片碰撞规避方法,其特征在于,在所述获取目标时长内航天器与空间碎片的碰撞风险值之前,所述方法还包括:
    在航天器具有连续变轨需求的情况下,获取连续变轨需求对应的轨控控制策略,根据所述轨控控制策略中的轨道确定结果得到带轨控星历预报;
    所述获取目标时长内航天器与空间碎片的碰撞风险值包括:
    根据所述带轨控星历预报和空间数据得到目标时长内航天器与空间碎片的碰撞风险值。
  3. 根据权利要求1所述的兼顾轨道高度调整任务的空间碎片碰撞规避方法,其特征在于,所述在第二时刻以目标控制策略控制所述航天器包括:
    根据所述第一时刻确定目标因素;
    根据所述目标因素确定航天器的目标轨道中可执行所述目标控制策略的目标轨控弧段;
    对于所述目标轨控弧段执行目标控制策略。
  4. 根据权利要求3所述的兼顾轨道高度调整任务的空间碎片碰撞规避方法,其特征在于,在所述根据所述目标因素确定航天器的目标轨道中可执行所述目标控制策略的目标轨控弧段之后,在所述对于所述目标轨控弧段执行目标控制策略之前,所述方法还包括:
    根据所述目标控制策略和所述目标轨控弧段重新确定所述目标时长内所述航天器与所述空间碎片的碰撞风险值;
    在重新确定的碰撞风险值小于等于预设值的情况下,对于所述目标轨控弧段执行目标控制策略;
    在所述碰撞风险值大于预设值的情况下,根据所述目标因素重新确定航天器的目标轨道中可执行所述目标控制策略的轨控弧段。
  5. 根据权利要求1所述的兼顾轨道高度调整任务的空间碎片碰撞规避方法,其特征在于,所述组合规避控制包括所述增加轨控量、所述减少轨控量、所述增加轨控次数和所述减少轨控次数中的至少两项,在所述在第二时刻以目标控制策略控制所述航天器之前,所述方法还包括:
    在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,确定第二目标策略,所述第二目标策略为所述增加轨控量、所述减少轨控量、所述增加轨控次数和所述减少轨控次数中的任一项;
    根据所述第二目标策略重新确定目标时长内航天器与空间碎片的碰撞风险值;
    在重新确定后的碰撞风险值大于预设值的情况下,确定所述目标控制策略为组合规避控制。
  6. 一种兼顾轨道高度调整任务的空间碎片碰撞规避装置 ,其特征在于,包括:
    第一获取模块,用于在航天器具有连续变轨需求的情况下,获取目标时长内航天器与空间碎片的碰撞风险值;
    控制模块,用于在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,在第二时刻以目标控制策略控制所述航天器;
    其中,所述第二时刻早于所述第一时刻;
    所述目标策略包括以下至少一项:
    增加轨控量、减少轨控量、增加轨控次数、减少轨控次数和组合规避控制。
  7. 根据权利要求6所述的兼顾轨道高度调整任务的空间碎片碰撞规避装置,其特征在于,还包括:
    第二获取模块,用于在航天器具有连续变轨需求的情况下,获取连续变轨需求对应的轨控控制策略,根据所述轨控控制策略中的轨道确定结果得到带轨控星历预报;
    所述第一确定模块具体用于,根据所述带轨控星历预报和空间数据得到目标时长内航天器与空间碎片的碰撞风险值。
  8. 根据权利要求7所述的兼顾轨道高度调整任务的空间碎片碰撞规避装置,其特征在于,所述控制模块还包括:
    第一子模块,用于根据所述第一时刻确定目标因素;
    第二子模块,用于根据所述目标因素确定航天器的目标轨道中可执行所述目标控制策略的目标轨控弧段;
    第三子模块 ,用于对于所述目标轨控弧段执行目标控制策略。
  9. 根据权利要求7所述的兼顾轨道高度调整任务的空间碎片碰撞规避装置,其特征在于,还包括:
    第一确定模块,用于根据所述目标控制策略和所述目标轨控弧段重新确定所述目标时长内所述航天器与所述空间碎片的碰撞风险值;
    控制模块还包括第四子模块,用于在重新确定的碰撞风险值小于等于预设值的情况下,对于所述目标轨控弧段执行目标控制策略;
    在所述碰撞风险值大于预设值的情况下,根据所述目标因素重新确定航天器的目标轨道中可执行所述目标控制策略的轨控弧段。
  10. 根据权利要求6所述的兼顾轨道高度调整任务的空间碎片碰撞规避装置,其特征在于,还包括:
    所述组合规避控制包括所述增加轨控量、所述减少轨控量、所述增加轨控次数和所述减少轨控次数中的至少两项;
    第二确定模块,用于在所述目标时长内的第一时刻的碰撞风险值大于预设值的情况下,确定第二目标策略,所述第二目标策略为所述增加轨控量、所述减少轨控量、所述增加轨控次数和所述减少轨控次数中的任一项;
    根据所述第二目标策略重新确定目标时长内航天器与空间碎片的碰撞风险值;
    在重新确定后的碰撞风险值大于预设值的情况下,确定所述目标控制策略为组合规避控制。
PCT/CN2023/100915 2022-09-01 2023-06-17 兼顾轨道高度调整任务的空间碎片碰撞规避方法以及装置 WO2024045778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211067598.7A CN115140319B (zh) 2022-09-01 2022-09-01 兼顾轨道高度调整任务的空间碎片碰撞规避方法以及装置
CN202211067598.7 2022-09-01

Publications (1)

Publication Number Publication Date
WO2024045778A1 true WO2024045778A1 (zh) 2024-03-07

Family

ID=83415729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100915 WO2024045778A1 (zh) 2022-09-01 2023-06-17 兼顾轨道高度调整任务的空间碎片碰撞规避方法以及装置

Country Status (2)

Country Link
CN (1) CN115140319B (zh)
WO (1) WO2024045778A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115140319B (zh) * 2022-09-01 2022-12-27 北京航天驭星科技有限公司 兼顾轨道高度调整任务的空间碎片碰撞规避方法以及装置
CN116812172B (zh) * 2023-08-29 2023-10-31 北京航天驭星科技有限公司 卫星轨道控制方法、轨道控制***、电子设备、介质
CN117048853B (zh) * 2023-08-29 2024-01-23 北京航天驭星科技有限公司 采用电推方式调整轨控的方法、***、电子设备、介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371399B1 (ko) * 2012-12-18 2014-03-10 한국항공우주연구원 인공위성의 우주파편 충돌회피기동 계획 시스템 및 방법
CN104787360A (zh) * 2015-03-18 2015-07-22 北京空间飞行器总体设计部 一种基于轨迹保持需求的遥感卫星空间碎片规避机动方法
CN114326774A (zh) * 2022-03-14 2022-04-12 北京航天驭星科技有限公司 航天器碰撞规避策略生成的方法及***
CN114715436A (zh) * 2022-03-30 2022-07-08 西安中科天塔科技股份有限公司 一种航天器碰撞预警方法、装置、控制设备及存储介质
CN115140319A (zh) * 2022-09-01 2022-10-04 北京航天驭星科技有限公司 兼顾轨道高度调整任务的空间碎片碰撞规避方法以及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7113851B1 (en) * 1999-06-09 2006-09-26 Walter Gelon Practical orbit raising system and method for geosynchronous satellites
CN103064423B (zh) * 2012-12-11 2015-07-08 北京空间飞行器总体设计部 多约束多航天器飞行间距预示及碰撞规避方法
CN108974395B (zh) * 2018-06-21 2019-11-15 中国人民解放军战略支援部队航天工程大学 基于天基激光平台驱动的空间目标变轨计算方法及其装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371399B1 (ko) * 2012-12-18 2014-03-10 한국항공우주연구원 인공위성의 우주파편 충돌회피기동 계획 시스템 및 방법
CN104787360A (zh) * 2015-03-18 2015-07-22 北京空间飞行器总体设计部 一种基于轨迹保持需求的遥感卫星空间碎片规避机动方法
CN114326774A (zh) * 2022-03-14 2022-04-12 北京航天驭星科技有限公司 航天器碰撞规避策略生成的方法及***
CN114715436A (zh) * 2022-03-30 2022-07-08 西安中科天塔科技股份有限公司 一种航天器碰撞预警方法、装置、控制设备及存储介质
CN115140319A (zh) * 2022-09-01 2022-10-04 北京航天驭星科技有限公司 兼顾轨道高度调整任务的空间碎片碰撞规避方法以及装置

Also Published As

Publication number Publication date
CN115140319A (zh) 2022-10-04
CN115140319B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2024045778A1 (zh) 兼顾轨道高度调整任务的空间碎片碰撞规避方法以及装置
KR101222501B1 (ko) 인공위성과 우주파편 사이의 충돌위험관리 시스템 및 방법
CN111311074B (zh) 面向应急任务的多星分布式协同重调度方法
CN108335012A (zh) 一种智能遥感卫星层次化分布式自主协同任务规划***
CN112465296B (zh) 一种敏捷卫星动态任务重规划方法
CN107025806B (zh) 一种单阶段临时航迹鲁棒优化方法
CN106773711A (zh) 一种铁路机车运行操纵***的混合任务调度方法及模型
CN110571850B (zh) 一种风电场功率波动轨迹预测和校正控制方法
CN106570614A (zh) 星上自主分布式任务调度方法
WO2022099803A1 (zh) 返航控制方法、装置、电子设备和存储介质
JP2001260995A (ja) 自動軌道補正システム及び方法
CN115081884B (zh) 一种分布式星上在线多对多任务规划方法
CN106840164A (zh) 一种多碎片主动清除在线重规划算法
CN106815400B (zh) 一种调轨方案自动化设计方法
O'Shaughnessy et al. MESSENGER's use of solar sailing for cost and risk reduction
CN114004027B (zh) 一种地面测控资源配置需求的预处理方法和装置
CN109993676A (zh) 一种确定航班的要求撤轮挡时间的方法
CN116707611B (zh) 一种火星探测多目标协同控制方法及装置
CN106301528B (zh) 一种航天器的协同控制方法及装置
CN115186178B (zh) 基于步长自适应的敏捷遥感卫星任务解空间搜索方法
CN109094819B (zh) 航天器受控再入落区设计方法
CN116166049A (zh) 不稳定多星串联编队***星间距离保持控制方法
CN112815943B (zh) 用于确定无人设备作业路线的方法、装置及无人设备
CN116822863A (zh) 一种多平台协同感知的智能规划方法与***
CN116611630A (zh) 基于全球地理板块的遥感卫星自主任务规划方法及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858817

Country of ref document: EP

Kind code of ref document: A1