WO2024045748A1 - 薄膜沉积装置及薄膜沉积方法 - Google Patents

薄膜沉积装置及薄膜沉积方法 Download PDF

Info

Publication number
WO2024045748A1
WO2024045748A1 PCT/CN2023/098722 CN2023098722W WO2024045748A1 WO 2024045748 A1 WO2024045748 A1 WO 2024045748A1 CN 2023098722 W CN2023098722 W CN 2023098722W WO 2024045748 A1 WO2024045748 A1 WO 2024045748A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating mechanism
sputtering
evaporation
thin film
film deposition
Prior art date
Application number
PCT/CN2023/098722
Other languages
English (en)
French (fr)
Inventor
姜友松
王怀民
顾康鑫
郑炳蔚
杨运
董常海
Original Assignee
安徽其芒光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽其芒光电科技有限公司 filed Critical 安徽其芒光电科技有限公司
Publication of WO2024045748A1 publication Critical patent/WO2024045748A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This specification relates to the technical field of thin film preparation, and in particular to a thin film deposition device and a thin film deposition method.
  • the deposition rate of vacuum evaporation is high, but the energy of the particles deposited by vacuum evaporation is low, and the evaporation of some specific film layers cannot be completed.
  • the microstructure of the film formed by vacuum evaporation is a typical columnar structure with gaps, and the film is not dense enough. Even using ion beam assisted deposition (IAD) technology, it cannot achieve sufficient density.
  • Some specific film layers such as diamond-like carbon (DIAMOND-LIKE CARBON, DLC) film, nitride film, etc. cannot be formed by vacuum evaporation.
  • the film obtained by sputtering is well combined with the substrate.
  • the energy of the sputtered atoms is 1-2 orders of magnitude higher than the energy of the evaporated atoms. Therefore, the adhesion between the film and the substrate is strong, and the film aggregation density is close to 1; and sputtering Plating can complete some film layers that cannot be completed by evaporation, such as diamond-like film layers.
  • Sputtering plating can easily form various nitride films, such as Si 3 N 4 , AlN, GaN, etc. However, the deposition rate of sputter plating is low.
  • one purpose of this specification is to provide a thin film deposition device and a thin film deposition method that can combine evaporation plating and sputtering plating to achieve maximum production efficiency while meeting the deposition requirements of some special film layers. .
  • a thin film deposition device including:
  • reaction vessel with a vacuum chamber
  • the reaction vessel is provided with a bracket capable of holding the substrate on the holding surface
  • An evaporative coating mechanism provided in the vacuum chamber for performing evaporative coating on the substrate, the evaporative coating mechanism being disposed toward the holding surface;
  • a sputter coating mechanism is provided in the vacuum chamber for sputter coating the substrate, and the sputter coating mechanism is disposed toward the holding surface; wherein, the evaporation coating mechanism and the sputter coating mechanism Located on the same side of the bracket; the minimum distance between the sputtering coating mechanism and the bracket is less than 20cm and greater than 5cm.
  • the bracket rotates around a vertical axis of rotation;
  • the sputtering coating mechanism includes a sputtering cathode arranged in the vacuum chamber and connected to the side wall of the vacuum chamber;
  • the target material has a target surface facing the holding surface, there is a longitudinal section passing through the rotation axis, and the target surface is between the contour line of the longitudinal section and
  • the contour line of the holding surface on the longitudinal section is parallel, and the distance between the contour line of the target surface and the contour line of the holding surface is 10cm ⁇ 15cm; further, the longitudinal section passes through the target The circumferential middle position of the material surface.
  • the areas where the evaporation coating mechanism and the sputtering coating mechanism are located are configured to have the same vacuum degree; the evaporation coating mechanism and the sputtering coating mechanism are configured to start in a staggered manner.
  • the reaction vessel is also equipped with a vacuum pump and a controller connected to the vacuum chamber; the controller is configured to control the vacuum pump to cause the evaporation coating mechanism and the sputtering
  • the coating mechanism is in a vacuum chamber with different vacuum degrees at different times.
  • the distance between the evaporation coating mechanism and the bracket is greater than twice the distance between the sputtering coating mechanism and the bracket.
  • the holding surface is a cone surface whose area gradually increases from top to bottom; the cross-section of the cone surface is circular or polygonal; the target surface and the adjacent reaction surface The angle between the side walls of the container is an acute angle.
  • the irradiation area of the evaporation coating mechanism and the irradiation area of the sputtering coating mechanism are at least partially staggered; the evaporation coating mechanism is located outside the irradiation area of the sputtering coating mechanism, and the The sputtering coating mechanism is located outside the irradiation area of the evaporation coating mechanism;
  • the bracket rotates around a vertical axis of rotation; with the axis of rotation as the center line, the irradiation area of the evaporation coating mechanism covers the outline of the holding surface on the first longitudinal half section, and the sputtering
  • the irradiation area of the coating mechanism covers the outline of the holding surface on the second longitudinal half section; the angle between the first longitudinal half section and the second longitudinal half section is greater than 20 degrees and less than or equal to 180 degrees.
  • the evaporation coating mechanism includes an evaporation source and an ion source.
  • the evaporation source and the ion source are arranged at the bottom of the vacuum chamber.
  • the outlet of the evaporation source and the ion source The outlet is arranged toward the holding surface; the bracket rotates around a vertical axis of rotation; the ion source is close to the rotation axis relative to the evaporation source; further, the ion source is located near the evaporation source and close to the rotation axis.
  • the orientation of the ion source and the target are inclined relative to the rotation axis.
  • the sputtering coating mechanism has an assembly state and a rotatable state; when the sputtering coating mechanism is in the assembly state, the target surface is parallel to the holding surface, forming a sealed Vacuum chamber; when the sputtering coating mechanism is in the rotatable state, the sputtering coating mechanism can rotate so that the target surface can move away from the holding surface and form a gap on the side wall of the reaction vessel. Open your mouth.
  • the sputtering coating mechanism is assembled on a blocking plate for blocking the opening; the top of the blocking plate and the reaction vessel are hinged to the side wall of the reaction vessel Externally; the rotation axis of the sputter coating mechanism is perpendicular to the rotation axis of the bracket.
  • the thin film deposition device further includes a locking mechanism having a locking position and an opening position; the locking mechanism is located outside the side wall of the reaction vessel and the blocking plate faces away from the One side of the sputtering cathode;
  • the locking mechanism When the locking mechanism is in the locking position, the position of the blocking plate is locked, and the sputtering coating mechanism is carried on the blocking plate and is in an assembly state that is relatively fixed to the reaction vessel; When the locking mechanism is in the open position, the blocking plate is released. The sputtering coating mechanism is carried on the blocking plate and is in a rotatable state that can rotate relative to the reaction vessel.
  • a connecting frame is fixedly connected between the blocking plate and the sputtering cathode; the connecting frame has a mounting bracket for installing the sputtering cathode parallel to the target surface. End face.
  • the sputtering coating mechanism also includes:
  • a cathode gas introduction terminal and a cathode gas introduction tube the cathode gas introduction terminal is penetrated through the blocking plate, one end of the cathode gas introduction tube is connected to the cathode gas introduction terminal, and the other end is connected to the sputtering cathode connected; connected
  • a cathode current lead-in terminal and a cathode current lead-in cable the cathode current lead-in terminal is inserted through the blocking plate, one end of the cathode current lead-in cable is connected to the cathode current lead-in terminal, and the other end is connected to the sputtering cathode connected.
  • the sputter coating mechanism further includes a cooling assembly, which includes a coolant inlet pipe, a coolant outlet pipe, a coolant inlet terminal and a coolant outlet terminal; the coolant inlet terminal and the coolant lead-out terminal is inserted through the blocking plate; one end of the coolant lead-in tube is connected to the coolant lead-in terminal, and the other end is connected to the sputtering cathode; the coolant lead-out tube One end is connected to the coolant outlet terminal, and the other end is connected to the sputtering cathode; the coolant inlet pipe and the coolant outlet pipe are respectively connected to two opposite ends of the sputtering cathode.
  • a cooling assembly which includes a coolant inlet pipe, a coolant outlet pipe, a coolant inlet terminal and a coolant outlet terminal; the coolant inlet terminal and the coolant lead-out terminal is inserted through the blocking plate; one end of the coolant lead-in tube is connected to the coolant lead-in terminal
  • This embodiment provides a thin film deposition method using the thin film deposition device described in any of the above embodiments, including:
  • the steps of alternately performing evaporation coating and sputtering coating include:
  • the evaporation coating mechanism and the sputtering coating mechanism are started at the same time; wherein the substrate alternately passes through the evaporation coating area and the sputtering coating area through rotation.
  • the steps of sequentially performing evaporation coating and sputtering coating include:
  • the evaporation coating mechanism When the vacuum degree of the vacuum chamber is a first predetermined value, the evaporation coating mechanism is started to deposit an evaporation film layer on the substrate. When the evaporation coating mechanism is in the activated state, the sputtering coating mechanism is Disabled;
  • the sputtering coating mechanism When the vacuum degree of the vacuum chamber is a second predetermined value that is different from the first predetermined value, the sputtering coating mechanism is started to deposit a sputtering film layer on the substrate; the sputtering coating mechanism starts In this state, the evaporation coating mechanism is in a closed state.
  • the step of sequentially performing evaporation coating and sputtering coating includes: evaporation coating is performed before sputtering coating, or sputtering coating is performed before evaporation coating.
  • the thin film deposition device provided by this embodiment is provided in the vacuum chamber of the reaction vessel by arranging a bracket capable of holding the substrate on the holding surface, an evaporation coating mechanism disposed toward the holding surface, and a sputtering coating mechanism disposed toward the holding surface, and The evaporation coating mechanism and the sputtering coating mechanism are located on the same side of the bracket.
  • the minimum distance between the sputtering coating mechanism and the bracket is less than 20cm and greater than 5cm, so that the evaporation coating mechanism can evaporate the substrate and the sputtering coating mechanism can evaporate the substrate.
  • the wafers are sputter coated.
  • This thin film deposition device organically combines two coating methods, giving full play to the advantages of the two coating methods while overcoming the shortcomings of the two coating methods, thereby achieving maximum production efficiency while meeting the deposition requirements of some special film layers.
  • Figure 1 is a schematic structural diagram of a thin film deposition device provided in this embodiment
  • Figure 2 is a cross-sectional view of plane A-A in Figure 1;
  • Figure 3 is a schematic structural diagram of a stent provided in this embodiment.
  • Figure 4 is a bottom view of Figure 3;
  • Figure 5 is a schematic three-dimensional structural diagram of a thin film deposition device provided in this embodiment.
  • Figure 6 is a schematic structural diagram of a thin film deposition device provided in this embodiment from a first perspective when the sputtering coating mechanism is in an assembled state;
  • Figure 7 is a schematic structural diagram of a thin film deposition device provided in this embodiment from a first perspective when the sputtering coating mechanism is in a rotatable state;
  • Figure 8 is a schematic structural diagram of a thin film deposition device provided in this embodiment from a second perspective when the sputtering coating mechanism is in an assembled state;
  • Figure 9 is a schematic structural diagram of a thin film deposition device provided in this embodiment from a second perspective when the sputtering coating mechanism is in a rotatable state;
  • Figure 10 is a cross-sectional view of a thin film deposition device provided in this embodiment.
  • Figure 11 is a front view of a thin film deposition device provided in this embodiment.
  • Figure 12 is a partial enlarged view of part I in Figure 11;
  • Figure 13 is a step flow chart of a thin film deposition method provided in this embodiment.
  • FIG. 14 is a step flow chart of another thin film deposition method provided in this embodiment.
  • Sputtering coating mechanism 41. Sputtering cathode; 42. Target material; 421. Target surface; 43. Connecting frame; 431. Installation end face; 441. Cathode gas introduction terminal; 442. Cathode gas introduction tube; 451. Cathode current introduction terminal; 452, cathode current introduction cable; 461, first flange; 462, second flange; 471, first protective plate; 472, second protective plate; 481, coolant introduction pipe; 482, cooling Coolant outlet pipe; 483, coolant introduction terminal; 484, coolant outlet terminal; 491, first sealing strip; 492, second sealing strip; 493, third sealing strip; 494, electrostatic shielding strip; 401, rotating shaft;
  • the embodiment of the present application provides a thin film deposition device, including a reaction vessel 1 , an evaporation coating mechanism 3 and a sputtering coating mechanism 4 .
  • the reaction vessel 1 has a vacuum chamber 11 .
  • the reaction vessel 1 is provided with a holder 2 capable of holding the substrate 9 on a holding surface 21 .
  • the evaporative coating mechanism 3 is provided in the vacuum chamber 11 and is used to perform evaporative coating on the substrate 9 .
  • the evaporative coating mechanism 3 is arranged toward the holding surface 21 .
  • the sputter coating mechanism 4 is provided in the vacuum chamber 11 and is used to perform sputter coating on the substrate 9 .
  • the sputter coating mechanism 4 is arranged toward the holding surface 21 .
  • the evaporation coating mechanism 3 and the sputtering coating mechanism 4 are located on the same side of the bracket 2 , that is, the evaporation coating mechanism 3 and the sputtering coating mechanism 4 realize coating on the same side of the substrate 9 .
  • the minimum distance between the sputter coating mechanism 4 and the bracket 2 is less than 20 cm and greater than 5 cm to ensure that the sputter coating mechanism 4 can effectively perform sputter coating on the substrate 9 .
  • the thin film deposition device provided in this embodiment is provided in the vacuum chamber 11 of the reaction vessel 1 by arranging a bracket 2 capable of holding the substrate 9 on the holding surface 21, an evaporation coating mechanism 3 facing the holding surface 21, and an evaporation coating mechanism 3 facing the holding surface 21.
  • a sputter coating mechanism 4 is provided, and the evaporation coating mechanism 3 and the sputter coating mechanism 4 are located on the same side of the bracket 2.
  • the minimum distance between the sputter coating mechanism 4 and the bracket 2 is less than 20 cm and greater than 5 cm, so that the evaporation coating mechanism 3
  • the substrate 9 can be evaporated and coated, and the sputter coating mechanism 4 can be sputtered and coated on the substrate 9 .
  • This thin film deposition device organically combines two coating methods, giving full play to the advantages of the two coating methods while overcoming the shortcomings of the two coating methods, thereby achieving maximum production efficiency while meeting the deposition requirements of some special film layers.
  • the evaporation coating mechanism 3 and the sputtering coating mechanism 4 may be located on the lower side of the bracket 2 .
  • a rotation mechanism 7 for driving the bracket 2 to rotate around a vertical rotation axis 22 is connected above the bracket 2 .
  • the partial rotating mechanism 7 is located outside the reaction vessel 1 and at the top of the reaction vessel 1 .
  • the partial rotating mechanism 7 extends into the vacuum chamber 11 and is connected to the bracket 2 .
  • the rotating mechanism 7 may include a motor.
  • the rotation axis 22 of the bracket 2 passes through the center of the bracket 2, and the bracket 2 can be formed by a section of wire rotated 360° around the rotation axis 22.
  • the sputtering coating mechanism 4 includes a sputtering cathode 41 provided in the vacuum chamber 11 and connected to the side wall 12 of the vacuum chamber 11 , and a target 42 installed on the sputtering cathode 41 .
  • the entire sputtering coating mechanism 4 is placed in the vacuum chamber 11 .
  • the target 42 has a target surface 421 facing the holding surface 21 .
  • the distance H between the contour line of the target surface 421 and the contour line of the holding surface 21 is 10cm ⁇ 15cm, thereby ensuring the sputtering coating throughout the length range of the target surface 421. Uniform rate.
  • the longitudinal section passes through the circumferential middle position of the target surface 421 , that is, at least one line segment on the target surface 421 passing through the center of the target surface 421 is parallel to a line segment on the holding surface 21 of the bracket 2 .
  • the angle ⁇ between the target surface 421 and the adjacent side wall 12 of the reaction vessel 1 is equal to the angle ⁇ between the surface of the support 2 and the side wall 12 .
  • the sputtering cathode 41 may be a DC cathode, an intermediate frequency cathode or a radio frequency cathode.
  • the sputtering cathode 41 adopts a magnetron twin cathode.
  • the sputtering cathode 41 is connected to a DC power supply or an AC power supply, the bracket 2 is grounded, the sputtering cathode 41 and the bracket 2 are used as the cathode and the anode respectively, and an inert gas (usually Ar) is passed between the cathode and the anode, and gas glow discharge is used. Pointed particles are generated, which are accelerated by the electromagnetic field and then bombard the target surface 421 to realize the escape of the target atoms, and the escaped target atoms are deposited on the surface of the substrate 9 to form a film layer.
  • the areas where the evaporation coating mechanism 3 and the sputtering coating mechanism 4 are located are configured to have the same vacuum degree, that is, there is no separation between the evaporation coating mechanism 3 and the sputtering coating mechanism 4 in the vacuum chamber 11
  • a partition or other separation structure, the evaporation coating mechanism 3 and the sputtering coating mechanism 4 are arranged in the same vacuum system.
  • the vacuum degree of the vacuum chamber 11 in which the evaporation coating mechanism 3 and the sputtering coating mechanism 4 are located is the same.
  • the areas where the evaporation coating mechanism 3 and the sputtering coating mechanism 4 are located are controlled by the same vacuum pump to control the vacuum degree in the vacuum chamber 11, ensuring the smoothness of the evaporation coating and the sputtering coating. Proceed effectively.
  • the evaporation coating mechanism 3 and the sputtering coating mechanism 4 are configured to start in a staggered manner, that is, the evaporation coating mechanism 3 is started first to perform evaporation coating, and then the sputtering coating mechanism 4 is started to perform sputtering coating; or the sputtering coating mechanism 4 is started first. Sputter coating is performed, and then the evaporation coating mechanism 3 is started to perform evaporation coating.
  • the reaction vessel 1 may also be equipped with a vacuum pump and a controller (not shown) connected to the vacuum chamber 11 .
  • the controller is configured to control the vacuum pump so that the evaporation coating mechanism 3 and the sputtering coating mechanism 4 are in the vacuum chamber 11 with different vacuum degrees at different times to ensure that the vacuum degree of the vacuum chamber 11 for evaporation coating is consistent with that of the sputtering coating.
  • the vacuum degrees of the vacuum chamber 11 are different.
  • the distance between the evaporation coating mechanism 3 and the bracket 2 is made greater than twice the distance between the sputtering coating mechanism 4 and the bracket 2 .
  • the sputtering coating mechanism 4 is positioned higher than the evaporating coating mechanism 3 .
  • the evaporating coating mechanism 3 is disposed at the bottom of the vacuum chamber 11
  • the sputtering coating mechanism 4 is disposed on the side wall 12 of the vacuum chamber 11 .
  • the holding surface 21 is a cone surface whose area gradually increases from top to bottom, and the cross section of the cone surface is circular or polygonal.
  • the inner area of the conical surface increases linearly from top to bottom, so that the longitudinal section of the conical surface is an inclined line segment as shown in FIG. 1 .
  • the target surface 421 is parallel to the holding surface 21 , and the angle ⁇ between the target surface 421 and the adjacent side wall 12 of the reaction vessel 1 is an acute angle.
  • the bracket 2 may be roughly umbrella-shaped.
  • the bracket 2 is provided with a plurality of clamping holes 23 for clamping and fixing the substrate 9.
  • the shape of the clamping holes 23 matches the shape of the substrate 9 and makes the substrate 9 The coated surface is exposed.
  • the coated surface of the substrate 9 is the lower surface of the substrate 9 in FIG. 1 .
  • the shape of the clamping hole 23 may be circular or other shapes. Specifically, the clamping holes 23 are opened according to the size and shape of the substrate 9 .
  • the vacuum chamber 11 in this embodiment has a rectangular parallelepiped structure. In other embodiments, the vacuum chamber 11 can be in other shapes, such as cylindrical shape, polygonal column shape, etc.
  • the irradiation area of the evaporation coating mechanism 3 and the irradiation area of the sputtering coating mechanism 4 are at least partially offset.
  • the evaporation coating mechanism 3 is located outside the irradiation area of the sputtering coating mechanism 4.
  • the sputtering coating mechanism 4 It is located outside the irradiation area of the evaporation coating mechanism 3 to ensure that the evaporation coating mechanism 3 and the sputtering coating mechanism 4 do not block each other and can achieve coating respectively.
  • the irradiation area of the evaporation coating mechanism 3 covers the outline of the holding surface 21 on the first longitudinal half section
  • the irradiation area of the sputtering coating mechanism 4 covers the holding surface 21 on the second longitudinal half section.
  • the first longitudinal half section and the second longitudinal half section are both half of the section parallel to the vertical direction and passing through the rotation axis 22 , with the rotation axis 22 as one side.
  • the angle between the first longitudinal half section and the second longitudinal half section is greater than 20 degrees and less than or equal to 180 degrees.
  • the first longitudinal half section is the left half section of the longitudinal section
  • the second longitudinal half section is the right half section of the longitudinal section
  • the angle between the first longitudinal half section and the second longitudinal half section is 180° Spend.
  • the holding surface 21 of the bracket 2 includes an evaporation coating area 24 and a sputtering coating area 25 .
  • the sputtering coating area 25 is the area facing the target surface 421 of the sputtering coating mechanism 4.
  • the evaporation coating area 24 can be other areas on the holding surface 21 except the sputtering coating area 25 to maximize the efficiency of the coating. change.
  • the evaporation coating mechanism 3 includes an evaporation source 31 and an ion source 32 .
  • the evaporation source 31 and the ion source 32 are disposed at the bottom of the vacuum chamber 11 , and the outlets of the evaporation source 31 and the ion source 32 are disposed toward the holding surface 21 .
  • the ion source 32 is close to the rotation axis 22 of the holder 2 relative to the evaporation source 31 . Further, the ion source 32 is located on the side of the evaporation source 31 close to the sputtering coating mechanism 4 .
  • the evaporation source 31 may be an electron gun with a rotating crucible system or a molybdenum boat using resistance evaporation.
  • the ion source 32 may be a radio frequency coupled ion source 32 or other forms of ion sources 32.
  • the evaporated medicine is placed on the evaporation source 31, and evaporation or sublimation is achieved on the evaporation source 31.
  • the vapor generated by the evaporation or sublimation of the medicine is finally deposited on the surface of the substrate 9 .
  • the main function of the ion source 32 is that the plasma it generates bombards and cleans the substrate during the film formation process, which can improve the structure of the film layer and play the role of ion-assisted evaporation.
  • the orientations of the ion source 32 and the target 42 are inclined relative to the rotation axis 22 , and the orientations of the ion source 32 and the target 42 have opposite components in the horizontal plane.
  • the orientation of the evaporation source 31 may be vertically upward, the orientation of the ion source 32 may be inclined upward to the left, and the orientation of the target 42 may be inclined upward to the right.
  • the thin film deposition device can also include a control mechanism 8 arranged outside the reaction vessel 1.
  • the control mechanism 8 can control the start and stop of the evaporation coating mechanism 3 and the sputtering coating mechanism 4, and can control the rotation of the bracket 2. .
  • the above-mentioned controller for controlling the vacuum pump can also be integrated into the control mechanism 8 .
  • the sputter coating mechanism 4 has an assembled state and a rotatable state.
  • the target surface 421 is parallel to the holding surface 21 to form a sealed vacuum chamber 11 to ensure the vacuum state of the vacuum chamber 11 during operation.
  • the sputtering coating mechanism 4 can rotate to move the target surface 421 away from the holding surface 21 and form an opening 13 on the side wall 12 of the reaction vessel 1 .
  • the sputtering coating mechanism 4 has a rotatable state, which allows the bracket 2, the sputtering coating mechanism 4 and other working parts to be adjusted, disassembled and installed flexibly and conveniently, so that evaporation coating and sputtering coating are more organically combined.
  • the sputtering coating mechanism 4 is assembled on a blocking plate 5 for blocking the opening 13.
  • the top of the blocking plate 5 and the reaction vessel 1 are hinged to the outside of the side wall 12 of the reaction vessel 1. This makes the position adjustment of the sputtering coating mechanism 4 more flexible and convenient.
  • the rotation axis 401 of the sputter coating mechanism 4 is perpendicular to the rotation axis 22 of the bracket 2 .
  • the rotation axis 22 of the bracket 2 extends in the vertical direction
  • the rotation axis 401 of the sputter coating mechanism 4 extends in the front-to-back direction.
  • the angle at which the sputter coating mechanism 4 rotates around the rotation axis 401 is greater than or equal to 45°.
  • the blocking plate 5 and the reaction vessel 1 are hinged through a hinge mechanism 62 .
  • the hinge mechanism 62 is connected to the side wall 12 of the blocking plate 5 and the reaction vessel 1 respectively, so that the blocking plate 5 and the reaction vessel 1 are rotatably connected, and the blocking plate 5 can drive the sputtering coating mechanism 4 relative to the reaction vessel 1 Rotate.
  • an access door may be provided on the side wall of the reaction vessel 1 adjacent to the side wall 12 where the sputter coating mechanism 4 is installed.
  • This arrangement not only facilitates the replacement of various components in the vacuum chamber 11 , but also reduces the constraints of its own volume when the sputter coating mechanism 4 is disposed in the vacuum chamber 11 , thus providing a better structure for the sputter coating mechanism 4 . Provides more possibilities.
  • a handle 51 may be provided on the side of the blocking plate 5 away from the sputtering coating mechanism 4.
  • the blocking plate 5 can be driven to rotate by operating the handle 51.
  • the handle 51 is provided on the end of the blocking plate 5 away from the hinge mechanism 62. In this way, when the handle 51 is lifted, the blocking plate 5 can be rotated around the rotation axis 401, thereby rotating the sputtering coating mechanism 4 to create a vacuum. Replacement of various components in the cavity 11 provides for avoidance.
  • the rotation of the blocking plate 5 can also be realized by using a motor.
  • the rotating shaft 401 is connected to the motor shaft through a reduction mechanism, and the automatic opening of the blocking plate 5 is realized through the torque of the motor. combine.
  • the thin film deposition device may further include a locking mechanism 61 having a locking position and an open position.
  • the locking mechanism 61 is located outside the side wall 12 of the reaction vessel 1 and on the side of the sealing plate 5 away from the sputtering cathode 41 .
  • the locking mechanism 61 When the locking mechanism 61 is in the locking position, the position of the blocking plate 5 is locked.
  • the sputtering coating mechanism 4 is carried on the blocking plate 5 and is in a relatively fixed assembly state with the reaction vessel 1 .
  • the locking mechanism 61 When the locking mechanism 61 is in the open position, the blocking plate 5 is released.
  • the sputter coating mechanism 4 is carried on the blocking plate 5 and is in a rotatable state that can rotate relative to the reaction vessel 1 .
  • the locking mechanism 61 may include a latching slot and a movable latching block. One of the slot and the block may be provided on the blocking plate 5 , and the other may be provided outside the side wall 12 of the reaction vessel 1 .
  • the clamping block When the sputtering coating mechanism 4 is in the assembled state, the clamping block can be locked into the slot, so that the locking mechanism 61 is in the locking position, so that the sputtering coating mechanism 4 remains in the assembled state; when the clamping block moves out of the slot, the locking mechanism 61 is in the open position, and at this time, the sputter coating mechanism 4 is in a rotatable state.
  • a connecting frame 43 may be fixedly connected between the blocking plate 5 and the sputtering cathode 41 .
  • the connecting frame 43 has a mounting end surface 431 for mounting the sputtering cathode 41 and is parallel to the target surface 421 .
  • One end of the connecting frame 43 is fixedly installed on the side (ie, the left side) of the blocking plate 5 facing the vacuum chamber 11 . In this way, when performing thin film deposition operations, the relative position of the sputtering target 42 and the substrate 9 on the bracket 2 can be adjusted by adjusting the shape of the connecting frame 43 and the inclination angle of the mounting end surface 431, thereby obtaining the best sputtering angle and sputtering distance.
  • the installation end surface 431 can also be driven to move outside the vacuum chamber 11 to replace the sputtering target 42, the bracket 2 and other working parts.
  • the sputter coating mechanism 4 may further include a cathode gas introduction terminal 441 and a cathode gas introduction tube 442 .
  • the sputtering cathode 41 is provided with a cathode gas channel, and the function of the cathode gas channel is to introduce gas required for sputtering into the sputtering cathode 41 .
  • the cathode gas introduction terminal 441 is inserted through the blocking plate 5 .
  • One end of the cathode gas introduction pipe 442 is connected to the cathode gas introduction terminal 441 , and the other end is connected to the cathode gas channel of the sputtering cathode 41 .
  • the sputtering coating mechanism 4 may further include a cathode current introduction terminal 451 and a cathode current introduction cable 452 .
  • the cathode current introduction terminal 451 is passed through the blocking plate 5.
  • One end of the cathode current introduction cable 452 is connected to the cathode current introduction terminal 451, and the other end is connected to the sputtering cathode 41 to pass the sputtering requirements into the sputtering cathode 41. of current.
  • the sputtering coating mechanism 4 also includes a first flange 461 , and the first flange 461 is detachably installed on the blocking plate 5 .
  • the first flange 461 is provided with a cathode gas introduction terminal 441 for communicating with the cathode gas introduction pipe 442 and a cathode current introduction terminal 451 for connecting with the cathode current introduction cable 452 .
  • External current flows into the cathode current introduction cable 452 through the cathode current introduction terminal 451 to provide current to the sputtering cathode 41 .
  • the cathode gas enters the cathode gas introduction pipe 442 through the cathode gas introduction terminal 441 to supply the sputtering gas to the sputtering cathode 41 .
  • the sputter coating mechanism 4 may further include a cooling assembly, which includes a coolant inlet pipe 481 , a coolant outlet pipe 482 , a coolant inlet terminal 483 and a coolant outlet terminal 484 .
  • the coolant inlet terminal 483 and the coolant outlet terminal 484 are provided through the blocking plate 5 .
  • One end of the coolant introduction pipe 481 is connected to the coolant introduction terminal 483, and the other end is connected to the sputtering cathode 41.
  • One end of the coolant lead-out pipe 482 is connected to the coolant lead-out terminal 484 , and the other end is connected to the sputtering cathode 41 .
  • the sputtering cathode 41 is provided with a cooling channel for cooling the sputtering coating mechanism 4 during operation.
  • the coolant inlet pipe 481 and the coolant outlet pipe 482 are respectively connected to opposite ends of the cooling channel of the sputtering cathode 41 .
  • the coolant flows into the cooling channel through the coolant inlet pipe 481, and then flows out through the coolant outlet pipe 482 after absorbing heat, thereby achieving cooling purposes.
  • the sputtering coating mechanism 4 also includes a second flange 462 , and the second flange 462 is detachably installed on the blocking plate 5 .
  • the second flange 462 is provided with a coolant inlet terminal 483 for communicating with the coolant inlet pipe 481 and a coolant outlet terminal 484 for communicating with the coolant outlet pipe 482 .
  • the coolant flows from the outside of the reaction vessel 1 into the coolant inlet terminal 483, then flows into the cooling channel through the coolant inlet pipe 481, and then is discharged from the coolant outlet terminal 484 through the coolant outlet pipe 482 to complete the cooling effect.
  • a first protective plate 471 is also provided outside the connecting frame 43 .
  • the first protective plate 471 can protect the sputtering coating mechanism 4 . Specifically, it can protect the sputtering coating mechanism 4 located in the first protective plate 471 .
  • the cathode gas introduction pipe 442 , the cathode current introduction cable 452 , the coolant introduction pipe 481 and the coolant outlet pipe 482 are also provided outside the connecting frame 43 .
  • the sputtering coating mechanism 4 also includes a first sealing strip 491 sandwiched between the blocking plate 5 and the reaction vessel 1 to meet the sealing requirements of the vacuum chamber 11 .
  • the first sealing strip 491 and the hinge mechanism 62 are arranged oppositely on both sides of the blocking plate 5 , that is, the first sealing strip 491 is located on the side of the blocking plate 5 facing the vacuum chamber 11 and is located on the upper part of the blocking plate 5 .
  • the sputter coating mechanism 4 also includes an electrostatic shielding strip 494 sandwiched between the blocking plate 5 and the reaction vessel 1 .
  • the electrostatic shielding strip 494 is made of conductive material. One end of the electrostatic shielding strip 494 is connected to the reaction vessel 1 and the other end is grounded to electrostatically shield the thin film deposition device.
  • the electrostatic shielding strip 494 may be disposed adjacent to the first sealing strip 491 .
  • the sputtering coating mechanism 4 can also include a second sealing strip 492 sandwiched between the blocking plate 5 and the first flange 461 to ensure that the gap between the blocking plate 5 and the first flange 461 is Sealed connection.
  • a second guard plate 472 is also covered on the outside of the first flange 461 .
  • the second protective plate 472 can protect the circuit and gas path to prevent impurities from entering the cathode gas introduction tube 442 .
  • the sputtering coating mechanism 4 may also include a third sealing strip 493 sandwiched between the blocking plate 5 and the second flange 462 to ensure a sealed connection between the blocking plate 5 and the second flange 462 .
  • the first sealing strip 491, the second sealing strip 492 and the third sealing strip 493 can all be used as vacuum sealing strips.
  • the evaporation coating mechanism 3 can be used to achieve rapid deposition of the film layer.
  • the sputtering coating mechanism 4 can utilize the high energy of the sputtered particles to compact the evaporated film layer during sputtering, so that the evaporation layer can be The aggregation density of the film layer increases, the deposition particles with weak adsorption on the evaporated surface are sputtered away, and the gaps in the evaporated film layer are filled by bombardment collapse;
  • DLC film layers that cannot be achieved by evaporation can be deposited by the sputtering coating mechanism 4, and other film layers can be deposited by the evaporation coating mechanism 3.
  • embodiments of the present application also provide a thin film deposition method, as described in the following embodiments.
  • This thin film deposition method uses the thin film deposition apparatus described in any of the above embodiments.
  • the thin film deposition method includes the following steps:
  • Step S10 Place the substrate 9 on the holding surface 21 of the bracket 2, and rotate the bracket 2 while the potential of the bracket 2 is zero.
  • the bracket 2 can be connected to the earth end so that the point of the bracket 2 is zero.
  • Step S20 Perform evaporation coating and sputtering coating alternately, or perform evaporation coating and sputtering coating one after another.
  • the method implementation corresponds to the device implementation, which can solve the technical problems solved by the device implementation, and accordingly achieve the technical effects of the device implementation.
  • the specific application is here No longer.
  • the step of alternately performing evaporation coating and sputtering coating in step S20 includes: starting the evaporation coating mechanism 3 and the sputtering coating mechanism 4 at the same time. Among them, the substrate 9 alternately passes through the evaporation coating area 24 and the sputtering coating area 25 through rotation.
  • the step of sequentially performing evaporation coating and sputtering coating in step S20 includes: evaporation coating is performed before sputtering coating, or sputtering coating is performed before evaporation coating.
  • One of the evaporation coating mechanism 3 and the sputtering coating mechanism 4 is in an activated state, and the other is in a closed state.
  • the evaporation coating mechanism 3 is started to deposit an evaporation film layer on the substrate 9.
  • the sputtering coating mechanism 4 is in the closed state.
  • the vacuum degree of the vacuum chamber 11 is a second predetermined value that is different from the first predetermined value
  • the sputtering coating mechanism 4 is started to deposit a sputtering film layer on the substrate 9.
  • the evaporative coating mechanism 3 is in a closed state.
  • evaporation coating is performed first and then sputtering coating is performed.
  • vacuum exhaust is performed first.
  • the bracket 2 is rotated, Ar and O2 are introduced into the vacuum chamber 11, the evaporation coating mechanism 3 is started, and the substrate is Sheet 9 deposits the evaporated film layer.
  • the evaporative coating mechanism 3 is closed, and the evaporative coating is completed. Then the vacuum is exhausted again.
  • sputtering coating is performed first and then evaporation coating is performed.
  • vacuum exhaust is performed first.
  • the bracket 2 is rotated, Ar, O2 , and H2 are introduced into the vacuum chamber 11, and the sputtering coating mechanism is started. 4.
  • the sputter coating mechanism 4 is closed, and the sputter coating is completed. Then the vacuum is exhausted again.
  • the film structure As follows: SnS/ZnS/Ge/ZnS/Ge/ZnS/Ge/ZnS/Ge/DLC.
  • the coating plan is: use evaporation coating to alternately deposit multiple layers of ZnS/Ge on the SnS substrate. After the evaporation is completed, the device is exhausted and evacuated. After the pressure reaches the sputter coating requirements, sputter coating is used using C ( Carbon) target forms a DLC film on the surface of the evaporated film layer.
  • any numerical value quoted herein includes all values from the lower value to the upper value in increments of one unit from the lower value to the upper value, with a separation of at least two units between any lower value and any higher value i.e. Can.
  • the quantity of a component or the value of a process variable e.g. temperature, pressure, time, etc.
  • the purpose is to illustrate that
  • the instructions also clearly list values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

公开一种薄膜沉积装置及薄膜沉积方法,该薄膜沉积装置包括:具有真空腔的反应容器,所述反应容器内设有能将基片保持于保持面的支架;设置在所述真空腔用于对所述基片进行蒸发镀膜的蒸发镀膜机构,所述蒸发镀膜机构朝向所述保持面设置;设置在所述真空腔用于对所述基片进行溅射镀膜的溅射镀膜机构,所述溅射镀膜机构朝向所述保持面设置;其中,所述蒸发镀膜机构和所述溅射镀膜机构位于所述支架的同一侧;所述溅射镀膜机构与所述支架之间的最小距离小于20cm且大于5cm。本说明书所提供的薄膜沉积装置及薄膜沉积方法,能将蒸发镀和溅射镀相结合,在达到最大生产效率的同时满足一些特殊膜层的沉积要求。

Description

薄膜沉积装置及薄膜沉积方法 技术领域
本说明书涉及薄膜制备技术领域,尤其涉及一种薄膜沉积装置及薄膜沉积方法。
背景技术
在光学和半导体领域,很多器件需要进行镀膜工艺,目前广泛使用的镀膜方式为真空蒸镀和溅射镀。
真空蒸镀的沉积速率高,然而真空蒸镀的沉积粒子能量低,且无法完成一些特定膜层的蒸镀。真空蒸镀而成的薄膜微观结构为典型的柱状体加空隙结构,薄膜致密性不足,即便采用离子束辅助沉积镀膜(Ion Beam Assisted Deposition,IAD)的技术也无法达到足够的致密性。一些特定膜层例如类金刚石(DIAMOND-LIKE CARBON,DLC)膜、氮化物薄膜等无法由真空蒸镀而成。
溅射镀所获得的薄膜与基片结合较好,溅射原子能量比蒸发原子能量高1-2个数量级,因而薄膜与基片的的附着力强,薄膜聚集密度接近于1;且溅射镀能够完成一些蒸镀无法完成的膜层,例如类金刚石膜层,溅射镀易于形成各种氮化物薄膜,如Si 3N 4、AlN、GaN等。然而溅射镀的沉积速率低。
发明内容
鉴于现有技术的不足,本说明书的一个目的是提供一种薄膜沉积装置及薄膜沉积方法,能将蒸发镀和溅射镀相结合,在达到最大生产效率的同时满足一些特殊膜层的沉积要求。
为达到上述目的,本说明书实施方式提供一种薄膜沉积装置,包括:
具有真空腔的反应容器,所述反应容器内设有能将基片保持于保持面的支架;
设置在所述真空腔用于对所述基片进行蒸发镀膜的蒸发镀膜机构,所述蒸发镀膜机构朝向所述保持面设置;
设置在所述真空腔用于对所述基片进行溅射镀膜的溅射镀膜机构,所述溅射镀膜机构朝向所述保持面设置;其中,所述蒸发镀膜机构和所述溅射镀膜机构位于所述支架的同一侧;所述溅射镀膜机构与所述支架之间的最小距离小于20cm且大于5cm。
作为一种优选的实施方式,所述支架围绕一竖直旋转轴线旋转;所述溅射镀膜机构包括设置在所述真空腔的与所述真空腔的侧壁相连的溅射阴极、以及安装于所述溅射阴极上的靶材;所述靶材具有面对所述保持面的靶材表面,存在一经过所述旋转轴线的纵截面,所述靶材表面在该纵截面的轮廓线与所述保持面在该纵截面上的轮廓线相平行,所述靶材表面的轮廓线与所述保持面的轮廓线之间的距离为10cm~15cm;进一步地,该纵截面经过所述靶材表面的周向中间位置。
作为一种优选的实施方式,所述蒸发镀膜机构和所述溅射镀膜机构的所在区域被配置为相同真空度;所述蒸发镀膜机构和所述溅射镀膜机构被配置为错开启动。
作为一种优选的实施方式,所述反应容器还配设有连通所述真空腔的真空泵以及控制器;所述控制器被配置为通过控制所述真空泵使所述蒸发镀膜机构和所述溅射镀膜机构在不同时刻处于不同真空度的真空腔中。
作为一种优选的实施方式,所述蒸发镀膜机构与所述支架的距离大于所述溅射镀膜机构与所述支架的距离的2倍。
作为一种优选的实施方式,所述保持面为从上向下内面积逐渐增大的锥面;所述锥面的横截面为圆形或多边形;所述靶材表面与其邻近的所述反应容器的侧壁的夹角为锐角。
作为一种优选的实施方式,所述蒸发镀膜机构的照射区域和所述溅射镀膜机构的照射区域至少部分相错开;所述蒸发镀膜机构位于所述溅射镀膜机构的照射区域外,所述溅射镀膜机构位于所述蒸发镀膜机构的照射区域外;
具体的,所述支架围绕一竖直旋转轴线旋转;以所述旋转轴线为中心线,所述蒸发镀膜机构的照射区域覆盖所述保持面在第一纵半截面上的轮廓,所述溅射镀膜机构的照射区域覆盖所述保持面在第二纵半截面上的轮廓;所述第一纵半截面和所述第二纵半截面之间的夹角大于20度且小于等于180度。
作为一种优选的实施方式,所述蒸发镀膜机构包括蒸发源和离子源,所述蒸发源和所述离子源设置在所述真空腔的底部,所述蒸发源的出口和所述离子源的出口朝向所述保持面设置;所述支架围绕一竖直旋转轴线旋转;所述离子源相对于所述蒸发源靠近所述旋转轴线,进一步地,所述离子源位于所述蒸发源靠近所述溅射镀膜机构的一侧。
作为一种优选的实施方式,所述离子源的朝向和所述靶材的朝向相对于所述旋转轴线倾斜。
作为一种优选的实施方式,所述溅射镀膜机构具有装配状态和可旋转状态;所述溅射镀膜机构处于所述装配状态时,所述靶材表面与所述保持面平行,形成密闭的真空腔;所述溅射镀膜机构处于所述可旋转状态时,所述溅射镀膜机构可通过旋转使所述靶材表面能远离所述保持面并在所述反应容器的侧壁上形成一开口。
作为一种优选的实施方式,所述溅射镀膜机构装配于一用于封堵所述开口的封堵板;所述封堵板的顶部与所述反应容器铰接于所述反应容器的侧壁外;所述溅射镀膜机构的旋转轴垂直于所述支架的旋转轴线。
作为一种优选的实施方式,所述薄膜沉积装置还包括具有锁紧位置和打开位置的锁紧机构;所述锁紧机构位于所述反应容器的侧壁外和所述封堵板背离所述溅射阴极的一侧;
所述锁紧机构位于所述锁紧位置时将所述封堵板位置锁定,所述溅射镀膜机构承载于所述封堵板上,处于与所述反应容器相对固定的装配状态;所述锁紧机构位于所述打开位置时释放所述封堵板,所述溅射镀膜机构承载于所述封堵板上,处于能相对于所述反应容器旋转的可旋转状态。
作为一种优选的实施方式,所述封堵板和所述溅射阴极之间固定连接有连接架;所述连接架具有用于安装所述溅射阴极并与所述靶材表面平行的安装端面。
作为一种优选的实施方式,所述溅射镀膜机构还包括:
阴极气体导入端子和阴极气体导入管,所述阴极气体导入端子穿设于所述封堵板,所述阴极气体导入管的一端与所述阴极气体导入端子相连,另一端与所述溅射阴极相连;
和/或;
阴极电流导入端子和阴极电流导入电缆,所述阴极电流导入端子穿设于所述封堵板,所述阴极电流导入电缆的一端与所述阴极电流导入端子相连,另一端与所述溅射阴极相连。
作为一种优选的实施方式,所述溅射镀膜机构还包括冷却组件,所述冷却组件包括冷却剂导入管、冷却剂导出管、冷却剂导入端子和冷却剂导出端子;所述冷却剂导入端子和所述冷却剂导出端子穿设于所述封堵板;所述冷却剂导入管的一端与所述冷却剂导入端子相连,另一端与所述溅射阴极相连;所述冷却剂导出管的一端与所述冷却剂导出端子相连,另一端与所述溅射阴极相连;所述冷却剂导入管和所述冷却剂导出管分别连接于所述溅射阴极相对的两端。
本实施方式提供一种使用如上任一实施方式所述的薄膜沉积装置的薄膜沉积方法,包括:
将所述基片放置于所述支架的所述保持面,在所述支架电位为零的状态下使所述支架旋转;
交替执行蒸发镀膜和溅射镀膜,或者,先后执行蒸发镀膜和溅射镀膜。
作为一种优选的实施方式,所述交替执行蒸发镀膜和溅射镀膜的步骤包括:
同时启动所述蒸发镀膜机构和所述溅射镀膜机构;其中,所述基片通过旋转交替通过蒸发镀膜区域和溅射镀膜区域。
作为一种优选的实施方式,所述先后执行蒸发镀膜和溅射镀膜的步骤包括:
当所述真空腔的真空度为第一预定值时启动所述蒸发镀膜机构,对所述基片进行蒸镀膜层的沉积,所述蒸发镀膜机构在启动状态下,所述溅射镀膜机构为关闭状态;
当所述真空腔的真空度为与第一预定值不同的第二预定值时启动所述溅射镀膜机构,对所述基片进行溅射膜层的沉积;所述溅射镀膜机构在启动状态下,所述蒸发镀膜机构为关闭状态。
作为一种优选的实施方式,所述先后执行蒸发镀膜和溅射镀膜的步骤包括:蒸发镀膜先于溅射镀膜执行,或者,溅射镀膜先于蒸发镀膜执行。
有益效果
本实施方式所提供的薄膜沉积装置,通过在反应容器的真空腔内设置能将基片保持于保持面的支架、朝向保持面设置的蒸发镀膜机构和朝向保持面设置的溅射镀膜机构,且蒸发镀膜机构和溅射镀膜机构位于支架的同一侧,溅射镀膜机构与支架之间的最小距离小于20cm且大于5cm,从而蒸发镀膜机构能对基片进行蒸发镀膜,溅射镀膜机构能对基片进行溅射镀膜。本薄膜沉积装置将两种镀膜方式进行有机的结合,在充分发挥两种镀膜方式优点的同时,克服两种镀膜方式的缺点,从而在达到最大生产效率的同时满足一些特殊膜层的沉积要求。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本实施方式中所提供的一种薄膜沉积装置的结构示意图;
图2为图1中A-A面的剖面图;
图3为本实施方式中所提供的一种支架的结构示意图;
图4为图3的仰视图;
图5为本实施方式中所提供的一种薄膜沉积装置的立体结构示意图;
图6为本实施方式中所提供的一种薄膜沉积装置在溅射镀膜机构处于装配状态时的第一视角的结构示意图;
图7为本实施方式中所提供的一种薄膜沉积装置在溅射镀膜机构处于可旋转状态时的第一视角的结构示意图;
图8为本实施方式中所提供的一种薄膜沉积装置在溅射镀膜机构处于装配状态时的第二视角的结构示意图;
图9为本实施方式中所提供的一种薄膜沉积装置在溅射镀膜机构处于可旋转状态时的第二视角的结构示意图;
图10为本实施方式中所提供的一种薄膜沉积装置的剖视图;
图11为本实施方式中所提供的一种薄膜沉积装置的正视图;
图12为图11中I部分的局部放大图;
图13为本实施方式中所提供的一种薄膜沉积方法的步骤流程图;
图14为本实施方式中所提供的另一种薄膜沉积方法的步骤流程图。
附图标记说明:
1、反应容器;11、真空腔;12、侧壁;13、开口;
2、支架;21、保持面;22、旋转轴线;23、夹持孔;24、蒸发镀膜区域;25、溅射镀膜区域;
3、蒸发镀膜机构;31、蒸发源;32、离子源;
4、溅射镀膜机构;41、溅射阴极;42、靶材;421、靶材表面;43、连接架;431、安装端面;441、阴极气体导入端子;442、阴极气体导入管;451、阴极电流导入端子;452、阴极电流导入电缆;461、第一法兰;462、第二法兰;471、第一护板;472、第二护板;481、冷却剂导入管;482、冷却剂导出管;483、冷却剂导入端子;484、冷却剂导出端子;491、第一密封条;492、第二密封条;493、第三密封条;494、静电屏蔽条;401、旋转轴;
5、封堵板;51、把手;61、锁紧机构;62、铰接机构;7、旋转机构;8、控制机构;9、基片。
实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的另一个元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中另一个元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1至图12。本申请实施方式提供一种薄膜沉积装置,包括反应容器1、蒸发镀膜机构3和溅射镀膜机构4。
其中,反应容器1具有真空腔11。反应容器1内设有能将基片9保持于保持面21的支架2。蒸发镀膜机构3设置在真空腔11,用于对基片9进行蒸发镀膜。蒸发镀膜机构3朝向保持面21设置。溅射镀膜机构4设置在真空腔11,用于对基片9进行溅射镀膜。溅射镀膜机构4朝向保持面21设置。蒸发镀膜机构3和溅射镀膜机构4位于支架2的同一侧,即蒸发镀膜机构3和溅射镀膜机构4在基片9的同一侧实现镀膜。溅射镀膜机构4与支架2之间的最小距离小于20cm且大于5cm,以保证溅射镀膜机构4能有效对基片9进行溅射镀膜。
本实施方式所提供的薄膜沉积装置,通过在反应容器1的真空腔11内设置能将基片9保持于保持面21的支架2、朝向保持面21设置的蒸发镀膜机构3和朝向保持面21设置的溅射镀膜机构4,且蒸发镀膜机构3和溅射镀膜机构4位于支架2的同一侧,溅射镀膜机构4与支架2之间的最小距离小于20cm且大于5cm,从而蒸发镀膜机构3能对基片9进行蒸发镀膜,溅射镀膜机构4能对基片9进行溅射镀膜。本薄膜沉积装置将两种镀膜方式进行有机的结合,在充分发挥两种镀膜方式优点的同时,克服两种镀膜方式的缺点,从而在达到最大生产效率的同时满足一些特殊膜层的沉积要求。
在本实施方式中,蒸发镀膜机构3和溅射镀膜机构4可以位于支架2的下侧。支架2上方连接有用于驱动支架2围绕一竖直旋转轴线22旋转的旋转机构7。部分旋转机构7位于反应容器1外且位于反应容器1的顶部,部分旋转机构7伸入真空腔11且与支架2相连。旋转机构7可以包括电机。优选的,支架2的旋转轴线22经过支架2的中心,支架2可以由一段线绕旋转轴线22旋转360°形成。
如图1所示,溅射镀膜机构4包括设置在真空腔11的与真空腔11的侧壁12相连的溅射阴极41、以及安装于溅射阴极41上的靶材42。溅射镀膜机构4整体全部置于真空腔11内。靶材42具有面对保持面21的靶材表面421。存在一经过旋转轴线22的纵截面,靶材表面421在该纵截面的轮廓线与保持面21在该纵截面上的轮廓线相平行。该纵截面即为平行于竖直方向且经过旋转轴线22的截面。
优选的,如图1所示,靶材表面421的轮廓线与保持面21的轮廓线之间的距离H为10cm~15cm,从而在整个靶材表面421的长度范围内,保证溅射镀膜的速率均匀。进一步地,该纵截面经过靶材表面421的周向中间位置,即,靶材表面421上至少有一条经过靶材表面421中心的线段与支架2的保持面21上的一条线段平行。如图12所示,靶材表面421与其邻近的反应容器1的侧壁12的夹角α的大小等于支架2表面与该侧壁12的夹角β的大小。
可选地,溅射阴极41可以为直流阴极、中频阴极或者射频阴极。优选的,溅射阴极41采用磁控孪生阴极。具体的,溅射阴极41接直流电源或交流电源,支架2接地,溅射阴极41和支架2分别作为阴极和阳极,阴阳极之间通入惰性气体(通常为Ar),利用气体辉光放电产生带点粒子,带点粒子经电磁场加速后轰击靶材表面421,实现靶材原子的逸出,逸出的靶材原子沉积在基片9的表面形成膜层。
在本实施方式中,蒸发镀膜机构3和溅射镀膜机构4的所在区域被配置为相同真空度,也即真空腔11内并未设置将蒸发镀膜机构3和溅射镀膜机构4分隔开的隔板或其他分隔结构,蒸发镀膜机构3和溅射镀膜机构4设置在同一真空***内。在同一时刻,蒸发镀膜机构3和溅射镀膜机构4所处的真空腔11的真空度相同。
具体的,蒸发镀膜机构3和溅射镀膜机构4的所在区域(即真空腔11的不同位置)被同一真空泵调控真空度,便于控制真空腔11内的真空度,保证蒸发镀膜和溅射镀膜的有效进行。
优选的,蒸发镀膜机构3和溅射镀膜机构4被配置为错开启动,即先启动蒸发镀膜机构3进行蒸发镀膜,后启动溅射镀膜机构4进行溅射镀膜;或先启动溅射镀膜机构4进行溅射镀膜,后启动蒸发镀膜机构3进行蒸发镀膜。反应容器1还可以配设有连通真空腔11的真空泵以及控制器(图未示)。控制器被配置为通过控制真空泵使蒸发镀膜机构3和溅射镀膜机构4在不同时刻处于不同真空度的真空腔11中,以保证进行蒸发镀膜的真空腔11的真空度与进行溅射镀膜的真空腔11的真空度不同。
在本实施方式中,为了使蒸发镀膜更均匀,使蒸发镀膜机构3与支架2的距离大于溅射镀膜机构4与支架2的距离的2倍。如图1所示,溅射镀膜机构4的位置高于蒸发镀膜机构3的位置,蒸发镀膜机构3设置于真空腔11的底部,溅射镀膜机构4设置于真空腔11的侧壁12。
如图3和图4所示,在本实施方式中,保持面21为从上向下内面积逐渐增大的锥面,该锥面的横截面为圆形或多边形。优选的,从上向下该锥面的内面积线性增大,从而该锥面的纵截面如图1所示为倾斜的线段。在该纵截面内,靶材表面421与保持面21平行,靶材表面421与其邻近的反应容器1的侧壁12的夹角α为锐角。如图1和图3所示,支架2可以大致为伞状。
如图2至图4所示,该支架2设有多个用于夹持固定基片9的夹持孔23,夹持孔23的形状和基片9的形状相匹配且使基片9的镀膜表面露出。基片9的镀膜表面为图1中基片9的下表面。夹持孔23的形状可以为圆形,也可以为其他形状。具体的,夹持孔23根据基片9的大小形状开具。本实施方式中的真空腔11为长方体结构,在其他实施例中,真空腔11可以为其他形状,例如圆柱形、多边柱形等。
如图1和图2所示,蒸发镀膜机构3的照射区域和溅射镀膜机构4的照射区域至少部分相错开,蒸发镀膜机构3位于溅射镀膜机构4的照射区域外,溅射镀膜机构4位于蒸发镀膜机构3的照射区域外,以保证蒸发镀膜机构3和溅射镀膜机构4互不遮挡,能各自实现镀膜。
具体的,以支架2的旋转轴线22为中心线,蒸发镀膜机构3的照射区域覆盖保持面21在第一纵半截面上的轮廓,溅射镀膜机构4的照射区域覆盖保持面21在第二纵半截面上的轮廓。第一纵半截面和第二纵半截面均为在平行于竖直方向且经过旋转轴线22的截面的一半,且以旋转轴线22为一条边。其中,第一纵半截面和第二纵半截面之间的夹角大于20度且小于等于180度。如图1所示,第一纵半截面为纵截面的左半截面,第二纵半截面为纵截面的右半截面,第一纵半截面和第二纵半截面之间的夹角为180度。
如图2所示,支架2的保持面21上包括蒸发镀膜区域24和溅射镀膜区域25。其中溅射镀膜区域25即为溅射镀膜机构4的靶材表面421所面对的区域,蒸发镀膜区域24可以为保持面21上除溅射镀膜区域25以外的其他区域,使镀膜的效率最大化。
在本实施方式中,蒸发镀膜机构3包括蒸发源31和离子源32。蒸发源31和离子源32设置在真空腔11的底部,蒸发源31的出口和离子源32的出口朝向保持面21设置。离子源32相对于蒸发源31靠近支架2的旋转轴线22。进一步地,离子源32位于蒸发源31靠近溅射镀膜机构4的一侧。
具体的,蒸发源31可以为带有旋转坩埚***的电子枪或者采用电阻蒸发的钼舟。离子源32可以为射频耦合离子源32或者其他形式的离子源32。蒸镀的药品放置于蒸发源31上,在蒸发源31上实现蒸发或升华。药品蒸发或升华产生的蒸汽最后沉积在基片9表面。离子源32的主要作用在于其产生的等离子体在成膜过程中对基体进行轰击和清洗,能改善膜层的机构,起离子辅助蒸镀的作用。
如图1所示,离子源32的朝向和靶材42的朝向相对于旋转轴线22倾斜,且离子源32和靶材42的朝向在水平面的分量方向相反。蒸发源31的朝向可以为竖直向上,离子源32的朝向可以为向左上方倾斜,靶材42的朝向可以为向右上方倾斜。
如图1所示,该薄膜沉积装置还可以包括设置在反应容器1外的控制机构8,该控制机构8可以控制蒸发镀膜机构3和溅射镀膜机构4的启停,可以控制支架2的旋转。上述控制真空泵的控制器也可以集成在该控制机构8内。
如图5至图9所示,溅射镀膜机构4具有装配状态和可旋转状态。溅射镀膜机构4处于装配状态时,靶材表面421与保持面21平行,形成密闭的真空腔11,以保证真空腔11作业时的真空状态。溅射镀膜机构4处于可旋转状态时,溅射镀膜机构4可通过旋转使靶材表面421能远离保持面21并在反应容器1的侧壁12上形成一开口13。溅射镀膜机构4具有可旋转状态,可以使支架2、溅射镀膜机构4等工作部件灵活方便地被调整、拆卸、安装,使蒸发镀膜和溅射镀膜更有机地相结合。
如图5和图7所示,溅射镀膜机构4装配于一用于封堵开口13的封堵板5,封堵板5的顶部与反应容器1铰接于反应容器1的侧壁12外,使溅射镀膜机构4的位置调整更加灵活方便。如图10所示,溅射镀膜机构4的旋转轴401垂直于支架2的旋转轴线22。在本实施方式中,支架2的旋转轴线22沿竖直方向延伸,溅射镀膜机构4的旋转轴401沿前后方向延伸。优选地,溅射镀膜机构4绕旋转轴401转动的角度大于等于45°。
如图5所示,本实施例的薄膜沉积装置中,封堵板5和反应容器1通过铰接机构62相铰接。铰接机构62分别与封堵板5和反应容器1的侧壁12连接,以使封堵板5和反应容器1可转动地连接,封堵板5能带动溅射镀膜机构4相对于反应容器1旋转。
在封堵板5的带动下,至少部分溅射镀膜机构4可以移动到真空腔11之外,以使溅射镀膜机构4不会对真空腔11中各部件的更换产生阻挡,为真空腔11中各个工作部件的更换提供了空间。可选地,在反应容器1上与安装溅射镀膜机构4的侧壁12相邻的侧壁上开可以设有检修门,当支架2需要更换时,首先将溅射镀膜机构4旋转至真空腔11外,然后打开检修门,将安装在真空腔11的支架2取下并从检修门取出,最后将需要更换的支架2从检修门放置入并安装在真空腔11中。这种设置,不仅有利于真空腔11中的各个部件的更换,同时减少了溅射镀膜机构4设置在真空腔11中时受到的自身体积的约束,从而为溅射镀膜机构4的结构的设置提供了更多的可能性。
在本实施例的薄膜沉积装置中,封堵板5背离溅射镀膜机构4的一侧可以设有把手51,通过操作把手51可以带动封堵板5转动。优选地,把手51设置在封堵板5上远离铰接机构62的一端,这样,提拉把手51时,便可使封堵板5绕旋转轴401转动,从而转动溅射镀膜机构4,为真空腔11中的各个部件的更换提供避让。
作为一种自动化的替代方案,本实施例中,封堵板5的转动也可以采用电机来实现,将旋转轴401通过减速机构与电机轴连接,通过电机的扭矩实现封堵板5的自动开合。
如图5所示,薄膜沉积装置还可以包括具有锁紧位置和打开位置的锁紧机构61。锁紧机构61位于反应容器1的侧壁12外和封堵板5背离溅射阴极41的一侧。
锁紧机构61位于锁紧位置时将封堵板5位置锁定,溅射镀膜机构4承载于封堵板5上,处于与反应容器1相对固定的装配状态。锁紧机构61位于打开位置时释放封堵板5,溅射镀膜机构4承载于封堵板5上,处于能相对于反应容器1旋转的可旋转状态。
本实施例的薄膜沉积装置中,如图5和图7所示,锁紧机构61可以有多个,多个锁紧机构61沿前后方向相间隔地设置,以使锁紧机构61的固定更为牢靠。锁紧机构61可以包括卡槽和可移动的卡块。卡槽和卡块的其中之一可以设置于封堵板5上,另一设置于反应容器1的侧壁12外。当溅射镀膜机构4位于装配状态时,卡块可以卡入卡槽,从而锁紧机构61处于锁紧位置,使溅射镀膜机构4保持装配状态;当卡块移出卡槽时,锁紧机构61处于打开位置,此时溅射镀膜机构4位于可旋转状态。
如图5和图9所示,封堵板5和溅射阴极41之间可以固定连接有连接架43。连接架43具有用于安装溅射阴极41并与靶材表面421平行的安装端面431。连接架43的一端固定安装于封堵板5面对真空腔11的一侧(即左侧)。这样,在进行薄膜沉积作业时,可以通过调整连接架43的形状以及安装端面431的倾斜角度从而调整溅射靶材42与支架2上的基片9的相对位置,从而获取最佳的溅射角度和溅射距离。同时,在反应容器1的外部操作封堵板5使之绕旋转轴401旋转时,也可带动安装端面431向真空腔11的外部移动,以更换溅射靶材42、支架2及其他工作部件。
如图7、图8和图10所示,溅射镀膜机构4还可以包括阴极气体导入端子441和阴极气体导入管442。溅射阴极41上设置有阴极气体通道,阴极气体通道的作用是向溅射阴极41中通入溅射所需的气体。阴极气体导入端子441穿设于封堵板5,阴极气体导入管442的一端与阴极气体导入端子441相连,另一端与溅射阴极41的阴极气体通道相连。溅射镀膜机构4还可以包括阴极电流导入端子451和阴极电流导入电缆452。阴极电流导入端子451穿设于封堵板5,阴极电流导入电缆452的一端与阴极电流导入端子451相连,另一端与溅射阴极41相连,以向溅射阴极41中通入溅射所需的电流。
具体的,如图7和图10所示,溅射镀膜机构4还包括第一法兰461,第一法兰461可拆卸地安装在封堵板5上。第一法兰461上设置有用于与阴极气体导入管442连通的阴极气体导入端子441和与阴极电流导入电缆452连接的阴极电流导入端子451。外部电流通过阴极电流导入端子451通入阴极电流导入电缆452中以对溅射阴极41提供电流。阴极气体通过阴极气体导入端子441进入阴极气体导入管442以对溅射阴极41提供溅射气体。
如图10所示,溅射镀膜机构4还可以包括冷却组件,冷却组件包括冷却剂导入管481、冷却剂导出管482、冷却剂导入端子483和冷却剂导出端子484。冷却剂导入端子483和冷却剂导出端子484穿设于封堵板5。冷却剂导入管481的一端与冷却剂导入端子483相连,另一端与溅射阴极41相连。冷却剂导出管482的一端与冷却剂导出端子484相连,另一端与溅射阴极41相连。溅射阴极41上设置有冷却通道,用于对运行中的溅射镀膜机构4进行冷却。冷却剂导入管481和冷却剂导出管482分别连通于溅射阴极41的冷却通道的相对的两端。冷却液经过冷却剂导入管481流进冷却通道,吸热后再经冷却剂导出管482流出,从而达到冷却目的。
具体的,如图5、图7和图10所示,溅射镀膜机构4还包括第二法兰462,第二法兰462可拆卸地安装在封堵板5上。第二法兰462上设置有用于与冷却剂导入管481连通的冷却剂导入端子483和用于与冷却剂导出管482连通的冷却剂导出端子484。冷却剂从反应容器1的外部通入冷却剂导入端子483,而后经冷却剂导入管481通入冷却通道,再经冷却剂导出管482从冷却剂导出端子484排出,完成冷却作用。
可选地,如图5所示,在连接架43的外侧还设有第一护板471,第一护板471可以保护溅射镀膜机构4,具体的可以保护位于第一护板471内的阴极气体导入管442、阴极电流导入电缆452、冷却剂导入管481和冷却剂导出管482。
进一步地,薄膜沉积装置在工作时,真空腔11的内部需要达到真空状态,所以在真空泵工作时,真空腔11需满足密封要求。如图10所示,溅射镀膜机构4还包括夹设在封堵板5和反应容器1之间的第一密封条491,以满足真空腔11的密封要求。第一密封条491与铰接机构62在封堵板5的两侧相对设置,即第一密封条491位于封堵板5面对真空腔11的一侧且位于封堵板5的上部。优选地,溅射镀膜机构4还包括夹设在封堵板5和反应容器1之间的静电屏蔽条494。静电屏蔽条494由导体材料制成,静电屏蔽条494的一端与反应容器1连接,另一端接地,以对薄膜沉积装置进行静电屏蔽。静电屏蔽条494可以与第一密封条491相邻设置。
如图10所示,溅射镀膜机构4还可以包括夹设在封堵板5和第一法兰461之间的第二密封条492,以保证封堵板5与第一法兰461之间密封连接。可选地,如图5所示,在第一法兰461的外侧还盖设有第二护板472。第二护板472可以保护电路和气路,以免阴极气体导入管442中进入杂质。溅射镀膜机构4还可以包括夹设在封堵板5和第二法兰462之间的第三密封条493,以保证封堵板5与第二法兰462之间密封连接。第一密封条491、第二密封条492和第三密封条493均可以作为真空密封条。
本实施方式提供的薄膜沉积装置具有以下优点:
1、可以提高镀膜质量和镀膜速度。实际运用中,可以利用蒸发镀膜机构3实现膜层的快速沉积,利用溅射镀膜机构4的溅射粒子能量高的特点,在溅射镀的同时对蒸镀的膜层进行夯实,使蒸镀的膜层聚集密度增加、将蒸镀表面吸附较弱的沉积粒子溅射掉、将蒸镀的膜层膜内空隙通过轰击坍塌而被填充;
2、可以实现一些特殊膜系的沉积。蒸镀无法实现的DLC膜层等可以利用溅射镀膜机构4沉积,对于其它膜层则可以利用蒸发镀膜机构3沉积。
基于同一构思,本申请实施方式还提供一种薄膜沉积方法,如下面的实施例所述。该薄膜沉积方法使用如上任一实施方式所述的薄膜沉积装置。该薄膜沉积方法包括以下步骤:
步骤S10:将基片9放置于支架2的保持面21,在支架2电位为零的状态下使支架2旋转。其中,可以将支架2与大地端连接,使支架2的点位为零。
步骤S20:交替执行蒸发镀膜和溅射镀膜,或者,先后执行蒸发镀膜和溅射镀膜。
需要说明的是,在本实施方式中,该方法实施方式与装置实施方式相对应,其能够解决装置实施方式所解决的技术问题,相应的达到装置实施方式的技术效果,具体的本申请在此不再赘述。
在本实施方式中,步骤S20中的交替执行蒸发镀膜和溅射镀膜的步骤包括:同时启动蒸发镀膜机构3和溅射镀膜机构4。其中,基片9通过旋转交替通过蒸发镀膜区域24和溅射镀膜区域25。
在本实施方式中,步骤S20中的先后执行蒸发镀膜和溅射镀膜的步骤包括:蒸发镀膜先于溅射镀膜执行,或者,溅射镀膜先于蒸发镀膜执行。蒸发镀膜机构3和溅射镀膜机构4其中之一在启动状态下,另一则为关闭状态。
具体的,当真空腔11的真空度为第一预定值时启动蒸发镀膜机构3,对基片9进行蒸镀膜层的沉积,蒸发镀膜机构3在启动状态下,溅射镀膜机构4为关闭状态;当真空腔11的真空度为与第一预定值不同的第二预定值时启动溅射镀膜机构4,对基片9进行溅射膜层的沉积,溅射镀膜机构4在启动状态下,蒸发镀膜机构3为关闭状态。
在一种实施方式中,先执行蒸发镀膜后执行溅射镀膜。如图13所示,先进行真空排气,当真空腔11的真空度为第一预定值时,使支架2旋转,向真空腔11内导入Ar、O 2,启动蒸发镀膜机构3,对基片9进行蒸镀膜层的沉积。当蒸镀的膜层和膜厚符合要求后,关闭蒸发镀膜机构3,蒸发镀膜完成。然后再次真空排气,当真空腔11的真空度为第二预定值时,导入Ar、O 2、H 2,启动溅射镀膜机构4,对基片9进行溅射膜层的沉积。当溅射的膜层和膜厚符合要求后,镀膜结束。
在另一种实施方式中,先执行溅射镀膜后执行蒸发镀膜。如图14所示,先进行真空排气,当真空腔11的真空度为第二预定值时,使支架2旋转,向真空腔11内导入Ar、O 2、H 2,启动溅射镀膜机构4,对基片9进行溅射膜层的沉积。当溅射的膜层和膜厚符合要求后,关闭溅射镀膜机构4,溅射镀膜完成。然后再次真空排气,当真空腔11的真空度为第一预定值时,导入Ar、O 2,启动蒸发镀膜机构3,对基片9进行蒸镀膜层的沉积。当蒸发的膜层和膜厚符合要求后,镀膜结束。
在一种具体的应用场景中,例如,需要在SnS(硫化锡)基板上交替镀制ZnS(硫化锌)和Ge(锗),在最外层镀制DLC类金刚石作为保护层,膜层结构如下:SnS/ZnS/Ge/ZnS/Ge/ZnS/Ge/ZnS/Ge/DLC。则镀膜方案为:采用蒸发镀膜的方式在SnS基板上交替镀制多层ZnS/Ge,蒸镀结束以后装置进行排气抽真空,压力达到溅射镀膜要求以后采用溅射镀膜的方式利用C(碳)靶在蒸镀膜层表面形成DLC膜。
需要说明的是,在本说明书的描述中,术语“第一”、“第二”等仅用于描述目的和区别类似的对象,两者之间并不存在先后顺序,也不能理解为指示或暗示相对重要性。此外,在本说明书的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本文引用的任何数值都包括从下限值到上限值之间以一个单位递增的下值和上值的所有值,在任何下值和任何更高值之间存在至少两个单位的间隔即可。举例来说,如果阐述了一个部件的数量或过程变量(例如温度、压力、时间等)的值是从1到90,优选从20到80,更优选从30到70,则目的是为了说明该说明书中也明确地列举了诸如15到85、22到68、43到51、30到32等值。对于小于1的值,适当地认为一个单位是0.0001、0.001、0.01、0.1。这些仅仅是想要明确表达的示例,可以认为在最低值和最高值之间列举的数值的所有可能组合都是以类似方式在该说明书明确地阐述了的。
除非另有说明,所有范围都包括端点以及端点之间的所有数字。与范围一起使用的“大约”或“近似”适合于该范围的两个端点。因而,“大约20到30”旨在覆盖“大约20到大约30”,至少包括指明的端点。
披露的所有文章和参考资料,包括专利申请和出版物,出于各种目的通过援引结合于此。描述组合的术语“基本由…构成”应该包括所确定的元件、成分、部件或步骤以及实质上没有影响该组合的基本新颖特征的其他元件、成分、部件或步骤。使用术语“包含”或“包括”来描述这里的元件、成分、部件或步骤的组合也想到了基本由这些元件、成分、部件或步骤构成的实施方式。这里通过使用术语“可以”,旨在说明“可以”包括的所描述的任何属性都是可选的。
多个元件、成分、部件或步骤能够由单个集成元件、成分、部件或步骤来提供。另选地,单个集成元件、成分、部件或步骤可以被分成分离的多个元件、成分、部件或步骤。用来描述元件、成分、部件或步骤的公开“一”或“一个”并不说为了排除其他的元件、成分、部件或步骤。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照所附权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为发明人没有将该主题考虑为所公开的发明主题的一部分。

Claims (19)

  1.   一种薄膜沉积装置,包括:
    具有真空腔的反应容器,所述反应容器内设有能将基片保持于保持面的支架;
    设置在所述真空腔用于对所述基片进行蒸发镀膜的蒸发镀膜机构,所述蒸发镀膜机构朝向所述保持面设置;
    设置在所述真空腔用于对所述基片进行溅射镀膜的溅射镀膜机构,所述溅射镀膜机构朝向所述保持面设置;其中,所述蒸发镀膜机构和所述溅射镀膜机构位于所述支架的同一侧;所述溅射镀膜机构与所述支架之间的最小距离小于20cm且大于5cm。
  2.  根据权利要求1所述的薄膜沉积装置,所述支架围绕一竖直旋转轴线旋转;所述溅射镀膜机构包括设置在所述真空腔的与所述真空腔的侧壁相连的溅射阴极、以及安装于所述溅射阴极上的靶材;所述靶材具有面对所述保持面的靶材表面,存在一经过所述旋转轴线的纵截面,所述靶材表面在该纵截面的轮廓线与所述保持面在该纵截面上的轮廓线相平行,所述靶材表面的轮廓线与所述保持面的轮廓线之间的距离为10cm~15cm;进一步地,该纵截面经过所述靶材表面的周向中间位置。
  3.  根据权利要求1所述的薄膜沉积装置,所述蒸发镀膜机构和所述溅射镀膜机构的所在区域被配置为相同真空度;所述蒸发镀膜机构和所述溅射镀膜机构被配置为错开启动。
  4.  根据权利要求1所述的薄膜沉积装置,所述反应容器还配设有连通所述真空腔的真空泵以及控制器;所述控制器被配置为通过控制所述真空泵使所述蒸发镀膜机构和所述溅射镀膜机构在不同时刻处于不同真空度的真空腔中。
  5.  根据权利要求1-4任一所述的薄膜沉积装置,所述蒸发镀膜机构与所述支架的距离大于所述溅射镀膜机构与所述支架的距离的2倍。
  6.  根据权利要求2所述的薄膜沉积装置,所述保持面为从上向下内面积逐渐增大的锥面;所述锥面的横截面为圆形或多边形;所述靶材表面与其邻近的所述反应容器的侧壁的夹角为锐角。
  7.  根据权利要求2所述的薄膜沉积装置,所述蒸发镀膜机构的照射区域和所述溅射镀膜机构的照射区域至少部分相错开;所述蒸发镀膜机构位于所述溅射镀膜机构的照射区域外,所述溅射镀膜机构位于所述蒸发镀膜机构的照射区域外;
    具体的,所述支架围绕一竖直旋转轴线旋转;以所述旋转轴线为中心线,所述蒸发镀膜机构的照射区域覆盖所述保持面在第一纵半截面上的轮廓,所述溅射镀膜机构的照射区域覆盖所述保持面在第二纵半截面上的轮廓;所述第一纵半截面和所述第二纵半截面之间的夹角大于20度且小于等于180度。
  8.  根据权利要求7所述的薄膜沉积装置,所述蒸发镀膜机构包括蒸发源和离子源,所述蒸发源和所述离子源设置在所述真空腔的底部,所述蒸发源的出口和所述离子源的出口朝向所述保持面设置;所述支架围绕一竖直旋转轴线旋转;所述离子源相对于所述蒸发源靠近所述旋转轴线,进一步地,所述离子源位于所述蒸发源靠近所述溅射镀膜机构的一侧。
  9.  根据权利要求8所述的薄膜沉积装置,所述离子源的朝向和所述靶材的朝向相对于所述旋转轴线倾斜。
  10.  根据权利要求2所述的薄膜沉积装置,所述溅射镀膜机构具有装配状态和可旋转状态;所述溅射镀膜机构处于所述装配状态时,所述靶材表面与所述保持面平行,形成密闭的真空腔;所述溅射镀膜机构处于所述可旋转状态时,所述溅射镀膜机构可通过旋转使所述靶材表面能远离所述保持面并在所述反应容器的侧壁上形成一开口。
  11.  根据权利要求10所述的薄膜沉积装置,所述溅射镀膜机构装配于一用于封堵所述开口的封堵板;所述封堵板的顶部与所述反应容器铰接于所述反应容器的侧壁外;所述溅射镀膜机构的旋转轴垂直于所述支架的旋转轴线。
  12.  根据权利要求11所述的薄膜沉积装置,所述薄膜沉积装置还包括具有锁紧位置和打开位置的锁紧机构;所述锁紧机构位于所述反应容器的侧壁外和所述封堵板背离所述溅射阴极的一侧;
    所述锁紧机构位于所述锁紧位置时将所述封堵板位置锁定,所述溅射镀膜机构承载于所述封堵板上,处于与所述反应容器相对固定的装配状态;所述锁紧机构位于所述打开位置时释放所述封堵板,所述溅射镀膜机构承载于所述封堵板上,处于能相对于所述反应容器旋转的可旋转状态。
  13.  根据权利要求11所述的薄膜沉积装置,所述封堵板和所述溅射阴极之间固定连接有连接架;所述连接架具有用于安装所述溅射阴极并与所述靶材表面平行的安装端面。
  14.  根据权利要求11所述的薄膜沉积装置,所述溅射镀膜机构还包括:
    阴极气体导入端子和阴极气体导入管,所述阴极气体导入端子穿设于所述封堵板,所述阴极气体导入管的一端与所述阴极气体导入端子相连,另一端与所述溅射阴极相连;
    和/或;
    阴极电流导入端子和阴极电流导入电缆,所述阴极电流导入端子穿设于所述封堵板,所述阴极电流导入电缆的一端与所述阴极电流导入端子相连,另一端与所述溅射阴极相连。
  15.  根据权利要求11所述的薄膜沉积装置,所述溅射镀膜机构还包括冷却组件,所述冷却组件包括冷却剂导入管、冷却剂导出管、冷却剂导入端子和冷却剂导出端子;所述冷却剂导入端子和所述冷却剂导出端子穿设于所述封堵板;所述冷却剂导入管的一端与所述冷却剂导入端子相连,另一端与所述溅射阴极相连;所述冷却剂导出管的一端与所述冷却剂导出端子相连,另一端与所述溅射阴极相连;所述冷却剂导入管和所述冷却剂导出管分别连接于所述溅射阴极相对的两端。
  16.  一种使用如权利要求1-15中任一项所述的薄膜沉积装置的薄膜沉积方法,包括:
    将所述基片放置于所述支架的所述保持面,在所述支架电位为零的状态下使所述支架旋转;
    交替执行蒸发镀膜和溅射镀膜,或者,先后执行蒸发镀膜和溅射镀膜。
  17.  根据权利要求16所述的薄膜沉积方法,所述交替执行蒸发镀膜和溅射镀膜的步骤包括:
    同时启动所述蒸发镀膜机构和所述溅射镀膜机构;其中,所述基片通过旋转交替通过蒸发镀膜区域和溅射镀膜区域。
  18.  根据权利要求16所述的薄膜沉积方法,所述先后执行蒸发镀膜和溅射镀膜的步骤包括:
    当所述真空腔的真空度为第一预定值时启动所述蒸发镀膜机构,对所述基片进行蒸镀膜层的沉积,所述蒸发镀膜机构在启动状态下,所述溅射镀膜机构为关闭状态;
    当所述真空腔的真空度为与第一预定值不同的第二预定值时启动所述溅射镀膜机构,对所述基片进行溅射膜层的沉积;所述溅射镀膜机构在启动状态下,所述蒸发镀膜机构为关闭状态。
  19.  根据权利要求16所述的薄膜沉积方法,所述先后执行蒸发镀膜和溅射镀膜的步骤包括:蒸发镀膜先于溅射镀膜执行,或者,溅射镀膜先于蒸发镀膜执行。
PCT/CN2023/098722 2022-08-31 2023-06-06 薄膜沉积装置及薄膜沉积方法 WO2024045748A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211061898 2022-08-31
CN202211061898.4 2022-08-31
CN202211119898.5A CN115466927B (zh) 2022-08-31 2022-09-14 薄膜沉积装置及薄膜沉积方法
CN202211119898.5 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024045748A1 true WO2024045748A1 (zh) 2024-03-07

Family

ID=84332564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098722 WO2024045748A1 (zh) 2022-08-31 2023-06-06 薄膜沉积装置及薄膜沉积方法

Country Status (2)

Country Link
CN (2) CN218842311U (zh)
WO (1) WO2024045748A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118028747A (zh) * 2024-04-11 2024-05-14 江苏宝新智能装备有限公司 一种机器人制造外壳镀覆设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218842311U (zh) * 2022-08-31 2023-04-11 安徽其芒光电科技有限公司 薄膜沉积装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100040859A1 (en) * 2008-08-14 2010-02-18 National Chiao Tung University Nanostructured thin-film formed by utilizing oblique-angle deposition and method of the same
CN104862656A (zh) * 2015-06-10 2015-08-26 光驰科技(上海)有限公司 双向沉积镀膜装置及镀膜方法
CN108342699A (zh) * 2018-02-11 2018-07-31 中国科学院上海光学精密机械研究所 综合沉积镀膜设备及综合镀膜方法
CN112195443A (zh) * 2020-09-14 2021-01-08 武汉电信器件有限公司 一种薄膜沉积***及镀膜方法
CN115466927A (zh) * 2022-08-31 2022-12-13 安徽其芒光电科技有限公司 薄膜沉积装置及薄膜沉积方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4402898B2 (ja) * 2003-04-22 2010-01-20 株式会社神戸製鋼所 物理的蒸着装置
JP4478497B2 (ja) * 2004-04-19 2010-06-09 株式会社アルバック 成膜装置
CN102076880B (zh) * 2008-06-30 2012-11-21 株式会社新柯隆 蒸镀装置及薄膜装置的制造方法
US9103032B2 (en) * 2012-11-09 2015-08-11 Tsmc Solar Ltd. Apparatus and method for forming thin films in solar cells
KR20140083260A (ko) * 2012-12-26 2014-07-04 유흥상 복합진공증착방법
CN110079778B (zh) * 2019-05-06 2021-07-06 成都精密光学工程研究中心 低缺陷光学薄膜制备方法及其制品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100040859A1 (en) * 2008-08-14 2010-02-18 National Chiao Tung University Nanostructured thin-film formed by utilizing oblique-angle deposition and method of the same
CN104862656A (zh) * 2015-06-10 2015-08-26 光驰科技(上海)有限公司 双向沉积镀膜装置及镀膜方法
CN108342699A (zh) * 2018-02-11 2018-07-31 中国科学院上海光学精密机械研究所 综合沉积镀膜设备及综合镀膜方法
CN112195443A (zh) * 2020-09-14 2021-01-08 武汉电信器件有限公司 一种薄膜沉积***及镀膜方法
CN115466927A (zh) * 2022-08-31 2022-12-13 安徽其芒光电科技有限公司 薄膜沉积装置及薄膜沉积方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118028747A (zh) * 2024-04-11 2024-05-14 江苏宝新智能装备有限公司 一种机器人制造外壳镀覆设备

Also Published As

Publication number Publication date
CN218842311U (zh) 2023-04-11
CN115466927B (zh) 2023-07-18
CN115466927A (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
US6562200B2 (en) Thin-film formation system and thin-film formation process
US6365010B1 (en) Sputtering apparatus and process for high rate coatings
US6488824B1 (en) Sputtering apparatus and process for high rate coatings
WO2024045748A1 (zh) 薄膜沉积装置及薄膜沉积方法
CN102220561B (zh) 用于磁控溅射装置中的环状阴极
JP2000073168A (ja) 基板の多層pvd成膜装置および方法
US4236994A (en) Apparatus for depositing materials on substrates
TW201402851A (zh) 利用一預穩定電漿之製程的濺鍍方法
WO2011093334A1 (ja) 成膜方法、成膜装置、および該成膜装置の制御装置
CN106435516B (zh) 一种磁控蒸发多功能卷绕镀膜机
CN219603663U (zh) 真空镀膜装置
KR100509666B1 (ko) 벌크물질진공코팅장치
JP2009041040A (ja) 真空蒸着方法および真空蒸着装置
US20060188660A1 (en) Method for depositing multilayer coatings
JP2007131883A (ja) 成膜装置
EP0319347A2 (en) Vacuum depositing apparatus
EP2607516B1 (en) Method for forming a gas blocking layer
JP3836184B2 (ja) 酸化マグネシウム膜の製造方法
JP2000001771A (ja) 誘電体保護層の製造方法とその製造装置、並びにそれを用いたプラズマディスプレイパネルと画像表示装置
JPH11302841A (ja) スパッタ装置
KR20050094305A (ko) 유기 발광소자의 다중 박막 연속 증착을 위한 회전용 셔터 장치를 가진 증착기의 구조.
KR20150076467A (ko) 조직제어가 가능한 알루미늄 코팅층 및 그 제조방법
CN220746057U (zh) 真空镀膜装置
JP2009144252A (ja) 反応性スパッタリング装置及び反応性スパッタリング方法
TW201617469A (zh) 靶材配置、具有靶材配置之處理設備及用以製造靶材配置之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858787

Country of ref document: EP

Kind code of ref document: A1