WO2024045595A1 - 太阳电池及其制备方法 - Google Patents

太阳电池及其制备方法 Download PDF

Info

Publication number
WO2024045595A1
WO2024045595A1 PCT/CN2023/084920 CN2023084920W WO2024045595A1 WO 2024045595 A1 WO2024045595 A1 WO 2024045595A1 CN 2023084920 W CN2023084920 W CN 2023084920W WO 2024045595 A1 WO2024045595 A1 WO 2024045595A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
conductive oxide
silicon layer
amorphous silicon
oxide film
Prior art date
Application number
PCT/CN2023/084920
Other languages
English (en)
French (fr)
Inventor
高永强
余义
Original Assignee
通威太阳能(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(安徽)有限公司 filed Critical 通威太阳能(安徽)有限公司
Publication of WO2024045595A1 publication Critical patent/WO2024045595A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/102Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration with means for agitating the liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type

Definitions

  • the present application relates to the field of semiconductor photoelectric conversion technology, and in particular to a solar cell and a preparation method thereof.
  • Heterojunction cells (Hereto-junction with Intrinsic Thin-layer, HJT) are known as the most promising solar cell technology after PERC (Passivated Emitter and Rear Cell).
  • PERC Passivated Emitter and Rear Cell
  • HJT battery technology has the natural advantages of high efficiency and high power generation. Compared with the current mainstream PERC technology, the biggest problem of HJT battery is its high cost.
  • the cells need to go through texturing and cleaning ⁇ CVD (chemical vapor deposition) coating ⁇ PVD (physical vapor deposition) coating ⁇ silk screen ⁇ testing.
  • the manufacturing process is short and heterojunction
  • the production cycle of battery cells only takes 2.5 hours, compared with the 8 to 10 hours of conventional PERC batteries and TOPCon (Tunnel Oxide Passivated Contact) batteries, which saves more time.
  • heterojunction solar cells prepared by traditional production processes still have problems such as a large proportion of surface contamination and low cell efficiency. Therefore, it is necessary to further improve the existing production process to improve cell surface contamination and improve cell efficiency.
  • This application was made in view of the above problems, and one of its purposes is to provide a method for manufacturing a solar cell, which can effectively improve the contamination defects on the surface of the solar cell and improve the photoelectric conversion efficiency of the cell sheet.
  • the first aspect of the present application provides a method for preparing a solar cell, including the following steps:
  • An electrode is prepared on the conductive oxide film after the alkali neutralization treatment.
  • This application first uses a first chemical solution containing sulfuric acid and hydrogen peroxide to oxidize and clean the solar cell substrate with a conductive oxide film, and then uses a second chemical solution containing alkali and hydrogen peroxide to perform an alkali neutralization treatment. Effectively remove metal particles, impurities, dust and other contaminants on the surface of the conductive oxide film, effectively improve the surface contamination of solar cells, and improve the product yield of solar cells; at the same time, the surface of the conductive oxide film is removed through the above steps Metal particle impurities and dust can also effectively reduce the shading area of solar cells, thereby improving the photoelectric conversion efficiency of the cells.
  • the first medicinal liquid mainly consists of sulfuric acid with a mass content of 96% to 98%, a hydrogen peroxide solution with a mass content of 30% to 40%, and water according to a volume ratio of 1: (8 to 10): (85 ⁇ 95) mixed to form.
  • the sulfuric acid, hydrogen peroxide and water in the first chemical solution can more effectively improve the cleaning effect on the surface of the conductive oxide film.
  • the oxidation cleaning includes the following steps: immersing the solar cell substrate in the first chemical solution and cleaning at a temperature of 30°C to 50°C for 50s to 120s. So, can To further improve the cleaning effect on the surface of the conductive oxide film of the solar cell substrate.
  • the second medicinal liquid mainly consists of sodium hydroxide with a mass content of 35% to 45%, a hydrogen peroxide solution with a mass content of 30% to 40%, and water according to a volume ratio of 1: (2 to 5 ): (25 ⁇ 30) mixed to form.
  • the removal effect of dirt on the surface of the battery sheet can be better improved.
  • organic dirt, particulate matter, and metal impurities on the surface of the conductive oxide film can be effectively removed, and residual acid can be neutralized with alkali using sodium hydroxide to improve the cleanliness of the silicon wafer.
  • the alkali neutralization treatment includes the following steps: immersing the solar cell substrate after oxidation cleaning into the second chemical solution, and cleaning at a temperature of 30°C to 40°C for 30 seconds to 50s. In this way, the cleaning effect of organic dirt, particulate matter and metal impurities on the surface of the conductive oxide film can be further improved.
  • the preparation method further includes the step of placing the solar cell substrate in water and bubbling water for 30 to 50 seconds. In this way, residual particulate matter and part of the chemical solution on the surface of the conductive oxide film can be better removed.
  • the preparation method further includes placing the solar cell substrate in water and cleaning it at a temperature of 30°C to 50°C without bubbling. Steps of 20s to 35s. In this way, the second chemical liquid on the surface of the conductive oxide film can be effectively removed.
  • the preparation method further includes sequentially slowly dehydrating the solar cell substrate and drying it at 50°C to 65°C. A step of. In this way, water on the surface of the conductive oxide film can be effectively removed, further improving the cleanliness of the surface of the conductive oxide film.
  • the electrode is prepared on the conductive oxide film by screen printing or copper electroplating.
  • the preparation method of the solar cell substrate includes the following steps:
  • the conductive oxide film is formed on the amorphous silicon layer.
  • the method for preparing the solar cell substrate before forming the amorphous silicon layer on the single crystal silicon substrate, further includes performing a texturing process on the single crystal silicon substrate to form the single crystal silicon layer on the single crystal silicon substrate.
  • forming an amorphous silicon layer on a single crystal silicon substrate includes the following steps:
  • a doped amorphous silicon layer is formed on the intrinsic amorphous silicon layer.
  • the amorphous silicon layer is formed on the single crystal silicon substrate by a plasma enhanced chemical vapor deposition method.
  • the conductive oxide film is formed on the amorphous silicon layer by a physical vapor deposition method.
  • a second aspect of the present application provides a solar cell, which is prepared by the solar cell preparation method of the first aspect of the present application.
  • the solar cell includes:
  • An amorphous silicon layer is provided on at least one surface of the single crystal silicon substrate;
  • An electrode is provided on a surface of the conductive oxide film facing away from the amorphous silicon layer.
  • the amorphous silicon layer includes an intrinsic amorphous silicon layer and a doped amorphous silicon layer, and the intrinsic amorphous silicon layer is provided on the surface of the single crystal silicon substrate, so The doped amorphous silicon layer is disposed on the surface of the intrinsic amorphous silicon layer facing away from the single crystal silicon substrate.
  • the preparation method of the present application first utilizes a solar cell substrate with a conductive oxide film
  • the first chemical solution containing sulfuric acid and hydrogen peroxide is used for oxidation cleaning, and then the second chemical solution containing alkali and hydrogen peroxide is used for alkali neutralization treatment, which can effectively remove metal particle impurities and dust on the surface of the conductive oxide film. It can effectively improve the surface contamination of solar cells and improve the product yield of solar cells; at the same time, by removing metal particle impurities and dust on the surface of the conductive oxide film, the quality of solar cells can be effectively reduced. Blocking area, thereby improving the conversion efficiency of the cell.
  • Figure 1 is a schematic structural diagram of a solar cell according to an embodiment of the present application.
  • Figure 2 is a photo of a solar cell substrate before cleaning in a preparation method according to an embodiment of the present application
  • Figure 3 is a photo of a solar cell substrate after cleaning in the preparation method according to an embodiment of the present application.
  • Heterojunction solar cell 11. Single crystal silicon substrate; 12. Intrinsic amorphous silicon layer; 13a, n-type doped amorphous silicon layer; 13b, p-type doped amorphous silicon layer; 14. Conductive Oxide film; 15. Electrode.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number or order of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • Heterojunction solar cells prepared by traditional production processes have problems such as a large proportion of surface contamination and poor efficiency of the cells.
  • Research has found that the main reason for the above problems is that during the coating process of conductive oxide films, high-energy particles bombard the target, causing the target to sputter, and the sputtered target is deposited on the substrate to form a thin film; after After long-term use, the carrier plates and transport mechanism components of the running cells in the coating equipment will wear out, producing some metal particles and yellow dust. These particles and dust will fall on the conductive oxide film during the coating process.
  • some embodiments of the present application provide a method for preparing a heterojunction solar cell 10 .
  • the structure of the heterojunction solar cell 10 is shown in Figure 1 .
  • the preparation method includes the following steps S100 to S600.
  • Step S100 Texturing the single crystal silicon substrate 11.
  • a series of texturing and cleaning operations are performed on the n-type monocrystalline silicon substrate 11 on a texturing and cleaning machine, so that a pyramid-shaped textured light-trapping structure is formed on the front and back of the monocrystalline silicon substrate 11.
  • the reflectivity of the single crystal silicon substrate 11 to light is reduced and the light utilization rate is improved.
  • Step S200 Form an intrinsic amorphous silicon layer 12 on the single crystal silicon substrate 11.
  • An intrinsic amorphous silicon layer 12 is deposited on the front and back sides of the single crystal silicon substrate 11 after texturing.
  • methods such as CVD (Chemical Vapor Deposition) or PECVD (Plasma Enhanced Chemical Vapor Deposition) can be used to deposit the above-mentioned intrinsic amorphous silicon layer 12 on the front and back of the single crystal silicon substrate 11 .
  • Step S300 Form a doped amorphous silicon layer on the intrinsic amorphous silicon layer 12.
  • an n-type doped amorphous silicon layer 13a is deposited on the intrinsic amorphous silicon layer 12 on the front side; a p-type doped amorphous silicon layer 13a is deposited on the intrinsic amorphous silicon layer 12 on the back side. Silicon layer 13b.
  • the n-type doped amorphous silicon layer 13a and the p-type doped amorphous silicon layer 13b can be formed by CVD or PECVD.
  • Step S400 Form the conductive oxide film 14 on the doped amorphous silicon layer to obtain a heterojunction solar cell substrate.
  • a conductive oxide film 14 is formed on the n-type doped amorphous silicon layer 13a on the front and the p-type doped amorphous silicon layer 13b on the back through physical vapor deposition, thereby obtaining a different conductive oxide film 14.
  • Mass junction solar cell substrate Generally, the conductive oxide film 14 is an ITO (Indium Tin Oxide) film.
  • Step S500 Clean the conductive oxide film 14 on the heterojunction solar cell substrate.
  • the heterojunction solar cell substrate with the conductive oxide film 14 is first oxidized and cleaned using a first chemical solution containing sulfuric acid and hydrogen peroxide; and then using a third solution containing alkali and hydrogen peroxide.
  • the second chemical liquid is used to perform an alkali neutralization treatment on the conductive oxide film 14 after oxidation cleaning.
  • the heterojunction solar cell substrate with the conductive oxide film 14 is first oxidized and cleaned with the above-mentioned first chemical solution, and then the above-mentioned second chemical solution is used for alkali neutralization treatment, so that the conductive oxidation can be effectively removed.
  • the metal particle impurities and dust on the surface of the conductive oxide film 14 can be removed to improve the surface contamination of the battery cells and improve the product yield.
  • the shading area of the battery cells can be reduced. Thereby improving the efficiency of the battery cells.
  • a first chemical solution containing sulfuric acid and hydrogen peroxide is used to oxidize and clean the heterojunction solar cell substrate with the conductive oxide film 14.
  • the reaction between the sulfuric acid and the active metal can be used to effectively remove the conductive oxide film.
  • the metal impurities attached to the oxide film 14 are reacted and removed; at the same time, some dust impurities on the conductive oxide film 14 can be removed using the strong oxidizing property of hydrogen peroxide.
  • Through the joint action of sulfuric acid and hydrogen peroxide most of the impurity particles and common active metal powders and impurities on the oxide film 14 can be effectively conducted, making the cleaned battery substrate more conductive.
  • the surface cleanliness of the oxide film 14 is higher.
  • the conductive oxide film 14 after oxidation cleaning is subjected to an alkali neutralization treatment. Under the joint action of alkali and hydrogen peroxide, the conductive oxide film 14 can be further removed. Organic dirt, metal particles, metal impurities, etc. on the surface of the oxide film 14 can be neutralized by using alkali to neutralize the residual acid on the conductive oxide film 14 to further improve the cleanliness of the battery piece.
  • particulate impurities and dust and other dirt on the surface of the conductive oxide film 14 can be effectively removed, and the cleanliness of the surface of the conductive oxide film 14 can be improved, thereby improving the battery cells.
  • the surface is dirty and defective, improving the cell yield, reducing the shading area of the cell, and improving the efficiency of the cell.
  • the conductive oxide film 14 is generally an ITO film, its wear resistance and resistance to acid and alkali chemical corrosion (except HF) are both good, and the hardness of the film layer is high.
  • the first chemical solution containing sulfuric acid and hydrogen peroxide and the second chemical solution containing alkali and hydrogen peroxide are used to clean the conductive oxide film 14, no damage will be caused to the conductive oxide film 14.
  • the first medicinal liquid consists of concentrated sulfuric acid with a mass content of 96% to 98%, a hydrogen peroxide solution with a mass content of 30% to 40%, and water according to a volume ratio of 1: (8 to 10): (85 ⁇ 95) is mixed and prepared.
  • the order of adding the medical solution is to add water first, then add concentrated sulfuric acid, and finally Add hydrogen peroxide solution.
  • concentrated sulfuric acid can be diluted safely and reasonably, and the proportion of the liquid components during the preparation process will not change significantly.
  • a first chemical solution containing sulfuric acid and hydrogen peroxide is used to oxidize and clean the heterojunction solar cell substrate with the conductive oxide film 14.
  • the specific steps are: depositing the conductive oxide film After step 14, the heterojunction solar cell substrate is immersed in the above-mentioned first chemical solution, and the surface of the conductive oxide film 14 is cleaned at a temperature of 30°C to 50°C. The cleaning time is controlled at 50s to 120s.
  • the temperature of the first chemical liquid when cleaning the surface of the conductive oxide film 14 can be, but is not limited to, 30°C, 32°C, 34°C, 36°C, 38°C, 40°C, 42°C, 44°C, 46°C, 48°C, 50°C; cleaning time can be but not limited to 50s, 60s, 70s, 80s, 90s, 100s, 110s, 120s.
  • the above-mentioned first chemical liquid is added to an oxidation cleaning tank.
  • the volume of the oxidation cleaning tank is 210L to 230L, and a total of 400 battery cells in 4 baskets can be produced at one time.
  • the heterojunction solar cell substrate with the conductive oxide film 14 is immersed in the first chemical solution of the oxidation cleaning tank to perform oxidation cleaning.
  • the heterojunction solar cell substrate is placed in water and bubbling for 30 to 50 seconds to remove residual particulate matter and part of the chemical solution on the surface of the conductive oxide film 14 .
  • the heterojunction solar cell substrate is placed in a second chemical solution containing alkali and hydrogen peroxide for alkali neutralization treatment.
  • the second medicinal liquid consists of sodium hydroxide with a mass content of 35% to 45%, a hydrogen peroxide solution with a mass content of 30% to 40%, and water according to a volume ratio of 1: (2 to 5): (25 to 30 ) is mixed and formulated.
  • the heterojunction solar cell substrate is placed in a second liquid containing alkali and hydrogen peroxide for alkali neutralization treatment.
  • the specific steps are as follows: after oxidation cleaning and bubbling water washing, The heterojunction solar cell substrate is immersed in the second chemical solution and cleaned at a temperature of 30°C to 40°C for 30s to 50s.
  • the temperature of the second chemical liquid during cleaning can be but is not limited to 30°C, 31°C, 32°C, 33°C, 34°C, 35°C, 36°C, 37°C, 38°C, 39°C, 40°C;
  • the cleaning time can be but is not limited to 30s, 32s, 34s, 36s, 38s, 40s, 42s, 44s, 46s, 48s, 50s.
  • the above-mentioned second chemical liquid is added to an alkali neutralization treatment tank.
  • the volume of the alkali neutralization treatment tank is designed to be 210L to 230L, and a total of 400 battery cells in 4 baskets can be produced at one time.
  • the heterojunction solar cell substrate that has been oxidized and washed with bubbling water is immersed in the second chemical solution of the alkali neutralization treatment tank to perform alkali neutralization treatment.
  • the heterojunction solar cell substrate is also placed in water at a temperature of 30°C to 50°C without bubbling. In this case, cleaning is performed for 20 to 35 seconds to remove the second chemical solution on the surface of the conductive oxide film 14.
  • the battery sheet is transferred to the drying tank, and the drying and drainage properties of nitrogen are used to remove the water on the surface of the conductive oxide film 14 of the battery sheet.
  • the drying temperature is set to 50°C ⁇ 65°C.
  • Step S600 prepare electrode 15 on conductive oxide film 14.
  • a silver gate electrode 15 can be prepared on the conductive oxide film 14 by screen printing, or a copper electrode can be formed on the conductive oxide film 14 by electroplating copper.
  • a complete heterojunction solar cell 10 is prepared.
  • the heterojunction solar cell 10 includes an n-type single crystal silicon substrate 11, an intrinsic amorphous silicon layer 12, an n-type doped amorphous silicon layer 13a, and a p-type doped amorphous silicon layer 13b. , conductive oxide film 14 and electrode 15.
  • an intrinsic amorphous silicon layer 12 is provided on the front side of the n-type single crystal silicon substrate 11 (ie, the upper surface of the single crystal silicon substrate 11 in FIG. 1 ), and on the back side of the single crystal silicon substrate 11 ( That is, the intrinsic amorphous silicon layer 12 is also provided on the lower surface of the single crystal silicon substrate 11 in Figure 1, and an n-type doped amorphous silicon layer 13a is provided on the front intrinsic amorphous silicon layer 12.
  • a p-type doped amorphous silicon layer 13b is provided on the intrinsic amorphous silicon layer 12 on the back side, and conductive oxide films are respectively provided on the n-type doped amorphous silicon layer 13a and the p-type doped amorphous silicon layer 13b. 14. Electrodes 15 are provided on both conductive oxide films 14.
  • the conductive oxide film 14 is oxidized and cleaned with the above-mentioned first chemical solution and washed with water, and the conductive oxide film 14 is alkaline-cleaned using the above-mentioned second chemical solution.
  • the cleaning method includes neutralization treatment, water washing, slow pulling, dehydration, and drying; it can completely remove metal particle impurities, yellow dust, dust impurities and other harmful substances attached to the surface of the conductive oxide film 14, and effectively solves the problem of physical gas phase
  • the problem of serious dirt on the surface of battery cells after deposition and coating improves the cleanliness of the surface of the cells. At the same time, it avoids the impact of dust and impurities on the yield rate of screen-printed electrodes, greatly reducing the defective rate of dirty cell surfaces.
  • the conversion efficiency of the battery cells has also been improved to a certain extent.
  • a method for preparing a heterojunction solar cell 10 including the following steps:
  • the n-type single crystal silicon substrate 11 is subjected to texturing treatment in a texturing cleaning machine.
  • the intrinsic amorphous silicon layer 12 is deposited on the front and back sides of the textured single crystal silicon substrate 11 by CVD; the n-type doped amorphous silicon layer 13a is deposited on the front intrinsic amorphous silicon layer 12 by CVD. , a p-type doped amorphous silicon layer 13b is deposited on the intrinsic amorphous silicon layer 12 on the back side, and conductive oxide is deposited on the n-type doped amorphous silicon layer 13a and the p-type doped amorphous silicon layer 13b respectively by PVD. material film 14 to obtain a heterojunction solar cell substrate.
  • the heterojunction solar cell substrate having the conductive oxide film 14 is oxidized and cleaned using a first chemical solution containing sulfuric acid and hydrogen peroxide.
  • the first liquid is prepared by mixing concentrated sulfuric acid with a mass content of 98%, a hydrogen peroxide solution with a mass content of 35%, and water in a volume ratio of 1:9:88.
  • the temperature of the first chemical solution is 45°C, and the cleaning time is 70 seconds.
  • the heterojunction solar cell substrate is placed in water and washed with bubbling water for 35 seconds.
  • the heterojunction solar cell substrate is placed in a second chemical solution containing alkali and hydrogen peroxide for alkali neutralization treatment.
  • the second medicinal liquid is prepared by mixing sodium hydroxide with a mass content of 45%, a hydrogen peroxide solution with a mass content of 40%, and water in a volume ratio of 1:4:25.
  • the temperature of the second chemical liquid is 35°C, and the cleaning time is 45 seconds.
  • the heterojunction solar cell substrate Place the heterojunction solar cell substrate in a slow-drawing water tank for slow lifting and dehydration; then transfer the cells into a drying tank, using the drying and drainage properties of nitrogen to dry the conductive oxide film of the cells. 14 Water on the surface is removed. Among them, the drying temperature is set to 65°C.
  • a silver grid electrode 15 is prepared on the conductive oxide film 14 by screen printing to form a heterojunction solar cell 10 .
  • the product yield of the prepared heterojunction solar cell 10 is tested, and the surface contamination on the conductive oxide film 14 in the heterojunction solar cell 10 is observed.
  • the proportion of contamination defects on the upper surface of the conductive oxide film 14 is shown in Table 1.
  • the electrochemical performance of the prepared heterojunction solar cell 10 is tested.
  • the test method is to simulate the sunlight irradiation and use the photoelectric principle of the IV tester to test the bad defects and power generation capacity of the cell under standard conditions. The test results are shown in Table 1.
  • the heterojunction solar cell substrate having the conductive oxide film 14 is oxidized and cleaned using a first chemical solution containing sulfuric acid and hydrogen peroxide.
  • the first medicinal liquid is prepared by mixing concentrated sulfuric acid with a mass content of 97%, a hydrogen peroxide solution with a mass content of 40%, and water in a volume ratio of 1:10:95.
  • the temperature of the first chemical solution is 50°C, and the cleaning time is 100 seconds.
  • the heterojunction solar cell substrate is placed in water and washed with bubbling water for 35 seconds.
  • the heterojunction solar cell substrate is placed in a second chemical solution containing alkali and hydrogen peroxide for alkali neutralization treatment.
  • the second medicinal liquid is prepared by mixing sodium hydroxide with a mass content of 45%, a hydrogen peroxide solution with a mass content of 40%, and water in a volume ratio of 1:5:30.
  • the temperature of the second chemical liquid is 40°C, and the cleaning time is 50 seconds.
  • the heterojunction solar cell substrate Place the heterojunction solar cell substrate in a slow-drawing water tank for slow lifting and dehydration; then transfer the cells into a drying tank, using the drying and drainage properties of nitrogen to dry the conductive oxide film of the cells. 14 Water on the surface is removed. Among them, the drying temperature is set to 60°C.
  • the silver grid electrode 15 is prepared on the conductive oxide film 14 by screen printing to form a heterojunction.
  • the product yield of the prepared heterojunction solar cell 10 is tested, and the surface contamination on the conductive oxide film 14 in the heterojunction solar cell 10 is observed.
  • the proportion of contamination defects on the upper surface of the conductive oxide film 14 is shown in Table 1.
  • the electrochemical performance of the prepared heterojunction solar cell 10 was tested. The test method was the same as in Example 1, and the test results are shown in Table 1.
  • This comparative example adopts a conventional production process of the heterojunction solar cell 10 . That is, compared with Embodiment 1, the heterojunction solar cell substrate having the conductive oxide film 14 is not subjected to a series of cleaning operations including oxidation cleaning, water washing, alkali neutralization treatment, water washing, slow pulling, dehydration and drying. Instead, after depositing the conductive oxide film 14, the electrode 15 is formed on the conductive oxide film 14.
  • the product yield of the heterojunction solar cell 10 prepared in this comparative example was tested, and the surface contamination on the conductive oxide film 14 in the heterojunction solar cell 10 was observed.
  • the proportion of contamination defects on the upper surface of the conductive oxide film 14 is shown in Table 1.
  • the cell efficiency of the prepared heterojunction solar cell 10 was tested.
  • the test method was the same as in Example 1, and the test results are shown in Table 1.
  • the proportion of surface contamination defects of the heterojunction solar cells 10 prepared in Example 1 and Example 2 of the present application is significantly lower than that of cells prepared by traditional methods.
  • the electrical performance of the battery sheets of Example 1 and Example 2 has also been improved to a certain extent. Among them, the conversion efficiency is increased by about 0.06% compared with the cells prepared by traditional methods, the short-circuit current is increased by about 0.01A, and the open-circuit voltage and fill factor are also slightly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请提供了一种太阳电池及其制备方法,其中制备方法包括如下步骤:提供具有导电氧化物薄膜的太阳电池基片;利用含有硫酸和过氧化氢的第一药液对导电氧化物薄膜进行氧化清洗;利用含有碱和过氧化氢的第二药液对经过氧化清洗后的导电氧化物薄膜进行碱中和处理;在经碱中和处理后的导电氧化物薄膜上制备电极。本申请的制备方法能够有效去除掉导电氧化物薄膜表面附着的金属颗粒杂质、黄色粉尘、灰尘杂质等,很好地解决物理气相沉积镀膜后电池片表面脏污严重的问题,使电池片表面的洁净度得到提升,同时避免了粉尘和杂质对丝网印刷电极良率的影响,使电池片表面脏污的不良率大幅降低,同时电池片的转换效率也得到一定程度的提升。

Description

太阳电池及其制备方法
本申请要求于2022年08月31日提交中国专利局、申请号为2022110529444、发明名称为“太阳电池及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体光电转换技术领域,特别是涉及一种太阳电池及其制备方法。
背景技术
异质结电池(Hereto-junction with Intrinsic Thin-layer,HJT),被誉为PERC(Passivated Emitter and Rear Cell)之后最有前景的太阳能电池技术。HJT电池技术有着高效率和高发电量的天然优势,和目前主流的PERC技术相比,HJT电池目前最大的问题是成本较高。
因此,HJT电池产业在持续努力不断提升HJT转换效率的同时,降低制造成本以提升投产性价比已成为首要任务。
在异质结太阳电池片制备过程中,电池片需要经过制绒清洗→CVD(化学气相沉积)镀膜→PVD(物理气相沉积)镀膜→丝网→测试,其制造工艺流程较短,异质结电池片只需要2.5小时的生产周期,较常规PERC电池和TOPCon(Tunnel Oxide Passivated Contact)电池需要8~10小时的生产周期,节省时间较多。
然而,传统生产工艺制备的异质结太阳电池片仍然存在表面脏污不良比例较大、电池片的效率较低的问题。因此,有必要对现有的生产工艺进行进一步改进,以改善电池片表面脏污不良、提高电池片效率。
发明内容
本申请是鉴于上述课题而进行的,其目的之一在于,提供一种太阳电池的制备方法,其能够有效改善太阳电池表面的脏污不良、提高电池片的光电转换效率。
为了达到上述目的,本申请的第一方面提供了一种太阳电池的制备方法,包括如下步骤:
提供具有导电氧化物薄膜的太阳电池基片;
利用含有硫酸和过氧化氢的第一药液对所述导电氧化物薄膜进行氧化清洗;
利用含有碱和过氧化氢的第二药液对经过氧化清洗后的所述导电氧化物薄膜进行碱中和处理;以及
在经所述碱中和处理后的所述导电氧化物薄膜上制备电极。
本申请先利用含有硫酸和过氧化氢的第一药液对具有导电氧化物薄膜的太阳电池基片进行氧化清洗,再利用含有碱和过氧化氢的第二药液进行碱中和处理,可以有效地去除导电氧化物薄膜表面的金属颗粒杂质和粉尘等脏污,有效地改善太阳电池片的表面脏污不良,提高太阳电池片的产品良率;同时,通过上述步骤去除导电氧化物薄膜表面的金属颗粒杂质和粉尘,还可以有效降低太阳电池片的遮光面积,从而提升电池片的光电转换效率。
在任意的实施方式中,所述第一药液主要由质量含量96%~98%的硫酸、质量含量30%~40%的过氧化氢溶液和水按照体积比1:(8~10):(85~95)混合形成。如此,通过对第一药液中的硫酸、过氧化氢和水进行合理配比,所形成的第一药液可以更加有效地提高对导电氧化物薄膜表面脏污的清洗效果。
在任意的实施方式中,所述氧化清洗,包括如下步骤:将所述太阳电池基片浸入所述第一药液中,在30℃~50℃温度下清洗50s~120s。如此,可 以进一步提高对太阳电池基片的导电氧化物薄膜表面脏污的清洗效果。
在任意的实施方式中,所述第二药液主要由质量含量35%~45%的氢氧化钠、质量含量30%~40%的过氧化氢溶液和水按照体积比1:(2~5):(25~30)混合形成。如此,通过对第二药液中碱、过氧化氢和水进行合理配比,可以更好地提高电池片表面脏污的去除效果。通过采用上述成分的第二药液,可以有效去除导电氧化物薄膜表面的有机脏污、颗粒物和金属杂质等,并利用氢氧化钠对残留的酸进行碱中和,提高硅片的清洁度。
在任意的实施方式中,所述碱中和处理,包括如下步骤:将经过氧化清洗后的所述太阳电池基片浸入所述第二药液中,在30℃~40℃温度下清洗30s~50s。如此,可以进一步提高对导电氧化物薄膜表面的有机脏污、颗粒物和金属杂质的清洗效果。
在任意的实施方式中,在所述氧化清洗之后,所述碱中和处理之前,所述制备方法还包括将所述太阳电池基片置于水中进行鼓泡水洗30s~50s的步骤。如此,可以更好地去除掉导电氧化物薄膜表面上残留的颗粒物质和部分药液。
在任意的实施方式中,在所述碱中和处理之后,所述制备电极之前,所述制备方法还包括将所述太阳电池基片置于水中在30℃~50℃温度下不鼓泡清洗20s~35s的步骤。如此,可以有效地去除掉导电氧化物薄膜表面上的第二药液。
在任意的实施方式中,在所述不鼓泡清洗之后,所述制备电极之前,所述制备方法还包括将所述太阳电池基片依次进行慢提拉脱水和在50℃~65℃下干燥的步骤。如此,可以有效地去除导电氧化物薄膜表面上的水,进一步提高导电氧化物薄膜表面的洁净度。
在任意的实施方式中,通过丝网印刷或电镀铜的方法在所述导电氧化物薄膜上制备所述电极。
在任意的实施方式中,所述太阳电池基片的制备方法,包括如下步骤:
在单晶硅衬底上形成非晶硅层;以及
在所述非晶硅层上形成所述导电氧化物薄膜。
在任意的实施方式中,在单晶硅衬底上形成非晶硅层之前,所述太阳电池基片的制备方法还包括对所述单晶硅衬底进行制绒处理以在所述单晶硅衬底表面形成绒面陷光结构的步骤。
在任意的实施方式中,在单晶硅衬底上形成非晶硅层包括如下步骤:
在所述单晶硅衬底上形成本征非晶硅层;以及
在所述本征非晶硅层上形成掺杂非晶硅层。
在任意的实施方式中,通过等离子体增强化学气相沉积的方法在所述单晶硅衬底上形成所述非晶硅层。
在任意的实施方式中,通过物理气相沉积的方法在所述非晶硅层上形成所述导电氧化物薄膜。
本申请的第二方面提供了一种太阳电池,所述太阳电池通过本申请第一方面的太阳电池的制备方法制备得到。
在任意的实施方式中,所述太阳电池包括:
单晶硅衬底;
非晶硅层,设于所述单晶硅衬底的至少一个表面上;
导电氧化物薄膜,设于所述非晶硅层背离所述非晶硅层一侧的表面上;以及
电极,设于所述导电氧化物薄膜背离所述非晶硅层一侧的表面上。
在任意的实施方式中,所述非晶硅层包括本征非晶硅层和掺杂非晶硅层,所述本征非晶硅层设于所述单晶硅衬底的表面上,所述掺杂非晶硅层设于所述本征非晶硅层背离所述单晶硅衬底一侧的表面上。
本申请的制备方法通过对具有导电氧化物薄膜的太阳电池基片先利用 含有硫酸和过氧化氢的第一药液进行氧化清洗,再利用含有碱和过氧化氢的第二药液进行碱中和处理,可以有效地去除掉导电氧化物薄膜表面的金属颗粒杂质和粉尘等脏污,有效地改善太阳电池片的表面脏污不良,提高太阳电池片的产品良率;同时,通过去除掉导电氧化物薄膜表面的金属颗粒杂质和粉尘之后,可以有效降低太阳电池片的遮光面积,从而提升电池片的转换效率。
附图说明
为了更好地描述和说明本申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请的一实施方式的太阳电池的结构示意图;
图2为本申请的一实施方式的制备方法中清洗之前的太阳电池基片的照片;
图3为本申请的一实施方式的制备方法中清洗之后的太阳电池基片的照片。
附图标记说明:
10、异质结太阳电池;11、单晶硅衬底;12、本征非晶硅层;13a、n型
掺杂非晶硅层;13b、p型掺杂非晶硅层;14、导电氧化物薄膜;15、电极。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施, 本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。除非另有特别说明,本申请中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或顺序。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在描述位置关系时,除非另有规定,否则当一元件例如层、膜或基板被指为在另一膜层“上”时,其能直接在其他膜层上或亦可存在中间膜层。进一步说,当层被指为在另一层“下”时,其可直接在下方,亦可存在一或多个中间层。亦可以理解的是,当层被指为在两层“之间”时,其可为两层之间的唯一层,或亦可存在一或多个中间层。
除非相反地提及,否则单数形式的术语可以包括复数形式,并不能理解为其数量为一个。
传统生产工艺制备的异质结太阳电池片存在表面脏污不良的比例较大,且电池片的效率较低的问题。研究发现,导致上述问题的主要原因在于:在导电氧化物薄膜的镀膜过程中,是通过高能量粒子轰击靶材,使靶材发生溅射,溅射出的靶材沉积到基片上形成薄膜;经过长时间的使用,镀膜设备中运转电池片的载板、运输机构部件等会发生磨损,产生一些金属颗粒和黄色的粉尘,这些颗粒和粉尘在导电氧化物薄膜镀膜过程中会飘落在导电氧化 物薄膜上;使得在形成导电氧化物薄膜之后,在导电氧化物薄膜的表面会附着一些杂质颗粒和粉尘,造成电池片表面脏污不良;而且,在丝网印刷制备电极时会频繁产生节点、粗栅等印刷不良;并且颗粒和粉尘会遮挡电池片表面积,影响电池片对光线的吸收,从而影响电池片的转换效率。
一般常规电池片(如PERC电池)经过700℃~800℃高温烧结后,导电氧化物薄膜表面的有机物和颗粒杂质灰尘等会燃烧并抽走去除掉大部分;然而,异质结太阳电池丝网印刷制备电极工序的最高温度不超过230℃,无法去除掉电池片导电氧化物薄膜表面的有机物、颗粒杂质和灰尘。
为了解决上述问题,本申请的一些实施方式提供了一种异质结太阳电池10的制备方法。该异质结太阳电池10的结构如图1所示。该制备方法包括如下步骤S100至步骤S600。
步骤S100:将单晶硅衬底11进行制绒处理。
首先在制绒清洗机台设备上,对n型的单晶硅衬底11进行制绒清洗的一系列操作,使单晶硅衬底11的正面和背面形成金字塔型的绒面陷光结构,从而减少单晶硅衬底11对光线的反射率,提高光利用率。
步骤S200:在单晶硅衬底11上形成本征非晶硅层12。
在经过制绒处理后的单晶硅衬底11的正面和背面分别沉积一层本征非晶硅层12。具体地,可以采用CVD(化学气相沉积)或PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学气相沉积)等方法在单晶硅衬底11的正面和背面沉积上述的本征非晶硅层12。
步骤S300:在本征非晶硅层12上形成掺杂非晶硅层。
具体来说,在正面的本征非晶硅层12上沉积形成一层n型掺杂非晶硅层13a;在背面的本征非晶硅层12上沉积形成一层p型掺杂非晶硅层13b。同样地,该n型掺杂非晶硅层13a和p型掺杂非晶硅层13b,可以采用CVD或PECVD等方法形成。
步骤S400:在掺杂非晶硅层上形成导电氧化物薄膜14,得到异质结太阳电池基片。
通过物理气相沉积在正面的n型掺杂非晶硅层13a上和背面的p型掺杂非晶硅层13b上分别形成一层导电氧化物薄膜14,从而得到具有导电氧化物薄膜14的异质结太阳电池基片。一般地,该导电氧化物薄膜14采用ITO(氧化铟锡)薄膜。
步骤S500:对异质结太阳电池基片上的导电氧化物薄膜14进行清洗。
在其中一些实施例中,首先利用含有硫酸和过氧化氢的第一药液,对具导电氧化物薄膜14的异质结太阳电池基片进行氧化清洗;然后利用含有碱和过氧化氢的第二药液,对经过氧化清洗后的导电氧化物薄膜14进行碱中和处理。
传统生产工艺在沉积导电氧化物薄膜14之后,在导电氧化物薄膜14的表面会附着一些金属颗粒和粉尘,造成电池片表面脏污不良;且增大电池片的遮光面积,导致电池片的效率降低。本申请通过对具有导电氧化物薄膜14的异质结太阳电池基片先利用上述的第一药液进行氧化清洗,再利用上述第二药液进行碱中和处理,可以有效地去除掉导电氧化物薄膜14表面的金属颗粒杂质和粉尘,改善电池片的表面脏污不良,提高产品良率;同时,去除掉导电氧化物薄膜14表面的颗粒杂质和粉尘之后,可以降低电池片的遮光面积,从而提升电池片的效率。
具体来说,首先采用含有硫酸和过氧化氢的第一药液,对具有导电氧化物薄膜14的异质结太阳电池基片进行氧化清洗,利用硫酸与活泼金属的反应,可以有效地将导电氧化物薄膜14上附着的金属杂质进行反应去除;同时,利用过氧化氢的强氧化性可以去除导电氧化物薄膜14上的一些粉尘杂质。通过硫酸与过氧化氢的共同作用,可以有效地导电氧化物薄膜14上的大部分杂质颗粒和常见活泼金属粉末和杂质,使清洗后的电池基片的导电 氧化物薄膜14表面洁净度更高。
稀硫酸和活泼金属的反应方程式如下:
Fe+H2SO4=FeSO4+H2
Zn+H2SO4=ZnSO4+H2
Mg+H2SO4=MgSO4+H2
2Al+3H2SO4=Al2(SO4)3+3H2
进一步地,通过采用含有碱和过氧化氢的第二药液,对经过氧化清洗后的导电氧化物薄膜14进行碱中和处理,在碱和过氧化氢的共同作用下,可以进一步去除掉导电氧化物薄膜14表面的有机脏污、金属颗粒物和金属杂质等,并利用碱可以对导电氧化物薄膜14上残留的酸进行碱中和,进一步提高电池片的清洁度。通过上述的氧化清洗与碱中和处理相结合的清洗方法,可以有效地去除导电氧化物薄膜14表面的颗粒杂质和粉尘等脏污,提高导电氧化物薄膜14表面的洁净度,从而改善电池片的表面脏污不良,提高电池片良率,减小电池片的遮光面积,提升电池片的效率。
此外,由于导电氧化物薄膜14一般为ITO薄膜,其耐磨性和耐酸碱化学腐蚀性(除HF外)均较好,且膜层硬度较高。本申请采用含有硫酸和过氧化氢的第一药液和含有碱和过氧化氢的第二药液对导电氧化物薄膜14进行清洗时,并不会对导电氧化物薄膜14造成损伤。
在其中一些实施例中,第一药液由质量含量为96%~98%的浓硫酸、质量含量为30%~40%的过氧化氢溶液和水按照体积比1:(8~10):(85~95)的比例进行混合配制而成。研究发现,通过采用上述方案对第一药液中的硫酸、过氧化氢和水进行合理配比,所形成的第一药液可以更加有效地提高对导电氧化物薄膜14表面脏污的清洗效果。
具体地,为了避免浓硫酸吸水剧烈放热而造成溶液飞溅和过氧化氢分解,在配置该第一药液时,药液的补加顺序为先加水,然后加浓硫酸,最后 加过氧化氢水溶液。这样,可以对浓硫酸进行安全合理稀释,并保持配置过程中药液成分配比不发生较大变化。
在其中一些实施例中,采用含有硫酸和过氧化氢的第一药液,对具有导电氧化物薄膜14的异质结太阳电池基片进行氧化清洗,其具体步骤为:将沉积导电氧化物薄膜14之后的异质结太阳电池基片,浸入到上述的第一药液中,在30℃~50℃温度条件下对导电氧化物薄膜14的表面进行清洗,清洗的时间控制在50s~120s。
可以理解,对导电氧化物薄膜14的表面进行清洗时第一药液的温度可以为但不局限于30℃、32℃、34℃、36℃、38℃、40℃、42℃、44℃、46℃、48℃、50℃;清洗的时间可以为但不局限于50s、60s、70s、80s、90s、100s、110s、120s。
具体地,在一个氧化清洗槽中加入上述的第一药液,该氧化清洗槽的容积为210L~230L,一次性可生产4篮共400片电池片。将具有导电氧化物薄膜14的异质结太阳电池基片浸入该氧化清洗槽的第一药液中进行氧化清洗。
在氧化清洗完成之后,再将异质结太阳电池基片置于水中进行鼓泡水洗30s~50s,从而去除掉导电氧化物薄膜14表面上残留的颗粒物质和部分药液。
在鼓泡水洗之后,再将异质结太阳电池基片置于含有碱和过氧化氢的第二药液中进行碱中和处理。其中,第二药液由质量含量为35%~45%的氢氧化钠、质量含量为30%~40%的过氧化氢溶液和水按照体积比1:(2~5):(25~30)混合配制而成。通过对第二药液中碱、过氧化氢和水进行合理配比,可以更好地提高电池片表面脏污的去除效果。通过采用上述成分的第二药液,可以有效去除导电氧化物薄膜14表面的有机脏污、颗粒物和金属杂质等,并利用氢氧化钠对残留的酸进行碱中和,提高硅片的清洁度。
在其中一些实施例中,将异质结太阳电池基片置于含有碱和过氧化氢的第二药液中进行碱中和处理,其具体步骤如下:将经过氧化清洗和鼓泡水洗之后的异质结太阳电池基片浸入到第二药液中,在30℃~40℃的温度条件下清洗30s~50s。
可以理解,清洗时第二药液的温度可以为但不局限于30℃、31℃、32℃、33℃、34℃、35℃、36℃、37℃、38℃、39℃、40℃;清洗的时间可以为但不局限于30s、32s、34s、36s、38s、40s、42s、44s、46s、48s、50s。
具体地,在一个碱中和处理槽中加入上述的第二药液,碱中和处理槽的容积设计为210L~230L,一次性生产4篮共400片电池片。将经过氧化清洗和鼓泡水洗之后的异质结太阳电池基片浸入该碱中和处理槽的第二药液中进行碱中和处理。
进一步地,在对异质结太阳电池基片进行上述的碱中和处理之后,还将该异质结太阳电池基片置于水中,在30℃~50℃的温度条件下,在不鼓泡的情况下进行清洗20s~35s;以去除掉导电氧化物薄膜14表面上的第二药液。
然后,将异质结太阳电池基片置于慢提拉水槽中,进行慢提拉缓慢提升,通过把花篮(用于放置电池片的载具)从水中缓慢提起以使电池片表面吸附的液体量降低,使清洗过的电池片缓慢脱水,提高清洁度高,且不会留下水痕。
在慢提拉脱水完成之后,再将电池片转入烘干槽中,利用氮气的干燥和排水性,对电池片导电氧化物薄膜14表面上的水进行去除。烘干温度设置为50℃~65℃。
通过上述的整个清洗方法,能够有效地去除掉导电氧化物薄膜14表面附着的金属颗粒杂质、黄色粉尘、灰尘杂质和其他有害物质。采用上述清洗 方法清洗前的异质结太阳电池基片的照片如图2所示,清洗后的异质结太阳电池基片的照片如图3所示。由图2和图3可以看出,经过上述的清洗处理之后,能够明显去除掉导电氧化物薄膜14表面的脏污。
步骤S600:在导电氧化物薄膜14上制备电极15。
在对导电氧化物薄膜14进行清洗之后,可以通过丝网印刷在导电氧化物薄膜14上制备银栅线电极15,也可以通过电镀铜的方式在导电氧化物薄膜14上制备形成铜电极。从而制备得到完整的异质结太阳电池10。
本申请所制备的异质结太阳电池10的结构如图1所示。由图1可见,该异质结太阳电池10包括n型的单晶硅衬底11、本征非晶硅层12、n型掺杂非晶硅层13a、p型掺杂非晶硅层13b、导电氧化物薄膜14和电极15。
其中,在n型的单晶硅衬底11的正面(即图1中单晶硅衬底11的上表面)上设置有本征非晶硅层12,在单晶硅衬底11的背面(即图1中单晶硅衬底11的下表面)上同样设置有本征非晶硅层12,在正面的本征非晶硅层12上设置有n型掺杂非晶硅层13a,在背面的本征非晶硅层12上设置有p型掺杂非晶硅层13b,在n型掺杂非晶硅层13a和p型掺杂非晶硅层13b上分别设置有导电氧化物薄膜14,在两个导电氧化物薄膜14上均设置有电极15。
总体而言,本申请通过在沉积导电氧化物薄膜14之后,采用上述的第一药液对导电氧化物薄膜14进行氧化清洗,水洗,采用上述的第二药液对导电氧化物薄膜14进行碱中和处理,水洗,慢提拉脱水,烘干的清洗方法;能够完全去除掉导电氧化物薄膜14表面附着的金属颗粒杂质、黄色粉尘、灰尘杂质和其他有害物质,很好地解决了物理气相沉积镀膜后电池片表面脏污严重的问题,使电池片表面的洁净度得到提升,同时避免了粉尘和杂质对丝网印刷电极良率的影响,使电池片表面脏污的不良率大幅降低,同时电池片的转换效率也得到一定程度的提升。
下面将结合具体实施例和对比例对本申请作进一步说明,但不应将其理解为对本申请保护范围的限制。
实施例1:
一种异质结太阳电池10的制备方法,包括如下步骤:
将n型的单晶硅衬底11在制绒清洗机台设备中进行制绒处理。
通过CVD在制绒后的单晶硅衬底11的正面和背面分别沉积本征非晶硅层12;通过CVD在正面的本征非晶硅层12上沉积n型掺杂非晶硅层13a,在背面的本征非晶硅层12上沉积p型掺杂非晶硅层13b,通过PVD在n型掺杂非晶硅层13a和p型掺杂非晶硅层13b上分别沉积导电氧化物薄膜14,得到异质结太阳电池基片。
采用含有硫酸和过氧化氢的第一药液对具有导电氧化物薄膜14的异质结太阳电池基片进行氧化清洗。其中,该第一药液由质量含量为98%的浓硫酸、质量含量为35%的过氧化氢溶液和水按照体积比1:9:88的比例混合配制而成。第一药液的温度为45℃,清洗的时间为70s。
在氧化清洗完成之后,将异质结太阳电池基片置于水中进行鼓泡水洗35s。
在鼓泡水洗之后,再将异质结太阳电池基片置于含有碱和过氧化氢的第二药液中进行碱中和处理。其中,第二药液由质量含量为45%的氢氧化钠、质量含量为40%的过氧化氢溶液和水按照体积比1:4:25混合配制而成。第二药液的温度为35℃,清洗的时间为45s。
将异质结太阳电池基片置于水中,在35℃的温度条件下,在不鼓泡的情况下进行清洗35s。
将异质结太阳电池基片置于慢提拉水槽中,进行慢提拉缓慢提升脱水;再将电池片转入烘干槽中,利用氮气的干燥和排水性,对电池片导电氧化物薄膜14表面上的水进行去除。其中,烘干温度设置为65℃。
通过丝网印刷在导电氧化物薄膜14上制备银栅线电极15,形成异质结太阳电池10。
对所制备的异质结太阳电池10的产品良率进行测试,观察异质结太阳电池10中导电氧化物薄膜14上的表面脏污情况。导电氧化物薄膜14上表面脏污不良的比例如表1所示。对所制备的异质结太阳电池10的电化学性能进行测试,测试方法为通过模拟太阳光照射,利用IV测试仪光致电原理,在标准条件下对电池片的不良缺陷和发电能力进行测试,测试结果如表1所示。
实施例2:
采用含有硫酸和过氧化氢的第一药液对具有导电氧化物薄膜14的异质结太阳电池基片进行氧化清洗。其中,该第一药液由质量含量为97%的浓硫酸、质量含量为40%的过氧化氢溶液和水按照体积比1:10:95的比例混合配制而成。第一药液的温度为50℃,清洗的时间为100s。
在氧化清洗完成之后,将异质结太阳电池基片置于水中进行鼓泡水洗35s。
在鼓泡水洗之后,再将异质结太阳电池基片置于含有碱和过氧化氢的第二药液中进行碱中和处理。其中,第二药液由质量含量为45%的氢氧化钠、质量含量为40%的过氧化氢溶液和水按照体积比1:5:30混合配制而成。第二药液的温度为40℃,清洗的时间为50s。
将异质结太阳电池基片置于水中,在35℃的温度条件下,在不鼓泡的情况下进行清洗35s。
将异质结太阳电池基片置于慢提拉水槽中,进行慢提拉缓慢提升脱水;再将电池片转入烘干槽中,利用氮气的干燥和排水性,对电池片导电氧化物薄膜14表面上的水进行去除。其中,烘干温度设置为60℃。
通过丝网印刷在导电氧化物薄膜14上制备银栅线电极15,形成异质结 太阳电池10。
对所制备的异质结太阳电池10的产品良率进行测试,观察异质结太阳电池10中导电氧化物薄膜14上的表面脏污情况。导电氧化物薄膜14上表面脏污不良的比例如表1所示。对所制备的异质结太阳电池10的电化学性能进行测试,测试方法与实施例1相同,测试结果如表1所示。
对比例1:
该对比例采用常规的异质结太阳电池10的生产工艺。即与实施例1相比,只是不对具有积导电氧化物薄膜14的异质结太阳电池基片进行氧化清洗、水洗、碱中和处理、水洗、慢提拉脱水和干燥的一些列清洗操作。而是在沉积导电氧化物薄膜14之后,在导电氧化物薄膜14上制备电极15。
对该对比例所制备的异质结太阳电池10的产品良率进行测试,观察异质结太阳电池10中导电氧化物薄膜14上的表面脏污情况。导电氧化物薄膜14上表面脏污不良的比例如表1所示。对所制备的异质结太阳电池10的电池效率进行测试,测试方法与实施例1相同,测试结果如表1所示。
表1各实施例和对比例的不良比例和电化学性能测试数据
由表1可见,本申请实施例1和实施例2所制备的异质结太阳电池10的表面脏污不良占比明显低于传统方法制备的电池片。实施例1和实施例2的电池片的电性能也得到一定程度的提升。其中,转换效率较传统方法制备的电池片提升约0.06%,短路电流提升0.01A左右,开路电压和填充因子也略有提升。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种太阳电池的制备方法,其特征在于,包括如下步骤:
    提供具有导电氧化物薄膜的太阳电池基片;
    利用含有硫酸和过氧化氢的第一药液对所述导电氧化物薄膜进行氧化清洗;
    利用含有碱和过氧化氢的第二药液对经过氧化清洗后的所述导电氧化物薄膜进行碱中和处理;以及
    在经所述碱中和处理后的所述导电氧化物薄膜上制备电极。
  2. 根据权利要求1所述的太阳电池的制备方法,其特征在于,所述第一药液主要由质量含量96%~98%的硫酸、质量含量30%~40%的过氧化氢溶液和水按照体积比1:(8~10):(85~95)混合形成。
  3. 根据权利要求1或2所述的太阳电池的制备方法,其特征在于,所述氧化清洗包括如下步骤:
    将所述太阳电池基片浸入所述第一药液中,在30℃~50℃温度下清洗50s~120s。
  4. 根据权利要求1至3中任一项所述的太阳电池的制备方法,其特征在于,所述第二药液主要由质量含量35%~45%的氢氧化钠、质量含量30%~40%的过氧化氢溶液和水按照体积比1:(2~5):(25~30)混合形成。
  5. 根据权利要求1至4中任一项所述的太阳电池的制备方法,其特征在于,所述碱中和处理包括如下步骤:
    将经过氧化清洗后的所述太阳电池基片浸入所述第二药液中,在30℃~40℃温度下清洗30s~50s。
  6. 根据权利要求1至5中任一项所述的太阳电池的制备方法,其特征在于,在所述氧化清洗之后,所述碱中和处理之前,所述制备方法还包括将所 述太阳电池基片置于水中进行鼓泡水洗30s~50s的步骤。
  7. 根据权利要求1至6中任一项所述的太阳电池的制备方法,其特征在于,在所述碱中和处理之后,所述制备电极之前,所述制备方法还包括将所述太阳电池基片置于水中在30℃~50℃温度下不鼓泡清洗20s~35s的步骤。
  8. 根据权利要求7所述的太阳电池的制备方法,其特征在于,在所述不鼓泡清洗之后,所述制备电极之前,所述制备方法还包括将所述太阳电池基片依次进行慢提拉脱水和在50℃~65℃下干燥的步骤。
  9. 根据权利要求1至8中任一项所述的太阳电池的制备方法,其特征在于,通过丝网印刷或电镀铜的方法在所述导电氧化物薄膜上制备所述电极。
  10. 根据权利要求1至9中任一项所述的太阳电池的制备方法,其特征在于,所述太阳电池基片的制备方法包括如下步骤:
    在单晶硅衬底上形成非晶硅层;以及
    在所述非晶硅层上形成所述导电氧化物薄膜。
  11. 根据权利要求10所述的太阳电池的制备方法,其特征在于,在单晶硅衬底上形成非晶硅层之前,所述太阳电池基片的制备方法还包括对所述单晶硅衬底进行制绒处理以在所述单晶硅衬底表面形成绒面陷光结构的步骤。
  12. 根据权利要求10或11所述的太阳电池的制备方法,其特征在于,在单晶硅衬底上形成非晶硅层包括如下步骤:
    在所述单晶硅衬底上形成本征非晶硅层;以及
    在所述本征非晶硅层上形成掺杂非晶硅层。
  13. 根据权利要求10至12中任一项所述的太阳电池的制备方法,其特征在于,通过等离子体增强化学气相沉积的方法在所述单晶硅衬底上形成所述非晶硅层。
  14. 根据权利要求10至13中任一项所述的太阳电池的制备方法,其特征在于,通过物理气相沉积的方法在所述非晶硅层上形成所述导电氧化物薄膜。
  15. 一种太阳电池,其特征在于,所述太阳电池通过权利要求1至14中任一项所述的太阳电池的制备方法制备得到。
  16. 根据权利要求15所述的太阳电池,其特征在于,包括:
    单晶硅衬底;
    非晶硅层,设于所述单晶硅衬底的至少一个表面上;
    导电氧化物薄膜,设于所述非晶硅层背离所述非晶硅层一侧的表面上;以及
    电极,设于所述导电氧化物薄膜背离所述非晶硅层一侧的表面上。
  17. 根据权利要求16所述的太阳电池,其特征在于,所述非晶硅层包括本征非晶硅层和掺杂非晶硅层,所述本征非晶硅层设于所述单晶硅衬底的表面上,所述掺杂非晶硅层设于所述本征非晶硅层背离所述单晶硅衬底一侧的表面上。
PCT/CN2023/084920 2022-08-31 2023-03-30 太阳电池及其制备方法 WO2024045595A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211052944.4 2022-08-31
CN202211052944.4A CN115312626A (zh) 2022-08-31 2022-08-31 太阳电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2024045595A1 true WO2024045595A1 (zh) 2024-03-07

Family

ID=83864940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084920 WO2024045595A1 (zh) 2022-08-31 2023-03-30 太阳电池及其制备方法

Country Status (2)

Country Link
CN (1) CN115312626A (zh)
WO (1) WO2024045595A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312626A (zh) * 2022-08-31 2022-11-08 通威太阳能(安徽)有限公司 太阳电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820019A (zh) * 2009-12-14 2010-09-01 湖南共创光伏科技有限公司 制造薄膜太阳能电池的硅基薄膜沉积方法
CN102483998A (zh) * 2009-09-02 2012-05-30 班戈大学 染料敏化太阳能电池的低温镀铂
CN109378363A (zh) * 2018-11-27 2019-02-22 淮阴工学院 一种制备具有正金字塔/倒金字塔复合结构硅片的方法
CN110137296A (zh) * 2018-02-08 2019-08-16 国家电投集团科学技术研究院有限公司 硅异质结太阳电池及其制备方法
CN115312626A (zh) * 2022-08-31 2022-11-08 通威太阳能(安徽)有限公司 太阳电池及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437176A (zh) * 2021-01-30 2021-09-24 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) 一种异质结电池制备方法
CN113948368A (zh) * 2021-10-20 2022-01-18 通威太阳能(安徽)有限公司 一种返工片的清洗方法
CN114256382A (zh) * 2021-12-11 2022-03-29 通威太阳能(安徽)有限公司 硅片的制绒清洗方法及晶硅太阳能电池的制备方法
CN216749927U (zh) * 2021-12-11 2022-06-14 通威太阳能(安徽)有限公司 异质结电池不良品的返工处理***
CN114597270B (zh) * 2022-05-09 2022-07-29 苏州晶洲装备科技有限公司 一种异质结太阳电池及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483998A (zh) * 2009-09-02 2012-05-30 班戈大学 染料敏化太阳能电池的低温镀铂
CN101820019A (zh) * 2009-12-14 2010-09-01 湖南共创光伏科技有限公司 制造薄膜太阳能电池的硅基薄膜沉积方法
CN110137296A (zh) * 2018-02-08 2019-08-16 国家电投集团科学技术研究院有限公司 硅异质结太阳电池及其制备方法
CN109378363A (zh) * 2018-11-27 2019-02-22 淮阴工学院 一种制备具有正金字塔/倒金字塔复合结构硅片的方法
CN115312626A (zh) * 2022-08-31 2022-11-08 通威太阳能(安徽)有限公司 太阳电池及其制备方法

Also Published As

Publication number Publication date
CN115312626A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2022142475A1 (zh) 一种 n 型高效太阳能电池及制备方法
CN110444611A (zh) 一种氧化物钝化接触的太阳能电池及其制备方法
CN110518127B (zh) 一种基于表面活性剂钝化的钙钛矿太阳能电池及制备方法
WO2024045595A1 (zh) 太阳电池及其制备方法
CN112542531A (zh) 一种硅片预处理及异质结电池制备方法
CN113471337B (zh) 异质结太阳能电池片的制备方法
WO2023077772A1 (zh) 太阳能电池及其制备方法
EP4394894A1 (en) Semiconductor substrate and processing method therefor, and solar cell and preparation method therefor
WO2023221369A1 (zh) 一种异质结电池及其制备方法
CN116504877A (zh) 异质结电池及其制备方法
CN113725364A (zh) 氢碘酸修饰的锡铅混合钙钛矿太阳能电池及其制备方法
CN114284395A (zh) 一种先制绒后吸杂的硅基异质结太阳能电池的制备方法
CN110137296A (zh) 硅异质结太阳电池及其制备方法
CN113921649A (zh) 一种硅基异质结太阳能电池制备方法
CN114188444B (zh) 异质结电池tco膜的清洗方法及应用、电池片、异质结电池的制备方法
CN111063805A (zh) 一种有机-无机钙钛矿太阳能电池及制备和回收方法
CN108493299A (zh) Azo透明导电薄膜及其制备方法和应用
CN113594373A (zh) 一种钙钛矿太阳能电池、制备方法、电池组件及光伏***
CN113437176A (zh) 一种异质结电池制备方法
CN113410339B (zh) 一种高稳定性纳米铜导电薄膜的制备及其应用
CN221057443U (zh) 一种单面钝化接触异质结电池及光伏组件
CN215771207U (zh) 一种钙钛矿太阳能电池、电池组件及光伏***
CN115548169B (zh) 一种氧化锌镓作为透明电极的非晶硅太阳能电池及其制备方法
CN113437225B (zh) 一种光子晶体修饰的钙钛矿太阳能电池及其制备方法
CN220604704U (zh) 一种双面掺杂多晶硅钝化接触电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858636

Country of ref document: EP

Kind code of ref document: A1