WO2024045031A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024045031A1
WO2024045031A1 PCT/CN2022/116165 CN2022116165W WO2024045031A1 WO 2024045031 A1 WO2024045031 A1 WO 2024045031A1 CN 2022116165 W CN2022116165 W CN 2022116165W WO 2024045031 A1 WO2024045031 A1 WO 2024045031A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
layer
energy
interference layer
terminal device
Prior art date
Application number
PCT/CN2022/116165
Other languages
English (en)
French (fr)
Inventor
毕晓艳
蒋成龙
刘永
刘磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/116165 priority Critical patent/WO2024045031A1/zh
Publication of WO2024045031A1 publication Critical patent/WO2024045031A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present application relates to the field of mobile communication technology, and in particular, to a communication method and device.
  • Channel estimation or channel measurement
  • CE channel estimation
  • This application provides a communication method and device to reduce the complexity of channel estimation at the receiving end and improve the performance of the receiving end.
  • this application provides a communication method to reduce the complexity of channel estimation at the receiving end and improve the performance of the receiving end.
  • the method can be implemented by the first terminal device.
  • the first terminal device may be a terminal device or a component in the terminal device.
  • the components in this application may include, for example, at least one of a processor, a transceiver, a processing unit, or a transceiver unit.
  • the method can be implemented through the following steps: the first terminal device receives first information, the first information is used to indicate the port corresponding to the first interference layer of the first terminal device , the first interference layer is one or more interference layers among multiple interference layers of the first terminal device, and the first interference layer is the transmission layer of the second terminal device.
  • the first terminal device performs channel estimation based on the port corresponding to the first interference layer.
  • the first terminal device can perform channel estimation on the port corresponding to the first interference layer indicated by the first information according to the first information, which can reduce the channel estimation complexity of the first terminal device. , which can improve the reception performance of the first terminal device.
  • the first terminal device may determine an equalization coefficient according to a result of channel estimation, and receive data according to the equalization coefficient.
  • the first terminal device can determine the equalization coefficient according to the estimation result, and receive data according to the equalization coefficient to reduce interference.
  • the first terminal device may perform channel estimation based on a first time-frequency resource, and the first time-frequency resource corresponds to a port corresponding to the first interference layer. According to this implementation method, the time-frequency resources required for channel estimation can be accurately determined and the accuracy of channel estimation can be improved.
  • the first terminal device may perform channel estimation according to the first time-frequency resource and according to the time-frequency resource corresponding to the noise and/or the time-frequency resource corresponding to the data to be transmitted. According to this implementation, the channel estimation accuracy can be further improved.
  • the first interference layer is determined based on interference energy, and the interference energy of the first interference layer satisfies at least one of the following: the interference energy of the first interference layer is higher than that of the second interference layer.
  • the interference energy of the interference layer, the plurality of interference layers also includes the second interference layer; the interference energy of the first interference layer is not lower than the energy threshold; the interference energy of the first interference layer accounts for 1/2 of the total interference energy The ratio is not lower than the ratio threshold, and the total interference energy is the sum of the interference energy of all interference layers of the first terminal device; the first interference layer includes multiple interference layers, and the interference energy of the multiple interference layers The sum of the interference energies is not lower than the energy threshold; the first interference layer includes multiple interference layers, the proportion of the sum of the interference energies of the multiple interference layers to the total interference energy is not lower than the proportion threshold, and the sum of the interference energies is The sum of the interference energy of all interference layers of the first terminal device; the interference energy of the first interference layer is the N interference layers with the highest interference energy
  • the first interference layer can be flexibly determined according to transmission requirements.
  • the first information includes indication information of ports corresponding to the first interference layer and/or port indication information corresponding to the second interference layer, and the second interference layer does not include the The first interference layer.
  • the first interference layer and/or the second interference layer other than the first interference layer can be flexibly indicated through the port indication information.
  • the first information also includes indication information of a port group
  • the first terminal device can also determine whether the port corresponding to the data to be transmitted, the port in the port group, and the first interference
  • the indication information of the port corresponding to the layer and/or the port indication information corresponding to the second interference layer determines the port corresponding to the first interference layer.
  • the first interference layer and/or the second interference layer can be flexibly indicated through port indication information and port group indication information.
  • the first information includes indication information of a port group
  • the first terminal device can determine the first interference layer based on the port corresponding to the data to be transmitted and the ports in the port group. The corresponding port.
  • the first interference layer and/or the second interference layer can be flexibly indicated through the indication information of the port group.
  • this application provides a communication method to reduce the complexity of channel estimation at the receiving end and improve the performance of the receiving end.
  • the method may be implemented by a network device or a component in the network device (such as a network device).
  • the components in this application may include, for example, at least one of a processor, a transceiver, a processing unit, or a transceiver unit.
  • the method can be implemented through the following steps: the network device determines first information, the first information is used to indicate the port corresponding to the first interference layer of the first terminal device, the first interference layer A layer is one or more interference layers among multiple interference layers of the first terminal device, and the first interference layer is a transmission layer of the second terminal device.
  • the network device sends the first information to the first terminal device.
  • the first interference layer is determined based on interference energy, and the interference energy of the first interference layer satisfies at least one of the following: the interference energy of the first interference layer is higher than that of the second interference layer.
  • the interference energy of the interference layer, the plurality of interference layers also includes the second interference layer; the interference energy of the first interference layer is not lower than the energy threshold; the interference energy of the first interference layer accounts for 1/2 of the total interference energy The ratio is not lower than the ratio threshold, and the total interference energy is the sum of the interference energy of all interference layers of the first terminal device; the first interference layer includes multiple interference layers, and the interference energy of the multiple interference layers The sum of the interference energies is not lower than the energy threshold; the first interference layer includes multiple interference layers, the proportion of the sum of the interference energies of the multiple interference layers to the total interference energy is not lower than the proportion threshold, and the sum of the interference energies is The sum of the interference energy of all interference layers of the first terminal device; the interference energy of the first interference layer is the N interference layers with the highest interference energy
  • the first information includes indication information of ports corresponding to the first interference layer and/or port indication information corresponding to the second interference layer, and the second interference layer does not include the The first interference layer.
  • the first information also includes indication information of a port group, ports in the port group, ports corresponding to the data to be transmitted of the first terminal device, and the first interference
  • the indication information of the port corresponding to the layer and/or the port indication information corresponding to the second interference layer is used to determine the port corresponding to the first interference layer.
  • the first information includes indication information of a port group, and the ports in the port group and the ports corresponding to the data to be transmitted are used to determine the ports corresponding to the first interference layer.
  • a communication device in a third aspect, can implement the method executed by the first terminal device in the above first aspect and any possible implementation thereof, or be used to implement the method executed by the network device in the above second aspect and any possible design thereof.
  • the device is, for example, a first terminal device, a network device, or a component in the network device.
  • the device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the above first to second aspects and any possible implementation, and the module may be The hardware circuit may also be implemented by software, or the hardware circuit may be combined with software.
  • the device includes a processing unit (sometimes also called a processing module) and a communication unit (sometimes also called a communication module, transceiver module or transceiver unit).
  • the communication unit can realize the sending function and the receiving function.
  • the sending unit sometimes also called the sending module
  • the receiving unit sometimes also called the sending module
  • receiving module When the communication unit realizes the receiving function, it can be called the receiving unit (sometimes also called the sending module).
  • the sending unit and the receiving unit may be the same functional module, which can realize the sending function and the receiving function; or the sending unit and the receiving unit may be different functional modules, and the sending and receiving unit is a collective name for these functional modules.
  • the device includes: a processor coupled to a memory and configured to execute instructions in the memory to implement the methods described in the above first to second aspects and any possible implementation manner.
  • the device also includes other components, such as antennas, input and output modules, interfaces, etc. These components can be hardware, software, or a combination of software and hardware.
  • the fourth aspect provides a communication method.
  • the communication method may include the method performed by the first terminal device shown in the first aspect and any possible design thereof, and may include the second aspect and any possible design thereof.
  • the communication method may be implemented by a communication system including a first terminal device and a network device.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium is used to store a computer program or instructions that, when executed, enable the method of any one of the first to second aspects to be implemented.
  • a sixth aspect provides a computer program product containing instructions that, when run on a computer, enables the method described in any one of the first to second aspects to be implemented.
  • a seventh aspect provides a chip system, which includes a logic circuit (or is understood to include a processor, and the processor may include a logic circuit, etc.), and may also include an input and output interface.
  • the input and output interface can be used to receive messages or send messages.
  • the input and output interfaces can be the same interface, that is, the same interface can realize both the sending function and the receiving function; or the input and output interface includes an input interface and an output interface, and the input interface is used to realize the receiving function, that is, used to receive Message; the output interface is used to implement the sending function, that is, used to send messages.
  • the logic circuit can be used to perform operations other than the transceiver function in the methods described in the above first aspect to the second aspect and any possible implementation manner; the logic circuit can also be used to transmit messages to the input-output interface, or from the input-output interface Receive messages from other communication devices.
  • the chip system can be used to implement the methods described in the above first to second aspects and any possible implementation manner.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • the chip system can also include a memory, which can be used to store instructions, and the logic circuit can call the instructions stored in the memory to implement corresponding functions.
  • An eighth aspect provides a communication system, which may include a device for realizing the first aspect and any possible design thereof, such as a first terminal device, and a device for realizing the second aspect and any possible design thereof.
  • Devices such as network equipment.
  • Figure 1 is a schematic architectural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is an architectural schematic diagram of another wireless communication system provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a first interference layer and a second interference layer provided by an embodiment of the present application
  • Figure 5 is a schematic diagram of a DMRS pattern provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Embodiments of the present application provide a communication method and device. Among them, the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated parts will not be repeated.
  • "and/or" describes the association relationship of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, alone There are three situations B.
  • the character "/" generally indicates that the related objects are in an "or” relationship. At least one mentioned in this application refers to one or more; multiple refers to two or more.
  • the methods provided by the embodiments of this application can be applied to fourth generation (4th generation, 4G) communication systems, such as long term evolution (long term evolution, LTE) communication systems, and can also be applied to fifth generation (5th generation, 5G) communication systems. , such as 5G new radio (NR) communication system, or applied to various future communication systems, such as sixth generation (6th generation, 6G) communication system.
  • the methods provided by the embodiments of this application can also be applied to Bluetooth systems, wireless fidelity (wireless fidelity, Wifi) systems, long range radio (long range radio, LoRa) systems or car networking systems.
  • the method provided by the embodiment of the present application can also be applied to a satellite communication system, and the satellite communication system can be integrated with the above-mentioned communication system.
  • a communication system includes a network device 101 and a terminal device 102 .
  • the apparatus provided in the embodiment of this application can be applied to the network device 101 or to the terminal device 102.
  • FIG. 1 only shows one possible communication system architecture to which embodiments of the present application can be applied. In other possible scenarios, the communication system architecture may also include other devices.
  • Network device 101 is a node in a radio access network (radio access network, RAN), which can also be called a base station or a RAN node (or device).
  • radio access network radio access network
  • RAN radio access network
  • some examples of access network equipment are: next-generation base station (gNodeB/gNB/NR-NB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), wireless network control Radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B (HNB), base band unit (BBU), or wireless fidelity (Wifi) access point (AP), satellite equipment, or network equipment in a 5G communication system, or Network equipment in possible future communication systems.
  • gNodeB/gNB/NR-NB next-generation base station
  • TRP transmission reception point
  • eNB evolved Node B
  • eNB wireless network control
  • the network device 101 can also be other devices with network device functions.
  • the network device 101 can also be a device that serves as a network device in device-to-device (D2D) communication, Internet of Vehicles communication, and machine communication.
  • the network device 101 may also be a network device in a possible future communication system.
  • gNB may include centralized units (CU) and distributed units (DU).
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU implements radio resource control (RRC) and packet data convergence protocol (PDCP) layer functions
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless chain Radio link control (RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC wireless chain Radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, or the CU can be divided into network equipment in the core network CN, which is not limited here.
  • Terminal equipment 102 which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is a device that provides voice or data connectivity to users. , or it can be an IoT device.
  • terminal devices include handheld devices with wireless connection functions, vehicle-mounted devices, etc.
  • terminal devices can be: mobile phones, tablets, laptops, PDAs, mobile Internet devices (MID), wearable devices (such as smart watches, smart bracelets, pedometers, etc.), vehicle-mounted devices ( For example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, smart home equipment ( For example, refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in driverless driving, wireless terminals in remote surgery, wireless terminals in smart grids, wireless terminals in transportation safety , wireless terminals in smart cities, or wireless terminals in smart homes, flying equipment (such as smart robots, hot air balloons, drones, airplanes), etc.
  • MID mobile Internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, etc.
  • vehicle-mounted devices For example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.
  • the terminal device may also be other devices with terminal functions.
  • the terminal device may also be a device that serves as a terminal function in D2D communication.
  • terminal equipment with wireless transceiver functions and chips that can be installed in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • the communication method provided by the embodiment of the present application can also be used in a system in which terminal devices directly communicate with each other, such as communication between terminal devices based on the direct cellular communication protocol (PC5). Therefore, this method can be applied to communication scenarios with network coverage (shown as number a or number b in Figure 2) and communication scenarios without network coverage (shown as number c in Figure 2).
  • PC5 direct cellular communication protocol
  • wireless communication is performed between the network device 101 and the terminal device 102 based on the UTRAN-to-UE (Uu) air interface of the terrestrial wireless access network.
  • the transceiver and receiver of wireless communication are both terminal devices.
  • network equipment can be a traditional macro base station eNB (evolved node B) in a universal mobile telecommunications system (UMTS) or LTE wireless communication system, or a micro base station in a HetNet (Heterogeneous Network, heterogeneous network) scenario.
  • the base station eNB can be a base band unit (base band unit,) and a remote radio unit (RRU) in a distributed base station scenario. It can be a baseband unit (cloud radio access network, CRAN) in a cloud wireless access network (cloud radio access netowrk, CRAN) scenario.
  • the pool (BBU pool) and RRU can be gNB in future wireless communication systems.
  • the terminal device can be a vehicle-mounted communication module or other embedded communication module, or it can be a user's handheld communication device, including mobile phones, tablet computers, etc.
  • Antenna ports are referred to as ports. It can be understood as a transmitting antenna recognized by the receiving end, or a transmitting antenna that can be distinguished in space.
  • An antenna port can be configured for each virtual antenna, and each virtual antenna can be a weighted combination of multiple physical antennas. According to the different signals carried, antenna ports can be divided into reference signal ports and data ports.
  • the reference signal port includes, but is not limited to, a demodulation reference signal (DMRS) port, a channel state information reference signal (channel state information reference signal, CSI-RS) port, etc.
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference signal
  • This application includes existing ports and new ports.
  • Existing ports refer to ports in existing protocols or ports that support technical solutions in existing protocols; new ports refer to ports that can support the technical solutions of this application. .
  • time-frequency resources may include resources in the time domain and resources in the frequency domain.
  • the time-frequency resources may include one or more time domain units (or may also be called time units, time units), and in the frequency domain, the time-frequency resources may include one or more frequency domain units .
  • a time domain unit can be one symbol or several symbols (such as orthogonal frequency division multiplexing (OFDM) symbols), or a mini-slot (mini-slot), or a time slot (slot) ), or a subframe, where the duration of a subframe in the time domain can be 1 millisecond (ms), a time slot consists of 7 or 14 symbols, and a mini-slot can include at least one symbols (for example, 2 symbols or 7 symbols or 14 symbols, or any number of symbols less than or equal to 14 symbols).
  • OFDM orthogonal frequency division multiplexing
  • mini-slot mini-slot
  • time slot time slot
  • a subframe where the duration of a subframe in the time domain can be 1 millisecond (ms)
  • a time slot consists of 7 or 14 symbols
  • a mini-slot can include at least one symbols (for example, 2 symbols or 7 symbols or 14 symbols, or any number of symbols less than or equal to 14 symbols).
  • the listed time domain unit sizes are only for the
  • a frequency domain unit can be a resource block (RB), or a subcarrier (subcarrier), or a resource block group (RBG), or a predefined subband (subband), or a Precoding resource block group (PRG), or a bandwidth part (BWP), or a resource element (RE) (or resource particle), or a carrier, or a serving cell.
  • RB resource block
  • RBG resource block group
  • PRG Precoding resource block group
  • BWP bandwidth part
  • RE resource element
  • the transmission unit mentioned in the embodiment of this application may include any one of the following: a time domain unit, a frequency domain unit, or a time-frequency unit.
  • the transmission unit mentioned in the embodiment of this application may be replaced by a time domain unit, It can also be replaced by a frequency domain unit or a time-frequency unit.
  • the transmission unit can also be replaced by a transmission opportunity.
  • the time domain unit may include one or more OFDM symbols, or the time domain unit may include one or more slots, and so on.
  • the frequency domain unit may include one or more RBs, or the frequency domain unit may include one or more subcarriers, and so on.
  • the transport layer may also be called the spatial layer.
  • the transport layer may also be called the spatial layer.
  • multiple parallel data streams can be transmitted simultaneously on the same time-frequency resources.
  • Each data stream is called a transmission layer, or spatial layer or spatial stream.
  • a DMRS port corresponds to a transport layer
  • each transport layer corresponds to a data stream.
  • channel estimation refers to the process of reconstructing or restoring the received signal in order to compensate for the signal distortion caused by channel fading and noise fading. It uses the reference signal preset by the transmitting end and the receiving end to track the time domain sum of the channel. Frequency domain changes.
  • the above-mentioned reference signals are also called pilot signals or reference signals. They are distributed on different resource units in the time-frequency two-dimensional space within the OFDM symbol and have known amplitudes and phases.
  • each transmitting antenna has an independent channel.
  • the NR system defines a variety of pilot symbols: CSI-RS, DMRS and sounding reference signal (SRS), etc.
  • CSI-RS can be used to assist the demodulation of the physical downlink share channel (PDSCH).
  • CSI-RS is used for downlink channel measurement corresponding to the physical antenna port.
  • the receiving end performs channel estimation on the antenna port sent by the base station, and uses the estimation results to provide channel quality information (channel state information, CSI) feedback.
  • CSI may include channel quality indicator (channel quality indicator, CQI), precoding matrix indicator (precoding matrix indicator, PMI), layer indicator (layer indicator, LI) or rank indicator (rank indicator, RI), etc.
  • CQI channel quality indicator
  • precoding matrix indicator precoding matrix indicator
  • PMI precoding matrix indicator
  • layer indicator layer indicator
  • rank indicator rank indicator
  • RI rank indicator
  • the network device estimates the uplink channel through the received SRS, and can perform frequency selective resource scheduling, power control, timing estimation and modulation/coding scheme order selection based on this information, as well as downlink TDD Precoding generation, etc.
  • the receiving end performs channel estimation on the time-frequency resources of the port, and determines the equalization coefficient (or equalization matrix) based on the estimation result.
  • the equalization coefficient is used to perform interference cancellation processing on the communication signal to achieve better reception performance. For example, based on the equalization coefficient, one transmission layer among multiple transmission layers transmitted in parallel can be modeled as an interference signal, and one transmission layer can be modeled as a useful signal, and the influence of the interference signal on the useful signal can be eliminated at the receiving end through an equalizer. .
  • An optional way to eliminate interference is to multiply the baseband signal of the receiving end antenna according to the equalization coefficient. Different antenna ports or receiving channels are multiplied by different coefficients to eliminate interference. The receiving end uses the calculated signal as the receiving baseband. Signal.
  • the first terminal device may separately weight the signals received by each receiving antenna of the first terminal device according to a specific weighting coefficient, and finally combine these weighted signals to obtain data on a specific transmission layer.
  • Weighting matrix of user k (i.e. equalization coefficient) satisfy:
  • I k represents the identity matrix
  • Nlayer k represents the number of transmission layers of user k
  • Nrx represents the number of receiving antenna ports of user k.
  • l represents the interfering user l, which transmits data in parallel with user k on the same time-frequency resource, causing interference to user k;
  • Heq,kl represents the equivalent channel matrix observed on user k when interfering user l transmits data; Represents the conjugate transpose matrix of matrix Heq ,kl , Represents the noise power.
  • the channel matrix The dimension of is positively related to the number of parallel streams, where Nlayer l represents the number of transmission layers interfering with user l.
  • the increasing number of antenna ports leads to the processing of receiving-end channels.
  • the complexity continues to increase, resulting in degraded performance at the receiving end.
  • Applications that increase the complexity of the receiving end include: On the one hand, if the antenna port that requires channel estimation cannot be reasonably determined, it is easy to miss the strong interference source of the received signal, and the accurate noise interference channel covariance matrix cannot be obtained through channel estimation. It is impossible to use accurate equalization coefficients to interfere continuously, resulting in a decrease in transmission quality. On the other hand, if channel estimation is performed on all antenna ports, although the transmission performance will not be reduced, the complexity of the channel estimation process will be greatly increased.
  • Embodiments of the present application provide a communication method to reduce the channel measurement complexity of the receiving end and improve the performance of the receiving end.
  • the communication method is introduced below by taking the first terminal device and the network device of the execution subject as an example. It can be understood that the first terminal device in this application may be a terminal device or a component in the terminal device.
  • the communication method provided by the embodiment of the present application may include the following steps:
  • the first terminal device receives first information, and the first information is used to indicate the port corresponding to the first interference layer of the first terminal device.
  • the first interference layer is one or more interference layers among multiple interference layers of the first terminal device, and the first interference layer is the transmission layer of the second terminal device.
  • the second terminal device includes multiple transmission layers, and the first interference layer
  • the interference layer is one or more transmission layers among the plurality of transmission layers.
  • the second terminal device may include one or more terminal devices, or may include components in one or more terminal devices.
  • the first interference layer may also be called a key interference layer.
  • the first information may come from a network device.
  • the first terminal device is the receiving end, and the network device is the sending end.
  • the first information may be determined or generated by the network device.
  • the network device transmits data to UE1 and UE2 on the same time and frequency domain resources. Both UE1 and UE2 have 3 transmission layers each.
  • the interference layer of UE1 includes the 3 transmission layers of UE2.
  • the first interference layer of UE1 can be one or more of the 3 transmission layers of UE2. layer.
  • the coupling term between the receiving antennas of the first interference layer of the first terminal device has a greater impact on the performance of MIMO equalization. Therefore, ignoring the measurement of the first interference layer will have a greater impact on communication reliability. .
  • the coupling term is the matrix Off-diagonal elements.
  • the plurality of interference layers of the first terminal device may also include a second interference layer.
  • the second interference layer has relatively weak interference energy.
  • the second interference layer is an interference layer other than the first interference layer among the interference layers of the first terminal device.
  • interference energy may refer to the energy of an interference layer detected by a terminal device or a transmission layer of the terminal device.
  • the second interference layer may also be called a non-critical interference layer in this application.
  • the network device may determine the first interference layer and/or the second interference layer from multiple interference layers of the first terminal device according to the interference energy.
  • the interference energy may be determined based on the precoded equivalent channel matrix of the first terminal device.
  • the interference energy of the first interference layer satisfies any one or more of the following conditions, so the first interference layer can be determined based on the interference energy of the interference layer.
  • Condition 1 The interference energy of the first interference layer is higher than the interference energy of the second interference layer.
  • the interference energy of the first interference layer of the first terminal device is at least higher than the interference energy of at least one interference layer (called the second interference layer) among all interference layers of the first terminal device.
  • the interference layer of UE1 includes transmission layer 1 to transmission layer 3 of UE2.
  • the interference energy of the transmission layer 1 to transmission layer 3 for UE1 is expressed as P1 to P3 respectively. If P1 ⁇ P2 ⁇ P3, then for UE1 Say, the transmission layer 2 and transmission layer 3 of UE2 are the first interference layer of UE1, and the transmission layer 1 of UE2 is the second interference layer of UE1, or the transmission layer 3 of UE2 is the first interference layer of UE1, and the transmission layer of UE2 2 and transmission layer 1 are the second interference layer of UE1.
  • Condition 2 The interference energy of the first interference layer is not lower than the energy threshold (or called the first threshold).
  • an interference layer whose interference energy is not lower than the first threshold among all interference layers of the first terminal device may be used as the first interference layer.
  • the interference layer whose interference energy is lower than the first threshold can also be used as the second interference layer.
  • the interference layer of UE1 includes transmission layer 1 to transmission layer 3 of UE2.
  • the interference energy of the transmission layer 1 to transmission layer 3 for UE1 is expressed as P1 to P3 respectively. If P1 ⁇ Pth, P2>Pth and P3 ⁇ Pth, where Pth represents the first threshold, then for UE1, the transmission layer 2 of UE2 is the first interference layer of UE1, and the transmission layer 1 and transmission layer 3 of UE2 are the second interference layer of UE1.
  • the first threshold may be determined based on the total energy of all interference layers of the first terminal device and a certain ratio. For example, when the total energy of all interference layers is different, the first threshold may be different.
  • Condition 3 The ratio of the interference energy of the first interference layer to the total interference energy of all interference layers of the first terminal device is not lower than the threshold (or called the first proportion threshold).
  • the sum of the interference energy of all interference layers can be determined based on the interference energy of each interference layer of the first terminal device, and the proportion of the interference energy of each interference layer in the total can be determined based on the sum and the interference energy of each interference layer.
  • the interference layer whose proportion is not lower than the first proportion threshold may be used as the first interference layer.
  • the first interference layer includes multiple interference layers, and the sum of the interference energies of the multiple interference layers is not less than the energy threshold (or called the second threshold).
  • the first threshold and the second threshold can be the same or different, and there are no specific requirements. ).
  • the interference energies of multiple interference layers of the first terminal device may be summed, and when the sum of the interference energies of the multiple interference layers is not lower than the second threshold, the multiple interference layers are all used as the first interference layer.
  • the second threshold may be determined based on the total energy of all interference layers of the first terminal device and a certain ratio. For example, when the total energy of all interference layers is different, the second threshold may be different.
  • the first interference layer includes multiple interference layers, and the ratio of the sum of the interference energies of the multiple interference layers to the total interference energy of all interference layers of the first terminal device is not lower than the threshold (or called the second proportion threshold, The first proportion threshold and the second proportion threshold may be the same or different, no specific requirement).
  • the first terminal device can sort multiple interference layers from large to small interference energy, starting from the interference layer with the largest interference energy, and accumulate interference energy layer by layer. When the accumulated interference energy accounts for all interference layers When the proportion of interference energy exceeds the threshold, the accumulation is stopped, and at least one selected interference layer is used as the first interference layer.
  • the interference layers of UE1 are transmission layer 1 to transmission layer 3 of UE2.
  • the interference energies of transmission layer 1 to transmission layer 3 for UE1 are respectively expressed as P1 to P3.
  • the second proportion threshold is Rth.
  • P1 ⁇ P2 ⁇ P3 if P2+P3>Rth*(P1+P2+P3) and P3 ⁇ Rth*(P1+P2+P3), then for UE1, the transport layer 2 and transport layer 3 of UE2 are the first of UE1 Interference layer, the transmission layer 1 of UE2 is the second interference layer of UE1.
  • the interference energy of the first interference layer is the N interference layers with the highest interference energy among the multiple interference layers, and N is a positive integer.
  • the interference energies of multiple interference layers of the first terminal device can be sorted from large to small, and the N interference layers with the highest interference energy can be used as the first interference layer.
  • the above conditions that the interference energy of the first interference layer meets are only examples. Any two or more of the above conditions can be combined.
  • the interference energy of each interference layer can be determined based on all interference layers of the first terminal device.
  • the first interference layer determined based on the interference energy is the user-level first interference layer of the first terminal device.
  • the first interference layer may also be called a user-level first interference layer determined according to airspace granularity, and is hereinafter referred to as the user-level first interference layer. It can be understood that the first interference layer is the same for all transmission layers of the first terminal device.
  • the interference energy of each interference layer may also be determined for each transmission layer of the first terminal device.
  • the first interference layer determined based on the interference energy is the third interference layer corresponding to the transmission layer of the first terminal device.
  • An interference layer, therefore for different transmission layers of the first terminal device, the determined first interference layer may be different.
  • the first interference layer may also be called a hierarchical first interference layer determined according to spatial domain granularity, which is hereinafter referred to as a hierarchical first interference layer.
  • the methods of the user-level first interference layer and the hierarchical first interference layer are introduced below through examples.
  • the network equipment can obtain the precoded equivalent channel matrix of the first terminal device, based on the 2-norm square of the column vector corresponding to the interference layer in the precoded equivalent channel matrix , determine respective interference energies of multiple interference layers of the first terminal device, and determine the first interference layer based on the interference energy.
  • the precoded equivalent channel matrix of UE1 can be expressed as follows: 1.
  • the interference energy of the interference layer of UE1 can be determined based on the 2-norm square of the column vector corresponding to the transmission layer of UE2 in the equivalent channel matrix of UE1.
  • the square of the 2-norm of the column vector of the precoded equivalent channel matrix means taking the 2-norm of the column vector of the equivalent channel matrix, and then taking the square of the 2-norm.
  • the interference energy P4 of transmission layer 1 of UE2 satisfies:
  • the column vector includes a14, a24 and a34, and a14, a24 and a34 respectively represent the transmission layer 1 signal of UE2 received by UE1 by antenna 1, antenna 2 and antenna 3.
  • the interference energy P5 of transmission layer 2 of UE2 satisfies:
  • the column vector includes a15, a25 and a35.
  • a15, a25 and a35 respectively represent the transmission layer 2 signal of UE2 received by UE1 by antenna 1, antenna 2 and antenna 3.
  • the interference energy P6 of transmission layer 3 of UE2 satisfies:
  • the column vector includes a16, a26 and a36, and a16, a26 and a36 respectively represent the signals of the transmission layer 3 of UE2 received by UE1 by antenna 1, antenna 2 and antenna 3.
  • abs(x) means taking the absolute value of x
  • * means multiplication operation
  • the network device may determine the first interference layer of UE1 according to the interference energy of the interference layer. For example, the network device may determine the first interference layer of UE1 according to conditions 1 to 6.
  • the network equipment can determine the end-to-end equivalent channel matrix of UE1 based on the precoded equivalent channel matrix of the first terminal device and the equalization coefficient matrix of UE1, and then determine the end-to-end equivalent channel matrix of UE1 based on the end-to-end equivalent channel matrix of UE1.
  • the end-to-end equivalent channel matrix determines the first interference layer.
  • the following describes how the hierarchical granularity determines the first interference layer.
  • the network device may obtain the equalization coefficient matrix indicated by the network device.
  • the equalization coefficient matrix is generated by the network device in a default manner.
  • the channel estimation result used to generate the equalization coefficient matrix is determined based on the ports of all interference layers.
  • the network device can determine the first interference layer of the hierarchy according to the equalization coefficient matrix.
  • the equalization coefficient matrix determined by the network device is shown in Table 2.
  • a possible way to determine the first interference layer based on the end-to-end equivalent channel matrix is to determine each interference layer of UE1 (that is, the transmission layer 1 and the transmission layer of UE2 based on the end-to-end equivalent channel matrix). 2 and transmission layer 3) For the interference energy of each transmission layer of UE1, determine the respective first interference layer of each transmission layer of UE1 from the transmission layer of UE2 according to the interference energy.
  • the interference energy generated by the transmission layer 1 of UE2 to the transmission layer 1 of UE1 can be expressed as the square of the 2 norm of (w11*a14+w12*a24+W13*a34).
  • the network device may determine the first interference layer of each transmission layer of UE1 according to the interference energy of the interference layer. For example, the network device may determine the first interference layer of each transmission layer of UE1 according to conditions 1 to 6.
  • conditions 1 to 6 are described based on the interference energy of the interference layer to the first terminal device as an example. If the interference energy is interference energy to each transmission layer of the first terminal device, you can refer to conditions 1 to 6. Similar processing is performed to determine the first interference layer of each transmission layer. For example, in condition 1, if P1 to P3 respectively represent the interference energy of transmission layer 1 to transmission layer 3 of UE2 to the transmission layer 1 of UE1, if P1 ⁇ P2 ⁇ P3, then for the transmission layer 1 of UE1, the interference energy of UE2 Transmission layer 2 and transmission layer 3 are the first interference layers of the transmission layer 1 of UE1, and the transmission layer 1 of UE2 is the second interference layer of the transmission layer 1 of UE1.
  • another possible way to determine the first interference layer corresponding to the transmission layer of UE1 is, for example, comparing the transmission layer 1, transmission layer 2 and transmission layer 3 of UE2 corresponding to the transmission layer 1 of UE1 in Table 3.
  • the size of the absolute value of the matrix vector reflects the size of the interference energy caused by the transmission layer 1, transmission layer 2 and transmission layer 3 of UE2 to the transmission layer 1 of UE1 respectively.
  • the first interference layer and/or the second interference layer are determined based on the comparison results. interference layer.
  • UE1 transmission layer 1 corresponds to the matrix vector of UE2 transmission layer 1 (w11*a14+w12*a24+W13*a34)
  • UE1 transmission layer 1 corresponds to the matrix vector of UE2 transmission layer 2 (w11*a15+w12* a25+W13*a35)
  • the matrix vector of UE2 transport layer 3 corresponding to UE1 transport layer 1 (w11*a16+w12*a26+W13*a36)
  • the first interference layer can be the transmission layer 1 of UE2, or, if the number of the first interference layer is required to be 2, the first interference layer It can be transport layer 1 and transport layer 2 of UE2.
  • UE1 transport layer 2 corresponds to the matrix vector of UE2 transport layer 1 (w21*a15+w22*a25+W23*a35)
  • UE1 transport layer 2 corresponds to the matrix vector of UE2 transport layer 2 (w21*a14+w22 *a24+W23*a34)
  • the matrix vector of UE2 transport layer 3 corresponding to UE1 transport layer 2 (w21*a16+w22*a26+W23*a36)
  • the first interference layer can be the transmission layer 1 of UE2, or, if the number of the first interference layer is required to be 2, the first interference layer It can be transport layer 1 and transport layer 2 of UE2.
  • UE1 transmission layer 3 corresponds to the matrix vector of UE2 transmission layer 1 (w31*a14+w32*a24+W33*a34), and UE1 transmission layer 3 corresponds to the matrix vector of UE2 transmission layer 2 (w31*a15+w32 *a25+W33*a35), and the matrix vector of UE2 transport layer 3 corresponding to UE1 transport layer 3 (w31*a16+w32*a26+W33*a36), satisfy:
  • the first interference layer can be the transmission layer 1 of UE2, or, if the number of the first interference layer is required to be 2, the first interference layer It can be transport layer 1 and transport layer 2 of UE2.
  • the first interference layer can also be divided according to frequency domain granularity.
  • the first interference layer of the first terminal device may be determined according to frequency domain granularity.
  • the first interference layer can be divided into RB level, full-band level and sub-band level.
  • the RB level means that the coefficients of the equivalent channel matrix (such as a14 to a36 shown in Table 1) are obtained according to RB level statistics.
  • the full-band level means that the coefficients of the equivalent channel matrix (such as a14 to a36 shown in Table 1) are obtained according to full-band-level statistics.
  • a full band can include several sub-bands or RBs.
  • the subband level means that the coefficients of the equivalent channel matrix (a14 to a36 shown in Table 1) are obtained according to subband level statistics, and one subband can contain multiple RBs.
  • the first information may include at least one of indication information of the port corresponding to the first interference layer, port indication information corresponding to the second interference layer, and indication information of the port group.
  • the first information may include indication information of ports corresponding to the first interference layer and/or port indication information corresponding to the second interference layer, where the second interference layer does not include the first interference layer.
  • the port indication information may include a port index.
  • the first information when the first information includes indication information of the port corresponding to the first interference layer, the first information may directly indicate (or explicitly indicate) the port corresponding to the first interference layer.
  • the first information may include port group information, such as DMRS pattern indication, used to implicitly indicate the first interference layer and/or the second interference layer.
  • the first terminal device may determine the first interference layer and/or the second interference layer according to the information of the ports in the port group and the port of the first terminal device to which data is to be transmitted.
  • the information of the port group may include information of the ports in the port group, and the first terminal device may determine the port corresponding to the first interference layer and/or the second interference layer based on the port used by itself to receive data and the port information in the port group.
  • the corresponding port may include information of the ports in the port group, and the first terminal device may determine the port corresponding to the first interference layer and/or the second interference layer based on the port used by itself to receive data and the port information in the port group. The corresponding port.
  • the main principle of DMRS design is that the DMRS ports of the transmission layer of two UEs that have strong interference with each other should have exclusive time-frequency resources; the DMRS ports of the transmission layer of two UEs that have weak interference with each other should have shared time-frequency resources. Mainly; thereby achieving high pilot density for strong interference and low pilot density for weak interference, reducing DMRS overhead.
  • the transmission layer 1 of user 1 is the first interference layer to user 2
  • the transmission layer 1 of user 2 is the second interference layer to user 1
  • the transmission layers that are the second interference layer to each other for different users can correspond to the same
  • the time-frequency resources may correspond to ports in the same port group.
  • the transmission layers of different users, which are mutually second interference layers, correspond to different time-frequency resources, that is, they may correspond to ports in different port groups.
  • the first terminal device determines the port group in which the port to which data is to be transmitted is located according to the information about the port and port group of the first terminal device, it can determine that other ports in the same port group are ports corresponding to the first interference layer, and/ Or, the ports in different port groups may be determined to be ports corresponding to the second interference layer.
  • the DMRS port is divided into three DMRS port groups.
  • the first DMRS port group includes port 1000, port 1001, port 1006 and port 1007
  • the second DMRS port group includes port 1002, port 1003, port 1008 and port 1009
  • the first DMRS port group includes port 1004, port 1005, port 1010 and port 1011, the same DMRS port group Ports reuse the same time and frequency resources. It can be understood that in Figure 5, 1000, 1001,..., 1011 are port indexes respectively.
  • Table 4 gives the respective first interference layers of the transmission layer of UE1 and each transmission layer of UE2 from the perspective of the first interference layer of the hierarchy.
  • the transmission layer 1 of UE1 and the transmission layer 1 of UE2 are each other's first interference layer.
  • the transmission layer 2 of UE1, the transmission layer 2 of UE2, and the transmission layer 3 of UE2 are each other's second interference layer.
  • the transmission layer 3 of UE2 and the transmission layer 2 of UE2 and the transmission layer 3 of UE2 are mutually second interference layers.
  • the network device can configure the transmission layers of UE1 and UE2 that are mutually second interference layers as transmission layers corresponding to ports in the same DMRS port group; and configure each other as the first interference layer.
  • the transmission layers are assigned to the transmission layers corresponding to the ports in different DMRS port groups to avoid transmission interference between the transmission layers that are the first interference layers.
  • the network device may also carry in the first information a correspondence between the transmission layers of UE1 and UE2 and the ports in the DMRS port group. The correspondence is as shown in Table 5, for example.
  • transport layer Assigned DMRS port UE1 transport layer 1 port 1000 UE1 transport layer 2 port 1004 UE1 transport layer 3 port 1005 UE2 transport layer 1 port 1002 UE2 transport layer 2 port 1010 UE2 transport layer 3 port 1011
  • the network device can configure the transmission layer 1 of UE1 as the transmission layer corresponding to port 1000, and Configure the transport layer 1 of UE2 as the transport layer corresponding to port 1002.
  • port 1000 and port 1002 correspond to different time-frequency resources, that is, port 1000 and port 1002 will not be shared. frequency resources to avoid mutual interference.
  • the transmission layer 2 of UE1 and the transmission layer 2 of UE2 are each other's second interference layer.
  • the port 1004 and port 1010 corresponding to these two transmission layers belong to the same DMRS port group, that is, they share the same Time and frequency resources.
  • the first terminal device can determine according to Figure 5 that port 1000 belongs to the same DMRS port group as port 1001, port 1006 and port 1007, so port 1001, port 1006 and port 1007 serve as the ports corresponding to the first interference layer.
  • the first terminal device may also use port 1002, port 1003, port 1005, port 1005, port 1008, port 1009, port 1010 and port 1011 as ports corresponding to the second interference layer.
  • the first information may include information about the port group, and at least one of indication information of the port corresponding to the first interference layer and/or indication information of the port corresponding to the second interference layer.
  • the first terminal device Whether the interference layer is the first interference layer or the second interference layer is determined based on the port group information.
  • the first terminal device may use port 1001, port 1006 and port 1007 as ports corresponding to the first interference layer according to Figure 5. If the first information also includes indication information of the port corresponding to the first interference layer, where the indication information is used to indicate port 1002 as the port corresponding to the first interference layer, then the first terminal device may configure port 1001, port 1002, and port 1006. and port 1007 as the port corresponding to the first interference layer.
  • the first terminal device performs channel estimation based on the port corresponding to the first interference layer.
  • the first terminal device may perform channel estimation according to the first time-frequency resource.
  • the first time-frequency resource corresponds to the port corresponding to the first interference layer, or in other words, the first time-frequency resource is the time-frequency resource corresponding to the port corresponding to the first interference layer.
  • the first terminal device may perform channel estimation based on the first time-frequency resource and time-frequency resources corresponding to noise and/or time-frequency resources corresponding to data to be transmitted by the first terminal device.
  • the channel estimation result can be used to determine the equalization coefficient, and the first terminal device can receive data according to the equalization coefficient.
  • the data to be transmitted by the first terminal device refers to the received data by the first terminal device.
  • the first terminal device can perform channel measurement on the port indicated by the first information, thus reducing the difficulty for the first terminal device to determine the port that requires channel estimation from multiple ports, thereby reducing the settlement cost.
  • Simple processing complexity can improve the performance of the receiving end.
  • the ports corresponding to the first interference layer are part of the ports corresponding to all the interference layers of the first terminal device, that is to say, the first terminal device does not need to connect to another part of the ports (such as the second interference layer).
  • Channel estimation is performed on the time-frequency resources corresponding to the corresponding port, or a part of the ports corresponding to the second interference layer), so the complexity of the channel estimation at the receiving end can be further reduced.
  • the minimum unit of time-frequency resources for channel estimation may be RE.
  • the time-frequency resources that the first terminal device needs to estimate include at least one of the following:
  • the first time-frequency resource is the time-frequency resource corresponding to the port corresponding to the first interference layer.
  • the first terminal device can perform channel estimation on the first time-frequency resource, obtain the interference estimation result of the port corresponding to the first interference layer, and then obtain the noise interference channel covariance matrix (hereinafter referred to as channel covariance matrix) based on the interference estimation result. matrix), the channel covariance matrix can be used to determine the equalization coefficients.
  • the first time-frequency resource can be determined according to the port configuration.
  • the first terminal device may determine the port corresponding to the first interference layer according to the first indication information, and may further determine the time-frequency resource corresponding to the port according to the port configuration.
  • the port configuration may include DMRS port configuration.
  • the DMRS port configuration of Type 2 dual OFDM symbol type is shown in Figure 5.
  • the channel covariance matrix can be obtained by using the elimination method.
  • an example of the elimination method is:
  • the receiving end first estimates the equivalent channel matrix Heq,kk of the transmitted data of user k to obtain an estimate of the equivalent channel matrix Then the elimination method is used to obtain the estimate of the channel covariance matrix R uu
  • Y k,pilot represents the received signal sequence
  • user sequence Npilot represents the number of antennas that transmit pilot signals (pilot)
  • Nrx represents the number of receiving antenna ports of user k
  • Nlayer k represents the number of transmission layers of user k.
  • the first terminal device may also use other methods to process the interference estimation result of the first interference layer. That is to say, the process of determining the equalization coefficient cannot ignore the interference estimation result of the first interference layer. For example, ignoring the interfering DMRS PORT and using the power estimate for the interfering DMRS PORT may result in throughput loss.
  • the first terminal device does not consider (or ignore) the interference measurement results of the second time-frequency resource when determining the composition of the noise interference channel covariance matrix, or in other words, can ignore channel estimation of the second time-frequency resource.
  • the UE can also use other methods to process the second time-frequency resources, for example, perform channel estimation on part or all of the second time-frequency resources to improve the accuracy of the channel covariance matrix, but this will lead to processing complexity. increase, resulting in throughput loss.
  • the first terminal device can in this part Channel estimation is performed using time-frequency resources, and the channel covariance matrix is determined based on the estimation results.
  • a time-frequency resource that contains the data to be transmitted by the first terminal device and contains pure noise or in a time-frequency resource that contains the first time-frequency resource and contains noise, or in a time-frequency resource that contains the first terminal device.
  • Channel estimation is performed on the time-frequency resources of the transmitted data, the first time-frequency resources and the time-frequency resources of the noise, and the channel covariance matrix is obtained.
  • this application does not rule out that the first terminal device uses other REs to estimate noise, for example, perform measurements on REs that contain second time-frequency resources and contain noise, but this will lead to increased processing complexity and throughput loss.
  • the first terminal device estimates the time-frequency resources in a manner as shown in Table 6.
  • any type of time-frequency resource may include noise (or a time-frequency resource containing noise), a first time-frequency resource, a second time-frequency resource, and a time-frequency resource of data to be transmitted by the first terminal device.
  • the type of the time-frequency resource is represented by one or more items among the noise, the first time-frequency resource, the second time-frequency resource and the time-frequency resource of the data to be transmitted by the first terminal device, That is, it indicates which one or more of the time-frequency resources include noise, the first time-frequency resource, the second time-frequency resource, and the time-frequency resource of the data to be transmitted by the first terminal device.
  • the first time-frequency resource may correspond to one or more first interference layers. Therefore, the first time-frequency resource includes a first time-frequency resource corresponding to a single first interference layer and a first time-frequency resource corresponding to multiple first interference layers. Time and frequency resources. Similarly, the second time-frequency resources include second time-frequency resources corresponding to a single second interference layer and second time-frequency resources corresponding to multiple second interference layers.
  • the obtained covariance matrix, Heq ,kk represents the equivalent channel matrix of the transmitted data of user k, is the conjugate transpose matrix of Heq ,kk ;
  • Heq ,kl1 represents the equivalent channel matrix of the transmitted data of user k and user l1, is the conjugate transposed matrix of Heq ,kl1 ;
  • Heq ,kl2 represents the equivalent channel matrix of the data transmitted by user k and user l2, is the conjugate transpose matrix of Heq ,kl2 , l2 ⁇ l1; Represents the covariance matrix corresponding to the noise.
  • the network device can determine the equalization coefficient of user k This application determines the equalization coefficient of user k based on the channel covariance matrix R uu for network equipment.
  • the method is not specifically limited. One possible way of determination is that the network device determines the equalization coefficient of user k based on the aforementioned formula 1.
  • channel covariance matrix R uu is exemplary and should not be used as a limitation on the channel covariance matrix R uu .
  • other deformations may exist depending on the equalization method and the needs of the actual application scenario.
  • the second communication device can also send second information to the first terminal device.
  • the second information can be used to instruct, notify or configure the first terminal device to perform the communication method provided by the embodiment of the application, then accordingly , the first terminal device executes the method shown in Figure 3 .
  • the second information can be used to instruct the first terminal device to perform compact interference channel estimation (CICE), and then the first terminal device can perform the method provided by the embodiment of the present application based on the second information.
  • CICE compact interference channel estimation
  • embodiments of the present application also provide a communication device.
  • the communication device may include corresponding hardware structures and/or software modules that perform various functions.
  • Those skilled in the art should easily realize that the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIGS. 6 to 8 are schematic structural diagrams of possible communication devices provided by embodiments of the present application.
  • the communication device can be used to implement the functions of the network device or the first terminal device in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be any network device or first terminal device as shown in FIGS. 1 to 3 .
  • FIGS. 1 to 3 For relevant details and effects, please refer to the description of the foregoing embodiments.
  • the communication device 600 includes a processing unit 610 and a communication unit 620 , where the communication unit 620 may also be a transceiver unit or an input/output interface.
  • the communication device 600 may be used to implement the functions of the network device or the first terminal device in the method embodiment shown in FIG. 3 .
  • the communication unit 620 may be configured to receive first information, the first information being used to indicate the port corresponding to the first interference layer of the first terminal device, and the first information is used to indicate the port corresponding to the first interference layer of the first terminal device.
  • An interference layer is one or more interference layers among multiple interference layers of the first terminal device, and the first interference layer is a transmission layer of the second terminal device.
  • the processing unit 610 may be configured to perform channel estimation according to the port corresponding to the first interference layer.
  • the processing unit 610 may also be configured to determine an equalization coefficient according to the result of channel estimation, and receive data according to the equalization coefficient.
  • the processing unit 610 may be specifically configured to perform channel estimation based on a first time-frequency resource, where the first time-frequency resource corresponds to a port corresponding to the first interference layer.
  • the processing unit 610 may be specifically configured to perform channel estimation according to the first time-frequency resource and according to the time-frequency resource corresponding to the noise and/or the time-frequency resource corresponding to the data to be transmitted.
  • the processing unit 610 may also be configured to determine the port corresponding to the data to be transmitted, the port in the port group, and the port corresponding to the first interference layer.
  • the port indication information corresponding to the port and/or the port indication information corresponding to the second interference layer determines the port corresponding to the first interference layer, and the second interference layer does not include the first interference layer.
  • the processing unit 610 may also be configured to determine the port corresponding to the first interference layer based on the port corresponding to the data to be transmitted and the ports in the port group. port.
  • the processing unit 610 may be configured to determine first information, the first information being used to indicate the port corresponding to the first interference layer of the first terminal device, and the first information
  • An interference layer is one or more interference layers among multiple interference layers of the first terminal device, and the first interference layer is a transmission layer of the second terminal device.
  • the communication unit 620 may be used to send the first information to the first terminal device.
  • each functional module in each embodiment of the present application may be integrated into one processing unit. In the device, it can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • a communication device 700 provided by an embodiment of the present application is used to implement the communication method provided by the present application.
  • the communication device 700 may be a communication device applying the communication method, a component in the communication device, or a device that can be used in conjunction with the communication device.
  • the communication device 700 may be a first terminal device or a network device.
  • the communication device 700 may be a chip system or a chip. In the embodiments of this application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 700 includes at least one processor 720, which is used to implement the communication method provided by the embodiment of the present application.
  • the communication device 700 may also include an output interface 710, which may also be called an input-output interface.
  • the output interface 710 may be used to communicate with other devices through a transmission medium, and its functions may include sending and/or receiving.
  • the communication device 700 is a chip, it communicates with other chips or devices through the output interface 710 .
  • the processor 720 may be used to implement the method shown in the above method embodiment.
  • the processor 720 can be used to perform actions performed by the processing unit 610, and the output interface 710 can be used to perform actions performed by the communication unit 620, which will not be described again.
  • the communication device 700 may also include at least one memory 730 for storing program instructions and/or data.
  • Memory 730 and processor 720 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • Processor 720 may cooperate with memory 730.
  • Processor 720 may execute program instructions stored in memory 730 . At least one of the at least one memory may be integrated with the processor.
  • the memory 730 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory).
  • volatile memory volatile memory
  • RAM random-access memory
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • the processor 720 may be a general processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can be implemented Or execute the disclosed methods, steps and logical block diagrams in the embodiments of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • FIG. 8 shows a communication device 800 provided by an embodiment of the present application, which is used to implement the communication method provided by the present application.
  • the communication device 800 may be a communication device applying the communication method shown in the embodiment of the present application, or may be a component in the communication device, or a device that can be used in conjunction with the communication device.
  • the communication device 800 may be a first terminal device or a network device.
  • the data transmission device 800 may be a chip system or a chip. In the embodiments of this application, the chip system may be composed of chips, or may include chips and other discrete devices. Some or all of the communication methods using Huygens equivalent surfaces provided in the above embodiments can be implemented by hardware or software.
  • the data transmission device 800 can include: an input interface circuit 801, Logic circuit 802 and output interface circuit 803.
  • the input interface circuit 801 can be used to perform the above-mentioned receiving action performed by the communication unit 620
  • the output interface circuit 803 can be used to perform the above-mentioned sending action performed by the communication unit 620
  • the logic circuit 802 may be used to perform the above-mentioned actions performed by the processing unit 610, which will not be described again.
  • the data transmission device 800 may be a chip or an integrated circuit during specific implementation.
  • Embodiments of the present application provide a computer-readable storage medium storing a computer program.
  • the computer program includes instructions for executing the above method embodiments.
  • Embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the above method embodiments.
  • the embodiment of the present application provides a communication system.
  • the communication system may include a first terminal device and network equipment for implementing the method shown in Figure 3, or include a device for implementing the method performed by the first terminal device in Figure 3 and a device for implementing the method shown in Figure 3
  • the device for the method pointed to by the network device may include the structure shown in Figure 1 or Figure 2.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,用以降低接收端信道估计的复杂度,提升接收端性能。该方法包括:第一终端装置接收第一信息,第一信息用于指示第一终端装置的第一干扰层对应的端口,第一干扰层为第一终端装置的多个干扰层中的一个或多个干扰层,第一干扰层为第二终端装置的传输层。第一终端装置根据第一干扰层对应的端口进行信道估计。

Description

一种通信方法及装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在通信***中,为了发送和接收数据、获取***同步和反馈信道信息,估计上行链路信道或下行链路信道较为必要。信道估计(或称信道测量)(channel estimation,CE)指的是为了补偿信道衰落和噪声产生衰落所引起的信号失真而重建或恢复接收信号的过程,它利用发送端与接收端预知的基准信号来追踪信道的时域和频域变化。上述基准信号又可称为导频信号或者参考信号(reference signal,RS),它们在正交频分复用(orthogonal frequency division multiplexing,OFDM)符号内分布于时频二维空间中不同的资源单元(resource element,RE)上,具有已知的幅度和相位。
然而,目前对于接收端来说,需要决定进行信道估计的端口,并进行信道估计。对于大规模(massive)多输入多输出(multi-input multi-output,MIMO)等场景来说,天线端口数量较多,导致接收端的处理复杂度过高,存在大量资源占用,影响接收端性能。
发明内容
本申请提供一种通信方法及装置,用以降低接收端信道估计的复杂度,提升接收端性能。
第一方面,本申请提供一种通信方法,用以降低接收端信道估计的复杂度,提升接收端性能。该方法可由第一终端装置实施。其中,第一终端装置可以是终端设备或终端设备中的组件。本申请中的组件例如可包括处理器、收发器、处理单元或收发单元中的至少一种。以执行主体是第一终端装置为例,该方法可以通过以下步骤实现:第一终端装置接收第一信息,所述第一信息用于指示所述第一终端装置的第一干扰层对应的端口,所述第一干扰层为所述第一终端装置的多个干扰层中的一个或多个干扰层,所述第一干扰层为第二终端装置的传输层。所述第一终端装置根据所述第一干扰层对应的端口进行信道估计。
基于第一方面所示方法,本申请中,第一终端装置可根据第一信息,对第一信息指示的第一干扰层对应的端口进行信道估计,可减少第一终端装置的信道估计复杂度,可以提高第一终端装置的接收性能。
在一种可能的实现方式中,所述第一终端装置可根据信道估计的结果确定均衡系数,并根据所述均衡系数接收数据。
基于该实现方式,第一终端装置可根据估计结果确定均衡系数,根据均衡系数接收数据以降低干扰。
在一种可能的实现方式中,所述第一终端装置可根据第一时频资源进行信道估计,所述第一时频资源对应于所述第一干扰层对应的端口。根据该实现方式,可以准确确定需要进行信道估计的时频资源,提高信道估计准确性。
在一种可能的实现方式中,所述第一终端装置可根据所述第一时频资源,以及根据噪声对应的时频资源和/或待传输数据对应的时频资源进行信道估计。根据该实现方式,可以 进一步提高信道估计准确性。
在一种可能的实现方式中,所述第一干扰层根据干扰能量确定,所述第一干扰层的干扰能量满足以下中的至少一项:所述第一干扰层的干扰能量高于第二干扰层的干扰能量,所述多个干扰层还包括所述第二干扰层;所述第一干扰层的干扰能量不低于能量阈值;所述第一干扰层的干扰能量占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和不低于能量阈值;所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;所述第一干扰层的干扰能量为所述多个干扰层中的干扰能量最高的N个干扰层,N为正整数。
基于该实现方式,可根据传输需求灵活确定第一干扰层。
在一种可能的实现方式中,所述第一信息包括所述第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息,所述第二干扰层不包括所述第一干扰层。
基于该实现方式,可通过端口指示信息灵活指示第一干扰层和/或第一干扰层以外的第二干扰层。
在一种可能的实现方式中,所述第一信息还包括端口组的指示信息,所述第一终端装置还可根据待传输数据对应的端口和所述端口组中的端口,以及第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息,确定所述第一干扰层对应的端口。
基于该实现方式,可通过端口指示信息和端口组的指示信息,灵活指示第一干扰层和/或第二干扰层。
在一种可能的实现方式中,所述第一信息包括端口组的指示信息,所述第一终端装置可根据待传输数据对应的端口以及所述端口组中的端口确定所述第一干扰层对应的端口。
基于该实现方式,可通过端口组的指示信息灵活指示第一干扰层和/或第二干扰层。
第二方面,本申请提供一种通信方法,用以降低接收端信道估计的复杂度,提升接收端性能。该方法可由网络设备或网络设备中的组件(如网络装置)实施。本申请中的组件例如可包括处理器、收发器、处理单元或收发单元中的至少一种。以执行主体是网络设备为例,该方法可以通过以下步骤实现:网络设备确定第一信息,所述第一信息用于指示第一终端装置的第一干扰层对应的端口,所述第一干扰层为所述第一终端装置的多个干扰层中的一个或多个干扰层,所述第一干扰层为第二终端装置的传输层。所述网络设备向所述第一终端装置发送所述第一信息。
在一种可能的实现方式中,所述第一干扰层根据干扰能量确定,所述第一干扰层的干扰能量满足以下中的至少一项:所述第一干扰层的干扰能量高于第二干扰层的干扰能量,所述多个干扰层还包括所述第二干扰层;所述第一干扰层的干扰能量不低于能量阈值;所述第一干扰层的干扰能量占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和不低于能量阈值;所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;所述第一干扰层的干扰能量为所述多个干扰层中的干扰能量最高的N个干扰层,N为正整数。
在一种可能的实现方式中,所述第一信息包括所述第一干扰层对应的端口的指示信息 和/或第二干扰层对应的端口指示信息,所述第二干扰层不包括所述第一干扰层。
在一种可能的实现方式中,所述第一信息还包括端口组的指示信息,所述端口组中的端口、所述第一终端装置的待传输数据对应的端口,以及所述第一干扰层对应的端口的指示信息和/或所述第二干扰层对应的端口指示信息用于确定所述第一干扰层对应的端口。
在一种可能的实现方式中,所述第一信息包括端口组的指示信息,所述端口组中的端口和所述待传输数据对应的端口用于确定所述第一干扰层对应的端口。
第三方面,提供一种通信装置。该装置可以实现上述第一方面其任意可能的实现方式中由第一终端装置执行的方法,或者,用于实现以上第二方面及其任意可能的设计中由网络设备执行的方法。该装置例如为第一终端装置、网络设备或网络设备中的组件。
一种可选的实现方式中,该装置可以包括执行以上第一方面至第二方面及任意可能的实现方式中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种可选的实现方式中,该装置包括处理单元(有时也称为处理模块)和通信单元(有时也称为通信模块、收发模块或收发单元)。通信单元能够实现发送功能和接收功能,在通信单元实现发送功能时,可称为发送单元(有时也称为发送模块),在通信单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
再例如,该装置包括:处理器,与存储器耦合,用于执行存储器中的指令,以实现上述第一方面至第二方面及任意可能的实现方式中所描述的方法。可选的,该装置还包括其他部件,例如,天线,输入输出模块,接口等等。这些部件可以是硬件,软件,或者软件和硬件的结合。
第四方面,提供一种通信方法,该通信方法可包括第一方面及其任一可能的设计中所示的由第一终端装置执行的方法,以及包括第二方面及其任一可能的设计中所示的由网络设备执行的方法。可选的,该通信方法可由包括第一终端装置和网络设备的通信***实施。
第五方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得第一方面至第二方面中任一方面的方法被实现。
第六方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得第一方面至第二方面中任一方面所述的方法被实现。
第七方面,提供一种芯片***,该芯片***包括逻辑电路(或理解为,该芯片***包括处理器,处理器可包括逻辑电路等),还可以包括输入输出接口。该输入输出接口可以用于接收消息,也可以用于发送消息。输入输出接口可以是相同的接口,即,同一个接口既能够实现发送功能也能够实现接收功能;或者,输入输出接口包括输入接口以及输出接口,输入接口用于实现接收功能,即,用于接收消息;输出接口用于实现发送功能,即,用于发送消息。逻辑电路可用于执行上述第一方面至第二方面及任意可能的实现方式中所描述的方法中除收发功能之外的操作;逻辑电路还可用于向输入输出接口传输消息,或者从输入输出接口接收来自其他通信装置的消息。该芯片***可用于实现上述第一方面至第二方面及任意可能的实现方式中所描述的方法。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
可选的,该芯片***还可以包括存储器,存储器可用于存储指令,逻辑电路可调用存 储器所存储的指令来实现相应功能。
第八方面,提供一种通信***,该通信***可以包括用于实现第一方面及其任意可能的设计的装置,如第一终端装置,和用于实现第二方面及其任意可能的设计的装置,如网络设备。
以上第二方面至第八方面所带来的技术效果可参见上述第一方面的描述,此处不再赘述。
附图说明
图1为本申请实施例提供的一种无线通信***的架构示意图;
图2为本申请实施例提供的另一种无线通信***的架构示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的一种第一干扰层和第二干扰层的示意图;
图5为本申请实施例提供的一种DMRS图案的示意图;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的另一种通信装置的结构示意图;
图8为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
本申请实施例提供一种通信方法及装置。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的方法可以应用于***(4th generation,4G)通信***,例如长期演进(long term evolution,LTE)通信***,也可以应用于第五代(5th generation,5G)通信***,例如5G新空口(new radio,NR)通信***,或应用于未来的各种通信***,例如第六代(6th generation,6G)通信***。本申请实施例提供的方法还可以应用于蓝牙***、无线保真(wireless fidelity,Wifi)***、远距离无线电(long range radio,LoRa)***或车联网***中。本申请实施例提供的方法还可以应用于卫星通信***其中,所述卫星通信***可以与上述通信***相融合。
为了便于理解本申请实施例,以图1所示的通信***架构为例对本申请使用的应用场景进行说明。参阅图1所示,通信***包括网络设备101和终端设备102。本申请实施例提供的装置可以应用到网络设备101,或者应用到终端设备102。可以理解的是,图1仅示出了本申请实施例可以应用的一种可能的通信***架构,在其他可能的场景中,所述通信***架构中也可以包括其他设备。
网络设备101为无线接入网(radio access network,RAN)中的节点,又可以称为基 站,还可以称为RAN节点(或设备)。目前,一些接入网设备的举例为:下一代基站(gNodeB/gNB/NR-NB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),卫星设备,或5G通信***中的网络设备,或者未来可能的通信***中的网络设备。网络设备101还可以是其他具有网络设备功能的设备,例如,网络设备101还可以是设备到设备(device to device,D2D)通信、车联网通信、机器通信中担任网络设备功能的设备。网络设备101还可以是未来可能的通信***中的网络设备。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分布单元(distributed unit,DU)。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU和RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端设备102,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶中的无线终端、远程手术中的无线终端、智能电网(smart grid)中的无线终端、运输安全中的无线终端、智慧城市中的无线终端,或智慧家庭中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备还可以是其他具有终端功能的设备,例如,终端设备还可以是D2D通信中担任终端功能的设备。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
此外,如图2所示,本申请实施例提供的通信方法还可用于终端设备和终端设备直接通信的***中,如终端设备与终端设备之间基于直连蜂窝通信协议(PC5)进行通信。因此,该方法可以适用于有网络覆盖的通信场景(如图2中编号a或编号b所示)和无网络覆盖的通信场景(如图2中编号c所示)。
可以理解,图1所示场景中,网络设备101和终端设备102之间基于陆地无线接入网与UE(UTRAN-to-UE,Uu)空口进行无线通信。
而在终端设备与终端设备之间通信的场景中,无线通信的收发端都是终端设备。
例如,网络设备在通用移动通信***(universal mobile telecommunications system,UMTS)或LTE无线通信***中可以是传统宏基站eNB(evolved node B),在HetNet(Heterogeneous Network,异构网络)场景下可以是微基站eNB,在分布式基站场景可以是基带单元(base band unit,)和射频拉远单元(remote radio unit,RRU),在云无线接入网(cloud radio access netowrk,CRAN)场景下可以是基带池(BBU pool)和RRU,在未来无线通信***中可以是gNB。终端设备可以是车载通信模块或其它嵌入式通信模块,也可以是用户手持通信设备,包括手机,平板电脑等。
为便于理解本申请实施例,下面首先对本申请中涉及的术语及背景做简单介绍。
1、天线端口(antenna port)
天线端口简称端口。可以理解为被接收端所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合。根据所承载的信号的不同,天线端口可以分为参考信号端口和数据端口。其中,参考信号端口例如包括但不限于,解调参考信号(demodulation reference signal,DMRS)端口、信道状态信息参考信号(channel state information reference signal,CSI-RS)端口等。
本申请中包括现有端口和新增端口,现有端口指的是现有协议中的端口,或支持现有协议中技术方案的端口;新增端口指的是能够支持本申请技术方案的端口。
2、时频资源
在本申请实施例中,数据或信息可以通过时频资源来承载,其中,该时频资源可以包括时域上的资源和频域上的资源。其中,在时域上,时频资源可以包括一个或多个时域单元(或者,也可以称为时间单元、时间单位),在频域上,时频资源可以包括一个或多个频域单元。
其中,一个时域单元可以是一个符号或者几个符号(如正交频分复用(orthogonal frequency division multiplexing,OFDM)符号),或者一个迷你时隙(mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号(例如,2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号)。列举的上述时域单元大小仅仅是为了方便理解本申请的方案,不对本申请实施例的保护范围造成限定,可以理解的是,上述时域单元大小可以为其它值,本申请不做限定。
一个频域单元可以是一个资源块(resource block,RB),或者一个子载波(subcarrier),或者一个资源块组(resource block group,RBG),或者一个预定义的子带(subband),或者一个预编码资源块组(precoding resource block group,PRG),或者一个带宽部分(bandwidth part,BWP),或者一个资源元素(resource element,RE)(或资源粒子),或者一个载波,或者一个服务小区。
在本申请实施例中提及的传输单元可以包括以下任意一项:时域单元、频域单元、或时频单元,例如,本申请实施例中提及的传输单元可以替换为时域单元,也可以替换为频域单元,也可以替换成时频单元。又如,传输单元还可以替换为传输时机。其中,时域单元可以包括一个或者多个OFDM符号,或者,时域单元可以包括一个或者多个slot,等等。频域单元可以包括一个或者多个RB,或者,频域单元可以包括一个或者多个子载波,等等。
3、传输层(layer)
传输层也可称为空间层。对于空间复用多输入多输出MIMO***,在相同时频资源上可以同时传输多路并行数据流,每一路数据流称为一个传输层,或空间层或空间流。一般来说,一个DMRS端口与一个传输层相对应,每个传输层对应于一个数据流。
4、信道估计
在无线通信***中,为了发送和接收数据、获取***同步和反馈信道信息,估计上行链路信道或下行链路信道较为必要。本申请中,信道估计指的是为了补偿信道衰落和噪声产生衰落所引起的信号失真而重建或恢复接收信号的过程,它利用发送端与接收端预置的基准信号来追踪信道的时域和频域变化。上述基准信号又称做导频信号或者参考信号,它们在OFDM符号内分布于时频二维空间中不同的资源单元上,具有已知的幅度和相位。
在MIMO***中,各根发送天线(虚拟天线或物理天线)具有独立的信道。例如,在上行和下行链路中,为了实现多天线***的信道质量测量,NR***分别定义了多种导频符号:CSI-RS,DMRS以及探测参考信号(sounding reference signal,SRS)等。其中,DMRS可用于辅助物理下行共享信道(physical downlink share channel,PDSCH)的解调。CSI-RS用于物理天线端口对应的下行信道测量,接收端针对基站发送的天线端口进行信道估计,并利用估计结果进行信道质量信息(channel state information,CSI)反馈。其中,CSI可包括信道质量指示(channel quality indicator,CQI)、预编码指示(precoding matrix indicator,PMI)、层指示(layer indicator,LI)或秩指示(rank indicator,RI)等。而在上行信道测量过程中,网络设备通过接收的SRS估计上行链路信道,并可以基于该信息,执行频率选择资源调度、功率控制、定时估计与调制/编码方案阶数选择,以及TDD中下行预编码生成等。
5、MIMO均衡
目前的MIMO***中,接收端通过对端口的时频资源进行信道估计,并根据估计结果确定均衡系数(或称均衡矩阵),均衡系数用于对通信信号进行干扰消除处理,以实现更好的接收性能。例如,基于均衡系数,可将并行传输的多个传输层中的一个传输层建模为干扰信号,以及一个传输层建模为有用信号,通过均衡器在接收端消除干扰信号对有用信号的影响。干扰消除的可选方式是,根据均衡系数对接收端天线的基带信号进行乘法运算,其中,不同天线端口或接收通道所乘的系数不同,以消除干扰,接收端将运算后的信号作为接收基带信号。也可以说,均衡系数的本质是加权系数。第一终端装置可按照特定的加权系数对第一终端装置的每个接收天线接收到的信号分别进行加权,最后合并这些加权后的信号,获得特定传输层上的数据。
以接收端采用最小均方差干扰抑制合并(minimum mean square error-interference rejection combining,MMSE-IRC)均衡为例。用户k的加权矩阵(即均衡系数)
Figure PCTCN2022116165-appb-000001
满足:
Figure PCTCN2022116165-appb-000002
其中,I k表示单位矩阵;
Figure PCTCN2022116165-appb-000003
表示用户k的所传输数据的等效信道矩阵H eq,kk的共轭转置矩阵;
Figure PCTCN2022116165-appb-000004
表示噪声干扰信道协方差矩阵R uu的逆矩阵,可根据R uu确定;Nlayer k表示用户k的传输层数,Nrx表示用户k的接收天线端口数量。
另外,噪声干扰信道协方差矩阵R uu满足:
Figure PCTCN2022116165-appb-000005
其中,l表示干扰用户l,它与用户k在相同时频资源上并行传输数据,对用户k造成干扰;H eq,kl表示干扰用户l传输数据时在用户k上观测到等效信道矩阵;
Figure PCTCN2022116165-appb-000006
表示矩阵H eq,kl 的共轭转置矩阵,
Figure PCTCN2022116165-appb-000007
表示噪声功率。
可以理解,信道矩阵
Figure PCTCN2022116165-appb-000008
的维度与并行流数成正相关,其中,Nlayer l表示干扰用户l的传输层数。
因此,随着大规模MIMO等场景中接收端天线端口数量的不断增加,虽然能够支持更多的调度层和空域资源分布方式,然而与此同时,不断增加的天线端口数导致接收端信道的处理复杂度不断增加,导致接收端的性能下降。接收端的复杂度增加的应用包括:一方面,如果不能合理确定需要进行信道估计的天线端口,容易导致漏掉接收信号的强干扰源,无法通过信道估计获得准确的噪声干扰信道协方差矩阵,也就无法采用准确的均衡系数一直干扰,导致传输质量下降。另一方面,如果对全部天线端口进行信道估计,虽然不会导致传输性能降低,但会信道估计过程中的复杂度将会大大增加。
本申请实施例提供一种通信方法,用以降低接收端的信道测量复杂度,提升接收端性能。
下面以执行主体的第一终端装置和网络设备为例介绍该通信方法。可以理解,本申请中的第一终端装置可以是终端设备或终端设备中的组件。
如图3所示,本申请实施例提供的通信方法可包括以下步骤:
S101:第一终端装置接收第一信息,第一信息用于指示第一终端装置的第一干扰层对应的端口。第一干扰层为第一终端装置的多个干扰层中的一个或多个干扰层,第一干扰层为第二终端装置的传输层,例如,第二终端装置包括多个传输层,第一干扰层为该多个传输层中的一个或多个传输层。其中,第二终端装置可包括一个或多个终端设备,或者,可包括一个或多个终端设备中的组件。本申请中,第一干扰层也可称为关键干扰层。
可以理解,第一信息可来自于网络设备。例如第一终端装置为接收端,网络设备为发送端。第一信息可由网络设备确定或生成。
举例来说,假设网络设备在相同时频域资源上给UE1和UE2传输数据。UE1和UE2都各自有3个传输层,则对于UE1来说,UE1的干扰层包括UE2的3个传输层,UE1的第一干扰层可以是UE2的3个传输层中的一个或多个传输层。
可以理解,本申请中,第一终端装置的第一干扰层在接收天线间的耦合项对于MIMO均衡的性能影响较大,因此忽略对于第一干扰层的测量将对通信可靠性造成较大影响。其中,耦合项为矩阵
Figure PCTCN2022116165-appb-000009
非对角线上的元素。除第一干扰层外,第一终端装置的多个干扰层还可包括第二干扰层。第二干扰层具有相对弱的干扰能量。第一终端装置在计算MIMO均衡系数时,忽略第二干扰层的信道估计结果可以显著提高吞吐率,并且不对MIMO均衡的性能产生过大影响以至于导致通信性能的可靠性大幅降低。可选的,如图4所示,第二干扰层为第一终端装置的干扰层中,除第一干扰层以外的干扰层。本申请中,干扰能量可以是指终端装置或终端装置的一个传输层检测到的干扰层的能量。第二干扰层在本申请中也可称为非关键干扰层。
作为一种可能的确定第一干扰层和/或第二干扰层的示例,网络设备可根据干扰能量从第一终端装置的多个干扰层中确定第一干扰层和/或第二干扰层。可选的,干扰能量可根据第一终端装置的预编码后的等效信道矩阵确定。
可选的,本申请中第一干扰层的干扰能量满足以下中的任意一项或多项条件,因此可根据干扰层的干扰能量确定第一干扰层。
条件1,第一干扰层的干扰能量高于第二干扰层的干扰能量。
例如,第一终端装置的第一干扰层的干扰能量至少高于第一终端装置的全部干扰层中的至少一个干扰层(称为第二干扰层)的干扰能量。
举例来说,UE1的干扰层包括UE2的传输层1至传输层3,该传输层1至传输层3对于UE1的干扰能量分别表示为P1至P3,若P1<P2<P3,则对于UE1来说,UE2的传输层2和传输层3是UE1的第一干扰层,UE2的传输层1为UE1的第二干扰层,或者UE2的传输层3是UE1的第一干扰层,UE2的传输层2和传输层1为UE1的第二干扰层。
条件2,第一干扰层的干扰能量不低于能量阈值(或称为第一阈值)。
例如,可将第一终端装置的全部干扰层中干扰能量不低于第一阈值的干扰层作为第一干扰层。同理,还可将第一终端装置的全部干扰层中干扰能量低于第一阈值的干扰层作为第二干扰层。
举例来说,UE1的干扰层包括UE2的传输层1至传输层3,该传输层1至传输层3对于UE1的干扰能量分别表示为P1至P3,若P1<Pth、P2>Pth且P3<Pth,其中,Pth表示第一阈值,则对于UE1,UE2的传输层2是UE1的第一干扰层,UE2的传输层1和传输层3为UE1的第二干扰层。
可选的,第一阈值可根据第一终端装置的全部干扰层的能量总和以及一定比例确定,例如,在全部干扰层的能量总和不同时,第一阈值可以不同。
条件3,第一干扰层的干扰能量占第一终端装置的全部干扰层的干扰能量总和的比例不低于阈值(或称为第一比例阈值)。
例如,可根据第一终端装置的每个干扰层的干扰能量确定全部干扰层的干扰能量的总和,并根据该总和以及每个干扰层的干扰能量确定每个干扰层的干扰能量占总和的比例。进一步可将比例不低于第一比例阈值的干扰层作为第一干扰层。
条件4,第一干扰层包括多个干扰层,多个干扰层的干扰能量的和不低于能量阈值(或称为第二阈值,第一阈值与第二阈值可以相同或不同,不具体要求)。
例如,可将第一终端装置的多个干扰层的干扰能量求和,在多个干扰层的干扰能量的和不低于第二阈值时,将该多个干扰层均作为第一干扰层。
可选的,第二阈值可根据第一终端装置的全部干扰层的能量总和以及一定比例确定,例如,在全部干扰层的能量总和不同时,第二阈值可以不同。
条件5,第一干扰层包括多个干扰层,多个干扰层的干扰能量的和占第一终端装置的全部干扰层的干扰能量总和的比例不低于阈值(或称为第二比例阈值,第一比例阈值与第二比例阈值可以相同或不同,不具体要求)。
作为一种可能的示例,第一终端装置可对多个干扰层按照干扰能量从大到小进行排序,从干扰能量最大的干扰层开始,逐层累计干扰能量,当累计干扰能量占全部干扰层干扰能量的比例超过阈值时,停止累计,并把选中的至少一个干扰层作为第一干扰层。
举例来说,UE1的干扰层为UE2的传输层1至传输层3,该传输层1至传输层3对于UE1的干扰能量分别表示为P1至P3,第二比例阈值为Rth,假定P1<P2<P3,如果P2+P3>Rth*(P1+P2+P3)且P3<Rth*(P1+P2+P3),则对于UE1来说,UE2的传输层2和传输层3是UE1的第一干扰层,UE2的传输层1为UE1的第二干扰层。
条件6,第一干扰层的干扰能量为多个干扰层中的干扰能量最高的N个干扰层,N为正整数。
例如,可将第一终端装置的多个干扰层的干扰能量由大到小进行排序,将干扰能量最 高的N个干扰层作为第一干扰层。
还可以理解,以上第一干扰层的干扰能量满足的条件仅仅是举例说明。以上任意两个或更多条件之间可以组合实施。
本申请中,可根据第一终端装置的全部干扰层确定每个干扰层的干扰能量,相应的,根据该干扰能量确定的第一干扰层为第一终端装置的用户级的第一干扰层。该第一干扰层也可称为,按照空域粒度确定的用户级第一干扰层,以下简称为用户级第一干扰层。可以理解,对于第一终端装置的全部传输层来说,第一干扰层是相同的。
此外,也可以针对第一终端装置的每个传输层,确定每个干扰层的干扰能量,相应的,根据该干扰能量所确定的第一干扰层为第一终端装置的传输层所对应的第一干扰层,因此对于第一终端装置不同的传输层,确定的第一干扰层可能不同。该第一干扰层也可称为,按照空域粒度确定的层级第一干扰层,以下简称为层级第一干扰层。
下面通过举例分别对用户级第一干扰层和层级第一干扰层的方式进行介绍。
(1)对于用户级第一干扰层,网络设备可获得第一终端装置的预编码后的等效信道矩阵,根据预编码后的等效信道矩阵中干扰层对应的列向量的2范数平方,确定第一终端装置的多个干扰层分别的干扰能量,根据干扰能量确定第一干扰层。
假设网络设备在相同时频域资源上给UE1和UE2传输数据,UE1和UE2都各自有3个传输层,UE1有3根接收天线,则UE1的预编码后的等效信道矩阵可表示为表1。
表1
Figure PCTCN2022116165-appb-000010
示例性的,可根据UE1的等效信道矩阵中,UE2的传输层对应的列向量的2范数平方,确定UE1的干扰层的干扰能量。本申请中,预编码后的等效信道矩阵的列向量2范数平方是指,对该等效信道矩阵的列向量取2范数,再对2范数取平方。
对于UE1来说,UE2的传输层1的干扰能量P4满足:
P4=abs(a14)*abs(a14)+abs(a24)*abs(a24)+abs(a34)*abs(a34);
其中,对于UE2的传输层1来说,列向量包括a14、a24和a34,a14、a24和a34分别表示UE1接收天线1、天线2和天线3所接收的UE2的传输层1的信号。
UE2的传输层2的干扰能量P5满足:
P5=abs(a15)*abs(a15)+abs(a25)*abs(a25)+abs(a35)*abs(a35);
其中,对于UE2的传输层2来说,列向量包括a15、a25和a35,a15、a25和a35分别表示UE1接收天线1、天线2和天线3所接收的UE2的传输层2的信号。
UE2的传输层3的干扰能量P6满足:
P6=abs(a16)*abs(a16)+abs(a26)*abs(a26)+abs(a36)*abs(a36)。
其中,对于UE2的传输层3来说,列向量包括a16、a26和a36,a16、a26和a36分别表示UE1接收天线1、天线2和天线3所接收的UE2的传输层3的信号。
本申请中,abs(x)表示对x取绝对值,*表示乘法运算。
进一步,网络设备可根据干扰层的干扰能量,确定UE1的第一干扰层。例如,网络设备可根据条件1至条件6确定UE1的第一干扰层。
(2)对于层级第一干扰层,网络设备可根据第一终端装置的预编码后的等效信道矩阵以及UE1的均衡系数矩阵,确定UE1的端到端等效信道矩阵,再根据UE1的端到端等效信道矩阵确定第一干扰层。
下面介绍层级粒度确定第一干扰层的方式。
示例性的,网络设备可获得网络设备指示的均衡系数矩阵,该均衡系数矩阵是网络设备根据默认方式生成的,如用于生成均衡系数矩阵的信道估计结果根据全部干扰层的端口确定。网络设备可根据该均衡系数矩阵确定层级第一干扰层。例如,网络设备所确定的均衡系数矩阵例如表2示。
表2
  UE1收天线1 UE1收天线2 UE1收天线3
UE1传输层1 w11 w12 w13
UE1传输层2 w21 w22 w23
UE1传输层3 w31 w32 w33
将表2所示的均衡系数矩阵和表1所示的UE1的等效信道矩阵做乘法运算,得到UE1的端到端等效信道矩阵,如表3所示。
表3
Figure PCTCN2022116165-appb-000011
可选的,一种可能的根据端到端等效信道矩阵确定第一干扰层的方式为,根据端到端等效信道矩阵确定UE1的每个干扰层(即UE2的传输层1、传输层2和传输层3)对于UE1的每个传输层的干扰能量,根据干扰能量从UE2的传输层中确定UE1的每个传输层分别的第一干扰层。
如表3所示,UE2的传输层1对UE1的传输层1产生的干扰能量可表示为(w11*a14+w12*a24+W13*a34)的2范数平方。
进一步的,网络设备可根据干扰层的干扰能量,确定UE1的各个传输层分别的第一干扰层。例如,网络设备可根据条件1至条件6确定UE1的各个传输层分别的第一干扰层。
可以理解,条件1至条件6是按照干扰层对于第一终端装置的干扰能量作为举例进行描述的,如果干扰能量是针对第一终端装置的各个传输层的干扰能量,可以参照条件1至条件6作类似处理,以确定各个传输层分别的第一干扰层。例如,条件1中,如果P1至P3分别表示UE2的传输层1至传输层3对于UE1的传输层1的干扰能量,若P1<P2<P3, 则对于UE1的传输层1来说,UE2的传输层2和传输层3是UE1的传输层1的第一干扰层,UE2的传输层1为UE1的传输层1的第二干扰层。
可选的,另一种可能的确定UE1的传输层对应的第一干扰层的方式例如,比较表3中,UE1的传输层1对应的UE2传输层1、传输层2和传输层3分别的矩阵向量的绝对值的大小,以体现UE2的传输层1、传输层2和传输层3分别对UE1的传输层1造成的干扰能量的大小,根据比较结果确定第一干扰层和/或第二干扰层。
例如,如果UE1传输层1对应的UE2传输层1的矩阵向量(w11*a14+w12*a24+W13*a34),UE1传输层1对应的UE2传输层2的矩阵向量(w11*a15+w12*a25+W13*a35),以及UE1传输层1对应的UE2传输层3的矩阵向量(w11*a16+w12*a26+W13*a36),之间满足:
abs(w11*a14+w12*a24+W13*a34)>abs(w11*a15+w12*a25+W13*a35)>abs(w11*a16+w12*a26+W13*a36);
则对于UE1的传输层1来说,如果要求第一干扰层的数量为1,第一干扰层可以是UE2的传输层1,或者,如果要求第一干扰层的数量为2,第一干扰层可以是UE2的传输层1和传输层2。
又如,如果UE1传输层2对应的UE2传输层1的矩阵向量(w21*a15+w22*a25+W23*a35),UE1传输层2对应的UE2传输层2的矩阵向量(w21*a14+w22*a24+W23*a34),以及UE1传输层2对应的UE2传输层3的矩阵向量(w21*a16+w22*a26+W23*a36),之间满足:
abs(w21*a15+w22*a25+W23*a35)>abs(w21*a14+w22*a24+W23*a34)>abs(w21*a16+w22*a26+W23*a36);
则对于UE1的传输层2来说,如果要求第一干扰层的数量为1,第一干扰层可以是UE2的传输层1,或者,如果要求第一干扰层的数量为2,第一干扰层可以是UE2的传输层1和传输层2。
又如,如果UE1传输层3对应的UE2传输层1的矩阵向量(w31*a14+w32*a24+W33*a34),UE1传输层3对应的UE2传输层2的矩阵向量(w31*a15+w32*a25+W33*a35),以及UE1传输层3对应的UE2传输层3的矩阵向量(w31*a16+w32*a26+W33*a36),之间满足:
abs(w31*a14+w32*a24+W33*a34)>abs(w31*a15+w32*a25+W33*a35)>abs(w31*a16+w32*a26+W33*a36);
则对于UE1的传输层3来说,如果要求第一干扰层的数量为1,第一干扰层可以是UE2的传输层1,或者,如果要求第一干扰层的数量为2,第一干扰层可以是UE2的传输层1和传输层2。
可选的,第一干扰层还可按照频域粒度划分。或者说,第一终端装置的第一干扰层可以是按照频域粒度确定的。
从频域粒度上,第一干扰层可划分为RB级、全带级和子带级。以表1为例,RB级是指,等效信道矩阵的系数(如表1所示的a14至a36)是按照RB级统计获得的。全带级是指,等效信道矩阵的系数(如表1所示的a14至a36)是按照全带级统计获得的,一个全带可以包含若干子带或RB。子带级是指,等效信道矩阵的系数(如表1所示的a14至a36) 是按照子带级统计获得的,一个子带可以包含多个RB。
S101中,第一信息可包括第一干扰层对应的端口的指示信息、第二干扰层对应的端口指示信息和端口组的指示信息中的至少一项。
下面分别对第一信息可能包含的内容进行介绍。
作为一种可能的实现方式,第一信息可包括第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息,其中,第二干扰层不包括所述第一干扰层。本申请中,端口的指示信息可包括端口索引。
基于该实现方式,当第一信息包括第一干扰层对应的端口的指示信息时,第一信息可直接指示(或明示指示)第一干扰层对应的端口。
作为一种可能的实现方式,第一信息可包括端口组的信息,如DMRS图案指示,用于隐式指示第一干扰层和/或第二干扰层。相应的,第一终端装置可根据端口组中端口的信息、第一终端装置的待传输数据的端口,确定第一干扰层和/或第二干扰层。
其中,端口组的信息可包括端口组中端口的信息,第一终端装置可根据自身接收数据所使用的端口和端口组中的端口信息确定第一干扰层对应的端口和/或第二干扰层对应的端口。
DMRS设计的主要原则为,互为强干扰的两个UE的传输层的DMRS端口以独享时频资源为主;互为弱干扰的两个UE的传输层的DMRS端口以共享时频资源为主;从而实现强干扰的导频密度高、弱干扰的导频密度低,降低DMRS开销。
比如,用户1的传输层1对用户2为第一干扰层,用户2的传输层1对用户1为第二干扰层,对于不同用户的互为第二干扰层的传输层可以对应于相同的时频资源,即可以对应于同一个端口组中的端口,不同用户的互为第二干扰层的传输层对应于不同的时频资源,即对应于不同端口组中的端口。当第一终端装置根据自身待传输数据的端口和端口组的信息确定自身待传输数据的端口所在的端口组后,可确定相同端口组中的其他端口为第一干扰层对应的端口,和/或,可确定不同端口组中的端口为第二干扰层对应的端口。
如图5所示,以类型2(Type 2)双OFDM符号类型的DMRS端口配置为例,DMRS端口分为三个DMRS端口组,其中,第一个DMRS端口组包括端口1000、端口1001、端口1006以及端口1007,第二个DMRS端口组包括端口1002、端口1003、端口1008以及端口1009,第一个DMRS端口组包括端口1004、端口1005、端口1010以及端口1011,同一个DMRS端口组中的端口复用相同的时频资源。可以理解,在图5中,1000、1001、……、1011分别为端口索引。
假设网络设备在相同时频域资源上给UE1和UE2传输数据,且UE1和UE2都各自有3个传输层。表4从层级第一干扰层的角度,给出UE1的传输层与UE2的各个传输层分别的第一干扰层。
表4
Figure PCTCN2022116165-appb-000012
Figure PCTCN2022116165-appb-000013
从上表可以看出,UE1的传输层1和UE2的传输层1互为第一干扰层,UE1的传输层2与UE2的传输层2、UE2的传输层3互为第二干扰层,UE1的传输层3与UE2的传输层2、UE2的传输层3互为第二干扰层。
可选的,网络设备可将UE1和UE2分别的传输层中,互为第二干扰层的传输层配置为同一个DMRS端口组中的端口对应的传输层;以及,将互为第一干扰层的传输层分配为不同的DMRS端口组中的端口对应的传输层,以避免互为第一干扰层的传输层之间的传输干扰。可选的,网络设备还可在第一信息中携带UE1、UE2分别的传输层与DMRS端口组中的端口之间的对应关系,该对应关系例如表5所示。
表5
传输层 分配的DMRS端口
UE1传输层1 端口1000
UE1传输层2 端口1004
UE1传输层3 端口1005
UE2传输层1 端口1002
UE2传输层2 端口1010
UE2传输层3 端口1011
如表4所示,由于UE1的传输层1和UE2的传输层1互为第一干扰层,因此在表5中,网络设备可将UE1的传输层1配置为端口1000对应的传输层,以及将UE2的传输层1配置为端口1002对应的传输层,其中根据图5所示的DMRS端口配置方案,端口1000和端口1002对应于不同的时频资源,即端口1000和端口1002不会共享时频资源,以避免相互干扰。另外,UE1的传输层2与UE2的传输层2互为第二干扰层,根据表5和图5,这两个传输层对应的端口1004和端口1010属于同一个DMRS端口组,即共享相同的时频资源。以表5为例,如果第一终端装置通过端口1000接收数据,第一终端装置可根据图5确定端口1000与端口1001、端口1006和端口1007属于同一个DMRS端口组,因此将端口1001、端口1006和端口1007作为第一干扰层对应的端口。此外,第一终端装置还可将端口1002、端口1003、端口1005、端口1005、端口1008、端口1009、端口1010和端口1011作为第二干扰层对应的端口。
作为另一种可能的实现方式,第一信息可包括端口组的信息,和第一干扰层对应的端 口的指示信息和/或第二干扰层对应的端口指示信息中的至少一项。
该实现方式中,第一终端设备在第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息未指示某个干扰层为第一干扰层和第二干扰层时,根据端口组的信息确定该干扰层是否为第一干扰层或第二干扰层。
例如,根据表5,如果第一终端装置通过端口1000接收数据,第一终端装置可根据图5,将端口1001、端口1006和端口1007作为第一干扰层对应的端口。如果第一信息还包括第一干扰层对应的端口的指示信息,其中该指示信息用于指示端口1002作为第一干扰层对应的端口,则第一终端装置可将端口1001、端口1002、端口1006和端口1007作为第一干扰层对应的端口。
S102:第一终端装置根据第一干扰层对应的端口进行信道估计。
作为S102的一种可能的实现方式,第一终端装置可根据第一时频资源进行信道估计。其中,第一时频资源对应于第一干扰层对应的端口,或者说,第一时频资源是第一干扰层对应的端口所对应的时频资源。
其中可选的,所述第一终端装置可根据所述第一时频资源,以及根据噪声对应的时频资源和/或第一终端装置的待传输数据对应的时频资源进行信道估计。本申请中,信道估计的结果可用于确定均衡系数,第一终端装置可根据该均衡系数进行数据接收。
本申请中,除特殊说明,第一终端装置的待传输数据是指第一终端装置的接收数据。
也就是说,本申请中,第一终端装置可对第一信息指示的端口进行信道测量,因此降低了第一终端装置从多个端口中确定需要进行信道估计的端口的难度,从而降低了结算单的处理复杂度,可以提升接收端性能。
进一步可选的,如果第一干扰层对应的端口为第一终端装置的全部干扰层对应的端口中的一部分端口,也就是说,第一终端装置不需要在另一部分端口(如第二干扰层对应的端口,或第二干扰层对应的端口中的一部分端口)所对应的时频资源进行信道估计,因此可以进一步减少接收端信道估计的复杂度。
可以理解,进行信道估计的时频资源的最小单位可以是RE。
可选的,第一终端装置需要进行估计的时频资源包括以下中的至少一项:
(1)第一时频资源,即第一干扰层对应的端口所对应的时频资源。
其中,第一终端装置可以对第一时频资源进行信道估计,获得第一干扰层对应的端口的干扰估计结果,再根据干扰估计结果,获得噪声干扰信道协方差矩阵(以下简称为信道协方差矩阵),信道协方差矩阵可用于确定均衡系数。可以理解,第一时频资源可根据端口配置确定。例如,第一终端装置可根据第一指示信息确定第一干扰层对应的端口,进一步可根据端口配置确定该端口对应的时频资源。端口配置可包括DMRS端口配置,类型2双OFDM符号类型的DMRS端口配置如图5所示。
其中,当仅存在一个第一干扰层时,可以利用排除法获得信道协方差矩阵。
可选的,排除法的一种举例为:
接收端先估计用户k的所传输数据的等效信道矩阵H eq,kk,获得等效信道矩阵的估计
Figure PCTCN2022116165-appb-000014
进而利用排除法获得信道协方差矩阵R uu的估计
Figure PCTCN2022116165-appb-000015
Figure PCTCN2022116165-appb-000016
其中,Y k,pilot表示接收信号序列,
Figure PCTCN2022116165-appb-000017
表示用户k的所传输数据的等效信道矩阵H eq,kk估计,
Figure PCTCN2022116165-appb-000018
用户序列
Figure PCTCN2022116165-appb-000019
Npilot表示发送的导频信 号(pilot)的天线数量,Nrx表示用户k的接收天线端口数量,Nlayer k表示用户k的传输层数。
第一终端装置也可以使用其他方式处理该第一干扰层的干扰估计结果,也就是说,确定均衡系数的过程不能忽略该第一干扰层的干扰估计结果。例如,忽略该干扰DMRS PORT、使用该干扰DMRS PORT的功率估计,可能会导致吞吐率损失。
(2)第二干扰层对应的端口所对应的时频资源。为方便说明,以下将该时频资源称为第二时频资源。
第一终端装置在确定噪声干扰信道协方差矩阵构成中不考虑(或忽略)对第二时频资源的干扰测量结果,或者说,可以忽略对第二时频资源进行信道估计。
可选的,UE也可以使用其他方式处理该第二时频资源,例如,对部分或全部的第二时频资源进行信道估计,以提高信道协方差矩阵的准确性,但会导致处理复杂度增加,造成吞吐率损失。
(3)包含噪声的时频资源。
其中,对于仅包含纯噪声的时频资源(即不包含第一干扰层对应的端口对应的时频资源和第二干扰层对应的端口对应的时频资源),第一终端装置可在这部分时频资源进行信道估计,并根据估计结果确定信道协方差矩阵。
在包含第一终端装置的待传输数据的时频资源且包含纯噪声的时频资源,或者,在包含第一时频资源且包含噪声的时频资源,或者,在包含第一终端装置的待传输数据的时频资源、第一时频资源以及噪声的时频资源进行信道估计,获得信道协方差矩阵。
此外,本申请不排除第一终端装置使用其他RE上估计噪声,例如,在包含有第二时频资源且包含噪声的RE进行测量,但会导致处理复杂度增加,造成吞吐率损失。
可选的,根据需要估计的时频资源的类型不同,第一终端装置对于时频资源的估计方式如表6所示。其中,任一类型的时频资源可能包括噪声(或包含噪声所在的时频资源)、第一时频资源、第二时频资源和第一终端装置的待传输数据的时频资源中的一项或多项,因此表6中通过噪声、第一时频资源、第二时频资源和第一终端装置的待传输数据的时频资源中的一项或多项表示时频资源的类型,即表示时频资源包括噪声、第一时频资源、第二时频资源和第一终端装置的待传输数据的时频资源中的哪一项或多项。其中,第一时频资源可能对应于一个或多个第一干扰层,因此第一时频资源包括单一的第一干扰层对应的第一时频资源和多个第一干扰层对应的第一时频资源。同理,第二时频资源包括单一的第二干扰层对应的第二时频资源和多个第二干扰层对应的第二时频资源。
表6
Figure PCTCN2022116165-appb-000020
Figure PCTCN2022116165-appb-000021
基于表6,以MMSE-IRC均衡为例,信道协方差矩阵R uu满足:
Figure PCTCN2022116165-appb-000022
其中,
Figure PCTCN2022116165-appb-000023
为对第一终端装置的待传输数据的时频资源进行信道估计,获得 的协方差矩阵,H eq,kk表示用户k的所传输数据的等效信道矩阵,
Figure PCTCN2022116165-appb-000024
为H eq,kk的共轭转置矩阵;
Figure PCTCN2022116165-appb-000025
为对第一干扰层对应的时频资源进行信道估计,获得对应的协方差矩阵,H eq,kl1表示用户k与用户l1的所传输数据的等效信道矩阵,
Figure PCTCN2022116165-appb-000026
为H eq,kl1的共轭转置矩阵;
Figure PCTCN2022116165-appb-000027
为对第二干扰层对应的时频资源进行信道估计所获得的协方差矩阵,H eq,kl2表示用户k与用户l2的所传输数据的等效信道矩阵,
Figure PCTCN2022116165-appb-000028
为H eq,kl2的共轭转置矩阵,l2≠l1;
Figure PCTCN2022116165-appb-000029
表示噪声对应的协方差矩阵。
可以理解,如果忽略第二干扰层的估计,则信道协方差矩阵R uu满足:
Figure PCTCN2022116165-appb-000030
基于以上信道协方差矩阵R uu,网络设备可确定用户k的均衡系数
Figure PCTCN2022116165-appb-000031
本申请对于网络设备根据信道协方差矩阵R uu确定用户k的均衡系数
Figure PCTCN2022116165-appb-000032
的方式不做具体限定。一种可能的确定方式是,网络设备基于前述公式1确定用户k的均衡系数
Figure PCTCN2022116165-appb-000033
可以理解,以上信道协方差矩阵R uu所满足的公式是示例性的,不应作为对于信道协方差矩阵R uu的限定。例如,根据均衡法和实际应用的场景需要,可能存在其他变形。
可选的,本申请中,第二通信装置还可向第一终端装置发送第二信息,第二信息可用于指示、通知或配置第一终端装置执行本申请实施例提供的通信方法,则相应的,第一终端装置执行图3所示方法。例如,第二信息可用于指示第一终端装置执行简缩干扰信道估计(compact interference channel estimation,CICE),则第一终端装置可根据该第二信息执行本申请实施例提供的方法。
可以理解的是,为了实现上述实施例中功能,本申请实施例还提供一种通信装置。该通信装置可包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图6至图8为本申请的实施例提供的可能的通信装置的结构示意图。该通信装置可以用于实现上述方法实施例中网络设备或第一终端装置的功能,因此也能实现上述方法实施例所具备的有益效果。在一种可能的实现中,该通信装置可以是如图1至图3所示的任一网络设备或第一终端装置。相关细节和效果可以参见前述实施例的描述。
如图6所示,通信装置600包括处理单元610和通信单元620,其中通信单元620还可以为收发单元或输入输出接口等。通信装置600可用于实现上述图3所示方法实施例中网络设备或第一终端装置的功能。
可选的,在实现第一终端装置的功能时,通信单元620可用于接收第一信息,所述第一信息用于指示所述第一终端装置的第一干扰层对应的端口,所述第一干扰层为所述第一终端装置的多个干扰层中的一个或多个干扰层,所述第一干扰层为第二终端装置的传输层。处理单元610可用于根据所述第一干扰层对应的端口进行信道估计。
可选的,所述处理单元610还可用于根据信道估计的结果确定均衡系数,并根据所述均衡系数接收数据。
可选的,所述处理单元610可具体用于根据第一时频资源进行信道估计,所述第一时频资源对应于所述第一干扰层对应的端口。
可选的,所述处理单元610可具体用于根据所述第一时频资源,以及根据噪声对应的时频资源和/或待传输数据对应的时频资源进行信道估计。
可选的,在所述第一信息还包括端口组的指示信息时,所述处理单元610还可用于根据待传输数据对应的端口和所述端口组中的端口,以及第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息,确定所述第一干扰层对应的端口,所述第二干扰层不包括所述第一干扰层。
可选的,在所述第一信息包括端口组的指示信息时,所述处理单元610还可用于根据待传输数据对应的端口以及所述端口组中的端口确定所述第一干扰层对应的端口。
可选的,在实现第一终端装置的功能时,处理单元610可用于确定第一信息,所述第一信息用于指示所述第一终端装置的第一干扰层对应的端口,所述第一干扰层为所述第一终端装置的多个干扰层中的一个或多个干扰层,所述第一干扰层为第二终端装置的传输层。通信单元620可用于向所述第一终端装置发送所述第一信息。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图7所示为本申请实施例提供的通信装置700,用于实现本申请提供的通信方法。该通信装置700可以是应用该通信方法的通信装置,也可以是通信装置中的组件,或者是能够和通信装置匹配使用的装置。通信装置700可以是第一终端装置或网络设备。其中,该通信装置700可以为芯片***或芯片。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。通信装置700包括至少一个处理器720,用于实现本申请实施例提供的通信方法。通信装置700还可以包括输出接口710,输出接口也可称为输入输出接口。在本申请实施例中,输出接口710可用于通过传输介质和其它装置进行通信,其功能可包括发送和/或接收。例如,通信装置700是芯片时,通过输出接口710与其他芯片或器件进行传输。处理器720可用于实现上述方法实施例所示的方法。
示例性的,处理器720可用于执行由处理单元610执行的动作,输出接口710可用于执行由通信单元620执行的动作,不再赘述。
可选的,通信装置700还可以包括至少一个存储器730,用于存储程序指令和/或数据。存储器730和处理器720耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器720可能和存储器730协同操作。处理器720可能执行存储器730中存储的程序指令。该至少一个存储器中的至少一个可以与处理器集成在一起。
在本申请实施例中,存储器730可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在本申请实施例中,处理器720可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现 为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
如图8所示为本申请实施例提供的通信装置800,用于实现本申请提供的通信方法。该通信装置800可以是应用本申请实施例所示通信方法的通信装置,也可以是通信装置中的组件,或者是能够和通信装置匹配使用的装置。通信装置800可以是第一终端装置或网络设备。其中,该数据传输装置800可以为芯片***或芯片。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。上述实施例提供的应用惠更斯等效面的通信方法中的部分或全部可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,数据传输装置800可包括:输入接口电路801、逻辑电路802和输出接口电路803。
可选的,以该装置用于实现接收端的功能为例,输入接口电路801可用于执行上述由通信单元620执行的接收动作,输出接口电路803可用于执行上述由通信单元620执行的发送动作,逻辑电路802可用于执行上述由处理单元610执行的动作,不再赘述。
可选的,数据传输装置800在具体实现时可以是芯片或者集成电路。
本申请上述方法实施例描述的数据传输装置所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例。
本申请实施例提供了一种通信***。具体的,该通信***可包括用于实现图3所示方法的第一终端装置和网络设备,或包括用于实现图3中的第一终端装置所执行方法的装置和用于实现图3中网络设备所指向方法的装置。具体请参考上述方法实施例中的相关描述,这里不再赘述。该通信***可包括图1或图2所示结构。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (43)

  1. 一种通信方法,其特征在于,包括:
    第一终端装置接收第一信息,所述第一信息用于指示所述第一终端装置的第一干扰层对应的端口,所述第一干扰层为所述第一终端装置的多个干扰层中的一个或多个干扰层,所述第一干扰层为第二终端装置的传输层;
    所述第一终端装置根据所述第一干扰层对应的端口进行信道估计。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置根据信道估计的结果确定均衡系数;
    所述第一终端装置根据所述均衡系数接收数据。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一终端装置根据所述第一干扰层对应的端口进行信道估计,包括:
    所述第一终端装置根据第一时频资源进行信道估计,所述第一时频资源对应于所述第一干扰层对应的端口。
  4. 如权利要求3所述的方法,其特征在于,所述第一终端装置根据第一时频资源进行信道估计,包括:
    所述第一终端装置根据所述第一时频资源,以及根据噪声对应的时频资源和/或待传输数据对应的时频资源进行信道估计。
  5. 如权利要求1-4中任一所述的方法,其特征在于,所述第一干扰层根据干扰能量确定,所述第一干扰层的干扰能量满足以下中的至少一项:
    所述第一干扰层的干扰能量高于第二干扰层的干扰能量,所述多个干扰层还包括所述第二干扰层;
    所述第一干扰层的干扰能量不低于能量阈值;
    所述第一干扰层的干扰能量占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;
    所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和不低于能量阈值;
    所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;
    所述第一干扰层的干扰能量为所述多个干扰层中的干扰能量最高的N个干扰层,N为正整数。
  6. 如权利要求1-5中任一所述的方法,其特征在于,所述第一信息包括所述第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息,所述第二干扰层不包括所述第一干扰层。
  7. 如权利要求6所述的方法,其特征在于,所述第一信息还包括端口组的指示信息,所述方法还包括:
    所述第一终端装置根据待传输数据对应的端口和所述端口组中的端口,以及第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息,确定所述第一干扰层对应的端口。
  8. 如权利要求1-7中任一所述的方法,其特征在于,所述第一信息包括端口组的指示信息,所述方法还包括:
    所述第一终端装置根据待传输数据对应的端口以及所述端口组中的端口确定所述第一干扰层对应的端口。
  9. 一种通信方法,其特征在于,包括:
    网络装置确定第一信息,所述第一信息用于指示第一终端装置的第一干扰层对应的端口,所述第一干扰层为所述第一终端装置的多个干扰层中的一个或多个干扰层,所述第一干扰层为第二终端装置的传输层;
    所述网络装置向所述第一终端装置发送所述第一信息。
  10. 如权利要求9所述的方法,其特征在于,
    所述第一干扰层根据干扰能量确定,所述第一干扰层的干扰能量满足以下中的至少一项:
    所述第一干扰层的干扰能量高于第二干扰层的干扰能量,所述多个干扰层还包括所述第二干扰层;
    所述第一干扰层的干扰能量不低于能量阈值;
    所述第一干扰层的干扰能量占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;
    所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和不低于能量阈值;
    所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;
    所述第一干扰层的干扰能量为所述多个干扰层中的干扰能量最高的N个干扰层,N为正整数。
  11. 如权利要求9或10所述的方法,其特征在于,所述第一信息包括所述第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息,所述第二干扰层不包括所述第一干扰层。
  12. 如权利要求11所述的方法,其特征在于,所述第一信息还包括端口组的指示信息,所述端口组中的端口、所述第一终端装置的待传输数据对应的端口,以及所述第一干扰层对应的端口的指示信息和/或所述第二干扰层对应的端口指示信息用于确定所述第一干扰层对应的端口。
  13. 如权利要求9或10所述的方法,其特征在于,所述第一信息包括端口组的指示信息,所述端口组中的端口和所述待传输数据对应的端口用于确定所述第一干扰层对应的端口。
  14. 一种第一通信装置,其特征在于,包括:
    通信单元,用于接收第一信息,所述第一信息用于指示第一通信装置的第一干扰层对应的端口,所述第一干扰层为所述第一通信装置的多个干扰层中的一个或多个干扰层,所述第一干扰层为第二通信装置的传输层;
    处理单元,用于根据所述第一干扰层对应的端口进行信道估计。
  15. 如权利要求14所述的装置,其特征在于,所述处理单元还用于:
    根据信道估计的结果确定均衡系数;
    根据所述均衡系数接收数据。
  16. 如权利要求14或15所述的装置,其特征在于,所述处理单元具体用于:
    根据第一时频资源进行信道估计,所述第一时频资源对应于所述第一干扰层对应的端口。
  17. 如权利要求16所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一时频资源,以及根据噪声对应的时频资源和/或待传输数据对应的时频资源进行信道估计。
  18. 如权利要求14-17中任一所述的装置,其特征在于,所述第一干扰层根据干扰能量确定,所述第一干扰层的干扰能量满足以下中的至少一项:
    所述第一干扰层的干扰能量高于第二干扰层的干扰能量,所述多个干扰层还包括所述 第二干扰层;
    所述第一干扰层的干扰能量不低于能量阈值;
    所述第一干扰层的干扰能量占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;
    所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和不低于能量阈值;
    所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;
    所述第一干扰层的干扰能量为所述多个干扰层中的干扰能量最高的N个干扰层,N为正整数。
  19. 如权利要求14-18中任一所述的装置,其特征在于,所述第一信息包括所述第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息,所述第二干扰层不包括所述第一干扰层。
  20. 如权利要求19所述的装置,其特征在于,所述第一信息还包括端口组的指示信息,所述处理单元还用于:
    根据待传输数据对应的端口和所述端口组中的端口,以及第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息,确定所述第一干扰层对应的端口。
  21. 如权利要求14-20中任一所述的装置,其特征在于,所述第一信息包括端口组的指示信息,所述处理单元还用于:
    根据待传输数据对应的端口以及所述端口组中的端口确定所述第一干扰层对应的端口。
  22. 如权利要求14-20中任一所述的装置,其特征在于,所述通信单元包括收发器,所述处理单元包括处理器。
  23. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一信息,所述第一信息用于指示第一终端装置的第一干扰层对应的端口,所述第一干扰层为所述第一终端装置的多个干扰层中的一个或多个干扰层,所述第一干扰层为第二终端装置的传输层;
    通信单元,用于向所述第一终端装置发送所述第一信息。
  24. 如权利要求23所述的装置,其特征在于,所述第一干扰层根据干扰能量确定,所述第一干扰层的干扰能量满足以下中的至少一项:
    所述第一干扰层的干扰能量高于第二干扰层的干扰能量,所述多个干扰层还包括所述第二干扰层;
    所述第一干扰层的干扰能量不低于能量阈值;
    所述第一干扰层的干扰能量占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;
    所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和不低于能量阈值;
    所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;
    所述第一干扰层的干扰能量为所述多个干扰层中的干扰能量最高的N个干扰层,N为正整数。
  25. 如权利要求23或24所述的装置,其特征在于,所述第一信息包括所述第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息,所述第二干扰层不包括所述第一干扰层。
  26. 如权利要求25所述的装置,其特征在于,所述第一信息还包括端口组的指示信息,所述端口组中的端口、所述第一终端装置的待传输数据对应的端口,以及所述第一干扰层 对应的端口的指示信息和/或所述第二干扰层对应的端口指示信息用于确定所述第一干扰层对应的端口。
  27. 如权利要求25或26所述的装置,其特征在于,所述第一信息包括端口组的指示信息,所述端口组中的端口和所述待传输数据对应的端口用于确定所述第一干扰层对应的端口。
  28. 如权利要求23-27中任一所述的装置,其特征在于,所述通信单元包括收发器,所述处理单元包括处理器。
  29. 一种通信方法,其特征在于,包括:
    网络装置确定第一信息,所述第一信息用于指示第一终端装置的第一干扰层对应的端口,所述第一干扰层为所述第一终端装置的多个干扰层中的一个或多个干扰层,所述第一干扰层为第二终端装置的传输层;
    所述网络装置向所述第一终端装置发送所述第一信息;
    所述第一终端装置接收来自于所述网络装置的所述第一信息;
    所述第一终端装置根据所述第一干扰层对应的端口进行信道估计。
  30. 如权利要求29所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置根据信道估计的结果确定均衡系数;
    所述第一终端装置根据所述均衡系数接收数据。
  31. 如权利要求29或30所述的方法,其特征在于,所述第一终端装置根据所述第一干扰层对应的端口进行信道估计,包括:
    所述第一终端装置根据第一时频资源进行信道估计,所述第一时频资源对应于所述第一干扰层对应的端口。
  32. 如权利要求31所述的方法,其特征在于,所述第一终端装置根据第一时频资源进行信道估计,包括:
    所述第一终端装置根据所述第一时频资源,以及根据噪声对应的时频资源和/或待传输数据对应的时频资源进行信道估计。
  33. 如权利要求29-32中任一所述的方法,其特征在于,所述第一干扰层根据干扰能量确定,所述第一干扰层的干扰能量满足以下中的至少一项:
    所述第一干扰层的干扰能量高于第二干扰层的干扰能量,所述多个干扰层还包括所述第二干扰层;
    所述第一干扰层的干扰能量不低于能量阈值;
    所述第一干扰层的干扰能量占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;
    所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和不低于能量阈值;
    所述第一干扰层包括多个干扰层,所述多个干扰层的干扰能量的和占干扰能量总和的比例不低于比例阈值,所述干扰能量总和为所述第一终端装置的全部干扰层的干扰能量的和;
    所述第一干扰层的干扰能量为所述多个干扰层中的干扰能量最高的N个干扰层,N为正整数。
  34. 如权利要求29-33中任一所述的方法,其特征在于,所述第一信息包括所述第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息,所述第二干扰层不包括所述第一干扰层。
  35. 如权利要求34所述的方法,其特征在于,所述第一信息还包括端口组的指示信息,所述方法还包括:
    所述第一终端装置根据待传输数据对应的端口和所述端口组中的端口,以及第一干扰层对应的端口的指示信息和/或第二干扰层对应的端口指示信息,确定所述第一干扰层对应的端口。
  36. 如权利要求29-35中任一所述的方法,其特征在于,所述第一信息包括端口组的指示信息,所述方法还包括:
    所述第一终端装置根据待传输数据对应的端口以及所述端口组中的端口确定所述第一干扰层对应的端口。
  37. 一种通信装置,其特征在于,包括:处理器;所述处理器用于执行存储器存储的一个或多个计算机程序,以使得所述通信装置执行如权利要求1-13中任一项所述的方法。
  38. 如权利要求37所述的通信装置,其特征在于,所述通信装置还包括所述存储器。
  39. 如权利要求37或38所述的通信装置,其特征在于,所述通信装置为芯片或芯片***。
  40. 一种芯片***,其特征在于,所述芯片***包括逻辑电路和输入输出接口,其中:
    所述输入输出接口用于与所述芯片***之外的其他通信装置进行通信,所述逻辑电路用于执行如权利要求1-13中任一项所述的方法。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-8中任一项所述的方法,或使得所述计算机执行如权利要求9-13中任一项所述的方法。
  42. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-8中任一项所述的方法,或使得所述计算机执行如权利要求9-13中任一项所述的方法。
  43. 一种通信***,其特征在于,包括用于执行如权利要求1-8中任一项所述的方法的通信装置,和用于执行如权利要求9-13中任一项所述的方法的通信装置。
PCT/CN2022/116165 2022-08-31 2022-08-31 一种通信方法及装置 WO2024045031A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116165 WO2024045031A1 (zh) 2022-08-31 2022-08-31 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116165 WO2024045031A1 (zh) 2022-08-31 2022-08-31 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024045031A1 true WO2024045031A1 (zh) 2024-03-07

Family

ID=90099979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116165 WO2024045031A1 (zh) 2022-08-31 2022-08-31 一种通信方法及装置

Country Status (1)

Country Link
WO (1) WO2024045031A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150036621A1 (en) * 2013-07-31 2015-02-05 Electronics And Telecommunications Research Institute Method for providing interference information in mobile communication system
CN110149643A (zh) * 2018-02-11 2019-08-20 索尼公司 无线通信***中的装置和方法、计算机可读存储介质
WO2022041288A1 (zh) * 2020-08-31 2022-03-03 华为技术有限公司 一种信号传输方法及相关装置
WO2022165671A1 (zh) * 2021-02-03 2022-08-11 华为技术有限公司 一种通信方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150036621A1 (en) * 2013-07-31 2015-02-05 Electronics And Telecommunications Research Institute Method for providing interference information in mobile communication system
CN110149643A (zh) * 2018-02-11 2019-08-20 索尼公司 无线通信***中的装置和方法、计算机可读存储介质
WO2022041288A1 (zh) * 2020-08-31 2022-03-03 华为技术有限公司 一种信号传输方法及相关装置
WO2022165671A1 (zh) * 2021-02-03 2022-08-11 华为技术有限公司 一种通信方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Details on interference measurement", 3GPP DRAFT; R1-1717815, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051341000 *
QUALCOMM INCORPORATED: "Details of CSI Measurement", 3GPP DRAFT; R1-1718539, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051341721 *

Similar Documents

Publication Publication Date Title
JP7241707B2 (ja) データ伝送方法、装置、ネットワーク側機器およびユーザ機器
US9820290B2 (en) Virtual antenna mapping method and apparatus for feedback of virtual antenna mapping information in MIMO system
JP2014504096A (ja) 無線ネットワークにおける周期的なチャネル状態報告のための装置及びその方法
CN113824481A (zh) 上行传输方法及相关装置
US20220417965A1 (en) Method for transmitting data on physical uplink shared channel, data transmission method, terminal, network device, and chip system
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2017132793A1 (en) Method, system and apparatus
CN113992309A (zh) 获取信道参数的方法及装置
WO2022027625A1 (en) Frequency domain precoding for fdd reciprocity
CN115088224B (zh) 一种信道状态信息反馈方法及通信装置
Zhao et al. Multi-user MAC protocol for WLANs in MmWave massive MIMO systems with mobile edge computing
WO2021179311A1 (zh) 一种信道状态信息csi测量的指示方法和通信装置
TWI574522B (zh) 多用戶多輸入多輸出中處理多用戶通道品質指示符的方法及其通訊裝置
WO2022227976A1 (zh) 通信方法和通信装置
WO2024045031A1 (zh) 一种通信方法及装置
US20230052506A1 (en) Method of sounding reference signal (srs)-assisted sd beam and fd vector reporting for type ii channel state information (csi)
WO2021189302A1 (zh) 更新的方法和通信装置
WO2021081964A1 (zh) 一种下行参考信号的发送端口的配置方法和通信装置
WO2024045102A1 (zh) 通信方法及装置
Damodaran et al. Mutual information of massive MIMO systems on block Rayleigh-faded channels
WO2023011436A1 (zh) 通信处理方法和通信处理装置
WO2024027393A1 (zh) 信道状态信息反馈方法及装置
US20240187050A1 (en) Method for obtaining precoding matrix and apparatus
WO2022151447A1 (zh) 信道状态信息上报方法及相关设备
WO2024114291A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956861

Country of ref document: EP

Kind code of ref document: A1