WO2024044968A1 - 极片检测的方法和装置 - Google Patents

极片检测的方法和装置 Download PDF

Info

Publication number
WO2024044968A1
WO2024044968A1 PCT/CN2022/115851 CN2022115851W WO2024044968A1 WO 2024044968 A1 WO2024044968 A1 WO 2024044968A1 CN 2022115851 W CN2022115851 W CN 2022115851W WO 2024044968 A1 WO2024044968 A1 WO 2024044968A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
surface density
width
width position
detection
Prior art date
Application number
PCT/CN2022/115851
Other languages
English (en)
French (fr)
Inventor
展冰洋
张敬东
王强军
真志辉
陈维刚
吴谦
晏亮杰
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/115851 priority Critical patent/WO2024044968A1/zh
Publication of WO2024044968A1 publication Critical patent/WO2024044968A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/02Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume

Definitions

  • the present application relates to the field of battery technology, and in particular, to a method and device for detecting pole pieces.
  • a battery is composed of a plurality of battery cells, each of which includes an electrode assembly.
  • the electrode assembly consists of a positive electrode piece and a negative electrode piece, and electrical energy is generated by metal ions moving between the positive electrode piece and the negative electrode piece.
  • the quality of the pole pieces is related to the performance and safety of the battery, so the pole pieces need to be tested.
  • This application provides a pole piece detection method and device, which can effectively detect the surface density of the pole piece material in the entire area.
  • a method for pole piece detection includes: acquiring signals of radiation irradiating the pole piece and transmitting from the pole piece, wherein the radiation is arranged along the width direction of the pole piece and covers all the pole pieces.
  • the pole piece is scanned along the length direction of the pole piece; and the surface density of the material coated on the surface of the pole piece is detected based on the signal transmitted by the pole piece.
  • the surface density of the pole piece is detected using rays.
  • the rays are arranged along the width direction of the pole piece and cover the pole piece, and the pole piece is scanned along the length direction of the pole piece, so as to detect the pole piece according to the
  • the transmitted signal detects the area density of the material coated on the surface of the pole piece.
  • This ray covers the width direction of the pole piece, realizes the surface scanning of the pole piece, and can obtain the two-dimensional distribution of the surface density in the width direction of the pole piece. Compared with the single-point detection method, the detection accuracy and accuracy are greatly improved. Sampling Rate.
  • detecting the areal density of the material coated on the surface of the pole piece includes: detecting the areal density corresponding to M width positions in the width direction on the pole piece, where M is a positive number greater than 1. integer.
  • each width position of the M width positions corresponds to N length positions, and N is a positive integer greater than 1, and the detection of the width direction on the pole piece
  • the surface density corresponding to the M width positions includes: obtaining M ⁇ N detection data corresponding to the M width positions and the N length positions; determining the M The surface density corresponding to the width position.
  • multiple detection units are also set up in the length direction to detect N positions in the length direction. Detection is performed to obtain M ⁇ N detection data, and the surface density corresponding to the M width positions is determined based on the M ⁇ N detection data, thereby further improving the detection accuracy and ensuring the stability of the detection results.
  • the pole piece runs along the length direction, and obtaining M ⁇ N detection data corresponding to the M width positions and the N length positions includes: each of the pole pieces Run a detection cycle, and obtain the M ⁇ N detection data corresponding to the part of the pole piece irradiated by the radiation in the detection cycle.
  • the position of the ray is fixed, and the pole piece runs along its length direction, causing relative movement between the pole piece and the ray, thereby realizing scanning of the pole piece by the ray.
  • the pole piece runs for one detection cycle the M ⁇ N detection data corresponding to the area where the pole piece is irradiated by radiation during the detection period, thereby obtaining the two-dimensional distribution of the surface density of the area in the width direction. In this way, the errors caused by air changes and position changes during dynamic ray scanning are reduced, and the detection accuracy is further improved.
  • determining the surface density corresponding to the M width positions based on the M ⁇ N detection data includes: based on the N corresponding to the i-th width position among the M width positions. Detect the data and determine the surface density corresponding to the i-th width position, where i ranges from 1 to M. Since each width position corresponds to N detection data, rich detection data is helpful to improve the accuracy of the detection results of the surface density corresponding to each width position.
  • determining the area density corresponding to the i-th width position based on the N detection data corresponding to the i-th width position among the M width positions includes: based on the i-th width position The average value of N detection data corresponding to the width position determines the surface density corresponding to the i-th width position. By averaging N detection data corresponding to each width position, the surface density corresponding to each width position is obtained, which is beneficial to improving the accuracy of the detection results of the surface density corresponding to each width position.
  • the method further includes: based on the surface density corresponding to the i-th width position, and the i-1th width position and/or the i-th width position adjacent to the i-th width position. +1 area density corresponding to the width position, and calibrate the area density corresponding to the i-th width position.
  • each detection unit Since the actual detection area of each detection unit is larger than the size of its signal receiving window, for each width position, the fluctuation of the surface density corresponding to its adjacent width position will affect the detection results of the width position.
  • the corresponding surface density calibrates the surface density corresponding to the width position, thereby improving the accuracy of the surface density corresponding to the width position.
  • f 1 (y i-1 ) A1 ⁇ y i-1
  • f 2 (y i ) B1 ⁇ y i
  • f 3 (y i+1 ) C1 ⁇ y i+1
  • A1, B1 and C1 are correction coefficients.
  • the method further includes: based on the surface density corresponding to the i-th width position detected in the j-th detection period, and the j-1th detection period and/or the j+1th detection period.
  • the surface density corresponding to the i-th width position detected in the j-th detection period is calibrated to the surface density corresponding to the i-th width position detected in the j-th detection period.
  • the surface density detected in each detection cycle can be calibrated by the surface density detected in adjacent detection cycles, thereby improving the detection The accuracy of the areal density corresponding to each width position within the cycle.
  • f 4 (y j-1 ) A2 ⁇ y' j-1
  • f 5 (y j ) B2 ⁇ y' j
  • f 6 (y' j+1 ) C2 ⁇ y' j+1
  • A2, B2 and C2 are correction coefficients.
  • the method further includes: determining the surface corresponding to the i-th width position based on the surface density corresponding to the i-th width position detected in the current detection period and its adjacent detection periods. Whether the density is abnormal.
  • the surface density corresponding to each width position in two adjacent detection cycles it can also be determined whether the surface density corresponding to the width position is abnormal, such as dark marks, scratches, drum ribs and other coating defects. , and provide prompts to ensure coating quality.
  • the preset value is between 1% and 10%.
  • the method further includes: adjusting the amount of the material applied to the pole piece in M coating directions according to the areal density corresponding to the M width positions, the M The coating directions respectively correspond to the M width positions, and the coating directions are parallel to the length direction.
  • the feeding amount in the M coating directions corresponding to the M width positions is adjusted, forming a closed-loop adjustment of the surface density of the pole piece, which greatly improves the coating of the pole piece. cloth effect.
  • the relationship between the intensity of the rays irradiating the pole piece and the intensity of the signal transmitted by the pole piece satisfies
  • I 0 is the intensity of the ray used to illuminate the pole piece
  • I is the intensity of the signal transmitted by the pole piece
  • is the mass absorption coefficient of the material
  • m is the surface density of the pole piece.
  • the rays are, for example, X-rays or ⁇ -rays.
  • the logarithm of the transmitted signal intensity of the pole piece is inversely proportional to the surface density. Using rays to detect the surface density of the pole piece is easy to implement and has high accuracy.
  • a device for pole piece detection including: a signal acquisition module for acquiring signals of rays irradiating the pole piece and being transmitted from the pole piece, wherein the rays are arranged along the width direction of the pole piece. And cover the pole piece, and scan the pole piece along the length direction of the pole piece; a processing module is used to detect the material coated on the surface of the pole piece according to the signal transmitted by the pole piece. Areal density.
  • the processing module is specifically configured to detect the surface density corresponding to M width positions in the width direction on the pole piece, where M is a positive integer greater than 1.
  • each width position of the M width positions corresponds to N length positions
  • the signal acquisition module is further configured to obtain the M width positions and the M ⁇ N detection data corresponding to N length positions;
  • the processing module is specifically configured to determine the surface density corresponding to the M width positions according to the M ⁇ N detection data.
  • the pole piece runs along the length direction
  • the signal acquisition module is specifically configured to: each time the pole piece runs for a detection cycle, obtain the information of the pole piece during the detection cycle.
  • the M ⁇ N detection data corresponding to the radiation irradiated part.
  • the processing module is specifically configured to: determine the surface density corresponding to the i-th width position based on the N detection data corresponding to the i-th width position among the M width positions, i ranges from 1 to M.
  • the processing module is specifically configured to determine the surface density corresponding to the i-th width position based on an average of N detection data corresponding to the i-th width position.
  • the processing module is further configured to: according to the surface density corresponding to the i-th width position, and the i-1th width position adjacent to the i-th width position and/or The surface density corresponding to the i+1th width position is calibrated to the surface density corresponding to the i-th width position.
  • f 1 (y i-1 ) A1 ⁇ y i-1
  • f 2 (y i ) B1 ⁇ y i
  • f 3 (y i+1 ) C1 ⁇ y i+1
  • A1, B1 and C1 are correction coefficients.
  • the processing module is also configured to: based on the surface density corresponding to the i-th width position detected in the j-th detection period, and the j-1th detection period and/or the j-th detection period + The surface density corresponding to the i-th width position detected in the j-th detection period is calibrated to the surface density corresponding to the i-th width position detected in the j-th detection period.
  • f 4 (y j-1 ) A2 ⁇ y' j-1
  • f 5 (y j ) B2 ⁇ y' j
  • f 6 (y' j+1 ) C2 ⁇ y ' j+1
  • A2, B2 and C2 are correction coefficients.
  • the processing module is further configured to determine the i-th width position based on the difference between the current detection period and the area density corresponding to the i-th width position detected in the previous detection period. Whether the surface density corresponding to the width position is abnormal.
  • the processing module is specifically configured to: if the difference between the current detection period and the area density corresponding to the i-th width position detected in the previous detection period is greater than or equal to the phase density, The product of the surface density corresponding to the i-th width position and a preset value in the adjacent detection period determines that the surface density corresponding to the i-th width position is abnormal, and the preset value is between 0 and 1.
  • the preset value is between 1% and 10%.
  • the method further includes: adjusting the amount of the material applied to the pole piece in M coating directions according to the areal density corresponding to the M width positions, the M The coating directions respectively correspond to the M width positions, and the coating directions are parallel to the length direction.
  • the relationship between the intensity of the rays irradiating the pole piece and the intensity of the signal transmitted by the pole piece satisfies
  • I 0 is the intensity of the ray used to illuminate the pole piece
  • I is the intensity of the signal transmitted by the pole piece
  • is the mass absorption coefficient of the material
  • m is the surface density of the pole piece.
  • the rays are X-rays or ⁇ -rays.
  • a device for pole piece detection including a memory and a processor.
  • the memory stores computer instructions, and the processor calls the computer instructions to enable the device to implement the method according to the first aspect or the first aspect.
  • the method of pole piece detection described in any implementation.
  • a fourth aspect provides a computer-readable storage medium for storing a computer program.
  • the computing device implements the method according to the first aspect or any implementation manner of the first aspect.
  • the method for pole piece detection is a technique for pole piece detection.
  • Figure 1 is a traditional schematic diagram used to detect the areal density of pole pieces
  • Figure 2 is a perspective view of the pole piece detection equipment according to the embodiment of the present application.
  • Figure 3 is a top view of the pole piece detection equipment according to the embodiment of the present application.
  • Figure 4 is a cross-sectional view of the coating die according to the embodiment of the present application.
  • Figure 5 is a schematic flow chart of the pole piece detection method according to the embodiment of the present application.
  • Figure 6 is a schematic diagram of the distribution of detection data collected by the detector during the detection cycle
  • Figure 7 is a schematic diagram of the distribution of surface density detected during the detection cycle
  • Figure 8 is a schematic block diagram of a pole piece detection device according to an embodiment of the present application.
  • the battery in the embodiment of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell may include an electrode assembly and an electrolyte.
  • the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector that is not coated with the positive electrode active material layer protrudes from the current collector that is coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector that is not coated with the negative electrode active material layer protrudes from the current collector that is coated with the negative electrode active material layer.
  • the current collector coated with the negative active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be graphite, carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the separator can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the principles of penetration and absorption of rays can be used to detect the weight of the material coated on the surface of the pole pieces and obtain the detection results of the areal density of the pole pieces surface to evaluate the coating. Cloth consistency. Specifically, after the ray passes through the tested material coated on the surface of the pole piece, the ray intensity will attenuate. By measuring the intensity of the ray beam passing through the material, the surface density of the tested material can be calculated.
  • pole pieces described in the embodiments of this application include positive electrode pieces, negative electrode pieces, positive electrode current collectors, negative electrode current collectors, separator materials and other sheet-like materials in the lithium battery industry.
  • the pole piece detection in the embodiments of this application The method can be used to detect any of the above types of pole pieces.
  • the radiation source and detector move along the width direction of the pole piece 100, that is, the width direction X, which is also called lateral movement; the pole piece 100 moves along its length direction Y, which is also called longitudinal movement. sports.
  • the radiation source reciprocates along the direction X to scan the surface of the pole piece 100 . It can be seen from Figure 1 that due to the superposition of lateral and longitudinal velocities, the scanning trajectories of all detection points on the surface of the pole piece 100 are in a "Z" shape.
  • the scanning speed is, for example, 1-24m/min.
  • detectors used to detect rays passing through the pole piece 100 mainly use gas ionization chambers.
  • the ionization chamber requires a certain integration time to collect rays.
  • the lateral resolution of the surface density is equal to the lateral size of the ray spot and the integration time of the ionization chamber.
  • the sum of the moving distance and the increase in the scanning speed of the surface density will worsen the lateral resolution.
  • the worse the lateral resolution the less conducive it is to detect the fluctuation of the surface density value of the pole piece 100 in a small lateral range.
  • the movement of the pole piece 100 itself will produce vibration, and the movement of the surface density meter will also produce vibration.
  • the distance between the radioactive source and the detector is relatively large, such as 15-40mm, air Changes in weight, temperature, humidity, dust and other factors will bring errors to the measurement system.
  • the encoder can be used to record the pole piece 100 and the scanning speed, and the surface density value at the corresponding position of the pole piece 100 can be calculated through time fitting, and then fed back to the coating die. Due to the error in the encoder measurement speed, there is a position error in the calculated surface density value of the pole piece 100, and there is also an error in the surface density value fed back to the corresponding position of the adjustment device of the coating die, which affects the judgment of the adjustment of the coating weight. .
  • this application provides a high-resolution, high-precision, real-time full surface density measurement system that uses two-dimensional imaging instead of small spot detection and scanning to achieve real-time full surface density detection and lateral resolution.
  • the rate can be accurate to 1-20mm, such as 5mm and 10mm.
  • the radioactive source and detector of the present application are static and do not need to move, static surface scanning is realized, eliminating the calculation error of the position in the dynamic scanning and the measurement error caused by air changes.
  • Figures 2 and 3 show a pole piece detection device 200 according to an embodiment of the present application.
  • 2 is a perspective view of the device 200
  • FIG. 3 is a top view of the device 200.
  • the device 200 includes an radiator 210 and a detector 220 .
  • the radiator 210 emits rays to the pole piece 100 .
  • the rays are arranged along the width direction X of the pole piece 100 and cover the pole piece 100 .
  • the pole piece 100 is scanned along the length direction Y of the piece 100 .
  • the detector 220 and the radiator 210 are arranged oppositely on both sides of the pole piece 100 in the thickness direction.
  • the detector 220 is used to detect the signal from the rays emitted by the radiator 210 that irradiates the pole piece 100 and is transmitted from the pole piece 100, and performs on the signal. After processing, the area density of the material coated on the surface of the pole piece 100 can be obtained.
  • the device 200 also includes a bracket 230 to secure the emitter 210 and the detector 220.
  • the shape of the bracket 230 is not limited, and may be a "return" shape, for example.
  • the detector 220 is an array formed by multiple detection units. For example, it may include M rows ⁇ N columns of detection units. The M rows of detection units are arranged along the width direction X, and the N columns of detection units are arranged along the length direction Y. M and N are positive. integer.
  • the apparatus 200 also includes a coating die 240 for coating a material, such as a slurry, to the surface of the pole piece 100 .
  • the device 200 can detect the surface density of the pole piece 100 in real time during the coating process of the pole piece 100 .
  • the slurry output by the coating die 240 is coated on the surface of the pole piece 100, and then the pole piece 100 moves
  • the radioactive source 210 covers the width direction X of the pole piece 100 to obtain two-dimensional detection data along the width direction X of the pole piece 100 .
  • feedback adjustment can be made to the slurry output by the coating die 240 to improve the consistency of the surface density of the pole piece 100 along the width direction X.
  • Figure 4 shows a cross-sectional view of a coating die and its adjustment mechanism.
  • the coating die 240 is connected to its adjustment mechanism 250.
  • the adjustment mechanism 250 includes an adjustment block 251 and a driving block 252.
  • the adjustment block 251 may be, for example, rectangular, rhombus, trapezoid, etc.
  • the driving block 252 controls the up and down height of the adjusting block 251 and uses the up and down movement of the adjusting block 251 to change the size of the slit 241 of the coating die 240 corresponding to the coating size.
  • the size of the slit 241 becomes smaller, the slurry flow rate becomes smaller, the coating weight of the pole piece 100 becomes smaller, and the surface density of the corresponding position becomes smaller; the size of the slit 241 becomes larger, the slurry flow rate becomes larger, and the pole piece 100 As the coating weight increases, the surface density at the corresponding location increases. In this way, the surface density of the local area of the pole piece 100 can be adjusted.
  • the device 200 can also be connected to a control system having peripheral supporting circuits and industrial computers.
  • the radioactive source 210 and the detector 220 do not move, and only the pole piece 100 moves along its length direction Y, thus eliminating the calculation error of the position in the dynamic scanning and the measurement error caused by air changes.
  • method 300 includes some or all of the following steps.
  • step 310 the signal of the radiation irradiating the pole piece 100 and being transmitted from the pole piece 100 is obtained, wherein the radiation is arranged along the transverse direction of the pole piece 100 , that is, the width direction X and covers the pole piece 100 , and along the longitudinal direction of the pole piece 100 , that is, the length direction.
  • Y scans the pole piece 100 .
  • step 320 based on the signal transmitted by the pole piece 100 , the area density of the material coated on the surface of the pole piece 100 is detected.
  • the surface density of the pole piece 100 is detected using rays.
  • the rays are arranged along the width direction X of the pole piece 100 and cover the pole piece 100 , and the pole piece 100 is detected along the length direction Y of the pole piece 100 . Scanning is performed to detect the surface density of the material coated on the surface of the pole piece 100 based on the signal transmitted by the pole piece 100 .
  • This ray covers the width direction Improved detection accuracy and sampling rate.
  • the radiation source 210 emits rays, which may be, for example, X-ray beams or ⁇ -ray beams.
  • the energy of the rays is attenuated after penetrating the pole piece 100.
  • the intensity of the rays irradiating the pole piece 100 and the intensity of the signal transmitted by the pole piece 100 satisfy, for example, Among them, I 0 is the intensity of the ray used to illuminate the pole piece 100 , I is the intensity of the signal transmitted by the pole piece 100 , ⁇ is the mass absorption coefficient of the material, and m is the surface density of the pole piece 100 . It can be seen that the logarithm of the signal intensity transmitted by the pole piece 100 is inversely proportional to the surface density. Using radiation to detect the surface density of the pole piece 100 is easy to implement and has high accuracy.
  • the detector 220 and the radiation source 210 are arranged oppositely on both sides of the thickness direction Z of the pole piece 100. After the rays are scattered on the surface of the pole piece 100, the direction of the rays penetrating the pole piece 100 will change, and the detector 220
  • the detection units in M rows and N columns need to detect the transmission signals in their corresponding detection ranges. You can set up collimators to filter the rays in other areas so that only the transmission signals in the corresponding ranges are detected by the corresponding detection units. . That is to say, M rows ⁇ N columns of detection units have respective detection areas, and each detection unit is used to detect the signal transmitted from the corresponding area on the pole piece 100 .
  • the detection unit detects the signal transmitted by its corresponding detection area, and converts the intensity of the signal into a weak electrical signal.
  • the weak electrical signal output by each detection unit can be amplified and converted into a voltage signal with a high signal-to-noise ratio through an amplifier circuit.
  • the voltage signal is converted through analog-to-digital (A-D) to obtain the corresponding digital
  • the signal is the signal intensity I after the ray passes through the pole piece 100.
  • the digital signal corresponding to the air can be measured when no pole piece 100 passes between the radiator 210 and the detector 220, and is defined as the ray intensity I 0 of the material being measured.
  • I 0 needs to be defined separately.
  • measure the absorption coefficient ⁇ of the material based on Then the surface density of the currently measured pole piece 100 can be calculated.
  • the two-dimensional distribution of the surface density of the pole piece 100 in the width direction X can be obtained.
  • how to obtain the two-dimensional distribution of the areal density of the pole piece 100 will be described in detail.
  • detecting the areal density of the material coated on the surface of the pole piece 100 includes: detecting the areal density corresponding to M width positions in the width direction X on the pole piece 100, where M is greater than 1 Positive integer.
  • M width positions can correspond one-to-one to M groups of detection units in the width direction X.
  • Each group of detection units includes N detection units in the length direction Y, where N is a positive integer greater than 1.
  • the surface densities corresponding to the M width positions may be determined based on the detection data of the above-mentioned M groups of detection units respectively.
  • the radiator 210 and the detector 220 are fixed, and the pole piece 100 runs along its length direction Y and passes between the radiator 210 and the detector 220, so that the gap between the pole piece 100 and the radiator 210 is Relative motion between them, thereby realizing the scanning of the pole piece 100 by rays.
  • the above-mentioned "width position" is defined by coordinates, as shown in Figure 2 and Figure 3.
  • a two-dimensional coordinate system is established based on the length direction Y and width direction X.
  • the abscissa and ordinate of the coordinate system are along the length direction Y and width respectively.
  • the M width positions in the width direction X on the pole piece 100 can be the positions corresponding to the M ordinates in the width direction X.
  • the M ordinate values of the M width positions remain unchanged.
  • each width position of the M width positions corresponds to N length positions, and N is a positive integer greater than 1. Among them, detecting the surface density corresponding to M width positions in the width direction Surface density corresponding to M width positions.
  • N length positions may correspond one-to-one to N groups of detection units in the length direction Y, and each group of detection units includes M detection units in the length and width direction X. That is to say, M ⁇ N detection data can be collected respectively through M ⁇ N detection units. Since this application is to obtain the two-dimensional distribution of surface density in the width direction X, it is necessary to determine the surface density corresponding to each width position based on the detection data of N length positions corresponding to each width position.
  • each vertical coordinate among the M vertical coordinates corresponds to N horizontal coordinates.
  • detection data of M ⁇ N positions corresponding to the M vertical coordinates and N horizontal coordinates can be obtained. According to the M ⁇ N The detection data is used to determine the surface density corresponding to the M width positions, thereby further improving the detection accuracy and ensuring the stability of the detection results.
  • obtaining M ⁇ N detection data corresponding to M width positions and N length positions includes: each time the pole piece 100 runs a detection cycle T, obtaining the radiation irradiation of the pole piece 100 within the detection cycle T. The part corresponds to M ⁇ N detection data.
  • the relative movement between the pole piece 100 and the radiator 210 realizes the scanning of the pole piece 100 by rays.
  • the M N detection data are used to obtain the two-dimensional distribution of the surface density of the area in the width direction X.
  • detection results of multiple detection periods T are shown.
  • the pole piece 100 runs for time T
  • the M ⁇ N detection data in each detection period T in Figure 6 are respectively the integrals of the M ⁇ N detection units in the detector 220 within the time T. data.
  • the M ⁇ N detection data in each detection period T is for a detection area of S ⁇ L size on the pole piece 100, where L is the width of the pole piece 100.
  • each detection period T M rows ⁇ N columns of detection units perform two-dimensional imaging of the pole piece 100, and M rows ⁇ N columns of detection units correspond to M ⁇ N pixels of the two-dimensional imaging.
  • the overlapping area of two detection areas corresponding to two adjacent detection periods T is L ⁇ W, where W is the size of the corresponding detection area of the detector 220 in the length direction Y.
  • the L ⁇ W area on the right side of the detection area corresponding to the previous detection period T overlaps with the L ⁇ W area on the left side of the detection area corresponding to the subsequent detection period T.
  • determining the surface density corresponding to the M width positions based on the M ⁇ N detection data includes: determining the i-th width based on the N detection data corresponding to the i-th width position among the M width positions.
  • the surface density corresponding to the position, i ranges from 1 to M. Since each width position corresponds to N detection data, rich detection data is helpful to improve the accuracy of the detection results of the surface density corresponding to each width position.
  • the surface density corresponding to the i-th width position can be determined based on the average of N detection data corresponding to the i-th width position. In this way, by averaging N detection data corresponding to each width position, the surface density corresponding to each width position is obtained, which is beneficial to improving the accuracy of the detection results of the surface density corresponding to each width position.
  • D ij represents the detection data of the i-th row and j-th column among the M ⁇ N detection data in each detection period T, that is, the i-th width position among the M width positions, and among the N length positions.
  • Detection data collected by the detection unit at the jth length position. i ranges from 1 to M
  • j ranges from 1 to N.
  • the integration time of each detection unit is equal to the length of the detection period T.
  • the detection data of M ⁇ N detection units are one group, and each group covers the area of the pole piece 100 as S ⁇ L, as shown in Figure 6 shows three sets of detection data, and multiple sets of detection data are arranged side by side to form the distribution of surface density values detected by the detector 220.
  • the pole piece 100 moves at a constant speed along the length direction Y, the areas of the pole piece 100 detected by adjacent detection units in the length direction Y overlap. Therefore, the surface density value of the pole piece 100 in the length direction Y has small fluctuations. Under normal circumstances, , the fluctuation error of the system noise is large. Therefore, averaging the N detection data arranged in the length direction Y, that is, D i1 to D in , can reduce the system error.
  • the average value of the detection data D i1 to D in (D i1 +D i2 +D i3 +...+D in )/N is used as the detection data of the i-th width position, so that based on the detection data, The surface density Y i corresponding to the i-th width position.
  • the target value of the pole piece 100 is Y 0 , if Y i ⁇ Y 0 , and Y 0 -Y i ⁇ Y 0 ⁇ 10%, then it is determined that what is detected in the current detection period T is the coating boundary of the pole piece 100 starting point.
  • 10% is only an example, and it can also be other values, such as 5%, etc.
  • the same method can be used to determine the upper and lower boundaries of the pole piece 100 .
  • method 300 further includes: determining whether the surface density corresponding to the i-th width position occurs based on the surface density corresponding to the i-th width position detected in the current detection period T and its adjacent detection period T. abnormal. According to the surface density corresponding to each width position in the two adjacent detection periods T, it can also be judged whether the surface density corresponding to the width position is abnormal, such as dark marks, scratches, drum ribs and other coating defects, and prompts will be given. , to ensure coating quality.
  • the difference in surface density corresponding to the i-th width position detected in the current detection period T and its adjacent detection period T is greater than or equal to the surface density corresponding to the i-th width position detected in the adjacent detection period T.
  • the product of the density and the preset value determines that the surface density corresponding to the i-th width position is abnormal.
  • the preset value is between 0 and 1.
  • the preset value is, for example, between 1% and 10%. Taking 5% as an example, if the surface density Y i corresponding to the i-th width position detected in the current detection period T is the same as the surface density Y i-1 corresponding to the i-th width position detected in the previous detection period T If the difference ⁇ Y ⁇ Y i-1 ⁇ 5%, then the i-th width position in the detection area corresponding to the current detection period T will be abnormal, and coating defects such as dark marks, scratches, and drum ribs may appear.
  • the values of the surface densities corresponding to the M width positions can also be calibrated to improve detection accuracy.
  • the areal density corresponding to the M width positions can be calibrated based on the detection data in the width direction X; and/or the areal density corresponding to the M width positions can be calibrated based on the detection data in the length direction Y. Perform calibration.
  • the distance S traveled by the pole piece 100 in each detection period T is used as the longitudinal size of the two-dimensional imaging pixels of the pole piece 100, and the lateral size of the detector 220 is used as the lateral size of the two-dimensional imaging pixels of the pole piece 100.
  • the average Y i of the N detection data arranged vertically in each detection period T is the initial value of the pixel.
  • the actual measurement area of each detection unit is larger than its lateral size. Therefore, in the width direction
  • the method 300 further includes: based on the surface density corresponding to the i-th width position, and the i-1th width position and/or the i+1th width position adjacent to the i-th width position.
  • the surface density corresponding to the width position is calibrated to the surface density corresponding to the i-th width position.
  • the fluctuation of the surface density corresponding to its adjacent width position will affect the detection results of the width position.
  • the surface density corresponding to the width position is laterally calibrated through the surface density corresponding to the adjacent width position, thereby improving the accuracy of the surface density corresponding to the width position.
  • the surface density corresponding to the i-th width position after y i , y i-1 and y i+1 are respectively the i-th width position, the i-1th width position and the i+1th width position before calibration. the corresponding surface density.
  • the correction coefficient may be, for example, a function, matrix data, or a constant.
  • the method 300 further includes: based on the area density corresponding to the i-th width position detected in the current detection period T, and the previous detection period T and/or the next detection period T of the current detection period T. Calibrate the surface density corresponding to the i-th width position detected in the current detection cycle.
  • the surface density detected in each detection period T can also be longitudinally calibrated based on the surface density detected in the adjacent detection period T. , thereby improving the accuracy of the surface density corresponding to each width position within the detection period T.
  • the correction coefficient may be, for example, a function, matrix data, or a constant.
  • y ji represents the surface density corresponding to the i-th width position in the j-th detection period before lateral calibration, that is, for the j-th detection period, based on the detection data D i1 to D in in Figure 6
  • the surface density corresponding to the i-th width position determined by the average value (D i1 +D i2 +D i3 +...+D in )/N. i ranges from 1 to M, and after the above-mentioned average processing of the detection data in each detection period T, M surface densities y j1 to y jm corresponding to each of the M width positions can be obtained.
  • y' (j-1)i , y' ji and y' (j+1)i are respectively equal to the j-1th detection period, jth detection period and j+1th detection period after the above horizontal calibration.
  • the surface densities Y (j-1)i , Y ji , Y (j+1)i corresponding to the i-th width position detected during the detection period.
  • the pole piece detection method 300 of the embodiment of the present application first determine the starting boundary of coating, locate each set of measurement data and the position of the pole piece 100 according to the measurement time and coating speed V1, and then determine the upper boundary of the coating area.
  • the detection unit corresponding to the lower boundary locates the lateral position of the coating area according to the corresponding relationship between each detection unit and the position of the pole piece 100 (the pole piece 100 is centrally aligned with the detector 220 in the width direction X), and finally can image Two-dimensional distribution of areal density of pole piece 100.
  • the method 300 further includes: adjusting the amount of material applied to the pole piece 100 in M coating directions according to the surface density corresponding to the M width positions, and the M coating directions are respectively related to M width positions correspond to each other, and the coating direction is parallel to the length direction Y.
  • the feeding amounts in the M coating directions corresponding to the M width positions are adjusted according to the surface densities corresponding to the M width positions, forming a closed-loop adjustment of the surface density of the pole piece 100, which greatly improves the polarity.
  • the coating effect of tablet 100 is not limited to the above embodiment.
  • the adjustment mechanism 250 includes M coating dies 240 corresponding to M width positions. Each coating die 240 is connected to an adjustment mechanism 250. Each adjustment mechanism 250 includes an adjustment block. 251 and driver block 252. The driving block 252 controls the width of the slit 241 of the corresponding coating die 240 according to the surface density corresponding to the i-th width position.
  • the driving block 252 drives the adjustment block 251 to move downward to make the slit 241 smaller, thereby reducing the feeding amount of the corresponding coating die 240; if the surface density is low, the driving block 252 The adjustment block 251 is driven to move upward to make the slit 241 larger, thereby increasing the feeding amount of the corresponding coating die 240 .
  • the distance of each adjustment may be between 0 and 200um, for example.
  • a target range can be set. If the surface density corresponding to the detected i-th width position is within the target range, the feeding amount in the coating direction corresponding to the i-th width position will not be adjusted; if the detected area density corresponding to the i-th width position is within the target range, The feeding amount in the coating direction corresponding to the i-th width position is adjusted only when the surface density corresponding to the i-th width position exceeds the target range.
  • the surface density corresponding to the i-th width position can be adjusted according to the degree to which the surface density corresponding to the i-th width position deviates from the target range. Adjust the height of the corresponding adjustment block to thereby change the amount of slurry sent from the slit 241 of the coating die 240 .
  • the embodiment of the present application also provides a pole piece detection device 400.
  • the pole piece detection device 400 includes a signal acquisition module 410 and a processing module 420.
  • the signal acquisition module 410 is used to acquire the signal of the radiation irradiating the pole piece 100 and transmitting from the pole piece 100 , wherein the radiation is arranged along the width direction X of the pole piece 100 and covers the pole piece 100 , and along the length direction Y of the pole piece 100 The pole piece 100 is scanned.
  • the processing module 420 is configured to detect the area density of the material coated on the surface of the pole piece 100 based on the signal transmitted by the pole piece 100 .
  • the processing module 420 is specifically configured to: detect the surface density corresponding to M width positions in the width direction X on the pole piece 100, where M is a positive integer greater than 1.
  • each width position of the M width positions corresponds to N length positions
  • the signal acquisition module 410 is also used to obtain M ⁇ corresponding to the M width positions and the N length positions.
  • N detection data; the processing module 420 is specifically configured to determine the surface density corresponding to the M width positions based on the M ⁇ N detection data.
  • the pole piece 100 runs along the length direction Y, and the signal acquisition module 410 is specifically used to: each time the pole piece 100 runs a detection cycle, obtain M ⁇ N corresponding to the part of the pole piece 100 that is irradiated by radiation during the detection cycle. detection data.
  • the processing module 420 is specifically configured to: determine the area density corresponding to the i-th width position based on the N detection data corresponding to the i-th width position among the M width positions, i ranging from 1 to M.
  • the processing module 420 is specifically configured to determine the surface density corresponding to the i-th width position based on the average value of N detection data corresponding to the i-th width position.
  • the processing module 420 is also configured to: based on the surface density corresponding to the i-th width position, and the i-1th width position and/or the i+1th width position adjacent to the i-th width position The surface density corresponding to the width position is calibrated to the surface density corresponding to the i-th width position.
  • f 1 (y i-1 ) A1 ⁇ y i-1
  • f 2 (y i ) B1 ⁇ y i
  • f 3 (y i+1 ) C1 ⁇ y i+1
  • A1, B1 and C1 are correction coefficients.
  • the processing module 420 is also configured to: based on the surface density corresponding to the i-th width position detected in the j-th detection period, and the j-1th detection period and/or the j+th detection period The surface density corresponding to the i-th width position detected in one detection period is calibrated to the surface density corresponding to the i-th width position detected in the j-th detection period.
  • f 4 (y j-1 ) A2 ⁇ y' j-1
  • f 5 (y j ) B2 ⁇ y' j
  • f 6 (y' j+1 ) C2 ⁇ y ' j+1
  • A2, B2 and C2 are correction coefficients.
  • the processing module 420 is also used to determine whether the surface density corresponding to the i-th width position is abnormal based on the surface density corresponding to the i-th width position and the standard value of the surface density of the pole piece 100.
  • the processing module 420 is specifically configured to: if the difference between the area density corresponding to the i-th width position and the standard value is greater than a preset value, determine that the area density corresponding to the i-th width position is abnormal.
  • the preset value is between 1% and 10%.
  • the processing module 420 is also used to: adjust the amount of the material applied to the pole piece 100 in the M coating directions according to the surface density corresponding to the M width positions, the M coating directions Corresponding to M width positions respectively, the coating direction is parallel to the length direction Y.
  • the relationship between the intensity of the rays irradiating the pole piece 100 and the intensity of the signal transmitted by the pole piece 100 satisfies Among them, I 0 is the intensity of the ray used to illuminate the pole piece 100 , I is the intensity of the signal transmitted by the pole piece 100 , ⁇ is the mass absorption coefficient of the material, and m is the surface density of the pole piece 100 .
  • the rays are X-rays or ⁇ -rays.
  • This application also provides a device for detecting the pole piece 100, which includes a memory and a processor.
  • the memory stores computer instructions
  • the processor calls the computer instructions to enable the device to implement the method for detecting the pole piece 100 according to any of the above implementations.
  • the present application also provides a computer-readable storage medium for storing a computer program.
  • the computer program When executed by a computing device, the computing device implements the method for detecting the pole piece 100 described in any of the above implementations. .
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本申请提供一种极片检测的方法和装置,能够有效地对极片材料的面密度进行全区域检测。所述方法包括:获取射线照射极片并从所述极片透射的信号,其中,所述射线沿所述极片的宽度方向设置并覆盖所述极片,且沿所述极片的长度方向对所述极片进行扫描;根据所述极片透射的信号,检测所述极片的表面涂布的材料的面密度。

Description

极片检测的方法和装置 技术领域
本申请涉及电池技术领域,特别地,涉及一种极片检测的方法和装置。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
通常,电池由多个电池单体组成,每个电池单体中包括电极组件。电极组件由正极片和负极片组成,通过金属离子在正极片和负极片之间移动来产生电能。极片的品质关系到电池的性能和安全,因此需要对极片进行检测。
发明内容
本申请提供一种极片检测的方法和装置,能够有效地对极片材料的面密度进行全区域检测。
第一方面,提供一种极片检测的方法,所述方法包括:获取射线照射极片并从所述极片透射的信号,其中,所述射线沿所述极片的宽度方向设置并覆盖所述极片,且沿所述极片的长度方向对所述极片进行扫描;根据所述极片透射的信号,检测所述极片的表面涂布的材料的面密度。
本申请实施例中,利用射线对极片进行面密度检测,该射线沿极片的宽度方向设置并覆盖该极片,且沿该极片的长度方向对该极片进行扫描,从而根据极片透射的信号,检测极片表面涂布的材料的面密度。该射线覆盖极片的宽度方向,实现了对极片的面扫描,可以获得极片宽度方向上的面密度的二维分布情况,相比于单点检测的方式,极大地提高了检测精度和采样率。
在一种实现方式中,所述检测所述极片表面涂布的材料的面密度,包括:检测所述极片上所述宽度方向的M个宽度位置对应的面密度,M为大于1的正整数。通过 检测该极片的宽度方向上的M个宽度位置对应的面密度,能够有效获得极片宽度方向上的面密度的二维分布情况。
在一种实现方式中,在所述长度方向上,所述M个宽度位置的每个宽度位置对应N个长度位置,N为大于1的正整数,所述检测所述极片上所述宽度方向的M个宽度位置对应的面密度,包括:获取所述M个宽度位置和所述N个长度位置对应的M×N个检测数据;根据所述M×N个检测数据,确定所述M个宽度位置对应的面密度。
该实施例中,除了在宽度方向设置多个探测单元,以对宽度方向的多个宽度位置对应的面密度进行检测,还同时在长度方向设置多个探测单元,以对长度方向的N个位置进行检测,从而获得M×N个检测数据,并根据M×N个检测数据确定M个宽度位置对应的面密度,从而进一步提高检测精度,保证检测结果的稳定性。
在一种实现方式中,所述极片沿所述长度方向运行,所述获取所述M个宽度位置和所述N个长度位置对应的M×N个检测数据,包括:所述极片每运行一个检测周期,获取所述检测周期内所述极片被所述射线照射的部分对应的所述M×N个检测数据。
该实施例中,射线的位置固定,而极片沿其长度方向运行,使极片和射线之间相对运动,从而实现射线对极片的扫描,其中,极片每运行一个检测周期,可以获得该检测周期内极片被射线照射的区域对应的M×N个检测数据,从而得到该区域在宽度方向上的面密度的二维分布情况。这样,就减小了射线动态移动扫描时空气变化和位置变化引入的误差,进一步提高了检测精度。
在一种实现方式中,所述根据所述M×N个检测数据,确定所述M个宽度位置对应的面密度,包括:根据所述M个宽度位置中第i个宽度位置对应的N个检测数据,确定所述第i个宽度位置对应的面密度,i从1至M。由于每个宽度位置对应N个检测数据,丰富的检测数据有利于提高每个宽度位置对应的面密度的检测结果的准确性。
在一种实现方式中,所述根据所述M个宽度位置中第i个宽度位置对应的N个检测数据,确定所述第i个宽度位置对应的面密度,包括:根据所述第i个宽度位置对应的N个检测数据的平均值,确定所述第i个宽度位置对应的面密度。通过对每个宽度位置对应N个检测数据做平均,得到每个宽度位置对应的面密度,有利于提高每个宽度位置对应的面密度的检测结果的准确性。
在一种实现方式中,所述方法还包括:根据所述第i个宽度位置对应的面密度, 以及与所述第i个宽度位置相邻的第i-1个宽度位置和/或第i+1个宽度位置对应的面密度,对所述第i个宽度位置对应的面密度进行校准。
由于每个探测单元的实际检测区域大于其信号接收窗口的尺寸,对于每个宽度位置,其相邻宽度位置对应的面密度的波动会对该宽度位置的检测结果产生影响,通过相邻宽度位置对应的面密度对该宽度位置对应的面密度进行校准,从而提高该宽度位置对应的面密度的准确性。
在一种实现方式中,校准后的所述第i个宽度位置对应的面密度为:Y i=f 1(y i- 1)+f 2(y i)+f 3(y i+1),其中,Y i为校准后的所述第i个宽度位置对应的面密度,y i、y i-1和y i+1分别为校准前的所述第i个宽度位置、所述第i-1个宽度位置和所述第i+1个宽度位置对应的面密度。例如,f 1(y i-1)=A1×y i-1,f 2(y i)=B1×y i,f 3(y i+1)=C1×y i+1,其中,A1、B1和C1为修正系数。通过为第i个宽度位置、第i-1个宽度位置和第i+1个宽度位置分配与其影响程度相关联的权重,能够更好地对面密度进行校准,从而提高面密度的准确性。
在一种实现方式中,所述方法还包括:根据第j个检测周期内检测到的所述第i个宽度位置对应的面密度,以及第j-1个检测周期和/或第j+1个检测周期内检测到的所述第i个宽度位置对应的面密度,对所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度进行校准。
由于相邻两个检测周期内极片被射线照射的区域之间存在重叠,对于每个检测周期内检测的面密度,可以通过其相邻检测周期内检测的面密度进行校准,从而提高该检测周期内每个宽度位置对应的面密度的准确性。
在一种实现方式中,校准后的所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度为:Y’ j=f 4(y’ j-1)+f 5(y’ j)+f 6(y’ j+1),其中,Y’ j为校准后的所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度,y’ j、y’ j-1和y’ j+1分别为校准前的所述第j个检测周期、所述第j-1个检测周期和所述第j+1个检测周期内检测到的所述第i个宽度位置对应的面密度。例如,f 4(y j-1)=A2×y’ j-1,f 5(y j)=B2×y’ j,f 6(y’ j+1)=C2×y’ j+1,其中,A2、B2和C2为修正系数。通过为当前检测周期、上一个检测周期和下一个检测周期分配与其影响程度相关联的比重,能够更好地对面密度进行校准,从而提高面密度的准确性。
在一种实现方式中,所述方法还包括:根据当前检测周期及其相邻检测周期内 检测到的所述第i个宽度位置对应的面密度,确定所述第i个宽度位置对应的面密度是否发生异常。
该实施例中,根据相邻两个检测周期中每个宽度位置对应的面密度,还可以判断该宽度位置对应的面密度是否发生异常,例如出现暗痕、划痕、鼓筋等涂布缺陷,并进行提示,保证涂布质量。
在一种实现方式中,所述根据当前检测周期及其相邻检测周期内检测到的所述第i个宽度位置对应的面密度,确定所述第i个宽度位置对应的面密度是否发生异常,包括:若当前检测周期及其相邻检测周期内检测到的所述第i个宽度位置对应的面密度的差值,大于或等于所述相邻检测周期内所述第i个宽度位置对应的面密度与预设值的乘积,确定所述第i个宽度位置对应的面密度发生异常,该预设值位于0至1之间。
通过相邻两个检测周期中每个宽度位置对应的面密度之间的差异,可以简单且快速地判断面密度是否异常。例如,所述预设值位于1%至10%之间。
在一种实现方式中,所述方法还包括:根据所述M个宽度位置对应的面密度,调整在M个涂布方向上向所述极片涂布的所述材料的量,所述M个涂布方向分别与所述M个宽度位置对应,所述涂布方向平行于所述长度方向。
该实施例中,根据M个宽度位置对应的面密度,对M个宽度位置对应的M个涂布方向的送料量进行调整,形成对极片面密度的闭环调节,极大地改善了极片的涂布效果。
在一种实现方式中,照射所述极片的所述射线的强度与所述极片透射的信号的强度之间满足
Figure PCTCN2022115851-appb-000001
其中,I 0为用于照射所述极片的所述射线的强度,I为所述极片透射的信号的强度,λ为所述材料的质量吸收系数,m为所述极片的面密度。该射线例如为X射线或者β射线。极片透射信号强度的对数与面密度成反比,利用射线对极片进行面密度检测,易于实现且准确性高。
第二方面,提供一种极片检测的装置,包括:信号采集模块,用于获取射线照射极片并从所述极片透射的信号,其中,所述射线沿所述极片的宽度方向设置并覆盖所述极片,且沿所述极片的长度方向对所述极片进行扫描;处理模块,用于根据所述极片透射的信号,检测所述极片的表面涂布的材料的面密度。
在一种实现方式中,所述处理模块具体用于:检测所述极片上所述宽度方向的M个宽度位置对应的面密度,M为大于1的正整数。
在一种实现方式中,在所述长度方向上,所述M个宽度位置的每个宽度位置对应N个长度位置,所述信号采集模块还用于,获取所述M个宽度位置和所述N个长度位置对应的M×N个检测数据;所述处理模块具体用于,根据所述M×N个检测数据,确定所述M个宽度位置对应的面密度。
在一种实现方式中,所述极片沿所述长度方向运行,所述信号采集模块具体用于:所述极片每运行一个检测周期,获取所述检测周期内所述极片被所述射线照射的部分对应的所述M×N个检测数据。
在一种实现方式中,所述所述处理模块具体用于:根据所述M个宽度位置中第i个宽度位置对应的N个检测数据,确定所述第i个宽度位置对应的面密度,i从1至M。
在一种实现方式中,所述处理模块具体用于:根据所述第i个宽度位置对应的N个检测数据的平均值,确定所述第i个宽度位置对应的面密度。
在一种实现方式中,所述处理模块还用于:根据所述第i个宽度位置对应的面密度,以及与所述第i个宽度位置相邻的第i-1个宽度位置和/或第i+1个宽度位置对应的面密度,对所述第i个宽度位置对应的面密度进行校准。
在一种实现方式中,校准后的所述第i个宽度位置对应的面密度为:Y i=f 1(y i- 1)+f 2(y i)+f 3(y i+1),其中,Y i为校准后的所述第i个宽度位置对应的面密度,y i、y i-1和y i+1分别为校准前的所述第i个宽度位置、所述第i-1个宽度位置和所述第i+1个宽度位置对应的面密度。
在一种实现方式中,f 1(y i-1)=A1×y i-1,f 2(y i)=B1×y i,f 3(y i+1)=C1×y i+1,其中,A1、B1和C1为修正系数。
在一种实现方式中,所述处理模块还用于:根据第j个检测周期内检测到的所述第i个宽度位置对应的面密度,以及第j-1个检测周期和/或第j+1个检测周期内检测到的所述第i个宽度位置对应的面密度,对所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度进行校准。
在一种实现方式中,校准后的所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度为:Y’ j=f 4(y’ j-1)+f 5(y’ j)+f 6(y’ j+1),其中,Y’ j为校准后的所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度,y’ j、y’ j-1和y’ j+1分别为校准前的所述第j个检测周期、所述第j-1个检测周期和所述第j+1个检测周期内检测到的 所述第i个宽度位置对应的面密度。
在一种实现方式中,f 4(y j-1)=A2×y’ j-1,f 5(y j)=B2×y’ j,f 6(y’ j+1)=C2×y’ j+1,其中,A2、B2和C2为修正系数。
在一种实现方式中,所述处理模块还用于:根据当前检测周期和其上一个检测周期内检测到的所述第i个宽度位置对应的面密度的差值,确定所述第i个宽度位置对应的面密度是否发生异常。
在一种实现方式中,所述处理模块具体用于:若当前检测周期和其上一个检测周期内检测到的所述第i个宽度位置对应的面密度的差值,大于或等于所述相邻检测周期内所述第i个宽度位置对应的面密度与预设值的乘积,确定所述第i个宽度位置对应的面密度发生异常,该预设值位于0至1之间。
在一种实现方式中,所述预设值位于1%至10%之间。
在一种实现方式中,所述方法还包括:根据所述M个宽度位置对应的面密度,调整在M个涂布方向上向所述极片涂布的所述材料的量,所述M个涂布方向分别与所述M个宽度位置对应,所述涂布方向平行于所述长度方向。
在一种实现方式中,照射所述极片的所述射线的强度与所述极片透射的信号的强度之间满足
Figure PCTCN2022115851-appb-000002
其中,I 0为用于照射所述极片的所述射线的强度,I为所述极片透射的信号的强度,λ为所述材料的质量吸收系数,m为所述极片的面密度。
在一种实现方式中,所述射线为X射线或者β射线。
第三方面,提供一种极片检测的装置,包括存储器和处理器,所述存储器存储计算机指令,所述处理器调用所述计算机指令以使所述装置实现根据第一方面或第一方面的任一实现方式中所述的极片检测的方法。
第四方面,提供一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被计算设备执行时,使得所述计算设备实现根据第一方面或第一方面的任一实现方式中所述的极片检测的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图 获得其他的附图。
图1是传统的用于检测极片的面密度的示意图;
图2是本申请实施例的极片检测的设备的立体图;
图3是本申请实施例的极片检测的设备的俯视图;
图4是本申请实施例的涂布模头的剖视图;
图5是本申请实施例的极片检测的方法的示意性流程图;
图6是检测周期中探测器采集的检测数据的分布的示意图;
图7是检测周期中检测到的面密度的分布的示意图;
图8是本申请实施例的极片检测的装置的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请的实施例中的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。 电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体可以包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为石墨、碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
目前,在电池例如锂电池的极片生产过程中,可以利用射线的穿透和吸收的原理,检测极片表面涂布的材料的重量,得到极片表面的面密度的检测结果,以评价涂布一致性。具体地,射线穿过极片表面上涂布的被测材料后,射线强度会衰减,通过测定穿过该材料的射线束强度,可以计算出被测材料的面密度。
应理解,本申请实施例中所述的极片,包括正极极片、负极极片、正极集流体、负极集流体、隔膜材料等锂电行业的薄片状材料,本申请实施例中的极片检测的方法,可以用来检测上述任一类型的极片。
例如,如图1所示的面密度仪,放射源和探测器沿着极片100的幅宽方向即宽度方向X运动,也称横向运动;极片100沿其长度方向Y运动,也称纵向运动。放射源沿方向X往复运动,以对极片100的表面进行扫描。从图1中可以看出,由于横向和纵向的速度叠加,所有的检测点在极片100的表面上的扫描轨迹呈“Z”字形。
往返扫描一次极片100走过的距离S=2*L*V1/V2,其中,L为极片100的宽度,V1极片100的运行速度,例如5-150m/min,V2为面密度仪的扫描速度,例如1-24m/min,随着极片100涂布的速度的增加,面密度仪往返扫描一次极片100所走过的 距离S越大,检测的覆盖率越低,极片100表面涂布的材料重量的波动不能被及时被检测和反馈。
目前,用于检测穿过极片100的射线的探测器,主要采用气体电离室,电离室收集射线需要一定的积分时间,面密度的横向分辨率等于射线光斑的横向尺寸与电离室积分时间内移动的距离之和,面密度的扫描速度的提高会使得横向分辨率会恶化,横向分辨率越差,越不利于检测极片100在横向小范围内的面密度值的波动。
另外,极片100本身的运动会产生震动,面密度仪的移动也会产生震动,为防止面密度仪刮破极片100,放射源与探测器之间的间距较大,例如15-40mm,空气的重量、温湿度、粉尘等因素的变化会给测量***带来误差。
可以使用编码器记录极片100及扫描速度,通过时间拟合计算得出极片100对应位置上的面密度值,然后反馈涂布模头。由于编码器测量速度的误差,计算的极片100的面密度值存在位置误差,反馈给涂布模头的调节装置的对应位置的面密度值也存在误差,影响对涂布重量的调节的判断。
这些因素均影响极片面密度检测效果和一致性的提升。为此,本申请提供了一种高分辨率、高精度、实时性全检面密度测量***,采用二维成像的方式代替小光斑检测和扫描,实现了极片面密度的实时全检,横向分辨率能够精确至1-20mm,例如5mm和10mm。并且,由于本申请的放射源和探测器是静态的无需移动,实现静态面扫描,消除了上述动态扫描中的位置的计算误差和空气变化引起的测量误差。面密度值及其对应的极片上的物理位置、以及涂布模头的调节装置之间一一对应,没有位置误差,还能够提高闭环反馈的实时性,进而提升极片涂布的一致性。
图2和图3示出了本申请实施例的一种极片检测的设备200。其中,图2是设备200的立体示意图,图3是设备200的俯视图。如图2和图3所示,设备200包括放射器210和探测器220,放射器210向极片100发出射线,该射线沿极片100的宽度方向X设置并覆盖极片100,且沿极片100的长度方向Y对极片100进行扫描。探测器220和放射器210相对设置在极片100的厚度方向的两侧,探测器220用于检测放射器210发出的射线照射极片100并从极片100透射出来的信号,对该信号进行处理后,便可以得到极片100的表面涂布的材料的面密度。此外,设备200还包括支架230,以固定放射器210和探测器220。支架230的形状不做限定,例如可以是“回”型。
探测器220是由多个探测单元形成的阵列,例如可以包括M行×N列个探测单 元,M行探测单元沿宽度方向X设置,N列探测单元沿长度方向Y设置,M和N为正整数。
设备200还包括涂布模头240,涂布模头240用于向极片100的表面涂布材料,例如浆料。
本申请实施例中,设备200可以在极片100的涂布过程中对极片100的面密度进行实时检测。例如,如图2和图3所示,极片100从涂布辊260的辊面经过的同时,涂布模头240输出的浆料被涂布在极片100的表面,然后极片100运动至放射源210和探测器220之间时,放射源210覆盖极片100的宽度方向X,以获得极片100沿宽度方向X上的二维检测数据。根据检测数据,可以对涂布模头240输出的浆料进行反馈调整,以提高极片100表面沿宽度方向X上的面密度的一致性。图4示出了一种涂布模头及其调解机构的剖视图,如图4所示,涂布模头240与其调节机构250连接,调节机构250包括调节块251及其驱动块252,调节块251例如可以是矩形、菱形、梯形等,驱动块252通过控制调节块251的上下高度,利用调节块251的上下移动改变对应涂布尺寸下的涂布模头240的狭缝241的尺寸。狭缝241的尺寸变小,浆料流量变小,极片100的涂布重量变小,相应位置的面密度变小;狭缝241的尺寸变大,浆料流量变大,极片100的涂布重量变大,相应位置的面密度变大。这样,便可以实现对极片100的局部区域的面密度进行调整。
设备200还可以连接有***配套电路和工控机的控制***。在检测过程中,放射源210个探测器220是不移动的,仅极片100沿其长度方向Y移动,因此消除了上述动态扫描中的位置的计算误差和空气变化引起的测量误差。
以下,结合图5至图7,详细描述本申请实施例的极片检测的方法300。如图5所示,方法300包括以下步骤中的部分或全部。
在步骤310中,获取射线照射极片100并从极片100透射的信号,其中,射线沿极片100的横向即宽度方向X设置并覆盖极片100,且沿极片100的纵向即长度方向Y对极片100进行扫描。
在步骤320中,根据极片100透射的信号,检测极片100的表面涂布的材料的面密度。
本申请实施例中,利用射线对极片100进行面密度检测,该射线沿极片100的宽度方向X设置并覆盖该极片100,且沿该极片100的长度方向Y对该极片100进行扫 描,从而根据极片100透射的信号,检测极片100表面涂布的材料的面密度。该射线覆盖极片100的宽度方向X,实现了对极片100的面扫描,可以获得极片100宽度方向X上的面密度的二维分布情况,相比于单点检测的方式,极大地提高了检测精度和采样率。
放射源210发出射线,例如可以是X射线束或者β射线束,射线穿透极片100后能量衰减,照射极片100的射线的强度与极片100透射的信号的强度之间例如满足
Figure PCTCN2022115851-appb-000003
其中,I 0为用于照射极片100的射线的强度,I为极片100透射的信号的强度,λ为材料的质量吸收系数,m为极片100的面密度。可以看出,极片100透射的信号强度的对数与面密度成反比,利用射线对极片100进行面密度检测,易于实现且准确性高。
具体地,探测器220与放射源210相对设置在极片100的厚度方向Z的两侧,射线照射极片100的表面后发生散射,穿透极片100的射线的方向会改变,探测器220中的M行×N列个探测单元需要检测其对应的检测范围内的透射信号,可以通过设置准直器来过滤其他区域的射线,仅使相应范围内的透射信号被对应的探测单元检测到。也就是说,M行×N列个探测单元具有各自的探测区域,每个探测单元用于检测极片100上对应区域透射出来的信号。
探测单元检测其对应的探测区域透射的信号,并将该信号的强度被转换为微弱的电信号。采用多通道并行的计算方式,可以将每个探测单元输出的微弱电信号通过放大电路放大并转换为具有高信噪比的电压信号,该电压信号通过模数(A-D)转换,得到对应的数字信号,即射线穿过极片100后的信号强度I。
可以在没有极片100穿过放射器210和探测器220之间时,测量空气对应的该数字信号,并将其定义为被测材料的射线强度I 0,这里,针对探测器220中的每个探测单元,需要单独定义I 0。用已知其表面材料的面密度m的标准极片,测量该材料的吸收系数λ,基于
Figure PCTCN2022115851-appb-000004
便可以计算出当前被测的极片100的面密度。
进一步地,根据极片100的运行速度定位出测量数据在极片100上对应的位置,便可以得出极片100在其宽度方向X上的面密度的二维分布。以下,将具体描述如何获得极片100的面密度的二维分布。
在一种实现方式中,在步骤320中,检测极片100表面涂布的材料的面密度,包括:检测极片100上宽度方向X的M个宽度位置对应的面密度,M为大于1的正整 数。通过检测极片100的宽度方向X上的M个宽度位置对应的面密度,能够有效获得极片100的宽度方向X上的面密度的二维分布情况。
例如,M个宽度位置可以与宽度方向X上的M组探测单元一一对应,每组探测单元包括长度方向Y上的N个探测单元,N为大于1的正整数。M个宽度位置对应的面密度可以是分别基于上述的M组探测单元的检测数据来确定的。
本申请实施例中,放射器210和探测器220是固定的,而极片100沿其长度方向Y运行并从放射器210和探测器220之间穿过,使极片100和放射器210之间相对运动,从而实现射线对极片100的扫描。上述的“宽度位置”是由坐标定义的,如图2和图3所示,基于长度方向Y和宽度方向X建立二维坐标系,坐标系的横坐标和纵坐标分别沿长度方向Y和宽度方向X,极片100上宽度方向X的M个宽度位置,可以是宽度方向X上的M个纵坐标对应的位置。极片100的移动过程中,M个宽度位置的M个纵坐标值不变。
在一种实现方式中,在长度方向Y上,M个宽度位置的每个宽度位置对应N个长度位置,N为大于1的正整数。其中,检测极片100上宽度方向X的M个宽度位置对应的面密度,包括:获取M个宽度位置和N个长度位置对应的M×N个检测数据;根据M×N个检测数据,确定M个宽度位置对应的面密度。
例如,N个长度位置可以与长度方向Y上的N组探测单元一一对应,每组探测单元包括长宽度方向X上的M个探测单元。也就是说,可以通过M×N个探测单元分别采集M×N个检测数据。由于本申请是要获得宽度方向X上的面密度的二维分布情况,因此,需要根据每个宽度位置对应的N个长度位置的检测数据,确定每个宽度位置对应的面密度。
由于除了宽度方向X设置有多个探测单元,用以对宽度方向X的多个坐标位置的面密度进行检测,在长度方向Y上也可以设置多个探测单元,从而对长度方向Y的多个坐标位置进行检测。M个纵坐标中的每个纵坐标对应N个横坐标,在每次检测时,能够获得与M个纵坐标和N个横坐标对应的M×N个位置的检测数据,根据这M×N个检测数据,来确定M个宽度位置对应的面密度,从而进一步提高检测精度,保证检测结果的稳定性。
在一种实现方式中,获取M个宽度位置和N个长度位置对应的M×N个检测数据,包括:极片100每运行一个检测周期T,获取该检测周期T内极片100被射线照 射的部分对应的M×N个检测数据。
极片100和放射器210之间相对运动,实现射线对极片100的扫描,极片100每运行一个检测周期T,可以获得该检测周期T内极片100被射线照射的区域对应的M×N个检测数据,从而得到该区域在宽度方向X上的面密度的二维分布情况。
举例来说,如图6所示,示出了多个检测周期T的检测结果。每个检测周期T内,极片100运行时间T,图6中每个检测周期T内的M×N个检测数据,分别为探测器220中的M×N个探测单元在时间T内的积分数据。每个检测周期T内极片100走过的距离S=V1×T,V1为极片100的运行速度。每个检测周期T内的M×N个检测数据,是针对极片100上面积为S×L大小的检测区域,L为极片100的宽度。在每个检测周期T内,M行×N列个探测单元对极片100进行二维成像,M行×N列个探测单元对应二维成像的M×N个像素。相邻两个检测周期T对应的两个检测区域的重叠面积为L×W,其中W为探测器220在长度方向Y上对应的探测区域的尺寸。前一个检测周期T对应的检测区域的右侧L×W的面积,与后一检测周期T对应的检测区域的左侧L×W的面积之间重叠。
在一种实现方式中,根据M×N个检测数据,确定M个宽度位置对应的面密度,包括:根据M个宽度位置中第i个宽度位置对应的N个检测数据,确定第i个宽度位置对应的面密度,i从1至M。由于每个宽度位置对应N个检测数据,丰富的检测数据有利于提高每个宽度位置对应的面密度的检测结果的准确性。
例如,可以根据第i个宽度位置对应的N个检测数据的平均值,确定第i个宽度位置对应的面密度。这样,通过对每个宽度位置对应N个检测数据做平均,得到每个宽度位置对应的面密度,有利于提高每个宽度位置对应的面密度的检测结果的准确性。
参见图6,D ij表示每个检测周期T内的M×N个检测数据中第i行和第j列的检测数据,即M个宽度位置中第i个宽度位置、以及N个长度位置中第j个长度位置的探测单元采集的检测数据。i从1至M,j从1至N。每个探测单元的积分时间等于检测周期的长度T,在每个积分时间T内,M×N个探测单元的检测数据为一组,每一组覆盖极片100的面积为S×L,图6示出了三组检测数据,多组检测数据并排组成探测器220检测的面密度值的分布。由于极片100沿长度方向Y匀速移动,长度方向Y上相邻探测单元检测到的极片100的面积存在重叠,因此极片100在长度方向Y上的面密度 值波动较小,正常情况下,***噪音的波动误差较大,因此,对长度方向Y上分列的N个检测数据即D i1至D in求平均值,可以减小***误差。也就是说,将检测数据D i1至D in的平均值(D i1+D i2+D i3+……+D in)/N,作为第i个宽度位置的检测数据,从而根据该检测数据得到第i个宽度位置对应的面密度Y i
假设极片100的目标值为Y 0,若Y i<Y 0,且Y 0-Y i<Y 0×10%,则确定当前检测周期T内检测到的是极片100的涂布边界的起始位置。这里,10%仅为示例,也可以是其他数值,例如5%等。同样的方式,可以用来确定极片100的上边界和下边界。
在一种实现方式中,方法300还包括:根据当前检测周期T及其相邻检测周期T内检测到的第i个宽度位置对应的面密度,确定第i个宽度位置对应的面密度是否发生异常。根据相邻两个检测周期T中每个宽度位置对应的面密度,还可以判断该宽度位置对应的面密度是否发生异常,例如出现暗痕、划痕、鼓筋等涂布缺陷,并进行提示,保证涂布质量。
例如,当前检测周期T及其相邻检测周期T内检测到的第i个宽度位置对应的面密度的差值,大于或等于相邻检测周期T内检测到的第i个宽度位置对应的面密度与预设值的乘积,确定第i个宽度位置对应的面密度发生异常,该预设值位于0至1之间。
该预设值例如位于1%至10%之间。以5%作为示例,若当前检测周期T内检测到的第i个宽度位置对应的面密度Y i,与上一个检测周期T内检测到的第i个宽度位置对应的面密度Y i-1之间的差值△Y≥Y i-1×5%,则当前检测周期T对应的检测区域内的第i个宽度位置发生异常,可能出现暗痕、划痕、鼓筋等涂布缺陷。
在确定M个宽度位置对应的面密度后,还可以对M个宽度位置对应的面密度的值进行校准,以提高检测精度。本申请实施例中,可以基于宽度方向X上的检测数据,对M个宽度位置对应的面密度进行校准;和/或,基于长度方向Y上的检测数据,对M个宽度位置对应的面密度进行校准。
用每个检测周期T内极片100走过的距离S作为极片100的二维成像像素点的纵向尺寸,用探测器220的横向尺寸作为极片100的二维成像像素点的横向尺寸,每个检测周期T纵向分列的N个检测数据的平均值Y i为该像素点的初始值。每个探测单元的实际测量区域大于其横向尺寸,因此,在宽度方向X上,当前像素点的左右两侧的面密度值的波动对该像素点的检测数据有影响。
为此,在一种实现方式中,方法300还包括:根据第i个宽度位置对应的面密度,以及与第i个宽度位置相邻的第i-1个宽度位置和/或第i+1个宽度位置对应的面密度,对第i个宽度位置对应的面密度进行校准。
该实施例中,由于每个探测单元的实际检测区域大于其信号接收窗口的尺寸,对于每个宽度位置,其相邻宽度位置对应的面密度的波动会对该宽度位置的检测结果产生影响,通过相邻宽度位置对应的面密度对该宽度位置对应的面密度进行横向校准,从而提高该宽度位置对应的面密度的准确性。
例如,校准后的第i个宽度位置对应的面密度为:Y i=f 1(y i-1)+f 2(y i)+f 3(y i+1),其中,Y i为校准后的第i个宽度位置对应的面密度,y i、y i-1和y i+1分别为校准前的第i个宽度位置、第i-1个宽度位置和第i+1个宽度位置对应的面密度。
f 1、f 2和f 3可以是针对y i-1、y i和y i+1分别配置的用于确定各自权重的公式或者比例,例如,f 1(y i-1)=A1×y i-1,f 2(y i)=B1×y i,f 3(y i+1)=C1×y i+1,其中,A1、B1和C1为修正系数。该修正系数例如可以是函数、矩阵数据或者常数等。通过为第i个宽度位置、第i-1个宽度位置和第i+1个宽度位置分配与其影响程度相关联的权重,能够更好地对面密度进行校准,从而提高面密度的准确性。
在一种实现方式中,方法300还包括:根据当前检测周期T内检测到的第i个宽度位置对应的面密度,以及当前检测周期T的上一个检测周期T和/或下一个检测周期T内检测到的第i个宽度位置对应的面密度,对当前检测周期内检测到的第i个宽度位置对应的面密度进行校准。
由于相邻两个检测周期内极片100被射线照射的区域之间存在重叠,对于每个检测周期T内检测的面密度,还可以通过其相邻检测周期T内检测的面密度进行纵向校准,从而提高该检测周期T内每个宽度位置对应的面密度的准确性。
在一种实现方式中,校准后的当前检测周期T内检测到的第i个宽度位置对应的面密度为:Y’ j=f 4(y’ j-1)+f 5(y’ j)+f 6(y’ j+1),其中,Y’ j为校准后的当前检测周期内检测到的第i个宽度位置对应的面密度,y’ j、y’ j-1和y’ j+1分别为校准前的当前检测周期、上一个检测周期和下一个检测周期内检测到的第i个宽度位置对应的面密度。
f 4、f 5和f 6可以是针对y’ j-1、y’ j和y’ j+1分别配置的用于确定各自权重的公式或者比例,例如,f 4(y j-1)=A2×y’ j-1,f 5(y j)=B2×y’ j,f 6(y’ j+1)=C2×y’ j+1,其中,A2、B2和C2为修正系数。该修正系数例如可以是函数、矩阵数据或者常数等。通过 为当前检测周期T、上一个检测周期T和下一个检测周期T分配与其影响程度相关联的权重,能够更好地对面密度进行校准,从而提高面密度的准确性。
在进行校准时,可以先横向校准,再纵向校准;也可以先纵向校准,再横向校准;或者只进行横向校准;或者只进行纵向校准。这里,以先横向校准,再纵向校准为例,结合图7对如何校准第j个检测周期内第i个宽度位置对应的面密度进行具体描述。
如图7所示,y ji表示横向校准之前第j个检测周期内第i个宽度位置对应的面密度,即,针对第j个检测周期内,基于图6中检测数据D i1至D in的平均值(D i1+D i2+D i3+……+D in)/N确定的第i个宽度位置对应的面密度。i从1至M,每个检测周期T内的检测数据经过上述的平均处理后,可以得到M个宽度位置各自对应的M个面密度y j1至y jm
首先,进行横向校准。针对第j个检测周期内的检测数据,根据校准前的第i-1个宽度位置对应的面密度y j(i-1)和第i+1个宽度位置对应的面密度y j(i+1),对第i个宽度位置对应的面密度y ji进行校准,得到校准后的第i个宽度位置对应的面密度Y i=A1×y j(i- 1)+B1×y ji+C1×y j(i+1),A1、B1和C1为修正系数,此处以修正系数为位于-2至2之间的常数且A1+B1+C1=1作为示例,假设A1=C1=0.2,B=0.6,则Y ji=y j(i-1)×20%+y ji×60%+y j(i+1)×20%。
接着,进行纵向校准。根据第j-1个检测周期内检测到的第i个宽度位置对应的面密度y’ (j-1)i、以及第j+1个检测周期内检测到的第i个宽度位置对应的面密度y’ (j+1)i,对第j个检测周期内检测到的第i个宽度位置对应的面密度y’ ji进行校准,得到校准后当第j个检测周期内检测到的第i个宽度位置对应的面密度Y’ ji=A2×y’ (j-1)i+B2×y’ ji+C2×y’ (j+1)i。其中,y’ (j-1)i、y’ ji和y’ (j+1)i分别等于经过上述横向校准后,第j-1个检测周期、第j个检测周期和第j+1个检测周期内检测到的第i个宽度位置对应的面密度Y (j-1)i、Y ji、Y (j+1)i。于是,纵向校准后的第i个宽度位置对应的面密度Y’ ji=A2×Y (j- 1)+B2×Y ji+C2×Y (j+1)i,A2、B2和C2为修正系数,此处以修正系数为位于-2至2之间的常数且A2+B2+C2=1作为示例,假设A2=C2=0.1,B=0.8,则Y’ ji=Y (j- 1)i×10%+Y ji×80%+Y (j+1)i×10%。
基于本申请实施例的极片检测的方法300,首先确定出涂布起始边界,根据测量时间和涂布速度V1定位每组测量数据与极片100的位置,接着判断涂布区域的上边 界和下边界对应的探测单元,根据各个探测单元与极片100位置之间的对应关系(极片100在宽度方向X上与探测器220居中对齐),定位涂布区域的横向位置,最终可以成像极片100的面密度的二维分布。
在一种实现方式中,方法300还包括:根据所述M个宽度位置对应的面密度,调整在M个涂布方向上向极片100涂布的材料的量,M个涂布方向分别与M个宽度位置对应,该涂布方向平行于长度方向Y。
该实施例中,根据M个宽度位置各自对应的面密度,对M个宽度位置对应的M个涂布方向的送料量进行调整,形成对极片100面密度的闭环调节,极大地改善了极片100的涂布效果。
具体地,如图4所示,调节机构250中包括与M个宽度位置对应的M个涂布模头240,每个涂布模头240连接一个调节机构250,每个调节机构250包括调节块251和驱动块252。驱动块252根据第i个宽度位置对应的面密度,控制对应的涂布模头240的狭缝241宽度。例如,若面密度大,则驱动块252带动调整块251向下移动,使该狭缝241变小,从而减小对应的涂布模头240的送料量;若面密度小,则驱动块252带动调整块251向上移动,使该狭缝241变大,从而增大对应的涂布模头240的送料量。每次调整的距离例如可以在0至200um之间。
例如,可以设定一目标范围,若检测到的第i个宽度位置对应的面密度位于该目标范围,则不调整第i个宽度位置对应的涂布方向上的送料量;若检测到的第i个宽度位置对应的面密度超出该目标范围,才调整第i个宽度位置对应的涂布方向上的送料量,例如,可以按照第i个宽度位置对应的面密度偏离目标范围的程度,来调整对应的调节块的高度,进而改变从涂布模头240的狭缝241送出的浆料量。
本申请实施例还提供一种极片检测的装置400,如图8所示,极片检测的装置400包括信号采集模块410和处理模块420。
其中,信号采集模块410用于获取射线照射极片100并从极片100透射的信号,其中,射线沿极片100的宽度方向X设置并覆盖极片100,且沿极片100的长度方向Y对极片100进行扫描。处理模块420用于根据极片100透射的信号,检测极片100的表面涂布的材料的面密度。
在一种实现方式中,处理模块420具体用于:检测极片100上宽度方向X的M个宽度位置对应的面密度,M为大于1的正整数。
在一种实现方式中,在长度方向Y上,M个宽度位置的每个宽度位置对应N个长度位置,信号采集模块410还用于,获取M个宽度位置和N个长度位置对应的M×N个检测数据;处理模块420具体用于,根据M×N个检测数据,确定M个宽度位置对应的面密度。
在一种实现方式中,极片100沿长度方向Y运行,信号采集模块410具体用于:极片100每运行一个检测周期,获取检测周期内极片100被射线照射的部分对应的M×N个检测数据。
在一种实现方式中,处理模块420具体用于:根据M个宽度位置中第i个宽度位置对应的N个检测数据,确定第i个宽度位置对应的面密度,i从1至M。
在一种实现方式中,处理模块420具体用于:根据第i个宽度位置对应的N个检测数据的平均值,确定第i个宽度位置对应的面密度。
在一种实现方式中,处理模块420还用于:根据第i个宽度位置对应的面密度,以及与第i个宽度位置相邻的第i-1个宽度位置和/或第i+1个宽度位置对应的面密度,对第i个宽度位置对应的面密度进行校准。
在一种实现方式中,校准后的第i个宽度位置对应的面密度为:Y i=f 1(y i-1)+f 2(y i)+f 3(y i+1),其中,Y i为校准后的第i个宽度位置对应的面密度,y i、y i-1和y i+1分别为校准前的第i个宽度位置、第i-1个宽度位置和第i+1个宽度位置对应的面密度。
在一种实现方式中,f 1(y i-1)=A1×y i-1,f 2(y i)=B1×y i,f 3(y i+1)=C1×y i+1,其中,A1、B1和C1为修正系数。
在一种实现方式中,处理模块420还用于:根据第j个检测周期内检测到的所述第i个宽度位置对应的面密度,以及第j-1个检测周期和/或第j+1个检测周期内检测到的所述第i个宽度位置对应的面密度,对所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度进行校准。
在一种实现方式中,校准后的所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度为:Y’ j=f 4(y’ j-1)+f 5(y’ j)+f 6(y’ j+1),其中,Y’ j为校准后的所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度,y’ j、y’ j-1和y’ j+1分别为校准前的所述第j个检测周期、所述第j-1个检测周期和所述第j+1个检测周期内检测到的所述第i个宽度位置对应的面密度。
在一种实现方式中,f 4(y j-1)=A2×y’ j-1,f 5(y j)=B2×y’ j,f 6(y’ j+1)=C2× y’ j+1,其中,A2、B2和C2为修正系数。
在一种实现方式中,处理模块420还用于:根据第i个宽度位置对应的面密度,以及极片100的面密度的标准值,确定第i个宽度位置对应的面密度是否异常。
在一种实现方式中,处理模块420具体用于:若第i个宽度位置对应的面密度与标准值之差大于预设值,确定第i个宽度位置对应的面密度异常。
在一种实现方式中,预设值位于1%至10%之间。
在一种实现方式中,处理模块420还用于:根据M个宽度位置对应的面密度,调整在M个涂布方向上向极片100涂布的所述材料的量,M个涂布方向分别与M个宽度位置对应,涂布方向平行于长度方向Y。
在一种实现方式中,照射极片100的射线的强度与极片100透射的信号的强度之间满足
Figure PCTCN2022115851-appb-000005
其中,I 0为用于照射极片100的射线的强度,I为极片100透射的信号的强度,λ为材料的质量吸收系数,m为极片100的面密度。
在一种实现方式中,射线为X射线或者β射线。
本申请还提供一种极片100检测的装置,包括存储器和处理器,存储器存储计算机指令,处理器调用计算机指令以使装置实现根据上述任一实现方式中所述的极片100检测的方法。
本申请还提供一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被计算设备执行时,使得所述计算设备实现上述任一实现方式中所述的极片100检测的方法。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考上述方法实施例中的对应过程,在此不再 赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

Claims (38)

  1. 一种极片检测的方法,其特征在于,所述方法包括:
    获取射线照射极片并从所述极片透射的信号,其中,所述射线沿所述极片的宽度方向设置并覆盖所述极片,且沿所述极片的长度方向对所述极片进行扫描;
    根据所述极片透射的信号,检测所述极片的表面涂布的材料的面密度。
  2. 根据权利要求1所述的方法,其特征在于,所述检测所述极片表面涂布的材料的面密度,包括:
    检测所述极片上所述宽度方向的M个宽度位置对应的面密度,M为大于1的正整数。
  3. 根据权利要求2所述的方法,其特征在于,在所述长度方向上,所述M个宽度位置的每个宽度位置对应N个长度位置,N为大于1的正整数,所述检测所述极片上所述宽度方向的M个宽度位置对应的面密度,包括:
    获取所述M个宽度位置和所述N个长度位置对应的M×N个检测数据;
    根据所述M×N个检测数据,确定所述M个宽度位置对应的面密度。
  4. 根据权利要求3所述的方法,其特征在于,所述极片沿所述长度方向运行,所述获取所述M个宽度位置和所述N个长度位置对应的M×N个检测数据,包括:
    所述极片每运行一个检测周期,获取所述检测周期内所述极片被所述射线照射的部分对应的所述M×N个检测数据。
  5. 根据权利要求3或4所述的方法,其特征在于,所述根据所述M×N个检测数据,确定所述M个宽度位置对应的面密度,包括:
    根据所述M个宽度位置中第i个宽度位置对应的N个检测数据,确定所述第i个宽度位置对应的面密度,i从1至M。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述M个宽度位置中第i个宽度位置对应的N个检测数据,确定所述第i个宽度位置对应的面密度,包括:
    根据所述第i个宽度位置对应的N个检测数据的平均值,确定所述第i个宽度位置对应的面密度。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    根据所述第i个宽度位置对应的面密度,以及与所述第i个宽度位置相邻的第i-1个宽度位置和/或第i+1个宽度位置对应的面密度,对所述第i个宽度位置对应的面密度进 行校准。
  8. 根据权利要求7所述的方法,其特征在于,校准后的所述第i个宽度位置对应的面密度为:
    Y i=f 1(y i-1)+f 2(y i)+f 3(y i+1),其中,Y i为校准后的所述第i个宽度位置对应的面密度,y i、y i-1和y i+1分别为校准前的所述第i个宽度位置、所述第i-1个宽度位置和所述第i+1个宽度位置对应的面密度。
  9. 根据权利要求8所述的方法,其特征在于,f 1(y i-1)=A1×y i-1,f 2(y i)=B1×y i,f 3(y i+1)=C1×y i+1,其中,A1、B1和C1修正系数。
  10. 根据权利要求5至9中任一项所述的方法,其特征在于,所述方法还包括:
    根据第j个检测周期内检测到的所述第i个宽度位置对应的面密度,以及第j-1个检测周期和/或第j+1个检测周期内检测到的所述第i个宽度位置对应的面密度,对所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度进行校准。
  11. 根据权利要求8所述的方法,其特征在于,校准后的所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度为:
    Y’ j=f 4(y’ j-1)+f 5(y’ j)+f 6(y’ j+1),其中,Y’ j为校准后的所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度,y’ j、y’ j-1和y’ j+1分别为校准前的所述第j个检测周期、所述第j-1个检测周期和所述第j+1个检测周期内检测到的所述第i个宽度位置对应的面密度。
  12. 根据权利要求11所述的方法,其特征在于,f 4(y j-1)=A2×y’ j-1,f 5(y j)=B2×y’ j,f 6(y’ j+1)=C2×y’ j+1,其中,A2、B2和C2为修正系数。
  13. 根据权利要求5至12中任一项所述的方法,其特征在于,所述方法还包括:
    根据当前检测周期及其相邻检测周期内检测到的所述第i个宽度位置对应的面密度,确定所述第i个宽度位置对应的面密度是否发生异常。
  14. 根据权利要求13所述的方法,其特征在于,所述根据当前检测周期及其相邻检测周期内检测到的所述第i个宽度位置对应的面密度,确定所述第i个宽度位置对应的面密度是否发生异常,包括:
    若当前检测周期及其相邻检测周期内检测到的所述第i个宽度位置对应的面密度的差值,大于或等于所述相邻检测周期内所述第i个宽度位置对应的面密度与预设值的乘积,确定所述第i个宽度位置对应的面密度发生异常,该预设值位于0至1之间。
  15. 根据权利要求14所述的方法,其特征在于,所述预设值位于1%至10%之间。
  16. 根据权利要求5至15中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述M个宽度位置对应的面密度,调整在M个涂布方向上向所述极片涂布的所述材料的量,所述M个涂布方向分别与所述M个宽度位置对应,所述涂布方向平行于所述长度方向。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,照射所述极片的所述射线的强度与所述极片透射的信号的强度之间满足I=I 0e -λm,其中,I 0为用于照射所述极片的所述射线的强度,I为所述极片透射的信号的强度,λ为所述材料的质量吸收系数,m为所述极片的面密度。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述射线为X射线或者β射线。
  19. 一种极片检测的装置,其特征在于,包括:
    信号采集模块,用于获取射线照射极片并从所述极片透射的信号,其中,所述射线沿所述极片的宽度方向设置并覆盖所述极片,且沿所述极片的长度方向对所述极片进行扫描;
    处理模块,用于根据所述极片透射的信号,检测所述极片的表面涂布的材料的面密度。
  20. 根据权利要求19所述的装置,其特征在于,所述处理模块具体用于:
    检测所述极片上所述宽度方向的M个宽度位置对应的面密度,M为大于1的正整数。
  21. 根据权利要求20所述的装置,其特征在于,在所述长度方向上,所述M个宽度位置的每个宽度位置对应N个长度位置,
    所述信号采集模块还用于,获取所述M个宽度位置和所述N个长度位置对应的M×N个检测数据;
    所述处理模块具体用于,根据所述M×N个检测数据,确定所述M个宽度位置对应的面密度。
  22. 根据权利要求21所述的装置,其特征在于,所述极片沿所述长度方向运行,所述信号采集模块具体用于:
    所述极片每运行一个检测周期,获取所述检测周期内所述极片被所述射线照射的 部分对应的所述M×N个检测数据。
  23. 根据权利要求21或22所述的装置,其特征在于,所述所述处理模块具体用于:
    根据所述M个宽度位置中第i个宽度位置对应的N个检测数据,确定所述第i个宽度位置对应的面密度,i从1至M。
  24. 根据权利要求23所述的装置,其特征在于,所述处理模块具体用于:
    根据所述第i个宽度位置对应的N个检测数据的平均值,确定所述第i个宽度位置对应的面密度。
  25. 根据权利要求23或24所述的装置,其特征在于,所述处理模块还用于:
    根据所述第i个宽度位置对应的面密度,以及与所述第i个宽度位置相邻的第i-1个宽度位置和/或第i+1个宽度位置对应的面密度,对所述第i个宽度位置对应的面密度进行校准。
  26. 根据权利要求25所述的装置,其特征在于,校准后的所述第i个宽度位置对应的面密度为:
    Y i=f 1(y i-1)+f 2(y i)+f 3(y i+1),其中,Y i为校准后的所述第i个宽度位置对应的面密度,y i、y i-1和y i+1分别为校准前的所述第i个宽度位置、所述第i-1个宽度位置和所述第i+1个宽度位置对应的面密度。
  27. 根据权利要求26所述的装置,其特征在于,f 1(y i-1)=A1×y i-1,f 2(y i)=B1×y i,f 3(y i+1)=C1×y i+1,其中,A1、B1和C1为修正系数。
  28. 根据权利要求23至27中任一项所述的装置,其特征在于,所述处理模块还用于:
    根据第j个检测周期内检测到的所述第i个宽度位置对应的面密度,以及第j-1个检测周期和/或第j+1个检测周期内检测到的所述第i个宽度位置对应的面密度,对所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度进行校准。
  29. 根据权利要求28所述的装置,其特征在于,校准后的所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度为:
    Y’ j=f 4(y’ j-1)+f 5(y’ j)+f 6(y’ j+1),其中,Y’ j为校准后的所述第j个检测周期内检测到的所述第i个宽度位置对应的面密度,y’ j、y’ j-1和y’ j+1分别为校准前的所述第j个检测周期、所述第j-1个检测周期和所述第j+1个检测周期内检测到的所述第i个宽 度位置对应的面密度。
  30. 根据权利要求29所述的装置,其特征在于,f 4(y j-1)=A2×y’ j-1,f 5(y j)=B2×y’ j,f 6(y’ j+1)=C2×y’ j+1,其中,A2、B2和C2为修正系数。
  31. 根据权利要求23至30中任一项所述的装置,其特征在于,所述处理模块还用于:
    根据当前检测周期及其相邻检测周期内检测到的所述第i个宽度位置对应的面密度,确定所述第i个宽度位置对应的面密度是否发生异常。
  32. 根据权利要求31所述的装置,其特征在于,所述处理模块具体用于:
    若当前检测周期及其相邻检测周期内检测到的所述第i个宽度位置对应的面密度的差值,大于或等于所述相邻检测周期内所述第i个宽度位置对应的面密度与预设值的乘积,确定所述第i个宽度位置对应的面密度发生异常,该预设值位于0至1之间。
  33. 根据权利要求32所述的装置,其特征在于,所述预设值位于1%至10%之间。
  34. 根据权利要求23至33中任一项所述的装置,其特征在于,所述处理模块还用于:
    根据所述M个宽度位置对应的面密度,调整在M个涂布方向上向所述极片涂布的所述材料的量,所述M个涂布方向分别与所述M个宽度位置对应,所述涂布方向平行于所述长度方向。
  35. 根据权利要求19至34中任一项所述的装置,其特征在于,照射所述极片的所述射线的强度与所述极片透射的信号的强度之间满足I=I 0e -λm,其中,I 0为用于照射所述极片的所述射线的强度,I为所述极片透射的信号的强度,λ为所述材料的质量吸收系数,m为所述极片的面密度。
  36. 根据权利要求19至35中任一项所述的装置,其特征在于,所述射线为X射线或者β射线。
  37. 一种极片检测的装置,其特征在于,包括存储器和处理器,所述存储器存储计算机指令,所述处理器调用所述计算机指令以使所述装置实现根据权利要求1至18中任一项所述的极片检测的方法。
  38. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序被计算设备执行时,使得所述计算设备实现根据权利要求1至18中任一项所述的极片检测的方法。
PCT/CN2022/115851 2022-08-30 2022-08-30 极片检测的方法和装置 WO2024044968A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115851 WO2024044968A1 (zh) 2022-08-30 2022-08-30 极片检测的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115851 WO2024044968A1 (zh) 2022-08-30 2022-08-30 极片检测的方法和装置

Publications (1)

Publication Number Publication Date
WO2024044968A1 true WO2024044968A1 (zh) 2024-03-07

Family

ID=90100135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115851 WO2024044968A1 (zh) 2022-08-30 2022-08-30 极片检测的方法和装置

Country Status (1)

Country Link
WO (1) WO2024044968A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118090515A (zh) * 2024-04-29 2024-05-28 常州锐奇精密测量技术有限公司 一种全检式面密度仪的标定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338023A (ja) * 1999-05-25 2000-12-08 Sony Corp 面積密度測定装置及び面積密度測定方法
JP2006090892A (ja) * 2004-09-24 2006-04-06 Futec Inc X線透過法を用いた塗工シートの測定装置および測定方法
CN1991345A (zh) * 2005-12-29 2007-07-04 比亚迪股份有限公司 一种电池极片面密度测量***和方法
CN105783746A (zh) * 2016-05-23 2016-07-20 南京林业大学 一种木质产品厚度的检测***及其检测方法
CN109225766A (zh) * 2018-09-25 2019-01-18 深圳市浩能科技有限公司 一种极片的测厚方法
CN110018081A (zh) * 2019-02-28 2019-07-16 南京国轩电池有限公司 一种在线检测极片面密度及自动报警装置
CN112304989A (zh) * 2020-10-30 2021-02-02 广东泰极动力科技有限公司 一种可实现连续实时监测膜电极铂载量变化的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338023A (ja) * 1999-05-25 2000-12-08 Sony Corp 面積密度測定装置及び面積密度測定方法
JP2006090892A (ja) * 2004-09-24 2006-04-06 Futec Inc X線透過法を用いた塗工シートの測定装置および測定方法
CN1991345A (zh) * 2005-12-29 2007-07-04 比亚迪股份有限公司 一种电池极片面密度测量***和方法
CN105783746A (zh) * 2016-05-23 2016-07-20 南京林业大学 一种木质产品厚度的检测***及其检测方法
CN109225766A (zh) * 2018-09-25 2019-01-18 深圳市浩能科技有限公司 一种极片的测厚方法
CN110018081A (zh) * 2019-02-28 2019-07-16 南京国轩电池有限公司 一种在线检测极片面密度及自动报警装置
CN112304989A (zh) * 2020-10-30 2021-02-02 广东泰极动力科技有限公司 一种可实现连续实时监测膜电极铂载量变化的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118090515A (zh) * 2024-04-29 2024-05-28 常州锐奇精密测量技术有限公司 一种全检式面密度仪的标定方法

Similar Documents

Publication Publication Date Title
Hussey et al. Neutron images of the through-plane water distribution of an operating PEM fuel cell
CN101577284B (zh) 用于测量辐射的半导体探测器及成像装置
Gimenez et al. Study of charge-sharing in MEDIPIX3 using a micro-focused synchrotron beam
US8369482B2 (en) Electrode inspection device for battery and method of the same
WO2024044968A1 (zh) 极片检测的方法和装置
US10054555B2 (en) X-ray transmission inspection apparatus and inspection method using the same
CN210347486U (zh) 一种膜电极缺陷在线检测设备
WO2024007463A1 (zh) 涂布质量的检测方法、检测装置、检测***及储存介质
CN116817805B (zh) 一种极片涂布边缘削薄及测量方法
CN111077561B (zh) 一种残留气体带电粒子束流监测装置及其方法
CN110243723A (zh) 一种检测锂电池正负极片陶瓷涂层密度的方法
CN117214206A (zh) 一种面密度全检方法及***
WO2024044966A1 (zh) 极片检测的设备
Mac Raighne et al. Precision scans of the Pixel cell response of double sided 3D Pixel detectors to pion and X-ray beams
CN116297569B (zh) 一种基于x射线的物体检测方法、***及处理设备
CN206671574U (zh) 一种核医学成像设备spect/ct的射线探测器
CN111781632A (zh) 一种中子-γ射线联合探测装置及方法
CN110231345B (zh) 一种膜电极缺陷在线检测方法及设备
CN106783502B (zh) 一种同步辐射软x射线无损实时位置分辨电离室
CN206194691U (zh) 一种同步辐射软x射线无损实时位置分辨电离室
CN106524927A (zh) 一种自动校正路线的在线测量电池极板厚度的***及方法
CN109833053A (zh) Ct形状过滤器缺陷的双能矫正方法
Meng et al. Spectroscopic performance of thick HgI/sub 2/detectors
CN213633848U (zh) 一种中子-γ射线联合探测装置
US2883552A (en) Radiation thickness measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956800

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022956800

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022956800

Country of ref document: EP

Effective date: 20240501