WO2024044895A1 - 集流体及其制备方法、电极极片、电池单体、电池模块、电池包及用电装置 - Google Patents

集流体及其制备方法、电极极片、电池单体、电池模块、电池包及用电装置 Download PDF

Info

Publication number
WO2024044895A1
WO2024044895A1 PCT/CN2022/115538 CN2022115538W WO2024044895A1 WO 2024044895 A1 WO2024044895 A1 WO 2024044895A1 CN 2022115538 W CN2022115538 W CN 2022115538W WO 2024044895 A1 WO2024044895 A1 WO 2024044895A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
metal
pattern layer
base material
metal pattern
Prior art date
Application number
PCT/CN2022/115538
Other languages
English (en)
French (fr)
Inventor
凌洋芳
尹子伊
刘桓基
孙信
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/115538 priority Critical patent/WO2024044895A1/zh
Publication of WO2024044895A1 publication Critical patent/WO2024044895A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of secondary batteries, specifically to a current collector and its preparation method, electrode pole pieces, battery cells, battery modules, battery packs and electrical devices.
  • Batteries typically have positive and negative electrodes that participate in electrochemical reactions.
  • the current collector is a structure that collects current on the positive electrode or negative electrode. Its main function is to collect the current generated by the active materials of the battery in order to form a larger current for external output. Therefore, the current collector should be in full contact with the active materials.
  • the surface adhesion of traditional current collectors is poor, causing active materials to easily peel off from the surface of the current collector, resulting in deterioration of battery performance.
  • this application provides a current collector and its preparation method, electrode pole pieces, battery cells, battery modules, battery packs and electrical devices.
  • the current collector has good adhesion and is combined with active materials. Better, it can improve the cycle performance of battery cells.
  • One aspect of the present application provides a current collector, including:
  • a metal pattern layer is provided on at least one surface of the base material, and the metal pattern layer includes a plurality of metal protrusions.
  • the surface roughness of the current collector can be increased, thereby improving the adhesion of the current collector, and the current collector can interact well with the active material. Fitting to improve the cycle capacity retention performance of battery cells.
  • the roughness Ra of the current collector on the surface provided with the metal pattern layer is >0.5, and can be selected from 0.8 to 20, and more preferably from 6 to 15.
  • the surface roughness of the current collector is within the above range, the current collector has a larger surface area and better adhesion.
  • the thickness of the metal protrusion is 0.01 ⁇ m ⁇ 6 ⁇ m, optionally 1 ⁇ m ⁇ 4 ⁇ m.
  • the thickness of the metal protrusion is within the above range, which can form a suitable rough surface on the surface of the current collector, increase the surface area of the current collector, and improve the adhesion of the current collector.
  • the orthographic projection area of a single metal protrusion on the surface of the substrate ranges from 5 ⁇ m 2 to 300 ⁇ m 2 , optionally from 5 ⁇ m 2 to 150 ⁇ m 2 . Controlling the orthogonal projected area of a single metal protrusion within the above range can control the current collector surface to have appropriate roughness and improve the current collector surface adhesion.
  • the ratio of the sum of the area of the orthographic projection of the metal protrusions on the surface of the base material to the area of the surface of the base material is 1% to 60%.
  • the distance between two adjacent metal protrusions is 0.5 ⁇ m to 20 ⁇ m.
  • the metal protrusions on the surface of the substrate have a more appropriate density, and the surface adhesion of the current collector is better.
  • the metal protrusions in the metal pattern layer are evenly distributed.
  • the evenly distributed metal protrusions can provide uniform adhesion on the surface of the current collector. In subsequent preparations, the adhesion between the active material and the current collector is more uniform, and the electrode pieces are less likely to crack and lose powder.
  • the metal pattern layer includes a first area and a second area arranged at intervals, in the first area, the metal protrusions are evenly distributed, and in the second area, the metal protrusions are evenly distributed, And in the preset direction, the distance between two adjacent metal protrusions in the first area is different from the distance between two adjacent metal protrusions in the second area.
  • the first region and the second region have different adhesion to the active material. In the subsequent winding process of preparing the battery core, the adhesion force can be improved.
  • the stronger area is used as the corner area of the wound battery core to avoid cracking of the pole pieces in the corner area.
  • the material of the substrate includes at least one of aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver, silver alloy, tin, tin alloy, iron and stainless steel. kind;
  • the material of the base material includes at least one of tin, tin alloy, iron and stainless steel.
  • the resistivity of the metal material in the metal pattern layer is less than the resistivity of the substrate.
  • the current collector also has better electrical conductivity, which can reduce the ohmic impedance of the battery cell.
  • the material of the base material includes at least one of tin, tin alloy, iron and stainless steel
  • the metal material of the metal pattern layer includes copper, aluminum, nickel, zinc, iron, gold and silver. At least one or an alloy containing the above metals.
  • the current collector has a resistivity of 25 ⁇ 10 -6 ⁇ m to 125 ⁇ 10 -6 ⁇ m. If the resistivity of the current collector is controlled within the above range, the current collector will have higher conductivity and can reduce the internal resistance of the battery cell.
  • this application also provides an electrode pole piece, including:
  • An active material layer is provided on at least one surface of the current collector having the metal pattern layer, and the active material layer covers the metal pattern layer.
  • the active material layer is disposed on the surface with the metal pattern layer.
  • the bonding strength between the current collector and the active material layer is relatively strong, and problems such as delamination and cracking are less likely to occur.
  • the surface of the active material layer close to the current collector has a concave portion matching the metal protrusion.
  • the active material layer has concave parts that match the metal protrusions, the current collector and the active material layer are more firmly bonded, and the electrode pole pieces have higher mechanical strength.
  • the present application also provides a battery cell, including the electrode pole piece described in the second aspect.
  • the present application also provides a battery module, including the battery cell described in the third aspect.
  • the present application also provides a battery pack, including at least one of the battery cell described in the third aspect and the battery module described in the fourth aspect.
  • the present application further provides an electrical device, including at least one selected from the group consisting of the battery cell described in the third aspect, the battery module described in the fourth aspect, and the battery pack described in the sixth aspect. .
  • the present application also provides a method for preparing a current collector, including the following steps of preparing the current collector described in the first aspect:
  • a metal pattern layer is formed on the surface of the base material.
  • the step of forming the metal pattern layer includes:
  • the metal pattern layer template is mesh insulating glue
  • the area of a single mesh of the mesh insulating glue is 5 to 300 ⁇ m 2 , and optionally 5 ⁇ m 2 to 150 ⁇ m 2 .
  • the metal pattern layer is prepared by electroplating
  • the current density of the electroplating treatment is 10A/dm 2 ⁇ 20A/dm 2 , and more optionally is 12A/dm 2 ⁇ 16A/dm 2 ;
  • the electroplating treatment time is 10 min to 60 min, more optionally, 20 min to 40 min.
  • Controlling the current density and time of the electroplating process within the above range can control the current collector to have a more appropriate thickness of the metal protrusions and the roughness of the current collector surface.
  • Figure 1 is a schematic structural diagram of a vehicle provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a battery module provided in an embodiment of the application.
  • Figure 4 is a schematic diagram of the exploded structure of a battery cell provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an electrode pole piece provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a current collector provided by an embodiment of the present application.
  • Figure 7 is a partial structural schematic diagram of a current collector provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a current collector provided by an embodiment of the present application.
  • Electrode pole piece 110 current collector, 111 base material, 112 metal protrusion, 120 active material layer;
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the current collector surface of the electrode piece has low adhesion and is difficult to combine firmly with the active material, which makes the electrode piece easy to peel off and lose powder, affecting the electrochemical performance of the battery cell.
  • the inventor designed a current collector by arranging multiple metal layers on the surface of the current collector substrate.
  • the metal pattern layer on the convex portion increases the surface area and roughness of the current collector.
  • the current collector has better surface adhesion and can be firmly combined with the active material of the electrode pole piece.
  • the present application provides a current collector, as well as electrode pole pieces, battery cells, battery modules, battery packs and electrical devices including the current collector.
  • This current collector is suitable for various batteries and electrical devices using batteries, such as mobile phones, portable devices, laptops, battery cars, electric toys, power tools, electric vehicles, ships and spacecraft.
  • batteries are used to provide electrical energy for the above-mentioned electrical devices.
  • Vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 10 is disposed inside the vehicle 1 , and the battery 10 can be disposed at the bottom, head, or tail of the vehicle 1 .
  • the battery 10 may be used to power the vehicle 1 , for example, the battery 10 may serve as an operating power source for the vehicle 1 .
  • the vehicle 1 may also include a controller 11 and a motor 12 .
  • the controller 11 is used to control the battery 10 to provide power to the motor 12 , for example, for starting, navigating, and driving the vehicle 1 to meet its power requirements.
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include multiple battery cells 21 , where the battery cells 21 refer to the smallest unit that constitutes a battery module or battery pack. Multiple battery cells 21 may be connected in series and/or in parallel via electrode terminals to be used in various applications.
  • the batteries mentioned in this application include battery modules or battery packs. Among them, the plurality of battery cells 21 can be connected in series, in parallel, or in mixed connection. Mixed connection refers to a mixture of series connection and parallel connection.
  • the battery 10 may also be referred to as a battery pack. In the embodiment of the present application, multiple battery cells 21 can directly form a battery pack, or they can first form a battery module 20, and then the battery module 20 can form a battery pack.
  • FIG. 2 shows a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery modules 20 and a case 30 , and the plurality of battery modules 20 are accommodated inside the case 30 .
  • the box 30 is used to accommodate the battery cells 21 or the battery modules 20 to prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells 21 .
  • the box 30 may be a single cuboid, a simple three-dimensional structure such as a cylinder or a sphere, or a complex three-dimensional structure composed of a combination of simple three-dimensional structures such as a cuboid, a cylinder or a sphere, which is not limited in the embodiments of the present application.
  • the material of the box body 30 can be alloy materials such as aluminum alloy, iron alloy, etc., or polymer materials such as polycarbonate, polyisocyanurate foam, or composite materials such as glass fiber and epoxy resin.
  • alloy materials such as aluminum alloy, iron alloy, etc.
  • polymer materials such as polycarbonate, polyisocyanurate foam, or composite materials such as glass fiber and epoxy resin.
  • the embodiments of the present application are not limited to this.
  • the box 30 may include a first part 301 and a second part 302.
  • the first part 301 and the second part 302 cover each other.
  • the first part 301 and the second part 302 jointly define a space for accommodating the battery cell 21.
  • the second part 302 may be a hollow structure with one end open, and the first part 301 may be a plate-like structure.
  • the first part 301 covers the open side of the second part 302 so that the first part 301 and the second part 302 jointly define a space for accommodating the battery.
  • the space of the unit 21; the first part 301 and the second part 302 may also be hollow structures with one side open, and the open side of the first part 301 is covered with the open side of the second part 302.
  • FIG. 3 shows a schematic structural diagram of a battery module 20 according to an embodiment of the present application.
  • the battery module 20 may include a plurality of battery cells 21.
  • the plurality of battery cells 21 may first be connected in series, parallel or mixed to form the battery module 20.
  • the plurality of battery modules 20 may then be connected in series, parallel or mixed to form the battery 10.
  • the battery cell 21 may include a lithium-ion battery, a sodium-ion battery, a magnesium-ion battery, etc., which is not limited in the embodiments of this application.
  • the battery cell 21 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited thereto.
  • Battery cells 21 are generally divided into three types according to packaging methods: cylindrical battery cells 21, rectangular battery cells 21 and soft-pack battery cells 21, and the embodiment of the present application is not limited to this. However, for the sake of simplicity of description, the following embodiments take the rectangular battery cell 21 as an example.
  • FIG. 4 is a schematic diagram of the exploded structure of the battery cell 21 provided by some embodiments of the present application.
  • the battery cell 21 refers to the smallest unit that constitutes the battery. As shown in FIG. 4 , the battery cell 21 includes an end cover 211 , a housing 212 and a battery core assembly 213 .
  • the end cap 211 refers to a component that covers the opening of the housing 212 to isolate the internal environment of the battery cell 21 from the external environment.
  • the shape of the end cap 211 may be adapted to the shape of the housing 212 to fit the housing 212 .
  • the end cap 211 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap 211 is less likely to deform when subjected to extrusion and collision, so that the battery cell 21 can have higher durability. Structural strength and safety performance can also be improved.
  • the end cap 211 may be provided with functional components such as electrode terminals 211a.
  • the electrode terminal 211a can be used to electrically connect with the battery cell assembly 213 for outputting or inputting electric energy of the battery cell 21 .
  • the end cap 211 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 21 reaches a threshold.
  • the end cap 211 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • an insulating member may also be provided inside the end cover 211 , and the insulating member may be used to isolate the electrical connection components in the housing 212 from the end cover 211 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, etc.
  • the housing 212 is a component used to cooperate with the end cover 211 to form an internal environment of the battery cell 21 , wherein the internal environment formed can be used to accommodate the battery core assembly 213 , electrolyte (not shown in the figure) and other components. .
  • the housing 212 and the end cover 211 may be independent components, and an opening may be provided on the housing 212, and the end cover 211 covers the opening at the opening to form the internal environment of the battery cell 21.
  • the end cover 211 and the housing 212 can also be integrated. Specifically, the end cover 211 and the housing 212 can form a common connection surface before other components are put into the housing.
  • the housing 212 When it is necessary to encapsulate the inside of the housing 212 When the end cap 211 is closed, the housing 212 is closed.
  • the housing 212 may be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the housing 212 can be determined according to the specific shape and size of the battery core assembly 213 .
  • the housing 212 may be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • the battery cell assembly 213 is a component in the battery cell 21 that undergoes electrochemical reactions.
  • One or more battery core assemblies 213 may be contained within the housing 212 .
  • the cell assembly 213 is mainly formed by winding or stacking positive electrode pieces and negative electrode pieces, and a separator is usually provided between the positive electrode piece and the negative electrode piece.
  • the portions of the positive electrode piece and the negative electrode piece that have active material constitute the main body of the battery assembly, and the portions of the positive electrode piece and the negative electrode piece that do not have active material each constitute tabs (not shown in the figure).
  • the positive electrode tab and the negative electrode tab can be located together at one end of the main body or respectively located at both ends of the main body.
  • the positive active material and negative active material react with the electrolyte, and the tabs are connected to the electrode terminals to form a current loop.
  • FIG. 5 shows an electrode piece 100 provided by some embodiments of the present application.
  • the electrode piece 100 includes a current collector 110 and an active material layer 120 .
  • the active material layer includes active material.
  • the electrode piece 100 may be a positive electrode piece or a negative electrode piece.
  • FIG. 6 shows a current collector 110 provided by some embodiments of the present application.
  • the current collector 110 includes a base material 111 and a metal pattern layer disposed on at least one surface of the base material 111 .
  • the metal pattern layer includes a plurality of metal protrusions 112 .
  • the surface roughness of the current collector 110 can be increased, thereby improving the adhesion of the current collector 110.
  • the current collector 110 can fit well with the active material and improve Cycle capacity retention performance of battery cells. It can be understood that the active material layer 120 can only cover a designated area of the current collector 110, so the metal pattern layer can be disposed in a designated area of the surface of the substrate 111 without completely covering the surface of the substrate 111.
  • the current collector 110 has a roughness Ra>0.5 on the surface provided with the metal pattern layer.
  • the surface roughness of the current collector 110 is relatively large, which can increase the adhesion of the active material on the surface of the current collector 110 .
  • the roughness Ra of the current collector 110 on the surface provided with the metal pattern layer is 0.8-20 or 6-15.
  • the surface roughness of the current collector 110 is within the above range, and the current collector 110 has a larger surface area and better adhesion. Specifically, the roughness of the surface of the current collector 110 can be tested by a double-tube microscope light section method.
  • FIG. 7 is a partial enlarged view of the current collector 110 of FIG. 6 .
  • the shape of the orthographic projection of the metal protrusion 112 on the surface of the base material 111 is not limited.
  • the orthographic projection shape of the metal protrusion 112 on the surface of the base material 111 may be a circle, an ellipse, a square, a rectangle, a rhombus, a hexagon, etc.
  • the thickness h of the metal protrusion 112 is 0.01 ⁇ m ⁇ 6 ⁇ m.
  • the thickness h of the metal protrusion 112 is 0.01 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, or 6 ⁇ m. Further, 1 ⁇ m ⁇ 4 ⁇ m.
  • the thickness h of the metal protrusion 112 can be simply observed through the cross-sectional scanning electron microscope (SEM) of the current collector 110 in the thickness direction.
  • the thickness h is the outer tangent line of the metal protrusion 112 away from the base material 111 to the surface of the base material 111 the maximum distance.
  • the thickness between the highest point of the metal protrusion and the base material in the thickness direction of the base material is used as the thickness of the protrusion; when the thickness of the individual protrusions is different, the thickness of the largest single metal protrusion is used. Thickness specification as a whole.
  • the thickness of the metal protrusion 112 is within the above range, which can form a suitable rough surface on the surface of the current collector 110, increase the surface area of the current collector 110, and improve the adhesion of the current collector 110.
  • the thickness of the metal protrusion 112 is less than 0.01 ⁇ m, there is a certain effect of improving the adhesion, but it is not as good as the effect of improving the surface adhesion of the current collector 110 when the thickness of the metal protrusion 112 is 0.01 ⁇ m ⁇ 6 ⁇ m; when the thickness of the metal protrusion 112 If the thickness is greater than 6 ⁇ m, although the effect of improving the surface adhesion of the current collector 110 is good, it will significantly increase the thickness of the current collector 110 , thereby reducing the energy density of the battery cell 21 .
  • the area of the orthogonal projection of a single metal protrusion 112 on the surface of the substrate 111 is 5 ⁇ m 2 to 300 ⁇ m 2 . Controlling the orthogonal projected area of a single metal protrusion 111 within the above range can control the surface of the current collector 110 to have appropriate roughness and improve the surface adhesion of the current collector 110 .
  • the area of the orthographic projection of a single metal protrusion 112 on the surface of the base material 111 is less than 5 ⁇ m 2 or greater than 300 ⁇ m 2 , the surface roughness of the current collector 110 is small, and the surface adhesion to the current collector 110 is not significantly improved. Furthermore, the area of the orthogonal projection of a single metal protrusion 112 on the surface of the base material 111 is 5 ⁇ m 2 to 150 ⁇ m 2 .
  • the ratio of the sum of the area of the orthographic projection of the metal protrusions 112 on the surface of the base material 111 to the area of the surface of the base material 111 is 1% to 60%.
  • the ratio of the sum of the area of the orthographic projection of the metal protrusions 112 on the surface of the base material 111 to the area of the surface of the base material 111 is 1%, 2%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55% or 60%.
  • the ratio of the sum of the area of the orthographic projection of the metal protrusions 112 on the surface of the base material 111 to the area of the surface of the base material 111 is less than 1%, the improvement in roughness and conductivity will not be significant; If the ratio of the sum of the projected areas to the surface area of the substrate 111 is greater than 60%, the increase in cost and the decrease in the weight energy density of the battery caused by the increase in the weight density of the substrate will make the overall benefit of the substrate modification negative.
  • the distance L between two adjacent metal protrusions 112 is 0.5 ⁇ m ⁇ 20 ⁇ m.
  • the distance between two adjacent metal protrusions 112 is the shortest distance between the outer contours of the metal protrusions 112 on the metal pattern layer.
  • the metal protrusions 112 on the surface of the base material 111 have a more appropriate density, and the surface adhesion of the current collector 110 is better.
  • the distance L between two adjacent metal protrusions 112 is 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m or 20 ⁇ m. If the distance L is less than 0.5 ⁇ m, the slurry coating is difficult to wet; if the distance L is greater than 20 ⁇ m, the roughness improvement is not obvious.
  • the metal protrusions 112 in the metal pattern layer are evenly distributed.
  • the evenly distributed metal protrusions 112 can provide uniform adhesion on the surface of the current collector 110. In subsequent preparations, the adhesion between the active material and the current collector 110 is relatively uniform, and the electrode piece 100 is less likely to crack and lose powder.
  • the metal pattern layer includes a first region and a second region that are spaced apart. In the first region, the metal protrusions 112 are evenly distributed, and in the second region, the metal protrusions 112 are evenly distributed. And in the preset direction, the distance between two adjacent metal protrusions 112 in the first area is different from the distance between two adjacent metal protrusions 112 in the second area. That is, on the metal pattern layer, the metal protrusions 112 in the first area and the second area have different distribution densities.
  • the first region and the second region of the metal protrusions 112 By arranging the first region and the second region of the metal protrusions 112 with different distribution densities, the first region and the second region have different adhesion to the active material, and the adhesion can be improved during the subsequent winding process to prepare the battery core.
  • the area with strong force is used as the corner area of the wound battery core to avoid cracking of the pole piece in the corner area.
  • the material of the substrate 111 includes at least one of aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver, silver alloy, tin, tin alloy, iron and stainless steel. kind.
  • the material of the base material 111 includes at least one of tin, tin alloy, iron and stainless steel.
  • the resistivity of the metal material in the metal pattern layer is smaller than the resistivity of the base material 111 .
  • the metal pattern layer can further improve the conductive performance of the current collector 110 and reduce the ohmic impedance of the battery cell.
  • the material of the base material 111 includes at least one of tin, tin alloy, iron, and stainless steel
  • the metal material of the metal pattern layer includes at least one of copper, aluminum, nickel, zinc, iron, gold, and silver.
  • One or an alloy containing more than one metal The base material 111 made of tin, tin alloy, iron and stainless steel has good mechanical strength and corrosion resistance, and the metal pattern layer including copper, aluminum, nickel, zinc, iron, gold and silver has low resistance The efficiency can improve the surface adhesion of the current collector 110 while improving the conductive performance of the current collector 110 .
  • the resistivity of the current collector 110 ranges from 25 ⁇ 10 -6 ⁇ m to 125 ⁇ 10 -6 ⁇ m. By controlling the resistivity of the current collector 110 to be within the above range, the current collector 110 has a higher electrical conductivity and can reduce the internal resistance of the battery cell.
  • the resistivity of the current collector 110 is 25 ⁇ 10 -6 ⁇ m, 30 ⁇ 10 -6 ⁇ m, 40 ⁇ 10 -6 ⁇ m, 50 ⁇ 10 -6 ⁇ m, 60 ⁇ 10 - 6 ⁇ m, 70 ⁇ 10 -6 ⁇ m, 75 ⁇ 10 -6 ⁇ m, 80 ⁇ 10 -6 ⁇ m, 90 ⁇ 10 -6 ⁇ m, 100 ⁇ 10 -6 ⁇ m , 110 ⁇ 10 -6 ⁇ m, 120 ⁇ 10 -6 ⁇ m or 125 ⁇ 10 -6 ⁇ m.
  • Another embodiment of the present application also provides a method for preparing the above-mentioned current collector, including step S100: forming a metal pattern layer on the surface of the substrate.
  • step S100 includes:
  • Step S110 Attach the template to the surface of the base material to expose part of the surface of the base material.
  • Step S120 Prepare a metal pattern layer on the surface of the exposed substrate.
  • Step S130 Remove the template.
  • metal protrusions can be formed on the exposed parts of the substrate to prepare a metal pattern layer, thereby improving the surface adhesion of the current collector.
  • the template may be mesh-shaped insulating glue.
  • the mesh insulating glue is a tape with an insulating material as a mesh frame.
  • the mesh of the mesh insulating glue can expose part of the surface of the base material to prepare a metal pattern layer.
  • mesh insulating glue with different mesh shapes can be used as a template.
  • the area of a single mesh of the mesh insulating glue ranges from 5 ⁇ m 2 to 300 ⁇ m 2 .
  • the area of a single mesh of the mesh insulating glue is 5 ⁇ m 2 , 10 ⁇ m 2 , 20 ⁇ m 2 , 50 ⁇ m 2 , 100 ⁇ m 2 , 150 ⁇ m 2 , 200 ⁇ m 2 , 250 ⁇ m 2 or 300 ⁇ m 2 .
  • the metal pattern layer is prepared by electroplating.
  • the current density of the electroplating treatment is 10A/dm 2 ⁇ 20A/dm 2 , optionally 12A/dm 2 ⁇ 16A/dm 2 ;
  • the time of the electroplating treatment is 10min ⁇ 60min, optionally 20min ⁇ 40min. Controlling the current density and time of the electroplating process within the above range can control the current collector to have a more appropriate thickness of the metal protrusions and the roughness of the current collector surface.
  • the metal pattern layer can also be prepared by other methods, such as sputtering, evaporation, screen printing, etc.
  • the method before step S110, further includes: pre-treating the surface of the substrate.
  • pretreatment includes: wax removal, oil removal, water washing treatment, and acid treatment.
  • the wax removal, oil removal, and water washing treatments include immersing the substrate in acetone and absolute ethanol for ultrasonic cleaning for 10 to 20 minutes to remove wax and oil, and then immersing the substrate in water for ultrasonic cleaning for 10 to 20 minutes and washing with water.
  • Acid treatment includes immersing the substrate that has been treated with wax removal, oil removal, and water washing in 2M dilute hydrochloric acid for 10 to 60 seconds, and then rinsed with water.
  • the preparation of the negative electrode current collector includes: immersing the stainless steel base material in acetone and absolute ethanol for ultrasonic cleaning for 10 to 20 minutes, removing wax and oil, and then immersing it in water for ultrasonic cleaning for 10 to 20 minutes. Immerse the washed stainless steel substrate in 2M dilute hydrochloric acid for 10 to 60 seconds, then rinse with water three times, dry and set aside. Paste 2000 mesh insulating glue on both surfaces of the cleaned stainless steel substrate. Put the stainless steel base material with insulating glue attached into the electroplating tank as the cathode, and the copper plate as the anode, and conduct constant current electroplating to prepare the metal pattern layer.
  • the electroplating solution in the electroplating tank contains the following components: 150g/L ⁇ 180g/L CuSO 4 , 60g/L ⁇ 80g/L H 2 SO 4 , 0.03g/L ⁇ 0.06g/L NaCl, 4g/L ⁇ 7g/L tartaric acid Potassium, 0.5g/L ⁇ 2g/L naphthalenedisulfonic acid, 2g/L ⁇ 5g/L potassium citrate.
  • the component content of the electroplating solution will vary within the above range.
  • the positive electrode active material lithium iron phosphate, the conductive agent acetylene black, and the binder PVDF are mixed and dispersed in NMP in a mass ratio of 96:2:2.
  • the slurry obtained is coated on the positive electrode current collector. , after drying, cold pressing and cutting, the positive electrode pieces are obtained.
  • PE porous polymer film is used as the separator.
  • the positive electrode sheet, isolation film and negative electrode sheet are rolled into a bare cell. After hot pressing, the bare cell core is assembled with the top cover and outer casing, and then the electrolyte is injected. After processes such as formation, exhaust, sealing and testing, the result is Secondary battery.
  • Example 2 The difference between Examples 2 to 7 and Example 1 is that the single mesh area of the insulating glue used in the preparation of the negative electrode current collector is different.
  • Example 8 to 15 The difference between Examples 8 to 15 and Example 1 is that the ratio of the total mesh area of the insulating glue to the surface area of the base material (referred to as the mesh area ratio of the insulating glue) is different.
  • Example 16 to 19 The difference between Examples 16 to 19 and Example 1 is that the current density in the electroplating process is different.
  • Embodiments 20 to 24 are identical to Embodiments 20 to 24:
  • Example 20 to 24 The difference between Examples 20 to 24 and Example 1 is that the plating time in the electroplating process is different.
  • Example 25 and 26 The difference between Examples 25 and 26 and Example 1 is that the plating solution used in the electroplating process is different, and the corresponding metal pattern layer on the surface of the current collector is made of different materials.
  • an aluminum target as the sputtering target, use a medium frequency sputtering power of 10 to 15kW, maintain a stable sputtering state for 2 minutes, and form a metal aluminum buffer layer.
  • the stainless steel foil coated with the aluminum buffer layer is sent to the high-frequency induction evaporation coating chamber to evaporate the aluminum film to obtain the aluminum coating.
  • Preparation of current collector in Example 26 Preparation of negative electrode current collector: immerse the stainless steel base material in acetone and absolute ethanol in sequence and ultrasonically clean it for 10 to 20 minutes, remove wax and oil, and then immerse it in water and ultrasonically clean it for 10 to 20 minutes. Immerse the washed stainless steel substrate in 2M dilute hydrochloric acid for 10 to 60 seconds, then rinse with water three times, dry and set aside. Paste 2000 mesh insulating glue on both surfaces of the cleaned stainless steel substrate. Put the stainless steel substrate with insulating glue attached into the electroplating tank as the cathode, and the nickel plate as the anode, and perform constant current electroplating to prepare the metal pattern layer.
  • the electroplating solution in the electroplating tank contains the following components: 20 ⁇ 50g/L NiSO 4 , 20 ⁇ 60g/L NaH 2 PO 2 , 60 ⁇ 80g/L HH118-3.
  • the components of the electroplating solution vary according to the number of times the electroplating solution is used. Contents will vary within the above range.
  • Example 27 The difference between Examples 27 to 29 and Example 1 is that the base material of the negative electrode current collector is different.
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that a stainless steel substrate without a metal pattern layer is used as the negative electrode current collector.
  • Comparative Examples 2 to 4 The difference between Comparative Examples 2 to 4 and Comparative Example 1 is that the materials of the negative electrode current collector are different.
  • the surface morphology of the current collector is tested by scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • the area, coverage, and distance of adjacent metal protrusions can be observed based on the scanning electron microscope photos.
  • the thickness of the metal protrusions of the current collector can be observed through scanning electron microscope (SEM) photos of the cross section of the current collector.
  • the resistivity is measured according to the four-probe method.
  • the preparation parameters of the current collectors of Examples 1 to 29 and Comparative Examples 1 to 4 are recorded in Table 1.
  • the morphology parameters, resistivity and cycle capacity retention rate of the current collectors of Examples 1 to 29 and Comparative Examples 1 to 4 and their corresponding secondary batteries are recorded in Table 2.
  • the corresponding discharge of the secondary battery after 2000 cycles The capacity retention rate was 70%, and the cycle performance was significantly worse than that of the secondary batteries of Examples 1 to 26.
  • Comparative Examples 2 to 4 use the base materials of Examples 27 to 29 as negative electrode current collectors respectively. Their roughness Ra is 0.5, and the resistivity is 52 ⁇ 10 -6 ⁇ m and 68 ⁇ 10 -6 ⁇ m respectively. and 97 ⁇ 10 -6 ⁇ m.
  • the discharge capacity retention rates of the corresponding secondary batteries after 2000 cycles are 80%, 83% and 79% respectively.
  • the cycle performance is worse than that of Example 27 ⁇ with the same substrate. 29 secondary batteries.

Abstract

本申请提供了一种集流体(110),包括基材(111)及设置于基材(111)的至少一个表面上的金属花纹层。金属花纹层包括多个金属凸部(112)。

Description

集流体及其制备方法、电极极片、电池单体、电池模块、电池包及用电装置 技术领域
本申请涉及二次电池领域,具体涉及一种集流体及其制备方法、电极极片、电池单体、电池模块、电池包及用电装置。
背景技术
电池通常具有参与电化学反应的正极和负极。集流体是正极极片或负极极片上汇集电流的结构,其主要作用是将电池活性材料产生的电流汇集起来以便于形成较大的电流对外输出,因此集流体应与活性材料充分接触。然而传统集流体的表面粘附力较差,导致活性材料容易从集流体表面剥离,导致电池性能恶化。
发明内容
基于上述问题,本申请提供一种集流体及其制备方法、电极极片、电池单体、电池模块、电池包及用电装置,该集流体具有较好的粘附力,与活性材料的结合更好,能够改善电池单体的循环性能。
本申请的一个方面,提供了一种集流体,包括:
基材;及
金属花纹层,设置于所述基材的至少一个表面上,所述金属花纹层包括多个金属凸部。
本申请实施例的技术方案中,通过在基材表面设置具有多个金属凸部的金属花纹层,能够增加集流体表面粗糙度,因而改善集流体的粘附力,集流体能够与活性材料良好贴合,改善电池单体的循环容量保持率性能。
在任意实施方式中,所述集流体在设置有所述金属花纹层的表面上的粗糙度Ra>0.5,可选为0.8~20,更可选为6~15。集流体表面粗糙度在上述范围内,集流体具有较大的表面积,粘附性更佳。
在任意实施方式中,所述金属凸部的厚度为0.01μm~6μm,可选为1μm~4μm。金属凸部的厚度在上述范围内,能够在集流体表面形成合适的粗糙表面,增大集流体的表面积,集流体的粘附性更佳。
在任意实施方式中,单个所述金属凸部在所述基材表面正投影的面积为5μm 2~300μm 2,可选为5μm 2~150μm 2。控制单个金属凸部的正投影面积在上述范围内,能够控制集流体表面具有合适的粗糙度,改善集流体表面粘附力。
在任意实施方式中,所述金属凸部在所述基材表面正投影的面积之和与所述基材表面的面积的比例为1%~60%。控制金属凸部的面积之和与所述基材表面的面积的比例在上述范围内,即可显著提高集流体表面的粘附力。
在任意实施方式中,相邻两个所述金属凸部之间的距离为0.5μm~20μm。控制相邻金属凸部之间的距离在上述范围内,基材表面的金属凸部具有较合适的密度,集流体的表面粘附力更佳。
在任意实施方式中,所述金属花纹层中的所述金属凸部均匀分布。均匀分布的金属凸部能够使得集流体表面具有均一的粘附力,后续制备中活性材料与集流体之间的粘结力较均一,电极极片不易开裂、掉粉。
或者,所述金属花纹层包括间隔设置的第一区域及第二区域,在所述第一区域内,所述金属凸部均匀分布,在所述第二区域内所述金属凸部均匀分布,且在预设方向上,所述第一区域内相邻两个所述金属凸部之间的距离不同于所述第二区域内相邻两个所述金属凸部之间的距离。通过设置具有不同分布密度的金属凸部的第一区域及第二区域,第一区域、第二区域与活性材料的粘结性不同,在后续卷绕制备电芯过程中,可以使粘结力较强的区域作为卷绕电芯的拐角区域,避免拐角区域极片开裂。
在任意实施方式中,所述基材的材质包括铝、铝合金、铜、铜合金、镍、镍合金、钛、钛合金、银、银合金、锡、锡合金、铁及不锈钢中的至少一种;
可选地,所述基材的材质包括锡、锡合金、铁及不锈钢中的至少一种。
在任意实施方式中,所述金属花纹层中金属材料的电阻率小于所述基材的电阻率。金属花纹层通过选用电阻率小于基材的金属材料,集流体还具有较好的导电性能,能够降低电池单体的欧姆阻抗。
在任意实施方式中,所述基材的材质包括锡、锡合金、铁及不锈钢中的至少一种,所述金属花纹层的金属材料包括铜、铝、镍、锌、铁、金及银中的至少一种或含以上金属的合金。
在任意实施方式中,所述集流体的电阻率为25×10 -6Ω·m~125×10 -6Ω·m。控制集流体的电阻率在上述范围内,集流体具有较高的电导率,能够降低电池单体的内阻。
第二方面,本申请还提供了一种电极极片,包括:
第一方面所述的集流体;及
活性材料层,设置于所述集流体具有所述金属花纹层的至少一个表面上,所述活性材料层覆盖所述金属花纹层。
通过选用第一方面的集流体,活性材料层设于具有金属花纹层的表面上,集流体与活性材料层之间的结合强度较大,不易发生脱膜、开裂等问题。
在任意实施方式中,所述活性材料层靠近所述集流体的表面上具有与所述金属凸部相匹配的凹部。活性材料层具有与金属凸部匹配的凹部,集流体与活性材料层之间结合更牢固,电极极片具有更高的机械强度。
第三方面,本申请还提供了一种电池单体,包括第二方面所述的电极极片。
第四方面,本申请还提供了一种电池模块,包括第三方面所述的电池单体。
第五方面,本申请还提供了一种电池包,包括第三方面所述的电池单体及第四方面所述的电池模块中的至少一种。
第六方面,本申请还提供了一种用电装置,包括选自第三方面所述的电池单体、第四方面所述的电池模块及第六方面所述的电池包中的至少一种。
第七方面,本申请还提供了一种集流体的制备方法,包括以下制备第一方面所述的集流体的步骤:
在所述基材表面形成金属花纹层。
在任意实施方式中,所述形成金属花纹层的步骤包括:
在所述基材表面贴附模板,使所述基材的部分表面裸露;
在裸露的所述基材表面制备所述金属花纹层;
去除所述模板。
在任意实施方式中,所述金属花纹层模板为网状绝缘胶;
可选地,所述网状绝缘胶的单个网眼的面积为5~300μm 2,可选为5μm 2~150μm 2
在任意实施方式中,所述金属花纹层是通过电镀处理制备;
可选地,所述电镀处理的电流密度为10A/dm 2~20A/dm 2,更可选为12A/dm 2~16A/dm 2
可选地,所述电镀处理的时间为10min~60min,更可选为20min~40min。
控制电镀处理的电流密度及时间在上述范围内,能够控制集流体具有较合适的金属凸部厚度及集流体表面的粗糙度。
本申请的一个或多个实施例的细节在下面的附图和描述中提出,本申请的其它特征、目 的和优点将从说明书、附图及权利要求书变得明显。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1是本申请一实施例提供的车辆的结构示意图;
图2是本申请一实施例提供的电池的结构示意图;
图3是申请一实施例提供的一种电池模块的结构示意图;
图4是本申请一实施例提供的一种电池单体的分解结构示意图;
图5是本申请一实施例提供的一种电极极片的结构示意图;
图6是本申请一实施例提供的一种集流体的结构示意图;
图7是本申请一实施例提供的一种集流体的局部结构示意图;
图8是本申请一实施例提供的一种集流体的结构示意图;
具体实施方式中的附图标号如下:
1车辆,10电池,11控制器,12马达;
20电池模块,21电池单体,211端盖,211a电极端子,212壳体,213电芯组件;
30箱体,301第一部分,302第二部分;
100电极极片,110集流体,111基材,112金属凸部,120活性材料层;
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一副或多副附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在 于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
随着电动汽车、大型储能设备等领域的高速发展,市场上对于二次电池的需求也在增加。在传统二次电池中,电极极片的集流体表面粘附性较低,难以与活性材料结合牢固,从而导致电极极片容易脱膜,掉粉,影响电池单体的电化学性能。
基于上述考虑,为了改善集流体表面粘附力较差导致电池单体电化学性能恶化的问题,发明人经研究,设计了一种集流体,通过在集流体基材的表面设置具有多个金属凸部的金属 花纹层,使得集流体表面面积及粗糙度增加,集流体的表面粘附力较佳,能够与电极极片的活性材料结合牢固。
本申请提供一种集流体,以及包括这种集流体的电极极片、电池单体、电池模块、电池包及用电装置。这种集流体适用于各种电池及使用电池的用电装置,例如手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等;电池用于为上述用电装置提供电能。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的电池和用电装置,还可以适用于所有包括箱体的电池以及使用电池的用电装置,但为描述简洁,下述实施例均以电动车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1的结构示意图。车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部设置有电池10,电池10可以设置在车辆1的底部或头部或尾部。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源。车辆1还可以包括控制器11和马达12,控制器11用来控制电池10为马达12供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池10不仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体21,电池单体21是指组成电池模块或电池包的最小单元。多个电池单体21可经由电极端子而被串联和/或并联在一起以应用于各种应用场合。本申请中所提到的电池包括电池模块或电池包。其中,多个电池单体21之间可以串联或并联或混联,混联是指串联和并联的混合。电池10也可以称为电池包。本申请的实施例中多个电池单体21可以直接组成电池包,也可以先组成电池模块20,电池模块20再组成电池包。
图2示出了本申请一实施例的电池10的结构示意图。图2中,电池10可以包括多个电池模块20和箱体30,多个电池模块20容纳于箱体30内部。箱体30用于容纳电池单体21或电池模块20,以避免液体或其他异物影响电池单体21的充电或放电。箱体30可以是单独的长方体或者圆柱体或球体等简单立体结构,也可以是由长方体或者圆柱体或球体等简单立体结构组合而成的复杂立体结构,本申请实施例对此并不限定。箱体30的材质可以是如铝合金、铁合金等合金材料,也可以是如聚碳酸酯、聚异氰脲酸酯泡沫塑料等高分子材料,或者 是如玻璃纤维加环氧树脂的复合材料,本申请实施例对此也并不限定。
在一些实施例中,箱体30可以包括第一部分301和第二部分302,第一部分301与第二部分302相互盖合,第一部分301和第二部分302共同限定出用于容纳电池单体21的空间。第二部分302可以为一端开口的空心结构,第一部分301可以为板状结构,第一部分301盖合于第二部分302的开口侧,以使第一部分301与第二部分302共同限定出容纳电池单体21的空间;第一部分301和第二部分302也可以是均为一侧开口的空心结构,第一部分301的开口侧盖合于第二部分302的开口侧。
图3示出了本申请一实施例的电池模块20的结构示意图。图3中,电池模块20可以包括多个电池单体21,多个电池单体21可以先串联或并联或混联组成电池模块20,多个电池模块20再串联或并联或混联组成电池10。本申请中,电池单体21可以包括锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体21可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体21一般按封装的方式分成三种:柱形电池单体21、方体方形电池单体21和软包电池单体21,本申请实施例对此也不限定。但为描述简洁,下述实施例均以方体方形电池单体21为例进行说明。
图4为本申请一些实施例提供的电池单体21的分解结构示意图。电池单体21是指组成电池的最小单元。如图4,电池单体21包括有端盖211、壳体212和电芯组件213。
端盖211是指盖合于壳体212的开口处以将电池单体21的内部环境隔绝于外部环境的部件。不限地,端盖211的形状可以与壳体212的形状相适应以配合壳体212。可选地,端盖211可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖211在受挤压碰撞时就不易发生形变,使电池单体21能够具备更高的结构强度,安全性能也可以有所提高。端盖211上可以设置有如电极端子211a等的功能性部件。电极端子211a可以用于与电芯组件213电连接,以用于输出或输入电池单体21的电能。在一些实施例中,端盖211上还可以设置有用于在电池单体21的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖211的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖211的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体212内的电连接部件与端盖211,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体212是用于配合端盖211以形成电池单体21的内部环境的组件,其中,形成的内部环境可以用于容纳电芯组件213、电解液(在图中未示出)以及其他部件。壳体212和端盖211可以是独立的部件,可以于壳体212上设置开口,通过在开口处使端盖211盖合开口以 形成电池单体21的内部环境。不限地,也可以使端盖211和壳体212一体化,具体地,端盖211和壳体212可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体212的内部时,再使端盖211盖合壳体212。壳体212可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体212的形状可以根据电芯组件213的具体形状和尺寸大小来确定。壳体212的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电芯组件213是电池单体21中发生电化学反应的部件。壳体212内可以包含一个或更多个电芯组件213。电芯组件213主要由正极极片和负极极片卷绕或层叠放置形成,并且通常在正极极片与负极极片之间设有隔膜。正极极片和负极极片具有活性材料的部分构成电芯组件的主体部,正极极片和负极极片不具有活性材料的部分各自构成极耳(在图中未示出)。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性材料和负极活性材料与电解液发生反应,极耳连接电极端子以形成电流回路。
请参照图5,图5为本申请一些实施例提供的电极极片100。电极极片100包括集流体110及活性材料层120。活性材料层包括活性材料。根据活性材料层120的不同,电极极片100可以是正极极片或者负极极片。
参阅图6,图6为本申请一些实施例提供的集流体110。集流体110包括基材111及设置在基材111至少一个表面上的金属花纹层。金属花纹层包括多个金属凸部112。通过在基材111表面设置具有多个金属凸部112的金属花纹层,能够增加集流体110表面粗糙度,因而改善集流体110的粘附力,集流体110能够与活性材料良好贴合,改善电池单体的循环容量保持率性能。可以理解地,活性材料层120可以仅覆盖在集流体110的指定区域内,故而金属花纹层可设置在基材111表面的指定区域内,而无需完全覆盖基材111的表面。
在一些实施例中,集流体110在设置有金属花纹层的表面上的粗糙度Ra>0.5。集流体110的表面粗糙度较大,能够增加活性材料在集流体110表面的粘附力。在一些实施例中,集流体110在设置有金属花纹层的表面上的粗糙度Ra为0.8~20或者6~15。集流体110表面粗糙度在上述范围内,集流体110具有较大的表面积,粘附性更佳。具体地,集流体110表面的粗糙度可通过双管显微镜光切法测试。
参阅图7,图7为图6的集流体110的局部放大图。在本申请中,金属凸部112在基材111表面的正投影形状没有限制。作为示例,金属凸部112在基材111表面的正投影形状可以 是圆形、椭圆形、正方形、长方形、菱形、六边形等。
再次参阅图7,在其中一些实施例中,金属凸部112的厚度h为0.01μm~6μm。可选地,金属凸部112的厚度h为0.01μm、0.1μm、0.5μm、1μm、2μm、3μm、4μm、5μm或者6μm。进一步地,1μm~4μm。金属凸部112的厚度h可以简单地通过集流体110在厚度方向上的切面扫描电镜图(SEM)观测得到,厚度h为金属凸部112远离基材111一侧的外切线至基材111表面的最大距离。金属凸部表面不平整时,以基材厚度方向上,金属凸部的最高点与基材之间的厚度作为凸部厚度;当单个凸部厚度不同时,以最大的单个金属凸部的厚度作为整体的厚度规格。金属凸部112的厚度在上述范围内,能够在集流体110表面形成合适的粗糙表面,增大集流体110的表面积,集流体110的粘附性更佳。当金属凸部112的厚度小于0.01μm,有一定改善粘附性的效果,但不及金属凸部112厚度为0.01μm~6μm时改善集流体110表面粘附性的效果;当金属凸部112的厚度大于6μm,虽然改善集流体110表面粘附性的效果较好,但会明显增加集流体110的厚度,从而降低电池单体21的能量密度。
在其中一些实施例中,单个金属凸部112在基材111表面正投影的面积为5μm 2~300μm 2。控制单个金属凸部111的正投影面积在上述范围内,能够控制集流体110表面具有合适的粗糙度,改善集流体110表面粘附力。单个金属凸部112在基材111表面正投影的面积小于5μm 2或者大于300μm 2,集流体110表面粗糙度较小,对集流体110的表面粘附力改善不明显。进一步地,单个金属凸部112在基材111表面正投影的面积为5μm 2~150μm 2
在其中一些实施例中,金属凸部112在基材111表面正投影的面积之和与基材111表面的面积的比例为1%~60%。可选地,金属凸部112在基材111表面正投影的面积之和与基材111表面的面积的比例为1%、2%、4%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%或者60%。控制金属凸部112的面积之和与所述基材111表面的面积的比例在上述范围内,即可显著提高集流体110表面的粘附力。金属凸部112在基材111表面正投影的面积之和与基材111表面的面积的比例小于1%,则对粗糙度及导电性的改善不显著;金属凸部112在基材111表面正投影的面积之和与基材111表面的面积的比例大于60%,则成本的增加,与基材重量密度增加所致的电池的重量能量密度降低会使得基材改性的总体收益为负。
再次参阅图8,在其中一些实施例中,相邻两个金属凸部112之间的距离L为0.5μm~20μm。具体地,相邻两个金属凸部112之间的距离为金属花纹层上金属凸部112外轮廓之间的最短距离。控制相邻金属凸部112之间的距离L在上述范围内,基材111表面的金属凸部112具 有较合适的密度,集流体110的表面粘附力更佳。可选地,相邻两个金属凸部112之间的距离L为0.5μm、1μm、2μm、5μm、10μm、15μm或者20μm。距离L为小于0.5μm,浆料涂布难以浸润;距离L大于20μm,粗糙度改善不明显。
在其中一些实施例中,金属花纹层中的金属凸部112均匀分布。均匀分布的金属凸部112能够使得集流体110表面具有均一的粘附力,后续制备中活性材料与集流体110之间的粘结力较均一,电极极片100不易开裂、掉粉。
在另一些实施例中,金属花纹层包括间隔设置的第一区域及第二区域,在第一区域内,金属凸部112均匀分布,在第二区域内金属凸部112均匀分布。且在预设方向上,第一区域内相邻两个金属凸部112之间的距离不同于第二区域内相邻两个金属凸部112之间的距离。即在金属花纹层上,第一区域与第二区域的金属凸部112具有不同的分布密度。通过设置具有不同分布密度的金属凸部112的第一区域及第二区域,第一区域、第二区域与活性材料的粘结性不同,在后续卷绕制备电芯过程中,可以使粘结力较强的区域作为卷绕电芯的拐角区域,避免拐角区域极片开裂。
在其中一些实施例中,基材111的材质包括铝、铝合金、铜、铜合金、镍、镍合金、钛、钛合金、银、银合金、锡、锡合金、铁及不锈钢中的至少一种。可选地,所述基材111的材质包括锡、锡合金、铁及不锈钢中的至少一种。
在其中一些实施例中,金属花纹层中金属材料的电阻率小于基材111的电阻率。金属花纹层通过选用电阻率小于基材111的金属材料,能够进一步改善集流体110的导电性能,能够降低电池单体的欧姆阻抗。
在其中一些实施例中,基材111的材质包括锡、锡合金、铁及不锈钢中的至少一种,金属花纹层的金属材料包括铜、铝、镍、锌、铁、金及银中的至少一种或含以上金属的合金。锡、锡合金、铁及不锈钢等材质的基材111具有较好的机械强度及耐腐蚀性能,包括铜、铝、镍、锌、铁、金及银等材质的金属花纹层具有较低的电阻率,能够在改善集流体110表面粘附力的同时改善集流体110的导电性能。
在其中一些实施例中,集流体110的电阻率为25×10 -6Ω·m~125×10 -6Ω·m。通过控制集流体110的电阻率在上述范围内,集流体110具有较高的电导率,能够降低电池单体内阻。可选地,集流体110的电阻率为25×10 -6Ω·m、30×10 -6Ω·m、40×10 -6Ω·m、50×10 -6Ω·m、60×10 - 6Ω·m、70×10 -6Ω·m、75×10 -6Ω·m、80×10 -6Ω·m、90×10 -6Ω·m、100×10 -6Ω·m、110×10 -6Ω·m、120×10 -6Ω·m或者125×10 -6Ω·m。
本申请的另一实施方式,还提供了上述集流体的制备方法,包括步骤S100:在基材的表面形成金属花纹层。
在其中一些实施例中,步骤S100包括:
步骤S110:在基材表面贴附模板,使基材的部分表面裸露。
步骤S120:在裸露的基材表面制备金属花纹层。
步骤S130:去除模板。
通过在基材表面贴附模板制备金属花纹层,能够在基材裸露的部分形成金属凸部制备金属花纹层,从而改善集流体的表面粘附性。
在其中一些实施例中,模板可选为网状绝缘胶。具体地,网状绝缘胶是以绝缘材料作为网状框架的胶带,网状绝缘胶的网眼可以使基材的部分表面裸露,以制备金属花纹层。根据预设的金属凸部形状,可选用具有不同网眼形状的网状绝缘胶作为模板。通过控制网状绝缘胶的网眼大小和网眼面积占比,可以控制单个金属凸部的面积和金属凸部在基材表面正投影的面积之和与基材表面的面积的比例(覆盖度)。
在其中一些实施例中,网状绝缘胶的单个网眼的面积为5μm 2~300μm 2。可选地,网状绝缘胶的单个网眼的面积为5μm 2、10μm 2、20μm 2、50μm 2、100μm 2、150μm 2、200μm 2、250μm 2或者300μm 2。通过控制单个网眼的面积在上述范围内及绝缘胶网眼在基材表面的面积占比,能够控制金属花纹层的金属凸部的面积及分布密度。进一步地,网状绝缘胶的单个网眼的面积为5μm 2~150μm 2
在其中一些实施例中,金属花纹层是通过电镀处理制备。具体地,电镀处理的电流密度为10A/dm 2~20A/dm 2,可选为12A/dm 2~16A/dm 2;电镀处理的时间为10min~60min,可选为20min~40min。控制电镀处理的电流密度及时间在上述范围内,能够控制集流体具有较合适的金属凸部厚度及集流体表面的粗糙度。
可以理解地,金属花纹层还可通过其他方式制备,例如溅射法、蒸镀法、丝网印刷等。
在其中一些实施例中,在步骤S110之前,还包括:对基材表面预处理。具体地,预处理包括:除蜡、除油、水洗处理,及酸处理。
具体地,除蜡、除油、水洗处理包括将基材依次浸入丙酮、无水乙醇超声清洗10~20min,进行除蜡、除油,然后浸入水中超声清洗10~20min,进行水洗。酸处理包括将经过除蜡、除油、水洗处理的基材浸入2M稀盐酸10~60s,然后用水冲洗。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1:
(1)集流体的制备:采用铝箔作为正极集流体。
负极集流体的制备包括:将不锈钢基材依次浸入丙酮、无水乙醇中超声清洗10~20min,进行除蜡除油,然后浸入水中超声清洗10~20min。将水洗后的不锈钢基材浸入2M稀盐酸10~60s,随后用水冲洗三次,干燥备用。将清洗后的不锈钢基材的两个表面贴上2000目的网状绝缘胶。将贴附有绝缘胶的不锈钢基材放入电镀槽中作为阴极,铜板作为阳极,进行恒流电镀制备金属花纹层。电镀处理结束后,撕去绝缘胶,依次使用3M盐酸、水、乙醇清洗,得到表面具有铜花纹层的集流体。电镀槽中电镀液包含以下组分:150g/L~180g/L CuSO 4、60g/L~80g/L H 2SO 4、0.03g/L~0.06g/L NaCl、4g/L~7g/L酒石酸钾、0.5g/L~2g/L萘二磺酸、2g/L~5g/L柠檬酸钾,根据电镀液的使用次数不同,电镀液的组分含量会在上述范围内有所变化。
(2)正极极片的制备:将正极活性材料磷酸铁锂、导电剂乙炔黑、粘结剂PVDF按质量比为96:2:2混合分散于NMP得到的浆料涂敷在正极集流体上,干燥后经过冷压、分切,得到正极极片。
(3)负极极片的制备:将负极活性材料人造石墨、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照质量比为95:2:2:1溶于溶剂去离子水中与溶剂去离子水均匀混合后制备成负极浆料;然后将负极浆料均匀涂覆在负极集流体上,烘干后得到负极膜片,再经过冷压、分切得到负极极片。
(4)电解液的制备:含水量<10ppm的氩气气氛手套箱中,将等体积的碳酸乙烯酯(EC)及碳酸甲乙酯(EMC)进行混合,得到有机溶剂,然后将1mol/L的LiPF 6均匀溶解在上述有机溶剂中,得到电解液。
(5)二次电池的制备:以PE多孔聚合薄膜作为隔离膜。将正极极片、隔离膜及负极极片卷绕成裸电芯,裸电芯热压后与顶盖、外壳完成装配,然后注入电解液,经过化成、排气、封口、测试等工艺,得到二次电池。
实施例2~7:
实施例2~7与实施例1的区别在于,负极集流体的制备中,采用的绝缘胶的单个网眼面积不同。
实施例8~15:
实施例8~15与实施例1的区别在于,绝缘胶的网眼总面积在基材表面面积的占比(简称绝缘胶网眼面积占比)不同。
实施例16~19:
实施例16~19与实施例1的区别在于,电镀处理中电流密度不同。
实施例20~24:
实施例20~24与实施例1的区别在于,电镀处理中电镀时间不同。
实施例25~26:
实施例25~26与实施例1的区别在于,电镀处理中电镀液不同,相应的制得的集流体表面的金属花纹层材质不同。
实施例25的集流体制备:
将不锈钢基材依次浸入丙酮、无水乙醇中超声清洗10~20min,进行除蜡除油,然后浸入水中超声清洗10~20min。将水洗后的不锈钢基材浸入2M稀盐酸10~60s,随后用水冲洗三次,干燥备用。将清洗后的不锈钢基材的两个表面贴上2000目的网状绝缘胶。将贴附有绝缘胶的不锈钢基材放入中频磁控溅射装置中,抽真空至本底气压5~8×10 -3Pa;通入溅射气体氩气,气压为0.6~0.9Pa,以铝靶为溅射靶材,中频溅射功率10~15kW,维持稳定的溅射状态2min,形成金属铝缓冲层。将镀有铝缓冲层的不锈钢箔材送入高频感应蒸发镀膜室蒸镀铝膜即得到镀铝膜。
实施例26的集流体制备:负极集流体的制备:将不锈钢基材依次浸入丙酮、无水乙醇中超声清洗10~20min,进行除蜡除油,然后浸入水中超声清洗10~20min。将水洗后的不锈钢基材浸入2M稀盐酸10~60s,随后用水冲洗三次,干燥备用。将清洗后的不锈钢基材的两个表面贴上2000目的网状绝缘胶。将贴附有绝缘胶的不锈钢基材放入电镀槽中作为阴极,镍板作为阳极,进行恒流电镀制备金属花纹层。电镀处理结束后,撕去绝缘胶,依次使用3M盐酸、水、乙醇清洗,得到表面具有镍花纹层的集流体。电镀槽中电镀液包含以下组分:20~50g/L NiSO 4、20~60g/L NaH 2PO 2、60~80g/L HH118-3,根据电镀液的使用次数不同,电镀液的组分含量会在上述范围内有所变化。
实施例27~29:
实施例27~29与实施例1的区别在于,负极集流体的基材材质不同。
对比例1:
对比例1与实施例1的区别在于,采用无金属花纹层的不锈钢基材作为负极集流体。
对比例2~4:
对比例2~4与对比例1的区别在于,负极集流体的材质不同。
测试部分:
集流体形貌测试:
集流体的表面形貌通过扫描电子显微镜(SEM)测试,金属凸部的面积、覆盖度、相邻金属凸部的距离均可根据扫描电子显微镜照片观察得到。集流体的金属凸部厚度可通过集流体断面的扫描电子显微镜(SEM)照片观察得到。
表面粗糙度测试:
表面粗糙度根据双管显微镜光切法测试得到。
电阻率测试:
电阻率根据四探针法测试得到。
循环性能测试:
在45℃下,将二次电池以1C恒流充电至电压为3.65V,然后以3.65V恒压充电至电流为0.05C,静置5min之后,将二次电池以1C恒流放电至电压为2.5V,此为一个充电循环过程,此次的放电容量为首次循环的放电容量。重复上述充放电循环过程2000次,记录循环2000次的放电容量,循环2000次的放电容量与首次循环放电容量的比为45℃1C/1C循环2000圈的放电容量保持率。
实施例1~29及对比例1~4的集流体的制备参数记录在表1中。实施例1~29及对比例1~4的集流体的形貌参数、电阻率及其对应二次电池的循环容量保持率记录在表2中。
表1
Figure PCTCN2022115538-appb-000001
Figure PCTCN2022115538-appb-000002
Figure PCTCN2022115538-appb-000003
表2
Figure PCTCN2022115538-appb-000004
Figure PCTCN2022115538-appb-000005
Figure PCTCN2022115538-appb-000006
从表1、表2相关数据可以看出,实施例1~29通过在基材表面制备金属花纹层,集流体表面的粗糙度提升,Ra为0.8~20,集流体具有较好的表面粘附力;其相应的二次电池在循环2000圈后的放电容量保持率为78%~87%。从实施例1~24可以看出,集流体的电阻率增加,其容量保持率相应的有所降低。对比例1的集流体是表面没有金属花纹层的不锈钢基材,其表面粗糙度Ra为0.5,电阻率为180×10 -6Ω·m,其相应的二次电池在循环2000圈后的放电容量保持率为70%,循环性能明显劣于实施例1~26的二次电池。对比例2~4分别以实施例27~29的基材作为负极集流体,它们的粗糙度Ra均为0.5,电阻率分别为52×10 -6Ω·m、68×10 -6Ω·m及97×10 -6Ω·m,其相应的二次电池在循环2000圈后的放电容量保持率分别为80%、83%及79%,循环性能劣于具有相同基材的实施例27~29的二次电池。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种集流体,包括:
    基材;及
    金属花纹层,设置于所述基材的至少一个表面上,所述金属花纹层包括多个金属凸部。
  2. 根据权利要求1所述的集流体,其特征在于,所述集流体在设置有所述金属花纹层的表面上的粗糙度Ra>0.5,可选为0.8~20,更可选为6~15。
  3. 根据权利要求1或2所述的集流体,其特征在于,所述金属凸部的厚度为0.01μm~6μm,可选为1μm~4μm。
  4. 根据权利要求1~3任一项所述的集流体,其特征在于,单个所述金属凸部在所述基材表面正投影的面积为5μm 2~300μm 2,可选为5μm 2~150μm 2
  5. 根据权利要求1~4任一项所述的集流体,其特征在于,所述金属凸部在所述基材表面正投影的面积之和与所述基材表面的面积的比例为1%~60%。
  6. 根据权利要求1~5任一项所述的集流体,其特征在于,相邻两个所述金属凸部之间的距离为0.5μm~20μm。
  7. 根据权利要求1~6任一项所述的集流体,其特征在于,所述金属花纹层中的所述金属凸部均匀分布;
    或者,所述金属花纹层包括间隔设置的第一区域及第二区域,在所述第一区域内,所述金属凸部均匀分布,在所述第二区域内所述金属凸部均匀分布,且在预设方向上,所述第一区域内相邻两个所述金属凸部之间的距离不同于所述第二区域内相邻两个所述金属凸部之间的距离。
  8. 根据权利要求1~7任一项所述的集流体,其特征在于,所述基材的材质包括铝、铝合金、铜、铜合金、镍、镍合金、钛、钛合金、银、银合金、锡、锡合金、铁及不锈钢中的至少一种;
    可选地,所述基材的材质包括锡、锡合金、铁及不锈钢中的至少一种。
  9. 根据权利要求1~8任一项所述的集流体,其特征在于,所述金属花纹层中金属材料的电阻率小于所述基材的电阻率。
  10. 根据权利要求1~9任一项所述的集流体,其特征在于,所述基材的材质包括锡、锡合金、铁及不锈钢中的至少一种,所述金属花纹层的金属材料包括铜、 铝、镍、锌、铁、金及银中的至少一种或含以上金属的合金。
  11. 根据权利要求1~10任一项所述的集流体,其特征在于,所述集流体的电阻率为25×10 -6Ω·m~125×10 -6Ω·m。
  12. 一种电极极片,包括:
    权利要求1~11任一项所述的集流体;及
    活性材料层,设置于所述集流体具有所述金属花纹层的至少一个表面上,所述活性材料层覆盖所述金属花纹层。
  13. 根据权利要求12所述的电极极片,其特征在于,所述活性材料层靠近所述集流体的表面上具有与所述金属凸部相匹配的凹部。
  14. 一种电池单体,包括权利要求12或13所述的电极极片。
  15. 一种电池模块,包括权利要求14所述的电池单体。
  16. 一种电池包,包括权利要求14所述的电池单体及权利要求15所述的电池模块中的至少一种。
  17. 一种用电装置,包括选自权利要求14所述的电池单体、权利要求15所述的电池模块及权利要求16所述的电池包中的至少一种。
  18. 一种集流体的制备方法,包括以下制备权利要求1~11任一项所述的集流体的步骤:
    在所述基材表面形成金属花纹层。
  19. 根据权利要求18所述的集流体的制备方法,其特征在于,所述形成金属花纹层的步骤包括:
    在所述基材表面贴附模板,使所述基材的部分表面裸露;
    在裸露的所述基材表面制备所述金属花纹层;
    去除所述模板。
  20. 根据权利要求19所述的集流体的制备方法,其特征在于,所述金属花纹层模板为网状绝缘胶;
    可选地,所述网状绝缘胶的单个网眼的面积为5μm 2~300μm 2,可选为5μm 2~150μm 2
  21. 根据权利要求18~20任一项所述的集流体的制备方法,其特征在于,所述金属花纹层是通过电镀处理制备;
    可选地,所述电镀处理的电流密度为10A/dm 2~20A/dm 2,更可选为12A/dm 2~16A/dm 2
    可选地,所述电镀处理的时间为10min~60min,更可选为20min~40min。
PCT/CN2022/115538 2022-08-29 2022-08-29 集流体及其制备方法、电极极片、电池单体、电池模块、电池包及用电装置 WO2024044895A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115538 WO2024044895A1 (zh) 2022-08-29 2022-08-29 集流体及其制备方法、电极极片、电池单体、电池模块、电池包及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115538 WO2024044895A1 (zh) 2022-08-29 2022-08-29 集流体及其制备方法、电极极片、电池单体、电池模块、电池包及用电装置

Publications (1)

Publication Number Publication Date
WO2024044895A1 true WO2024044895A1 (zh) 2024-03-07

Family

ID=90100154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115538 WO2024044895A1 (zh) 2022-08-29 2022-08-29 集流体及其制备方法、电极极片、电池单体、电池模块、电池包及用电装置

Country Status (1)

Country Link
WO (1) WO2024044895A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1523690A (zh) * 2002-12-26 2004-08-25 索尼公司 阳极和采用此阳极的电池
CN101728537A (zh) * 2008-10-24 2010-06-09 索尼株式会社 阳极集流体、阳极及二次电池
CN106848324A (zh) * 2017-01-06 2017-06-13 深圳市德方纳米科技股份有限公司 一种锂离子电池用油性底涂集流体及其制备方法和应用
CN110212153A (zh) * 2019-06-24 2019-09-06 珠海格力电器股份有限公司 一种集流体及其制备方法
CN111816883A (zh) * 2020-08-27 2020-10-23 清陶(昆山)能源发展有限公司 一种复合电极片、其制备方法及其在固态电池中的应用
CN113036155A (zh) * 2021-03-31 2021-06-25 惠州锂威电子科技有限公司 一种复合集流体、电极极片和锂离子电池
CN113611872A (zh) * 2020-11-14 2021-11-05 宁德时代新能源科技股份有限公司 电极极片、含有该电极极片的二次电池、电池模块、电池包及用电装置
CN216903012U (zh) * 2021-12-29 2022-07-05 深圳赛骄阳能源科技股份有限公司 一种附着能力好的锂离子电池集流体及锂离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1523690A (zh) * 2002-12-26 2004-08-25 索尼公司 阳极和采用此阳极的电池
CN101728537A (zh) * 2008-10-24 2010-06-09 索尼株式会社 阳极集流体、阳极及二次电池
CN106848324A (zh) * 2017-01-06 2017-06-13 深圳市德方纳米科技股份有限公司 一种锂离子电池用油性底涂集流体及其制备方法和应用
CN110212153A (zh) * 2019-06-24 2019-09-06 珠海格力电器股份有限公司 一种集流体及其制备方法
CN111816883A (zh) * 2020-08-27 2020-10-23 清陶(昆山)能源发展有限公司 一种复合电极片、其制备方法及其在固态电池中的应用
CN113611872A (zh) * 2020-11-14 2021-11-05 宁德时代新能源科技股份有限公司 电极极片、含有该电极极片的二次电池、电池模块、电池包及用电装置
CN113036155A (zh) * 2021-03-31 2021-06-25 惠州锂威电子科技有限公司 一种复合集流体、电极极片和锂离子电池
CN216903012U (zh) * 2021-12-29 2022-07-05 深圳赛骄阳能源科技股份有限公司 一种附着能力好的锂离子电池集流体及锂离子电池

Similar Documents

Publication Publication Date Title
JP6868299B2 (ja) ナノ多孔性セパレータ層を利用するリチウム電池
WO2020177624A1 (zh) 负极片、二次电池及其装置
CN106159123B (zh) 二次电池
CN107275673A (zh) 一种锂电池固体电解质膜及其制备方法和应用
CN114899410B (zh) 集流体及其制作方法
CN115295767A (zh) 一种正极片和锂离子电池
CN115820013A (zh) 电池外壳及其制备方法、二次电池和用电装置
CN111952537B (zh) 一种纤维素与过渡金属碳/氮化物复合的三维集流体及其制备方法和应用
WO2023039883A1 (zh) 电极及其制备方法、电池及用电装置
JP3245009B2 (ja) 二次電池及び該二次電池の製造方法
CN109888162A (zh) 具备内嵌式极耳的胶黏结构电芯及其制备方法与锂电池
JP4590723B2 (ja) 巻回型電極電池およびその製造方法
CN113130911A (zh) 一种集流体、极片以及锂电池
WO2024044895A1 (zh) 集流体及其制备方法、电极极片、电池单体、电池模块、电池包及用电装置
JPH1196995A (ja) リチウムイオン2次電池用負極の製造方法
WO2023137673A1 (zh) 电极组件、电化学装置及用电设备
CN215266370U (zh) 一种集流体、极片以及锂电池
CN108550787A (zh) 锂离子电池正极及包含它的锂离子电池
CN114204038A (zh) 集流体及其应用
JP2003331823A (ja) 非水電解質二次電池、およびその製造方法
CN112151873A (zh) 一种无集流体的电芯、其制备方法及锂离子电池
KR20180022745A (ko) 메탈폼을 이용한 리튬-공기 전지 지지체 및 그 제조 방법
CN110024203A (zh) 电极组件和包括该电极组件的可再充电电池
CN209461604U (zh) 一种石墨烯锂离子电池
JP4316461B2 (ja) 非水電解質二次電池用電極及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956731

Country of ref document: EP

Kind code of ref document: A1